
Oracle® CDD/Repository
CDO Reference Manual

Release 7.0.1 for OpenVMS

August 1999

Part No. A70149-01

®

Oracle CDD/Repository CDO Reference Manual, Release 7.0.1 for OpenVMS

Part No. A70149-01

Copyright © 1991, 1999, Oracle Corporation. All rights reserved.

The Programs (which include both the software and the documentation) contain proprietary
information of Oracle Corporation; they are provided under a license agreement containing
restrictions on use and disclosure and are also protected by copyright, patent and other
intellectual and industrial property laws. Reverse engineering, disassembly or decompilation
of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free. Except as may be expressly permitted in
your license agreement for these Programs, no part of these Programs may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the
Programs on behalf of the US Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are
’ commercial computer software’ and use, duplication and disclosure of the Programs,
including documentation, shall be subject to the licensing restrictions set forth in the
applicable Oracle license agreement. Otherwise, Programs delivered subject to the Federal
Acquisition Regulations are ’ restricted computer software’ and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19, Commercial
Computer Software - Restricted Rights (June 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical,
or other inherently dangerous applications. It shall be licensee’s responsibility to take all
appropriate fail-safe, back up, redundancy and other measures to ensure the safe use of
such applications if the Programs are used for such purposes, and Oracle disclaims liability
for any damages caused by such use of the Programs.

Oracle is a registered trademark and Oracle Rally, Oracle Rdb, Oracle SQL/Services, and
Rdb7 are trademarks or registered trademarks of Oracle Corporation. All other company or
product names mentioned are used for identification purposes only and may be trademarks
of their respective owners.

Contents

Send Us Your Comments . xi

Preface . xiii

Part I CDO Commands

1 Command Descriptions

@ (At Sign) Command . 1–2
ATTACH Command . 1–5
ATTACH TO COMPOSITE Command . 1–7
CHANGE COLLECTION Command . 1–9
CHANGE CONTEXT Command . 1–11
CHANGE DATABASE Command . 1–13
CHANGE FIELD Command . 1–15
CHANGE FILE_ELEMENT Command . 1–17
CHANGE GENERIC Command . 1–19
CHANGE PARTITION Command . 1–23
CHANGE PROTECTION Command . 1–26
CHANGE RECORD Command . 1–29

CHANGE RECORD: Included Name Change Clause 1–33
CHANGE RECORD: Record Change Clause 1–35
CHANGE RECORD: Structure Change Clause 1–39
CHANGE RECORD: Variant Change Clause 1–42
CHANGE RECORD: Variants Change Clause 1–45

CLEAR NOTICES Command . 1–47
CLOSE FILE_ELEMENT Command . 1–48
COMMIT Command . 1–49
CONSTRAIN Command . 1–51

iii

CONVERT Command . 1–54
COPY Command . 1–59
DEFINE COLLECTION Command . 1–62
DEFINE CONTEXT Command . 1–65
DEFINE DATABASE Command . 1–68
DEFINE DIRECTORY Command . 1–71
DEFINE FIELD Command . 1–72
DEFINE FILE_ELEMENT Command . 1–74
DEFINE GENERIC Command . 1–76

DEFINE GENERIC: Relationship Member Options Clause 1–79
DEFINE KEY Command . 1–87
DEFINE PARTITION Command . 1–90
DEFINE PROTECTION Command . 1–93

Protecting the Repository Anchor . 1–97
DEFINE RECORD Command . 1–99

DEFINE RECORD: Constraint Clause . 1–102
DEFINE RECORD: Included Name Clause . 1–105
DEFINE RECORD: Local Field Clause . 1–108
DEFINE RECORD: Structure Name Clause 1–110
DEFINE RECORD: Variants Clause . 1–112

DEFINE REPOSITORY Command . 1–115
DEFINE REPOSITORY and Remote Access 1–117
Customizing the Repository Templates . 1–118

DEFINE RMS_DATABASE Command . 1–120
DELETE COLLECTION Command . 1–123
DELETE CONTEXT Command . 1–125
DELETE DATABASE Command . 1–127
DELETE DIRECTORY Command . 1–128
DELETE FIELD Command . 1–129
DELETE FILE_ELEMENT Command . 1–130
DELETE GENERIC Command . 1–132
DELETE HISTORY Command . 1–134
DELETE PARTITION Command . 1–135
DELETE PROTECTION Command . 1–137
DELETE RECORD Command . 1–139
DELETE REPOSITORY Command . 1–140
DELETE RMS_DATABASE Command . 1–141

iv

DETACH FROM COMPOSITE Command . 1–143
DIRECTORY Command . 1–145
EDIT Command . 1–148
ENTER Command . 1–149
EXIT Command . 1–152
EXTRACT Command . 1–153
FETCH Command . 1–157
HELP Command . 1–159
MERGE Command . 1–160
MOVE REPOSITORY Command . 1–162
ON Command . 1–163
OPEN FILE_ELEMENT Command . 1–165
PROMOTE Command . 1–166
PURGE Command . 1–168
REMOVE Command . 1–170
REPLACE Command . 1–171
RESERVE Command . 1–174
ROLLBACK Command . 1–179
SET CHARACTER_SET Command . 1–181
SET CONTEXT Command . 1–183
SET DEFAULT Command . 1–185
SET KEY Command . 1–186
SET OUTPUT Command . 1–187
SET VERIFY Command . 1–188
SHOW ALL Command . 1–189
SHOW CHARACTER_SET Command . 1–191
SHOW COLLECTION Command . 1–192
SHOW CONTEXT Command . 1–193
SHOW DATABASE Command . 1–194
SHOW DEFAULT Command . 1–196
SHOW FIELD Command . 1–197
SHOW FILE_ELEMENT Command . 1–200
SHOW GENERIC Command . 1–202
SHOW KEY Command . 1–204
SHOW NOTICES Command . 1–206
SHOW PARTITION Command . 1–209
SHOW PRIVILEGES Command . 1–210

v

SHOW PROTECTION Command . 1–211
SHOW PROTOCOL Command . 1–212
SHOW RECORD Command . 1–215
SHOW REPOSITORIES Command . 1–217
SHOW RESERVATIONS Command . 1–218
SHOW RMS_DATABASE Command . 1–219
SHOW UNUSED Command . 1–221
SHOW USED_BY Command . 1–223
SHOW USES Command . 1–225
SHOW VERSION Command . 1–227
SHOW WHAT_IF Command . 1–229
SPAWN Command . 1–231
START_TRANSACTION Command . 1–233
UNRESERVE Command . 1–235
UPDATE Command . 1–237
VERIFY Command . 1–239

Part II CDO Parameters

2 Field and Record Properties

ARRAY Field or Record Property . 2–2
BASED ON Field Property . 2–4
COLLATING_SEQUENCE Field Property . 2–6
COMPUTED BY Field Property . 2–7
CURRENCY_SIGN Field Property . 2–11
DATATYPE Field Property . 2–12

DATATYPE Field Property: Date-Time Data Types 2–18
DATATYPE Field Property: Decimal String Data Types 2–20
DATATYPE Field Property: Fixed-Point Data Types 2–22
DATATYPE Field Property: Floating-Point Data Types 2–24

DECIMAL_POINT Field Property . 2–26
DEFAULT_VALUE FOR SQL Field Property . 2–27
DISPLAY_SCALE Field Property . 2–28
EDIT_STRING Field Property . 2–29
FILLER Field Property . 2–31
GENERIC Field Property . 2–32

vi

HELP_TEXT Field Property . 2–33
INITIAL_VALUE Field Property . 2–35
INPUT_VALUE Field Property . 2–37
JUSTIFIED Field Property . 2–38
MISSING_VALUE Field Property . 2–40
NAME Field or Record Property . 2–41
OCCURS Field Property . 2–42
OCCURS ... DEPENDING Record Property . 2–43
QUERY_HEADER Field Property . 2–46
QUERY_NAME Field Property . 2–47
VALID IF Field Property . 2–48

3 File Definition, Area, and Key Properties

File Definition Properties . 3–2
Area Properties . 3–8
Key Properties . 3–11

4 Expressions

Precedence Ordering . 4–2
Value Expressions . 4–4

Value Expressions: Character String Literals 4–14
Value Expressions: Numeric Literals . 4–16

Conditional Expressions . 4–17
Relational Operators . 4–20
Record Selection Expression (RSE) . 4–25

5 CDO Edit Strings

5.1 Chapter Organization . 5–3
5.2 Alphabetic Character . 5–4
5.3 Alphanumeric Character . 5–4
5.3.1 T: Long Text Character . 5–5
5.3.2 X: Any Character . 5–5
5.4 Comma Character . 5–6
5.5 Date, Day, and Time Characters . 5–7
5.5.1 D: Day Number Character . 5–7
5.5.2 H: Twelve-Hour Mode Character . 5–7
5.5.3 J: Julian Digit Character . 5–7

vii

5.5.4 M: Month Name Character . 5–8
5.5.5 N: Month Number Character . 5–8
5.5.6 P: Minute Character . 5–9
5.5.7 Q: Second Character . 5–9
5.5.8 R: Twenty-Four Hour Mode Character . 5–9
5.5.9 W: Weekday Name Character . 5–9
5.5.10 Y: Year Character . 5–10
5.5.11 % : AM/PM Character . 5–10
5.5.12 * : Fraction Second Character . 5–11
5.6 Decimal Point Character . 5–11
5.7 Digit Characters . 5–11
5.7.1 F: Hexadecimal Digit Character . 5–11
5.7.2 7: Octal Digit Character . 5–12
5.7.3 9: Decimal Digit Character . 5–12
5.8 Encoded Sign Characters . 5–12
5.8.1 C: Encoded Minus Character . 5–12
5.8.2 G: Encoded Sign Character . 5–13
5.8.3 K: Encoded Plus Character . 5–13
5.9 Exponent Character . 5–14
5.10 Floating Characters . 5–14
5.10.1 S: Floating Sign Character . 5–14
5.10.2 Z: Floating Zero Replace Character . 5–15
5.10.3 - : Floating Minus Character . 5–16
5.10.4 + : Floating Plus Character . 5–17
5.10.5 $: Floating Currency Character . 5–17
5.10.6 \ : Floating Blank Character . 5–18
5.11 Literal Characters . 5–18
5.12 Logical Character . 5–19
5.13 Lowercase Character . 5–19
5.14 Minus Literal Character . 5–19
5.15 Minus Parentheses Character . 5–20
5.16 Missing Separator Character . 5–20
5.17 Repeat Count Character . 5–21
5.18 Uppercase Character . 5–21
5.19 Japanese Edit Strings . 5–21

viii

A Mapping of Keywords with the DEFINE_RMS_DATABASE
Command

B Repository Logical Names Table

Index

Figures

1 CDD/Repository Documentation Chart . xv

Tables

1 Documentation Conventions . xvi
1–1 Conversion of Oracle Dictionary Management Utility (DMU) Access

Rights to CDO Access Rights . 1–56
1–2 Rules for Using Wildcard Characters With the COPY Command 1–60
1–3 Redefineable Key Names and Terminal Designations 1–89
1–4 Error Handling if Action is CONTINUE . 1–163
1–5 Error Handling if Action is STOP . 1–164
1–6 Valid Character Set Names . 1–181
2–1 Valid Character Set Name Values for Character Set Attributes 2–13
2–2 Values for SEGMENT_TYPE . 2–15
2–3 Number of Octets Used for One Character in Each Character Set . . . 2–15
2–4 Fixed-Point Data Types . 2–22
2–5 Floating-Point Data Types . 2–24
2–6 Complex Numbers . 2–25
4–1 Relational Operators Equivalent Symbols . 4–2
4–2 Arithmetic Operators . 4–9
4–3 Statistical Operators . 4–9
4–4 Built-in Function Description . 4–10
4–5 Quotation Marks in Character String Literals 4–14
4–6 Pattern Testing Relational Operators . 4–20
4–7 Mathematical Relational Operators . 4–21
5–1 Translation of CDO Edit Strings for Languages and Products 5–2
5–2 Translation of Characters in Floating Zero Replace Edit Strings 5–16
5–3 Translation of CDO Literal Edit Strings . 5–19

ix

5–4 Translation of CDO Minus Literal Edit Strings 5–20
A–1 Mapping of Keywords to Symbolic Field Offsets A–1
A–2 Mapping of Keywords to Symbolic Constants A–3
A–3 Mapping of Keywords to Symbolic Bit Offsets A–5
A–4 Mapping of CDO Area Properties to RMS Symbolic Field Offsets . . . A–7
A–5 Mapping of CDO Position Type Options to XAB$B_ALN Symbolic

Constants . A–8
A–6 Mapping of CDO Key Properties to RMS Symbolic Field Offsets A–8
B–1 Oracle CDD/Repository Logical Names . B–1

x

Send Us Your Comments

Oracle CDD/Repository CDO Reference Manual, Release 7.0.1 for OpenVMS
Part No. A70149-01

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• E-mail — nedc_doc@us.oracle.com

• FAX — 603-897-3316 Attn: Oracle CDD/Repository Documentation

• Postal service:
Oracle Corporation
Oracle CDD/Repository Documentation
One Oracle Drive
Nashua, NH 03062-2698
USA

If you would like a reply, please include your name and contact information.

If you have problems with the software, please contact your local Oracle
Support Center.

xi

Preface

This manual provides reference material for the Common Dictionary Operator
(CDO) utility. It describes the syntax and semantics of all CDO commands.

Intended Audience
The audience for this manual consists of those users who access
CDD/Repository through the CDO utility. These users include the following:

• The data administrator, or repository administrator, responsible for
creating the repository contents, setting up the security provisions, and
maintaining the repository structure.

• The database administrator responsible for creating standard definitions
that can be shared among databases and applications.

• Programming supervisors responsible for maintaining portions of the
repository.

• Programmers responsible for maintaining portions of the repository
and for writing applications that use the definitions stored in Oracle
CDD/Repository.

The audience does not include users who access CDD/Repository through the
DMU utilities. These users can consult Figure 1 for appropriate manuals.

Document Structure
This manual is organized in two parts as follows:

• Part I CDO Commands

– Chapter 1 provides syntax diagrams and rules for CDO commands.

• Part II CDO Parameters

– Chapter 2 provides syntax diagrams and rules for CDO field and record
properties.

xiii

– Chapter 3 provides syntax diagrams and rules for CDO RMS database
properties.

– Chapter 4 provides syntax diagrams and rules for CDO expressions.

– Chapter 5 provides rules for CDO edit strings.

– Appendix A provides a mapping of keywords for CDO DEFINE_RMS_
DATABASE command.

– Appendix B provides explanations of CDO OpenVMS logical names.

Associated Documents
See the CDD/Repository Documentation Chart for more information on
associated documents and reading paths.

See online help for a glossary of defined terms.

Within this manual, the title CDD/Repository Information Model refers to both
CDD/Repository Information Model Volume I and CDD/Repository Information
Model Volume II.

References to Products
The Oracle CDD/Repository documentation set to which this manual belongs
often refers to the following products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS.

• OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
systems.

• The SQL interface to Oracle Rdb is referred to as SQL. This interface is
the Oracle Rdb implementation of the SQL standard ANSI X3.135-1992,
ISO 9075:1992, commonly referred to as the ANSI/ISO SQL standard or
SQL92.

• COBOL means both the DIGITAL VAX COBOL and DIGITAL DEC
COBOL language products.

xiv

Figure 1 CDD/Repository Documentation Chart

Using
CDD/Repository

CDD/Repository

Architecture
Manual

Programmer

CDD/Repository

Information
Model

CDD/Repository

Callable
Interface Manual

Volumes 1 and 2

CDD/Repository

CDO Reference
Manual

Using
CDD/Repository

CDD/Repository

Architecture
Manual

CDO User

ZK−3796A−GE

VAX Common
Data Dictionary
Data Definition
Language Ref.
Manual

VAX Common
Data Dictionary
Utilities Ref.
Manual

DMU User

VAX CDD/Plus
User’s Guide

Installer

Installing
CDD/Repository

CDD/Repository

CDO Reference
Manual

*

*

*

*

Advanced Documentation Kit − Separately Orderable

DMU Documentation Kit − Separately Orderable

Operating System−Specific Manual

CDD/Repository

CDD/Repository

CDD/Repository

xv

Conventions Used in This Document
Table 1 shows the conventions used in this manual:

Table 1 Documentation Conventions

Convention Description

Ctrl/x Ctrl/x indicates that you hold down the Ctrl key while you
press another key or mouse button (indicated here by x).

{ } In format descriptions, braces indicate required elements.
You must choose one of the elements.

[] In format descriptions, brackets indicate optional elements.
You can choose none, one, or all of the options. (Brackets
are not optional, however, in the syntax of a directory name
in an OpenVMS file specification.)

‘‘ ’’ Quotation marks enclose system messages that are specified
in text.

. . . In format descriptions, horizontal ellipsis points indicates
an item that can be repeated.

.

.

.

Vertical ellipsis points indicate the omission of information
from an example or command format. The information
is omitted because it is not important to the topic being
discussed.

italic type Italic type indicates complete titles of manuals.

UPPERCASE Words in uppercase indicate a command, the name of a file,
the name of a file protection code, or an abbreviation for a
system privilege.

lowercase In format descriptions, words in lowercase indicate
parameters or arguments to be specified by the user.

Underlined text In format descriptions, underlined keywords of a command
are required. Keywords that are not underlined are
optional.

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

∆ A delta symbol indicates a single space.

xvi

Part I
CDO Commands

This part describes the syntax and semantics of the CDO commands.

1
Command Descriptions

CDO commands allow you to define, modify, delete, display, and manipulate
some elements in the repository. These elements are contexts, collections,
partitions, and data definitions.

CDO command descriptions do not define terms and concepts described
in the Oracle CDD/Repository Architecture Manual and the Using Oracle
CDD/Repository on OpenVMS Systems.

Command Descriptions 1–1

@ (At Sign) Command

@ (At Sign) Command

Format

@file-spec

Parameters

file-spec
Specifies the CDO command file to execute. File-spec can be a fully qualified
path name, a relative path name, or a logical name. The default file type is
.CDO.

Description

The @ (at sign) command reads and executes the CDO commands contained in
the specified file as if you had entered these commands at the terminal. The
file can contain any valid CDO commands, including other @ commands.

By default, CDO does not echo commands and comments in your file to the
standard output location. You can override this default by including the SET
VERIFY command as the first command in your file.

By default, CDO exits the file when it encounters an error. You can override
this default by including the ON command in your file.

When CDO executes an EXIT command in the file, or reaches the end of
the file, control returns to the command stream that invoked the file. That
command stream can be the terminal or a previous file containing CDO
commands. You can issue the @ command at the CDO prompt (CDO>). After
the CDO commands execute, the CDO prompt returns.

You can issue the @ command as a foreign command at the system level. You
can append the @ command to the REPOSITORY OPERATOR command. You
can also include the REPOSITORY OPERATOR @ command in an OpenVMS
command procedure.

To execute a CDO command procedure with a default file type of .CDO, you do
not need to specify the file type.

If the file type for a CDO command procedure is not .CDO, you must specify
the file type to execute the command procedure.

1–2 Command Descriptions

@ (At Sign) Command

After the CDO commands execute, the system prompt returns. If you intend
to use your file as an initialization file, you need not issue the @ command.
Instead, name your file CDO$INIT.CDO and place it in the directory from
which you invoke CDO. CDO then automatically executes this file at the start
of each CDO session.

You can also define CDO$INIT as a logical name specifying a device, directory,
and file name. If you use such a logical name, the file does not need to be in
your default directory when you invoke CDO.

Examples

1. $ DEFINE CDO$INIT SYS$LOGIN:CDO$INIT.CDO
$ SET VERIFY
$ SET DEFAULT USER$DISK:[BOB.DICT]
$ SHOW DEFAULT
CDO> DIRECTORY

In this example, the CDO$INIT.CDO initialization file sets your default
repository directory. Oracle CDD/Repository automatically executes the
initialization file when you invoke CDO from the OpenVMS directory that
contains it.

2. CDO> @START
CDO> SET DEFAULT USER$DISK:[BOB.DICT]
CDO> DIRECTORY
Directory USER$DISK:[BOB.DICT]
CDDPLUS DIRECTORY
CDO>

The START.CDO command procedure in this example places you in the
[BOB.DICT] directory, then lists the definitions in that directory. The SET
VERIFY command in the previous example instructs CDO to display each
subsequent command on the terminal screen before execution.

3. CDO> @EMPLOYEES.PROCEDURE

In this example, the @ (at sign) command executes the CDO commands in
the EMPLOYEES.PROCEDURE command procedure.

4. CDO> @CDDNODE::SYS$DISK:[SMITH.REP]CHANGE.PROCEDURE

In this example, the file specification incorporates a fully qualified path
name and a user-supplied file type. The @ (at sign) command executes the
CHANGE.PROCEDURE file.

Command Descriptions 1–3

@ (At Sign) Command

5. CDO> @START

In this example, the file specification incorporates a file name and the
default file type (.CDO). The @ (at sign) command executes the START.CDO
file.

6. $ DEFINE CDO$INIT SYS$LOGIN:CDO$INIT.CDO
$ TYPE SYS$LOGIN:CDO$INIT.CDO
$ SET VERIFY
$ SET DEFAULT device:[CDDPLUS]MYDIR
$ SHOW DEFAULT
$ REPOSITORY OPERATOR

In this example, when CDO is invoked, SYS$LOGIN:CDO$INIT.CDO is
executed immediately before the CDO prompt is displayed.

1–4 Command Descriptions

ATTACH Command

ATTACH Command

Format

ATTACH process-name

Parameters

process-name
Specifies the process to which control passes. The process must be an existing
process. If the process name contains blanks, lowercase characters, or other
special characters, enclose the name in double quotation marks (" ").

Description

The ATTACH command passes control from the current process to a parent
process or a subprocess.

Examples

1. CDO> ATTACH JIM SMITH
$

In this example, the ATTACH command passes control from the current
parent process at the CDO prompt to the JIM SMITH subprocess at the
system prompt.

2. CDO> ATTACH "Jim Smith"
$

In this example, the ATTACH command passes control from the current
parent process at the CDO prompt to the Jim Smith process at the system
prompt. The process name is entered in lowercase characters, which
requires double quotation marks.

3. CDO> SPAWN
$ SHOW DEFAULT

USER1:[SMITH]
$ ATTACH Smith
CDO> SHOW DEFAULT

USER1:[SMITH.REP]
CDO> ATTACH Smith_1
$SHOW DEFAULT
%DCL-S-RETURNED, control returned to process SMITH_1

In this example, the SPAWN command creates a subprocess, and the
ATTACH commands pass control back and forth between the spawned

Command Descriptions 1–5

ATTACH Command

subprocess and the parent process.

4. CDO> SPAWN RUN SYS$SYSTEM:SQL$
SQL>
SQL> COMMIT
SQL> $ATTACH SMITH
CDO>
CDO> ATTACH SMITH_2
%DCL-S-RETURNED, control returned to process SMITH_2
SQL>

In this example, the SPAWN command creates a subprocess to invoke SQL
and a secondary subprocess that runs SQL. When you are in CDO and
want to reattach to your SQL subprocess, you can avoid subprocess quotas
by attaching to the secondary subprocess.

1–6 Command Descriptions

ATTACH TO COMPOSITE Command

ATTACH TO COMPOSITE Command

Format

ATTACH

8>>><
>>>:

COLLECTION
FIELD
FILE_ELEMENT type-name
GENERIC type-name
RECORD

9>>>=
>>>;

[qualifier] element-name ,...

TO composite-name [AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of file or generic element to which you are attaching.

element-name
Specifies the element to which you are attaching. You can substitute an
asterisk (*) wildcard character for this parameter.

composite-name
Specifies the collection, field, record, file, or generic element to which you are
attaching.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
attached.

Command Descriptions 1–7

ATTACH TO COMPOSITE Command

Description

The ATTACH TO COMPOSITE command attaches a controlled element to the
composite you specify. The element then becomes a child of the composite to
which you are attaching.

Before you issue the ATTACH TO COMPOSITE command, you must have
set a context and reserved a composite. The SHOW CONTEXT and SHOW
RESERVATIONS commands indicate whether these conditions exist.

You can use the ATTACH TO COMPOSITE command in conjunction with the
DEFINE, RESERVE, REPLACE, and DETACH commands to link collections
in collection hierarchies. See the DEFINE COLLECTION command for an
example of a collection hierarchy.

You can also use the DETACH FROM COMPOSITE and ATTACH TO
COMPOSITE commands to move between lines of descent. See the Oracle
CDD/Repository Architecture Manual for more information on lines of descent.

Examples

1. CDO> DEFINE PARTITION FIRST_QUARTER AUTOPURGE.
CDO> DEFINE CONTEXT SALES
cont> BASE_PARTITION FIRST_QUARTER.
CDO> SET CONTEXT SALES
CDO> DEFINE COLLECTION SALES_EACH_PRODUCT.
CDO> CONSTRAIN FIELD PART_NUMBER
CDO> RESERVE COLLECTION SALES_EACH_PRODUCT
CDO> ATTACH FIELD PART_NUMBER TO SALES_EACH_PRODUCT
CDO> REPLACE COLLECTION SALES_EACH_PRODUCT

In this example, the ATTACH TO COMPOSITE command attaches the
PART_NUMBER field to the SALES_EACH_PRODUCT collection.

2. CDO> RESERVE COLLECTION EMPLOYEE_RECORDS
CDO> DETACH FIELD FIRST_NAME(2:BRANCH:2) FROM EMPLOYEE_RECORDS
CDO> ATTACH FIELD FIRST_NAME(2) TO EMPLOYEE_RECORDS
CDO> REPLACE COLLECTION EMPLOYEE_RECORDS

In this example, the ATTACH TO COMPOSITE command attaches a
version in the main line of descent, FIRST_NAME(2), to the EMPLOYEE_
RECORDS collection. This allows you to create further versions in the
main line, instead of in the branch line where you had been working.

1–8 Command Descriptions

CHANGE COLLECTION Command

CHANGE COLLECTION Command

Format

CHANGE COLLECTION collection-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/] .

Parameters

collection-name
Specifies the collection you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the collection; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

Description

The CHANGE COLLECTION command modifies a collection by performing a
change in place. CDO changes the values you specify, and other values remain
the same.

Before you can issue the CHANGE COLLECTION command, you must issue
the RESERVE COLLECTION command to reserve the collection. The SHOW
COLLECTION or SHOW RESERVATIONS command indicates whether a
condition is reserved. The RESERVE command creates a new version of the
element.

Since a collection is a controlled element, CDO freezes previous versions and
allows you to modify only the highest visible version.

Command Descriptions 1–9

CHANGE COLLECTION Command

Examples

1. CDO> SET CONTEXT
CDO> DEFINE COLLECTION REGIONAL_SALES
cont> DESCRIPTION IS "COLLECTION IS REGION_5".
CDO> RESERVE COLLECTION REGIONAL_SALES
CDO> CHANGE COLLECTION REGIONAL_SALES
cont> DESCRIPTION IS "COLLECTION DIRECTORY IS WEST_COAST".
CDO> REPLACE COLLECTION REGIONAL_SALES

In this example, the CHANGE COLLECTION command modifies the
description clause of the REGIONAL_SALES collection.

2. CDO> RESERVE COLLECTION COMPILER_C
CDO> CHANGE COLLECTION COMPILER_C
cont> NODESCRIPTION
cont> AUDIT IS "PHASE REVIEW".
CDO> REPLACE COLLECTION COMPILER_C

In this example, the CHANGE COLLECTION command removes the
description clause and adds audit text.

1–10 Command Descriptions

CHANGE CONTEXT Command

CHANGE CONTEXT Command

Format

CHANGE CONTEXT context-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

�
TOP IS collection-name
NOTOP

�
2
64 DEFAULT_ATTACHMENT IS

(SPECIFIC_VERSION
LATEST_CHECKIN
LATEST

) 3
75 .

Parameters

context-name
Specifies the context you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the context; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command and
set the character_set of the session to DEC_KANJI.

collection-name
Specifies a new collection as the top collection for the context.

Description

The CHANGE CONTEXT command modifies a context by performing a change
in place. CDO changes the values you specify, and other values remain the
same.

Because a context is a nonversioned element, CDO does not accept a branch
designation or a version number in the context name.

Command Descriptions 1–11

CHANGE CONTEXT Command

The TOP clause redefines the top collection property for the context. An error
occurs if you attempt to redefine the top collection while you have any element
reserved to your context. The SHOW CONTEXT or SHOW RESERVATIONS
command indicates whether this condition exists.

The NOTOP keyword sets the top collection property to a null value.

The DEFAULT_ATTACHMENT clause redefines the default attachment
property for the context. This property refers to the default behavior that
occurs when you issue the UPDATE command. Choose one of the following
keywords:

DEFAULT_ATTACHMENT
Keyword Behavior

SPECIFIC_VERSION Does not detach the currently attached version.
LATEST_CHECKIN Detaches the currently attached version and

attaches the most recently checked in version.
LATEST Detaches the currently attached version and

attaches the lastest version, whether it is checked
in or is a ghost. The LATEST keyword is the
default.

Examples

CDO> CHANGE CONTEXT DEVELOPMENT_CONTEXT
cont> DESCRIPTION IS "ARCHIVING THIS CONTEXT"
cont> "VERSION 5.0 DEVELOPMENT COMPLETED"
cont> NOTOP
cont> DEFAULT_ATTACHMENT IS SPECIFIC_VERSION.

In this example, the CHANGE CONTEXT command modifies the DEFAULT_
ATTACHMENT clause, the description text, and the TOP clause in the
DEVELOPMENT_CONTEXT context.

1–12 Command Descriptions

CHANGE DATABASE Command

CHANGE DATABASE Command

Format

CHANGE DATABASE rms-database-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

[ON file-name] .

Parameters

rms-database-name
Specifies the physical RMS database you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the database; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

file-name
Specifies a new disk location for the physical RMS database. This OpenVMS
file name is a character string having from 1 to 1024 characters.

Description

The CHANGE DATABASE command modifies a physical RMS database
element by performing a change in place. CDO changes the values you specify,
and other values remain the same.

If an RMS database element is controlled, CDO freezes previous versions and
allows you to modify only the highest visible version. If an RMS database is
uncontrolled, CDO modifies the highest version unless you specify another
version number.

If an RMS database element is controlled, you must reserve the database
before you can issue the CHANGE DATABASE command. The SHOW
DATABASE or SHOW RESERVATIONS command indicates whether this
condition exists.

Command Descriptions 1–13

CHANGE DATABASE Command

The ON clause moves a physical RMS database to a new location on disk.
When you specify the ON clause, CDO issues a notice asking you to confirm
that you want to move the database. This notice cannot be suppressed.

If the CHANGE DATABASE command succeeds, Oracle CDD/Repository moves
the physical file on disk and updates the pointer to the physical file in the
repository. If the CHANGE DATABASE command fails, Oracle CDD/Repository
does not move the database.

Examples

1. CDO> CHANGE DATABASE DISG_FILE
cont> DESCRIPTION "INFORMATION ON DIS SECTION EMPLOYEES"
cont> "PERSONNEL CONTACT IS JIM SMITH"
cont> AUDIT "JIM SMITH ACCEPTS THIS ACCOUNT 06/30/90".

In this example, the CHANGE DATABASE command modifies the
description clause and adds an AUDIT clause to the DISG_FILE database.

2. CDO> CHANGE DATABASE DISG_FILE
cont> ON DISK1:[SMITH.PERSONNEL]EMP.DAT.

In this example, the CHANGE DATABASE command moves the DISG_
FILE database to a new location.

1–14 Command Descriptions

CHANGE FIELD Command

CHANGE FIELD Command

Format

CHANGE FIELD field-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

�
field-property
NOfield-property

�
... .

Parameters

field-name
Specifies the field element you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the field; within the AUDIT clause, it is a history list entry. Valid
delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

field-property
Changes the value of an existing property, or adds a new property, in the field
element. You specify removal with the NO keyword. See Chapter 2 for the
field properties CDO provides.

Description

The CHANGE FIELD command modifies a field element by performing a
change in place. CDO changes the values you specify, and other values remain
the same.

If a field element is controlled, CDO freezes previous versions and allows you
to modify only the highest visible version. If a field element is uncontrolled,
CDO modifies the highest version unless you specify another version number.

If a field element is controlled, you must reserve the field before you
can issue the CHANGE FIELD command. The SHOW FIELD or SHOW
RESERVATIONS command indicates whether this condition exists.

Command Descriptions 1–15

CHANGE FIELD Command

When you change a field element that an Oracle Rdb database uses, you may
need to integrate the database with the repository. CDO automatically sends a
notice with the name of the database when this is necessary.

Examples

1. CDO> CHANGE FIELD POSTAL_CODE
cont> DESCRIPTION "A 5 DIGIT POSTAL_CODE: NOTE AUDIT"
cont> AUDIT "CHANGED TO 9 DIGIT POSTAL_CODE 6/30/90".

In this example, the CHANGE FIELD command modifies the description
clause and adds an audit clause to the POSTAL_CODE field element.

2. CDO> CHANGE FIELD TOTAL
cont> NOINITIAL_VALUE.

In this example, the CHANGE FIELD command removes the INITIAL_
VALUE field property with the NO keyword.

1–16 Command Descriptions

CHANGE FILE_ELEMENT Command

CHANGE FILE_ELEMENT Command

Format

CHANGE FILE_ELEMENT type-name element-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

2
4 property-name IS

n n
quoted-string

o
NOproperty-name

3
5

END [FILE_ELEMENT element-name] [type-name] .

Parameters

type-name
Specifies the type (MCS_BINARY or an MCS_BINARY subtype) of the file
element you are modifying. See the Oracle CDD/Repository Information Model
for more information on these types.

element-name
Specifies the file element you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the file element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command and
set the character_set of the session to DEC_KANJI.

property-name
Specifies the property you are adding, changing, or removing. You specify
removal with the NO keyword.

n
Modifies the value (numerical) set for a property.

quoted-string
Modifies the value (a string enclosed in quotation marks) set for a property.

Command Descriptions 1–17

CHANGE FILE_ELEMENT Command

Description

The CHANGE FILE_ELEMENT command modifies a file element by
performing a change in place. CDO changes the values you specify, and
other values remain the same.

Because a file element is a controlled element, CDO freezes previous versions
and allows you to modify only the highest visible version.

Before you can issue the CHANGE FILE_ELEMENT command, you must
reserve the file element with the RESERVE FILE_ELEMENT command.

If you add, change, or delete a property from the file element, the property you
specify must be a defined or inherited property for the file element’s type. See
the Oracle CDD/Repository Information Model for a list of these properties.

Errors occur if you attempt to delete the MCS_STOREDIN property from a file
element whose STORETYPE is EXTERNAL. CDO requires this property for
external files.

Examples

CDO> RESERVE FILE_ELEMENT MCS_BINARY PARSER_TABLES
CDO> CHANGE FILE_ELEMENT MCS_BINARY PARSER_TABLES
cont> DESCRIPTION IS "PARSER TABLES FOR VERSION 5.0".
cont> END MCS_BINARY.
CDO> REPLACE FILE_ELEMENT MCS_BINARY PARSER_TABLES

In this example, the CHANGE FILE_ELEMENT command adds description
text to the file element PARSER_TABLES.

1–18 Command Descriptions

CHANGE GENERIC Command

CHANGE GENERIC Command

Format

CHANGE GENERIC type-name element-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

2
4 property-name IS

n n
quoted-string

o
NOproperty-name

3
5

[DEFINE relationship-name relationship-mbr

2
4 property-name IS

n n
quoted-string

o
NOproperty-name

3
5

END relationship-name DEFINE .] ...

[DELETE relationship-name relationship-mbr .] ...

END [element-name] type-name .

Parameters

type-name
Specifies the type of the generic element you are modifying. This type cannot
be MCS_BINARY, a subtype of MCS_BINARY, MCS_COLLECTION, MCS_
CONTEXT, or MCS_PARTITION. See the Oracle CDD/Repository Information
Model Volume I for more information.

element-name
Specifies the generic element you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the generic element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

Command Descriptions 1–19

CHANGE GENERIC Command

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

property-name
Specifies the property you are adding, changing, or removing. You specify
removal with the NO keyword.

n
Modifies the value (numerical) set for a property.

quoted-string
Modifies the value (a string enclosed in quotation marks) set for a property.

relationship-name
Specifies the relationship type that you are defining or deleting in the generic
element. The type must be a subtype of RELATION.

relationship-mbr
Specifies the generic element that you are defining or deleting as a member of
the relationship type. The element must exist in the repository; otherwise, an
error occurs.

Description

The CHANGE GENERIC command modifies a generic element by performing a
change in place. CDO changes the values you specify, and other values remain
the same.

If a generic element is a controlled versioned element, CDO freezes previous
versions and allows you to modify only the highest visible version. If a generic
element is an uncontrolled versioned element, CDO modifies the highest
version unless you specify another version number.

If a generic element is controlled, you must reserve the element before you can
issue the CHANGE GENERIC command. The SHOW GENERIC or SHOW
RESERVATIONS command indicates whether this condition exists.

You can modify generic elements that are based on types supplied through
Oracle CDD/Repository or on user-supplied (extended) types. If you do most
of your work with extended types, Oracle recommends that you should work
through the Oracle CDD/Repository callable interface. The CDO GENERIC
commands are useful to modify and display on a spot basis, but extensibility is
not supported through CDO.

1–20 Command Descriptions

CHANGE GENERIC Command

If you add, change, or delete a property from the generic element, the property
you specify must be a defined or inherited property for the element’s type.
Likewise, any relationship member you specify must be compatible with the
relationship name’s type. See the Oracle CDD/Repository Information Model
Volume I for more information on valid properties and types.

If the generic element you are modifying is based on an extended type and
errors occur when you attempt to add or delete a relationship, you may not
have specified the processing name property as a required property for your
type. The property takes a quoted string value.

Caution

Specify the MCS_processingName property, not the
CDD$PROCESSING_NAME property, when you work with extended
types. Otherwise, you experience performance degradation in the
Oracle CDD/Repository callable interface.

The type on which the generic element definition is based determines whether
an attribute is required or optional in instances of the type. If the type
definition specifies that the CDD$DESCRIPTION attribute can be used in
instances of the type, you can add documentation text to the generic entity
definition or remove existing documentation text. You can display text entered
with the DESCRIPTION clause by using the SHOW GENERIC command with
the /BRIEF or /FULL qualifiers.

If the type definition specifies that the CDD$HISTORY_LIST relationship can
be used in instances of the type, you can add explanatory history list entries
to the generic entity definition. You can display history list entries for generic
entity definitions by using the SHOW GENERIC command with the /AUDIT or
/ALL qualifiers.

Examples

1. CDO> CHANGE GENERIC CDD$EXECUTABLE_IMAGE MY_PROGRAM
cont> MCS_PROCESSINGNAME "OUR_PROGRAM".
cont> END MY_PROGRAM CDD$EXECUTABLE_IMAGE.

In this example, the CHANGE GENERIC command modifies the
MCS$PROCESSING_NAME (MCS_processingName property) of the
generic element MY_PROGRAM. MY_PROGRAM is based on the type
CDD$EXECUTABLE_IMAGE, which is supplied by Oracle CDD/Repository.

Command Descriptions 1–21

CHANGE GENERIC Command

2. CDO> CHANGE GENERIC BOOK CDO_REFERENCE_MANUAL
cont> LIBRARY_NUMBER IS "AA-KL45A-TF".
cont> END BOOK CDO_REFERENCE_MANUAL.

In this example, the CHANGE GENERIC command modifies the
LIBRARY_NUMBER of the CDO_REFERENCE_MANUAL generic
element. CDO_REFERENCE_MANUAL is based on the user-supplied
type BOOK.

1–22 Command Descriptions

CHANGE PARTITION Command

CHANGE PARTITION Command

Format

CHANGE PARTITION partition-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

�
LOOKASIDE_PARTITION IS look-partition-name ,...
NOLOOKASIDE_PARTITION

�

[PARENT_PARTITION IS parent-partition-name]

�
AUTOPURGE
NOAUTOPURGE

�
.

Parameters

partition-name
Specifies the partition you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the partition; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

look-partition-name
Modifies the list of partitions that is visible through this partition. Each
partition must be an existing partition.

parent-partition-name
Modifies the partition hierarchy by naming a parent (owner) for an existing
parent (owner) partition.

Command Descriptions 1–23

CHANGE PARTITION Command

Description

The CHANGE PARTITION command modifies a partition by performing a
change in place. CDO changes the values you specify, and other values remain
the same.

Because a partition is a nonversioned element, CDO does not accept a branch
designation or a version number in the partition name.

The LOOKASIDE_PARTITION clause modifies the list of partitions whose
contents are visible through the partition you are modifying.

The PARENT_PARTITION clause modifies the partition hierarchy by naming
an owner for an existing parent (owner) partition. This clause can be
specified only once during the lifetime of the partition, in either the DEFINE
PARTITION or CHANGE PARTITION command.

The AUTOPURGE and NOAUTOPURGE keywords redefine the autopurge
property for the partition. The value of this property indicates whether or not
CDO automatically purges intermediate versions of elements in the partition
when you promote the latest version.

1–24 Command Descriptions

CHANGE PARTITION Command

Examples

1. CDO> DEFINE PARTITION FIRST_BASELEVEL AUTOPURGE.
CDO> DEFINE PARTITION FRONT_END
cont> PARENT_PARTITION IS FIRST_BASELEVEL AUTOPURGE.
CDO> DEFINE PARTITION BACK_END
cont> PARENT_PARTITION IS FIRST_BASELEVEL
cont> LOOKASIDE_PARTITION IS FRONT_END AUTOPURGE.
CDO> CHANGE PARTITION FRONT_END
cont> LOOKASIDE_PARTITION IS BACK_END.

In this example, the CHANGE PARTITION command adds a
LOOKASIDE_PARTITION clause to the FRONT_END partition element.
You add this clause in a CHANGE PARTITION command, rather than in
the initial DEFINE PARTITION command, because the partition named in
a LOOKASIDE_PARTITION clause must be an existing partition.

2. CDO> DEFINE PARTITION FINAL_REPORT AUTOPURGE.
CDO> DEFINE PARTITION PUBLICATION_RELEASE AUTOPURGE.
CDO> CHANGE PARTITION FINAL_REPORT
cont> PARENT_PARTITION IS PUBLICATION_RELEASE.

In this example, the CHANGE PARTITION command adds a PARENT_
PARTITION clause to the FINAL_REPORT partition element.

3. CDO> DEFINE PARTITION FIRST_TESTBASELEVEL AUTOPURGE.
CDO> CHANGE PARTITION FIRST_TESTBASELEVEL
cont> AUDIT IS "LET’S PROMOTE ALL TEST VERSIONS" NOAUTOPURGE.

In this example, the CHANGE PARTITION command adds an AUDIT
clause and modifies the AUTOPURGE keyword.

Command Descriptions 1–25

CHANGE PROTECTION Command

CHANGE PROTECTION Command

Format

CHANGE PROTECTION FOR

8><
>:

DIRECTORY
FIELD
RECORD
GENERIC type-name

9>=
>; element-name ,...

h POSITION n
id1+...

i
ACCESS right+

CHANGE PROTECTION FOR
�

REPOSITORY anchor-name
GENERIC MCS_CONTEXT context-name

�

[POSITION n]
�

ACCESS
DEFAULT_ACCESS

�
right+

Parameters

type-name
Specifies the type of the generic element whose ACE you are modifying.

element-name
Specifies the element whose ACE you are modifying. You can use wildcard
characters in this name.

n
Specifies the relative position (a positive integer) in the ACL of the ACE you
are modifying. If you omit this parameter and also the id1 parameter, CDO
changes the first ACE by default.

id
Specifies the identifier of the ACE you are modifying. If you omit this
parameter and also the n parameter, CDO changes the first ACE by default.

right
Specifies the access rights you are granting to the users specified in the ACE.

anchor-name
Specifies the anchor directory for the repository whose ACE you are modifying.

1–26 Command Descriptions

CHANGE PROTECTION Command

context-name
Specifies the context for which you are modifying protections.

Description

The CHANGE PROTECTION command modifies access rights for an access
control list entry (ACE) in an access control list (ACL) for an element. When
you specify FOR GENERIC MCS_CONTEXT or FOR REPOSITORY, this
command can also add an ACE to a default access control list.

CHANGE PROTECTION affects a change in place. CDO changes the values
you specify, and other values remain the same.

You must have CONTROL access rights to change protection for an element or
a repository.

The POSITION clause identifies the ACE you are changing by its relative
position within the ACL. For example, POSITION 3 indicates the third ACE in
the ACL. If you specify a number greater than the number of existing ACEs,
CDO changes the last ACE in the ACL.

The id parameter specifies the user or users affected by the ACE you are
changing. The clause consists of one or more UIC, general, or system-specified
identifiers.

If you specify more than one identifier, a user’s process must hold all the
identifiers before CDO grants the access rights indicated in the ACE.

The ACCESS clause specifies access rights provided by the ACE. See the
DEFINE PROTECTION command for more information on access rights.

The ACCESS clause is especially useful when you need to restrict access to
a context or to a repository. For example, by modifying this clause you can
restrict access to a single user for OpenVMS BACKUP or VERIFY operations.

The DEFAULT_ACCESS clause is only valid for contexts (specified as
GENERIC MCS_CONTEXT) or repositories. The clause specifies the default
access rights for each new element you create. If a context is set, the new
element receives default access rights defined for this context. If a context
is not set, the new element receives the default access rights defined for the
repository.

Command Descriptions 1–27

CHANGE PROTECTION Command

Examples

1. CDO> CHANGE PROTECTION FOR RECORD
cont> PAYROLL, PROMOTION [JONES]+INTERACTIVE
cont> ACCESS CONTROL+READ.

In this example, the CHANGE PROTECTION command affects the
access rights for the PAYROLL and PROMOTION record elements. CDO
locates the ACE containing [JONES]+INTERACTIVE identifiers and adds
additional CONTROL and READ access rights.

2. CDO> CHANGE PROTECTION FOR FIELD
cont> EMP_DATE POSITION 3 ACCESS NOALL+READ.

In this example, the CHANGE PROTECTION command affects the access
rights for the EMP_DATE field element. CDO locates the third ACE in the
field’s ACL and removes all access rights except READ access.

3. CDO> CHANGE PROTECTION FOR RECORD SALARY ACCESS NONE.

In this example, the CHANGE PROTECTION command changes the first
ACE in the ACL for the SALARY record element. After the command
executes, the users whose identifiers match the identifiers in the first ACE
will not have access to the SALARY record element.

4. CDO> CHANGE PROTECTION FOR REPOSITORY PERSONNEL
cont> POSITION 3 DEFAULT_ACCESS READ+NOWRITE+CONTROL.
CDO> DEFINE FIELD NEW_FIELD DATATYPE TEXT SIZE 5.

In this example, the CHANGE PROTECTION command changes the
default access rights for the PERSONNEL repository to
READ+NOWRITE+CONTROL. If a context has not been set, CDO will
then grant the newly created field, NEW_FIELD, with access rights that
are equivalent to these repository default access rights.

1–28 Command Descriptions

CHANGE RECORD Command

CHANGE RECORD Command

Format

CHANGE RECORD record-name

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
[AUDIT IS /*text*/]

2
64

constraint-clause
DELETE CONSTRAINT constr-name
record-property
NOrecord-property

3
75

[DELETE name .] ...

2
6664

included-name-change-clause
local-field-clause
record-change-clause
structure-change-clause
variants-change-clause

3
7775 ...

END [record-name] RECORD .

Parameters

record-name
Specifies the record element you are modifying.

text
Modifies information. Within the DESCRIPTION clause, this is information
documenting the record; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

constraint-clause
Adds a condition, known as a constraint, that affects adding or modifying
data in a database table (record). Supported constraint types are NOT NULL,
PRIMARY KEY, FOREIGN KEY, UNIQUE, and CHECK.

Command Descriptions 1–29

CHANGE RECORD Command

Each constraint can be named and supplied with evaluation attributes
DEFERRABLE or NOT DEFERRABLE. The default evaluation time for
constraints in CDO is NOT DEFERRABLE (the constraint is evaluated at
statement time). For more information, see the DEFINE RECORD: Constraint
Clause.

constr-name
Specifies the name of a constraint.

record-property
Changes the value of an existing property or adds a new property in record,
structure, variants, and variant definitions within a record element. You
specify removal with the NO keyword. See Chapter 2 for the record properties
CDO provides.

name
Specifies the name of a record, structure, or field that you want to delete from
the record.

included-name-change-clause
Allows you to change existing field and record definitions within record
elements. For more information, see the CHANGE RECORD: Included Name
Change Clause.

local-field-clause
Specifies the definition of the locally defined field. For more information, see
the DEFINE RECORD: Local Field Clause.

record-change-clause
Adds field, record, structure, variants, and variant definitions within an
existing record definition. For more information, see the CHANGE RECORD:
Record Change Clause.

structure-change-clause
Allows you to change a structure definition within a record element. For more
information, see the CHANGE RECORD: Structure Change Clause.

variants-change-clause
Allows you to change a variant definition, which is a set of two or more
definitions that map to the same portion of a record element. For more
information, see the CHANGE RECORD: Variants Change Clause.

1–30 Command Descriptions

CHANGE RECORD Command

Description

The CHANGE RECORD command modifies a record element by performing a
change in place. CDO changes the values you specify, and other values remain
the same.

If a record element is controlled, CDO freezes previous versions and allows you
to modify only the highest visible version. If a record element is uncontrolled,
CDO modifies the highest version unless you specify another version number.

If a record element is controlled, you must reserve the record element before
you can issue the CHANGE RECORD command. The SHOW RECORD or
SHOW RESERVATIONS command indicates whether this condition exists.

When you change a record element that an Oracle Rdb database uses, you may
need to integrate the database with the repository. CDO automatically sends a
notice with the name of the database when this possibility occurs.

To remove a field, record, or structure definition from a record element, if the
definition is not contained within a variant or structure definition, specify the
DELETE keyword, followed by the appropriate name or clause for the type of
definition you are removing.

To remove a definition from within a variant definition, use the NOVARIANTS
and VARIANT keyword, followed by the DELETE clause.

To remove a definition from within a structure definition, specify the CHANGE
RECORD Structure Change Clause. Specify the DELETE keyword, followed by
the name of the definition you are removing.

If you are deleting a constraint, you must delete the constraint before you
delete the field; they cannot be deleted simultaneously using the CHANGE
RECORD command. To update the change in the database, you must integrate
each change separately.

Examples

1. CDO> CHANGE RECORD SUPPLIER_REC
cont> ROW_MAJOR ARRAY 1:20.
cont> END RECORD.

This example uses the CHANGE RECORD command to add an array
clause to a record called SUPPLIER_REC.

Command Descriptions 1–31

2. CDO> CHANGE RECORD EMPLOYEE_WORK_SCHEDULE
cont> NONAME COBOL.
cont> END RECORD.

In this example, the CHANGE RECORD command uses the NO keyword
to remove the NAME FOR COBOL record property from the EMPLOYEE_
WORK_SCHEDULE record definition.

3. CDO> CHANGE RECORD EMP_ADDRESS.
cont> DELETE DEPT_CODE.
cont> END RECORD.

In this example, the CHANGE RECORD command deletes the DEPT_
CODE field definition.

4. CDO> CHANGE RECORD EMP_ADDRESS.
cont> DEFINE EMP_NAME.
cont> END EMP_NAME DEFINE.
cont> END RECORD.

In this example, the CHANGE RECORD command adds the EMP_NAME
record definition to the EMP_ADDRESS record element.

5. CDO> CHANGE RECORD EMPLOYEE_REC
cont> /* Adding new fields WAGE_STATUS and CLASS_CODE */.
cont> DEFINE WAGE_STATUS.
cont> END DEFINE.
cont> DEFINE CLASS_CODE.
cont> END DEFINE.
cont> END EMPLOYEE-REC RECORD.

To include an additional field in a record definition, use the CHANGE
command with the DEFINE record property. The included field becomes
the last field in the record definition. This example adds the fields WAGE_
STATUS and CLASS_CODE to the record definition EMPLOYEE_REC.

1–32 Command Descriptions

CHANGE RECORD: Included Name Change Clause

CHANGE RECORD: Included Name Change Clause

Format

global-field-name

2
666666666666664

ALIGNED ON

8>>>>><
>>>>>:

BIT
BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

9>>>>>=
>>>>>;

BOUNDARY

NOALIGNED

CONSTRAINT constr-name NOT NULL
�

DEFERRABLE
NOT DEFERRABLE

�

3
777777777777775

.

Parameters

global-field-name
Specifies the global field whose alignment you are creating or modifying.

constr-name
Specifies a constraint for the field.

Description

The Included Name Change Clause modifies or cancels the alignment of field
or record definitions within a record element.

To modify or cancel the alignment of field or record definitions within a
structure definition, specify the Structure Change Clause, then the Included
Name Change Clause.

To modify or cancel the alignment of field or record definitions within a
variant definition, specify the Variants Change Clause, then the Included
Name Change Clause. To indicate the position of the variant, insert as many
VARIANT and END VARIANT keywords as necessary, so each preceding
variant is referenced.

Command Descriptions 1–33

CHANGE RECORD: Included Name Change Clause

Note

When the CHANGE RECORD command is used to change a variants
or variant definition or an entity inside a variants or variant definition,
you must use the Variants Change Clause to refer to each variants or
variant definition that precedes the entity you are changing.

Examples

1. CDO> CHANGE RECORD PRODUCT_INVENTORY.
cont> PART_NUMBER ALIGNED ON BYTE BOUNDARY.
cont> END PRODUCT_INVENTORY RECORD.

In this example, the ALIGNED keyword in the CHANGE RECORD
command realigns the PART_NUMBER field definition within the
PRODUCT_INVENTORY record definition.

2. CDO> CHANGE RECORD PRODUCT_INVENTORY.
cont> HOME_APPLIANCES NOALIGNED.
cont> END PRODUCT_INVENTORY RECORD.

In this example, the NOALIGNED keyword in the CHANGE RECORD
command cancels the explicit alignment of the HOME_APPLIANCES
record definition within the PRODUCT_INVENTORY record definition.

1–34 Command Descriptions

CHANGE RECORD: Record Change Clause

CHANGE RECORD: Record Change Clause

Format

DEFINE

8><
>:

included-name-clause
local-field-clause
structure-name-clause
variants-clause

9>=
>; END [name] DEFINE .

Parameters

included-name-clause
Includes existing field and record definitions in a record element. See DEFINE
RECORD: Included Name Clause for more information.

local-field-clause
Adds the definition of a local field. See DEFINE RECORD: Local Field Clause
for more information.

structure-name-clause
Adds a structure definition within a record element. For more information, see
the DEFINE RECORD: Structure Name Clause.

variants-clause
Specifies a variants definition that you want to change. For more information,
see the DEFINE RECORD: Variants Clause.

name
Specifies the definition you are adding or removing within a record element.

Description

Adds field, record, structure, variants, and variant definitions within an
existing record definition.

You cannot remove a variant definition from a record with the Record Change
Clause. Use the Variants Change Clause instead.

If you want to add a definition to a record element, but you do not want
the definition to be added within an existing structure or variant definition,
specify the DEFINE keyword, followed by the appropriate clause for the type
of definition you are adding:

• To add a field or record definition, use the Included Name Clause or the
Local Field Clause.

Command Descriptions 1–35

CHANGE RECORD: Record Change Clause

• To create a structure definition, use the Structure Clause.

• To create a variants definition, use the Variants Clause.

Any definition you add becomes the last definition in the record you are
changing.

If you want to remove a field, record, or structure definition from a record
element, and these are not contained within a structure or variant definition,
specify the DELETE keyword, followed by the appropriate clause for the type
of definition you are removing.

To add a definition within a structure definition, specify the Structure Change
Clause. This clause contains an embedded Record Change Clause where
you specify the DEFINE keyword, followed by the appropriate clause for the
definition you are adding.

To remove a definition from within a structure definition, specify the Structure
Change Clause. Specify the DELETE keyword, followed by the name of the
definition you are removing.

To add a definition within a variant definition, specify the Variants Change
Clause. This clause contains an embedded Record Change Clause where
you specify the DEFINE keyword, followed by the appropriate clause for the
definition you are adding. To indicate the position of the variant, insert as
many VARIANT and END VARIANT keywords as necessary, so each preceding
variant is referenced.

To remove a definition within a variant definition, use the NOVARIANTS or
the NOVARIANT keyword of the Variants Change Clause.

Note

When the CHANGE RECORD command is used to change a variants
or variant definition or an entity inside a variants or variant definition,
you must use the Variants Change Clause to refer to each variants or
variant definition that precedes the entity you are changing.

1–36 Command Descriptions

CHANGE RECORD: Record Change Clause

Examples

1. CDO> CHANGE RECORD EMP_ADDRESS.
cont> DEFINE EMP_NAME.
cont> END EMP_NAME DEFINE.
cont> END RECORD.

With the Record Change Clause, the CHANGE RECORD command adds
the EMP_NAME record definition to the EMP_ADDRESS record definition.

2. CDO> CHANGE RECORD EMP_ADDRESS.
cont> DELETE DEPT_CODE.
cont> END RECORD.

With the Record Change Clause, the CHANGE RECORD command deletes
the DEPT_CODE field definition.

3. CDO> DEFINE RECORD COMPANY_INVENTORY.
cont> STOCK STRUCTURE.
cont> DESCRIPTION IS /* RECORD_IDENTIFIER determines field type: */
cont> /* S = In-stock record */
cont> /* B = Back-order record */
cont> /* O = Out-of-stock record. */
cont> RECORD_IDENTIFIER.
cont> VARIANTS.
cont> IN_STOCK STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_ORDERED.
cont> STATUS_CODE.
cont> QUANTITY.
cont> LOCATION.
cont> UNIT_PRICE.
cont> END IN_STOCK STRUCTURE.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS "B".
cont> BACK_ORDER STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_ORDERED.
cont> STATUS_CODE.
cont> QUANTITY.
cont> SUPPLIER.
cont> UNIT_PRICE.
cont> END BACK_ORDER STRUCTURE.
cont> END VARIANT.

Command Descriptions 1–37

CHANGE RECORD: Record Change Clause

cont> VARIANT EXPRESSION IS "O".
cont> OUT_OF_STOCK STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_LAST_SOLD.
cont> END OUT_OF_STOCK STRUCTURE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END STOCK STRUCTURE.
cont> END COMPANY_INVENTORY RECORD.
CDO>
CDO> CHANGE RECORD COMPANY_INVENTORY.
cont> STOCK STRUCTURE.
cont> RECORD_IDENTIFIER.
cont> VARIANTS.
cont> VARIANT EXPRESSION IS "S".
cont> IN_STOCK STRUCTURE.
cont> DELETE STATUS_CODE.
cont> END IN_STOCK STRUCTURE.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS "B".
cont> BACK_ORDER STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_ORDERED.
cont> DEFINE DATE_PROMISED
cont> END DATE_PROMISED DEFINE.
cont> END BACK_ORDER STRUCTURE.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS "O".
cont> OUT_OF_STOCK STRUCTURE.
cont> END OUT_OF_STOCK STRUCTURE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END STOCK STRUCTURE.
cont> END COMPANY_INVENTORY RECORD.

This example shows how to use the Record Change Clause to define or
delete entities within a structure or variant definition. The first part of the
example shows the COMPANY_INVENTORY record definition. The second
part of the example shows how you would use the appropriate syntax and
the Record Change Clause to add and remove definitions within a structure
and variant. The STATUS_CODE field is removed from the IN_STOCK
structure and the DATE_PROMISED field is added to the BACK_ORDER
structure.

1–38 Command Descriptions

CHANGE RECORD: Structure Change Clause

CHANGE RECORD: Structure Change Clause

Format

structure-name STRUCTURE

�
DESCRIPTION IS /*text*/
NODESCRIPTION

�
�

record-property
NOrecord-property

�
... .

[DELETE name .] ...

2
6664

included-name-change-clause
local-field-clause
record-change-clause
structure-change-clause
variants-change-clause

3
7775 ...

END [structure-name] STRUCTURE .

Parameters

structure-name
Specifies the structure definition you are changing.

text
Documents the structure definition. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION clause
for a field. To do this, use the SET CHARACTER_SET command, and set the
character_set of the session to DEC_KANJI.

record-property
Changes the value of an existing property, or adds a new property, in the
structure definition. You specify removal with the NO keyword. See Chapter 2
for the record properties CDO provides.

name
Specifies the name of a record, structure, or field that you want to delete from
the record.

Command Descriptions 1–39

CHANGE RECORD: Structure Change Clause

included-name-change-clause
Changes the alignment of a field or record definition within a structure
definition. See CHANGE RECORD: Included Name Change Clause for more
information.

local-field-clause
Changes the definition of a local field. See DEFINE RECORD: Local Field
Clause for more information.

record-change-clause
Adds field, record, structure, variants, and variant definitions within a
structure definition. Removes field, record, and structure definitions from
within a structure definition. See CHANGE RECORD: Record Change Clause
for more information.

structure-change-clause
Changes a structure definition within a structure definition. (This section
describes the Structure Change Clause.)

variants-change-clause
Specifies a variant definition that you want to change or remove from a
structure definition. See CHANGE RECORD: Variants Change Clause for
more information.

Description

The Structure Change Clause adds or modifies field, record, structure, and
variant definitions within a structure definition. It removes field, record, and
structure definitions.

You cannot remove a variant definition from a structure definition with the
Structure Change Clause. Use the Variants Change Clause instead.

To add a definition within a structure definition, specify the Structure Change
Clause, which contains an embedded Record Change Clause. Use the DEFINE
keyword of the Record Change Clause, followed by the appropriate clause for
the definition you are adding.

For example, to add a field or record definition to the structure definition,
specify the Included Name Clause or Local Field Clause. To add a structure
definition, specify the Structure Change Clause. To add a variants definition,
specify the Variants Change Clause.

The definition you add becomes the last definition in the structure definition.

1–40 Command Descriptions

CHANGE RECORD: Structure Change Clause

To remove a definition from within a structure definition, specify the Structure
Change Clause and the DELETE keyword of the embedded Record Change
Clause, followed by the definition name.

Note

When you use the CHANGE RECORD command to change a variants
or variant definition or an entity inside a variants or variant definition,
you must use the Variants Change Clause to refer to each variants or
variant definition that precedes the entity you are changing.

Examples

CDO> CHANGE RECORD HOUSEHOLD.
cont> DELETE ADDRESS.
cont> DEPENDENTS STRUCTURE OCCURS 1 TO 4 TIMES
cont> DEPENDING ON NUMBER_OF_DEPENDENTS IN HOUSEHOLD.
cont> END DEPENDENTS STRUCTURE.
cont> END HOUSEHOLD RECORD.

In this example, the CHANGE RECORD command removes the ADDRESS
field definition and changes the OCCURS...DEPENDING clause in the
HOUSEHOLD record definition.

Command Descriptions 1–41

CHANGE RECORD: Variant Change Clause

CHANGE RECORD: Variant Change Clause

Format8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

VARIANT

2
6666666666664

�
EXPRESSION IS cond-expr
NOEXPRESSION

�
.

[DELETE name .] ...2
6664

included-name-change-clause
local-field-clause
record-change-clause
structure-change-clause
variants-change-clause

3
7775 ...

3
7777777777775

END VARIANT .

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

Parameters

cond-expr
Specifies an expression that represents the relationship between two value
expressions. The value of a conditional expression is true, false, or null. If one
definition uses an expression, each definition in the variant definition must
have an expression. Each expression in the Variant Change Clause must be
unique. For more information on conditional expressions, see Chapter 4.

name
Specifies the name of a record, structure, or field that you want to delete from
the record.

included-name-change-clause
Changes the attribute of a field or record definition within a record element.
See CHANGE RECORD: Record Change Clause for more information.

local-field-clause
Changes the definition of a local field. See DEFINE RECORD: Local Field
Clause for more information.

record-change-clause
Adds field, record, structure, and variant definitions within a structure
definition. Removes field, record, and structure definitions from within a
structure definition. See CHANGE RECORD: Record Change Clause for more
information.

1–42 Command Descriptions

CHANGE RECORD: Variant Change Clause

structure-change-clause
Changes a structure definition within a record element. See CHANGE
RECORD: Structure Change Clause for more information.

variants-change-clause
Specifies a variants definition that you want to change or remove from a record
definition.

Description

The Variant Change Clause modifies or removes a variant definition within a
variants definition.

When you change or add a variant definition to a record definition, you must
tell CDO its position. To indicate the position of a variant definition to CDO,
you use the VARIANT and END VARIANT keywords, so each preceding variant
is referenced.

If you specify a conditional expression, the expression must be valid for
the layered product that uses your definition. If one definition uses an
expression, each definition in the variant definition must use an expression.
Each expression in the Variant Change Clause must be unique.

To add a definition to a variants or variant definition, use the Variant Change
Clause to specify the variants or variant you want to modify. Then use the
DEFINE keyword of the Record Change Clause and the appropriate clause for
the type of entity definition you are adding.

Note

You must include a structure definition for each variant contained
in a CDO record if developing a new application that will use a 3GL
language and DIGITAL DATATRIEVE.

For example, to add a field or record definition to the variants or variant
definition, use the Included Name Change Clause. To create a structure
definition in the variants or variant definition, use the Structure Clause.

To create another variant or variant definition in the variants or variant
definition, use the Variant Change Clause.

To remove a field, record, or structure definition from a variants or variant
definition, use the Variant Change Clause or the Variants Change Clause to
specify the variants or variant definition you are changing. Then remove the

Command Descriptions 1–43

CHANGE RECORD: Variant Change Clause

field, record, or structure definition by specifying the DELETE keyword of the
Record Change Clause and the definition name.

To remove a variant definition, use the NOVARIANT keyword of the Variants
Change Clause to specify the definitions you are removing.

When you add a new definition it becomes the last definition in a variant
definition.

Examples

CDO> CHANGE RECORD EMPLOYEE_RECORD.
cont> VARIANTS.
cont> VARIANT.
cont> END VARIANT.
cont> VARIANT.
cont> END VARIANT.
cont> VARIANT.
cont> DELETE RATE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END EMPLOYEE_REC RECORD.

In this example, the keyword DELETE in the CHANGE RECORD command
removes the RATE field definition from the EMPLOYEE_RECORD record
definition. The CHANGE RECORD command does not affect the other two
definitions in the variant definition.

To indicate that the RATE field definition is in the third variant definition,
you must use the Variants Change Clause as shown in this example. The
keywords VARIANT and END VARIANT serve as placeholders for those
variant definitions that you do not want to change.

1–44 Command Descriptions

CHANGE RECORD: Variants Change Clause

CHANGE RECORD: Variants Change Clause

Format8><
>: VARIANTS.

�
variant-change-clause
NOVARIANT.

�
... END VARIANTS .

NOVARIANTS.

9>=
>;

Parameters

variant-change-clause
Specifies a variant definition that you want to change or remove from a record
definition. See the CHANGE RECORD: Variant Change Clause for more
information.

Description

The Variants Change Clause modifies or removes a variants definition within a
record definition.

The NOVARIANTS clause removes a group of variant definitions from a record
definition. The NOVARIANT clause removes a specific variant definition from
a record definition.

To remove a variants definition, use the NOVARIANTS keyword of the Variants
Change Clause to specify the definitions you are removing.

Note

When the CHANGE RECORD command is used to change a variants
or variant definition or an entity inside a variants or variant definition,
you must use the Variants Change Clause to refer to each variants or
variant definition that precedes the entity you are changing.

Command Descriptions 1–45

CHANGE RECORD: Variants Change Clause

Examples

CDO> CHANGE RECORD EMPLOYEE_RECORD.
cont> VARIANTS.
cont> VARIANT.
cont> END VARIANT.
cont> VARIANT.
cont> END VARIANT.
cont> VARIANT.
cont> DELETE RATE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END EMPLOYEE_REC RECORD.

In this example, the keyword DELETE in the CHANGE RECORD command
removes the RATE field definition from the EMPLOYEE_RECORD record
definition. The CHANGE RECORD command does not affect the other two
definitions in the variant definition.

To indicate that the RATE field definition is in the third variant definition,
you must use the Variants Change Clause as shown in this example. The
keywords VARIANT and END VARIANT serve as placeholders for those
variant definitions that you do not want to change.

1–46 Command Descriptions

CLEAR NOTICES Command

CLEAR NOTICES Command

Format

CLEAR NOTICES [qualifier] element-name ,...

Parameters

element-name
Specifies the element whose notices you are removing. You can use wildcard
characters in the element name.

Qualifiers

/CURRENT (default)
Clears notices at the element you specify.

/DOWN
Clears notices at elements owned by the element.

/UP
Clears notices at elements that own the element.

Description

The CLEAR NOTICES command removes notices that CDO has sent to an
element. Use the SHOW NOTICES command to confirm that CDO has cleared
notices.

Examples

CDO> CLEAR NOTICES DEPT5

In this example, the CLEAR NOTICES command removes notices for the
DEPT5 database definition.

Command Descriptions 1–47

CLOSE FILE_ELEMENT Command

CLOSE FILE_ELEMENT Command

Format

CLOSE FILE_ELEMENT type-name element-name

Parameters

type-name
Specifies the type (MCS_BINARY or MCS_BINARY subtype) of the file element
you are closing. See the Oracle CDD/Repository Information Model Volume I
for more information on these types.

element-name
Specifies the file element you are closing. You can substitute an asterisk (*)
wildcard character for this parameter.

Description

The CLOSE FILE_ELEMENT command closes an internal file that you
have previously opened. See the OPEN FILE_ELEMENT command for more
information on opening a file.

Since a file element is a versioned element, CLOSE FILE_ELEMENT closes
the highest visible version unless you specify another version number.

Examples

CDO> CLOSE FILE_ELEMENT MCS_BINARY
cont> PARSER_TABLES

In this example, CDO closes the binary file named PARSER_TABLES.

1–48 Command Descriptions

COMMIT Command

COMMIT Command

Format

COMMIT

Description

The COMMIT command ends a transaction and makes permanent any changes
you made during that transaction. This command also releases all locks and
closes all open streams. It affects all databases participating in the currently
open transaction. See the START_TRANSACTION command description for
restrictions that apply when using START_TRANSACTION . . . COMMIT
stream of commands.

Restrictions

• When you delete a record, local fields within that record are marked for
deletion at the end of the transaction, provided that they remain unused at
the end of the transaction. Using CDO, there is no way to reuse those local
fields. But, it is possible to use them through the Oracle CDD/Repository
APIs. Therefore, the local fields cannot be automatically deleted at the
same point in the transaction as the record.

You must either delete the record and field in separate transactions
(outside the START_TRANSACTION . . . COMMIT stream of commands)
or, to accomplish this in one transaction, use the ENTER command to enter
the local field, delete the record, delete the local field, and then delete the
global field.

• Usually, if Oracle CDD/Repository issues any errors between the START_
TRANSACTION and COMMIT commands, it forces you to roll back
the transaction. In some cases, such as in the CHANGE or DELETE
commands, Oracle CDD/Repository allows you to commit the transaction.
The general rules are:

– If you receive an Oracle CDD/Repository error of E or F severity, such
as a CDD-E-NODNOTFND message, you must abort the transaction.

– If you receive a CDO error of E or F severity, such as a CDO-E-
NOTFOUND message, you can continue to operate in the current
transaction.

Command Descriptions 1–49

COMMIT Command

Examples

CDO> START_TRANSACTION.
CDO> DEFINE RECORD REC2.
cont> FLD1. END RECORD.
CDO> COMMIT
CDO> SHOW RECORD REC2
Definition of record REC2
| Contains field FLD1
.
.
.

In this example, the COMMIT command ends a session started with
the START_TRANSACTION command. When you use the START_
TRANSACTION and COMMIT commands, the overhead that is associated
with these commands is incurred once in the repository and once in the
database, rather than once for each CDO command between the START_
TRANSACTION and COMMIT commands. The repository is already attached
to the database and has already loaded the type definitions.

1–50 Command Descriptions

CONSTRAIN Command

CONSTRAIN Command

Format

CONSTRAIN

(FIELD
RECORD
GENERIC type-name

)
[qualifier] ... element-name ,...

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the generic element you are constraining.

element-name
Specifies the element you are constraining. You can substitute an asterisk (*)
wildcard character for this parameter.

text
Documents the element within the DESCRIPTION clause. Adds information
to the history list entry within the AUDIT clause. Valid delimiters are /* */ or
double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

Qualifiers

/CLOSURE=TO_BOTTOM
/NOCLOSURE (default)
Specifies whether CDO constrains additional elements. Using the
/CLOSURE=TO_BOTTOM qualifier constrains all children of an element
that are uncontrolled.

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
constrained.

Command Descriptions 1–51

CONSTRAIN Command

Description

The CONSTRAIN command moves an uncontrolled element to a base partition,
the first level of approval. An uncontrolled element can be one of the following:

• A field, record, or generic element that you created with Oracle
CDD/Repository Version 4.0 or later

• A field, record, or generic element that you created with Oracle
CDD/Repository, outside a context

Since fields, records, and generic elements are versioned elements, the
CONSTRAIN command constrains the highest visible version unless you
specify another version number.

Before you issue the CONSTRAIN command, you must create a partition and
a context for the uncontrolled element and issue the SET CONTEXT command
to this context.

The element you are constraining must be a versioned element. When you
constrain one version of an element, CDO constrains all versions of the
element.

An error occurs if you attempt to constrain an element that is reserved. The
SHOW RESERVATIONS command indicates whether this condition exists.

An error occurs if you attempt to constrain an element that is a parent of
an uncontrolled element. Constrain the parent and children simultaneously
by issuing the CONSTRAIN command with the /CLOSURE=TO_BOTTOM
qualifier.

After you constrain an element, you issue the ATTACH TO COMPOSITE
command to explicitly attach the element to a collection, field, record, file, or
generic element.

Note

The CONSTRAIN command is irreversible. A controlled element
cannot be changed to an uncontrolled element. All subsequent versions
of the element are controlled.

To create subsequent versions, issue the RESERVE command rather than the
DEFINE command.

1–52 Command Descriptions

CONSTRAIN Command

Examples

CDO> DEFINE CONTEXT SUBSCRIPTIONS BASE_PARTITION FOURTH_QUARTER.
CDO> SET CONTEXT SUBSCRIPTIONS
CDO> DEFINE COLLECTION MAIL_LABEL.
CDO> CONSTRAIN FIELD *

In this example, the CONSTRAIN command controls all fields in the current
default directory. See the ATTACH TO COMPOSITE command for commands
to attach the constrained fields to this collection.

Command Descriptions 1–53

CONVERT Command

CONVERT Command

Format

CONVERT
�

source-name ,... destination-name
/REPOSITORY repository-anchor-name

�

Parameters

source-name
Specifies the Oracle Dictionary Management Utility (DMU) definition you are
converting. The Oracle Dictionary Management Utility (DMU) definition must
be a definition of type CDD$RECORD. You can use either a full or relative
DMU path name with the CONVERT command. You can also substitute an
asterisk (*) wildcard character for this parameter.

destination-name
Specifies the name that you select for the converted definition in the CDO
repository. If you specify more than one DMU definition in the source name,
the destination name must have a wildcard character in its name.

repository-anchor-name
Specifies the device and directory specification of the repository to be upgraded
using the CONVERT/REPOSITORY command.

Qualifiers

/REPOSITORY
Specifies that the repository should be upgraded.

Description

The CONVERT command copies a DMU format definition from the DMU side
of the dictionary to the CDO side of the dictionary. The CONVERT command
leaves the definition in the DMU side of the dictionary.

The CONVERT/REPOSITORY command allows you to perform a minor
upgrade (from a Version 5.n repository to a later Version 5.n, a Version 6.1, or
a Version 7.0 repository). Using this command requires SYSPRV or BYPASS
privilege. Be sure you have an adequate backup of the repository before issuing
this command.

1–54 Command Descriptions

CONVERT Command

Note

The CONVERT command is not the same as the
CONVERT/REPOSITORY command, which allows you to perform a
minor upgrade of a repository. For details on upgrading repositories
using the CONVERT/REPOSITORY command, see the Upgrade_
Procedure topic in DCL level help or the instructions for upgrading a
dictionary or repository provided in Using Oracle CDD/Repository on
OpenVMS Systems.

Unless you specify a different path name, the CONVERT command copies a
DMU definition into your default CDO directory.

When you convert a DMU definition, unless you specify the version number,
CDO converts the highest version of the definition.

An error occurs if you specify a destination name that is the name of an
existing definition in the CDO destination directory.

If you convert an Oracle Dictionary Management Utility (DMU) record
definition that consists of a single field description statement, CDO converts
the record definition to a CDO field definition.

When you convert an Oracle Dictionary Management Utility (DMU) format
definition that includes a description clause for the definition and another
description clause for a structure within the definition, only the structure
description clause appears in the CDO format definition.

If you have a version of DIGITAL DATATRIEVE prior to Version 5.0 installed
on your system, and you are converting a DMU definition that contains
a VALID FOR DATATRIEVE IF field attribute or a COMPUTED BY
DATATRIEVE field attribute clause, CDO omits these clauses from the
resulting CDO definition.

If the DMU record that you are converting has a different processing name
from the DMU directory name, then the resulting CDO record definition
retains the old processing name. However, if both the processing and directory
names are the same for the DMU definition, then the resulting CDO record
definition retains the same name for both the processing and directory names.

When you convert an Oracle Dictionary Management Utility (DMU) definition,
CDO creates a default ACL for it. See Using Oracle CDD/Repository on
OpenVMS Systems for more information on default protection.

Command Descriptions 1–55

CONVERT Command

To display or manipulate a converted field within a record description with
a CDO command, you must assign it a directory name. Use the ENTER
command to assign this name.

When you convert an Oracle Dictionary Management Utility (DMU) definition
to a CDO definition, CDO converts the DMU access rights to CDO access
rights. However, because DMU protection is different from CDO protection,
there is no CDO equivalent for some DMU access rights. Therefore, CDO must
convert some DMU rights to the closest CDO access right.

Table 1–1 shows how CDO converts DMU access rights to the closest CDO
equivalent. DMU access rights that are not listed in the table are not
translated because no equivalent CDO access right is appropriate.

Table 1–1 Conversion of Oracle Dictionary Management Utility (DMU)
Access Rights to CDO Access Rights

Oracle Dictionary
Management Utility
(DMU) Access Right Equivalent CDO Access Right

CONTROL CONTROL
DELETE
Local or global

DELETE

DTR MODIFY MODIFY (confirms that CHANGE access can be
granted)

DTR READ READ (confirms that SHOW access can be granted)
DTR WRITE WRITE (confirms that DEFINE access can be granted)
SEE SHOW
UPDATE CHANGE + DEFINE

Examples

1. CDO> CONVERT CDD$TOP.PERSONNEL.BADGE_NUMBER BADGE_NUMBER

In this example, the CONVERT command converts the DMU BADGE_
NUMBER record definition (and any embedded field definitions) to a CDO
BADGE_NUMBER record definition in your default CDO directory.

1–56 Command Descriptions

CONVERT Command

2. CDO> CONVERT CDD$TOP.SHIPMENTS.CUSTOMER_RECORD,
cont> CDD$TOP.SHIPMENTS.INVENTORY_RECORD *

In this example, CDO converts the DMU record definitions CUSTOMER_
RECORD and INVENTORY_RECORD into your CDO directory. Because
the asterisk (*) wildcard character was used in the destination-name, the
DMU record definitions keep the same names after the conversion.

3. DEFINE RECORD CDD$TOP.HARBORMASTER.YACHTS
DESCRIPTION IS

/* This record contains the manufacturer, model, and
dock number of each yacht in the harbor, along
with the owner’s name. */.

YACHTS STRUCTURE.
MANUFACTURER DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
MODEL DATATYPE IS TEXT

SIZE IS 30 CHARACTERS.
DOCK_NUMBER DATATYPE IS TEXT

SIZE IS 2 CHARACTERS.
NAME STRUCTURE.

LAST_NAME DATATYPE IS TEXT
SIZE IS 15 CHARACTERS.

FIRST_NAME DATATYPE IS TEXT
SIZE IS 10 CHARACTERS.

MIDDLE_INITIAL DATATYPE IS TEXT
SIZE IS 1 CHARACTER.

END NAME STRUCTURE.
END YACHTS STRUCTURE.

END YACHTS RECORD.

In this example, YACHTS is the name of a DMU record definition and
also of the STRUCTURE field description statement within the record
definition.

Command Descriptions 1–57

CONVERT Command

4. CDO> CONVERT YACHTS YACHTS_NEW
CDO> SHOW RECORD/FULL YACHTS_NEW
Definition of record YACHTS_NEW
| Contains field MANUFACTURER
| | Datatype text size is 30 characters
| Contains field MODEL
| | Datatype text size is 30 characters
| Contains field DOCK_NUMBER
| | Datatype text size is 2 characters
| Contains record NAME
| | Contains field LAST_NAME
| | | Datatype text size is 15 characters
| | Contains field FIRST_NAME
| | | Datatype text size is 10 characters
| | Contains field MIDDLE_INITIAL
| | | Datatype text size is 1 characters
CDO>

When you convert the DMU record definition YACHTS to the CDO
record definition YACHTS_NEW, the resulting CDO record definition has
YACHTS_NEW for its directory name and processing name.

1–58 Command Descriptions

COPY Command

COPY Command

Format

COPY source-name ,... destination-name

Parameters

source-name
Specifies the element you are copying. The source name can be a path name,
directory name, or a name with wildcard characters.

Oracle CDD/Repository does not support passwords in name strings. When you
issue the COPY command, do not include your password in the name string
because a CDO-E-KWSYNTAX error will occur.

destination-name
Specifies the destination to which the element will be copied. The destination
name can be a path name, directory name, or a name with one wildcard
character.

Description

The COPY command copies an element and the relationships it owns within
the same directory, from one CDO directory to another, or from one physical
repository to another.

If the element is a versioned element, and you do not specify a version number,
CDO copies all versions of the element.

The COPY command preserves relationships. If you copy both a parent and
child, CDO copies the relationship between them.

If you copy the parent, CDO copies the relationship from the new parent to the
child. CDO also maintains the previous relationship.

If you copy the child, CDO does not copy the relationship.

If you substitute a wildcard character for a destination name, CDO copies the
element into your current default CDO directory and keeps the same name.

If you specify only a directory name for the destination name, CDO copies the
element into that CDO directory and keeps the same element name.

If you specify both a directory name and a new processing name for the
destination name, CDO copies the element into that directory and gives the
element the name you specified.

Command Descriptions 1–59

COPY Command

Oracle CDD/Repository does not support passwords in name strings.

When you issue the COPY command and include your password, you get an
error message similar to the following:

%CDO-E-KWSYNTAX, syntax error in command line at or near
password"::DISK$[CDDPLUS]some.user

Table 1–2 lists the rules for using wildcard characters with the COPY
command.

Table 1–2 Rules for Using Wildcard Characters With the COPY Command

If Source Name
Includes Destination Name Can Include

One Asterisk
More Than
One Asterisk Ellipsis

No Wildcard
Characters 1

Asterisk (*) Yes No Yes No

More Than One
Asterisk

Yes No Yes No

Percent (%) Yes No Yes No

Ellipsis (...) Yes No Yes No

No Wildcard
Characters

Yes No Yes Yes

1Yes = valid; No = invalid

In addition to the information in the table, the following rules also apply to the
use of wildcard characters in the COPY command:

• If you use a wildcard character in the source name, you must use a
wildcard character in the destination name.

• You can only use one wildcard character in a destination name.

• You can only use one ellipsis (. . .) in a source or destination name.

• You can only use multiple asterisk (*) wildcard characters in the source
name.

• You can only use percent sign (%) wildcard characters in the source name.

1–60 Command Descriptions

COPY Command

Examples

1. CDO> COPY DISK1:[JONES.DICT]PERSONNEL.LAST_NAME
cont> DISK2:[BOB.SHOP]WORKERS.LAST_NAME

This example uses the full path name to copy the LAST_NAME field
element from the DISK1:[JONES.DICT]PERSONNEL directory to the
DISK2:[BOB.SHOP]WORKERS directory.

2. CDO> COPY CORPORATE.LAST_NAME, FIRST_NAME
cont> DISK1:[JONES.DICT]PERSONNEL.*

In this example, the COPY command with the asterisk (*) wildcard
character copies the LAST_NAME and FIRST_NAME field elements into
the [JONES.DICT]PERSONNEL directory.

3. CDO> COPY CORPORATE.ADDRESS
cont> [JONES.DICT]PERSONNEL.EMPLOYEE_ADDRESS

In this example, the COPY command copies the ADDRESS record element
into the [JONES.DICT]PERSONNEL directory and gives it a new name,
EMPLOYEE_ADDRESS.

4. CDO> COPY DISK1:[CORPORATE.DICT]CORP_DEFS...
cont> DISK1:[SMITH.DICT]DEVELOPMENT...

This example uses the ellipsis (...) to copy an entire subhierarchy from the
CORPORATE repository (starting with the CORP_DEFS directory) into the
DEVELOPMENT directory of Smith’s repository.

Command Descriptions 1–61

DEFINE COLLECTION Command

DEFINE COLLECTION Command

Format

DEFINE COLLECTION collection-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/] .

Parameters

collection-name
Specifies the collection you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the collection; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

Description

The DEFINE COLLECTION command creates a collection. A collection allows
you to view and manipulate a group of related elements that make up a
particular system or subsystem.

Because a collection is a controlled element, you use the DEFINE
COLLECTION command to create the initial version of a collection. Use
the RESERVE and REPLACE commands to create new versions.

Before you issue the DEFINE COLLECTION command, you must create and
set a context. The SHOW CONTEXT command indicates whether you have
completed these steps.

Because all elements in a collection hierarchy are children of the top
collection, you can issue commands that affect the entire hierarchy with
the /DESCENDANTS or /CLOSURE qualifiers. Because most elements in a
collection hierarchy are also children of smaller subcollections beneath the top
collection, you can also issue commands that affect only one subcollection and
its children.

1–62 Command Descriptions

DEFINE COLLECTION Command

To create a collection hierarchy, issue the DEFINE COLLECTION command
immediately after the SET CONTEXT command. SET CONTEXT implicitly
sets the collection you define as the top collection in the hierarchy, provided
that you did not set a top collection within the DEFINE CONTEXT command.

To extend the hierarchy beneath the top collection, you issue the following
commands:

1. DEFINE COLLECTION to create the collections that participate in the
hierarchy. This command attaches all collections in the first level beneath
the top collection.

2. DETACH FROM COMPOSITE to detach those collections destined for
lower levels in the hierarchy from the first level beneath the top collection.

3. RESERVE and ATTACH TO COMPOSITE to reserve collections in each
successive level and attach their immediate children.

4. REPLACE to store in a partition the elements you have created.

Examples

1. CDO> DEFINE COLLECTION REGIONAL_SALES.

In this example, the DEFINE COLLECTION command creates the
REGIONAL_SALES collection.

2. CDO> DEFINE PARTITION FIRST_BASELEVEL. 1
CDO> DEFINE CONTEXT DEVELOPMENT_CONTEXT
cont> BASE_PARTITION FIRST_BASELEVEL.
CDO> SET CONTEXT DEVELOPMENT_CONTEXT
CDO> DEFINE COLLECTION COMPILER_C. 2
CDO> RESERVE COLLECTION COMPILER_C
CDO> DEFINE COLLECTION FRONT_END. 3
CDO> DEFINE COLLECTION BACK_END.
CDO> DEFINE COLLECTION PARSER.

CDO> DEFINE FILE_ELEMENT MCS_BINARY PARSER_TABLES
cont> STORETYPE EXTERNAL
cont> MCS_STOREDIN IS "CDD$DISK:[SMITH]PARSER_TABLES.DAT".
cont> END FILE_ELEMENT MCS_BINARY PARSER_TABLES.

Command Descriptions 1–63

DEFINE COLLECTION Command

CDO> DETACH COLLECTION PARSER FROM COMPILER_C4
CDO> DETACH FILE_ELEMENT PARSER_TABLES FROM
cont> COMPILER_C
CDO> RESERVE COLLECTION FRONT_END
CDO> ATTACH COLLECTION PARSER TO FRONT_END 5
CDO> RESERVE COLLECTION PARSER
CDO> ATTACH FILE_ELEMENT PARSER_TABLES TO PARSER
CDO> REPLACE COLLECTION /CLOSURE=TO_TOP PARSER

The successive DEFINE COLLECTION commands in this example
participate in the creation of a collection hierarchy.

1 DEFINE PARTITION, DEFINE CONTEXT, and SET CONTEXT
commands allow you to control elements.

2 DEFINE COLLECTION command creates the collection; this command
also sets COMPILER_C as the top collection because the current
context, DEVELOPMENT_CONTEXT, does not have a top collection
defined.

3 DEFINE COLLECTION commands create subcollections FRONT_END,
BACK_END, and PARSER and file element PARSER_TABLES under
collection COMPILER_C.

4 DETACH commands detach PARSER and PARSE_TABLES from
collection COMPILER_C.

5 ATTACH commands attach PARSER under subcollection FRONT_END
and PARSE_TABLES under subcollection PARSER.

1–64 Command Descriptions

DEFINE CONTEXT Command

DEFINE CONTEXT Command

Format

DEFINE CONTEXT context-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

BASE_PARTITION IS partition-name

[TOP IS collection-name]

2
64 DEFAULT_ATTACHMENT IS

(SPECIFIC_VERSION
LATEST_CHECKIN
LATEST

) 3
75 .

Parameters

context-name
Specifies the context you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the context; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

partition-name
Specifies the base partition of the partition hierarchy.

collection-name
Specifies the top collection of the collection hierarchy.

Command Descriptions 1–65

DEFINE CONTEXT Command

Description

The DEFINE CONTEXT command creates a context. A context allows you
to restrict or expand your view of the system and set the characteristics
associated with your work environment.

The BASE_PARTITION clause sets the base partition property to the partition
name you specify. Use the DEFINE PARTITION command to create this
partition prior to issuing the DEFINE CONTEXT command.

The TOP clause sets the top collection property to the collection name you
specify. Include this clause only when you are redefining the top collection
property for an existing context. See the DEFINE COLLECTION command for
more information on setting this property for a new context.

The DEFAULT_ATTACHMENT clause defines the default attachment property
for the context. This property refers to the default behavior that occurs when
you issue the UPDATE command. Choose one of the following keywords:

DEFAULT_ATTACHMENT
Keyword Behavior

LATEST Detaches the version currently attached and
attaches the lastest version, whether checked in
or ghost.

LATEST_CHECKIN Detaches the version currently attached and
attaches the version most recently checked in.

SPECIFIC_VERSION Does not detach the version currently attached.

If you do not specify the DEFAULT_ATTACHMENT clause, CDO creates the
context with LATEST default attachment, by default.

Examples

CDO> DEFINE CONTEXT SALES
cont> BASE_PARTITION IS FIRST_QUARTER
cont> DEFAULT_ATTACHMENT IS LATEST_CHECKIN.

In this example, the DEFINE CONTEXT command creates the SALES
context. The BASE_PARTITION clause sets the base partition property to the
previously defined FIRST_QUARTER partition. The keyword LATEST_
CHECKIN in the DEFAULT_ATTACHMENT clause sets the default
attachment property for the context to the version most recently checked
in.

1–66 Command Descriptions

DEFINE CONTEXT Command

See the DEFINE COLLECTION command for more information on setting the
top collection property for a context.

Command Descriptions 1–67

DEFINE DATABASE Command

DEFINE DATABASE Command

Format

DEFINE DATABASE database-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

USING rms-database-name ON file-name [qualifier] .

Parameters

database-name
Specifies the database element you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the database; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

rms-database-name
Specifies an existing logical RMS database element. It must be the name of an
existing CDD$RMS_DATABASE element.

file-name
Specifies the location on disk of the physical OpenVMS file that holds the
physical RMS database. It is a character string having from 1 to 1024
characters.

Qualifiers

/EXISTING_FILE
Specifies that an RMS file exists and does not need to be created.

1–68 Command Descriptions

DEFINE DATABASE Command

Description

The DEFINE DATABASE command creates a physical RMS database on disk
using an RMS database element. If the command completes successfully,
DEFINE DATABASE creates a CDD$DATABASE element (with the database
name you specified) and a CDD$FILE element (with the OpenVMS file name
you specified) in your directory.

If the RMS database element is a controlled element, you use the DEFINE
DATABASE command to create the initial version of a database. Use the
RESERVE and REPLACE commands to create new versions.

If the RMS database element is an uncontrolled element, you use the DEFINE
DATABASE command to create both initial and new versions.

If you supply a database name that is already used for a database element in
your specified directory, you will create a new version of the existing database
definition.

This command allows you to create many different physical RMS databases
using the same logical RMS database element. You can specify a different
location on disk for each database with an OpenVMS file name.

As of Oracle CDD/Repository Version 6.1, the DEFINE DATABASE command
supports unsigned numeric and ADT fields as keys in RMS databases.

If the database name does not specify a full path name, CDO creates the
database definition in your current default directory. CDO attempts to
translate the database name you supply to determine if it is a valid logical
name. If it is a logical name and CDO cannot translate the logical name to a
valid path name, the operation fails.

Examples

1. CDO> DEFINE DATABASE DISG_FILE USING EMPLOYEE_STORAGE
cont> ON DISK1:[DISG]EMP.DAT.

In this example, the DEFINE DATABASE command creates the physical
DISG_FILE RMS database in the OpenVMS EMP.DAT file on disk, using
the logical EMPLOYEE_STORAGE RMS database element.

Command Descriptions 1–69

DEFINE DATABASE Command

2. CDO> DEFINE DATABASE EMPLOYEES
cont> AUDIT IS /* INFORMATION ON CURRENT "EMPLOYEES" */
cont> USING EMPLOYEE_DATABANK ON DISK2:[SMITH]MORE_EMP.DATA.

In this example, the DEFINE DATABASE command creates the physical
EMPLOYEES RMS database on disk in the OpenVMS MORE_EMP.DATA
file, using the EMPLOYEE_DATABANK RMS database element.

1–70 Command Descriptions

DEFINE DIRECTORY Command

DEFINE DIRECTORY Command

Format

DEFINE DIRECTORY directory-name .

Parameters

directory-name
Specifies the directory you are creating.

Description

The DEFINE DIRECTORY command creates a CDO repository directory.

DEFINE DIRECTORY evaluates the directory name you supply to determine if
it is a logical name. If the directory name is a logical name, CDO translates it.
If the translation is not a valid name for a directory, CDO does not create the
directory.

CDO automatically creates any directories in the path name of the directory-
name parameter that do not already exist.

Examples

1. CDO> DEFINE DIRECTORY NODE::DISK1:[BOB.DICT]TOP.

In this example, the DEFINE DIRECTORY command creates a directory
called TOP under the repository anchor NODE::DISK1:[BOB.DICT].

Or, you can define the directory TOP by setting default to the repository
anchor DISK1:[BOB.DICT] then issuing the DEFINE DIRECTORY
command.

2. CDO> DEFINE DIRECTORY DISK1:[BOB.DICT]PERSONNEL.EMPLOYEES.BENEFITS.

In this example, the DEFINE DIRECTORY command creates the
BENEFITS directory three levels below the CDO repository anchor
DISK1:[BOB.DICT].

Oracle CDD/Repository will create the intermediate directories if they do
not already exist.

Command Descriptions 1–71

DEFINE FIELD Command

DEFINE FIELD Command

Format

DEFINE FIELD field-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

[field-property]

Parameters

field-name
Specifies the field element you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the field element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

field-property
Adds a property to the field element. See Chapter 2 for the field properties
CDO provides.

Description

The DEFINE FIELD command creates a field element.

If the field element is controlled, you use the DEFINE FIELD command to
create the initial version of the element. Use the RESERVE and REPLACE
commands to create new versions.

If the field element is uncontrolled, use the DEFINE FIELD command to create
both initial and new versions.

You can create a field element in a directory other than your default directory
by specifying the appropriate path name.

If you supply a field name that is already used for a field element in your
default directory, CDO creates a new version of the existing field definition.

1–72 Command Descriptions

DEFINE FIELD Command

The DEFINE FIELD command evaluates the field name you supply to
determine if it is a logical name. If the field name is a logical name, CDO
translates it. In some cases, the translation of the logical name for the field
name may not be a valid name for a field definition, and CDO will not create
the field definition. For example, if you have defined JOE as a logical name
that translates to MYNODE::[RICHIE], CDO translates the symbol JOE. The
following DEFINE FIELD command fails because MYNODE::[RICHIE] is not a
valid field name:

CDO> DEFINE FIELD JOE.
%CDO-F-ERRDEFINE, error defining object
-CDD-F-NOTADIC, Does not contain an Oracle CDD/Plus dictionary:
MYNODE::

If this error occurs, deassign the logical name with the same name as the
object, and perform the operation again. To avoid this logical name conflict,
use unique names that represent the type of entity you are naming.

Examples

1. CDO> DEFINE FIELD POSTAL_CODE
cont> DESCRIPTION IS /* A 5 DIGIT POSTAL_CODE */
cont> AUDIT IS /* WILL BE CHANGED TO 9 DIGITS EVENTUALLY */
cont> DATATYPE IS UNSIGNED LONGWORD
cont> SIZE IS 5 DIGITS.

In this example, the DEFINE FIELD command creates the POSTAL_
CODE field element.

2. CDO> DEFINE FIELD SEX
cont> DATATYPE IS TEXT SIZE IS 1
cont> VALID IF SEX = "M" OR SEX = "F".

In this example, the DEFINE FIELD command creates the SEX field
element. The VALID IF field property returns an error if you attempt to
store a value other than M or F in the field that refers to this element.

Command Descriptions 1–73

DEFINE FILE_ELEMENT Command

DEFINE FILE_ELEMENT Command

Format

DEFINE FILE_ELEMENT type-name element-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

�
STORETYPE INTERNAL
STORETYPE EXTERNAL MCS_STOREDIN IS quoted-string

�

[MCS_IMPORTED FROM quoted-string]"
property-name IS

n n
quoted-string

o #
... .

END [FILE_ELEMENT] type-name [element-name] .

Parameters

type-name
Specifies the type (MCS_BINARY or an MCS_BINARY subtype) of the file
element you are creating. See the Oracle CDD/Repository Information Model
Volume I for more information on these types.

element-name
Specifies the file element you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the file element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

quoted-string
Sets the value (a string enclosed in quotation marks) for the property you are
specifying.

property-name
Specifies the property whose value you are setting.

1–74 Command Descriptions

DEFINE FILE_ELEMENT Command

n
Sets the numeric value for a property.

Description

The DEFINE FILE_ELEMENT command creates a file element.

Before you issue the DEFINE FILE_ELEMENT command, you must define
and set a context. The SHOW CONTEXT command indicates whether you
have completed these steps.

You control file element definitions as soon as you define them. To do this,
issue the following commands before you define a file element:

1. DEFINE PARTITION, which creates a partition

2. DEFINE CONTEXT, which associates this partition with a specific context

3. SET CONTEXT, which identifies this context as the current context and
implicitly controls all subsequent definitions

Since a file element is a controlled element, the DEFINE FILE_ELEMENT
command creates the initial version of the file element. The RESERVE and
REPLACE commands create new versions.

The STORETYPE clause indicates whether or not the file is stored internally
(in Oracle CDD/Repository) or externally. If you do not specify STORETYPE,
the default is external.

If you add, change, or delete a property from the file element, the property
you specify must be a defined or inherited property for the file element’s type.
See the Oracle CDD/Repository Information Model, Volume I for a list of these
properties.

Errors occur if you do not specify the MCS_STOREDIN property for a file
element whose STORETYPE is EXTERNAL. CDO requires this property for
external files.

Examples

CDO> DEFINE FILE_ELEMENT MCS_BINARY PARSER_TABLES
cont> STORETYPE EXTERNAL
cont> MCS_STOREDIN IS "CDD$DISK:[SMITH]PARSER_TABLES.DAT".
cont> END FILE_ELEMENT MCS_BINARY PARSER_TABLES.

In this example, the DEFINE FILE_ELEMENT command includes a
STORETYPE EXTERNAL clause. CDO creates an external file element
PARSER_TABLES stored in CDD$DISK:[SMITH]PARSER_TABLES.DAT.

Command Descriptions 1–75

DEFINE GENERIC Command

DEFINE GENERIC Command

Format

DEFINE GENERIC type-name element-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

"
property-name IS

n n
quoted-string

o #
... .

2
666664

RELATIONSHIPS .

8>><
>>:

RELATIONSHIP relationship-name relationship-mbr-options

[property-name IS
n n

quoted-string

o
]

END relationship-name RELATIONSHIP .

9>>=
>>; ...

END RELATIONSHIPS .

3
777775

END [GENERIC type-name element-name] .

Parameters

type-name
Specifies the type of the generic element you are defining.

element-name
Specifies the generic element you are defining.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the generic element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

property-name
Specifies a property.

n
Sets the numeric value for a property.

1–76 Command Descriptions

DEFINE GENERIC Command

quoted-string
Sets the value (a string enclosed in quotation marks) for a property.

relationship-name
Specifies the relationship that you are defining for the generic element. The
type must be a subtype of RELATION.

relationship-mbr-options
Allows you to specify a relationship member. This member can be an existing
element in a repository, or it can be an element you create within the DEFINE
GENERIC command. See DEFINE GENERIC: Relationship Member Options
Clause for more information.

Description

The DEFINE GENERIC command creates a generic element definition.
You can create generic elements that are based on types supplied by Oracle
CDD/Repository or on user-supplied (extended) types. If you do most of your
work with extended types, it is recommended that you work through the
Oracle CDD/Repository callable interface. The CDO GENERIC commands are
useful to modify and display on a spot basis, but extensibility is not supported
through CDO.

If the generic element is a controlled versioned element, you use the DEFINE
GENERIC command to create initial versions. Use the RESERVE and
REPLACE commands to create new versions.

If the generic element is an uncontrolled versioned element, use the DEFINE
GENERIC command to create both initial and new versions.

By default, CDO automatically assigns a directory name that is the same
as the element name of the generic element that you define. However, you
can assign a processing name to a generic element that is different from its
directory name.

When you define a property for a generic element, the property you specify
must be a defined or inherited property for the element’s type. Any values
you specify for the property must be compatible with the data type indicated
in the property type definition. Likewise, any relationship member you
specify must be compatible with the relationship name’s type. See the Oracle
CDD/Repository Information Model Volume I for more information on valid
properties and members.

Command Descriptions 1–77

When you work with extended types, include the MCS_processingName
property in your type definition. If you omit one of these properties, your
type definition does not allow you to specify a processing name for generic
elements based on it. Without a processing name, you cannot use the CHANGE
GENERIC command to add or delete properties and relationships for a generic
element.

Caution

Specify the MCS_processingName property, not the
CDD$PROCESSING_NAME property, when you work with extended
types. Otherwise, you experience performance degradation in the
Oracle CDD/Repository callable interface.

Examples

1. CDO> DEFINE GENERIC CDD$SOURCE_MODULE INPUT_MODULE_COB
cont> MCS_PROCESSINGNAME "INPUT_MODULE_COB".
cont> END CDD$SOURCE_MODULE INPUT_MODULE_COB.

In this example, the DEFINE GENERIC command creates a generic
element named INPUT_MODULE_COB based on the type
CDD$SOURCE_MODULE supplied by Oracle CDD/Repository.

2. CDO> DEFINE GENERIC CDD$SOURCE_MODULE OUTPUT_MODULE_COB
cont> MCS_PROCESSINGNAME "OUTPUT_MODULE_COB".
cont> END CDD$SOURCE_MODULE OUTPUT_MODULE_COB.

In this example, the DEFINE GENERIC command creates a generic
element named OUTPUT_MODULE_COB based on the product-supplied
CDD$SOURCE_MODULE element type.

3. CDO> DEFINE GENERIC BOOK CDO_REFERENCE_MANUAL
cont> MCS_PROCESSINGNAME IS "CDO_REFERENCE_MANUAL"
cont> LIBRARY_NUMBER IS "AA-KL45A-TE".
cont> END BOOK CDO_REFERENCE_MANUAL.

In this example, the DEFINE GENERIC command creates a generic
element named CDO_REFERENCE_MANUAL based on the user-supplied
type BOOK.

1–78 Command Descriptions

DEFINE GENERIC: Relationship Member Options Clause

DEFINE GENERIC: Relationship Member Options Clause

Format8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

relationship-mbr-name
GENERIC

type-name

2
6666666666666664

[DESCRIPTION IS /*text*/]

[property-name IS
n n

quoted-string

o
]

2
66666664

RELATIONSHIPS.

8>>><
>>>:

RELATIONSHIP relationship-name
relationship-mbr-options

[property-name IS
n n

quoted-string

o
]

END relationship-name RELATIONSHIP.

9>>>=
>>>;

...

END RELATIONSHIPS.

3
77777775

3
7777777777777775

END [GENERIC type-name] .

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

Parameters

relationship-mbr-name
Specifies an existing element that can be a valid member of the relationship
type that you use.

type-name
Specifies the type of the generic element member you are defining. The type
must be compatible with the relationship type.

text
Documents the generic element that you are creating as a relationship member.
Within the DESCRIPTION clause, this is information documenting the member
definition. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION clause
for a field. To do this, use the SET CHARACTER_SET command, and set the
character_set of the session to DEC_KANJI.

property-name
Specifies a property.

n
Sets the numeric value for a property.

Command Descriptions 1–79

DEFINE GENERIC: Relationship Member Options Clause

quoted-string
Sets the value (a string enclosed in quotation marks) for the property you are
specifying.

relationship-name
Specifies the relationship type you are defining for the generic element member.
The type must be a subtype of RELATION.

relationship-mbr-options
Specifies a relationship member. This member can be an existing element in
a repository, or it can be an element you create with the DEFINE GENERIC
Relationship Member Options clause.

Description

The Relationship Mbr Options clause allows you to specify a relationship
member. This member can be an existing element in the repository, or it can
be an element you create within the DEFINE GENERIC Relationship Member
Options clause.

To specify an existing element as a relationship member, include only the
element’s name in the Relationship Member Options clause. To define a new
element as a relationship member, specify the Generic clause within the
Relationship Member Options clause.

The Generic clause does not create directory names for relationship members.
Without a directory name, you cannot display elements with the DIRECTORY
command or include element definitions in other definitions.

To display relationship members, issue the SHOW GENERIC command with
the /FULL qualifier. To provide a directory name for a relationship member,
issue the ENTER command.

If you use the Generic clause, you can nest a series of relationship members.

1–80 Command Descriptions

DEFINE GENERIC: Relationship Member Options Clause

Examples

1. CDO> DEFINE GENERIC CDD$EXECUTABLE_IMAGE MY_PROGRAM_EXE
cont> MCS_PROCESSINGNAME "MY_PROGRAM_EXE".
cont> RELATIONSHIPS.
cont> RELATIONSHIP CDD$IMAGE_DERIVED_FROM
cont> GENERIC CDD$COMPILED_MODULE
cont> MCS_PROCESSINGNAME "INPUT_MODULE_OBJ".
cont> RELATIONSHIPS.
cont> RELATIONSHIP CDD$COMPILED_DERIVED_FROM
cont> INPUT_MODULE_COB.
cont> END CDD$COMPILED_DERIVED_FROM RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END CDD$COMPILED_MODULE INPUT_MODULE_OBJ.
cont> END CDD$IMAGE_DERIVED_FROM RELATIONSHIP.
cont> RELATIONSHIP CDD$IMAGE_DERIVED_FROM
cont> GENERIC CDD$COMPILED_MODULE
cont> MCS_PROCESSINGNAME "OUTPUT_MODULE_OBJ".
cont> RELATIONSHIPS.
cont> RELATIONSHIP CDD$COMPILED_DERIVED_FROM
cont> OUTPUT_MODULE_COB.
cont> END CDD$COMPILED_DERIVED_FROM RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END CDD$COMPILED_MODULE OUTPUT_MODULE_OBJ.
cont> END CDD$IMAGE_DERIVED_FROM RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END CDD$EXECUTABLE_IMAGE MY_PROGRAM_EXE.

In this example, the following steps are performed:

a. Defines the generic entity MY_PROGRAM_EXE.

b. Specifies the processing name MY_PROGRAM_EXE for the
CDD$PROCESSING_NAME attribute.

c. Defines the list of relationships that the definition MY_PROGRAM_
EXE includes.

d. Specifies a relationship type CDD$IMAGE_DERIVED_FROM, supplied
by Oracle CDD/Repository, that the definition MY_PROGRAM_EXE
owns.

e. The GENERIC clause creates a generic entity as a relationship
member of the CDD$IMAGE_DERIVED_FROM relationship, based on
the CDD$COMPILED_MODULE entity type.

f. Specifies the processing name INPUT_MODULE for the attribute type
CDD$PROCESSING_NAME, supplied by Oracle CDD/Repository.

g. Begins the list of relationships that the generic entity definition
INPUT_MODULE_OBJ includes.

Command Descriptions 1–81

DEFINE GENERIC: Relationship Member Options Clause

h. Specifies the relationship type CDD$COMPILED_DERIVED_FROM,
which is supplied by Oracle CDD/Repository, as a relationship owned
by the generic entity INPUT_MODULE_OBJ. This relationship type
specifies the generic entity INPUT_MODULE_COB (based on the entity
type CDD$SOURCE_MODULE) as its relationship member.

i. Ends the relationship definition of CDD$COMPILED_DERIVED_
FROM.

j. Ends the list of relationships the generic entity definition INPUT_
MODULE_OBJ owns.

k. Ends the definition of the generic entity INPUT_MODULE_OBJ.

l. Ends the CDD$IMAGE_DERIVED_FROM relationship definition that
MY_PROGRAM_EXE owns.

m. Specifies a relationship type CDD$IMAGE_DERIVED_FROM, supplied
by Oracle CDD/Repository, that the generic entity definition MY_
PROGRAM_EXE owns.

n. The GENERIC clause creates a generic entity as a relationship
member of the CDD$IMAGE_DERIVED_FROM relationship, based on
the CDD$COMPILED_MODULE entity type.

o. Specifies the processing name OUTPUT_MODULE_OBJ for the
attribute type CDD$PROCESSING_NAME, which is supplied by
Oracle CDD/Repository.

p. Begins the list of relationships that the new generic entity definition
OUTPUT_MODULE_OBJ includes.

q. Specifies the relationship type CDD$COMPILED_DERIVED_FROM,
supplied by Oracle CDD/Repository, as a relationship owned by the
generic entity OUTPUT_MODULE_OBJ. This relationship type
specifies the generic entity OUTPUT_MODULE_COB (based on the
entity type CDD$SOURCE_MODULE as its relationship member.

r. Ends the relationship definition of CDD$COMPILED_DERIVED_
FROM.

s. Ends the list of relationships that the generic entity definition
OUTPUT_MODULE_OBJ owns.

t. Ends the definition of the generic entity definition OUTPUT_
MODULE_OBJ.

u. Ends the CDD$IMAGE_DERIVED_FROM relationship definition that
MY_PROGRAM_EXE owns.

1–82 Command Descriptions

DEFINE GENERIC: Relationship Member Options Clause

v. Ends the list of relationships the generic entity MY_PROGRAM_EXE
owns.

w. Ends the definition of the generic entity MY_PROGRAM_EXE.

Because the GENERIC clause of the DEFINE GENERIC command creates
the INPUT_OBJ and OUTPUT_OBJ generic entities, these entities do not
have directory names. You can view their definitions only with the SHOW
GENERIC/FULL command, which displays their owner (MY_PROGRAM_
EXE entity).

2. CDO> SHOW GENERIC CDD$EXECUTABLE_IMAGE/FULL MY_PROGRAM_EXE
Definition of MY_PROGRAM_EXE (Type : CDD$EXECUTABLE_IMAGE)

| Contains CDD$IMAGE_DERIVED_FROM
| | INPUT_MODULE_OBJ (Type : CDD$COMPILED_MODULE)
| | | Contains CDD$COMPILED_DERIVED_FROM
| | | | INPUT_MODULE_COB (Type : CDD$SOURCE_MODULE)
| Contains CDD$IMAGE_DERIVED_FROM
| | OUTPUT_MODULE_OBJ (Type : CDD$COMPILED_MODULE)
| | | Contains CDD$COMPILED_DERIVED_FROM
| | | | OUTPUT_MODULE_COB (Type : CDD$SOURCE_MODULE)

In this example, the DEFINE GENERIC command creates the
generic element definition MY_PROGRAM_EXE, based on the type
CDD$EXECUTABLE_IMAGE. The first relationship defined is
the CDD$IMAGE_DERIVED_FROM relation, supplied by Oracle
CDD/Repository, which in turn owns the CDD$COMPILED_DERIVED_
FROM relation, also supplied by Oracle CDD/Repository. The second
relationship defined is a CDD$IMAGE_DERIVED_FROM relation, which
in turn owns another CDD$COMPILED_DERIVED_FROM relation.

The first relationship links the executable image and its compiled modules.
The second relationship links the compiled modules and the source module.

3. CDO> DEFINE GENERIC BOOK CDD_PLUS_REFERENCE_MANUAL
cont> MCS_processingName IS "CDD_PLUS_REFERENCE_MANUAL"
cont> LIBRARY_NUMBER IS "AA-KL45A-TE".
cont> END BOOK CDD_PLUS_REFERENCE_MANUAL.

This example creates an entity named CDD_PLUS_REFERENCE_
MANUAL based on the BOOK protocol.

Command Descriptions 1–83

DEFINE GENERIC: Relationship Member Options Clause

4. CDO> DEFINE GENERIC LIBRARY ORACLE_LIBRARY
cont> MCS_processingName IS "ORACLE_LIBRARY"
cont> ADDRESS IS "NASHUA, NH".
cont> RELATIONSHIPS.
cont> RELATIONSHIP BOOK_IN_LIBRARY CDD_PLUS_REFERENCE_MANUAL
cont> END BOOK_IN_LIBRARY RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END LIBRARY ORACLE_LIBRARY.

This example creates an entity named ORACLE_LIBRARY based on the
LIBRARY protocol.

5. CDO> DEFINE GENERIC LIBRARY ORACLE_LIBRARY
cont> MCS_processingName IS "ORACLE_LIBRARY".
cont> RELATIONSHIPS.
cont> RELATIONSHIP BOOK_IN_LIBRARY CDO_REFERENCE_MANUAL.
cont> END BOOK_IN_LIBRARY RELATIONSHIP.
cont> RELATIONSHIPS.
cont> GENERIC BOOK USER_GUIDE
cont> MCS_processingName IS "USER_GUIDE".
cont> END RELATIONSHIPS.
cont> END LIBRARY ORACLE_LIBRARY.

This command creates a relationship member using the DEFINE
GENERIC command.

6. CDO> DEFINE GENERIC LIBRARY ORACLE_LIBRARY
cont> MCS_processingName IS "ORACLE_LIBRARY"
cont> ADDRESS IS "NASHUA, NH".
cont> RELATIONSHIPS.
cont> RELATIONSHIP BOOK_IN_LIBRARY
cont> GENERIC BOOK
cont> MCS_processingName IS "USER_GUIDE"
cont> END RELATIONSHIPS.
cont> END LIBRARY ORACLE_LIBRARY.

This example uses the DEFINE GENERIC command to define the
relationship member USER_GUIDE. Note that the keyword DEFINE
and the relationship member’s entity name have been omitted.

1–84 Command Descriptions

DEFINE GENERIC: Relationship Member Options Clause

7. CDO> DEFINE GENERIC LIBRARY ORACLE_LIBRARY
cont> MCS_processingName IS "ORACLE_LIBRARY"
cont> ADDRESS IS "NASHUA, NH".
cont> RELATIONSHIPS.
cont> RELATIONSHIP BOOK_IN_LIBRARY
cont> GENERIC BOOK
cont> MCS_processingName IS "USER_GUIDE"
cont> LIBRARY_NUMBER IS 1.
cont> END GENERIC.
cont> END BOOK_IN_LIBRARY RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END LIBRARY ORACLE_LIBRARY.

This example uses the DEFINE GENERIC command to define the
relationship member USER_GUIDE. Note that the keyword DEFINE
and the relationship member’s entity name have been omitted.

8. CDO> SHOW GENERIC LIBRARY ORACLE_LIBRARY

To view the definition of the relationship member created with the DEFINE
GENERIC command in the previous example, you need to use the SHOW
GENERIC command for its owner, ORACLE_LIBRARY.

9. CDO> DEFINE GENERIC CDD$RDB_DATABASE PERSONNEL DESCRIPTION IS
cont> "DEFINE RDB_DATABASE PERSONNEL, CONTAINING RECORD EMPLOYEE_REC"
cont> CDD$PROCESSING_NAME IS "PERSONNEL".
cont> RELATIONSHIPS.
cont> RELATIONSHIP CDD$RDB_DATA_AGGREGATE
cont> GENERIC CDD$DATA_AGGREGATE DESCRIPTION IS
cont> "DEFINE DATA AGGREGATE EMPLOYEE_REC CONTAINING FIRST_NAME,"
cont> "LAST_NAME, EMP_ID"
cont> CDD$PROCESSING_NAME IS "EMPLOYEE_REC".
cont> RELATIONSHIPS.
cont> RELATIONSHIP CDD$DATA_AGGREGATE_CONTAINS
cont> GENERIC CDD$DATA_ELEMENT DESCRIPTION IS
cont> "DEFINE DATA ELEMENT FIRST_NAME = FIELD FIRST_NAME"
cont> CDD$PROCESSING_NAME IS "FIRST_NAME"
cont> CDD$DATA_ELEMENT_DATATYPE 14
cont> CDD$DATA_ELEMENT_LENGTH 10.
cont> END CDD$DATA_ELEMENT FIRST_NAME.
cont> CDD$DATA_SEQUENCE_NUMBER IS 1.
cont> END CDD$DATA_AGGREGATE_CONTAINS RELATIONSHIP.
cont> RELATIONSHIP CDD$DATA_AGGREGATE_CONTAINS
cont> GENERIC CDD$DATA_ELEMENT DESCRIPTION IS
cont> "DEFINE DATA ELEMENT LAST_NAME = FIELD LAST_NAME"
cont> CDD$PROCESSING_NAME IS "LAST_NAME"
cont> CDD$DATA_ELEMENT_DATATYPE 14
cont> CDD$DATA_ELEMENT_LENGTH 15.
cont> END CDD$DATA_ELEMENT LAST_NAME.
cont> CDD$DATA_SEQUENCE_NUMBER IS 2.
cont> END CDD$DATA_AGGREGATE_CONTAINS RELATIONSHIP.

Command Descriptions 1–85

DEFINE GENERIC: Relationship Member Options Clause

cont> RELATIONSHIP CDD$DATA_AGGREGATE_CONTAINS
cont> GENERIC CDD$DATA_ELEMENT DESCRIPTION IS
cont> "DEFINE DATA ELEMENT EMP_ID = FIELD EMP_ID"
cont> CDD$PROCESSING_NAME IS "EMP_ID"
cont> CDD$DATA_ELEMENT_DATATYPE 4.
cont> END CDD$DATA_ELEMENT EMP_ID.
cont> CDD$DATA_SEQUENCE_NUMBER IS 3.
cont> END CDD$DATA_AGGREGATE_CONTAINS RELATIONSHIP.
cont> END RELATIONSHIPS.
cont> END CDD$DATA_AGGREGATE EMPLOYEE_REC.
cont> END CDD$RDB_DATA_AGGREGATE RELATIONSHIP.
cont>END RELATIONSHIPS.
cont>END CDD$RDB_DATABASE PERSONNEL.

This example defines an Oracle Rdb database PERSONNEL and creates a
CDD$RDB_DATABASE entity PERSONNEL in the CDO repository. This
database contains one record EMPLOYEE_REC, which in turn contains
three fields that were defined by nesting the GENERIC clauses: FIRST_
NAME, LAST_NAME, and EMP_ID. (It is recommended that you define
Oracle Rdb databases in the CDO repository through the SQL. See Oracle
Rdb7 Guide to Database Design and Definition for more information on
how to use CDO with Oracle Rdb databases.)

10. CDO> SHOW GENERIC CDD$RDB_DATABASE/AUDIT=ALL PERSONNEL
Definition of PERSONNEL (Type : CDD$RDB_DATABASE)
| | History entered by SMITH ([CDD,SMITH])
| | using CDO V1.0
| | to CREATE definition on 15-DEC-1987 10:31:11.59
| Contains CDD$RDB_DATA_AGGREGATE
| | EMPLOYEE_REC (Type : CDD$DATA_AGGREGATE)
| | | Contains CDD$DATA_AGGREGATE_CONTAINS
| | | | FIRST_NAME (Type : CDD$DATA_ELEMENT)
| | | Contains CDD$DATA_AGGREGATE_CONTAINS
| | | | LAST_NAME (Type : CDD$DATA_ELEMENT)
| | | Contains CDD$DATA_AGGREGATE_CONTAINS
| | | | EMP_ID (Type : CDD$DATA_ELEMENT)
CDO>

This example displays the history list of every element owned by the
PERSONNEL database by using the SHOW GENERIC command.

1–86 Command Descriptions

DEFINE KEY Command

DEFINE KEY Command

Format

DEFINE KEY [qualifier] ... key-name key-equivalence

Parameters

key-name
Specifies the key you are defining.

key-equivalence
Specifies the character string you want processed when you press the key.
Enclose the string in quotation marks to preserve spaces and lowercase
characters.

Qualifiers

/ECHO (default)
/NOECHO
Specifies whether CDO displays the equivalence string on your terminal screen
after you press a key. The default is ECHO, which displays the equivalence
string.

You cannot use the /NOECHO qualifier with the /NOTERMINATE qualifier.

/IF_STATE=state-name
/NOIF_STATE (default)
Specifies the state that must be in effect for a key definition to work. If you
omit the /IF_STATE qualifier or use the /NOIF_STATE qualifier, CDO uses the
current state. The state name is an alphanumeric string. The /SET_STATE
qualifier or the SET KEY command establishes the state.

/LOCK_STATE
/NOLOCK_STATE (default)
Specifies whether the state set by the /SET_STATE qualifier remains in effect
until a user explicitly changes it. By default, the /SET_STATE qualifier is in
effect only for the next definable key you press or the next read-terminating
character that you type.

If you specify the /LOCK_STATE qualifier, you must also specify the /SET_
STATE qualifier.

Command Descriptions 1–87

DEFINE KEY Command

/PROTECTED
/NOPROTECTED (default)
Specifies whether CDO protects a key against later redefinition. The default is
no protection against redefinition.

/SET_STATE=state-name
/NOSET_STATE (default)
Specifies a new state for CDO to set when you press a key; by default, CDO
resets the current locked state. If you have not included this qualifier in a key
definition, you can use the SET KEY command to change the current state.
The state name can be any alphanumeric string.

/TERMINATE
/NOTERMINATE (default)
Specifies whether CDO immediately processes the key definition when you
press the key (equivalent to typing the string and pressing the Return key).

The default is NOTERMINATE, which allows you to press other keys before
CDO processes the definition. The /NOTERMINATE qualifier allows you to
create key definitions that insert text into command lines, after prompts, or
into other text that you are typing.

You cannot use the /NOTERMINATE qualifier with the /NOECHO qualifier.

Description

The DEFINE KEY command assigns definitions to the peripheral keys on
certain terminals. These definitions can direct CDO to perform one of the
following actions:

• Execute a CDO command

• Append a qualifier to a CDO command

• Append a text string to a CDO or system-level command

When you define a key to insert a text string, use the /NOTERMINATE
qualifier so that you can continue typing more data after CDO inserts the
string.

You should take advantage of the echo feature in most instances. With /ECHO
set, CDO displays the key definition on the screen each time you press the key.

You can use the /SET_STATE qualifier to increase the number of key
definitions available on your terminal keyboard. You can assign the same
key any number of definitions, as long as you associate each definition with a
different state. State names can contain alphanumeric characters, dollar signs,
and underscores.

1–88 Command Descriptions

DEFINE KEY Command

See the SET KEY command for information on changing keypad states.

Table 1–3 lists the keys you can define on the keyboards of different terminals.

Table 1–3 Redefineable Key Names and Terminal Designations

Key Name VT100-series VT200- and VT300-series

PF1 PF1 PF1
PF2 PF2 PF2
PF3 PF3 PF3
PF4 PF4 PF4
KP0, KP1, ..., KP9 0, 1, ..., 9 0, 1, ..., 9
PERIOD . .
COMMA , ,
MINUS - -
ENTER ENTER ENTER
LEFT

RIGHT ! !

E1 – FIND
E2 – INSERT HERE
E3 – REMOVE
E4 – SELECT
E5 – PREV SCREEN
E6 – NEXT SCREEN
HELP – HELP
DO – DO
F6, F7, ..., F20 – F6, F7, ..., F20

Examples

CDO> DEFINE KEY /TERMINATE PF3 "SHOW DEFAULT"

In this example, the DEFINE KEY command assigns the CDO SHOW
DEFAULT command to the PF3 key. CDO executes the SHOW DEFAULT
command when you press the PF3 key.

Command Descriptions 1–89

DEFINE PARTITION Command

DEFINE PARTITION Command

Format

DEFINE PARTITION partition-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

�
PARENT_PARTITION IS parent-partition-name
LOOKASIDE_PARTITION IS look-partition-name ,...

�
...

�
AUTOPURGE
NOAUTOPURGE

�
.

Parameters

partition-name
Specifies the partition you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the partition; within the AUDIT clause, it is a history list entry.
Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

parent-partition-name
Specifies the parent partition, which must currently exist.

look-partition-name
Specifies a related partition that is visible through this partition. The related
partition must currently exist.

Description

The DEFINE PARTITION command creates a partition. Partitions are the
means by which you control elements.

1–90 Command Descriptions

DEFINE PARTITION Command

When you control an element, you identify the partition, which is called the
base partition, in which a public, immutable copy of this element resides. CDO
provides two ways to control elements, as follows:

• On an element-by-element basis, with the CONSTRAIN command. CDO
controls the element that appears within the command.

• Through a context with the DEFINE CONTEXT and SET CONTEXT
commands. Once you set the context, CDO controls all subsequent
elements until the context is changed.

Once an element has been controlled, you use the RESERVE and REPLACE
commands to create subsequent versions. This reservation system prevents
uncontrolled changes to elements.

You can link partitions together to control change in various stages of a project.
Each partition then represents a higher level of approval, or completion, in the
overall partition hierarchy. The PROMOTE command moves elements higher
within the hierarchy.

The PARENT_PARTITION clause in the DEFINE PARTITION command
creates a partition hierarchy by linking partitions in a parent-child
relationship. The first, or root, partition does not have a parent partition.
The second partition in the hierarchy has the first partition as its parent,
and so on down the hierarchy. This clause can be specified only once during
the lifetime of the partition, in either the DEFINE PARTITION or CHANGE
PARTITION command.

The LOOKASIDE_PARTITION clause makes the contents of another partition
visible, provided that you have read privileges for the partition. You can read,
but you cannot reserve, replace, or change the contents.

The AUTOPURGE keyword ensures that CDO automatically purges
intermediate versions of elements in the partition when you promote the latest
version. The NOAUTOPURGE keyword prevents this automatic purging.

Command Descriptions 1–91

DEFINE PARTITION Command

Examples

CDO> DEFINE PARTITION FINAL_RELEASE AUTOPURGE. 1
CDO> DEFINE PARTITION FIELDTEST_RELEASE 2
cont> PARENT_PARTITION IS FINAL_RELEASE AUTOPURGE.
CDO> DEFINE PARTITION SECOND_BASELEVEL
cont> PARENT_PARTITION IS FIELDTEST_RELEASE AUTOPURGE.
CDO> DEFINE PARTITION FIRST_BASELEVEL
cont> PARENT_PARTITION IS SECOND_BASELEVEL AUTOPURGE.
CDO> DEFINE PARTITION FRONT_END
cont> PARENT_PARTITION IS FIRST_BASELEVEL AUTOPURGE.
CDO> DEFINE PARTITION BACK_END 3
cont> PARENT_PARTITION IS FIRST_BASELEVEL
cont> LOOKASIDE_PARTITION IS FRONT_END AUTOPURGE.
CDO> CHANGE PARTITION FRONT_END 4
cont> LOOKASIDE_PARTITION IS BACK_END.

.

.

.
CDO> DEFINE CONTEXT BILL_CONTEXT 5
cont> BASE_PARTITION IS FRONT_END.
CDO> DEFINE CONTEXT BETSY_CONTEXT
cont> BASE_PARTITION IS BACK_END.
CDO> DEFINE CONTEXT QA_CONTEXT
cont> BASE_PARTITION IS FIELDTEST_RELEASE.

In this example, successive DEFINE PARTITION commands create a partition
hierarchy.

1 The root partition is FINAL_RELEASE.

2 Each successive partition in the hierarchy is the child of the previous
partition.

3 A partition hierarchy can include multiple children of a previous partition;
LOOKASIDE_PARTITION makes the contents of FRONT_END visible to
BACK_END.

4 The CHANGE PARTITION command makes the contents of BACK_END
visible to FRONT_END.

5 The base partition, or lowest visible partition, is set for three different
contexts.

1–92 Command Descriptions

DEFINE PROTECTION Command

DEFINE PROTECTION Command

Format

DEFINE PROTECTION FOR

8><
>:

DIRECTORY
FIELD
RECORD
GENERIC type-name

9>=
>; element-name ,...

�
POSITION n
AFTER id1+ ...

�
IDENTIFIER id2+... ACCESS right+

DEFINE PROTECTION FOR
�

REPOSITORY anchor-name
GENERIC MCS_CONTEXT context-name

�

[POSITION n] IDENTIFIER id2
�

ACCESS
DEFAULT_ACCESS

�
right+

Parameters

type-name
Specifies the type of the generic element whose ACE you are defining.

element-name
Specifies the element whose ACE you are defining. You can use wildcard
characters in this name.

n
Specifies the relative position (a positive integer) in the ACL of the ACE you
are defining. If you omit the position or the identifier, the ACE you are defining
becomes the first ACE in the ACL.

id1
Specifies the identifier or identifiers of the existing ACE that will immediately
precede the ACE you are defining.

id2
Specifies the identifier or identifiers of those users whose access to the element
or repository you are defining in this ACE.

Command Descriptions 1–93

DEFINE PROTECTION Command

right
Specifies the access rights CDO grants to the users you specified in id2.

anchor-name
Specifies the anchor directory of the repository whose ACE you are defining.

context-name
Specifies the context.

Description

The DEFINE PROTECTION command adds an access control list entry (ACE)
to the access control list (ACL) of an element or repository. When you specify
FOR GENERIC MCS_CONTEXT or FOR REPOSITORY, this command can
also add an ACE to a default access control list. To define protection, you need
CONTROL access.

The ACEs in an ACL determine which users can access the element or
repository and what operations each user can perform. An ACE consists of the
following two parts:

• One or more identifiers that specifies a user or set of users: UIC, general,
and system-defined

• A set of access rights: READ, WRITE, EXECUTE, and DELETE

The POSITION clause specifies the relative position CDO assigns your ACE in
the ACL. ACEs are numbered in ascending order starting with number one. If
you specify a number that is larger than the number of ACEs in the ACL, the
ACE you are creating becomes the last entry in the ACL.

The AFTER clause specifies the identifiers of an existing ACE that will
immediately precede the ACE that you are defining.

The IDENTIFIER clause specifies the identifiers of the user or users whose
access to the element or repository you are defining in this ACE. If an ACE
contains more than one identifier, a user’s process must hold all the identifiers
specified in the ACE to receive the access rights granted by the ACE.

The ACCESS clause specifies the rights that the ACE provides. This clause is
especially useful when you need to restrict access to a context or to a repository.
For example, by modifying this clause, you can restrict access to a single user
for OpenVMS BACKUP or VERIFY operations.

1–94 Command Descriptions

DEFINE PROTECTION Command

The DEFAULT_ACCESS clause is only valid for contexts (specified as
GENERIC MCS_CONTEXT) or repositories. The clause specifies the default
access rights for each new element you create. If a context is set, the new
element receives default access rights defined for this context. If a context
is not set, the new element receives the default access rights defined for the
repository.

For complete information on defining protection, see Using Oracle
CDD/Repository on OpenVMS Systems.

Examples

1. CDO> DEFINE PROTECTION RECORD PERSONNEL
cont> POSITION 2
cont> IDENTIFIER [JONES,DICT]+LOCAL+INTERACTIVE
cont> ACCESS READ+WRITE+DELETE.

In this example, the DEFINE PROTECTION command creates a new
second ACE for the PERSONNEL record. The former second ACE becomes
the new third ACE.

2. CDO> DEFINE PROTECTION FOR RECORD PERSONNEL
cont> AFTER [JONES,DICT]+LOCAL+INTERACTIVE
cont> IDENTIFIER [CDD,SMITH] ACCESS READ.

In this example, the DEFINE PROTECTION command inserts a
new ACE with the identifier [CDD,SMITH] after the ACE with the
[JONES,DICT]+LOCAL+INTERACTIVE identifiers.

3. CDO> DEFINE PROTECTION FOR RECORD BENEFITS.*;* POSITION 4
cont> IDENTIFIER [PERSONNEL,*] ACCESS SHOW.

In this example, the DEFINE PROTECTION command creates a fourth
ACE for all current records in the BENEFITS directory. This ACE does not
become the default protection for definitions that are subsequently created.

4. CDO> DEFINE PROTECTION FOR RECORD PERSONNEL
cont> IDENTIFIER [*,*] ACCESS NONE.

In this example, the DEFINE PROTECTION command creates an ACE
that denies all access rights to all users. CDO places this ACE first in the
ACL, because the user did not specify either a POSITION clause or an
AFTER clause in the command. As a result, everyone (including the user
who issued the command) is denied all access to the definition.

Command Descriptions 1–95

Only the owner can regain access to the definition by using either the
DELETE PROTECTION or CHANGE PROTECTION command to remove
or change the ACE.

5. CDO> DEFINE PROTECTION FOR REPOSITORY PERSONNEL
cont> POSITION 2 IDENTIFIER [SYSTEM]
cont> ACCESS READ+WRITE+DELETE+CONTROL.

In this example, the DEFINE PROTECTION command creates
an ACE in the second position that grants the SYSTEM user
READ+WRITE+DELETE+CONTROL access.

6. CDO> DEFINE PROTECTION FOR REPOSITORY PERSONNEL
cont> POSITION 2 IDENTIFIER [*,*]
cont> DEFAULT_ACCESS READ+WRITE.
CDO> DEFINE FIELD NEW_FIELD DATATYPE TEXT SIZE 5.

In this example, the DEFINE PROTECTION command defines the default
access rights for the PERSONNEL repository to READ+WRITE. If a
context has not been set, CDO will grant the newly created field, NEW_
FIELD, with access rights that are equivalent to the repository’s default
access rights.

7. CDO> DEFINE PROTECTION FOR REPOSITORY CDD$REPOSITORY2
cont> POSITION 2 IDENTIFIER [*,*]
cont> ACCESS NONE.

In this example, the DEFINE PROTECTION command defines the access
rights for the repository using a logical name for the repository name.

1–96 Command Descriptions

Protecting the Repository Anchor

Protecting the Repository Anchor

Oracle CDD/Repository places a security ACL on repository anchors when a
new repository is created, when a repository is moved, or when the location of
the repository is changed with the CDO command VERIFY/LOCATION/FIX.

The ACL is as follows:

(IDENTIFIER=CDD$SYSTEM,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=[*,*],ACCESS=READ+EXECUTE)
(IDENTIFIER=CDD$SYSTEM,OPTIONS=DEFAULT+NOPROPAGATE,ACCESS=READ

+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=[*,*],OPTIONS=DEFAULT+NOPROPAGATE,ACCESS=NONE)

To add these ACLs to existing repository anchors on your system, you can use
either one of the following methods:

• OpenVMS SET ACL/ACL command

• ACL Editor

In addition to this default protection, you should add UIC-based protection
with either of the following commands:

• OpenVMS SET PROTECTION command

• OpenVMS CREATE/DIRECTORY/PROTECTION command

For more information about setting OpenVMS protection on a repository’s
OpenVMS anchor directory, see the OpenVMS Examples at the end of this
section.

Examples

1. $ SET ACL/ACL=(IDENTIFIER=CDD$SYSTEM, -
_$ ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL) -
_$ [SMITH]DIC.DIR(1)

$ SET ACL/ACL=(IDENTIFIER=[*,*],ACCESS=READ) [SMITH]DIC.DIR(1)

Protect your repository anchor directory with an ACL containing the ACEs
shown in the previous example. With these ACEs, only repository files can
be created in a repository anchor directory.

In this example, the SET ACL/ACL command creates an ACL for the
OpenVMS anchor directory of the [SMITH.DIC] repository.

Command Descriptions 1–97

Protecting the Repository Anchor

2. $ SET ACL/EDIT [SMITH]DIC.DIR(1)
$ EDIT/ACL [SMITH]DIC.DIR(1)

In this example, either the DCL SET ACL/EDIT command or the DCL
EDIT/ACL command is used to create an OpenVMS anchor directory.

3. $ SHOW ACL [SMITH]DIC.DIR(1)
element type: file, element name: CDD$DISK:[SMITH]DIC.DIR(1),

on 27-FEB-1989 09:54:40.62
(IDENTIFIER=CDD$SYSTEM,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)
(IDENTIFIER=[*,*],ACCESS=READ)

In this example, the DCL SHOW ACL command is used to display the ACL
you just created.

4. $ SET PROTECTION=(S:RWED,,,) [SMITH]DIC.DIR(1)

In this example, the DCL SET PROTECTION command creates UIC-based
protection for the OpenVMS anchor directory [SMITH.DIC]. You should
add UIC-based protection to your repository’s OpenVMS anchor directory.

1–98 Command Descriptions

DEFINE RECORD Command

DEFINE RECORD Command

Format

DEFINE RECORD record-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/]

[record-property] ...

[constraint-clause]

8><
>:

included-name-clause
local-field-clause
structure-name-clause
variants-clause

9>=
>;

END [record-name] RECORD .

Parameters

record-name
Specifies the record element you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the record element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

record-property
Adds a property to the record element. See Chapter 2 for the record properties
CDO provides.

constraint-clause
Specifies a condition that affects adding or modifying data to the database
table (CDO record). CDO provides syntax for record constraints, including
specification of NOT NULL, PRIMARY KEY, FOREIGN KEY, UNIQUE, and
CHECK (arbitrary search condition constraint) for fields and records. See the
DEFINE RECORD: Constraint Clause for more information.

Command Descriptions 1–99

DEFINE RECORD Command

included-name-clause
Allows you to include existing field definitions and record definitions within
record elements. See the DEFINE RECORD: Included Name Clause for more
information.

local-field-clause
Allows you to create local field definitions within record elements. Describes
the attributes of the local field. See the DEFINE RECORD: Local Field Clause
for more information.

structure-name-clause
Creates structure definitions within record elements. See the DEFINE
RECORD: Structure Name Clause for more information.

variants-clause
Creates variants definitions within record elements. See the DEFINE
RECORD: Variants Clause for more information.

Description

The DEFINE RECORD command creates a record element.

If you supply a record name that is already used for a record element in your
default directory, CDO creates a new version of the existing record definition.

The DEFINE RECORD command evaluates the record name you supply to
determine if it is a logical name. If the record name is a logical name, CDD
translates it. In some cases, the translation of the logical name for the record
may not be a valid name for a record definition, and CDO will not create the
record definition. For example, if you have defined JOE as a logical name
that translates to MYNODE::[RICHIE], CDD translates the symbol JOE. The
following DEFINE RECORD command fails because MYNODE::[RICHIE] is
not a valid name:

CDO> DEFINE RECORD JOE.
%CDO-F-ERRDEFINE, error defining object
-CDD-F-NOTADIC, Does not contain a CDO dictionary:
MYNODE::

If this error occurs, deassign the logical name with the same name as the
object, and perform the operation again. To avoid this logical name conflict,
use unique names that represent the type of entity you are naming.

1–100 Command Descriptions

Examples

CDO> DEFINE RECORD EDUCATION_RECORD.
cont> BADGE_NUMBER.
cont> BACHELOR_DEGREE.
cont> MASTER_DEGREE.
cont> DOCTORATE_DEGREE.
cont> END RECORD.

In this example, the DEFINE RECORD command creates the
EDUCATION_RECORD record definition from four existing field definitions.

Command Descriptions 1–101

DEFINE RECORD: Constraint Clause

DEFINE RECORD: Constraint Clause

Format

CONSTRAINT constr-name2
64

UNIQUE field-name, ...
PRIMARY KEY field-name, ...
FOREIGN KEY field-name, ... REFERENCES record-name field-name, ...
CHECK (expression)

3
75

�
DEFERRABLE
NOT DEFERRABLE

�

Parameters

constr-name
Specifies the name of the constraint.

field-name
Specifies the name of the field to be used in a key or a field that is unique.

record-name
Specifies the name of the record.

expression
Specifies a Boolean expression. See Chapter 4 for more information.

Description

Use to specify a condition that affects adding or modifying data to the database
table (CDO record). CDO provides syntax for record constraints, including
specification of NOT NULL, PRIMARY KEY, FOREIGN KEY, UNIQUE, and
CHECK (arbitrary search condition constraint) for fields and records.

1–102 Command Descriptions

DEFINE RECORD: Constraint Clause

Examples

CDO> DEFINE RECORD PARTS
cont> CONSTRAINT PARTS_PMK PRIMARY KEY PART_ID
cont> CONSTRAINT PARTS_UNQ UNIQUE PART_NO
cont> CONSTRAINT PART_CST CHECK
cont> ANY P IN PARTS WITH (PART_ID IN PARTS = PART_ID_USED_IN IN PARTS)
cont> CONSTRAINT PART_FRK
cont> FOREIGN KEY PART_NO REFERENCES PARTS PART_ID.
cont> PART_NO.
cont> PART_ID.
cont> PART_ID_USED_IN.
cont> PART_QUANT.
cont> END.
CDO> SHOW RECORD PARTS/FULL
Definition of record PARTS
| Contains field PART_NO
| | Datatype signed word
| Contains field PART_ID
| | Datatype signed longword
| Contains field PART_ID_USED_IN
| | Based on ID_DOM
| | | Datatype signed longword
| Contains field PART_QUANT
| | Datatype signed word
| Constraint PARTS_PMK primary key PART_ID NOT DEFERRABLE
| Constraint PARTS_UNQ unique PART_NO NOT DEFERRABLE
| Constraint PART_CST (ANY (P IN PARTS WITH (PART_ID IN PARTS EQ
PART_ID_USED_IN IN PARTS))) NOT DEFERRABLE
| Constraint PART_FRK foreign key PART_NO references PARTS PART_ID NOT
DEFERRABLE

This example uses the CDO DEFINE RECORD command syntax to establish
constraints on the PARTS record.

Note

For the purposes of this example, it is assumed that the field definitions
referred to in the record definitions have already been defined in the
repository.

This example assumes the PART_ID to be the primary key and the PART_NO
to be a unique value across all possible parts. By not specifying whether the
constraints are deferrable, the default evaluation time is accepted. In CDO,
the default evaluation time for constraints is NOT DEFERRABLE. Constraints
are evaluated at statement time.

Command Descriptions 1–103

DEFINE RECORD: Constraint Clause

Using CDO, the record PARTS is defined with the following attributes:

• Primary key PARTS_PMK

• Unique constraint PARTS_UNQ

• Check constraint PART_CST

• Foreign key constraint PART_FRK

1–104 Command Descriptions

DEFINE RECORD: Included Name Clause

DEFINE RECORD: Included Name Clause

Format

name

2
666666666666664

BASED ON field-name

ALIGNED ON

8>>>>><
>>>>>:

BIT
BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

9>>>>>=
>>>>>;

BOUNDARY

CONSTRAINT constr-name NOT NULL
�

DEFERRABLE
NOT DEFERRABLE

�

3
777777777777775

.

Parameters

name
Specifies the existing field or record definition you want to include in the record
element you are creating. The named field or record definition must already
exist in the repository.

field-name
Specifies the name of the field to be used in a key or a field that is unique.

constr-name
Specifies the name of the constraint for the local field definition you are
changing. See the DEFINE RECORD command for more information on
constraints.

Description

The Included Name clause allows you to specify global field definitions and
record definitions within record elements.

If you do not specify a directory name as part of the included name, CDO looks
for the record or field definition in your current default directory.

Command Descriptions 1–105

DEFINE RECORD: Included Name Clause

To improve performance, some languages and language processors have
alignment restrictions for data definitions. The ALIGNED clause aligns a
field or record definition on a specified boundary relative to the beginning of
the record you are defining. Each field or record, except BIT fields, begins by
default on the first byte following the last field. BIT fields begin on the bit
immediately following the last field.

The ALIGNED clause aligns fields or records within a record relative to the
start of the record, not relative to virtual memory locations.

For example, if you specify LONGWORD alignment for a field, that field does
not necessarily begin on a longword boundary in memory. Rather, the field
begins some multiple of 32 bits beyond the start of the record. To correctly use
the aligned clause, you must know the memory alignment techniques of the
language you use with CDO.

Examples

1. CDO> DEFINE RECORD FULL_NAME.
cont> LAST_NAME ALIGNED ON WORD.
cont> FIRST_NAME ALIGNED ON WORD.
cont> MIDDLE_INITIAL ALIGNED ON WORD.
cont> END RECORD.

In this example, the DEFINE RECORD command creates the FULL_
NAME record element in your default directory using existing field
definitions. The keyword ALIGNED starts each field definition on a word
boundary.

2. CDO> DEFINE RECORD CONTRACT.HOME_ADDRESS.
cont> STREET_ADDRESS.
cont> CITY.
cont> STATE.
cont> POSTAL_CODE.
cont> END RECORD.

In this example, the DEFINE RECORD command creates the HOME_
ADDRESS record element using field definitions from your default
directory. Because you specify a path name, HOME_ADDRESS is created
in the EMPLOYEES directory.

1–106 Command Descriptions

DEFINE RECORD: Included Name Clause

3. CDO> SET DEFAULT DISK1:[JONES.DICT]PERSONNEL
CDO> DEFINE RECORD CONTRACT.WORKER_REC.
cont> FULL_NAME.
cont> CONTRACT.DATE_HIRED.
cont> CONTRACT.HOURLY_WAGE.
cont> CONTRACT.COMPLETION_DATE.
cont> END RECORD.

In this example, the DEFINE RECORD command creates the WORKER_
REC record element in the PERSONNEL directory using field definitions
from the default PERSONNEL directory and the CONTRACT directory.

Command Descriptions 1–107

DEFINE RECORD: Local Field Clause

DEFINE RECORD: Local Field Clause

Format

local-field-name [DESCRIPTION IS /*text*/]

�
field-property
NOfield-property

�
...

2
666666666666664

ALIGNED ON

8>>>>><
>>>>>:

BIT
BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

9>>>>>=
>>>>>;

BOUNDARY

NOALIGNED

CONSTRAINT constr-name NOT NULL
�

DEFERRABLE
NOT DEFERRABLE

�

3
777777777777775

.

Parameters

local-field-name
Specifies the name of the locally defined field.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the record element; within the AUDIT clause, it is a history list
entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

field-property
Defines the characteristics of the data you store in field elements. See
Chapter 2 for more information.

1–108 Command Descriptions

DEFINE RECORD: Local Field Clause

constr-name
Specifies the name of the constraint for the local field definition you are
creating or changing. See the DEFINE RECORD command for more
information on constraints.

Description

The Local Field Clause allows you to specify local field definitions and record
definitions within record elements.

To improve performance, some languages and language processors have
alignment restrictions for data definitions. The ALIGNED clause aligns a field
or record definition on a specified boundary relative to the beginning of the
record you are defining.

Each field or record, except BIT fields, begins by default on the first byte
following the last field. BIT fields begin on the bit immediately following the
last field.

The ALIGNED clause aligns fields or records within a record relative to the
start of the record, not relative to virtual memory locations.

For example, if you specify LONGWORD alignment for a field, that field does
not necessarily begin on a longword boundary in memory. Rather, the field
begins some multiple of 32 bits beyond the start of the record. To correctly use
the aligned clause, you must know the memory alignment techniques of the
language you use with CDO.

Examples

CDO> DEFINE RECORD PRODUCE.
cont> UPC_CODE DATATYPE LONGWORD NOT NULL DEFERRABLE.
cont> WEIGHT CONSTRAINT WNOTNULL NOT NULL.
cont> PRICE CONSTRAINT PNOTNULL NOT NULL DEFERRABLE.
cont> QUANTITY CONSTRAINT QNOTNULL NOT NULL NOT DEFERRABLE.
cont> END.

In this example, UPC_CODE is a local field.

Command Descriptions 1–109

DEFINE RECORD: Structure Name Clause

DEFINE RECORD: Structure Name Clause

Format

structure-name STRUCTURE

[DESCRIPTION IS /*text*/] [record-property] ...

2
66666664

ALIGNED ON

8>>>>><
>>>>>:

BIT
BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

9>>>>>=
>>>>>;

BOUNDARY

3
77777775

.

2
64

included-name-clause
local-field-clause
structure-name-clause
variants-clause

3
75 ...

END [structure-name] STRUCTURE .

Parameters

structure-name
Specifies the structure you are defining.

text
Documents the structure definition. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION clause
for a field. To do this, use the SET CHARACTER_SET command, and set the
character_set of the session to DEC_KANJI.

record-property
Adds a property to the structure definition. See Chapter 2 for a list of the valid
record properties.

1–110 Command Descriptions

DEFINE RECORD: Structure Name Clause

included-name-clause
Includes existing field and record definitions within record elements. See
DEFINE RECORD: Included Name Clause for more information.

local-field-clause
Specifies the locally defined field. See DEFINE RECORD: Local Field Clause
for more information.

structure-name-clause
Creates structure definitions within record elements. This section describes
structure definitions.

variants-clause
Creates variants definitions within record elements. See DEFINE RECORD:
Variants Clause for more information.

Description

The Structure Name Clause allows you to define a structure within a record
element.

A structure definition can include both field definitions and record definitions.

Examples

CDO> DEFINE RECORD HOUSEHOLD.
cont> ANNUAL_INCOME.
cont> ADDRESS.
cont> NUMBER_OF_DEPENDENTS.
cont> DEPENDENTS STRUCTURE OCCURS 1 TO 10 TIMES
cont> DEPENDING ON NUMBER_OF_DEPENDENTS IN HOUSEHOLD.
cont> NAME.
cont> AGE.
cont> SEX.
cont> END DEPENDENTS STRUCTURE.
cont> END HOUSEHOLD RECORD.

In this example, the OCCURS...DEPENDING clause in the DEPENDENTS
structure specifies that the structure occurs 1 to 10 times based on the value of
the NUMBER_OF_DEPENDENTS field definition in the HOUSEHOLD record
element at runtime.

Command Descriptions 1–111

DEFINE RECORD: Variants Clause

DEFINE RECORD: Variants Clause

Format

VARIANTS.8>><
>>: VARIANT [EXPRESSION IS cond-expr] .

2
64

included-name-clause
local-field-clause
structure-name-clause
variants-clause

3
75 ... END VARIANT .

9>>=
>>; ...

END VARIANTS .

Parameters

cond-expr
Specifies an expression that represents the relationship between two value
expressions. The value of a conditional expression is true, false, or null.

included-name-clause
Includes existing field and record definitions within record elements. See
DEFINE RECORD: Included Name Clause for more information.

local-field-clause
Specifies the locally defined field. See DEFINE RECORD: Local Field Clause
for more information.

structure-name-clause
Creates structure definitions within record elements. See DEFINE RECORD:
Structure Clause for more information.

variants-clause
Creates variants definitions within record elements.

Description

The Variants Clause syntax identifies a set of overlays that can be used by
a COBOL REDEFINES statement or by other languages. Each variants
definition can contain two or more fields, records, structures, variants, or any
combination of these definitions.

1–112 Command Descriptions

DEFINE RECORD: Variants Clause

Be sure that the variants definitions you define conform to the requirements
of the language or language processor that accesses the record element. For
example, you must include a structure definition for each variants clause
contained in a CDO record if you are developing a new application that will
use a 3GL language and DIGITAL DATATRIEVE.

You can specify a different data type for each definition in a variants definition.

You can create any number of variants definitions within a record element.

You can create any number of definitions within a variants definition.

If you use an expression with one variant, you must use an expression with
every other variant in the variants definition.

In variant expressions, you can refer to a tag variable (field definition) whose
runtime value determines which variant in a variants definition maps to the
record element. The tag variable cannot be part of an array.

At runtime, the product using CDO tests the value of each Boolean expression
in the variants definition to determine which definition is the current variants
definition. The variants with a Boolean expression that evaluates to true is
chosen.

The values that you test for in the expressions of a variants definition must
conform to the following rules:

• The values being tested must be valid values for the data type of the tag
variable. For example, if the data type for the tag variable is text, the
value you test for must be a string.

• The range of values being tested in one expression must not overlap the
range of values in any other expression.

Each variants definition begins on the same byte in the record, subject to
individual alignment options. The length of the longest definition in a variants
definition determines the overall length of the variants definition.

Command Descriptions 1–113

DEFINE RECORD: Variants Clause

Examples

CDO> DEFINE RECORD PRODUCT_INVENTORY.
cont> FIELD_ID.
cont> VARIANTS.
cont> VARIANT EXPRESSION IS
cont> FIELD_ID IN PRODUCT_INVENTORY EQ "S".
cont> IN_STOCK STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_ORDERED.
cont> STATUS_CODE.
cont> QUANTITY.
cont> LOCATION.
cont> UNIT_PRICE.
cont> END IN_STOCK STRUCTURE.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS
cont> FIELD_ID IN PRODUCT_INVENTORY EQ "B".
cont> BACK_ORDER STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_ORDERED.
cont> STATUS_CODE.
cont> QUANTITY.
cont> SUPPLIER.
cont> UNIT_PRICE.
cont> END BACK_ORDER STRUCTURE.
cont> END VARIANT.
cont> VARIANT EXPRESSION IS
cont> FIELD_ID IN PRODUCT_INVENTORY EQ "O".
cont> OUT_OF_STOCK STRUCTURE.
cont> PRODUCT_NO.
cont> DATE_LAST_SOLD.
cont> END OUT_OF_STOCK STRUCTURE.
cont> END VARIANT.
cont> END VARIANTS.
cont> END RECORD.

In this example, the DEFINE RECORD command creates the PRODUCT_
INVENTORY record element, which contains a variants definition consisting of
three structure definitions. Each structure definition uses an expression whose
value is compared to the value of the tag variable (FIELD_ID field definition)
at runtime to determine which structure definition maps to the record element.

1–114 Command Descriptions

DEFINE REPOSITORY Command

DEFINE REPOSITORY Command

Format

DEFINE REPOSITORY anchor-name [ALTERNATE_ROOT dir-name] .

Parameters

anchor-name
Specifies the OpenVMS directory in which you are creating the repository.
The directory must be empty. If you specify a directory that does not exist,
CDO creates one for you in your default directory and places the repository
files there. Do not modify or delete the files created by Oracle CDD/Repository;
otherwise, you will corrupt your repository.

If you plan to provide remote access to your repository with the ALTERNATE_
ROOT parameter, the device associated with the anchor name cannot
be mounted through the VAX Distributed File Service (DFS). Using the
ALTERNATE_ROOT parameter lets you move binary files to a top-level
directory, which reduces the depth of directories created. It also allows you to
move binary files to another disk, reducing I/O contention on the anchor disk.

dir-name
Specifies your top OpenVMS file directory. (Use a logical name, instead of
a full node name.) The device associated with the directory can be mounted
through DFS.

Description

The DEFINE REPOSITORY command creates a physical CDO repository.

Specify the OpenVMS directory where you want the repository to reside.

You can charge disk resources for your repository to a resource identifier by
setting this identifier as the owner of the files DEFINE REPOSITORY creates.
First, issue the DEFINE REPOSITORY command, which sets the creator
as the file owner. Then, issue the CHANGE PROTECTION command. This
operation requires privileges.

OpenVMS utilities, including the OpenVMS BACKUP utility, cannot directly
access repository files unless you invoke them from an account with system
privileges.

Command Descriptions 1–115

Restriction

Do not store any files in the OpenVMS directory that contains
the repository, except the files created by Oracle CDD/Repository.
Otherwise, if you decide to delete the repository later, Oracle
CDD/Repository deletes all files in this directory.

Do not create a repository in your top level directory [000000].

Once a repository is defined using the ALTERNATE_ROOT parameter,
the alternate root cannot be changed or moved.

Changing the alternate root means that your binary files are no longer
under the repository anchor. When you back up the repository, you
must synchronize the backup of all the repository files.

1–116 Command Descriptions

DEFINE REPOSITORY and Remote Access

DEFINE REPOSITORY and Remote Access

You can issue DEFINE REPOSITORY on a local (host) machine, but not on a
remote (client) machine.

To make your repository available to remote users, perform the following steps:

1. Ask your system manager to make the ALTERNATE_ROOT directory
a DFS access point. This action makes the directory and subdirectories
known to a DFS server.

2. Issue the DEFINE REPOSITORY command, including an ALTERNATE_
ROOT parameter. This action permanently associates the file directories
with the anchor directory. You should not explicitly refer to the file
directories again. For example:

DEFINE REPOSITORY DEV1:[PROJECT.CDD]
ALTERNATE_ROOT DEV2:[PROJECT.FILES]

For backup purposes, you can choose to move your anchor directory to the
DFS disk where you store your file directories. In this case, you specify the
same logical name for both anchor and ALTERNATE_ROOT directories.
For example:

DEFINE REPOSITORY DEV1:[PROJECT.CDD]
ALTERNATE_ROOT DEV1:[PROJECT.FILES]

To access a repository from a host machine, perform the following steps:

1. Ask your system manager to make the DFS access point available on
your system. During the DFS mount, the manager identifies the access
point by the ALTERNATE_ROOT logical name. For example, if the
DEFINE REPOSITORY command issued at the host machine referred
to ALTERNATE_ROOT DEV1:[PROJECT.FILES], the manager refers to
DEV1.

2. Issue a SET DEFAULT command that includes the full node name of the
anchor directory. For example:

SET DEFAULT A_NODE::DEV1:[PROJECT.CDD]

3. Review the default protection you receive on file directories. DFS does not
support remote specification of file ACLs. You must make any modifications
on the host system.

Command Descriptions 1–117

Customizing the Repository Templates

Customizing the Repository Templates

When you install Oracle CDD/Repository on your system, the installation
procedure creates a template repository (CDD$TEMPLATE) and a repository
database directory (CDD$TEMPLATEDB). CDD$TEMPLATE contains the
CDD$PROTOCOL directory, which stores all the type definitions Oracle
CDD/Repository uses to create metadata.

Description

The DEFINE REPOSITORY command creates several files in the specified
OpenVMS anchor directory. Oracle CDD/Repository keeps directory
information in these files in the anchor directory; Oracle CDD/Repository
does not store directory information with the CDO definitions in the Oracle
Rdb database.

Oracle CDD/Repository creates all new CDO repositories from
CDD$TEMPLATE and CDD$TEMPLATEDB. If, after defining customized
types in a repository, you want to include these types in all subsequent
repositories that you create, you must make them part of the template.

To do this, execute the following command procedure:

$ @SYS$LIBRARY:CDD_BUILD_TEMPLATE.COM -
_$ repository-anchor-dir repository-db-anchor-dir

Use the repository-anchor-dir parameter to specify the repository that
contains definitions of your customized types. Use the repository-db-anchor-dir
parameter to specify the empty directory that will hold database files.

Then, rename the CDD$TEMPLATE and CDD$TEMPLATEDB logicals to the
parameter names you specified.

After you have assigned the logical name CDD$TEMPLATE to a repository, the
protocols in that repository’s CDD$PROTOCOLS directory will be distributed
to any new CDO repository you create. If you have extended the types
supplied by Oracle CDD/Repository or if you have created your own types in
a repository, you may want to assign the logical name CDD$TEMPLATE to
that repository so that these types will be copied into the CDD$PROTOCOLS
directory of any subsequent repositories you create. If CDD$TEMPLATE is
not defined, each new repository you create will contain only types supplied by
Oracle CDD/Repository.

1–118 Command Descriptions

Customizing the Repository Templates

If you no longer want to use the templates supplied by Oracle CDD/Repository
and want to use only the customized template that you created, delete the
original CDD$TEMPLATE and CDD$TEMPLATEDB directories. Modify the
following lines the SYS$STARTUP:CDDSTRTUP.COM command procedure to
point to the new location of the template:

$ DEFINE/NOLOG/SYSTEM/EXEC CDD$TEMPLATE device:[CDD$TEMPLATE]
$ DEFINE/NOLOG/SYSTEM/EXEC CDD$TEMPLATEDB device:[CDD$TEMPLATEDB]

Examples

CDO> DEFINE REPOSITORY DISK1:[BOB.DICT].

In this example, the DEFINE REPOSITORY command creates a CDO
repository in a subdirectory called [BOB.DICT]:

Command Descriptions 1–119

DEFINE RMS_DATABASE Command

DEFINE RMS_DATABASE Command

Format

DEFINE RMS_DATABASE rms-database-name

[DESCRIPTION IS /*text*/] [AUDIT IS /*text*/] .

RECORD record-name .

FILE_DEFINITION [file-definition-property]

[AREAS . { AREA numeric-literal [area-property] ... } END AREAS .]

[KEYS . { KEY numeric-literal [key-property] ... } END KEYS .]

END [[rms-database-name] RMS_DATABASE] .

Parameters

rms-database-name
Specifies the logical RMS database element you are creating.

text
Adds information. Within the DESCRIPTION clause, this is information
documenting the database definition; within the AUDIT clause, it is a history
list entry. Valid delimiters are /* */ or double quotation marks (" ").

You can use Japanese to document comments in the DESCRIPTION or AUDIT
clause for a field. To do this, use the SET CHARACTER_SET command, and
set the character_set of the session to DEC_KANJI.

record-name
Specifies an existing record element.

file-definition-property
Defines the file and record services for a logical RMS database definition. See
Chapter 3 for the file definition properties CDO provides.

area-property
Defines the area properties for a logical RMS database element. See Chapter 3
for the area properties CDO provides.

1–120 Command Descriptions

DEFINE RMS_DATABASE Command

numeric-literal
Defines the number of characters or bytes in the field. See Chapter 4 for more
information on numeric literals.

key-property
Defines the key properties for a logical RMS database element. See Chapter 3
for the key properties CDO provides.

Description

The DEFINE RMS_DATABASE command creates a logical RMS database
element in a CDO repository.

A logical RMS database consists of only one record and file definition. However,
one logical RMS database definition can be owned by many physical RMS
databases, where each physical RMS database owns a different CDD$FILE
element. To create a physical RMS database on a disk with the characteristics
specified by the DEFINE RMS_DATABASE command, issue the DEFINE
DATABASE command.

To create a valid logical RMS database element, you must specify at least
one record element and a file definition property with a SEQUENTIAL file
organization option.

Examples

1. CDO> DEFINE FIELD LAST_NAME DATATYPE TEXT 30.
CDO> DEFINE FIELD FIRST_NAME DATATYPE TEXT 20.
CDO> DEFINE FIELD EMP_ID DATATYPE UNSIGNED LONGWORD.
CDO> DEFINE RECORD EMPLOYEE_REC.
cont> LAST_NAME.
cont> FIRST_NAME.
cont> EMP_ID.
cont> END.

This example has three steps. It shows you how a corporation can create a
logical RMS database definition that can be used by all of its divisions to
maintain employee information in a physical RMS database.

The data administrator creates the EMPLOYEE_STORAGE RMS database
element in the central corporate repository, using the DEFINE RMS_
DATABASE command.

Command Descriptions 1–121

DEFINE RMS_DATABASE Command

2. CDO> DEFINE RMS_DATABASE EMPLOYEE_STORAGE.
cont> RECORD EMPLOYEE_REC.
cont> FILE_DEFINITION
cont> ALLOCATION 200
cont> FILE_PROCESSING_OPTIONS CONTIGUOUS
cont> ORGANIZATION INDEXED.
cont> AREAS.
cont> AREA 0
cont> ALLOCATE 10
cont> BUCKET_SIZE 5
cont> EXTENSION 7.
cont> AREA 1
cont> ALLOCATE 15
cont> BUCKET_SIZE 3
cont> EXTENSION 11.
cont> AREA 2
cont> ALLOCATE 20
cont> BUCKET_SIZE 7.
cont> END.
cont> KEYS.
cont> KEY 0
cont> DUPLICATES
cont> SEGMENT LAST_NAME IN EMPLOYEE_REC.
cont> KEY 1
cont> CHANGES
cont> SEGMENT EMP_ID IN EMPLOYEE_REC.
cont> END.
cont> END.
CDO> DEFINE DATABASE DISG_FILE USING EMPLOYEE_STORAGE
cont> ON DISK1:[DISG]EMP.DAT.
CDO> DEFINE DATABASE SSG_FILE USING EMPLOYEE_STORAGE
cont> ON DISK2:[SSG]EMP.DAT.
CDO> DEFINE DATABASE DBS_FILE USING EMPLOYEE_STORAGE
cont> ON DISK3:[DBS]EMP.DAT.

Each division creates its own employee information database on disk using
the DEFINE DATABASE command and the same logical RMS database
element, EMPLOYEE_STORAGE, from the central corporate repository.

1–122 Command Descriptions

DELETE COLLECTION Command

DELETE COLLECTION Command

Format

DELETE COLLECTION [qualifier] ... collection-name ,... .

Parameters

collection-name
Specifies the collection you are deleting.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO deletes members. When you specify the
/DESCENDANTS qualifier, CDO deletes all members that are not also
members of additional elements outside the area defined by your top collection.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the collection is deleted.

Description

The DELETE COLLECTION command deletes a collection and, optionally, all
members of the collection.

Because a collection is a controlled element, CDO freezes previous versions and
allows you to delete only the highest visible version.

If a collection is a member, you must delete its owners before you delete the
collection. If the collection’s immediate owner is a member of another element,
you must trace the relationships back until you reach the element that has no
owners and delete elements one by one, in sequence of ownership.

If you attempt to delete a collection that owns a version in a different branch,
the version must be the latest version in that branch. Otherwise, an error
will occur. See the Oracle CDD/Repository Architecture Manual for complete
information on branch lines of descent.

Command Descriptions 1–123

DELETE COLLECTION Command

Examples

1. CDO> DELETE COLLECTION A_COLLECTION.

In this example, the DELETE COLLECTION command deletes a collection
that is not a member.

2. CDO> DELETE COLLECTION REGIONAL_SALES.
CDO> DELETE COLLECTION DISTRICT_SALES.
CDO> DELETE COLLECTION LOCAL_AREA_SALES.

In this example, the DELETE COLLECTION command deletes a collection,
a subcollection, and a further subcollection in sequence of ownership.

3. CDO> DELETE COLLECTION COMPILER_C(3).
CDO> DELETE COLLECTION COMPILER_C(2:UPDATE_BRANCH:2).
CDO> DELETE COLLECTION COMPILER(2:UPDATE_BRANCH:1).
CDO> DELETE COLLECTION COMPILER_C(2).
CDO> DELETE COLLECTION COMPILER(1).

In this example, successive DELETE COLLECTION commands delete the
main line and branch line versions of a collection in sequence of ownership.
The branch line originates from version 2 and merges back in version 3.

1–124 Command Descriptions

DELETE CONTEXT Command

DELETE CONTEXT Command

Format

DELETE CONTEXT [qualifier] ... context-name ,... .

Parameters

context-name
Specifies the context you are deleting.

Qualifiers

/PARENTS
/NOPARENTS (default)
Specifies whether CDO deletes parents. If you have defined a top collection for
the context, CDO cannot delete a parent that is also a parent of an element
outside this collection or collection hierarchy.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the context is deleted.

Description

The DELETE CONTEXT command deletes a context.

Because a context is a nonversioned element, CDO does not accept a branch
designation or a version number in the context name.

If a context is a child, you must delete its immediate parent before you delete
the context. If the context’s immediate parent is a child of another element,
you must trace the relationships back until you reach the element that has no
parents.

If you delete your current context, CDO sets a null value for the current
context before deleting the context.

An error occurs if you attempt to delete a context that has opened files
or reserved elements. The SHOW CONTEXT or SHOW RESERVATIONS
command indicates whether this condition exists.

Command Descriptions 1–125

DELETE CONTEXT Command

Examples

CDO> DELETE CONTEXT A_CONTEXT.

In this example, the DELETE CONTEXT command deletes the A_CONTEXT
context.

1–126 Command Descriptions

DELETE DATABASE Command

DELETE DATABASE Command

Format

DELETE DATABASE [qualifier] rms-database-name .

Parameters

rms-database-name
Specifies the physical RMS database element you are deleting. You can
substitute an asterisk (*) wildcard character for this parameter.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the physical RMS
database element is deleted.

Description

The DELETE DATABASE command deletes the physical RMS database
(CDD$FILE) from disk and its CDD$DATABASE element from the repository.

When you issue the DELETE DATABASE command, CDO prompts you
to confirm that you want to proceed. You cannot suppress this prompt. If
you respond Yes at the prompt, CDO deletes the highest visible version of
CDD$FILE and, if you have not specified another version number, the highest
visible version of CDD$DATABASE.

If CDO cannot delete the physical RMS file from disk, the DELETE
DATABASE command fails, and the CDD$DATABASE and CDD$FILE
elements remain in the repository.

Examples

CDO> DELETE DATABASE /LOG EMP_FILE(1)

In this example, the DELETE DATABASE command with the /LOG qualifier
confirms that CDO deleted the RMS file from disk and the RMS database
element EMP_FILE from the repository.

Command Descriptions 1–127

DELETE DIRECTORY Command

DELETE DIRECTORY Command

Format

DELETE DIRECTORY [qualifier] directory-name ,... .

Parameters

directory-name
Specifies the repository directory you are deleting.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the directory is deleted.

Description

The DELETE DIRECTORY command deletes a CDO directory.

Unless you change directory protection, only the owner of a CDO directory or
the system manager can delete a directory.

You can delete only empty directories.

CDO deletes only the last directory in a fully qualified path name. For
example, if you specify a directory name of
[SMITH.DICT]CORPORATE.PERSONNEL.SALARIED, CDO deletes only the
SALARIED directory.

Examples

CDO> DELETE DIRECTORY /LOG PROSPECTS.
%CDO-I-DIRDEL, directory PROSPECTS deleted

In this example, the DELETE DIRECTORY command with the /LOG qualifier
confirms that CDO deleted the PROSPECTS directory.

1–128 Command Descriptions

DELETE FIELD Command

DELETE FIELD Command

Format

DELETE FIELD [qualifier] ... field-name ,... .

Parameters

field-name
Specifies the field element you are deleting. You can substitute an asterisk (*)
wildcard character for this parameter.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO deletes children. When you specify the
/DESCENDANTS qualifier, and your field element is controlled, CDO deletes
all children that are not also children of additional elements outside the area
defined by your top collection. If the field is uncontrolled, CDO deletes all
children that are not also children of any other elements.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the field element is
deleted.

Description

The DELETE FIELD command deletes a field element from a repository.

If a field element is controlled, CDO freezes previous versions and allows you
to delete only the highest visible version. If a field element is uncontrolled,
CDO deletes the highest version unless you specify another version number.

You cannot delete a field that is a child. Delete the parent first, or include the
/DESCENDANTS qualifier to delete parents and children at the same time.

Examples

CDO> DELETE FIELD /DESCENDANTS ORDER_NUMBER.

In this example, the DELETE FIELD command with the /DESCENDANTS
qualifier deletes the ORDER_NUMBER field element and its children.

Command Descriptions 1–129

DELETE FILE_ELEMENT Command

DELETE FILE_ELEMENT Command

Format

DELETE FILE_ELEMENT type-name [qualifier] ... element-name ,... .

Parameters

type-name
Specifies the type (MCS_BINARY or MCS_BINARY subtype) of the file element
you are deleting. See the Oracle CDD/Repository Information Model Volume I
for information on these types.

element-name
Specifies the file element you are deleting. You can substitute an asterisk (*)
wildcard character for this parameter.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO deletes children. When you specify
the /DESCENDANTS qualifier, CDO deletes all children that are not also
children of additional elements outside the area defined by your top collection.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the file element is deleted.

Description

The DELETE FILE_ELEMENT command deletes a file element and,
optionally, all children of the file element to the bottom of the collection
hierarchy.

Because a file element is a controlled element, CDO freezes all previous
versions and allows you to delete only the highest visible version.

CDO cannot delete the following versions in a branch line:

• A version that is owned by a version in a different branch

• A version that owns an intermediate version in a different branch

See the Oracle CDD/Repository Architecture Manual for information on branch
lines of descent.

1–130 Command Descriptions

DELETE FILE_ELEMENT Command

Examples

1. CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES.

In this example, the DELETE FILE_ELEMENT command deletes a file
element definition that is based on the MCS_BINARY type.

2. CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES(3).
CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES(2:UPDATE_BRANCH:2).
CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES(3:UPDATE_BRANCH:1).
CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES(2).
CDO> DELETE FILE_ELEMENT MCS_BINARY PARSER_TABLES(1).

In this example, successive DELETE FILE_ELEMENT commands delete
the main line and the branch line versions of a file element in sequence of
ownership. The branch line originates from version 2 and merges back in
version 3.

Command Descriptions 1–131

DELETE GENERIC Command

DELETE GENERIC Command

Format

DELETE GENERIC type-name [qualifier] ... element-name ,... .

Parameters

type-name
Specifies the type of the generic element you are deleting. This type cannot
be MCS_BINARY, an MCS_BINARY subtype, MCS_COLLECTION, MCS_
CONTEXT, or MCS_PARTITION.

element-name
Specifies the generic element you are deleting.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO deletes children. When you specify the
/DESCENDANTS qualifier, and your generic element is controlled, CDO
deletes all children that are not also children of additional elements outside
the area defined by your top collection. If the generic element is uncontrolled,
CDO deletes all children that are not also children of other elements.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the generic element is
deleted.

Description

The DELETE GENERIC command deletes a generic element. This element
can be based on a type supplied by Oracle CDD/Repository or a user-supplied
type.

If a generic element is a controlled versioned element, CDO freezes previous
versions and allows you to modify only the highest visible version. If a generic
element is an uncontrolled versioned element, CDO deletes the highest version
unless you specify another version number.

1–132 Command Descriptions

DELETE GENERIC Command

If you use SQL (structured query language) to delete an Oracle Rdb database
file, the corresponding CDD$DATABASE element may remain in Oracle
CDD/Repository. You can use the DELETE GENERIC command to delete this
element.

Examples

1. CDO> DELETE GENERIC CDD$DATABASE DEPT1.

In this example, the DELETE GENERIC command deletes the DEPT1
generic element from the repository.

2. CDO> DELETE GENERIC CDD$SOURCE_MODULE
cont> /DESCENDANTS /LOG COBOL_SOURCE.

In this example, the DELETE GENERIC command with the /LOG and
/DESCENDANTS qualifiers confirms that CDO has deleted the COBOL_
SOURCE generic element and children.

Command Descriptions 1–133

DELETE HISTORY Command

DELETE HISTORY Command

Format

DELETE HISTORY [qualifier] FOR

(FIELD
RECORD
GENERIC type-name

)
element-name ,... .

Parameters

type-name
Specifies the type of the file or generic element definition whose history entries
you are deleting.

element-name
Specifies the element whose history entries you are deleting. You can use
wildcard characters in this parameter.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the history entries have
been deleted.

Description

The DELETE HISTORY command deletes the history entries for a CDO
element.

Note that the DELETE HISTORY command deletes the entire history list for a
given entity. This is not a PURGE HISTORY command.

Examples

CDO> DELETE HISTORY FOR RECORD CAR_POOL.

In this example, the DELETE HISTORY command deletes the history entries
for the CAR_POOL record element.

1–134 Command Descriptions

DELETE PARTITION Command

DELETE PARTITION Command

Format

DELETE PARTITION [qualifier] ... partition-name ,... .

Parameters

partition-name
Specifies the partition you are deleting.

Qualifiers

/PARENTS
/NOPARENTS (default)
Specifies whether CDO deletes parents. CDO cannot delete a parent that is
also a parent of an element outside the partition or partition hierarchy. When
CDO cannot delete any parents, you receive an informational notice. When
CDO can delete some parents, you do not receive a notice.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the partition is deleted.

Description

The DELETE PARTITION command deletes a partition and, optionally, all the
partition’s children to the bottom, or root, of the partition hierachy.

Since a partition is a nonversioned element, CDO does not accept a branch
designation or a version number in partition names.

If a partition is a child, you must delete its parent or parents before you delete
the partition. If the partition’s immediate parent is a child of another element,
you must trace the relationships back until you reach the element that has no
parents.

An error occurs if you attempt to delete a partition that contains elements.
Promote or delete elements from a partition prior to issuing the DELETE
PARTITION command.

Command Descriptions 1–135

DELETE PARTITION Command

Examples

1. CDO> DELETE PARTITION /PARENTS FRONT_END.

In this example, the DELETE PARTITION command with the /PARENTS
qualifier deletes all the parent partitions of FRONT_END.

2. CDO> DELETE PARTITION /LOG REPORTS.
%CDO-I-ENTDEL, entity CDD$DISK:[SMITH.PART]REPORTS deleted

In this example, the DELETE PARTITION command with the /LOG
qualifier confirms that CDO deleted the partition REPORTS.

1–136 Command Descriptions

DELETE PROTECTION Command

DELETE PROTECTION Command

Format

DELETE PROTECTION [qualifier] FOR

8><
>:

DIRECTORY
FIELD
RECORD
GENERIC type-name

9>=
>; element-name ,...

h POSITION n
id+ ...

i
[ACCESS] .

DELETE PROTECTION [qualifier] FOR

{ REPOSITORY anchor-name } [POSITION n]
�

ACCESS
DEFAULT_ACCESS

�
.

Parameters

type-name
Specifies the type of file or generic element definition whose ACE or ACL you
are deleting.

element-name
Specifies the element whose ACE or ACL you are deleting. You can use
wildcard characters in this parameter.

n
Specifies the relative position of the ACE in the ACL that you are deleting.

id
Specifies the identifiers for the ACE you are deleting.

anchor-name
Specifies the repository anchor directory whose ACE or ACL you are deleting.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the ACE or ACL is
deleted.

Command Descriptions 1–137

DELETE PROTECTION Command

Description

The DELETE PROTECTION command deletes an access control list entry
(ACE) or the entire access control list (ACL) for a CDO element or repository.

You need CONTROL access to delete protection.

The POSITION clause tells CDO the relative position of the ACE to delete.
ACEs are numbered starting with one. You can also delete a particular
element ACE by specifying the identifier or identifiers contained in that ACE.
If you omit the identifiers and the POSITION clause, CDO deletes the entire
ACL.

After the DELETE PROTECTION command executes, CDO resequences the
remaining ACEs in the ACL.

The default access type for all cases is ACCESS.

Examples

1. CDO> DELETE PROTECTION FOR RECORD CAR_POOL POSITION 5.

In this example, the DELETE PROTECTION command deletes the fifth
ACE in the ACL for the CAR_POOL record element.

2. CDO> DELETE PROTECTION FOR RECORD CAR_POOL [23,56].

In this example, the DELETE PROTECTION command deletes the ACE
with the identifier [23,56] for the CAR_POOL record element.

1–138 Command Descriptions

DELETE RECORD Command

DELETE RECORD Command

Format

DELETE RECORD [qualifier] ... record-name ,... .

Parameters

record-name
Specifies the record element you are deleting.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO deletes children. When you specify the
/DESCENDANTS qualifier, and your record element is controlled, CDO deletes
all children that are not also children of additional elements outside the area
defined by your top collection. If the record element is uncontrolled, CDO
deletes all children that are not also children of other elements.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the record element is
deleted.

Description

The DELETE RECORD command deletes a record element from a CDO
repository.

If the record element is controlled, CDO freezes previous versions and
allows you to delete only the highest visible version. If the record element
is uncontrolled, CDO deletes the highest version unless you specify another
version number.

Examples

CDO> DELETE RECORD /DESCENDANTS CUSTOMER_ORDERS.

In this example, the DELETE RECORD command with the /DESCENDANTS
qualifier deletes the CUSTOMER_ORDERS record element and children.

Command Descriptions 1–139

DELETE REPOSITORY Command

DELETE REPOSITORY Command

Format

DELETE REPOSITORY [qualifier] repository-name ,... .

Parameters

repository-name
Specifies the anchor directory of the repository you are deleting.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the repository is deleted.

Description

The DELETE REPOSITORY command deletes all the elements in a repository,
any relationships between elements in the repository or elements in other
repositories, and the repository itself.

Unless you change repository protection, only the owner of a repository or the
system manager can delete a CDO repository.

You cannot delete a repository if it contains an element that is used by another
element in a different repository.

Caution

Before you delete a repository, be sure your elements do not have
relationships to other elements in other repositories. Check to make
sure you have not stored user-created files in the repository.

Examples

CDO> DELETE REPOSITORY DISK1:[BOB.DICT].

In this example, the DELETE REPOSITORY command deletes the
DISK1:[BOB.DICT] repository.

1–140 Command Descriptions

DELETE RMS_DATABASE Command

DELETE RMS_DATABASE Command

Format

DELETE RMS_DATABASE [qualifier] rms-database-name .

Parameters

rms-database-name
Specifies a logical RMS database element.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the RMS database
element is deleted.

Description

The DELETE RMS_DATABASE command deletes a logical RMS database
element from the repository.

If the RMS database element is controlled, CDO freezes previous versions and
allows you to delete only the highest visible version. If the RMS database
element is uncontrolled, CDO deletes the highest visible version unless you
specify another version number.

Before you can issue the DELETE RMS_DATABASE command, you must
have deleted the associated physical RMS database element with the DELETE
DATABASE command.

Examples

1. CDO> DELETE DATABASE DISG_FILE(2).
.
.
.

CDO> DELETE RMS_DATABASE /LOG EMPLOYEE_STORAGE.

In this example, the DELETE DATABASE command prompts you to
confirm that you intend to delete the physical RMS database file from disk.
CDO confirms this deletion. The DELETE RMS_DATABASE command
with the /LOG qualifier confirms that CDO has deleted the logical RMS
database element EMPLOYEE_STORAGE.

Command Descriptions 1–141

DELETE RMS_DATABASE Command

2. CDO> DELETE RMS_DATABASE EMPLOYEE_STORAGE.
%CDD-E-INUSE, element is the member of a relationship; it cannot be deleted
CDO> DELETE DATABASE DISG_FILE(2). 1
deleting file DISK1:[SMITH]EMP.DAT; proceed? [Y/N]) (N)Y 2
%CDO-I-FILEDEL, file DISK1:[SMITH]EMP.DAT; deleted
CDO> DELETE RMS_DATABASE /LOG EMPLOYEE_STORAGE.3

This example shows the result when you try to delete a logical RMS
database definition from the repository while a physical RMS database (on
disk) is using it. When you delete the physical database (EMP.DAT), you
can then delete the logical database.

1 Delete the physical RMS database definition from the repository.

2 Type Y in acknowledgement that CDO deletes the physical RMS file
from disk.

3 Delete the logical RMS database definition from the repository. The
/LOG qualifier provides a confirmation of deletion.

1–142 Command Descriptions

DETACH FROM COMPOSITE Command

DETACH FROM COMPOSITE Command

Format

DETACH

8>>><
>>>:

COLLECTION
FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>>>=
>>>;

[qualifier] element-name ,...

FROM composite-name [AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the element you are detaching.

element-name
Specifies the name of the element from which you are detaching. You can
substitute an asterisk (*) wildcard character for this parameter.

composite-name
Specifies the name of the composite from which you are detaching.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
detached.

Command Descriptions 1–143

DETACH FROM COMPOSITE Command

Description

The DETACH FROM COMPOSITE command detaches an element from a
composite. The element must be a controlled element that is not currently
reserved. It also must be currently attached to the composite.

Before you issue the DETACH FROM COMPOSITE command, you must have
a context set and your composite reserved. The SHOW CONTEXT and SHOW
RESERVATIONS commands indicate whether these conditions exist.

You can use the DETACH FROM COMPOSITE command in conjunction
with the DEFINE, RESERVE, REPLACE, and ATTACH TO COMPOSITE
commands to link collections into collection hierarchies. See the DEFINE
COLLECTION command for an example of a collection hierarchy.

You can also use the DETACH FROM COMPOSITE and ATTACH TO
COMPOSITE commands to move between lines of descent. See the Oracle
CDD/Repository Architecture Manual for more information.

Examples

1. CDO> RESERVE COLLECTION SALES_EACH_PRODUCT
CDO> ATTACH FIELD PART_NUMBER TO SALES_EACH_PRODUCT
CDO> REPLACE COLLECTION SALES_EACH_PRODUCT

.

.

.
CDO> RESERVE COLLECTION SALES_EACH_PRODUCT
CDO> DETACH FIELD PART_NUMBER FROM SALES_EACH_PRODUCT
CDO> REPLACE COLLECTION SALES_EACH_PRODUCT

In this example, the DETACH command detaches an element from a
collection.

2. CDO> RESERVE COLLECTION EMPLOYEE_RECORDS
CDO> DETACH FIELD FIRST_NAME(2:BRANCH:2) FROM EMPLOYEE_RECORDS
CDO> ATTACH FIELD FIRST_NAME(2) TO EMPLOYEE_RECORDS
CDO> REPLACE COLLECTION EMPLOYEE_RECORDS

In this example, the DETACH FROM COMPOSITE command detaches a
version in the branch line of descent, FIRST_NAME(2:BRANCH:2), from
the EMPLOYEE_RECORDS collection. After you attach a version in the
main line, FIRST_NAME(2), to EMPLOYEE_RECORDS you can create
new versions in the main line, instead of in the branch line where you had
been working.

1–144 Command Descriptions

DIRECTORY Command

DIRECTORY Command

Format

DIRECTORY [qualifier] ... [element-name] ,...

Parameters

element-name
Specifies the element or elements to be listed. This name can specify a CDO
element, a CDO directory, or a logical name.

Qualifiers

/BEFORE=time
/NOBEFORE (default)
Selects only those elements dated before the specified time. If you do not
specify a time with the /BEFORE qualifier, CDO uses /BEFORE=TODAY
qualifier as the value.

/BRIEF (default)
Displays the element names and their types. This is the default display.

/FORMAT
/NOFORMAT (default)
Displays the text specifying whether the element is in CDO or DMU format (in
a CDO repository or a DMU dictionary).

/FULL
Displays the name, type, parent, approximate size, and access control
information (protection) for each repository element. If an element appears
under an alternate name in a distributed repository, these names appear also.

/SINCE=time
/NOSINCE (default)
Displays only those elements dated at or after the specified time. If you do not
specify a time with the /SINCE qualifier, CDO uses /SINCE=TODAY as the
value.

/TYPE=(type-name,...)
/NOTYPE (default)
Displays only elements of the specified type or types. You cannot use wildcard
characters in the type name.

Command Descriptions 1–145

DIRECTORY Command

Description

The DIRECTORY command lists an element or elements in one or more
repository directories.

Restriction

If you have a context set, CDO limits the display to those elements
that are visible to your context. If you do not have a context set, this
restriction does not apply.

CDO only displays the names of those elements to which you have
READ access.

With the /BEFORE and /SINCE qualifiers, you can specify any of the
following for a time:

• Absolute time

• Combination of absolute and delta times

• A keyword such as TODAY or YESTERDAY

See the OpenVMS documentation for more information about specifying
times.

Examples

1. CDO> DIRECTORY /SINCE=YESTERDAY

In this example, the DIRECTORY command will display the names,
versions, and types of all elements CDO has created since 00:00
(midnight) of the previous day in the current default directory.

1–146 Command Descriptions

DIRECTORY Command

2. CDO> DIRECTORY /FULL DISK1:[JONES.DICT]REVIEW.*
Directory DISK1:[JONES.DICT]REVIEW

FIRST_NAME(1) FIELD Created: 8-MAY-1995
13:33:28.95 Revised: 8-MAY-1995 13:33:32.99 Owner: [VDD,JONES] Access
Cntrl List: (IDENTIFIER=[VDD,JONES],ACCESS=READ+WRITE+MODIFY+
ERASE+SHOW+DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[VDD,CDDCDD],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+
CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[*,*],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+OPERATOR+ADMIN)
Size: 2277 dictionary_format: CDO format
FULL_ADDRESS(1) RECORD Created: 8-MAY-1995
14:09:51.19 Revised: 8-MAY-1995 14:09:51.19 Owner: [VDD,JONES] Access
Cntrl List: (IDENTIFIER=[VDD,JONES],ACCESS=READ+WRITE+MODIFY+
ERASE+SHOW+DEFINE+CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[VDD,CDDCDD],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+
CHANGE+DELETE+CONTROL+OPERATOR+ADMINISTRATOR)
(IDENTIFIER=[*,*],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+OPERATOR+ ADMIN)
Size: 1337 dictionary_format: CDO format

.

.

.

In this example, the DIRECTORY command with the /FULL qualifier will
display the name, type, parent, and protection information for elements in
the REVIEW directory and in any distributed repositories.

Command Descriptions 1–147

EDIT Command

EDIT Command

Format

EDIT
�

FIELD
RECORD

�
[element-name]

Parameters

element-name
Specifies the field or record element you are creating.

Description

The EDIT command invokes the CDO editor, which allows you to create
uncontrolled field and record definitions.

If you do not specify an element name, CDO prompts you for one after you
enter the editor.

See Using Oracle CDD/Repository on OpenVMS Systems for more information
on the CDO editor.

Examples

CDO> EDIT FIELD

In this example, the EDIT command invokes the CDO editor to create an
uncontrolled field element.

1–148 Command Descriptions

ENTER Command

ENTER Command

Format

ENTER

(FIELD
RECORD
GENERIC type-name

)
name1 [qualifier]

8>>><
>>>:

FROM

(DATABASE
RECORD
GENERIC type-name

)
name2

FOR name3

9>>>=
>>>;

Parameters

type-name
Specifies the type of a generic element.

name1
Specifies the processing name of the field, record, or generic element. You
can use an asterisk (*) wildcard character to indicate all element names or
a specific element name. Afer the ENTER command executes, CDO creates a
directory name that is the same as the processing name.

name2
Specifies the database, record, or generic element that owns name1.

name3
Specifies an additional directory name you are designating for the field, record,
or generic element.

Qualifiers

/RDB_METADATA
/NORDB_METADATA (default)
Specifies whether CDO enters a directory name for Oracle Rdb system
relations. The /NORDB_METADATA qualifier is the default. This qualifier is
synonymous with the SHOW /[NO]SYSTEM qualifier.

Command Descriptions 1–149

ENTER Command

Description

The ENTER command assigns a directory name or an additional directory
name to a field, record, or generic element.

The FROM clause assigns a directory name to an element that does not have a
directory name. For example, field and record elements within an Oracle Rdb
database definition may not have directory names.

Without a directory name, the DIRECTORY command cannot display an
element, and you cannot include the element as part of other elements. For
example, you would not be able to include a field element without a directory
name in an Oracle Rdb global field definition.

The FOR clause assigns an additional directory name to an element that has
a directory name. This functionality allows you to give an element different
names on a local node and a remote node.

You must issue the ENTER command with the FOR clause for an element
before you can reserve that element in a distributed environment. See Using
Oracle CDD/Repository on OpenVMS Systems for information on reserving
elements in a distributed environment.

CDO enters directory names in your currect default directory. The ENTER
command fails if an element in that directory has a directory name that is the
same as the processing name you specify.

Restriction

The ENTER command does not apply a default ACL to the object
being entered. Therefore, if the object did not have an ACL prior to
being entered, it will not have one after being entered in the directory
system. Setting the desired ACLs is left to the discretion of the user.

You cannot issue the ENTER command to enter fields or records within
a variant of CDO record definitions that were converted from DMU
definitions. Field definitions and record definitions that exist only
within the context of a variant cannot be given directory names.

Use this command to assign directory names to field definitions or structure
definitions within record definitions converted from DMU. When an object
(such as a field definition) has a directory name, that object can be included
in other definitions (for example, field definitions with directory names can be
used as Oracle Rdb global fields).

1–150 Command Descriptions

ENTER Command

Examples

1. CDO> ENTER FIELD PART_NUMBER FROM DATABASE PARTS

In this example, the ENTER command enters a PART_NUMBER directory
name for the PART_NUMBER field element from the database element
PARTS.

2. CDO> ENTER FIELD SALARY_CLASS FOR WAGE_CLASS

In this example, the ENTER command assigns SALARY_CLASS as an
alternative directory name for the WAGE_CLASS field element.

3. CDO> ENTER GENERIC MCS_COLLECTION CORP_DATA_DEFS
con> FOR CORPORATE:CORP_DATA_DEFS
CDO> RESERVE GENERIC MCS_COLLECTION CORP_DATA_DEFS

In this example, the ENTER command assigns the alternative
directory name CORP_DATA_DEFS on a local node for the collection
CORPORATE:CORP_DATA_DEFS.

Command Descriptions 1–151

EXIT Command

EXIT Command

Format

EXIT

Description

The EXIT command ends a CDO session.

You can also exit from CDO by pressing Ctrl/Z.

Examples

CDO> EXIT
$

In this example, the EXIT command exits you from CDO and returns you to
the OpenVMS DCL prompt.

1–152 Command Descriptions

EXTRACT Command

EXTRACT Command

Format

EXTRACT
�

FIELD
RECORD

�
element-name ,... [qualifier]

Parameters

element-name
Specifies the field or record element that you want to display in the DEFINE
command format or ANSI C language format. You can use wildcard characters
in this parameter.

Qualifiers

/LANGUAGE=CC
/LANGUAGE=CDO (default)
Use the /LANGUAGE qualifier to generate data defintions in one of two
formats; either the default DEFINE command format or the ANSI-standard
syntax for the C programming language. Valid options are:

• CC

Specifies that the EXTRACT command converts the record to ANSI
C language syntax. Each record that is converted to ANSI-standard
syntax will include a comment statement that lists the original Oracle
CDD/Repository data type information for each field in the record. For
example:

char field1; /*Text*/

• CDO

Specifies that the EXTRACT command displays one or more repository
elements in the format of the DEFINE command. The CDO option is the
default.

Command Descriptions 1–153

EXTRACT Command

Description

The EXTRACT command displays one or more repository elements in the
specified format. You can choose the DEFINE command format or the ANSI-
standard syntax for the C programming language. By displaying an element in
the DEFINE command format, the EXTRACT command makes it easier for you
to create new versions of an uncontrolled element. By displaying an element
in the ANSI C programming language format, you can use the definition when
building applications.

You can capture the output of the EXTRACT command in a file by issuing
the SET OUTPUT command as the preceding command. For the DEFINE
command, edit and execute the command file with the @ command. For the
ANSI C programming language format, edit the output file to remove the
EXTRACT command and then include the file in an application.

If a field has character set attributes, you can display them using the SHOW
and EXTRACT commands; in addition, you can use the SHOW command
to display size information of a field in both character-based size and octet-
based size. See the description of SET CHARACTER_SET command and the
DATATYPE field property for more information.

1–154 Command Descriptions

EXTRACT Command

Examples

1. CDO> DEFINE RECORD FULL_NAME.
cont> FIRST_NAME.
cont> MIDDLE.
cont> LAST_NAME.
cont> END RECORD.

.

.

.
CDO> DEFINE RECORD HOME_ADDRESS.
cont> STREET_ADDRESS.
cont> CITY.
cont> STATE.
cont> POSTAL_CODE.
cont> END RECORD.

.

.

.
CDO> DEFINE FIELD BADGE DATATYPE IS UNSIGNED LONGWORD SIZE IS 5 DIGITS.
CDO> DEFINE RECORD EMPLOYEE_REC_ONE.
cont> FULL_NAME.
cont> HOME_ADDRESS.
cont> BADGE.
cont> END RECORD.

This example shows the definition of records used in the following
examples.

2. CDO> EXTRACT RECORD EMPLOYEE_REC_ONE /LANGUAGE=CC

struct employee_rec_one
{

struct {
char first_name[20]; /* Text */
char middle; /* Text */
char last_name[20]; /* Text */

} full_name;
struct {

char street_address[30]; /* Text */
char city[20]; /* Text */
char state[2]; /* Text */
unsigned long postal_code; /* Unsigned Longword */

} home_address;
unsigned long badge; /* Unsigned Longword */

};

This example shows the EXTRACT command specifying the
/LANGUAGE=CC qualifier.

Command Descriptions 1–155

EXTRACT Command

3. CDO> EXTRACT RECORD EMPLOYEE_REC_ONE /LANGUAGE=CDO
Define record CDDRTEST:[CDDR_TEST.userid.TEST_REP]MY_DIR.EMPLOYEE_REC_ONE

.
CDDRTEST:[CDDR_TEST.userid.TEST_REP]MY_DIR.FULL_NAME(1).
CDDRTEST:[CDDR_TEST.userid.TEST_REP]MY_DIR.HOME_ADDRESS(1).
CDDRTEST:[CDDR_TEST.userid.TEST_REP]MY_DIR.BADGE(1)
.

End record.

This example shows the EXTRACT command specifying the default
/LANGUAGE=CDO qualifier.

1–156 Command Descriptions

FETCH Command

FETCH Command

Format

FETCH FILE_ELEMENT type-name element-name TO file-name

Parameters

type-name
Specifies the type of file element you are fetching. Valid types are
MCS_BINARY or one of the binary subtypes. The binary subtypes are:

• MCS_ANALYSIS_DATA_FILE

• MCS_BINARY_TOOL

• MCS_C_SOURCE_FILE

• MCS_DIAGNOSTIC_FILE

• MCS_EXECUTABLE_FILE

• MCS_LISTING_FILE

• MCS_LOG_FILE

• MCS_OBJECT_FILE

• MCS_TEXT

• MCS_TEXT_TOOL

element-name
Specifies the file element you are fetching.

file-name
Specifies the name of an OpenVMS file that will be created by the FETCH
command. You may include a device and directory with the name.

Description

The FETCH command copies the contents of a file element to the OpenVMS
file specified on the command line. You must use the SET CONTEXT command
to define a current context before using the FETCH command.

The OpenVMS file created by the FETCH command is available for both read
and write access. It has no further connection to the file element from which
it was copied or to the repository. You are responsible for maintaining the
OpenVMS file.

Command Descriptions 1–157

FETCH Command

Examples

CDO> DEFINE PARTITION FIRST_BASELEVEL.
CDO> DEFINE CONTEXT DEVELOPMENT_CONTEXT
cont> BASE_PARTITION FIRST_BASELEVEL.
CDO> SET CONTEXT DEVELOPMENT_CONTEXT
CDO> DEFINE COLLECTION CLIENT.
CDO> RESERVE COLLECTION CLIENT
CDO> DEFINE FILE_ELEMENT MCS_TEXT_TOOL CLIENT_BUILD
cont> STORETYPE INTERNAL. END.
CDO> RESERVE FILE_ELEMENT MCS_TEXT_TOOL CLIENT_BUILD
CDO> FETCH FILE_ELEMENT MCS_TEXT_TOOL CLIENT_BUILD(1)
cont> TO BLD$:BUILD_CLIENT.COM
CDO> REPLACE FILE_ELEMENT MCS_TEXT_TOOL CLIENT_BUILD

In certain circumstances, you may want to use the FETCH command instead of
the OPEN and CLOSE commands. This example shows how to use the FETCH
command to access the contents of an earlier version of a file element that is
currently reserved.

1–158 Command Descriptions

HELP Command

HELP Command

Format

HELP [topic [subtopic] ...]

Parameters

topic
Specifies the topic about which you are requesting information. If you specify
an incomplete topic name, CDO displays information on all topics starting with
that string. If you specify wildcard characters, CDO displays information on
all matching strings.

If you do not specify a topic, CDO displays a list of all available topics, followed
by a request for a topic.

subtopic
Provides more information, such as parameters and qualifiers, associated
with this command. A subtopic can also be a description and examples of a
command.

Description

The HELP command provides help on CDO commands and concepts.

Type Ctrl/Z to exit from help and return to the CDO prompt.

Examples

CDO> HELP DEFINE COLLECTION

In this example, the HELP command requests information on the DEFINE
COLLECTION command.

Command Descriptions 1–159

MERGE Command

MERGE Command

Format

MERGE

8><
>:

FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>=
>; destination-name WITH source-name

Parameters

type-name
Specifies the type of the file or generic element you are merging.

destination-name
Specifies the name of the merged version.

source-name
Specifies the name of the branch line version to be merged.

Description

The MERGE command creates a merge relationship between a branch line
version and a new version on the originating line of descent. Both versions
must be controlled.

If the versions are of type MCS_TEXT, CDO also performs a physical merge
that incorporates the highest versions on both lines of descent. If the versions
are of another type, you must perform the physical merge yourself with
an editor appropriate to your system. If you are familiar with the Oracle
CDD/Repository callable interface, you can write a method to perform the
physical merging.

When you issue the MERGE command, your collection must include the
version on the originating line, rather than the version on the branch line. If
your collection includes the branch line version, issue the DETACH FROM
COMPOSITE and ATTACH TO COMPOSITE commands to attach to the
highest version on the originating line. You must reserve this version before
you issue the MERGE command.

1–160 Command Descriptions

MERGE Command

Examples

CDO> RESERVE FILE_ELEMENT MCS_TEXT JULY_REPORT(2)
CDO> MERGE FILE_ELEMENT MCS_TEXT JULY_REPORT(3)
cont> WITH JULY_REPORT(1:DRAFT:2)
CDO> REPLACE FILE_ELEMENT MCS_TEXT JULY_REPORT(3)

In this example, the MERGE command creates a relationship between JULY_
REPORT(1:DRAFT:2) on the branch line and JULY_REPORT(3) on the main
line. Because JULY_REPORT is of MCS_TEXT type, the MERGE command
also physically merges the contents of JULY_REPORT(1:DRAFT:2) and JULY_
REPORT(2) in JULY_REPORT(3).

Command Descriptions 1–161

MOVE REPOSITORY Command

MOVE REPOSITORY Command

Format

MOVE REPOSITORY [qualifier] anchor-name1 TO anchor-name2 .

Parameters

anchor-name1
Specifies the full path name of the anchor directory that contains the repository
files you are moving.

anchor-name2
Specifies the full path name of the anchor directory to which you are moving
the repository files. This must be an empty directory.

Qualifiers

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the repository files are
successfully moved to the new directory.

Description

The MOVE REPOSITORY command physically moves repository files from one
system directory to another system directory.

If the MOVE REPOSITORY command is successful, the repository files no
longer exist in the original directory.

As part of a successful MOVE REPOSITORY command, CDO updates all
references to this repository from other repositories to point to the new location.
If CDO cannot update any of the references, the MOVE REPOSITORY
command fails.

Examples

CDO> MOVE REPOSITORY DISK1:[SMITH.DICT] TO
cont> DISK1:[TAYLOR.REP].

In this example, the MOVE REPOSITORY command moves the repository
contents to a different anchor directory.

1–162 Command Descriptions

ON Command

ON Command

Format

ON

(WARNING
ERROR
SEVERE_ERROR

)
THEN

�
CONTINUE
STOP

�

Description

The ON command specifies an action for CDO to perform when it encounters
an error condition during the execution of a command procedure.

The following keywords allow you to specify error conditions of increasing
severity:

• WARNING

• ERROR

• SEVERE_ERROR

Table 1–4 describes error handling when you specify CONTINUE.

Table 1–4 Error Handling if Action is CONTINUE

Error Condition
Specified Action Taken on Error

WARNING Command procedure continues on warnings only;
it stops for errors or severe errors.

ERROR Command procedure continues on warnings and
errors; it stops for severe errors only.

SEVERE_ERROR Command procedure continues on warnings,
errors, and severe errors.

Command Descriptions 1–163

ON Command

Table 1–5 describes error handling when you specify STOP.

Table 1–5 Error Handling if Action is STOP

Error Condition
Specified Action Taken on Error

WARNING Command procedure stops on warnings, errors, or
severe errors.

ERROR Command procedure stops on errors or severe
errors; it continues on warnings only.

SEVERE_ERROR Command procedure stops on severe errors; it
continues on warnings and errors.

By default, errors cause CDO to stop execution if you do not specify an
ON command within a command procedure. When CDO stops a command
procedure, it returns you to the CDO prompt.

If you nest command procedures and the ON command is executed, CDO
returns you to the CDO prompt, instead of the previous command procedure.

Examples

CDO> @MY_PROCEDURE
SET VERIFY
ON SEVERE_ERROR THEN CONTINUE
DEFINE FIELD INVALID FIELD NAME
DEFINE FIELD INVALID FIELD NAME

^
%CDO-E-KWSYNTAX, syntax error in command line at or near FIELD
DATATYPE IS TEXT IS 7.
^
%CDO-E-KWSYNTAX, syntax error incommand line at or near DATATYPE
DEFINE FIELD CORRECT_NAME_FIELD
DATATYPE IS TEXT SIZE IS 7.
@RECORD.CDO
DEFINE RECORD VALID_RECORD.
CORRECT_NAME_FIELD.
END RECORD.
CDO>

In this example, the command procedure specifies ON SEVERE_ERROR
THEN CONTINUE. Because the command procedure encounters only an
ERROR condition, it continues to execute and defines the CORRECT_NAME_
FIELD field element and the VALID_RECORD record element.

1–164 Command Descriptions

OPEN FILE_ELEMENT Command

OPEN FILE_ELEMENT Command

Format

OPEN FILE_ELEMENT type-name element-name

Parameters

type-name
Specifies the type (MCS_BINARY or MCS_BINARY subtype) of the file element
you are opening. See the Oracle CDD/Repository Information Model Volume I
for information on these types.

element-name
Specifies the file element you are opening. You can substitute an asterisk (*)
wildcard character for this parameter.

Description

The OPEN command opens an existing internal file.

Before you issue the OPEN command, you will most likely want to reserve
your file. Reserving the file allows you read/write access. If you do not reserve
the file, you have read-only access.

Once you have issued the OPEN command, exit from CDO. Set default to
the repository files directory that contains the file, and use the commands
appropriate for your system to examine or edit it.

After you have finished with the file, return to CDO and issue the CLOSE
FILE_ELEMENT command at the CDO prompt.

Examples

CDO> RESERVE FILE_ELEMENT MCS_TEXT JULY_REPORT
CDO> OPEN FILE_ELEMENT MCS_TEXT JULY_REPORT
CDO> EXIT

In this example, CDO opens the text file named JULY_REPORT for editing.

Command Descriptions 1–165

PROMOTE Command

PROMOTE Command

Format

PROMOTE

8>>><
>>>:

COLLECTION
FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>>>=
>>>;

[qualifier] element-name ,...

[AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the file or generic element you are promoting.

element-name
Specifies the element you are promoting.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/CLOSURE=TO_BOTTOM
/NOCLOSURE (default)
Specifies whether CDO promotes additional elements. Specifying the
/CLOSURE=TO_BOTTOM qualifier promotes all children of an element
that reside in the same partition.

Description

The PROMOTE command moves a controlled element to the next-higher
approval level.

You cannot promote an element more than one approval level at a time.

You cannot promote more than one version of an element at a time. If you do
not include a version number, PROMOTE promotes the highest visible version.

1–166 Command Descriptions

PROMOTE Command

An error occurs if you attempt to promote an element that is reserved. The
SHOW RESERVATIONS command indicates whether this condition exists.

An error occurs if you attempt to promote an element that is a parent of
another element in the same partition.

An error occurs if you attempt to promote an element that is a parent of
another element in a partition that is not on the path between the destination
partition and the root partition.

An error occurs if you attempt to promote an element from the root partition.
The root partition is the highest partition in the partition hierarchy.

When you promote a version to higher levels of approval, the value of the
autopurge property determines whether CDO deletes intermediate versions
of the element in the source partition. You set the autopurge property for a
partition in the DEFINE PARTITION command.

When you promote a version to higher levels of approval, you can still access
previous versions at lower levels. However, you must explicitly promote any
changes you make to the element at lower levels to see this change reflected in
the higher level versions.

Examples

CDO> PROMOTE RECORD /CLOSURE=TO_BOTTOM SUBSCRIBER

In this example, the PROMOTE command promotes the record SUBSCRIBER
and all children.

Command Descriptions 1–167

PURGE Command

PURGE Command

Format

PURGE

8><
>:

ALL
FIELD
RECORD
GENERIC type-name

9>=
>; [qualifier] ... element-name ,... .

Parameters

type-name
Specifies the type of the generic element you are purging.

element-name
Specifies the element that you are purging. You can use wildcard characters in
this parameter.

Qualifiers

/DESCENDANTS
/NODESCENDANTS (default)
Specifies whether CDO also purges children. When you specify the
/DESCENDANTS qualifier, and your element is controlled, CDO deletes
all children that are not also children of additional elements outside the area
defined by your top collection. If the element is uncontrolled, CDO deletes all
children that are not also children of any other elements.

/LOG
/NOLOG (default)
Specifies whether CDO displays text confirming that the element was purged.

Description

The PURGE command deletes all but the first and last version of an element.
You cannot delete the first version, and intermediate versions are not purged
if a branch line descends from them, or if they are children in a dependency
relationship.

You can only purge one line of descent at a time. Purge branch lines before
main lines.

You must specify a name of an element, or if you are using the PURGE ALL
command, use the asterisk (*) wildcard character.

1–168 Command Descriptions

PURGE Command

Examples

1. CDO> PURGE RECORD REGION.INVENTORY.PART.

In this example, the PURGE command deletes all but the first and highest
numbered versions of the REGION.INVENTORY.PART record element.

2. CDO> PURGE ALL GREF*.

In this example, the PURGE command deletes all but the first and highest
versions of each element that begins with the letters GREF.

3. CDO> PURGE FIELD FIRST_NAME.
.
.
.

CDO> PURGE RECORD /DESCENDANTS FULL_NAME.

In this example, the first PURGE command fails because the FIRST_
NAME field element is a child of the FULL_NAME record element. By
purging the descendants of FULL_NAME, you can accomplish the desired
purge.

Command Descriptions 1–169

REMOVE Command

REMOVE Command

Format

REMOVE

(FIELD
RECORD
GENERIC type-name

)
directory-name ,...

Parameters

type-name
Specifies the type of the generic element.

directory-name
Specifies the directory name you are removing.

Description

The REMOVE command allows you to remove a directory name for an
element that has multiple directory names in a CDO repository or repositories.
REMOVE affects all versions of an element.

If you issued the ENTER command to reserve elements in a distributed
environment, you must issue the REMOVE command after replacing these
elements. The REMOVE command deletes the directory name you entered for
your element, so other distributed users cannot access or change it by mistake.
See the Using Oracle CDD/Repository on OpenVMS Systems for information
on reserving elements in a distributed environment.

If the name you specify is the only directory name for an element or the
element does not have a parent, CDO records an error and does not remove the
directory name.

Examples

1. CDO> REMOVE FIELD POSTAL_CODE

In this example, the REMOVE command deletes the POSTAL_CODE
alternate directory name from the repository.

2. CDO> REPLACE COLLECTION CORP_DATA_DEFS
CDO> REMOVE COLLECTION CORP_DATA_DEFS

In this example, the REMOVE command deletes the CORP_DATA_DEFS
alternate directory name on a local node.

1–170 Command Descriptions

REPLACE Command

REPLACE Command

Format

REPLACE

8>>><
>>>:

COLLECTION
FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>>>=
>>>;

[qualifier] ... element-name ,...

[AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the file or generic element you are replacing.

element-name
Specifies the element you are replacing. You can substitute an asterisk
(*) wildcard character for this parameter unless you are working in the
CDD$METADATA collection, where all wildcards are not allowed.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/BRANCH=branchname
/NOBRANCH (default)
Specifies whether CDO creates a version on a new branch line or on an existing
line of descent. The BRANCH option you specify in the REPLACE command
overrides any BRANCH option you specified in the RESERVE command.

/CLOSURE=keyword
/NOCLOSURE (default)
Specifies whether CDO replaces additional elements. A CLOSURE operation
fails if any element is a child of an element outside the area defined by the
CLOSURE keyword.

Command Descriptions 1–171

REPLACE Command

The /CLOSURE qualifier takes one of the following keywords:

CLOSURE
Keyword Behavior

TO_BOTH Replaces the element specified and all parents and children.
TO_BOTTOM Replaces the element specified and all children.
TO_TOP Replaces the element specified and all parents.

If you specify TO_BOTH or TO_TOP, CDO ignores parents of the top collection.

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
replaced.

Description

The REPLACE command checks in a version of an element that you previously
checked out with the RESERVE command.

You must have a context set to issue the REPLACE command.

The REPLACE command converts the ghost copy reserved to your context
into a new version stored in a base partition. This new version is accessible
to anyone whose context is set to that base partition. To create subsequent
versions of a controlled element, use the RESERVE and REPLACE commands,
rather than the DEFINE command.

An error occurs if you issue the /BRANCH qualifier with a branch name
already in use.

If you issue the REPLACE command with branch information specified in the
element name, do not include a /CLOSURE qualifier. The /CLOSURE qualifier
will add this branch name to the name of every element you replace.

If you are issuing the REPLACE command in a distributed environment, you
must issue the REMOVE command after issuing the RESERVE command.

If you decide to discard the changes you have made to your working copy, use
the UNRESERVE command to cancel your reservation and destroy your copy.

If you decide to merge a branch line that you have created back into the main
line of descent, use the MERGE command.

1–172 Command Descriptions

REPLACE Command

Examples

1. CDO> RESERVE FIELD /CLOSURE=TO_TOP FIRST_NAME
CDO> CHANGE FIELD FIRST_NAME
cont> DESCRIPTION IS "SPELL OUT THOSE INITIALS!"

In this example, the REPLACE command replaces the FIRST_NAME field
element and all parents to the top of the collection hierarchy.

2. CDO> RESERVE FIELD /CLOSURE=TO_TOP /BRANCH=AUDITOR PRODUCT_NUMBER
CDO> CHANGE FIELD PRODUCT_NUMBER(1:AUDITOR:1)
cont> AUDIT IS "THESE VERSIONS SUBMITTED FOR AUDIT".
CDO> REPLACE FIELD PRODUCT_NUMBER(1:AUDITOR:1)
CDO> REPLACE RECORD /CLOSURE=TO_TOP PRODUCTS

In this example, the initial REPLACE command replaces the branch
version of the PRODUCT_NUMBER field element; a second REPLACE
command replaces those elements on the path from PRODUCT to the top
collection.

3. CDO> RESERVE FIELD /CLOSURE=TO_TOP PRODUCT_NUMBER(1:AUDITOR:1)
CDO> CHANGE FIELD PRODUCT_NUMBER(1:AUDITOR:2)
cont> AUDIT IS "SEVEN OBSOLETE PRODUCT NUMBERS".
CDO> REPLACE FIELD PRODUCT_NUMBER(1:AUDITOR:2)
CDO> REPLACE RECORD /CLOSURE=TO_TOP PRODUCTS

In this example, the REPLACE command replaces the new second version
in the AUDITOR branch line.

4. CDO> REPLACE FIELD /BRANCH=QA PRODUCT_NUMBER(1:AUDITOR:2)

By substituting this command for REPLACE FIELD PRODUCT_
NUMBER(1:AUDITOR:2) in the previous example, you can change the
branch name from AUDITOR to QA.

5. CDO> REPLACE FIELD /BRANCH PRODUCT_NUMBER(1:AUDITOR:2)

By substituting this command for REPLACE FIELD PRODUCT_
NUMBER(1:AUDITOR:2) in the third example, you can reverse the
creation of the branch line and replace PRODUCT_NUMBER on the main
line.

Command Descriptions 1–173

RESERVE Command

RESERVE Command

Format

RESERVE

8>>><
>>>:

COLLECTION
FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>>>=
>>>;

[qualifier] ... element-name ,...

[AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the file or generic element you are reserving.

element-name
Specifies the element you are reserving. You can substitute an asterisk (*)
wildcard character for this parameter. If the element is uncontrolled, you must
reserve the highest version.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/BRANCH=branchname
/NOBRANCH (default)
Specifies whether CDO creates a version on a new branch line or on an existing
line of descent. The element must be controlled to use the /BRANCH qualifier.

/CLOSURE=keyword
/NOCLOSURE (default)
Specifies whether CDO reserves additional elements. A CLOSURE operation
fails if any element is a child of an element outside the area defined by the
CLOSURE keyword.

1–174 Command Descriptions

RESERVE Command

CLOSURE takes one of the following keywords:

CLOSURE Keyword Behavior

TO_BOTH Reserves the element specified and all owners and
members.

TO_BOTTOM Reserves the element specified and all members.
TO_CLOSURE Reserves the element specified, all owners, and any

element under the top collection that depends on the
element specified.

TO_TOP Reserves the element specified and all owners.

In most cases, you can specify the TO_BOTH, TO_TOP, or TO_BOTTOM
keywords. The TO_CLOSURE keyword is useful when you are working with
the source and derived files common in system building applications.

If you specify TO_BOTH, TO_CLOSURE, or TO_TOP, CDO ignores owners of
the top collection.

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
reserved.

/OUTPUT (default)
/NOOUTPUT
The /NOOUTPUT qualifier lets you reserve a FILE_ELEMENT of type MCS_
BINARY without copying the file into the current context directory. This
capability is useful for using the repository to manage binary files that are
superseded each time they are reserved. It lets you reserve the file element
without incurrring the processing time to create the binary file in the context
directory.

If you use the /NOOUTPUT qualifier in a RESERVE command, you must
update the context directory with the latest binary file to be replaced. If you
do not update the current context directory with a new file, the REPLACE
command will fail. When the REPLACE command fails, CDO displays an error
message containing the full directory specification of the reserved file that CDO
was attempting to replace. Refer to this error message and place a new copy of
the specified file in the context directory.

Command Descriptions 1–175

RESERVE Command

If you reserve a file with the /NOOUTPUT qualifier, CDO does not create the
file in the context directory. If you manually place a file in the context directory
and then issue the UNRESERVE command, the reserved file is unreserved and
any copies of the file in the context directory are deleted. This occurs even if
you manually superseded any files in the context directory.

Note

If you use the VERIFY/FIX command on a repository, any files reserved
with the /NOOUTPUT qualifier are created in the context directory,
because the VERIFY command cannot find reserved files. This
performance cost has always been associated with the VERIFY/FIX
command when it cannot find reserved files.

Description

The RESERVE command checks out a version of a controlled element. A
controlled element is one of the following:

• An element you created using Oracle CDD/Repository inside a context

• An element you have controlled with the CONSTRAIN command

You must have a context set to issue the RESERVE command.

If you are issuing the RESERVE command in a distributed environment, you
must issue the ENTER command before issuing the RESERVE command.

The RESERVE command creates a copy of the immutable version that is stored
in the base partition associated with your context. This copy is called a ghost;
it is reserved to your context and you can modify it.

In general, the ghost has a version number that is one number higher than
that of the original version in the partition. For example, if you reserve
PRODUCT(1), the ghost of this version is called PRODUCT(2).

If, however, you specify the creation of a parallel line of development (or
branch), the ghost becomes the first version in that branch line. For example,
if you reserve PRODUCT(2) with a /BRANCH=AUDITOR qualifier, the ghost
copy of this version is called PRODUCT(2:AUDITOR:1).

If you specify the /BRANCH qualifier, you can reserve any version of a
controlled element in a line of descent that is available for reservation. If an
element is uncontrolled, an error occurs if you attempt to reserve any version
but the latest version in a line of descent.

1–176 Command Descriptions

RESERVE Command

An error occurs if you issue the /BRANCH qualifier with a branch name
already in use.

An error occurs if you attempt to reserve a child without previously reserving
its owners. Use the /CLOSURE qualifier to reserve as many elements as
necessary.

An error occurs if you attempt to reserve a version of an uncontrolled element
that has already been reserved. An element can have only one outstanding
reservation.

When you finish modifying your working copy of a version, you use the
REPLACE command to check in the new version to the partition or the
repository.

If you decide to discard the changes you have made to your working copy, use
the UNRESERVE command to cancel your reservation and destroy your copy.

If you decide to merge a branch line that you have created back into the main
line of descent, use the MERGE command.

When reserve is invoked with a branch name specified, the new ghost version
is created with a name that incorporates the branch name and is properly
linked to the element from which the branch line originates.

If the target of a reserve notice is involved in one or more correspondence
relationships, those relationships may be propagated to the new version.

Examples

1. CDO> RESERVE FIELD /CLOSURE=TO_TOP FIRST_NAME

In this example, the RESERVE command with the /CLOSURE=TO_TOP
qualifier reserves the FIRST_NAME field element and all owners to the top
collection.

2. CDO> RESERVE FIELD /CLOSURE=TO_TOP /BRANCH=AUDITOR PRODUCT_NUMBER

In this example, the RESERVE command with the /CLOSURE=TO_TOP
qualifier reserves all elements on the path between the top collection and
field PRODUCT_NUMBER; the /BRANCH qualifier creates a branch line
AUDITOR descending from PRODUCT_NUMBER.

3. CDO> RESERVE FIELD /CLOSURE=TO_TOP PRODUCT_NUMBER(1:AUDITOR:1)

In this example, the RESERVE command reserves the first version in the
AUDITOR branch line.

Command Descriptions 1–177

RESERVE Command

4. SYSTEM collection
SOURCE_FILES collection

FIRST_FILE.C
SECOND_FILE.C
INC.H

DERIVED_FILES collection
FIRST_FILE.OBJ
SECOND_FILE.OBJ
IMAGE_FILE.EXE

In this example, the code shows a collection hierarchy with SYSTEM
defined as the top collection. The dependencies in SYSTEM are as follows:

• IMAGE_FILE.EXE depends on FIRST_FILE.OBJ and SECOND_
FILE.OBJ.

• FIRST_FILE.OBJ depends on FIRST_FILE.C and INC.H.

• SECOND_FILE.OBJ depends on SECOND_FILE.C and INC.H.

5. CDO> RESERVE FILE_ELEMENT MCS_BINARY /CLOSURE=TO_CLOSURE INC.H

In this example, the RESERVE command reserves the following elements:

• Element INC.H

• Owners of the element specified, SOURCE_FILES and SYSTEM

• Elements that directly or indirectly depend on the element, FIRST_
FILE.OBJ, SECOND_FILE.OBJ, IMAGE_FILE.EXE

6. CDO> RESERVE FILE_ELEMENT MCS_BINARY /NOOUTPUT "/ISAM_FILE.DAT"

In this example, ISAM_FILE.DAT is reserved using the /NOOUTPUT
qualifier, but the file is not copied into the current context directory.

1–178 Command Descriptions

ROLLBACK Command

ROLLBACK Command

Format

ROLLBACK

Description

The ROLLBACK command terminates a transaction and undoes all changes
that have been made to the database since the program’s most recent START_
TRANSACTION command. The ROLLBACK command also releases all
locks, closes all open streams, and releases all readied relations. It affects all
databases participating in the currently open transaction. The ROLLBACK
command implicitly performs the END_STREAM statement.

Restrictions

• When you delete a record, local fields within that record are marked for
deletion at the end of the transaction, provided that they remain unused at
the end of the transaction. Using CDO, there is no way to reuse those local
fields. It is possible to use local fields through the Oracle CDD/Repository
APIs. Therefore, the local fields cannot be automatically deleted at the
same point in the transaction as the record.

You must either delete the record and field in separate transactions
(outside the START_TRANSACTION . . . COMMIT stream of commands)
or, to accomplish this in one transaction, use the ENTER command to enter
the local field, delete the record, delete the local field, and then delete the
global field.

• Usually, if Oracle CDD/Repository issues any errors between the START_
TRANSACTION and COMMIT commands, it forces you to roll back
the transaction. In some cases, such as in the CHANGE or DELETE
commands, Oracle CDD/Repository allows you to commit the transaction.
The general rules are:

– If you receive an Oracle CDD/Repository error of E or F severity, such
as a CDD-E-NODNOTFND message, you must abort the transaction.

– If you receive a CDO error of E or F severity, such as CDO-E-
NOTFOUND, you can continue to operate in the current transaction.

Command Descriptions 1–179

ROLLBACK Command

Examples

CDO> START_TRANSACTION
CDO> DEFINE RECORD REC2.
cont> FLD1. END RECORD.

.

.

.
CDO> SHOW RECORD REC2
Definition of record REC2 | Contains field FLD1
CDO> ROLLBACK
CDO> SHOW RECORD REC2
%CDO-E-ERRSHOW, error displaying an object
-CDO-E-NOTFOUND, entity REC2 not found in dictionary

In this example, a record is defined within a transaction, but because the
transaction is terminated using the ROLLBACK command, the record is not
defined.

1–180 Command Descriptions

SET CHARACTER_SET Command

SET CHARACTER_SET Command

Format

SET CHARACTER_SET character-set

Parameters

character-set
Specifies the type of characters to be used during the current CDO session.
Table 1–6 lists the valid character set names.

Table 1–6 Valid Character Set Names

Character Set Type Character Set Description

MCS DEC_MCS A set of international alphanumeric
characters

Kanji+ASCII DEC_KANJI Japanese characters as defined by
the JIS X0208:1990 standard, Narrow
Katakana characters, as defined by
the JIS X0201:1976 standard, and
ASCII characters

Description

Specifies the valid characters that you can use for an element name, the
initial value field property, and in comments. You must set the character-
set parameter to DEC_KANJI when you use Japanese with Oracle
CDD/Repository.

If you omit the SET CHARACTER SET command, Oracle CDD/Repository
references the equivalence name of the CDD$CHARACTER_SET logical as
the character set for the session. If this logical is not assigned, the default
character set is DEC_MCS.

Restriction

DEC_KANJI is not available through the CDO editor.

Oracle CDD/Repository accepts a maximum field and record name length of 31
octets (31 characters for ASCII/MCS characters; 15 characters for Kanji and
Narrow Katakana).

Command Descriptions 1–181

SET CHARACTER_SET Command

Oracle CDD/Repository accepts the following characters as the field and record
name when the character-set parameter is DEC_KANJI:

• Kanji (Japanese characters as defined by the JIS X0208:1990 standard)

• Katakana (Japanese phonetic alphabet, Narrow Katakana, as defined by
the JIS X0201:1976 standard)

• ASCII characters (A-Z, a-z, _, $)

Examples

CDO> SET CHARACTER_SET DEC_KANJI

In this example, the character-set parameter is DEC_KANJI to support
Japanese characters during the CDO session.

1–182 Command Descriptions

SET CONTEXT Command

SET CONTEXT Command

Format

SET CONTEXT [context-name] [AUDIT IS /*text*/]

Parameters

context-name
Specifies the context you are setting. If you omit this parameter, CDO sets the
current context to null.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Description

The SET CONTEXT command defines a context as the current context and
implicitly controls all versioned elements that you define while the context is
set.

A context is a nonversioned element. Do not include a version number in the
context name.

If the top collection associated with the context is undefined, the SET
CONTEXT command takes the element named in the next command as
the top collection for the context. An error occurs if the next command is not a
DEFINE COLLECTION command.

The context set remains the current context until you issue another SET
CONTEXT command, you delete the context, or you end the CDO session.

As an alternative to the SET CONTEXT command, you can define the
CDD$CONTEXT logical name. Once set, this context becomes the current
context each time you access the repository. For example:

$ DEFINE CDD$CONTEXT "cdd$disk:[smith.rep]test_context"

Command Descriptions 1–183

SET CONTEXT Command

Examples

CDO> DEFINE PARTITION FIRST_BASELEVEL.
CDO> DEFINE CONTEXT DEVELOPMENT_CONTEXT.
cont> BASE_PARTITION FIRST_BASELEVEL.
CDO> SET CONTEXT DEVELOPMENT_CONTEXT
CDO> DEFINE COLLECTION COMPILER_C. 1
CDO> RESERVE COLLECTION COMPILER_C
CDO> DEFINE COLLECTION FRONT_END.
CDO> DEFINE COLLECTION BACK_END.
CDO> REPLACE COLLECTION COMPILER_C.
CDO> SET CONTEXT 2
CDO> DEFINE RECORD ISSUES.

In this example, the SET CONTEXT command sets the current context and
implicitly defines a collection as the top collection. Subsequent definitions will
be implicitly controlled.

1 The DEFINE COLLECTION command sets the top collection for the
current context. All definitions made within the current context are
attached to the top collection. FRONT_END and BACK_END are attached
to COMPILER_C.

2 The SET CONTEXT command sets the current context to a null value.
ISSUES is uncontrolled and unattached because it is defined outside a
context.

1–184 Command Descriptions

SET DEFAULT Command

SET DEFAULT Command

Format

SET DEFAULT path-name

Parameters

path-name
Specifies a default repository directory. You cannot use wildcard characters in
this parameter.

Description

The SET DEFAULT command establishes the default repository directory for
the current CDO session.

You can use a logical name that translates to a search list as the path name
in the SET DEFAULT command. After setting the default repository area,
commands that directly affect elements, such as CHANGE, DEFINE, or
DELETE, only operate on the first occurrence of the element in the search list.
However, the DIRECTORY command searches through all the repository areas
specified in the search list.

Examples

CDO> SET DEFAULT DISK:1[SMITH.DATA]REVIEW

In this example, the SET DEFAULT command sets the default directory to the
REVIEW directory in the DISK1:[SMITH.DATA] anchor repository.

Command Descriptions 1–185

SET KEY Command

SET KEY Command

Format

SET KEY qualifier

Qualifiers

/STATE=key-state
Specifies the key state to be set.

Description

The SET KEY command sets the current key state. See the DEFINE KEY
command description for information on the key states.

Examples

CDO> SET KEY/STATE=ONE

In this example, the SET KEY command sets the key state to ONE.

1–186 Command Descriptions

SET OUTPUT Command

SET OUTPUT Command

Format

SET OUTPUT [file-spec]

Parameters

file-spec
Specifies the file to which CDO sends the output from CDO commands.

Description

The SET OUTPUT command defines where CDO sends the output from CDO
during a session.

If you specify a file with the SET OUTPUT command, CDO sends output to
the default output location (SYS$OUTPUT) for your current process and to the
specified file.

If you specify SET OUTPUT without a file specification, CDO sends output
only to the default output location.

The SET OUTPUT command stays in effect until you change it with another
SET OUTPUT command.

Examples

CDO> SET OUTPUT

In this example, the SET OUTPUT command captures the output from a CDO
session and sends it to the default output location for your process.

Command Descriptions 1–187

SET VERIFY Command

SET VERIFY Command

Format

SET
�

VERIFY
NOVERIFY

�

Description

The SET VERIFY command causes CDO to display all commands in
a command procedure before executing them. The initial setting is off
(NOVERIFY).

To override this default, you can issue the SET VERIFY command at the
CDO prompt before you process the command procedure. SET VERIFY then
remains in effect until you issue a SET NOVERIFY command.

Alternatively, you can insert the SET VERIFY command as the first command
within your command procedure. SET VERIFY then remains in effect until the
command procedure finishes executing.

Examples

CDO> SET VERIFY
CDO> @ON.CDO

In this example, the SET VERIFY command causes CDO to display all
commands in the ON.CDO command procedure as they execute.

1–188 Command Descriptions

SHOW ALL Command

SHOW ALL Command

Format

SHOW ALL [qualifier]

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as data type, for each element in the directory and
for all children.

/AUDIT
Displays history list entries for each element. AUDIT=ALL displays history
list entries for each element and all children.

/BRIEF (default)
Displays user-specified properties for each element, and provides the names of
direct children.

/FULL
Displays the user-specified properties for the element and for all children.

Description

The SHOW ALL command displays a complete or partial list of properties for
all visible elements in the default directory.

If you have your default directory set to a directory in the compatibility
repository, the SHOW ALL command displays DMU record definitions of the
CDD$RECORD type, but cannot display other definitions that may be stored
in your DMU repository. Some examples of DMU definitions that CDO cannot
display include the following:

• ACMS application, menu, task group, and task definitions

• DATATRIEVE domain, plot, table and view definitions, and procedures

• DBMS schema, subschemas, security schemas, and storage schemas

• Oracle Rdb relation, constraint, index, view, and field definitions

• TDMS form, request, and request library definitions

When you display definitions from the compatibility repository, CDO displays
DMU definitions in CDO format.

Command Descriptions 1–189

SHOW ALL Command

You must have read access to an element for CDO to display information on
that element.

CDO displays type definitions only if your default directory is set to the
CDD$PROTOCOLS directory.

Examples

CDO> SHOW ALL

In this example, because no qualifier is specified, the SHOW command displays
default BRIEF information. This information includes the user-specified
properties for each element and the names of direct children.

1–190 Command Descriptions

SHOW CHARACTER_SET Command

SHOW CHARACTER_SET Command

Format

SHOW CHARACTER_SET

Description

Displays the character set of the current CDO session.

You must set the character-set parameter to DEC_KANJI to use Japanese
characters with Oracle CDD/Repository. Use the SET CHARACTER_SET
command to specify the character set for a CDO session.

If the setting has not been specified using the SET CHARACTER_SET
command, Oracle CDD/Repository references the equivalence name of the
CDD$CHARACTER_SET logical name. If this logical name is not assigned,
the default character set is DEC_MCS.

Examples

CDO> SHOW CHARACTER_SET
Session Character_set is DEC_MCS

In this example the current character set setting is DEC_MCS, which supports
a set of international alphanumeric characters.

Command Descriptions 1–191

SHOW COLLECTION Command

SHOW COLLECTION Command

Format

SHOW COLLECTION [qualifier] collection-name ,...

Parameters

collection-name
Specifies the collection whose properties you are displaying.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the collection and for all children.

/AUDIT
Displays history list entries for the collection.

/BRIEF (default)
Displays user-specified properties for the collection.

/FULL
Displays user-specified properties for the collection and for all children.

Description

The SHOW COLLECTION command displays a complete or partial list of
properties for the collection or collections specified.

If you do not specify a version number for the collection, CDO displays the
properties of the highest visible version.

Examples

CDO> SHOW COLLECTION MAMMALS

In this example, because no qualifier is specified, the SHOW COLLECTION
command displays default BRIEF information. This information includes the
user-specified properties for the MAMMALS collection and the names of direct
children.

1–192 Command Descriptions

SHOW CONTEXT Command

SHOW CONTEXT Command

Format

SHOW CONTEXT [qualifier] [context-name] ,...

Parameters

context-name
Specifies the context whose properties you are displaying. If you omit this
parameter, CDO displays the name of the current context.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the context and for all children.

/AUDIT
Displays history list entries for the context.

/BRIEF (default)
Displays user-specified properties for the context, and provides the names of
direct children.

/FULL
Displays user-specified properties for the context and for all children.

Description

The SHOW CONTEXT command displays a complete or partial list of
properties for the context or contexts you specify.

Because a context is a nonversioned element, CDO does not accept a branch
designation or a version number in the context name.

Examples

CDO> SHOW CONTEXT ANIMAL_KINGDOM

In this example, because no qualifier is specified, the SHOW CONTEXT
command displays default BRIEF information. This information includes the
user-specified properties for the ANIMAL_KINGDOM context and the names
of direct children.

Command Descriptions 1–193

SHOW DATABASE Command

SHOW DATABASE Command

Format

SHOW DATABASE [qualifier] [database-name]

Parameters

database-name
Specifies the physical database whose properties you are displaying. By
default, if you do not specify a full path name for the database, CDO displays
all physical database elements in your default directory.

Qualifiers

/ALL
For an RMS database, displays the database name and description, record
definition, file organization, fully qualified path name, and system-specified
properties.

For an Oracle Rdb database, displays the database name, file name, and fully
qualified path name, as well as the system-specified properties.

/AUDIT
Displays the history list entries for the database definition. The /AUDIT=ALL
qualifier displays the history list for all elements owned by the database.

/BRIEF (default)
For an RMS database, displays the database name and description, record
name, fully qualified path name, and file organization properties.

For an Oracle Rdb database, displays the database name, file name, and fully
qualified path name.

/FULL
For an RMS database, displays the database name and description, record
definition properties, file organization properties, and fully qualified path
name.

For an Oracle Rdb database, displays the database name, file name, and fully
qualified path name.

1–194 Command Descriptions

SHOW DATABASE Command

Description

The SHOW DATABASE command displays a complete or partial list of
properties for the database elements specified.

If you do not specify a version number for a database element, CDO displays
the highest visible version.

When you use the SHOW DATABASE command to display an Oracle Rdb
database element, CDO shows only the database name, file name, and the
fully qualified path name. Use the SHOW GENERIC command with the
/FULL qualifier or use SQL (structured query language) to view the complete
definition of an Oracle Rdb database.

Examples

CDO> SHOW DATABASE DEPT5

In this example, because no qualifier is specified, the SHOW DATABASE
command displays default BRIEF information. This information includes the
DEPT5 Oracle Rdb database name, file name, and fully qualified path name.

Command Descriptions 1–195

SHOW DEFAULT Command

SHOW DEFAULT Command

Format

SHOW DEFAULT

Description

The SHOW DEFAULT command displays the current default CDO repository
directory.

If you set your default directory to a logical name that translates to a search
list and you issue the SHOW DEFAULT command, CDO displays the names of
the repository areas in the same order as they appear in the search list.

Examples

1. CDO> SET DEFAULT MY_DICT
CDO> SHOW DEFAULT

In this example, the SHOW DEFAULT command displays the names of the
local and remote repository areas specified by the logical name MY_DICT.

2. CDO> SHOW DEFAULT

In this example, the SHOW DEFAULT command displays the current
default CDO directory.

1–196 Command Descriptions

SHOW FIELD Command

SHOW FIELD Command

Format

SHOW FIELD [qualifier] ... [field-name] ,...

[FROM DATABASE database-name]

Parameters

field-name
Specifies the field element whose properties you are displaying.

When you use the FROM DATABASE clause, specify only one field name for
each SHOW FIELD command.

Specify an asterisk (*) wildcard character for the entire field-name parameter
only. If you use a wildcard character as part of the field-name parameter, an
error occurs.

database-name
Specifies the Oracle Rdb database that contains the field. CDO requires this
parameter for fields from an Oracle Rdb database. CDO accepts wildcard
characters in the database name.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the field name and for all children.

/AUDIT
Displays history list entries for the field name. The /AUDIT=ALL qualifier
displays the history list entries for the field name and for all children. Do not
use this qualifier if the field name you specify is from an Oracle Rdb database
definition.

/BRIEF (default)
Displays user-specified properties for the field name, and provides the names
of direct children.

/FULL
Displays user-specified properties for the field name and for all children.

Command Descriptions 1–197

SHOW FIELD Command

/SYSTEM
/NOSYSTEM (default)
Specifies whether CDO displays Oracle Rdb system relations.

/RDB_METADATA
/NORDB_METADATA (default)
Specifies whether CDO displays Oracle Rdb system relations. This qualifier is
synonymous with the /SYSTEM qualifier.

Description

The SHOW FIELD command displays a complete or partial list of properties
for the field names you specify, provided you have read privileges.

If you do not specify a full path name (or the FROM DATABASE clause) for the
field name, CDO searches your current default directory for the field name. If
you do not specify a field name, CDO displays the properties of all field names
in your default directory.

If you do not specify a version number for a field name, CDO displays the
properties of the highest visible version.

Note

If you make incompatible changes to the CDD$DATA_ELEMENT type,
supplied by Oracle CDD/Repository, the SHOW FIELD command may
not display those properties whose data types you have modified.

If a field has character set attributes, you can display them using the SHOW
and EXTRACT commands; in addition, you can use the SHOW command
to display size information of a field in both character-based size and octet-
based size. See the descriptions of SET CHARACTER_SET command and the
DATATYPE field property for more information.

Examples

1. CDO> SHOW FIELD CORPORATE_ZIPCODE FROM DATABASE DEPT3

In this example, because no qualifier is specified, the SHOW FIELD
command displays default BRIEF information. This information includes
the user-specified properties for the CORPORATE_ZIPCODE field name
and the names of direct children.

1–198 Command Descriptions

SHOW FIELD Command

2. CDO> DEFINE FIELD FULL_NAME
cont> DATATYPE TEXT CHARACTER_SET KANJI
cont> SIZE 2 CHARACTERS.
CDO> SHOW FIELD FULL_NAME
Definition of field FULL_NAME
| Datatype text size is 2 characters (4 Octets)
| Character_set KANJI

This example defines and shows the field FULL_NAME.

Command Descriptions 1–199

SHOW FILE_ELEMENT Command

SHOW FILE_ELEMENT Command

Format

SHOW FILE_ELEMENT type-name [qualifier] element-name ,...

Parameters

type-name
Specifies the type (MCS_BINARY or MCS_BINARY subtype) of the file element
you are displaying. See the Oracle CDD/Repository Information Model for
information on these types.

element-name
Specifies the file element whose properties you are displaying.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the file element and for all
children.

/AUDIT
Displays history list entries for the file element.

/BRIEF (default)
Displays user-specified properties for the file element, and provides the names
of direct children.

/FULL
Displays user-specified properties for the file element and for all children.

Description

The SHOW FILE_ELEMENT command displays a complete or partial list of
properties for the file element or elements you specify.

If you do not specify a version number for a file element, CDO displays the
properties of the highest visible version.

1–200 Command Descriptions

SHOW FILE_ELEMENT Command

Examples

CDO> SHOW FILE_ELEMENT MCS_TEXT CAT

In this example, because no qualifier is specified, the SHOW command displays
default BRIEF information. This information includes the user-specified
properties for the CAT file element and the names of direct children.

Command Descriptions 1–201

SHOW GENERIC Command

SHOW GENERIC Command

Format

SHOW GENERIC type-name [qualifier] [element-name] ,...

[FROM DATABASE database-name]

Parameters

type-name
Specifies the type of the generic element whose properties you are displaying.
This type cannot be MCS_BINARY, a subtype of MCS_BINARY, MCS_
COLLECTION, MCS_CONTEXT, or MCS_PARTITION. See the Oracle
CDD/Repository Informatin Model for information on these types.

element-name
Specifies the generic element whose properties you are displaying.

When you use the FROM DATABASE clause, specify only one element name
for each SHOW GENERIC command.

Specify an asterisk (*) wildcard character for the entire element-name
parameter only. If you use a wildcard character as part of the element-name,
an error occurs.

database-name
Specifies the Oracle Rdb database that contains the element. CDO requires
this parameter for elements from an Oracle Rdb database. You can include
wildcard characters in the database name.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the generic element and for all
children.

/AUDIT
Displays history list entries for the generic element. The /AUDIT=ALL
qualifier displays the history list for all children. CDO displays history list
entries only if you specified the CDD$HISTORY_LIST relationship as part of
this generic element’s type definition.

1–202 Command Descriptions

SHOW GENERIC Command

/BRIEF (default)
Displays user-specified properties for the generic element, and provides the
names of direct children.

/FULL
Displays user-specified properties for the generic element and for all children.
CDO displays description text only if you specified the CDD$DESCRIPTION
property as part of this generic element’s type definition.

Description

The SHOW GENERIC command displays a complete or partial list of
properties for the generic element or elements you specify.

If you specify the type name but not an element name, the SHOW GENERIC
command displays all elements of the specified type in your default directory,
provided that you have privilege to display them.

You must have read access to all components of the generic element for CDO to
display those components.

If you do not specify a version number for a generic element, CDO displays the
highest visible version.

You can display a field definition by specifying CDD$DATA_ELEMENT as the
type name and the name of the field definition as the element name.

You can display a record definition by specifying CDD$DATA_AGGREGATE as
the type name and the name of the record definition as the element name.

You can display indexes or constraints in an Oracle Rdb database element by
specifying CDD$INDEX or CDD$CONSTRAINT as the type name and the
name of the index or constraint as the element name. Remember to include
the FROM DATABASE clause.

Examples

CDO> SHOW GENERIC BOOK REFERENCE_MANUAL

In this example, because no qualifier is specified, the SHOW command displays
default BRIEF information. This information includes user-specified properties
for the REFERENCE_MANUAL element and the names of direct children.

Command Descriptions 1–203

SHOW KEY Command

SHOW KEY Command

Format

SHOW KEY [qualifier] ... [key-name]

Parameters

key-name
Specifies the key whose properties you are displaying.

Qualifiers

/ALL
Displays all key definitions in a key state. You cannot use the /ALL qualifier if
you specify one or more key names.

/BRIEF (default)
Displays the key definition and state.

/DIRECTORY
/NODIRECTORY (default)
Displays the names of all states for which you have defined keys. If you
specify the /DIRECTORY qualifier, you cannot specify any other SHOW KEY
qualifiers.

/FULL
/NOFULL (default)
Displays all qualifiers for the key definition you specify. Specifying the
/NOFULL qualifier gives the same results as the /BRIEF qualifier.

/STATE=key-state
/NOSTATE (default)
Displays key definitions for the state you specify. The /NOSTATE qualifier
displays key definitions for the current state.

Description

The SHOW KEY command displays a complete or partial list of properties for
the key you specify.

If you do not specify a key name, CDO displays the definition for all keys.

You use the DEFINE KEY command to create key definitions.

1–204 Command Descriptions

SHOW KEY Command

Examples

CDO> SHOW KEY PF3

In this example, because no qualifier is specified, the SHOW command displays
default BRIEF information. This information includes the key definition and
state for the PF3 key.

Command Descriptions 1–205

SHOW NOTICES Command

SHOW NOTICES Command

Format

SHOW NOTICES element-name ,...

Parameters

element-name
Specifies the element whose notices you are displaying.

Description

The SHOW NOTICES command displays the notices at the element or
elements you specify. CDO sends notices to elements when you:

• Change an element and the change affects other elements. For example, if
you change the name of a field element in a database, the database element
may need to be integrated.

• Change an element and the change affects the parent. For example, if you
delete the name of a record element in a database, the database element
needs to be integrated.

• Create a new version of an element. For example, if you create a new
record element that appears in a program, the program needs to be
recompiled.

If you issue the SHOW NOTICES command for an element that does not have
notices, CDO informs you that the element does not have notices.

You can display new version notices by using the SHOW NOTICES command
at any of the member’s parents that have a CDD$NOTICE_ACTION property
value of SUCCESS or SIGNAL.

You can display notices that the CHANGE command generates by using
the SHOW NOTICES command at any of the member’s parents that have a
CDD$NOTICE_ACTION property value of SIGNAL.

CDO sends notices when you either change a member of a relationship with
the CHANGE command or you define a new version of the member.

The three types of notices that definitions receive and the meanings of these
notices are:

• CDD$K_POSSIBLY_INVALID

1–206 Command Descriptions

SHOW NOTICES Command

A definition used by this definition has changed. This change might
affect this definition. This notice indicates the name of the definition that
changed.

• CDD$K_INVALID

A definition used by this definition changed or was removed from the
repository. This definition is invalid. If a changed definition initiated the
notice, the notice supplies the name of the definition. If a deleted definition
initiated the notice, the notice does not supply a definition name.

• CDD$K_NEW_VERSION

A new version of a definition used by this definition was created. The
notice supplies the name of the definition that has the new version.

• CDD$K_CHILD_USAGE

A relationship from one of the definitions used by this element to one of
its children was changed. The notice indicates the owner of the changed
relationship. You cannot generate this type of notice using CDO. Only
programs using the Oracle CDD/Repository callable interface can cause
this notice. You can, however, read this type of notice using CDO.

Examples

1. CDO> SHOW NOTICES EMPLOYEE_REC
.
.
.

CDO> CLEAR NOTICES EMPLOYEE_REC

In this example, the SHOW NOTICES command displays notices sent to
the EMPLOYEE_REC record. You can clear any notices by issuing the
CLEAR NOTICES command.

2. CDO> CHANGE FIELD FLD_A
cont> DATATYPE IS SIGNED LONGWORD.
%CDO-I-DBMBR, database DISK1:[SMITH.DICT]MY_RDB_DB(1) may need to be

integrated
CDO> SHOW NOTICES MY_RDB_DB
DISK1:[SMITH.DICT]MY_RDB_DB(1) is possibly invalid, triggered by entity
DISK1:[SMITH.DICT]FLD_A(1)
CDO>

In this example, CDO sends a notice that a database might require
integration as a consequence of the CHANGE command.

You can use the SHOW NOTICES command to display this notice at the
MY_RDB_DB database definition.

Command Descriptions 1–207

SHOW NOTICES Command

3. CDO> DEFINE FIELD FLD_B
cont> DATATYPE SIGNED LONGWORD.
CDO> SHOW NOTICES REC_B
DISK1:[SMITH.DICT]RDB_REC_B(1) uses an entity which has new versions,
triggered by CDD$DATA_ELEMENT DISK1:[SMITH.DICT]FLD_B(1)
CDO> SHOW NOTICES MY_RDB_DB
DISK1:[SMITH.DICT]MY_RDB_DB(1) uses an entity which has new versions,
triggered by CDD$DATA_ELEMENT DISK1:[SMITH.DICT]FLD_B(1)
DISK1:[SMITH.DICT]MY_RDB_DB(1) is possibly invalid, triggered by
CDD$DATA_ELEMENT DISK1:[SMITH.DICT]FLD_A(1)

When you create a new version of the FLD_B field definition by using the
DEFINE FIELD command, CDO sends new version notices to the parents
of FLD_B. The following set of examples shows this sequence of events:

1. The DEFINE FIELD command creates a new version of the FLD_B
field definition.

2. The first SHOW NOTICES command shows that FLD_B’s immediate
parent, REC_B record definition received the new version notice when
CDO created the new version of FLD_B.

3. The second SHOW NOTICES command shows two notices at the MY_
RDB_DB CDD$DATABASE definition. The CHANGE command sends
one notice on behalf of the FLD_A field definition from the previous
example, and the DEFINE FIELD command sends a new version notice
on behalf of the new version of the FLD_B field definition.

4. CDO> CLEAR NOTICES MY_RDB_DB
CDO> SHOW NOTICES MY_RDB_DB
%CDO-I-NONOTICES, DISK1:[SMITH.DICT]MY_RDB_DB(1) has no notices

To clear the notices at MY_RDB_DB, use the CLEAR NOTICES command.

To verify that you cleared the notices at MY_RDB_DB, use the SHOW
NOTICES command. If you ask to see the notices at a definition without
notices, CDO responds that there are no notices.

1–208 Command Descriptions

SHOW PARTITION Command

SHOW PARTITION Command

Format

SHOW PARTITION [qualifier] partition-name ,...

Parameters

partition-name
Specifies the partition whose properties you are displaying.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the partition and for all children.

/AUDIT
Displays history list entries for the partition.

/BRIEF (default)
Displays user-specified properties for the partition, and provides the names of
direct children.

/FULL
Displays user-specified properties for the partition and for all children.

Description

The SHOW PARTITION command displays a complete or partial list of
properties for the partition or partitions specified.

Because a partition is a nonversioned element, CDO does not accept a branch
designation or a version number in partition names.

Examples

CDO> SHOW PARTITION INITIAL_PROPOSAL

In this example, because no qualifier is specified, the SHOW PARTITION
command displays default BRIEF information. This information includes the
user-specified properties for the INITIAL_PROPOSAL partition and the names
of direct children.

Command Descriptions 1–209

SHOW PRIVILEGES Command

SHOW PRIVILEGES Command

Format

SHOW PRIVILEGES FOR

(DIRECTORY
FIELD
RECORD

)
element-name ,...

SHOW PRIVILEGES FOR GENERIC type-name

SHOW PRIVILEGES FOR REPOSITORY anchor-name

Parameters

element-name
Specifies the element whose access rights you are displaying.

type-name
Specifies the type of the generic element.

anchor-name
Specifies the anchor directory of the repository for which you want to display
privileges.

Description

The SHOW PRIVILEGES command displays the access rights for the elements
you specify.

To display your privileges for a type, use the SHOW PROTOCOL command.

Examples

CDO> SHOW PRIVILEGES FOR FIELD CURRENT_SALARY

In this example, the SHOW PRIVILEGES command displays your access
rights to the CURRENT_SALARY field element.

1–210 Command Descriptions

SHOW PROTECTION Command

SHOW PROTECTION Command

Format

SHOW PROTECTION FOR

8><
>:

DIRECTORY
FIELD
RECORD
GENERIC type-name

9>=
>; element-name ,...

SHOW PROTECTION FOR REPOSITORY anchor-name

Parameters

type-name
Specifies the type of the generic element.

element-name
Specifies the element whose ACL you are displaying.

anchor-name
Specifies the repository anchor whose ACL you are displaying.

Description

The SHOW PROTECTION command displays the access control list (ACL) for
the element you specify. When you specify FOR GENERIC MCS_CONTEXT
or FOR REPOSITORY, SHOW PROTECTION also displays the default access
control list.

To display the access control list for a type, you can also use the SHOW
PROTOCOL command.

Examples

1. CDO> SHOW PROTECTION FOR FIELD CURRENT_SALARY

In this example, the SHOW PROTECTION command displays the access
control list for the CURRENT_SALARY field definition.

2. CDO> SHOW PROTECTION FOR REPOSITORY CDD$REPOSITORY2

In this example, Oracle CDD/Repository translates the logical name for the
repository.

Command Descriptions 1–211

SHOW PROTOCOL Command

SHOW PROTOCOL Command

Format

SHOW PROTOCOL [qualifier] type-name ,...

Parameters

type-name
Specifies the type whose properties you are displaying.

Qualifiers

/ALL
Displays all the possible relationships the type can own, as well as the access
control list for the type.

/AUDIT
Displays the history list entries for the type. Specifying the /AUDIT=ALL
qualifier displays the history list for all the relationships that the type owns.

/FULL
Displays all the possible relationships this type can own.

/BRIEF (default)
Displays the relationships most commonly owned by this type.

Description

The SHOW PROTOCOL command displays a complete or partial list of
properties for the type or types you specify.

CDO looks for types in the CDD$PROTOCOLS directory below your current
default anchor. It is not necessary to set default to the CDD$PROTOCOLS
directory to display types.

CDO uses relationships to pass notices among repository definitions. Every
relationship protocol in the repository has the CDD$NOTICE_ACTION
property, whose value controls the passing of notices. You can use the CDO
SHOW PROTOCOL command to display the value of the CDD$NOTICE_
ACTION property.

The CDD$NOTICE_ACTION property can have one of three values:

• SUCCESS

1–212 Command Descriptions

SHOW PROTOCOL Command

When you change a member of the relationship with the CHANGE
command and the CDD$NOTICE_ACTION property value is SUCCESS,
CDO does not send notices to the owner of the relationship. Instead,
CDO sends notices to the owner’s parents, provided that the parents are
members of a relationship with the CDD$NOTICE_ACTION attribute
value of SIGNAL.

CDO continues to send these notices until the member you are changing
has no more parents or until CDO encounters the CDD$NOTICE_ACTION
property value BLOCK.

When you define a new version of a member and the CDD$NOTICE_
ACTION attribute value is SUCCESS, CDO sends notices to both the
owner of the relationship and the owner’s parents, until CDO encounters
the CDD$NOTICE_ACTION property value of BLOCK or until there are
no more parents.

• SIGNAL

When you change the member with the CHANGE command or when you
define a new version of the member and the CDD$NOTICE_ACTION
attribute value is SIGNAL, CDO sends a notice to both the owner and the
parents of a relationship.

When you define a new version of a member, CDO also sends notices to the
parents until CDO encounters the CDD$NOTICE_ACTION property value
of BLOCK or until there are no more parents.

• BLOCK

When the CDD$NOTICE_ACTION property value is BLOCK, CDO does
not forward a notice from the member to the owner. CDO blocks the notice
regardless of whether you are changing the member with the CHANGE
command or defining new versions of the member.

Examples

1. CDO> SHOW PROTOCOL CDD$DATA_AGGREGATE_CONTAINS

In this example, because no qualifier is specified, the SHOW PROTOCOL
command displays default BRIEF information. This information
includes the user-specified properties for the CDD$DATA_AGGREGATE_
CONTAINS type and the names of direct children.

Command Descriptions 1–213

SHOW PROTOCOL Command

2. CDO> SHOW PROTOCOL CDD$DATABASE_SCHEMA
Definition of protocol CDD$DATABASE_SCHEMA (Type :MCS_RELATION_TYPE)

| MCS_rdbRelation CDD$$O_DATABASE_REL
| MCS_groupingRelation NO_GROUPING
| MCS_noticeAction SIGNAL
| CDD$OBJECT_KIND CDD$RELATIONSHIP
| MCS_protocolMajor 1
| MCS_protocolMinor 0
| MCS_tag 2818865
| MCS_createdDate 14-MAR-1994 09:13:32.42
| CDD$MODIFIED_TIME 14-MAR-1994 09:13:32.42
| MCS_instantiable 1
| MCS_pattern
| MCS_status 0
| MCS_freezeTime 14-MAR-1994 09:13:32.42
| MCS_controlled 1
| MCS_allowConcurrent 1
| MCS_HAS_PROPERTY
| | MCS_attachment (Type : MCS_PROPERTY_TYPE)
| | MCS_inherited (Type : MCS_PROPERTY_TYPE)
| | CDD$PROTOCOL_TAG (Type : MCS_PROPERTY_TYPE)
| | MCS_containsDatabases (Type : MCS_PROPERTY_TYPE)
| | MCS_relOwner (Type : MCS_PROPERTY_TYPE)
| | MCS_relMember (Type : MCS_PROPERTY_TYPE)
| | MCS_databaseElement (Type : MCS_PROPERTY_TYPE)
| | MCS_elementType (Type : MCS_PROPERTY_TYPE)
| | MCS_allElementTypes (Type : MCS_PROPERTY_TYPE)
| MCS_HAS_RELATION
| | CDD$DATABASE (Type : MCS_ELEMENT_TYPE)
| | CDD$DATABASE (Type : MCS_ELEMENT_TYPE)
| MCS_RELATION_MEMBER
| | CDD$DATA_AGGREGATE (Type : MCS_ELEMENT_TYPE)
| | CDD$RDB_DATABASE (Type : MCS_ELEMENT_TYPE)
| | DBM$SCHEMA (Type : MCS_ELEMENT_TYPE)
| | CDD$RMS_DATABASE (Type : MCS_ELEMENT_TYPE)
| | CDD$DATA_AGGREGATE (Type : MCS_ELEMENT_TYPE)
| | CDD$RDB_DATABASE (Type : MCS_ELEMENT_TYPE)
| | DBM$SCHEMA (Type : MCS_ELEMENT_TYPE)
| | CDD$RMS_DATABASE (Type : MCS_ELEMENT_TYPE)
| MCS_OBJECT_VALIDATION
| | CDD$RELATION_VAL (Type : MCS_VALIDATION)
| | CDD$ELEMENT_VAL (Type : MCS_VALIDATION)

In this example, the SHOW PROTOCOL command displays the
CDD$NOTICE_ACTION property of SIGNAL for the CDD$DATABASE_
SCHEMA relationship.

1–214 Command Descriptions

SHOW RECORD Command

SHOW RECORD Command

Format

SHOW RECORD [qualifier] ... [record-name] ,...

[FROM DATABASE database-name]

Parameters

record-name
Specifies the record, relationship, or view whose properties you are displaying.

When you use the FROM DATABASE clause, specify only one record name for
each SHOW RECORD command.

Specify an asterisk (*) wildcard character for the entire record-name
parameter only. If you use a wildcard character as part of the record name, an
error occurs.

database-name
Specifies the Oracle Rdb database that contains the record. CDO requires this
parameter for records from an Oracle Rdb database. You can include wildcard
characters in the database name.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the record element and for all
children.

/AUDIT
Displays history list entries for the record element. Specifying the
/AUDIT=ALL qualifier displays the history list entries for the record element
and for all children. Do not use this qualifier if the record you specify is from
an Oracle Rdb database definition.

/BRIEF (default)
Displays user-specified properties for the record element, and provides the
names of direct children.

/FULL
Displays user-specified properties for the record element and for all children.

Command Descriptions 1–215

SHOW RECORD Command

/SYSTEM
/NOSYSTEM (default)
Specifies whether CDO displays Oracle Rdb system relations.

/RDB_METADATA
/NORDB_METADATA (default)
Specifies whether CDO displays Oracle Rdb system relations. This qualifier is
synonymous with the /SYSTEM qualifier.

Description

The SHOW RECORD command displays a complete or partial list of properties
for the record elements you specify, provided you have read privilege.

If you do not specify a full path name (or the FROM DATABASE clause), CDO
searches your current default directory for the record name. If you do not
specify a record name, CDO displays the properties of all record elements in
your default directory.

If you do not specify a version number for a record element, CDO displays the
properties of the highest visible version.

If you do not have read privilege for a record and for each component part of
that record, CDO will not display the record name or properties.

Examples

CDO> SHOW RECORD ADDRESS_RECORD
cont> FROM DATABASE SUBSCRIPTIONS

In this example, because no qualifier is specified, the SHOW RECORD
command displays default BRIEF information. This information includes the
user-specified properties for the ADDRESS_RECORD record element and the
names of direct children.

1–216 Command Descriptions

SHOW REPOSITORIES Command

SHOW REPOSITORIES Command

Format

SHOW REPOSITORIES [qualifier]

Qualifiers

/FULL
Displays the elements within other repositories being referenced by your
repository.

Description

The SHOW REPOSITORIES command scans your repository for dependencies
on elements in other repositories. The command displays the name of these
other repositories and, if you specify the /FULL qualifier, the names of the
elements.

Example

CDO> SHOW REPOSITORIES

In this example, because no qualifier is specified, the SHOW REPOSITORIES
command displays the names of the repositories that your repository
references.

Command Descriptions 1–217

SHOW RESERVATIONS Command

SHOW RESERVATIONS Command

Format

SHOW RESERVATIONS [qualifier]

Qualifiers

/ALL
Displays all the reserved elements, their types, and the contexts reserving
them throughout the repository.

/BRIEF (default)
Displays reserved elements and their types in your current context.

Description

The SHOW RESERVATIONS command displays the reserved elements for your
current context or for the entire repository.

An error occurs if a context has not been set.

Examples

CDO> SET CONTEXT PERSONNEL
CDO> RESERVE COLLECTION OFFICERS
CDO> SHOW RESERVATIONS

.

.

.
CDO> REPLACE COLLECTION OFFICERS
CDO> SHOW RESERVATIONS

.

.

.

In this example, the first SHOW RESERVATIONS command displays the
reserved elements, their types, and the reserving context. The second SHOW
RESERVATIONS command displays an informational notice indicating that no
elements are reserved.

1–218 Command Descriptions

SHOW RMS_DATABASE Command

SHOW RMS_DATABASE Command

Format

SHOW RMS_DATABASE [qualifier] [rms-database-name]

Parameters

rms-database-name
Specifies the logical RMS database element whose properties you are
displaying.

If you do not specify an RMS database name, CDO displays all the RMS
database definitions in the repository.

Qualifiers

/ALL
Displays system-specified properties, such as time of creation, and user-
specified properties, such as description, for the RMS database element and all
children.

/AUDIT
Displays history list entries for the RMS database element. Specifying the
/AUDIT=ALL qualifier displays the history list for the database element and
for all children.

/BRIEF (default)
Displays the file organization properties for the RMS database element.

/FULL
Displays the file organization properties, the record definition, and the
description for the logical RMS database element.

Description

The SHOW RMS_DATABASE command displays a complete or partial list of
properties for the RMS database element you specify.

If you do not specify a version number for an RMS database element, CDO
displays the highest visible version.

When you use SHOW RMS_DATABASE or SHOW RMS_DATABASE/FULL
to display an RMS database element with a NULL_VALUE property, CDO
displays the null value as a decimal value.

Command Descriptions 1–219

SHOW RMS_DATABASE Command

Examples

CDO> SHOW RMS_DATABASE EMPLOYEE_STORAGE

In this example, because no qualifier is specified, the SHOW RMS_DATABASE
command displays default BRIEF information. This information includes
the user-specified properties for the EMPLOYEE_STORAGE RMS database
definition and the names of direct children.

1–220 Command Descriptions

SHOW UNUSED Command

SHOW UNUSED Command

Format

SHOW UNUSED [qualifier] ... element-name ,...

Parameters

element-name
Specifies the element whose relationships you are investigating.

Qualifiers

/TYPE=[(type-nam e)] ,...

/FULL
Displays all owners and members of the element.

Description

The SHOW UNUSED command determines whether an element has owners or
members. The element must have a directory name.

If the element does not have owners or members, the name and type of the
element is displayed. If the element has owners or members, CDO sends an
informational notice. If you receive an informational notice, issue the SHOW
USES and SHOW USED_BY commands to identify these owners or members.

Examples

1. CDO> SHOW UNUSED EMPLOYEE_DB

In this example, because no qualifier is specified, the SHOW UNUSED
command displays default BRIEF information. This information includes
the names of immediate owners or members of the EMPLOYEE_DB
database element.

2. CDO> SHOW UNUSED /FULL FIELD_A(2)

In this example, the SHOW UNUSED command with the /FULL qualifier
displays all owners or members of the FIELD_A(2) field element.

Command Descriptions 1–221

SHOW UNUSED Command

3. CDO> SHOW UNUSED /FULL /TYPE=(FIELD) EMPLOYEE_REC

In this example, the SHOW UNUSED command with the /FULL and
/TYPE qualifiers displays all owners or members of EMPLOYEE_REC that
are fields.

1–222 Command Descriptions

SHOW USED_BY Command

SHOW USED_BY Command

Format

SHOW USED_BY [qualifier] ... element-name ,...

Parameters

element-name
Specifies the element whose children you are displaying.

Qualifiers

/TYPE=[(type-nam e)] ,...
Displays only children of the type you specify. This type must be the keyword
RECORD or FIELD or a type name that is valid for this command. Valid types
include instances of ELEMENT_TYPE or RELATIONSHIP_TYPE; they do not
include instances of PROPERTY_TYPE.

/BRIEF (default)
Displays the name, type, and relationship type of immediate children.

/FULL
Displays the name, type, and relationship type of all children.

Description

The SHOW USED_BY command displays the children of the element you
specify. The display includes the properties of children and the values
associated with these properties.

The SHOW USED_BY command lists children if they have either directory or
processing names. CDO looks first for the directory name and displays it if one
exists. If a directory name does not exist, CDO then looks for and displays the
processing name.

A definition can only exist in the repository without a directory or processing
name if it has a relationship to an owner that has a directory name. CDO
displays a name unspecified message in this case.

To display Oracle Rdb database definitions, specify the name of the database
as the element-name parameter and use the /FULL qualifier. Because CDO
displays the full path name of each repository element, you can use the SHOW
USED_BY command to determine where each instance of a particular element
occurs and how it relates to other elements.

Command Descriptions 1–223

SHOW USED_BY Command

Examples

1. CDO> SHOW USED_BY EMPLOYEE_DB

In this example, because no qualifier is specified, the SHOW USED_BY
command displays the default information (/BRIEF). This information
includes the names of immediate children of the EMPLOYEE_DB database
element.

2. CDO> SHOW USED_BY /FULL FIELD_A(2)

In this example, the SHOW USED_BY command with the /FULL qualifier
displays all children of the FIELD_A(2) field element.

3. CDO> SHOW USED_BY /FULL /TYPE=(FIELD) EMPLOYEE_REC

In this example, the SHOW USED_BY command with the /FULL and
/TYPE qualifiers displays all children of EMPLOYEE_REC that are fields.

1–224 Command Descriptions

SHOW USES Command

SHOW USES Command

Format

SHOW USES [qualifier] ... element-name ,...

Parameters

element-name
Specifies the element whose owners you are displaying.

Qualifiers

/TYPE=[(type-nam e)] ,...
Displays only owners of the type you specify. This type must be the keyword
RECORD or FIELD or a type name that is valid for this command. Valid types
include instances of ELEMENT_TYPE or RELATIONSHIP_TYPE; they do not
include instances of PROPERTY_TYPE.

/BRIEF (default)
Displays the name, type, and relationship type of immediate owners.

/FULL
Displays the name, type, and relationship type of all owners.

Description

The SHOW USES command displays the owners of the element you specify.
The display includes the properties of owners and the values associated with
these properties.

The SHOW USES command lists owners if they have either directory names or
processing names. CDO looks first for the directory name and displays it if one
exists. If a directory name does not exist, CDO then looks for and displays the
processing name.

An element can only exist in the repository without a directory or processing
name if it has a relationship to an owner with a directory name. CDO displays
a name unspecified message in this case.

You can use the SHOW USES command to display the names of elements that
receive new version messages if you create a new version of the element you
specify.

Command Descriptions 1–225

SHOW USES Command

Examples

1. CDO> SHOW USES EMPLOYEE_DB

In this example, because no qualifier is specified, the SHOW USES
command displays the default information (/BRIEF). This information
includes the names of immediate owners of the EMPLOYEE_DB database
element.

2. CDO> SHOW USES /FULL FIELD_A(2)

In this example, the SHOW USES command with the /FULL qualifier
displays all owners of the FIELD_A(2) field element.

3. CDO> SHOW USES /FULL /TYPE=(RECORD) EMPLOYEE_NAME

In this example, the SHOW USES command with the /FULL and /TYPE
qualifiers displays all owners of EMPLOYEE_NAME that are records.

1–226 Command Descriptions

SHOW VERSION Command

SHOW VERSION Command

Format

SHOW VERSION

Description

The SHOW VERSION command displays the following information about one
or more respositories that you have invoked and to which the CDO session is
currently attached:

• Version number of Oracle CDD/Repository that is installed on your system

• Major and minor version numbers of each repository

• Fully qualified name of each repository

• Version numbers of Oracle CDD/Repository with which each repository is
compatible

If you issue the SHOW VERSION command and you have not invoked a
repository during the CDO session, CDO displays only the version of Oracle
CDD/Repository that is currently installed.

Commands such as DEFINE FIELD or SHOW FIELD will invoke a repository;
however, the SET DEFAULT or SHOW DEFAULT commands will not. If
you issue a DIRECTORY command and the repository contains elements, the
session will invoke a repository.

Examples

1. CDO> SHOW DEFAULT
CDO> SHOW VERSION
Installed version of Oracle CDD/Repository is V7.0.1

In this example, the SHOW DEFAULT command does not invoke a
repository. Therefore, the SHOW VERSION command displays only the
version of Oracle CDD/Repository that is currently installed.

Command Descriptions 1–227

SHOW VERSION Command

2. CDO> SHOW FIELD
Definition of field A1
| Datatype text size is 1 characters
| Row_major array 1:4
Definition of field A1_KEY
| Datatype text size is 1 characters

.

.

.
CDO> SHOW VERSION
Installed version of Oracle CDD/Repository is V7.0.1
Attached to repository
CDD$R0:[SMITH.REPOS3]
Repository Version V6.1 / V7.0.1
Internal Major Version 26
Internal Minor Version 3

In this example, the SHOW FIELD command invokes a repository.
Consequently, the SHOW VERSION command displays information
about the repository to which it is attached.

1–228 Command Descriptions

SHOW WHAT_IF Command

SHOW WHAT_IF Command

Format

SHOW WHAT_IF [qualifier] ... element-name ,...

Parameters

element-name
Specifies the element you are considering changing.

Qualifiers

/TYPE=[(type-nam e)] ,...
Displays those owners of the type you specify that could possibly receive an
invalid notice if you perform a change in location with the CHANGE command.
This type must be the keyword RECORD or FIELD or a type name that is
valid for this command. Valid types include instances of ELEMENT_TYPE or
RELATIONSHIP_TYPE; they do not include instances of PROPERTY_TYPE.

/BRIEF (default)
Displays the name, type, and relationship type of immediate owners that
receive a possibly invalid notice if you perform a change in location with the
CHANGE command.

/FULL
Displays the name, type, and relationship type of all owners that receive a
possibly invalid notice if you perform a change in location with the CHANGE
command.

Description

The SHOW WHAT_IF command displays the owners that are affected if the
element you specify is modified by the CHANGE command. For the owners
to be displayed, the relationship between owner and member must have an
associated CDD$NOTICE_ACTION property value of SIGNAL.

Owners with this property value generally represent an object outside the
repository, such as a database. Each owner receives a possibly invalid warning
if you issue the CHANGE command for the specified element.

To determine the CDD$NOTICE_ACTION property value of a relationship, use
the SHOW PROTOCOL command.

Command Descriptions 1–229

SHOW WHAT_IF Command

The SHOW WHAT_IF command lists owners if they have either directory or
processing names. CDO looks first for the directory name and displays it if one
exists. If a directory name does not exist, CDO then looks for and displays the
processing name.

An element can only exist in the repository without either a directory or
processing name if it has a relationship to an element that has a directory
name. CDO displays the name unspecified message in this case.

Examples

1. CDO> SHOW WHAT_IF EMPLOYEE_DB

In this example, because no qualifier is specified, the SHOW WHAT_IF
command displays the default information (/BRIEF). This information
includes the names of immediate owners that receive a possibly invalid
notice if you issue the CHANGE command for EMPLOYEE_DB.

2. CDO> SHOW WHAT_IF /FULL FIELD_A(2)

In this example, the SHOW WHAT_IF command with the /FULL qualifier
displays all owners that receive a possibly invalid notice if you issue the
CHANGE command for FIELD_A(2).

3. CDO> SHOW WHAT_IF /FULL /TYPE=(CDD$DATABASE) EMPLOYEE_REC

In this example, the SHOW WHAT_IF command with the /FULL and
/TYPE qualifiers displays all owners of the CDD$DATABASE type that
receive a possibly invalid notice if you issue the CHANGE command for
EMPLOYEE_REC.

1–230 Command Descriptions

SPAWN Command

SPAWN Command

Format

SPAWN [qualifier] ... [command-string]

Parameters

command-string
Specifies an OpenVMS DCL command you want to perform in the context of
the subprocess the SPAWN command creates. After the subprocess executes
this command string, DCL returns control to your CDO process. A command
string cannot exceed 132 characters.

Qualifiers

/INPUT=file-spec
Specifies an OpenVMS file containing one or more DCL commands that DCL
executes in the spawned subprocess. Once DCL finishes processing your input
file, DCL terminates the subprocess and returns you to the CDO prompt.

/OUTPUT=file-spec
Requests that the output from the subprocess be written to the OpenVMS file
you specify.

/WAIT (default)
/NOWAIT
Specifies whether the system waits until DCL completes a subprocess before
allowing more commands to be issued in the parent process (the process in
which you are running CDO).

The /WAIT qualifier does not return you to the parent process until the
command string you specify completes execution, or you log out of the created
subprocess. You can also use the ATTACH command to return to the parent
process.

The /NOWAIT qualifier allows you to issue new commands while a subprocess
is running. Use the /NOWAIT qualifier interactively. This directs output
from the subprocess to a file so only one process at a time uses your terminal.
Otherwise, the only way to distinguish one process from another is by the
prompt. The CDO prompt indicates the parent process; the DCL prompt
(normally a dollar sign) indicates the subprocess.

Command Descriptions 1–231

SPAWN Command

If you specify the /NOWAIT qualifier and your input device is a terminal,
control characters such as Ctrl/T or Ctrl/Y affect all subprocesses sharing the
input device. For example, Ctrl/Y interrupts all such subprocesses.

Description

The SPAWN command creates a subprocess of the current CDO process.

Examples

1. CDO> SPAWN SHOW TIME
17-FEB-1997 16:28:29
CDO>

In this example, the SPAWN command creates a subprocess to execute the
DCL command SHOW TIME. After the SHOW TIME command completes
executing, DCL returns control to the parent CDO process.

2. CDO> SPAWN
$ LOGOUT
CDO>

In this example, the SPAWN command creates a subprocess at the DCL
prompt. To return to the CDO process, type LOGOUT at the DCL prompt.

3. CDO> SPAWN RUN SQL$
SQL>

In this example, the SPAWN command creates a subprocess to run
interactive SQL.

1–232 Command Descriptions

START_TRANSACTION Command

START_TRANSACTION Command

Format

START_TRANSACTION

Description

The START_TRANSACTION command initiates a group of commands that
Oracle CDD/Repository executes as a unit. A transaction ends with a COMMIT
or ROLLBACK command. The COMMIT command causes all commands to
execute, while the ROLLBACK command causes no commands to execute.

Restrictions

• When you delete a record, local fields within that record are marked for
deletion at the end of the transaction, provided that they remain unused at
the end of the transaction. Using CDO, there is no way to reuse those local
fields. It is possible to use local fields through the Oracle CDD/Repository
APIs. Therefore, the local fields cannot be automatically deleted at the
same point in the transaction as the record.

You must either delete the record and field in separate transactions
(outside the START_TRANSACTION . . . COMMIT stream of commands)
or, to accomplish this in one transaction, use ENTER to enter the local
field, delete the record, delete the local field, and then delete the global
field.

• Usually, if Oracle CDD/Repository issues any errors between the START_
TRANSACTION and COMMIT commands, it forces you to roll back
the transaction. In some cases, such as in the CHANGE or DELETE
commands, Oracle CDD/Repository allows you to commit the transaction.
The general rules are:

– If you receive an Oracle CDD/Repository error of E or F severity, such
as a CDD-E-NODNOTFND message, you must abort the transaction.

– If you receive a CDO error of E or F severity, such as CDO-E-
NOTFOUND, you can continue to operate in the current transaction.

Command Descriptions 1–233

START_TRANSACTION Command

Examples

CDO> START_TRANSACTION.
CDO> DEFINE RECORD REC2.
cont> FLD1. END RECORD.
CDO> COMMIT
CDO> SHOW RECORD REC2
Definition of record REC2
| Contains field FLD1

.

.

.

In this example, the COMMIT command ends a session started with
the START_TRANSACTION command. When you use the START_
TRANSACTION and COMMIT commands, the overhead that is associated
with these commands is incurred once in the repository and once in the
database, rather than once for each CDO command between the START_
TRANSACTION and COMMIT commands. The repository is already attached
to the database and has already loaded the type definitions. The objects REC2
and FLD1 are retrieved from memory instead of from disk.

1–234 Command Descriptions

UNRESERVE Command

UNRESERVE Command

Format

UNRESERVE

8>>><
>>>:

COLLECTION
FIELD
RECORD
FILE_ELEMENT type-name
GENERIC type-name

9>>>=
>>>;

[qualifier] ... element-name ,...

[AUDIT IS /*text*/]

Parameters

type-name
Specifies the type of the file or generic element you are unreserving.

element-name
Specifies the element you are unreserving. You can substitute an asterisk (*)
wildcard character for this parameter.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/CLOSURE=keyword
/NOCLOSURE (default)
Specifies whether CDO unreserves additional elements. An unreserve
operation fails if any element is a child of an element outside the area defined
by the /CLOSURE qualifier.

The /CLOSURE qualifier takes one of the following keywords:

Command Descriptions 1–235

UNRESERVE Command

CLOSURE
Keyword Behavior

TO_BOTH Unreserves the element specified and all parents and
children.

TO_BOTTOM Unreserves the element specified and all children.
TO_TOP Unreserves the element specified and all parents.

If you specify TO_BOTH or TO_TOP, CDO ignores parents above the top
collection.

/LOG
/NOLOG (default)
Specifies whether CDO displays text identifying each element as the element is
unreserved.

Description

The UNRESERVE command cancels the reservation previously placed on a
version of an element. This operation deletes the ghost version of the element
and discards any changes you made while you reserved the version.

Examples

CDO> RESERVE COLLECTION /CLOSURE=TO_BOTTOM PRODUCT_INVENTORY
CDO> DEFINE FIELD PRODUCT_NUMBER
cont> DATATYPE BIT SIZE 5.
CDO> DEFINE FIELD PRODUCT_DESCRIPTION
cont> DATATYPE TEXT SIZE 50.
CDO> UNRESERVE COLLECTION /CLOSURE=TO_BOTTOM PRODUCT_INVENTORY

In this example, the UNRESERVE command cancels the PRODUCT_
INVENTORY reservation and deletes the two fields that were defined.

1–236 Command Descriptions

UPDATE Command

UPDATE Command

Format

UPDATE COMPOSITE [qualifier] composite-name

[AUDIT IS /*text*/]

Parameters

composite-name
Specifies the collection, record, or field you are updating.

text
Adds information to the history list entry. Valid delimiters are /* */ or double
quotation marks (" ").

You can use Japanese to document comments in the AUDIT clause for a field.
To do this, use the SET CHARACTER_SET command, and set the character_
set of the session to DEC_KANJI.

Qualifiers

/CLOSURE=TO_BOTTOM
/NOCLOSURE (default)
Specifies whether CDO updates additional elements. Specifying the
/CLOSURE=TO_BOTTOM qualifier updates all children of a reserved element,
unless the element is a child of an element outside the area defined by the
CLOSURE keyword.

Description

The UPDATE command allows you to attach more recent versions of elements
to your own collections, records, or fields. In this way, you can access the work
of others in your working group.

Before you issue the UPDATE command, you must reserve the elements you
wish to update. The SHOW RESERVATIONS command indicates whether this
condition exists.

When you issue the UPDATE command, the action that occurs depends on the
keyword you specified in the DEFAULT_ATTACHMENT clause of the DEFINE
CONTEXT or the CHANGE CONTEXT command for your current context.
The following table lists the keywords and behaviors associated with them:

Command Descriptions 1–237

UPDATE Command

DEFAULT_ATTACHMENT
Keyword Behavior

LATEST Detaches the version currently attached and
attaches the latest version, whether checked in
or ghost. This keyword is the default attachment
method.

LATEST_CHECKIN Detaches the version currently attached and
attaches the version most recently checked in.

SPECIFIC_VERSION Does not detach the version currently attached.

The UPDATE command cannot attach a ghost version created with another
context. The UPDATE command also cannot attach a checked-in version
unless you have write privilege for the partition where the version resides.

Examples

1. CDO> DEFINE CONTEXT BUILD_SYSTEM_CONTEXT
cont> BASE_PARTITION IS FIRST_BASELEVEL TOP IS COMPILER_C
cont> DEFAULT_ATTACHMENT IS LATEST_CHECKIN.

.

.

.
CDO> UPDATE COLLECTION COMPILER_C

In this example, the UPDATE command refers to the DEFAULT_
ATTACHMENT keyword (LATEST_CHECKIN) for the version to
attach. UPDATE then detaches the currently attached version of the
COMPILER_C collection and attaches the version most recently replaced.

2. CDO> DEFINE CONTEXT WRITE_CONTEXT
cont> BASE_PARTITION IS FIRST_DRAFT TOP IS REFERENCE_MANUAL
cont> DEFAULT_ATTACHMENT IS SPECIFIC_VERSION.

.

.

.
CDO> CHANGE CONTEXT WRITER_CONTEXT
cont> DESCRIPTION IS "CHANGING DEFAULT_ATTACHMENT"
cont> "TO PICK UP AL’S CHAPTERS"
cont> DEFAULT_ATTACHMENT IS LATEST.
CDO> UPDATE COLLECTION REFERENCE_MANUAL

In this example, the UPDATE command refers to the DEFAULT_
ATTACHMENT keyword (LATEST) for the version to attach. UPDATE
then detaches the currently attached version of the REFERENCE_
MANUAL collection and attaches the latest version, whether checked
in or ghost.

1–238 Command Descriptions

VERIFY Command

VERIFY Command

Format

VERIFY [qualifier] ... anchor-name ,...

Parameters

anchor-name
Specifies the anchor of the repository you are verifying.

Qualifiers

/ALL
Performs all the verification options, except for the REBUILD_DIRECTORY
and COMPRESS options.

The /ALL qualifier includes the /NOFIX qualifier by default. If you want
to use the /FIX qualifier as the default to the VERIFY/ALL command,
define the CDD$VERIFY_ALL_FIX logical name to be any value. Define
the CDD$VERIFY_ALL_FIX logical name at the process level or higher.

If you specify the VERIFY/ALL command without specifying a /FIX or /NOFIX
qualifier, and if you have not defined the CDD$VERIFY_ALL_FIX logical
name, an informational error message, CDO-I-VF_ALL_NOFIX, will display
and the VERIFY command will continue using the default /NOFIX qualifier.

/COMPRESS
/NOCOMPRESS (default)
Specifies whether CDO compresses the CDD$DATABASE.SNP file to its
original size at the time you created the repository. If you specify the
/COMPRESS qualifier, you cannot include any other qualifier in your command.

/DIRECTORY
/NODIRECTORY (default)
Specifies whether CDO checks all directory names against a stored definition.

When you also specify the /FIX qualifier, the /DIRECTORY qualifier removes
directory names that do not refer to any stored definition.

/EXTERNAL_REFERENCES
/NOEXTERNAL_REFERENCES (default)
Specifies whether CDO checks all relationships where either the owner or
member is outside the repository you specified.

Command Descriptions 1–239

VERIFY Command

When you also specify the /FIX qualifier, the /EXTERNAL_REFERENCES
qualifier fixes the errors it detects.

/FIX
/NOFIX (default)
Specifies whether CDO corrects errors found by the other qualifiers you specify.

/LOCATION
/NOLOCATION (default)
Specifies whether CDO checks that the repository is in the correct directory
and is correctly referenced by other repositories on the system.

When you also specify the /FIX qualifier, the /LOCATION qualifier fixes the
errors it detects.

/LOG
/NOLOG (default)
Specifies whether CDO sends informational and error text to the default output
location for your system. Specifying the /NOLOG qualifier displays only error
text.

/ORPHANS
/NOORPHANS (default)
Specifies whether CDO searches for definitions with no directory names and no
owners. The /ORPHANS qualifier also checks relationships to ensure that they
have valid owners and members.

When you also specify the /FIX qualifier, it places homeless definitions in
a directory called CDD$ORPHANS. CDO creates directory names for them
while the VERIFY command executes. The /FIX qualifier deletes relationships
without valid owners and members.

Caution

If you specify the /ORPHANS qualifier and the /LOG qualifier, CDO
generates text for every element that is not an orphan. This could
potentially be a very large number.

/REBUILD_DIRECTORY
/NOREBUILD_DIRECTORY (default)
Specifies whether CDO checks that the repository is in the correct directory
and is correctly referenced by other repositories on the system, then deletes
and re-creates all directory entries for the repository anchor you specify. If

1–240 Command Descriptions

VERIFY Command

there are no directories to delete and re-create, the /REBUILD_DIRECTORY
qualifier builds a directory for the repository.

Use the /REBUILD_DIRECTORY qualifier to recover a corrupted repository
system only when corruption is so severe that all other qualifiers fail. The
/REBUILD_DIRECTORY qualifier requires SYSPRV or BYPASS privilege.

Note

Use system backup utilities to back up your repository before using
the /FIX qualifier or the /REBUILD_DIRECTORY qualifier. See Using
Oracle CDD/Repository on OpenVMS Systems for information on
performing a backup operation.

Description

The VERIFY command determines whether a repository is structurally correct.
This command requires read access. If you include the /FIX qualifier, you
may also need write access. The /FIX qualifier requires SYSPRV or BYPASS
privilege.

The /COMPRESS and /REBUILD_DIRECTORY qualifiers correct the errors
they encounter; all other qualifiers require the /FIX qualifier to correct
errors. The /ALL qualifier corrects any errors it finds if the logical name
CDD$VERIFY_ALL_FIX has been defined.

The /COMPRESS qualifier requires the following:

• You must have SYSPRV privilege. Otherwise, CDO displays a no privilege
error.

• You must issue the VERIFY command with the /COMPRESS qualifier
as the first CDO command in a CDO session. Otherwise, CDO reports a
conflict error with other users.

• You must be the only user of the repository when you issue the VERIFY
/COMPRESS command. Otherwise, CDO reports an Oracle Rdb lock
conflict error.

If you are working with remote repositories, issue the VERIFY/EXTERNAL_
REFERENCES command by itself before you issue the VERIFY/EXTERNAL_
REFERENCES command with the /FIX qualifier. If a remote device is not
mounted, the VERIFY/EXTERNAL_REFERENCES command returns an error
that the /FIX qualifier attempts to correct. Until a device is mounted, the
command cannot complete.

Command Descriptions 1–241

VERIFY Command

Use the VERIFY/LOCATION command if you issued the OpenVMS DCL COPY
command to copy a repository or change the name of your anchor directory.
Use the /LOCATION qualifier with the /EXTERNAL_REFERENCES qualifier
if you have other repositories that reference the repository you are verifying.

Examples

CDO> VERIFY /LOCATION /FIX [SMITH.REP]

In this example, the VERIFY /LOCATION /FIX command checks that the
[SMITH.REP] repository is in the correct directory and is correctly referenced
by other repositories on the system. This command also corrects any errors
detected.

1–242 Command Descriptions

Part II
CDO Parameters

This part provides additional information on CDO properties, expressions, and
edit strings that can be used within commands.

2
Field and Record Properties

Field and record properties define the characteristics of the data you store in
field and record elements. You can remove a field or record property by adding
the NO keyword to the property name. For example, NOARRAY removes the
ARRAY property.

Not all languages or language processors support all CDO properties. Those
properties that are not supported are ignored.

Field and Record Properties 2–1

ARRAY Field or Record Property

ARRAY Field or Record Property

Format �
ROW_MAJOR
COLUMN_MAJOR

�
ARRAY { [n1:] n2 } ...

Parameters

n1
Specifies the lower bound of the subscript. Replace n1 with a signed integer or
a value expression that translates to a signed integer. The default value is 1.

n2
Specifies the upper bound of the subscript. Replace n2 with a signed integer
or a value expression that translates to a signed integer. This value is greater
than or equal to n1.

Description

The ARRAY property defines a single- or multidimensional array in a field or
record element.

In multidimensional arrays, ROW_MAJOR declares the rightmost subscript to
be the fastest varying. COLUMN_MAJOR declares the leftmost subscript to be
the fastest varying.

If you do not specify either ROW_MAJOR or COLUMN_MAJOR, the default is
ROW_MAJOR.

Examples

1. CDO> DEFINE FIELD SUPPLIER
cont> ARRAY 0:19 1:4
cont> DATATYPE IS TEXT
cont> SIZE IS 30 CHARACTERS.

In this example, the DEFINE RECORD command includes an ARRAY
property that declares 20 instances of the SUPPLIER field element (from 0
to 19). Each instance is four 30-character strings.

2–2 Field and Record Properties

ARRAY Field or Record Property

2. CDO> DEFINE RECORD SUPPLIER_REC
cont> ROW_MAJOR ARRAY 1:20.
cont> END RECORD.

In this example, the DEFINE RECORD command includes an ARRAY
property that creates the SUPPLIER_REC record element as an array.

3. CDO> CHANGE RECORD SUPPLIER_REC.
cont> NOARRAY.
cont> END RECORD.

In this example, the CHANGE RECORD command includes a NOARRAY
property that removes the ARRAY property from the SUPPLIER_REC
record element.

Field and Record Properties 2–3

BASED ON Field Property

BASED ON Field Property

Format

BASED ON field-name

Parameters

field-name
Specifies the field name on whose properties you are basing a new field
element.

Description

The BASED ON field property bases the properties of a new field element on
one that already exists.

You must have privilege to read a field element to be able to base other
elements upon it.

You can use BASED ON field properties to define several fields related to a
base field and to each other.

You can use the BASED ON field property to give individual names to field
elements that share the same properties. This allows you to uniquely refer to
these field elements in record elements.

If you want the new field to have additional properties not found in the base
field, you can specify the additional properties in the DEFINE FIELD or
CHANGE FIELD command.

Examples

1. CDO> DEFINE FIELD SUPERVISOR_BADGE_NUMBER
cont> BASED ON BADGE_NUMBER
cont> VALID IF SUPERVISOR_BADGE_NUMBER > 500.

In this example, the DEFINE FIELD command bases SUPERVISOR_
BADGE_NUMBER on the BADGE_NUMBER field element. The VALID
IF property is an additional property that is unique to SUPERVISOR_
BADGE_NUMBER.

2–4 Field and Record Properties

BASED ON Field Property

2. CDO> DEFINE FIELD MANAGER_BADGE_NUMBER
cont> BASED ON SUPERVISOR_BADGE_NUMBER
cont> VALID IF MANAGER_BADGE_NUMBER > 1000.

In this example, the DEFINE FIELD command bases a second field
element on the element created in the previous example. The VALID IF
property explicitly defined for the new element overrides the property
included in the previous element.

3. CDO> DEFINE FIELD SUPERVISOR_SSN
cont> BASED ON SSN.

In this example, the DEFINE FIELD command creates a new element from
a standard element (SSN). When you use the BASED ON property to give
different names to field elements that share the same properties, you base
the new elements on a field element that does not change frequently.

4. CDO> DEFINE FIELD MANAGER_SSN
cont> BASED ON SSN
cont> QUERY_HEADER IS "MANAGER SSN".
CDO> CHANGE FIELD MANAGER_SSN
cont> NOBASED ON.

In this example, the NOBASED ON keyword removes the BASED ON
property, but does not remove the QUERY_HEADER property, from
the MANAGER_SSN field element. Because all other MANAGER_
SSN properties were based on SSN, you must define new properties
for MANAGER_SSN, unless the QUERY_HEADER property is adequate.

Field and Record Properties 2–5

COLLATING_SEQUENCE Field Property

COLLATING_SEQUENCE Field Property

Format

COLLATING_SEQUENCE IS text-string

Parameters

text-string
Specifies a sequence name that was previously defined in RDO or SQL.

Description

The COLLATING_SEQUENCE field property refers to a collating sequence
that you have defined in RDO or SQL. The DEFINE FIELD and CHANGE
FIELD commands accept the COLLATING_SEQUENCE syntax. The
CHANGE FIELD command accepts a NOCOLLATING_SEQUENCE keyword
that deletes the collating sequence; the SHOW FIELD and EXTRACT FIELD
commands process the attributes.

Examples

CDO> COLLATING_SEQUENCE IS "French"

In this example, the COLLATING_SEQUENCE field property sets the collating
sequence to French.

2–6 Field and Record Properties

COMPUTED BY Field Property

COMPUTED BY Field Property

Format

COMPUTED BY

8><
>:

value-expr
IF cond-expr THEN value-expr [ELSE value-expr]
NULLIF (value-expr, value-expr)
COALESCE (value-expr [, value-expr] ...)

9>=
>;

Parameters

value-expr
Specifies an expression a product can use to calculate a field’s value. See
Chapter 4 for more information on value expressions.

cond-expr
Specifies an expression that represents the relationship between two value
expressions. See Chapter 4 for more information on conditional expressions.

Description

The COMPUTED BY field property evaluates an expression, allowing a product
that uses CDO to determine the value of a field at runtime.

The expression must be a valid CDO expression. CDO checks the expression
for correct syntax and field references.

The product must be able to interpret the CDO expression.

When you specify a conditional expression in the COMPUTED BY field
property, you can define a field that is equivalent to a COBOL level 88
condition. The computed by expression must be in one of the following forms:

• if [name EQ literal1] THEN 1 ELSE 0

• if [(name GE literal1 AND name LE literal2) OR (name GE literal3 AND
name LE literal4)]... THEN 1 ELSE 0

Use NULL IF to substitute NULL when two value expressions are equal.

Use COALESCE to return the first non-NULL value from a series of value
expressions.

Field and Record Properties 2–7

COMPUTED BY Field Property

There is a limited subset of valid COMPUTED BY fields that are acceptable in
COBOL syntax for inclusion through the COPY FROM DICTIONARY clause.
They have the following format:

COMPUTED BY IF expression THEN 1 ELSE 0

Where expression is:8>>>><
>>>>:

fld-name =
n number

string

o

fld-name GE
n number

string

o
AND fld-name LE

n number
string

o
9>>>>=
>>>>;

OR ...

For example, the following COMPUTED BY fields are defined:

DEFINE FIELD Y_TRUE
COMPUTED BY IF (Y = "TRUE") THEN 1 ELSE 0.

DEFINE FIELD Z_NULL
COMPUTED BY IF (Z = 0) THEN 1 ELSE 0.

DEFINE FIELD W_ALPHABETIC COMPUTED BY
IF ((W GE "A") AND (W LE "Z")) OR ((W GE "a") AND (W LE "z"))
THEN 1 ELSE 0.

DEFINE FIELD X_3_DIGITS
COMPUTED BY IF (X GE 100) AND (X LE 999) THEN 1 ELSE 0.

They are translated as the following COBOL level 88 conditions:

02 Y ...
88 Y_TRUE VALUE IS "TRUE".

02 Z ...
88 Z_NULL VALUE IS 0.

02 W ...
88 W_ALPHABETIC VALUES ARE "A" THRU "Z", "a" THRU "z".

02 X ...
88 X_3_DIGITS VALUES ARE 100 THRU 999.

Restriction

The COMPUTED BY field property can reference only one field. The
fld-name parameter must be the same field name in all instances.
When included in COBOL, the COMPUTED BY field will be translated
as a level 88 condition associated with the field that was referenced.

2–8 Field and Record Properties

COMPUTED BY Field Property

Examples

1. CDO> DEFINE FIELD SUBTOTAL_PRICE
cont> COMPUTED BY UNIT_PRICE * QUANTITY.

In this example, the DEFINE FIELD command includes the COMPUTED
BY property to calculate a value for the SUBTOTAL_PRICE field element.
The value is computed by multiplying UNIT_PRICE by QUANTITY.

2. CDO> DEFINE FIELD TOTAL_PRICE
cont> COMPUTED BY UNIT_PRICE (3) * 10.

In this example, the DEFINE FIELD command includes a COMPUTED
BY property to calculate a value for the TOTAL_PRICE field element. The
value is calculated by multiplying the value in the third instance of the
UNIT_PRICE field element by 10.

3. CDO> CHANGE FIELD TOTAL_PRICE
cont> NOCOMPUTED BY.

In this example, the CHANGE FIELD command includes the
NOCOMPUTED BY keywords to remove the COMPUTED BY property
from the TOTAL_PRICE field element.

4. CDO> DEFINE FIELD C
cont> DATATYPE SIGNED WORD.
CDO> DEFINE FIELD C_ONE
cont> COMPUTED BY IF C EQ 1 THEN 1 ELSE 0.
CDO> DEFINE FIELD C_FIVE_TEN
cont> NAME FOR COBOL IS C_5_10
cont> COMPUTED BY IF C GE 5 AND C LE 10 THEN 1 ELSE 0.
CDO> DEFINE FIELD C_OTHER
cont> COMPUTED BY
cont> IF (C GE 2 AND C LE 4)
cont> OR (C GE 11 AND C LE 20)
cont> THEN 1 ELSE 0.
CDO> DEFINE RECORD COB88.
cont> C.
cont> C_ONE.
cont> C_FIVE_TEN.
cont> C_OTHER.
cont> END RECORD.

In this example, the DEFINE FIELD commands include COMPUTED
BY properties that contain conditional and value expressions. These
expressions are related to the value of the C field element, as follows:

• The C_ONE field element takes the value of one (if C evaluates to one)
or zero.

Field and Record Properties 2–9

COMPUTED BY Field Property

• The C_FIVE_TEN field element takes the value of one (if C evaluates
to a value between five and ten) or zero.

• The C_OTHER field element takes the value of one (if C evaluates to a
value between two and four or if C evaluates to a value between eleven
and twenty) or zero.

5. 01 COB88.
03 C USAGE IS COMP PIC 9(4).

88 C_ONE VALUE 1.
88 C_FIVE_TEN VALUES ARE 5 THRU 10.
88 C_OTHER VALUES ARE 2 THRU 4

11 THRU 20.

This example shows COBOL syntax for the record containing level 88
definitions.

2–10 Field and Record Properties

CURRENCY_SIGN Field Property

CURRENCY_SIGN Field Property

Format

CURRENCY_SIGN IS quoted-string

Parameters

quoted-string
Specifies the character that displays as a currency sign.

Description

The CURRENCY_SIGN field property indicates how a product using CDO
displays the currency sign of a field element. Only DIGITAL DECforms
supports the CURRENCY_SIGN field property.

You can specify only one CURRENCY_SIGN property for a field element.

Examples

1. CDO> DEFINE FIELD PRICE
cont> DATATYPE IS LONGWORD
cont> EDIT_STRING IS 999999
cont> CURRENCY_SIGN IS "¥".

In this example, the DEFINE FIELD command creates the PRICE field
element with the yen symbol as the currency sign.

2. CDO> CHANGE FIELD PRICE
cont> NOCURRENCY_SIGN.

In this example, the NOCURRENCY_SIGN keyword removes the
CURRENCY_SIGN property from the PRICE field element.

Field and Record Properties 2–11

DATATYPE Field Property

DATATYPE Field Property

Format8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ALPHABETIC SIZE IS numeric-literal case CHARACTERS
[ALIGNED | UNALIGNED] BIT SIZE IS numeric-literal
date-time-dtypes
decimal-string-dtypes
fixed-point-dtypes
floating-point-dtypes
POINTER [TO name [IN name] ...]
REAL
SEGMENTED STRING [SEGMENT_LENGTH IS numeric-literal BYTES] [SEGMENT_TYPE IS string-type]
TEXT CHARACTER_SET character-set-name SIZE IS numeric-literal case CHARACTERS
UNSPECIFIED SIZE IS numeric-literal BYTE
VARYING STRING CHARACTER_SET character-set-name SIZE IS numeric-literal case CHARACTERS

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

Parameters

numeric-literal
Specifies the number of characters or bytes in the field being defined. See
Chapter 4 for more information on numeric literals.

case(CASE_INSENSITIVE
LOWERCASE
UPPERCASE

)

Specifies whether the characters in a string data type are uppercase, lowercase,
or mixed case. The default is CASE_INSENSITIVE.

date-time-dtypes
Specifies a date-time data type for a field. See DATATYPE Field Property:
Date-Time Data Types for more information.

decimal-string-dtypes
Specifies a decimal string data type for a field. See DATATYPE Field Property:
Decimal String Data Types for more information.

fixed-point-dtypes
Specifies a fixed point data type for a field. See DATATYPE Field Property:
Fixed Point Data Types for more information.

2–12 Field and Record Properties

DATATYPE Field Property

floating-point-dtypes
Specifies a floating point data type for a field. See DATATYPE Field Property:
Floating Point Data Types for more information.

name
Specifies the structure used to provide a path to an element.

string-type
Specifies a numeric or character string literal that contains the name of the
segment type. See Chapter 4 for more information on literals.

character-set-name
Table 2–1 shows the valid character-set-names.

Table 2–1 Valid Character Set Name Values for Character Set Attributes

CHARACTER_
SET Attribute character-set-name Description

MCS DEC_MCS A set of international alphanumeric
characters

Kanji+ASCII DEC_KANJI Japanese characters as defined by the
JIS X0208:1990 standard, Narrow
Katakana characters as defined by
the JIS X0201:1976 standard, and ASCII
characters

Kanji KANJI Japanese characters as defined by the
JIS X0208:1990 standard and user-
defined characters

Katakana KATAKANA Narrow Katakana characters as defined
JIS X0201:1976 standard

Oracle CDD/Repository does not have a default character set attribute; Oracle
CDD/Repository stores the character set attribute that you specify. The default
character set that is used for a field in Oracle CDD/Repository, and how
an unspecified character set is handled by other products, depends on each
product. See the documentation for the product in which you intend to use the
character set attribute.

Field and Record Properties 2–13

DATATYPE Field Property

Description

The DATATYPE field property defines the type and size of a field. Some valid
CDO data types are not supported by all languages or language processors.
Consult the documentation for your product.

The case you specify for characters with the ALPHABETIC, TEXT, and
VARYING STRING data types must be valid for your product.

The following list provides information on valid data types:

• ALPHABETIC specifies that the field is a sequence of 8-bit ASCII bytes.
You cannot use non-alphabetic characters with this data type.

• BIT specifies that the field is a bit string. The optional UNALIGNED
keyword specifies that the string is not aligned. The optional ALIGNED
keyword specifies that the string is aligned on a byte boundary. If no
alignment keyword is specified, the default is ALIGNED.

• POINTER specifies that the field contains the address of another field
or record element. PL/I, for example, uses POINTER fields to access
based variables and buffers allocated by the system. Although PL/I does
not associate POINTER fields with a specified record structure, other
languages do; the optional TO name lets you connect a POINTER to
a structure. The optional IN name lets you connect a POINTER to a
structure in a structure.

• REAL specifies that the field is a 32-bit floating point number with
precision to approximately seven decimal digits. VAX BASIC uses REAL as
an optional alternative to the floating-point data type.

• SEGMENTED STRING specifies that the field will contain a pointer to a
sequential file with a segmented internal structure.

The maximum size of a string segment is 64K bytes. In a segmented
string, you can store large amounts of text, long strings of binary input
from a data collecting device, or graphic data.

Oracle Rdb databases support this data type. Its SEGMENT_LENGTH
component corresponds to RDB$LENGTH and its SEGMENT_TYPE
component corresponds to RDB$VALUE. A numeric-literal must follow
a SEGMENT_TYPE. The following table lists the valid values for
SEGMENT_TYPE.

2–14 Field and Record Properties

DATATYPE Field Property

Table 2–2 Values for SEGMENT_TYPE

Value Meaning

0 The contents of the segmented string are unspecified.
1 The segmented string contains text.
2 The segmented string contains Binary Language

Representation statements.
Greater than 2 Reserved for use by Oracle.
Less than 0 Reserved for use by customers.

See the Oracle Rdb7 SQL Reference Manual for more information about
segmented strings.

• TEXT specifies that the field is a sequence of 8-bit ASCII bytes.

When you define the TEXT data type field property, CDO accepts two units
of size for the field:

– CHARACTERS

– OCTETS

To specify a character-based field size, use the CHARACTERS unit. To
specify octet-based field size, use the OCTETS unit. For a field with a
single octet character set attribute, such as DEC_MCS, KATAKANA and
so on, one character corresponds to one octet. On the other hand, for fields
with multiple-octet character set attributes, such as Kanji, the field size is
changed depending on the unit. The default is CHARACTERS.

When you specify a field size using CHARACTERS, CDO translates the
correct length of octets and stores the field size in octets. When OCTETS
is specified, CDO ensures that the valid field size in CHARACTERS is
translated.

Table 2–3 shows the number of octets used for one character in each
character set.

Table 2–3 Number of Octets Used for One Character in Each Character Set

Character Set
M+Number of Octets Used for
One Character

Number of Octets
Translated in CDO

MCS 1 octet 1 octet
(continued on next page)

Field and Record Properties 2–15

DATATYPE Field Property

Table 2–3 (Cont.) Number of Octets Used for One Character in Each
Character Set

Character Set
M+Number of Octets Used for
One Character

Number of Octets
Translated in CDO

Katakana 1 octet 1 octet
Kanji 2 octets 2 octets
Kanji+ASCII 1 octet for ASCII; 2 octets for

Kanji
2 octets

If CDO cannot translate a valid field size in characters, an error occurs.
For example, when you try to define a field with the Kanji character
set attribute, and you specify a size of odd octets, CDO returns an error
because it cannot identify a valid field size in characters.

• UNSPECIFIED declares that the field is a sequence of 8-bit unsigned
bytes.

• VARYING STRING specifies that the field is a PL/I or PASCAL varying
string.

See the information about the field values CHARACTERS and OCTETS,
described under the TEXT data type.

Examples

1. CDO> DEFINE FIELD BEST_SELLER
cont> DATATYPE IS TEXT 40.

In this example, the DEFINE FIELD command creates the BEST_SELLER
field element with data type TEXT. The numeric literal limits BEST_
SELLER to 40 characters.

2. CDO> CHANGE FIELD BEST_SELLER
cont> NODATATYPE.

In this example, the CHANGE FIELD command includes a NODATATYPE
keyword that removes the DATATYPE field property from the BEST_
SELLER field element.

2–16 Field and Record Properties

3. CDO> DEFINE FIELD CUSTOMER
cont> DATATYPE IS TEXT CHARACTER_SET IS KANJI
cont> SIZE IS 20 CHARACTERS.

In this example, a new field is defined and the character-set-name of
KANJI is specified.

4. CDO> DEFINE FIELD FULL_NAME
cont> DATATYPE TEXT CHARACTER_SET IS KANJI
cont> SIZE IS 20 CHARACTERS.

In this example, KANJI is specified as the character set attribute, and
CHARACTERS is specified as the unit of size for the FULL_NAME field.
In this case, FULL_NAME will be defined with a size of 40 octets.

5. CDO> DEFINE FIELD FULL_NAME
cont> DATATYPE TEXT CHARACTER_SET IS KANJI
cont> SIZE IS 20 OCTETS.

In this example, KANJI is the character set attribute, and OCTETS is the
size of the FULL_NAME field. In this case, FULL_NAME will be defined
with a size of 20 octets.

6. CDO> DEFINE FIELD FULL_NAME
cont> DATATYPE TEXT CHARACTER_SET IS KANJI
cont> SIZE IS 20.

In this example, CHARACTERS is used as a default unit of size. KANJI is
specified as the character-set-name of the field. In this case, FULL_NAME
will be defined with a size of 40 octets.

Field and Record Properties 2–17

DATATYPE Field Property: Date-Time Data Types

DATATYPE Field Property: Date-Time Data Types

Format8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

DATE
�

VMS
ANSI

�
TIME [SCALE scale-value]
TIMESTAMP [SCALE scale-value]
INTERVAL YEAR [SIZE IS numeric-literal] [TO MONTH]
INTERVAL MONTH [SIZE IS numeric-literal]

INTERVAL DAY [SIZE IS numeric-literal]

" TO HOUR
TO MINUTE
TO SECOND [SCALE scale-value]

#

INTERVAL HOUR [SIZE IS numeric-literal]
�

TO MINUTE
TO SECOND [SCALE scale-value]

�
INTERVAL MINUTE [SIZE IS numeric-literal] [TO SECOND] [SCALE scale-value]
INTERVAL SECOND [SIZE IS numeric-literal] [SCALE scale-value]

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

Parameters

scale-value
The default value for SCALE is -2 with the exception of the TIME keyword
which has a default value of 0.

numeric-literal
Specifies the number of digits allowed in the field. This number is greater than
0 and less than 32.

Description

The default value for SIZE is 2 and the valid range is between 2 and 9. See
the Oracle Rdb7 SQL Reference Manual for more information on different
date-time data types.

2–18 Field and Record Properties

DATATYPE Field Property: Date-Time Data Types

Examples

CDO> DEFINE FIELD SAMPLE_FLD DATATYPE DATE ANSI.
CDO> DEFINE FIELD SAMPLE_FLD DATATYPE TIME SCALE -2.
CDO> DEFINE FIELD SAMPLE_FLD DATATYPE INTERVAL YEAR.
CDO> DEFINE FIELD SAMPLE_FLD DATATYPE INTERVAL YEAR TO MONTH.
CDO> DEFINE FIELD SAMPLE_FLD DATATYPE INTERVAL DAY
cont> SIZE 3 TO SECOND SCALE -2.
CDO> DEFINE FIELD SAMPLE_FLD DATATYPE INTERVAL HOUR
cont> SIZE 7 TO SECOND SCALE -2.
CDO> DEFINE FIELD SAMPLE_FLD
cont> DATATYPE INTERVAL MINUTE TO SECOND SCALE -2.
CDO> DEFINE FIELD SAMPLE_FLD
cont> DATATYPE INTERVAL SECOND SIZE 4 SCALE -2.

This example shows the definition of fields with date-time data types.

Field and Record Properties 2–19

DATATYPE Field Property: Decimal String Data Types

DATATYPE Field Property: Decimal String Data Types

Format 8>>>>>>>>>>><
>>>>>>>>>>>:

LEFT
�

SEPARATE NUMERIC
OVERPUNCHED NUMERIC

�

RIGHT
�

SEPARATE NUMERIC
OVERPUNCHED NUMERIC

�
PACKED DECIMAL
ZONED NUMERIC
UNSIGNED NUMERIC

9>>>>>>>>>>>=
>>>>>>>>>>>;

SIZE IS numeric-literal DIGITS [SCALE n]

Parameters

numeric-literal
Specifies the number of digits allowed in the field. This number is greater than
0 and less than 32.

n
Specifies an implied exponent. The n value indicates the number of places the
decimal point shifts when evaluating the field. This number is a signed integer
in the range -128 to 127.

Description

Decimal string data types represent fixed scale quantities. They are efficient in
applications that generate numerous reports and listings.

There are two classes of decimal string data types. Those in which each
decimal digit occupies one 8-bit byte are called NUMERIC data types. In the
more compact form called PACKED DECIMAL, two decimal digits occupy each
byte.

The following list explains the characteristics of each decimal string data type:

• UNSIGNED NUMERIC specifies an unsigned numeric ASCII string. You
must include the keyword UNSIGNED.

• LEFT SEPARATE NUMERIC specifies a signed numeric ASCII string. The
leftmost byte contains the sign.

• LEFT OVERPUNCHED NUMERIC specifies a signed numeric ASCII
string. The sign and the leftmost digit occupy the same byte.

2–20 Field and Record Properties

DATATYPE Field Property: Decimal String Data Types

• RIGHT SEPARATE NUMERIC specifies a signed numeric ASCII string.
The rightmost byte contains the sign.

• RIGHT OVERPUNCHED NUMERIC specifies a signed numeric ASCII
string. The sign and the rightmost digit occupy the same byte.

• ZONED NUMERIC specifies the VAX ZONED NUMERIC type. This
signed numeric ASCII string is similar to the RIGHT OVERPUNCHED
NUMERIC, but the sign codes differ.

• PACKED DECIMAL specifies a signed numeric ASCII string. Two digits
occupy each byte, and the low half of the last byte is reserved for the sign.

Examples

CDO> DEFINE FIELD ACCOUNT_BALANCE
cont> DATATYPE IS PACKED DECIMAL.

In this example, the DEFINE FIELD command creates the ACCOUNT_
BALANCE field element with a PACKED DECIMAL data type.

Field and Record Properties 2–21

DATATYPE Field Property: Fixed-Point Data Types

DATATYPE Field Property: Fixed-Point Data Types

Format

�
SIGNED
UNSIGNED

�
8>>><
>>>:

BYTE
WORD
LONGWORD
QUADWORD
OCTAWORD

9>>>=
>>>;

SIZE IS numerical-literal DIGITS [SCALE n]

Parameters

numeric-literal
Specifies the number of digits allowed in the field. This number is greater than
0 and less than 32. The default is UNSIGNED.

n
Specifies an implied exponent. The n value indicates the number of places the
decimal point shifts when evaluating the field. This number is a signed integer
in the range -128 to 127.

Description

Fixed-point data types represent scaled quantities in a binary format. They
can be signed or unsigned.

Fixed-point numbers of the data type SIGNED are stored in two’s complement
form. Values range from �2(n�1) to 2

(n�1)
� 1, where n is equal to the number

of bits in the data type.

Fixed-point numbers of the data type UNSIGNED range from 0 to 2
n
� 1.

Table 2–4 shows the fixed-point data types.

Table 2–4 Fixed-Point Data Types

Data Type Length Unsigned Signed

BYTE 8 bits 0 to 255 �128

to 127

(continued on next page)

2–22 Field and Record Properties

DATATYPE Field Property: Fixed-Point Data Types

Table 2–4 (Cont.) Fixed-Point Data Types

Data Type Length Unsigned Signed

WORD 16 bits 0 to 65535 �32768

to 32767

LONGWORD 32 bits 0 to
4,294,967,295

�2; 147; 483; 648

to 2; 147; 483; 647

QUADWORD 64 bits 0 to 2
64
� 1 �2

63

to 2
63
� 1

OCTAWORD 128 bits 0 to 2
128
� 1 �2

127

to 2
127
� 1

Examples

CDO> DEFINE FIELD NEW_MEMBERS
cont> DATATYPE IS UNSIGNED LONGWORD 3.

In this example, the DEFINE FIELD command creates the NEW_MEMBERS
field element with the UNSIGNED LONGWORD data type.

Field and Record Properties 2–23

DATATYPE Field Property: Floating-Point Data Types

DATATYPE Field Property: Floating-Point Data Types

Format 8><
>:

D_FLOATING
F_FLOATING
G_FLOATING
H_FLOATING

9>=
>; [COMPLEX] [SCALE n]

Parameters

n
Specifies an implied exponent. The n value indicates the number of places the
decimal point shifts when evaluating the field. This number is a signed integer
in the range -128 to 127.

Description

Floating-point data types represent approximations to quantities in a scientific
notation consisting of a signed exponent and a mantissa. The floating-point
data types are shown in Table 2–5.

Table 2–5 Floating-Point Data Types

Data Type Length
Approximate
Precision

Approximate
Range

D_FLOATING 64 bits 16 decimal digits �10
�38

to 10
38

F_FLOATING 32 bits 7 decimal digits �10
�38

to 10
38

G_FLOATING 64 bits 15 decimal digits �10
�308

to 10
308

H_FLOATING 128 bits 33 decimal digits �10
�4932

to 10
4932

Complex numbers specify ordered pairs of floating-point data types,
representing the real and imaginary components of a number.

2–24 Field and Record Properties

DATATYPE Field Property: Floating-Point Data Types

Complex numbers are shown in Table 2–6.

Table 2–6 Complex Numbers

Data Type Total Length

Approximate
Precision of
Each Part

Approximate
Range of
Each Part

D_FLOATING
COMPLEX

128 bits 16 decimal digits �10
�38

to 10
38

F_FLOATING
COMPLEX

64 bits 7 decimal digits �10
�38

to 10
38

G_FLOATING
COMPLEX

128 bits 15 decimal digits �10
�308

to 10
308

H_FLOATING
COMPLEX

256 bits 33 decimal digits �10
�4932

to 10
4932

Examples

CDO> DEFINE FIELD STANDARD_DEVIATION
cont> DATATYPE IS H_FLOATING.

In this example, the DEFINE FIELD command creates the STANDARD_
DEVIATION field element with the H_FLOATING data type.

Field and Record Properties 2–25

DECIMAL_POINT Field Property

DECIMAL_POINT Field Property

Format

DECIMAL_POINT IS quoted-string

Parameters

quoted-string
Specifies the character displayed as a decimal point.

Description

The DECIMAL_POINT field property indicates how to display the decimal
point of a field element. Only DIGITAL DECforms supports the DECIMAL_
POINT field property.

You can specify only one DECIMAL_POINT property for a field element.

Examples

1. CDO> DEFINE FIELD PRICE
cont> DATATYPE IS LONGWORD
cont> EDIT_STRING IS 999999
cont> CURRENCY_SIGN IS "£"
cont> DECIMAL_POINT IS ",".

In this example, the DEFINE FIELD command creates the PRICE field
element that displays a comma for the decimal point.

2. CDO> CHANGE FIELD PRICE
cont> NODECIMAL_POINT.

In this example, the NODECIMAL_POINT keyword removes the
DECIMAL_POINT property from the PRICE field element.

2–26 Field and Record Properties

DEFAULT_VALUE FOR SQL Field Property

DEFAULT_VALUE FOR SQL Field Property

Format

[NO]DEFAULT_VALUE FOR SQL IS value-expr

Parameters

value-expr
Specifies an expression a product can use to calculate a field’s value. See
Chapter 4 for more information on value expressions.

Description

The DEFINE FIELD, CHANGE FIELD, and EDIT FIELD commands accept
the DEFAULT_VALUE FOR SQL syntax.

The CHANGE FIELD command accepts the NODEFAULT_VALUE FOR SQL
keyword that deletes the default value for SQL.

The SHOW FIELD and EXTRACT FIELD commands process the attributes.

Examples

1. CDO> DEFINE FIELD AMOUNT
cont> DATATYPE TEXT 5
cont> DEFAULT_VALUE FOR SQL IS "-----".

This example shows the definition of the AMOUNT field with a default
value for SQL of dashes.

Field and Record Properties 2–27

DISPLAY_SCALE Field Property

DISPLAY_SCALE Field Property

Format

DISPLAY_SCALE IS n

Parameters

n
Specifies a signed integer indicating the number of places to shift the decimal
point. A negative integer moves the decimal point to the left. A positive
integer moves the decimal point to the right.

Description

The DISPLAY_SCALE field property indicates how to shift the decimal point
when displaying the value of a field element. Only DIGITAL DECforms
supports the DISPLAY_SCALE field property.

You can specify only one DISPLAY_SCALE property for a field element.

Examples

1. CDO> DEFINE FIELD AMOUNT
cont> DATATYPE IS LONGWORD
cont> EDIT_STRING IS 9999.99
cont> INPUT_EDIT_STRING IS 9999.99
cont> DISPLAY_SCALE -2.

In this example, the DEFINE FIELD command creates the AMOUNT field
element with a decimal point shifted two places to the left.

2. CDO> CHANGE FIELD AMOUNT
cont> NODISPLAY_SCALE.

In this example, the NODISPLAY_SCALE keyword removes the DISPLAY_
SCALE property from the AMOUNT field element.

2–28 Field and Record Properties

EDIT_STRING Field Property

EDIT_STRING Field Property

Format 2
64

COBOL
DTR
PLI
RPG

3
75 EDIT_STRING IS edit-string

Parameters

edit-string
Specifies an edit string. See Chapter 5 for detailed information on edit strings.

Description

The EDIT_STRING field property indicates how to display the value of a field
element.

You can specify a CDO generic edit string or a language-specific edit string for
the following languages:

• COBOL

• DATATRIEVE

• PL/I

• RPG

When you specify a language-specific edit string for a field element that already
contains a generic edit string, the language-specific edit string overrides the
existing generic edit string.

You should create a language-specific edit string when:

• One or more characters in the generic edit string cannot be translated into
valid edit string characters for a language that uses the generic edit string.
Table 5–1 shows how CDO translates characters in a generic edit string for
COBOL, DIGITAL DATATRIEVE, PL/I, and RPG.

• A language that uses the generic edit string does not support the data type
of the field element that contains the generic edit string.

Field and Record Properties 2–29

EDIT_STRING Field Property

If your programs fail to compile due to edit string or data type errors, the
language may not support the generic edit string. If this is the case, you
should create language-specific edit strings to exclude this language from
accessing the generic edit string.

Examples

1. CDO> DEFINE FIELD TRANS_DATE
cont> DATATYPE IS DATE
cont> EDIT_STRING IS NN"/"DD"/"YY.

In this example, the DEFINE FIELD command creates the TRANS_DATE
field element, which displays as a series of three, two-digit numbers in a
month/day/year format.

2. CDO> CHANGE FIELD TRANS_DATE
cont> NOEDIT_STRING.
CDO> CHANGE FIELD COBOL_TRANS_DATE
cont> NOCOBOL EDIT_STRING.

In this example, the NOEDIT_STRING keywords remove the generic
EDIT_STRING property from the TRANS_DATE field element. The
NOCOBOL EDIT_STRING keywords remove the COBOL-specific EDIT_
STRING property.

2–30 Field and Record Properties

FILLER Field Property

FILLER Field Property

Format

FILLER

Description

The FILLER field property creates an unnamed field element. Unnamed field
elements are similar to FILLER fields in COBOL. You can use them to format
print records or to reserve space in a record for future additions.

When you specify the FILLER property, CDO creates the field element without
a processing name.

Examples

CDO> DEFINE FIELD BLANKS
cont> DATATYPE IS TEXT 30 FILLER.

In this example, the DEFINE FIELD command includes a FILLER property
that suppresses the BLANKS processing name.

Field and Record Properties 2–31

GENERIC Field Property

GENERIC Field Property

Format

GENERIC type-name IS
n quoted-string

n

o

Parameters

type-name
Specifies the user-defined type of the property you are adding.

quoted-string
Specifies the value (a string enclosed in quotation marks) for this property.

n
Specifies the value (numerical) for this property.

Description

The GENERIC field property creates a generic field property. You specify
generic field properties only if you have made changes to the field type
(CDD$DATA_ELEMENT) supplied by Oracle CDD/Repository, and the changes
require generic field properties.

You can specify the NOGENERIC keyword to remove a generic field property
only if the changes you have made to CDD$DATA_ELEMENT indicate that
this property is optional.

Examples

CDO> CHANGE FIELD TEST_FIELD
cont> NOGENERIC MY_ATTRIBUTE.

In this example, the NOGENERIC keyword in the CHANGE FIELD command
removes the MY_ATTRIBUTE generic field property from the TEST_FIELD
field element.

2–32 Field and Record Properties

HELP_TEXT Field Property

HELP_TEXT Field Property

Format

HELP_TEXT IS quoted-string

Parameters

quoted-string
Specifies the text you want the product to display when this field element is
active and an operator presses the Help key.

Description

The HELP_TEXT field property tells a product to display user-supplied help
text for the current element. Only DIGITAL DECforms supports the HELP_
TEXT field property.

You can define only one HELP_TEXT property for a field element.

When you enter a quoted string that extends beyond one line, let the string
wrap to the next line. Do not enclose each line of the quoted string with
quotation marks. Do not press the Return key until you have closed the quoted
string.

Examples

1. CDO> DEFINE FIELD EMPLOYEE_STATUS
cont> DATATYPE IS TEXT SIZE IS 5
cont> HELP_TEXT IS " Enter: C for currently employed,
cont> R for retired, D for dismissed,
cont> or MLOA for medical leave of absence. ".

In this example, the DEFINE FIELD command includes a HELP_TEXT
property that defines help text for the EMPLOYEE_STATUS field element.

Note

When you enter a quoted string that extends beyond one line, let the
string wrap to the next line. Do not enclose each line of the quoted
string with quotation marks. Do not press the Return key until you
close the quoted string.

Field and Record Properties 2–33

HELP_TEXT Field Property

2. CDO> CHANGE FIELD EMPLOYEE_STATUS
cont> NOHELP_TEXT.

In this example, the NOHELP_TEXT keyword removes the HELP_TEXT
property from the EMPLOYEE_STATUS field element.

2–34 Field and Record Properties

INITIAL_VALUE Field Property

INITIAL_VALUE Field Property

Format

INITIAL_VALUE IS value-expr

Parameters

value-expr
Specifies an expression a product can use to calculate a field’s value. See
Chapter 4 for more information on value expressions.

Description

The INITIAL_VALUE field property declares a field’s value when the product
first allocates the field. The expression you specify must be a valid expression
for the product evaluating it.

The value of the expression must fit into the space allocated for the field.

You can specify a complex number for the INITIAL_VALUE property of a field
if the field’s data type is F_FLOATING COMPLEX, D_FLOATING COMPLEX,
G_FLOATING COMPLEX, or H_FLOATING COMPLEX.

You can specify a fixed-point number for the INITIAL_VALUE property of
any field whose data type is not DATE, TEXT, UNSPECIFIED, or VARYING
STRING.

You can specify a floating-point number for the INITIAL_VALUE property of
a field whose data type is not DATE, TEXT, UNSPECIFIED, or VARYING
STRING.

You can use Japanese in an INITIAL_VALUE field property and to document
comments (DESCRIPTION and AUDIT clauses) for a field. To do this set the
character set of a session to DEC_KANJI; otherwise, the information may
not display correctly. See the SET CHARACTER_SET command to set the
character_set of a session.

Examples

1. CDO> DEFINE FIELD AMOUNT
cont> DATATYPE IS UNSIGNED NUMERIC
cont> SIZE IS 8 DIGITS
cont> INITIAL_VALUE IS 0.

In this example, the DEFINE FIELD command assigns 0 as the initial
value to the AMOUNT field element.

Field and Record Properties 2–35

INITIAL_VALUE Field Property

2. CDO> CHANGE FIELD AMOUNT
cont> NOINITIAL_VALUE.

In this example, the NOINITIAL_VALUE keyword removes the INITIAL_
VALUE property from the AMOUNT field element.

2–36 Field and Record Properties

INPUT_VALUE Field Property

INPUT_VALUE Field Property

Format

INPUT_VALUE IS
�

OPTIONAL
REQUIRED

�

Description

The INPUT_VALUE field property indicates if a field requires input data
(REQUIRED) or can be empty (OPTIONAL).

Only DIGITAL DECforms supports the INPUT_VALUE field property.

Examples

1. CDO> DEFINE FIELD PRICE
cont> DATATYPE IS LONGWORD
cont> INPUT_VALUE IS REQUIRED.

In this example, the DEFINE FIELD command includes an INPUT_
VALUE property that requires at least one input character for the PRICE
field element.

2. CDO> CHANGE FIELD PRICE
cont> NOINPUT_VALUE.

In this example, the NOINPUT_VALUE keyword removes the INPUT_
VALUE property from the PRICE field element.

Field and Record Properties 2–37

JUSTIFIED Field Property

JUSTIFIED Field Property

Format

JUSTIFIED

8><
>:

CENTER
DECIMAL
LEFT
RIGHT

9>=
>;

Description

The JUSTIFIED field property indicates how to fill the storage space allocated
to a field element.

• JUSTIFIED CENTER centers a TEXT field.

• JUSTIFIED DECIMAL right-justifies the whole part of a number to the
left of a decimal point and left-justifies the fractional part of the number
to the right of a decimal point. DIGITAL DECforms provides interactive
decimal justification that appears as a user types numeric data.

• JUSTIFIED LEFT truncates or fills a TEXT field against the left margin.
This is the default value.

• JUSTIFIED RIGHT truncates or fills a TEXT field against the right
margin.

Only DIGITAL DECforms supports JUSTIFIED DECIMAL. All other products
ignore it. JUSTIFIED DECIMAL requires a decimal string or floating-point
data type.

Only COBOL and DIGITAL DECforms support the JUSTIFIED RIGHT option.
Other language processors ignore it. COBOL displays as much of the right
portion of a JUSTIFIED RIGHT string as possible. If this adjustment leaves
storage space to the left of the string, COBOL fills this space with blanks.

Use the JUSTIFIED field property only with fields that have the following data
types:

• TEXT

• UNSPECIFIED

• Decimal string

• Fixed-point

• Floating-point

2–38 Field and Record Properties

JUSTIFIED Field Property

Examples

1. CDO> DEFINE FIELD STREET
cont> DATATYPE IS TEXT 15
cont> NAME FOR COBOL IS C_STREET
cont> JUSTIFIED RIGHT.

In this example, the DEFINE FIELD command allocates space for 15
right-justified text characters in the STREET field element.

2. thsonian Avenue
15 Maple Street
∆∆∆6 Oak Street

In this continuation of the previous example, COBOL displays the strings
"137 Smithsonian Avenue," "15 Maple Street", and "6 Oak Street" in the
STREET field element. The deltas represent blanks that COBOL enters
to fill the 15 characters allocated for the STREET field element. In this
example, 15 characters appear on a line; however, the individual line
lengths vary due to the different character sizes.

3. CDO> CHANGE FIELD STREET
cont> NOJUSTIFIED.

In this example, the NOJUSTIFIED keyword removes the JUSTIFIED
RIGHT property from the STREET field element.

Field and Record Properties 2–39

MISSING_VALUE Field Property

MISSING_VALUE Field Property

Format

MISSING_VALUE IS value-expr

Parameters

value-expr
Specifies an expression a product can use to calculate a field’s value. See
Chapter 4 for more information on value expressions.

Description

The MISSING_VALUE field property specifies a value to use if a field has not
been assigned a meaningful value. See the DIGITAL DATATRIEVE or Oracle
Rdb documentation for more information on how those products interpret the
MISSING_VALUE field property.

The expression you specify must be a valid expression for the product
evaluating it.

Products using CDO ignore field elements that contain the MISSING_VALUE
field property when performing statistical operations.

Examples

1. CDO> DEFINE FIELD PRICE
cont> DATATYPE IS SIGNED LONGWORD
cont> MISSING_VALUE IS 0.

In this example, the DEFINE FIELD command includes a MISSING_
VALUE field property that can assign a value of 0 to a null or missing
value.

2. CDO> CHANGE FIELD PRICE
cont> NOMISSING_VALUE.

In this example, the NOMISSING_VALUE keyword removes the
MISSING_VALUE property from the PRICE field element.

2–40 Field and Record Properties

NAME Field or Record Property

NAME Field or Record Property

Format

NAME FOR

8><
>:

BASIC
COBOL
PLI
RPG

9>=
>; IS name

Parameters

name
Specifies a language-specific name for a field or record element.

Description

The NAME property declares a language-specific name for a field or record
element.

This name must be a valid name for the specified language or language
processor. CDO does not check the validity of the name that you specify.

Once you have assigned a language-specific name to an element, the specific
language no longer recognizes the element’s original name.

You can assign only one language-specific name per language to an element.

Caution

Be careful when you use the NAME field property because it allows
you to assign completely different names to the same field or record
element. Choose a language-specific name that is similar to the
element’s directory or processing name to avoid confusion.

Examples

CDO> DEFINE FIELD ORDER_NUMBER
cont> DATATYPE IS UNSIGNED NUMERIC
cont> SIZE IS 10 DIGITS
cont> NAME FOR COBOL IS ORDER-NUMBER.

In this example, the NAME property assigns a language-specific processing
name to the ORDER_NUMBER field used by COBOL.

Field and Record Properties 2–41

OCCURS Field Property

OCCURS Field Property

Format

OCCURS n TIMES

[INDEXED BY index-name [, index-name] ...]

Parameters

n
Specifies the number of occurrences of the array. This number is greater than
zero.

index-name
Specifies the field element that functions as an index.

Description

The OCCURS field property declares one or more fixed-length, one-dimensional
arrays.

The n value represents the upper bound of the array; the lower bound is
always 1. Use the ARRAY field property to specify a lower bound other than 1.

Examples

1. CDO> DEFINE FIELD MULTIPLE
cont> OCCURS 3 TIMES
cont> DATATYPE IS SIGNED LONGWORD.

In this example, the OCCURS field property in the DEFINE FIELD
command creates the MULTIPLE field element, which occurs 3 times.

2. CDO> CHANGE FIELD MULTIPLE
cont> NOOCCURS.

In this example, the NOOCCURS keyword removes the OCCURS property
from the MULTIPLE field element.

2–42 Field and Record Properties

OCCURS ... DEPENDING Record Property

OCCURS ... DEPENDING Record Property

Format

OCCURS n1
�

TO n2 TIMES DEPENDING ON name1 [IN name2] ...
TIMES

�

[INDEXED BY index-name]

Parameters

n1, n2
Specifies the range for the number of occurrences. The value of n1 is greater
than or equal to zero. The value of n2 is greater than or equal to n1.

name1
Specifies the field element whose value determines the actual number of
occurrences.

name2
Specifies the element that contains the depending field. This element is often a
record.

index-name
Specifies the field element that functions as an index.

Description

The OCCURS ... DEPENDING record property declares a variable-length,
one-dimensional array.

The actual number of occurrences varies according to the value of the name1
field element.

An error occurs if name2 does not include the name1 field, or if name2 specifies
an array record element.

You can repeat name2 as many times as necessary to identify the particular
instance of name1. For example, name2 can repeat to identify a field element
within nested record elements:

CDO> DEFINE RECORD RETIREMENT_CHECKS OCCURS 1 TO 2 TIMES
cont> DEPENDING ON ID_NUMBER IN EMPLOYEES
cont> IN MEDICALLY_RETIRED_EMPLOYEES IN RETIRED_EMPLOYEES.
cont> END RECORD.

Field and Record Properties 2–43

OCCURS ... DEPENDING Record Property

Examples

1. CDO> DEFINE RECORD VACATION_PAY OCCURS 1 TO 2 TIMES
cont> DEPENDING ON EXCESS_VACATION IN EMPLOYEE_BENEFITS.
cont> EMP_SSN.
cont> WEEKLY_SALARY.
cont> END RECORD.

In this example, the OCCURS ... DEPENDING record property specifies
the number of times the VACATION_PAY record element occurs. The
number of occurrences is based on the run-time value of the tag variable
field element, EXCESS_VACATION, which is part of the EMPLOYEE_
BENEFITS record element.

2. CDO> CHANGE RECORD VACATION_PAY
cont> NOOCCURS.
cont> END RECORD.

In this example, the keyword NOOCCURS in the CHANGE RECORD
command removes the OCCURS ... DEPENDING record property from the
VACATION_PAY record element.

3. CDO> DEFINE FIELD MESSAGE_TABLE_IDX DATATYPE IS LONGWORD.
CDO> DEFINE FIELD MESSAGE_TEXT DATATYPE IS TEXT SIZE IS
cont> 256 CHARACTERS.
CDO> DEFINE RECORD MESSAGE_TABLE.
cont> MESSAGE_STRUCT STRUCTURE OCCURS 10 TIMES INDEXED BY
cont> MESSAGE_TABLE_IDX.
cont> MESSAGE_TEXT.
cont> END MESSAGE STRUCTURE.
cont> END MESSAGE_TABLE RECORD.
CDO> DEFINE RECORD MESSAGE_TABLE2.
cont> MESSAGE_STRUCT STRUCTURE OCCURS 1 TO 10 TIMES
cont> DEPENDING ON MESSAGE_TEXT
cont> INDEXED BY MESSAGE_TABLE_IDX.
cont> MESSAGE_TEXT.
cont> END MESSAGE STRUCTURE.
cont> END MESSAGE_TABLE2 RECORD.
CDO> SHOW RECORD MESSAGE_TABLE/FULL

Definition of record MESSAGE_TABLE
| Contains record MESSAGE_STRUCT
| | Occurs 10 indexed by MESSAGE_TABLE_IDX
| | Contains field MESSAGE_TEXT
| | | Datatype text size is 256 characters

CDO> SHOW RECORD MESSAGE_TABLE2/FULL

2–44 Field and Record Properties

OCCURS ... DEPENDING Record Property

Definition of record MESSAGE_TABLE2
| Contains record MESSAGE_STRUCT
| | Occurs 1 to 10 depending on MESSAGE_TEXT

indexed by MESSAGE_TABLE_IDX
| | Contains field MESSAGE_TEXT
| | | Datatype text size is 256 characters

In this example, the MESSAGE_TABLE record contains an INDEXED BY
clause. The name of the index field must already be defined.

Field and Record Properties 2–45

QUERY_HEADER Field Property

QUERY_HEADER Field Property

Format

QUERY_HEADER IS quoted-string ,...

Parameters

quoted-string
Specifies the label you are using as a column heading.

Description

The QUERY_HEADER field property creates a column heading for use in
printouts and reports.

The quoted string must be a valid column heading for the product that uses it.
CDO accepts a text string of any length as a query header.

Examples

1. CDO> DEFINE FIELD TOTAL_PRICE
cont> DATATYPE IS UNSIGNED LONGWORD
cont> COMPUTED BY UNIT_PRICE * QUANTITY
cont> QUERY_HEADER IS "TOTAL PRICE".

In this example, the QUERY_HEADER field property in the DEFINE
FIELD command creates the TOTAL PRICE column heading for the
TOTAL_PRICE field element.

2. CDO> CHANGE FIELD TOTAL_PRICE
cont> QUERY_HEADER IS "TOTAL".

In this example, the CHANGE FIELD command changes the column
heading in the TOTAL_PRICE field to TOTAL.

3. CDO> CHANGE FIELD TOTAL_PRICE
cont> NOQUERY_HEADER.

In this example, the NOQUERY_HEADER keyword removes the QUERY_
HEADER property from the TOTAL_PRICE field element.

2–46 Field and Record Properties

QUERY_NAME Field Property

QUERY_NAME Field Property

Format

QUERY_NAME IS
n quoted-string

query-name

o

Parameters

quoted-string
Specifies a string that is enclosed by quotation marks. DIGITAL DATATRIEVE
only uses the string itself (not the quotation marks that enclose it) as the query
name.

query-name
Specifies a string that is not enclosed by quotation marks.

Description

The QUERY_NAME field property provides an alternate name for a field
element. Only DIGITAL DATATRIEVE supports this property.

CDO accepts query names of up to 256 characters in length. Except for the
quotation mark ("), comma (,), apostrophe (’), and embedded blanks, any
characters in the Digital Multinational Character Set are valid in query
names.

Make sure the query name you specify is valid for the product that uses it.

CDO does not check whether the string you specified for the query name is
valid.

When you assign a query name to a field element, products that support the
QUERY_NAME field property can refer to the field element either by its query
name or its processing name.

Examples

CDO> DEFINE FIELD TOTAL_PRICE
cont> DATATYPE IS UNSIGNED LONGWORD
cont> COMPUTED BY UNIT_PRICE * QUANTITY
cont> QUERY_NAME IS "TP".

In this example, the QUERY_NAME field property in the DEFINE FIELD
command specifies the TP alternate name for the TOTAL_PRICE field element.

Field and Record Properties 2–47

VALID IF Field Property

VALID IF Field Property

Format

VALID IF cond-expr

Parameters

cond-expr
Specifies an expression that forms the validation condition. See Chapter 4 for
more information on value expressions.

Description

The VALID IF field property checks values assigned to a field to ensure that
they are in the acceptable range for the field.

The expression you specify must be a valid expression for the product
evaluating it.

Examples

1. CDO> DEFINE FIELD AMOUNT_OWED
cont> DATATYPE IS UNSIGNED WORD
cont> VALID IF AMOUNT_OWED > 0.

In this example, the VALID IF field property in the DEFINE FIELD
command specifies a range of valid values for the AMOUNT_OWED field
element.

2. CDO> CHANGE FIELD AMOUNT_OWED
cont> NOVALID IF.

In this example, the NOVALID IF keywords remove the VALID IF property
from the AMOUNT_OWED field element.

2–48 Field and Record Properties

3
File Definition, Area, and Key Properties

The file definition, area, and key properties define the physical characteristics
of a Record Management Services (RMS) database file.

In most cases, the properties correspond to the RMS file and allocation control
field blocks (FABs or XABs). CDO does not provide properties corresponding to
the RMS record access block attributes (RABs).

See the OpenVMS documentation on RMS for detailed descriptions and the
values accepted for each property listed in this chapter.

File Definition, Area, and Key Properties 3–1

File Definition Properties

File Definition Properties

Format 8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ALLOCATION numeric-literal
BUCKET_SIZE numeric-literal
MT_BLOCK_SIZE numeric-literal
GLOBAL_BUFFER_COUNT numeric-literal
MAX_RECORD_NUMBER numeric-literal
MAX_RECORD_SIZE numeric-literal
FILE_PROCESSING_OPTIONS [file-processing-options] ,...
FOP [file-processing-options] ,...
ORGANIZATION file-organization-options
file-access-block-properties

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Parameters

numeric-literal
Specifies a positive integer.

3–2 File Definition, Area, and Key Properties

File Definition Properties

file-processing-options2
666666666666666666666666666666666664

BEST_TRY_CONTIGUOUS
CONTIGUOUS
CREATE_IF
DEFERRED_WRITE
DELETE_ON_CLOSE
MAXIMIZE_VERSION
MT_CLOSE_REWIND
MT_CURRENT_POSITION
MT_NOT_EOF
MT_OPEN_REWIND
NO_DIRECTORY_ENTRY
NON_FILE_STRUCTURED
PRINT_ON_CLOSE
READ_CHECK
SEQUENTIAL_ONLY
SUBMIT_ON_CLOSE
SUPERSEDE
TEMPORARY
TRUNCATE_ON_CLOSE
USER_FILE_OPEN
WRITE_CHECK

3
777777777777777777777777777777777775

Define optional file operations for a program. The file processing options fall
into the following seven functional categories:

• Allocation and extension options

• File disposition options

• File name parsing modifiers

• Magnetic tape processing options

• Nonstandard processing options

• Performance options

• Reliability options

File Definition, Area, and Key Properties 3–3

File Definition Properties

file-organization-options(INDEXED
RELATIVE
SEQUENTIAL

)

Define the organization of the file. The default value for the file organization
option is SEQUENTIAL.

file-access-block-attributes8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

EXTENSION numeric-literal
CONTROL_FIELD_SIZE numeric-literal
WINDOW_SIZE numeric-literal
LOGICAL_NAME_MODE access-mode
CHANNEL_ACCESS_MODE access-mode
ACCESS [file-access-control-options] ,...
FAC [file-access-control-options] ,...
CARRIAGE_CONTROL carriage-control-options
BLOCK_SPAN
FORMAT record-format-options
SHARING [share-options] ,...

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

Define file access characteristics and certain run-time options.

access-mode8><
>:

NONE
EXECUTIVE
SUPER
USER

9>=
>;

Defines an access mode for a channel. NONE is the default value, which is
interpreted by RMS as the executive mode.

file-access-control-options8>>>>>>><
>>>>>>>:

BLOCK_IO
RECORD_IO
DELETE
GET
PUT
TRUNCATE
UPDATE

9>>>>>>>=
>>>>>>>;

Define the type of record access operations that a program can perform.

3–4 File Definition, Area, and Key Properties

File Definition Properties

carriage-control-options(CARRIAGE_RETURN
FORTRAN
PRINT

)

Define record control information for a record. CARRIAGE_RETURN is the
default value for most OpenVMS programs.

record-format-options8>>>>>>><
>>>>>>>:

FIXED
STREAM
STREAM_CR
STREAM_LF
UNDEFINED
VARIABLE
VFC

9>>>>>>>=
>>>>>>>;

Define the format for all records in a file.

share-options8>>>>>>><
>>>>>>>:

DELETE
GET
MULTISTREAM
PROHIBIT
PUT
UPDATE
USER_INTERLOCK

9>>>>>>>=
>>>>>>>;

Define the type of record operations that a program can perform when sharing
access to a file with other programs.

Description

File definition properties define file characteristics and certain run-time options
for a logical RMS database element.

For a description and valid values for a particular keyword, see the OpenVMS
documentation on RMS.

For a mapping of CDO keywords to symbolics, see Appendix A.

File Definition, Area, and Key Properties 3–5

File Definition Properties

Examples

CDO> DEFINE RMS_DATABASE EMPLOYEE_INFO DESCRIPTION IS "INFORMATION ON"
cont> "CURRENT EMPLOYEE".
cont> RECORD EMPLOYEE_REC.
cont> FILE_DEFINITION
cont> ORGANIZATION INDEXED
cont> CHANNEL_ACCESS_MODE SUPER
cont> CARRIAGE_CONTROL CARRIAGE_RETURN
cont> ACCESS RECORD_IO
cont> FILE_PROCESSING_OPTIONS BEST_TRY_CONTIGUOUS
cont> FORMAT VARIABLE
cont> SHARING GET, USER_INTERLOCK.
cont> AREAS.
cont> AREA 0
cont> ALLOCATE 1000
cont> BUCKET_SIZE 10
cont> EXTENSION 100
cont> CONTIGUOUS.
cont> AREA 1
cont> ALLOCATE 1000
cont> BUCKET_SIZE 1
cont> EXTENSION 100
cont> BEST_TRY_CONTIGUOUS.
cont> AREA 2
cont> ALLOCATE 1000
cont> BUCKET_SIZE 1
cont> EXTENSION 100
cont> BEST_TRY_CONTIGUOUS.
cont> END AREAS.

cont> KEYS.
cont> KEY 0
cont> DATA_AREA 0
cont> INDEX_AREA 0
cont> SEGMENT EMP_ID IN EMPLOYEE_REC.
cont> KEY 1
cont> DUPLICATES
cont> DATA_AREA 1
cont> INDEX_AREA 2
cont> SEGMENT LAST_NAME IN EMPLOYEE_REC.
cont> END KEYS.
cont> END EMPLOYEE_INFO RMS_DATABASE.

This example is the complete logical RMS database definition for
EMPLOYEE_INFO. Seven file definition properties appear in the DEFINE
RMS_DATABASE command:

• The option for file organization is INDEXED.

• The channel access mode is SUPER.

3–6 File Definition, Area, and Key Properties

File Definition Properties

• The carriage control option is CARRIAGE_RETURN, although it is not
necessary to code this because CARRIAGE_RETURN is the default.

• The type of record access operation this program can perform is RECORD_
IO.

• An optional file processing operation is BEST_TRY_CONTIGUOUS.

• Record format for this definition is VARIABLE.

• The types of record operations that this program can perform when sharing
access to a file with other programs are GET and USER_INTERLOCK.

File Definition, Area, and Key Properties 3–7

Area Properties

Area Properties

Format 8>>>>>>>>>>><
>>>>>>>>>>>:

EXACT_POSITIONING
ANY_CYLINDER
BEST_TRY_CONTIGUOUS
CONTIGUOUS
POSITION position-type
VOLUME numeric-literal
ALLOCATE numeric-literal
BUCKET_SIZE numeric-literal
EXTENSION numeric-literal

9>>>>>>>>>>>=
>>>>>>>>>>>;

Parameters

position-type
Defines the alignment of an allocated area. The default alignment value is
NONE. For more information, see Table A–5

numeric-literal
Specifies a positive integer.

Description

Area properties provide additional control over file or area space allocation on
disk devices to optimize performance.

You usually include areas using indexed files. A file can contain up to 255
areas. Define areas in numerical order, beginning with 0.

For a description and valid values for a particular keyword, see the OpenVMS
documentation on RMS.

For a mapping of CDO keywords to symbolics, see Appendix A.

3–8 File Definition, Area, and Key Properties

Area Properties

Examples

1. CDO> DEFINE RMS_DATABASE EMPLOYEE_INFO DESCRIPTION IS "INFORMATION ON"
cont> "CURRENT EMPLOYEE".
cont> RECORD EMPLOYEE_REC.

.

.

.
cont> AREAS.
cont> AREA 0
cont> ALLOCATE 1000
cont> BUCKET_SIZE 10
cont> EXTENSION 100
cont> CONTIGUOUS.
cont> AREA 1
cont> ALLOCATE 1000
cont> BUCKET_SIZE 1
cont> EXTENSION 100
cont> BEST_TRY_CONTIGUOUS.
cont> AREA 2
cont> ALLOCATE 1000
cont> BUCKET_SIZE 1
cont> EXTENSION 100
cont> BEST_TRY_CONTIGUOUS.
cont> END AREAS.

.

.

.
cont> END EMPLOYEE_INFO RMS_DATABASE.
CDO>

This example shows the syntax for defining the ALLOCATE, BUCKET_
SIZE, EXTENSION, CONTIGUOUS, and BEST_TRY_CONTIGUOUS
properties for three areas in the EMPLOYEE_INFO RMS database
element.

File Definition, Area, and Key Properties 3–9

Area Properties

2. CDO> DEFINE RMS_DATABASE MORE_EMPLOYEE_INFO
cont> "DESCRIPTION IS " DATA ON CURRENT EMPLOYEES ".
cont> RECORD EMPLOYEE_REC.
cont> FILE_DEFINITION
cont> AREA 1
cont> POSITION NONE.

.

.

.
cont> END MORE_EMPLOYEE_INFO RMS_DATABASE.
CDO>

This example shows the syntax that defines the NONE position type option
for the area property POSITION in the MORE_EMPLOYEE_INFO RMS
database element.

3–10 File Definition, Area, and Key Properties

Key Properties

Key Properties

Format 8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

DUPLICATES
CHANGES
NULL_KEY
NULL_VALUE null-value
DATA_AREA area-number
DATA_FILL numeric-literal
DATA_KEY_COMPRESSION
DATA_RECORD_COMPRESSION
INDEX_AREA area-number
INDEX_COMPRESSION
INDEX_FILL numeric-literal
LEVEL1_INDEX_AREA area-number
NODATA_KEY_COMPRESSION
NODATA_RECORD_COMPRESSION
NOINDEX_COMPRESSION
PROLOG numeric-literal
SEGMENT within-name-clause
SORTED BY ASCENDING
SORTED BY DESCENDING

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Parameters

null-value
Specifies a null key value for an alternate index. This value is either an
integer or a single character within quotation marks.

area-number
Specifies a positive integer that corresponds to the number of a previously
defined area.

numeric-literal
Specifies a positive integer. See the OpenVMS documentation on RMS for the
valid values for a particular keyword. For a mapping of CDO keywords to the
corresponding RMS symbolic field offset, see Appendix A.

File Definition, Area, and Key Properties 3–11

Key Properties

within-name-clause

field-name { IN record-name } ...

Specifies the field or record names that are part of a segmented key. A
segmented key allows you to define a key that accesses noncontiguous fields in
a record. The record name is the same name that defines the data structure of
the RMS database in the DEFINE RMS_DATABASE command.

Description

Key properties define the characteristics of a key in an indexed file. You define
keys in numerical order, starting with 0. By default, Key 0 always has a value
of DATA_AREA 0.

A segmented key allows you to define a key that accesses non-contiguous fields
in a record. You can specify from 2 to 8 segments for each segmented key in an
indexed file. For example:

• A field in a record

• A field in a record that is in a record

• A field in a structure in a record

You must specify a segment for each key you define. A segmented key can
contain up to 8 segments.

The field element or elements specified by the keyword SEGMENT determine
the data type of the key. A key with only 1 segment can point to a field that
has any of the following RMS data types:

DSC$K_DTYPE_B
DSC$K_DTYPE_BU
DSC$K_DTYPE_W
DSC$K_DTYPE_WU
DSC$K_DTYPE_L
DSC$K_DTYPE_LU
DSC$K_DTYPE_Q
DSC$K_DTYPE_QU
DSC$K_DTYPE_P
DSC$K_DTYPE_T

See the OpenVMS documentation on RMS for more information on valid RMS
data types.

Each segment of a key can contain up to 255 characters. The sum of all
characters for all key segments must not exceed 255 characters.

3–12 File Definition, Area, and Key Properties

Key Properties

When defining a segment, you cannot use a field that is in the variant portion
of a record.

If you specify NULL_VALUE without specifying NULL_KEY, CDO
automatically specifies NULL_KEY. If you specify NULL_KEY without
specifying NULL_VALUE, the default value for NULL_VALUE is 0. When
you display a RMS database element with a NULL_VALUE property, the null
value appears as a decimal value.

For a description and valid values for a particular keyword, see the OpenVMS
documentation on RMS.

For a mapping of CDO keywords to symbolics, see Appendix A.

Examples

CDO> DEFINE RMS_DATABASE EMPLOYEE_INFO DESCRIPTION IS "INFORMATION ON"
cont> "CURRENT EMPLOYEE".
cont> RECORD EMPLOYEE_REC.

.

.

.
cont> KEYS.
cont> KEY 0
cont> DATA_AREA 0
cont> INDEX_AREA 0
cont> SEGMENT EMP_ID IN EMPLOYEE_REC.
cont> KEY 1
cont> DUPLICATES
cont> DATA_AREA 1
cont> INDEX_AREA 2
cont> SEGMENT LAST_NAME IN EMPLOYEE_REC.
cont> END KEYS.
cont> END EMPLOYEE_INFO RMS_DATABASE.
CDO>

This example shows the syntax for defining the DATA_AREA, INDEX_AREA,
SEGMENT, and DUPLICATES key properties in the EMPLOYEE_INFO RMS
database element.

File Definition, Area, and Key Properties 3–13

4
Expressions

CDO provides the following expressions:

• Value expressions—to calculate a value

• Conditional expressions—to represent a relationship between values

• Record selection expressions (RSE)—to state a condition for processing

CDO stores expressions in a generic format, not as text, so that many products
and applications can share the same expression. The product using the CDO
expression calculates the value at run time.

Expressions 4–1

Precedence Ordering

Precedence Ordering
The following list shows the order in which Oracle CDD/Repository interprets
symbols used in an expression:

1. (symbols)

Any field contained in parentheses.

2. * /

Multiplication and division symbols.

3. +

Addition and subtraction symbols.

4. < > <= >= = <>

Relational operators. See Relational Operators for more information.

5. NOT

Logical operator.

6. AND

Logical operator.

7. OR

Logical operator.

Table 4–1 shows equivalent symbols for the relational operators shown in the
Precedence Ordering within Expressions table.

Table 4–1 Relational Operators Equivalent Symbols

Relational Operator Equivalent Symbol Meaning

< LT Less than
> GT Greater than
<= LE Less than or equal to
>= GE Greater than or equal to
= EQ Equal to
<> NE Not equal to

In general, CDO evaluates expressions from left to right. When an expression
contains parentheses or operators, CDO evaluates these operations first. The

4–2 Expressions

Precedence Ordering

following list shows the order of precedence for these symbols, from highest to
lowest:

• A symbol or symbols within parentheses

• Multiplication or division symbols

• Addition or subtraction symbols

• Relational operators: LT, GT, LE, GE, EQ, NE

• NOT

• AND

• OR

In the following example, the order of precedence determines that the first
expression evaluates to 3, while the second expression evaluates to 8.

(6 + 12)/6 = 3
6 + 12/6 = 8

In the following expression, CDO evaluates X as a value between 2 and 4 or 11
and 20.

IF (X GE 2 AND X LE 4) OR (X GE 11 AND X LE 20) THEN 1 ELSE 0

Expressions 4–3

Value Expressions

Value Expressions

Format 8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

arithmetic-expr
builtin-expr
case-expr
char-string-literal
concatenated-expr
external-literal
field-or-record-expr
first-from-expr
numeric-literal
statistical-expr

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Parameters

arithmetic-expr

value-expr

8<
:

+
-
*
/

9=
; value-expr

An arithmetic expression combines value expressions and arithmetic operators.
When you use an arithmetic expression in a value expression, the product
using the CDO expression calculates the value associated with the expression
and uses that value when executing the statement. Therefore, an arithmetic
expression must be reducible to a value.

The value expression, value-expr, is a symbol or a string of symbols used to
calculate a value.

4–4 Expressions

Value Expressions

builtin-expr8>>><
>>>:

NULL

TRIM (

2
64
" BOTH

LEADING
TRAILING

#
CHARACTER value-expr FROM

3
75 value-expr)

POSITION (value-expr IN value-expr FROM value-expr)
USER
CURRENT_USER
CURRENT_DATE
CURRENT_TIME (scale)
CURRENT_TIMESTAMP (scale)
CHARACTER_LENGTH (value-expr)
CHAR_LENGTH (value-expr)
OCTET_LENGTH (value-expr)
UPPER (value-expr)
LOWER (value-expr)
SESSION_USER
SUBSTRING [_OCTETS] (value-expr FROM value-expr FOR value-expr)
SUBSTRING_CHARACTERS (value-expr FROM value-expr FOR value-expr)
SYSTEM_USER
cast-builtin-expr

EXTRACT (

8>>>>>>>>><
>>>>>>>>>:

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
WEEKDAY
JULIAN

9>>>>>>>>>=
>>>>>>>>>;

FROM value-expr)

TRANSLATE (value-expr USING character-set)

9>>>=
>>>;

Calculate values based on specified value expressions. See Table 4–4 for
descriptions.

See the Oracle Rdb7 SQL Reference Manual for the character set types.

Expressions 4–5

Value Expressions

cast-builtin-expr

CAST (value-expr AS

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

FIELD field-name
DATATYPE8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

TEXT [CHARACTER_SET IS name] [SIZE IS digits]
�

CHARACTERS
OCTETS

�

VARYING STRING [CHARACTER_SET IS name] [SIZE IS digits]
�

CHARACTERS
OCTETS

�

DATE
�

VMS
ANSI

�
TIME [SCALE scale-value]
TIMESTAMP [SCALE scale-value]
interval-builtin-expr
F_FLOATING
G_FLOATING

[SIGNED]

8><
>:

BYTE
WORD
LONGWORD
QUADWORD

9>=
>; [SCALE scale-value]

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

)

interval-builtin-expr

INTERVAL

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

YEAR [SIZE IS digits] [TO MONTH]
MONTH [SIZE IS digits]

DAY [SIZE IS digits]

2
64 TO

(HOUR
MINUTE
SECOND [SCALE scale-value]

) 3
75

HOUR [SIZE IS digits]

2
4 TO

�
MINUTE
SECOND [SCALE scale-value]

� 3
5

MINUTE [SIZE IS digits] [TO SECOND [SCALE scale-value]]
SECOND [SIZE IS digits] [SCALE scale-value]

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

Converts a value expression to another data type.

4–6 Expressions

Value Expressions

Restriction

The CAST builtin expression requires a space between the letter T
in CAST and the open parenthesis character of the value expression;
otherwise, a syntax error occurs.

case-expr

CASE value-expr { WHEN value-expr THEN value-expr } ... [ELSE value-expr] END

Matches two value expressions for equality. This clause is identical to the SQL
SIMPLE CASE expression.

char-string-literal
Specifies a string of printable characters. See Value Expressions: Character
String Literals for more information.

concatenated-expr

value-expr
n |

^

o
value-expr ...

Combines two value expressions by joining the second expression to the end of
the first expression.

You can combine value expressions of any kind, including numeric expressions,
string expressions, and literals.

The vertical bar (|) specifies a value through combining one or more value
expressions. The circumflex character (^) specifies a value through combining
one or more value expressions using SQL concatenation rules.

external-literal

EXTERNAL quoted-string

Specifies the name of an external literal. Defines the equivalent of the COBOL
initial value (VALUE IS EXTERNAL clause) and level 88 condition values
(VALUES ARE EXTERNAL clause).

field-or-record-expr�
dir-name
{ name IN } ... context-var

�

Specifies the name of a field or a record in a database by directory name, or by
field or record name and context variable. A context variable is a temporary

Expressions 4–7

Value Expressions

name you associate with a record. You define a context variable in a record
selection expression (RSE). You specify a context variable only when you use
the name IN parameter of the field or record expression syntax.

For example, once you define E as the context variable for the EMPLOYEES
relation, LAST_NAME IN E is a value expression that refers to a value from
the LAST_NAME field of EMPLOYEES. Use name IN only in an expression
with a context variable.

first-from-expr

FIRST value-expr FROM rse

Specifies a value by forming a record stream (as indicated by a record selection
expression). If at least one record matches the RSE, the values stored in the
first record of the record stream are used to evaluate the value expression.

The FIRST FROM expression can perform the equivalent of a table lookup
when you are sure that the value you want to find in a relation is unique.

The value expression, value-expr, is a symbol or a string of symbols used to
calculate a value. The rse parameter specifies a clause that products use at
run time to include specific records for processing.

numeric-literal
Specifies a value that can be expressed as a decimal number. See Value
Expressions: Numeric Literals for more information.

statistical-expr8>>>><
>>>>:

8><
>:

MAX
MIN
TOTAL
AVERAGE

9>=
>; value-expr

COUNT

9>>>>=
>>>>;

OF rse

Specifies a value by forming a record stream (as indicated by a record selection
expression), and evaluating its value expression against every record in
the record stream. Statistical expressions are sometimes called aggregate
expressions because they calculate a single value for a collection of records.
When you use a statistical expression (except for COUNT), you specify a value
expression and an RSE. A layered product evaluates the value expression
for each record in the record stream formed by the RSE. Then the product
calculates a single value based on the results of the first step.

4–8 Expressions

Value Expressions

The COUNT expression differs from the other statistical operators because it
operates on the record stream defined by the RSE, rather than on values in
that record stream. It returns the number of records in the record stream. In
the following expression, the number of employees working in New Hampshire
is returned.

COUNT OF E IN EMPLOYEES WITH STATE IN E = "NH"

Description

A value expression returns a value that can be a string, a number, or a null
value.

Table 4–2 describes the operators used in arithmetic expressions.

Table 4–2 Arithmetic Operators

Symbol Function

+ Addition
– Subtraction
* Multiplication
/ Division

Table 4–3 describes the operators used in statistical expressions.

Table 4–3 Statistical Operators

Function Value of Function

AVERAGE The average of the values specified by the value expression for
all records specified by the RSE. The value expression must be a
numeric data type.

COUNT The number of records in the stream specified by the RSE.
MAX The largest of the values specified by the value expression for all

records specified by the RSE.
MIN The smallest of the values specified by the value expression for

all records specified by the RSE.
(continued on next page)

Expressions 4–9

Value Expressions

Table 4–3 (Cont.) Statistical Operators

Function Value of Function

TOTAL The sum of the values specified by the value expression for all
records specified by the RSE. The value expression must be a
numeric data type.

Table 4–4 describes the built-in function names and values. See the Oracle
Rdb7 SQL Reference Manual for more details on the use and restrictions for
using SQL built-in functions.

Table 4–4 Built-in Function Description

Name Description

NULL Specifies a null value.
TRIM Removes leading or trailing characters from any

character value expression. Note: The CHARACTER
keyword is required in CDO.

POSITION Searches for a string in a character value expression.
USER Specifies the user name of the current process.
CURRENT_USER Returns the current active user name for a request.
CURRENT_DATE Returns a DATE data type value containing year,

month, and day for today’s date.
CURRENT_TIME Returns a TIME data type value containing hours,

minutes, and seconds for the current time. You can
specify a fractional precision between 0 and 2 for the
seconds returned by CURRENT_TIME. The fractional
seconds precision is a number that designates the
number of digits returned in the field. The fractional
precision is the negative of the value specified in the
SCALE clause. The CURRENT_TIME keyword and
the left parenthesis for the fractional precision must
be separated by a space. Otherwise, CDO interprets it
as the name of an element with a version of the value
specified in the fractional precision.

(continued on next page)

4–10 Expressions

Value Expressions

Table 4–4 (Cont.) Built-in Function Description

Name Description

CURRENT_
TIMESTAMP

Returns a TIMESTAMP data type value containing
year, month, and day for today’s date and hours,
minutes, and seconds for the current time. You can
specify a fractional precision between 0 and 2 for
the seconds returned by CURRENT_TIMESTAMP.
The fractional seconds precision is a number that
designates the number of digits returned in the field.
The fractional precision is the negative of the value
specified in the SCALE clause. The CURRENT_
TIMESTAMP keyword and the left parenthesis for
the fractional precision must be separated by a space.
Otherwise, CDO interprets it as the name of an
element with a version of the value specified in the
fractional precision.

CHARACTER_
LENGTH

Calculates the length of a value expression of any data
type. You can use CHAR_LENGTH as an alternative
for CHARACTER_LENGTH.

OCTET_LENGTH Calculates the length, in octets, of a value expression
of any data type.

UPPER Converts all lowercase characters in a value
expression to uppercase characters.

LOWER Converts all uppercase characters in a value
expression to lowercase characters.

SESSION_USER Returns the current active session user name.
SUBSTRING Returns portions of character value expressions.
SYSTEM_USER Returns the user name of the login process at the time

of the database attachment.
CAST Converts a value expression to another data type.
EXTRACT Returns a single date-time field expressed as an

integer from a field defined with a data type of DATE,
TIME, TIMESTAMP, or INTERVAL.

(continued on next page)

Expressions 4–11

Value Expressions

Table 4–4 (Cont.) Built-in Function Description

Name Description

TRANSLATE Translates a character value expression from one
character set to another compatible character set,
such as RDB$KANJI to Kanji.

Examples

1. (8 + 14) / 2 - 4

In this example, the arithmetic expression evaluates as 7.

2. DEFINE FIELD NAME
COMPUTED BY FIRST_NAME | ’ ’ | MIDDLE_INITIAL | ’ ’ | LAST_NAME.

The output is:

JOHN Q PUBLIC

In this example, the concatenated expression combines three fields into the
NAME field definition. The space between each pair of quotation marks
appears in the output of the NAME field.

3. COUNT OF E IN EMPLOYEES WITH
LAST_NAME IN FULL_NAME IN E = "SMITH".

In this example, the FIELD or RECORD expression specifies the LAST_
NAME field in the FULL_NAME record in the EMPLOYEES relation.

4. FIRST SALARY IN E FROM E IN EMPLOYEES
WITH LOCATION IN E = "BUILDING_A"

In this example, the FIRST FROM expression finds the salary of the first
employee who works in BUILDING_A.

5. AVERAGE SALARY_AMOUNT IN CS OF CS IN SALARY WITH SALARY_AMOUNT IN CS GT
50000

In this example, the AVERAGE statistical expression uses the RSE to form
a stream of records where the SALARY_AMOUNT field is greater than
50,000. The average of the values is calculated by the product reading the
expression.

4–12 Expressions

Value Expressions

6. MAX SALARY_AMOUNT IN CS OF SAL IN CURRENT_SALARY WITH SALARY IN SAL = MAX

This example shows how to use the MAX expression to find the highest
paid employee in the company.

7. MIN SALARY_AMOUNT IN CS OF SAL IN CURRENT_SALARY WITH SALARY IN SAL = MIN

In this example, the MIN expression finds the lowest paid employee in the
company.

8. TOTAL SALARY_AMOUNT IN CS OF CS IN CURRENT_SALARY

The TOTAL expression finds the total annual payroll of the company.

9. 8 + 7

This example shows an arithmetic expression that adds two numeric
literals.

10. 8 + 14 / 2 - 4

This is an example of an arithmetic expression that is evaluated as 11.

11. 8 + 14 / (2 - 4)

In this example, the arithmetic expression is evaluated as 1.

Expressions 4–13

Value Expressions: Character String Literals

Value Expressions: Character String Literals

A character string literal is a string of printable characters. The maximum
length of a character string is 65,536 characters. The printable characters are:

• Uppercase alphabetic characters (A–Z)

• Lowercase alphabetic characters (a–z)

• Numerals (0–9)

• The following special characters:

! @ # $ % ^ & * () - _ = + ‘ ~

[] { } ; : ’ " \ | / ? > < . ,

• Any other characters that are part of the Digital Multinational character
set

• Japanese characters: Kanji, as defined by the JIS X0208:1990 standard,
and Narrow Katakana, as defined by the JIS X0201:1976 standard

You must enclose a character string literal in a pair of either single or double
quotation marks. Table 4–5 shows the valid use of quotation marks in
character string literals.

Table 4–5 Quotation Marks in Character String Literals

Character String Value Expression Value

"JONES" JONES
’JONES’ JONES
"JONES’ [invalid]
"’’’’" ’’’’
"’’’’’ [invalid]
’My name is "Lefty".’ My name is "Lefty".
’My ’’handle’’ is "Lefty".’ My ’handle’ is "Lefty".

CDO usually treats uppercase and lowercase forms of the same letter as
the same character. However, it preserves the case distinction when doing
comparisons of character strings; for example, NAME = "JONES" and NAME =
"Jones" yield different results.

• Begin and end a character string literal with the same type of quotation
mark.

4–14 Expressions

Value Expressions: Character String Literals

• To include a quotation mark of one type in a character string literal,
enclose the literal in quotation marks of the other type. For example, to
include double quotation marks in a character string literal, enclose the
character string in single quotation marks.

• If a quotation mark appears in a character string literal enclosed by
quotation marks of the same type, use two consecutive quotation marks for
every one you want to include in the literal. This technique is necessary
if you want to include quotation marks of both types in a single quoted
string.

Examples

E IN EMPLOYEES WITH LAST_NAME IN E = "Toliver"

In this example, the expression specifies the character string literal Toliver.

Expressions 4–15

Value Expressions: Numeric Literals

Value Expressions: Numeric Literals

You can use a literal as a value expression. A literal is either a character
string or a numeric literal.

Numeric literals can take the following forms:

• A decimal string consisting of digits and an optional decimal point. The
maximum length, not counting the decimal point, is 19 digits.

• A decimal number in scientific notation (E-format), consisting of a decimal
string mantissa and a signed integer exponent, separated by the letter D
(for double), E (for E-format) or Q (for H_floating).

CDO allows you to use unary plus and minus signs in numeric literals.
Numeric literals must start and end with a numeral and cannot include
hexadecimal digits. Numeric literals in E notation cannot include embedded
spaces.

The following expressions are valid numeric literals:

+123
-3.49
0.3338889909
6.03 E+23

If you use a numeric literal to assign a value to a field or a variable, the data
types of the field or variable determine the maximum value you can assign.

A period at the end of a data definition command line terminates the command;
therefore, you cannot use a decimal point to terminate a number if you want to
include more data definition clauses in the statement.

If you want to include more data definition clauses, include a zero after the
decimal point, or place the value expression in parentheses:

COMPUTED BY X * 2.0
COMPUTED BY (X * 2.)

Examples

S IN SALARY_HISTORY WITH SALARY_AMOUNT IN S > 40000

In this example, the expression specifies the numeric literal 40000.

4–16 Expressions

Conditional Expressions

Conditional Expressions

Format 8>>>>><
>>>>>:

value-expr1 [CASE_SENSITIVE] operator value-expr2
condition-clause
containing-clause
matching-clause
missing-clause
starting-with-clause

9>>>>>=
>>>>>;

Parameters

value-expr1
value-expr2
Specifies a value. A value expression can consist of any of the following:
character string literals, numeric literals, or arithmetic, concatenated, or
statistical expressions. If either value expression in a condition evaluates to
null, the entire condition evaluates to null.

operator
Specifies a mathematical relational operator. See the mathematical relational
operators in Table 4–7.

condition-clause

field-expr

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ALPHABETIC
ALPHABETIC_LOWER
ALPHABETIC_UPPER
EMPTY_FIELD
FULL_FIELD
NUMERIC
NOT ALPHABETIC
NOT ALPHABETIC_LOWER
NOT ALPHABETIC_UPPER
NOT EMPTY_FIELD
NOT FULL_FIELD
NOT NUMERIC

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

Specifies whether a field expression satisfies the specified condition.

Expressions 4–17

Conditional Expressions

The product using CDO evaluates a condition clause as true if the field
expression satisfies the condition specified. The field expression specifies the
name of a field in the database, consisting of a field name and a directory name
or context variable.

When you use the keyword NOT, the product using CDO evaluates the clause
as true if the field expression does not satisfy this condition.

containing-clause

value-expr1 CASE_SENSITIVE
�

CONTAINING
NOT CONTAINING

�
value-expr2

Specifies whether a value expression contains a second value expression.
This operation is not case sensitive unless you specify the CASE_SENSITIVE
keyword.

When you use the keyword NOT, the product using CDO evaluates the clause
as true if the first string expression does not contain the string that the second
string expression specifies.

matching-clause

value-expr CASE_SENSITIVE
�

MATCHING
NOT MATCHING

�
match-expr

Specifies a relational clause that tests for substring matches. By using
wildcard characters, you can specify the position of the substring. This
operation is not case sensitive.

The product using CDO evaluates a MATCHING clause as true if match
expression, the second expression, matches a substring of the first expression.
Specify the match expression in quotation marks.

When you use the keyword NOT, the product using CDO evaluates the clause
as true if the second expression does not match a substring of the first value
expression.

missing-clause

n field-expr
record-expr

o �
MISSING
NOT MISSING

�

Specifies whether a field or record expression is null. The product using CDO
evaluates a MISSING clause as true if the record or field expression is null.

4–18 Expressions

Conditional Expressions

Specifies the name of a field or record in the database, consisting of a directory
name or a field or record name and a context variable.

When you use the keyword NOT, the product using CDO evaluates the clause
as true if the record or field expression is not null.

starting-with-clause

value-expr1 CASE_SENSITIVE
�

STARTING WITH
NOT STARTING WITH

�
value-expr2

Specifies whether the first characters of a value expression match the
characters of a second value expression. This operation is case sensitive.

The product using CDO evaluates a STARTING WITH clause as true if the
first characters of the first string expression match the characters in the second
string expression.

When you use the keyword NOT, the product using CDO evaluates the clause
as true if the first string does not contain the string that the second string
expression specifies.

If either value expression in a condition evaluates to null, the condition
evaluates to null.

Description

A conditional expression, sometimes called a Boolean expression, represents
the relationship between two value expressions. A conditional expression
returns a value of true, false, or null (missing).

Conditional expressions consist of value expressions and relational or logical
operators.

You can use conditional expressions in CDO as objects for the WITH clause or
VALID IF clause of the record selection expression or the VALID IF clause in
field definitions.

Expressions 4–19

Relational Operators

Relational Operators
Relational operators specify the relationship of value expressions and perform
the following kinds of operations:

• Compare a value with a range

• Match a pattern

• Test for missing fields

Description

CDO uses mathematical relational operators and pattern testing relational
operators in its conditional expressions.

Mathematical relational operators are symbols that allow you to compare
values. Pattern testing relational operators are keywords that allow you to
test for a pattern of values. Unlike the mathematical relational operators, each
pattern testing relational operator has its own unique syntax.

Table 4–6 lists the pattern testing relational operators.

Table 4–6 Pattern Testing Relational Operators

Clause Relational Operation

BETWEEN True if the first value expression is less than or equal
to the second value expression and greater than or
equal to the third value expression.

CONTAINING True if the string specified by the second string
expression is found within the string specified by the
first string expression. CONTAINING is not case
sensitive.

(continued on next page)

4–20 Expressions

Relational Operators

Table 4–6 (Cont.) Pattern Testing Relational Operators

Clause Relational Operation

MATCHING True if the second value expression matches a
substring of the first value expression. MATCHING
is not case sensitive. It uses the following wildcard
characters:

• Asterisk (*)— Matches any string of zero or more
characters

• Percent sign (%)—Matches any single character in
that position

STARTING WITH True if the first characters of the first string
expression match the second string expression.
STARTING WITH is case sensitive.

The logical operators AND, OR, and NOT let you compare two or more
conditional expressions and optionally reverse the value of a conditional
expression. The result of using a logical operator is another conditional
expression.

Table 4–7 lists the mathematical relational operators. These operators allow
you to compare values. In all cases, if either value expression in a conditional
expression is null, the value of the entire condition is null.

Table 4–7 Mathematical Relational Operators

Permitted
Symbols Relational Operation

EQ or = True if the two value expressions are equal.
NE or <> True if the two value expressions are not equal.
GT or > True if the first value expression is greater than the second.
GE or >= True if the first value expression is greater than or equal to

the second.
LT or < True if the first value expression is less than the second.
LE or <= True if the first value expression is less than or equal to the

second.

Expressions 4–21

Relational Operators

Use either the alphabetic symbol or the mathematical symbol from the
Permitted Symbols column, but do not use both when you specify a relational
operator.

See the documentation for the languages and products that use the repository
to determine how that product evaluates character string literals. In some
cases, character string literals are compared according to the ASCII collating
sequence. Under ASCII, lowercase letters have a greater value than uppercase
letters, and the letters near the beginning of the alphabet have a lesser value
than those near the end.

For products that compare character string literals according to the ASCII
collating sequence, the following statements are true:

• a > A

• a < z

• A < Z

To determine how CDO conditional expressions linked by logical operators are
evaluated, see the documentation for the product that will be evaluating the
conditional expression.

See the documentation for languages and products that use the repository to
determine how they evaluate character string literals.

Caution

The NOT operator applies to conditional expressions. Do not use the
NOT operator and an equal sign instead of the NE or <> relational
operators. The following statement is not valid:

WITH SALARY_AMOUNT IN S NOT = 30000

Use one of the following alternatives:

WITH NOT (SALARY_AMOUNT IN S = 30000)
WITH SALARY_AMOUNT IN S NE 30000
WITH SALARY_AMOUNT IN S <> 30000

4–22 Expressions

Relational Operators

Examples

1. LAST_NAME CONTAINING "ith"
LAST_NAME NOT CONTAINING "son"

In this example, if LAST_NAME has the string ith, CDO evaluates the
CONTAINING clause as true; if LAST_NAME does not contain the string
son, CDO evaluates the CONTAINING clause as true.

2. SALARY_AMOUNT IN SH > 50000

In this example, the conditional expression is true if the value in the
SALARY_AMOUNT field is greater than 50,000.

3. NOT SALARY_AMOUNT IN SH < 50000

In this example, the conditional expression is true if the value in the
SALARY_AMOUNT field is less than 50,000.

4. DEFINE FIELD SEX
VALID IF (SEX CASE_SENSITIVE EQ "M") OR (SEX CASE_SENSITIVE EQ "F").

In this example, the DEFINE FIELD uses a case sensitive relational
operator in the VALID IF clause to test whether the code to be entered in
the field SEX is M or F. The conditional expression is true if the value for
the field SEX is M or F (not m or f).

5. LAST_NAME MATCHING "*ON"

In this example, the conditional expression is true if the field LAST_NAME
has ON as the last two letters. You can use this expression to find all
records with LAST_NAME fields satisfying this condition.

6. LAST_NAME IN FULL_NAME IN E MISSING

In this example, the conditional expression is true if the LAST_NAME field
in the FULL_NAME record of the EMPLOYEES relation is missing.

7. LAST_NAME IN FULL_NAME IN E ALPHABETIC

In this example, CDO evaluates the field expression as true when the
LAST_NAME field from the FULL_NAME record of the EMPLOYEES
relation is alphabetic.

Expressions 4–23

Relational Operators

8. SALARY_AMOUNT NOT MISSING

In this example, the conditional expression is true if the SALARY_
AMOUNT field has a value that is not null.

9. SALARY_AMOUNT MATCHING "4*"

This example shows the matching clause used with numeric data types. In
this example, the matching clause finds all the salaries that start with the
number 4.

10. SALARY_AMOUNT BETWEEN 40000 AND 49999

This example finds all salaries in a range by using the BETWEEN clause.

4–24 Expressions

Record Selection Expression (RSE)

Record Selection Expression (RSE)

Format

[first-clause] relation-clause [cross-clause] [with-clause] [reduced-clause] [sort-clause]

Parameters

first-clause

FIRST value-expr

Specifies how many records are in the record stream formed by the record
selection expression (RSE). The value expression, value-expr, is a symbol or
string of symbols used to calculate a value. The value expression in a FIRST
clause must either be a positive number or a value expression that evaluates
to a positive integer. The record stream cannot contain more records than the
number specified by the value expression.

relation-clause

context-var IN relation-name

Declares context variables for a record stream or a loop. The context variable
specifies a temporary name that identifies the record stream to the product
evaluating the clause. You then use the context variable to refer to fields from
that relation. The relation name specifies the relation from which CDO will
take the records in the record stream.

cross-clause

{ CROSS relation-clause } ...

Allows you to combine records from two or more record streams. You join these
records in combinations based on the relationship between the values of fields
in each record stream. This combination is called a relational join.

The relation clause declares context variables for a record stream or loop.

with-clause

WITH cond-expr

Allows you to specify conditions that must be true for CDO to include a record
in a record stream. You specify any conditional expression in this clause.

Expressions 4–25

Record Selection Expression (RSE)

The record becomes part of a record stream only when its values satisfy the
conditions you specified in the conditional expression (that is, only when the
conditional expression is true). If the conditional expression evaluates to false
or missing for a record, that record is not included in the record stream.

reduced-clause

REDUCED TO value-expr ,...

Allows you to eliminate duplicate values for fields in a record stream and to
group the records in a relation according to unique field values. However, only
using the REDUCED clause does not guarantee the sort order within groups
and the results are unpredictable. To ensure specific order, use the SORTED
BY clause.

The value expression, value-expr, specifies a symbol or string of symbols used
to calculate a value.

sort-clause

SORTED BY

8<
:
�

ASCENDING
DESCENDING

�
value-expr

9=
; ,...

Allows you to sort the records in the record stream by the values of specific
fields. The value expression, or sort key, determines the order in which CDO
returns records. The default for an initial sort key is ASCENDING. The
default for subsequent keys is the specification for the initial key.

The value expression, value-expr, specifies the value to sort by; this value is
called the sort key.

Description

A record selection expression (RSE) is a clause that products use at run time
to include specific records for processing. The RSE defines the conditions that
individual records must meet before CDO includes them in a record stream.

Examples

1. FIRST 5 C IN CURRENT_SALARY
SORTED BY DESCENDING SALARY_AMOUNT IN C

You can use FIRST and SORTED BY clauses to find the maximum values
for a field. In this example, the FIRST clause finds the five highest paid
employees.

4–26 Expressions

Record Selection Expression (RSE)

2. E IN EMPLOYEES

In this example, the RELATION clause retrieves all records from the
EMPLOYEES relation.

3. COUNT OF E IN EMPLOYEES WITH STATE IN E = "NY"

In this example, the RELATION clause declares E as the context variable
for the stream of records from the EMPLOYEES relation.

4. E IN EMPLOYEES CROSS JH IN JOB_HISTORY
WITH EMP_ID IN E = EMP_ID IN JH

In this example, the CROSS clause finds all employees for whom data is
stored in the JOB_HISTORY relation.

5. E IN EMPLOYEES CROSS J IN JOBS

In this example, the CROSS clause retrieves information on all employees
and their job descriptions.

6. E IN EMPLOYEES WITH JOB_CODE IN E = "R"

In this example, the WITH clause returns all employees whose JOB_CODE
equals R.

7. REDUCED TO JOB_CODE IN J

In this example, the REDUCED clause lists all active job codes once.

8. EMPLOYEES SORTED BY EMPLOYEE_ID IN E

In this clause, the SORTED BY clause sorts EMPLOYEES by
EMPLOYEE_ID.

9. SORTED BY DESCENDING STATUS_CODE IN E
ASCENDING LAST_NAME IN E, EMPLOYEE_ID IN E

In this example, the SORTED BY clause sorts first by STATUS_CODE in
descending order. Within each STATUS_CODE group, SORTED BY sorts
by LAST_NAME in ascending order. Finally, within groups of employees
with the same last name, SORTED BY sorts by EMPLOYEE_ID. The order
for this last sort is also ascending, because it adopts the order from the
previous sort key.

Expressions 4–27

5
CDO Edit Strings

If a CDO field element contains an edit string, CDO performs an automatic
translation of the CDO edit string characters for the following languages that
support edit strings:

• COBOL

• DATATRIEVE

• PL/I

• RPG

Table 5–1 shows how CDO translates edit string characters for COBOL picture
clause characters, DIGITAL DATATRIEVE edit string characters, PL/I picture
clause characters, and RPG edit word characters.

The following four symbols are used in Table 5–1:

• <n>—Not supported; if the CDO character appears in a CDO edit string,
no picture clause or edit string is generated for the language.

• <i>—Ignored; the CDO character is ignored for the language. However, if
the CDO character appears in an edit string with other characters that can
be translated, CDO will perform the appropriate translation for the other
edit string characters.

• <pc>—The CDO character has the same value as the previous character in
the edit string.

• <**>—Characters appearing after the CDO character in the edit string are
not translated for the language.

CDO Edit Strings 5–1

Table 5–1 Translation of CDO Edit Strings for Languages and Products

Character
Type

CDO Character
or String

COBOL
PICTURE

DTR
EDIT

PL/I
PICTURE

RPG
EDIT
WORD

Alphabetic A A A <n> <n>

Alphanumeric T X T <n> <n>

X X X <n> <n>

Comma , , , , ,

Date, Day,
and Time

D <n> D <n> <n>

H <n> <i> <n> <n>

J <n> J <n> <n>

M <n> M <n> <n>

N <n> N <n> <n>

P <n> <i> <n> <n>

Q <n> <i> <n> <n>

R <n> <i> <n> <n>

W <n> W <n> <n>

Y <n> Y <n> <n>

% <n> <i> <n> <n>

* <n> <i> <n> <n>

Decimal
point

.

Digit F <n> <n> <n> <n>

7 <n> <n> <n> <n>

9 9 9 9 blank

Encoded
sign

C -9 -9 R <n>

G +9 +9 T <n>

K +9 +9 I <n>

Exponent E <n> E <n> <n>

Floating S + + S –

(continued on next page)

5–2 CDO Edit Strings

Table 5–1 (Cont.) Translation of CDO Edit Strings for Languages and
Products

Character
Type

CDO Character
or String

COBOL
PICTURE

DTR
EDIT

PL/I
PICTURE

RPG
EDIT
WORD

Z"string" See
Table 5–2.

See
Table 5–2.

See
Table 5–2.

See
Table 5–2.

– – – – –

+ + + + blank

$ $ $ $ $

\ <pc> <pc> <pc> <pc>

Literal "string" See
Table 5–3.

See
Table 5–3.

See
Table 5–3.

See
Table 5–3.

Logical B 9 9 9 blank

Lowercase L <i> <i> <i> <n>

Minus
literal

&"string" See
Table 5–4.

See
Table 5–4.

See
Table 5–4.

See
Table 5–4.

Minus
parentheses

(()) – (()) – –

Missing
separator

? <i><**> ? <i><**> <i><**>

Repeat count x(n) x(n) x(n) (n)x x repeats
n times.

Uppercase U <i> <i> <i> <n>

5.1 Chapter Organization
The rest of this chapter provides descriptions and examples of the CDO edit
string characters. To find a description of a particular edit string character,
locate the character in Table 5–1 and determine its character type from the
first column of the table.

Character type descriptions appear in alphabetical order, and descriptions
of individual edit string characters appear in alphabetical order within the
character type descriptions.

CDO Edit Strings 5–3

The following sections include examples of CDO edit strings. Each example is
one of two types:

• The example shows a sample CDO edit string, the translation of the CDO
edit string that CDO provides to the language or product using the string,
the field value of the edit string, and the edited value of the string.

• The example shows a sample CDO edit string, the field value of the edit
string, and the edited value that would be produced if a language or
product supported the string.

Use Table 5–1 to determine how CDO translates CDO edit string characters
into COBOL picture clause characters, DIGITAL DATATRIEVE edit string
characters, PL/I picture clause characters, and RPG edit word characters.

5.2 Alphabetic Character
The edit string character A (uppercase letter A) is replaced by an alphabetic
character from the field’s content. The action taken when a character in the
field is not alphabetic is language dependent. See the documentation for
each language to determine the action taken when a digit or nonalphabetic
character occurs.

CDO Edit String: AAAA

DTR Edit String: AAAA

Field Value: WXYZ

Edited Value: WXYZ

You can use the repeat count edit string character to indicate that you want
to repeat the edit string character A a certain number of times. The following
two edit strings are equivalent:

AAAA
A(4)

5.3 Alphanumeric Character
The two alphanumeric edit string characters are T and X.

5–4 CDO Edit Strings

5.3.1 T: Long Text Character
The edit string character T (uppercase letter T) allows you to display any
characters from a field’s content on one or more lines. The primary use of the
T edit string is to print fields containing large amounts of text. The number of
Ts in the edit string indicates the maximum number of characters to be printed
on one line. For example, the edit string TTTTT indicates that a line of output
will contain no more than five characters.

If the field contains more characters than specified in the edit string, DIGITAL
DATATRIEVE prints as many full words on the line as possible. (A word
in this sense is a string of characters delimited by a space.) DIGITAL
DATATRIEVE then prints the remaining characters on the following lines,
if necessary. DIGITAL DATATRIEVE does not print out trailing spaces when
you use a T edit string.

DIGITAL DATATRIEVE prints only full words. It does not divide words unless
a single word is longer than the maximum number of characters specified
by the edit string. In that case, DIGITAL DATATRIEVE truncates some
characters and prints them on the next line.

CDO Edit String: TTTTT

DTR Edit String: TTTTT

Field value: 1234567890

Edited Value: 12345
67890

You can use the repeat count edit string character to indicate that you want to
repeat the edit string character T a certain number of times. The following two
edit strings are equivalent:

TTTTT
T(5)

5.3.2 X: Any Character
The edit string character X (uppercase letter X) displays any character from
the field’s content.

CDO Edit String: XXXXXXXXXX

DTR Edit String: XXXXXXXXXX

Field Value: fj32dj%^*I

Edited Value: fj32dj%^*I

CDO Edit Strings 5–5

You can use the repeat count edit string character to indicate that you want
to repeat the edit string character X a certain number of times. The following
two edit strings are equivalent:

XXXXXXXXXX
X(10)

5.4 Comma Character
In fields with nonnumeric values, the edit string , character (a comma) inserts
a comma into the edited value.

In fields with numeric values, the edit string comma character inserts a comma
or suppresses a leading zero in the edited value.

The following example shows how the comma character is inserted into the
edited value when the edit string has a nonnumeric value.

CDO Edit String: AA,AA

DTR Edit String: AA,AA

Field Value: ohno

Edited Value: oh,no

The following example shows how a comma character in a CDO edit string
causes a comma to be inserted in the edited value.

CDO Edit String: $$,$$9.99

DTR Edit String: $$,$$9.99

Field Value: 1234.56

Edited Value: $1,234.56

The following example shows what happens when a comma character is
included in an edit string with numeric values, but the comma is not required
in the edited value:

CDO Edit String: $$,$$9.99

DTR Edit String: $$,$$9.99

Field Value: 12.34

Edited Value: $12.34

5–6 CDO Edit Strings

5.5 Date, Day, and Time Characters
The edit string characters described in this section are used to specify the
output format of fields containing date, day, and time information. See
Section 5.11 for an explanation of how products and languages handle
characters enclosed by double quotation marks in CDO edit strings.

5.5.1 D: Day Number Character
The edit string character D (uppercase letter D) displays a digit of the day
within a month. You should repeat this character twice within an edit string.

CDO Edit String: NN"/"DD"/"YYYY

DTR Edit String: NN/DD/YYYY

Field Value: May 4, 1996

Edited Value: 05/04/1996

5.5.2 H: Twelve-Hour Mode Character
The edit string character H (uppercase letter H) displays one digit of the hour,
in 12-hour mode, in the edited value. You should repeat this character twice
within an edit string.

Do not use this character in edit strings containing the R (24-hour mode)
character.

CDO Edit String: HH":"PP" "%%

Field Value: 11:30 a.m.

Edited Value: 11:30 AM

5.5.3 J: Julian Digit Character
The edit string character J (uppercase letter J) displays a digit of the Julian
date in the edited value. You should repeat this character three times within
an edit string.

CDO Edit String: YYYY"/"JJJ

DTR Edit String: YYYY/JJJ

Field Value: June 4, 1980

Edited Value: 1980/156

CDO Edit Strings 5–7

5.5.4 M: Month Name Character
The edit string character M (uppercase letter M) displays a letter of the month
name in the edited value.

CDO Edit String: MMM" "DD" "YYYY

DTR Edit String: MMMBDDBYYYY

Field Value: May 4, 1980

Edited Value: MAY 04 1980

In the following example, the CDO edit string contains five M characters. If
the month name in the field value contains more than five characters, only the
first five characters of the month name are displayed in the edited value.

CDO Edit String: MMMMM" "DD" "YYYY

DTR Edit String: MMMMMBDDBYYYY

Field Value: December 4, 1987

Edited Value: DECEM 04 1987

If the month name in the field value contains fewer than five characters,
trailing blanks are displayed after the month name in the edited value.

CDO Edit String: MMMMM" "DD" "YYYY

DTR Edit String: MMMMMBDDBYYYY

Field Value: May 4, 1980

Edited Value: MAY 04 1980

5.5.5 N: Month Number Character
The edit string character N (uppercase letter N) displays a digit for the number
of the month in the edited value. You should repeat this character twice within
an edit string.

CDO Edit String: NN"/"DD"/"YYYY

DTR Edit String: NN/DD/YYYY

Field Value: May 4, 1985

Edited Value: 05/04/1985

5–8 CDO Edit Strings

5.5.6 P: Minute Character
The edit string character P (uppercase letter P) displays one digit for the
number of minutes in a time value in the edited field. You should repeat this
character twice within an edit string.

CDO Edit String: HH":"PP" "%%

Field Value: 11:30 a.m.

Edited Value: 11:30 AM

5.5.7 Q: Second Character
The edit string character Q (uppercase letter Q) displays one digit for the
number of seconds in a time value in the edited value. You should repeat this
character twice within an edit string.

CDO Edit String: PP":"QQ"."**

Field Value: 23 minutes 13.56 seconds

Edited Value: 23:13.56

5.5.8 R: Twenty-Four Hour Mode Character
The edit string character R (uppercase letter R) displays one digit of the hour,
in 24-hour mode, in the edited value. You should repeat this character twice
within an edit string.

Do not use this character in edit strings containing the H character (12-Hour
mode) character.

CDO Edit String: RR":"PP

Field Value: 2:30 p.m.

Edited Value: 14:30

5.5.9 W: Weekday Name Character
The edit string character W (uppercase letter W) displays a letter from the day
of week in a time value into the edited value.

CDO Edit String: WWWWWWWWW

DTR Edit String: WWWWWWWWW

Field Value: June 3, 1987

Edited Value: WEDNESDAY

CDO Edit Strings 5–9

You can use the repeat count edit string character to indicate that you want
to repeat the edit string character W a certain number of times. The following
two edit strings are equivalent.

WWWWWWWWW
W(9)

5.5.10 Y: Year Character
The edit string character Y (uppercase letter Y) displays a digit of the year in
a time value into the edited value. You should repeat this character either two
or four times in an edit string.

CDO Edit String: MMM" "DD" "YY

DTR Edit String: MMMBDDBYY

Field Value: May 4, ’85

Edited Value: MAY 04 85

The CDO edit string can also contain four Y characters.

CDO Edit String: MMM" "DD" "YYYY

DTR Edit String: MMMBDDBYYYY

Field Value: May 4, 1985

Edited Value: MAY 04 1985

5.5.11 % : AM/PM Character
The edit string character % (a percent sign) displays a character from one of
the strings AM or PM in the edited value. You should repeat this character
twice within an edit string.

The edit string character % is most useful when used with the edit string
character H (twelve-hour mode character) and when placed at the end of the
edit string.

CDO Edit String: HH":"PP" "%%

Field Value: 11:30 a.m.

Edited Value: 11:30 AM

5–10 CDO Edit Strings

5.5.12 * : Fraction Second Character
The edit string character * (an asterisk) displays a value for fractions of a
second within a time field in the edited value. Repeat this character twice
within an edit string to denote hundredths of a second.

CDO Edit String: MM":"QQ"."**

Field Value: 23 minutes 13.56 seconds

Edited Value: 23:13.56

5.6 Decimal Point Character
The edit string decimal point character . (a period) inserts a period into the
edited value. You can use this character only once within an edit string for
numeric fields.

CDO Edit String: 99.99

DTR Edit String: 99.99

Field Value: 2813E-2

Edited Value: 28.13

5.7 Digit Characters
You can represent hexadecimal (F), octal (7), and decimal (9) digits in edit
strings.

5.7.1 F: Hexadecimal Digit Character
The edit string character F (uppercase letter F) displays one hexadecimal digit
in the edited value.

Do not use the hexadecimal digital character (F) within an edit string
containing the octal character (7) or the decimal character (9).

CDO Edit String: FFF

Field Value: 32

Edited Value: 020

CDO Edit Strings 5–11

5.7.2 7: Octal Digit Character
The edit string character 7 (the number seven) displays one octal digit in the
edited value.

Do not use the octal digit character (7) within an edit string containing the
hexadecimal character (F) or the decimal character (9).

CDO Edit String: 777

Field Value: 32

Edited Value: 040

5.7.3 9: Decimal Digit Character
The edit string character 9 (the number nine) displays one decimal digit in the
edited value.

Do not use the decimal digit character (9) within an edit string containing the
hexadecimal character (F) or the octal character (7).

CDO Edit String: 999

DTR Edit String: 999

Field Value: 613

Edited Value: 613

5.8 Encoded Sign Characters
The encoded sign edit string characters are the encoded minus edit string
character (C), the encoded sign edit string character (G), and the encoded plus
edit string character (K).

5.8.1 C: Encoded Minus Character
If the field’s value is negative, the encoded minus character C (uppercase letter
C) overwrites the next digit with a minus sign (-), then moves the encoded digit
to the edit string.

If the field’s value is positive or zero, this character moves the next digit into
the edited string.

Use this character only at the beginning or end of a string.

An edit string can contain only one character designating a sign.

Do not use this character within an edit string that contains other characters
designating a sign.

5–12 CDO Edit Strings

See the reference manual for the language or product that will interpret the
edit string to determine how the language or product interprets encoded sign
characters.

CDO Edit String: C99

PL/I Picture Clause: R99

Field Value: -456

Edited Value: M56

5.8.2 G: Encoded Sign Character
If the field’s value is positive, the encoded sign character G (uppercase letter
G) overwrites the next digit with a plus sign (+), then moves the encoded digit
to the edit string.

If the field’s value is negative, the encoded sign character (G) overwrites the
next digit with a minus sign (-), then moves the encoded digit to the edit string.

If the field’s value is zero, the action of this character depends on the language.

Use this character only at the beginning or end of a string.

An edit string can contain only one character designating a sign.

Do not use this character within an edit string that contains other characters
designating a sign.

See the reference manual for the language or product that will interpret the
edit string to determine how the language or product interprets encoded sign
characters.

CDO Edit String: G99

PL/I Picture Clause: T99

Field Value: +123

Edited Value: A23

5.8.3 K: Encoded Plus Character
If the field’s value is positive, the encoded plus character K (uppercase letter
K) overwrites the next digit with a plus sign (+), then moves the encoded plus
digit to the edit string.

If the field’s value is negative or zero, the encoded plus character (K) moves the
next digit into the edited string.

Use this character only at the beginning or end of a string.

An edit string can contain only one character designating a sign.

CDO Edit Strings 5–13

Do not use this character within an edit string that contains other characters
designating a sign.

See the reference manual for the language or product that will interpret the
edit string to determine how the language or product interprets encoded plus
characters.

CDO Edit String: K99

PL/I Picture Clause: I99

Field Value: +123

Edited Value: A23

5.9 Exponent Character
The edit string character E (uppercase letter E) divides an edit string into two
parts for floating-point or scientific notation. The first part is the characteristic
and mantissa edit string and the second part is the exponent edit string.

CDO Edit String: S99ES99

DTR Edit String: +99E+99

Field Value: 1200

Edited Value: +12E+02

5.10 Floating Characters
There are six edit string floating characters: S, Z, -, +, $, and \.

5.10.1 S: Floating Sign Character
If you use the edit string character S (uppercase letter S) only once within an
edit string, one of the following results can occur:

• If the field’s value is positive, the character S inserts a plus sign (+) into
the edited value.

CDO Edit String: S9

DTR Edit String: +9

Field Value: 6

Edited Value: +6

5–14 CDO Edit Strings

• If the field’s value is negative, the floating sign character inserts a minus
sign (-) into the edited value.

CDO Edit String: S9

DTR Edit String: +9

Field Value: -8

Edited Value: -8

• If the field’s value is zero, the effect of the floating sign character depends
on the language reading the field.

CDO Edit String: S9

DTR Edit String: +9

Field Value: 0

Edited Value: +0

If you use more than one floating sign character at the beginning of an edit
string, the S character suppresses leading zeros before inserting a plus sign
(+) or minus sign (-) into the edited value.

CDO Edit String: SS99

DTR Edit String: ++99

Field Value: 0054

Edited Value: +54

You cannot use the S character within an edit string that contains another
character designating a sign.

5.10.2 Z: Floating Zero Replace Character
If the digit within the field’s value is zero, the floating zero replace character
Z (uppercase letter Z) displays a literal value instead of the zero digit in the
edited string.

If the digit within the field’s value is not zero, the floating zero replace
character displays the digit.

CDO Edit String: Z" "99

DTR Edit String: Z99

Field Value: 25

Edited Value: 25

CDO Edit Strings 5–15

The following example also shows the floating zero replace character.

CDO Edit String: Z"*"99

DTR Edit String: *99

Field Value: 25

Edited Value: *25

Table 5–2 shows how CDO translates individual CDO characters in floating
zero replace edit strings for other languages.

Table 5–2 Translation of Characters in Floating Zero Replace Edit Strings

Z String
Format

CDO
Character
in String

COBOL
PICTURE

DTR
EDIT

PL/I
PICTURE

RPG
EDIT
WORD

Z"string" blank Z Z Z or Y 0

* * * * *

any other
character

* * * *

See the PL/I documentation for an explanation of when the CDO blank
character is translated to Z and when it is translated to Y.

You cannot use the Z character within an edit string that contains another
character designating a sign.

5.10.3 - : Floating Minus Character
If you use the edit string floating minus character, a minus sign (-), only once
within an edit string, one of the following results can occur:

• If the field’s value is positive, the floating minus character inserts a blank
into the edited value.

• If the field’s value is negative, the floating minus character inserts a minus
sign into the edited value.

• If the field’s value is zero, the effect of the floating minus character depends
on the language reading the field. If you use this character a number of
times at the beginning of an edit string, the character suppresses leading
zeros before inserting a blank or minus sign into the edited value.

You cannot use the minus character within an edit string that contains another
character designating a sign.

5–16 CDO Edit Strings

For a nonnumeric field, this character moves a minus sign into the edited
value.

CDO Edit String: ---9

DTR Edit String: ---9

Field Value: -54

Edited Value: -54

5.10.4 + : Floating Plus Character
If you use the edit string floating plus character, a plus sign (+), only once
within an edit string, one of the following results can occur:

• If the field’s value is positive, the floating plus character inserts a plus sign
into the edited value.

• If the field’s value is negative, the floating plus character inserts a blank
into the edited value.

• If the field’s value is zero, the effect of the floating plus character depends
on the language reading the field. If you use this character a number of
times at the beginning of an edit string, the character suppresses leading
zeros before inserting a blank or plus sign into the edited value.

You cannot use this character within an edit string that contains another
character designating a sign.

CDO Edit String: +++9

DTR Edit String: +++9

Field Value: 54

Edited Value: +54

5.10.5 $: Floating Currency Character
If you use the floating currency character only once, it inserts the dollar sign
($) in the next character position in the edited value.

If you supply the floating currency character more than once at the beginning
of an edit string, it suppresses leading zeros. To suppress up to four leading
zeros, supply the character four times at the beginning of the edit string.

The floating currency character inserts the currency sign to the left of the first
printed digit of the edited value.

CDO Edit String: $,$$$.99

CDO Edit Strings 5–17

DTR Edit String: $,$$$.99

Field Value: 157.86

Edited Value: $157.86

5.10.6 \ : Floating Blank Character
The floating blank character, a backslash (\), suppresses blanks from an edited
value. If the value of the character is a blank, the edited value excludes it.

CDO Edit String: MMM\\\\\,YYYY

Field Value: June 15, 1982

Edited Value: JUNE,1982

5.11 Literal Characters
A pair of double quotation marks (" ") are the edit string literal characters.
Any character string enclosed by double quotation marks in an edit string is
inserted into the edited value.

CDO Edit String: 99" ""Hours"

DTR Edit String: 99B’Hours’

Field Value: 40

Edited Value: 40 Hours

Table 5–3 shows how CDO translates CDO literal edit strings for other
languages. In the table, <i> means that the language does not support the
CDO character, and the character is ignored for the language.

If the character appears in an edit string with other characters that can be
translated, CDO will perform the appropriate translation for the other edit
string characters. If CDO characters other than a blank, 0, /, or % occur in
a string, CDO passes those characters to DIGITAL DATATRIEVE and RPG
without performing a translation.

If a CDO edit string consists of only a 0, /, %, or a blank, then CDO performs
the appropriate translation as shown in the first four lines of the table. The
last line of the table shows how CDO translates any other edit string for each
language. For example, CDO translates the CDO edit string "sample string" to
’sample string’ for DIGITAL DATATRIEVE.

Note that the initial blank character in the CDO edit string does not become a
B in DIGITAL DATATRIEVE except when the blank is the only character in
the edit string. CDO translates characters from the first four lines of the table
differently depending on whether or not they are the only characters in an edit
string.

5–18 CDO Edit Strings

Table 5–3 Translation of CDO Literal Edit Strings

Literal
String
Format

CDO
String

COBOL
PICTURE

DTR
EDIT

PL/I
PICTURE

RPG
EDIT
WORD

"string" Blank B B B &

0 0 0 <i> 0

/ / / / /

% <i> % <i> %

Any other
string

<i> ’string’ <i> string

5.12 Logical Character
The edit string character B (uppercase letter B) is the logical character. It
displays logical fields as either TRUE or FALSE.

CDO Edit String: BBBBB

Field Value: 0

Edited Value: FALSE

5.13 Lowercase Character
The edit string character L (uppercase letter L) prints any remaining
alphabetic characters in a field’s value in lowercase.

CDO Edit String: LMMM" "DD

Field Value: November 12th

Edited Value: nov 12

5.14 Minus Literal Character
The minus literal character & (an ampersand) replaces a negative sign in
a field’s value with a literal you supply. If the field’s value is positive, this
character moves a blank to the string instead of the literal you supply.

Do not use this character within an edit string that contains another character
designating a sign.

CDO Edit String: 99&"CR"

CDO Edit Strings 5–19

DTR Edit String: 99CR

Field Value: -15

Edited Value: 15CR

Table 5–4 shows how CDO translates CDO minus literal edit strings for other
languages. If CDO characters other than CR or DB appear in a string, CDO
translates the string as a hyphen (-) for COBOL, DIGITAL DATATRIEVE,
and PL/I. CDO passes any CDO character to RPG without performing a
translation.

Table 5–4 Translation of CDO Minus Literal Edit Strings

Minus Literal
String Format

CDO
String

COBOL
PICTURE

DTR
EDIT

PL/I
PICTURE

RPG
EDIT
WORD

&"string" CR CR CR CR CR

DB DB DB DB DB

Any other
string

- - - string

5.15 Minus Parentheses Character
The edit string character (()) (double opening and closing parentheses
characters) is the minus parentheses character. It encloses negative values in
parentheses.

CDO Edit String: ((999))

DTR Edit String: ((999))

Field Value: -678

Edited Value: (678)

5.16 Missing Separator Character
The edit string character ? (a question mark) is the missing separator
character. If the field has a missing value attribute or relationship, this
character separates two edit strings. If the field value is not the missing value,
the first edit string controls the output of the field. If the contents of the field
contain the missing value, the second edit string controls the output of the
field.

5–20 CDO Edit Strings

CDO Edit String: 999?"Unknown"

DTR Edit String: 999?’Unknown’

Field Value: missing value

Edited Value: Unknown

5.17 Repeat Count Character
The edit string character x(n) is the repeat count character. Replace x with the
character that you want to repeat in an edit string. Replace n with a positive
integer that indicates the number of times you want to repeat the character
designated by x.

CDO Edit String: W(9)

DTR Edit String: W(9)

Field Value: June 3, 1987

Edited Value: WEDNESDAY

5.18 Uppercase Character
The edit string character U (uppercase letter U) prints any remaining
alphabetic characters in a field’s value in uppercase.

The following example shows a CDO edit string containing the U character, the
field value, and the edited value that would be produced if a product supported
these characters:

CDO Edit String: UA(20)

Field Value: Jones

Edited Value: JONES

5.19 Japanese Edit Strings
Oracle CDD/Repository supports edit string syntax that provides characters
for DIGITAL VAX COBOL to handle Japanese edit strings in the PICTURE
clause. Japanese edit string support is available in Oracle CDD/Repository
Version 6.1 and later. When you specify N or B for an edit string, enclose it
between square brackets ([]).

Do not use these edit string characters for Oracle CDD/Repository field
definitions that will be used from DIGITAL DEC COBOL.

CDO Edit Strings 5–21

A
Mapping of Keywords with the

DEFINE_RMS_DATABASE Command

The tables in this appendix show the mapping of the different keywords used
when creating a logical RMS database in a CDO dictionary.

Table A–1 shows the mapping of File Definition Properties keywords to
symbolic field offsets.

Table A–1 Mapping of Keywords to Symbolic Field Offsets

Keyword Symbolic Field Offset

Area Properties

ALLOCATE XAB$L_ALQ

ANY_CYLINDER XAB$V_ONC

BEST_TRY_CONTIGUOUS XAB$V_CBT1

BUCKET_SIZE XAB$B_BKZ2

CONTIGUOUS XAB$V_CTG3

EXACT_POSITIONING XAB$V_HRD

EXTENSION XAB$W_DEQ4

POSITION XAB$B_ALN

VOLUME XAB$W_VOL

1The BEST_TRY_CONTIGUOUS area property overrides the BEST_TRY_CONTIGUOUS file
processing property when you use both in the same definition.
2The BUCKET_SIZE area property overrides the BUCKET_SIZE file definition property when you
use both in the same definition.
3The CONTIGUOUS area property overrides the CONTIGUOUS file processing property when you
use both in the same definition.
4The EXTENSION area property overrides the EXTENSION field property when you use both in
the same definition.

(continued on next page)

Mapping of Keywords with the DEFINE_RMS_DATABASE Command A–1

Table A–1 (Cont.) Mapping of Keywords to Symbolic Field Offsets

Keyword Symbolic Field Offset

File Access Block Properties

ACCESS FAB$B_FAC

BLOCK_SPAN FAB$V_BLK

CARRIAGE_CONTROL FAB$B_RAT

CHANNEL_ACCESS_MODE FAB$V_CHAN_MODE

CONTROL_FIELD_SIZE FAB$B_FSZ

EXTENSION FAB$W_DEQ5

FAC FAB$B_FAC

FORMAT FAB$B_RFM

LOGICAL_NAME_MODE FAB$V_LNM_MODE

SHARING FAB$B_SHR

WINDOW_SIZE FAB$B_RTV

File Definition Properties

ALLOCATION FAB$L_ALQ

BUCKET_SIZE FAB$B_BKS6

FILE_PROCESSING_OPTIONS FAB$L_FOP

FOP FAB$L_FOP

GLOBAL_BUFFER_COUNT FAB$W_GBC

MAX_RECORD_NUMBER FAB$L_MRN

MAX_RECORD_SIZE FAB$W_MRS

MT_BLOCK_SIZE FAB$W_BLS

ORGANIZATION FAB$B_ORG

Key Properties

ASCENDING XAB$B_DTP

5The EXTENSION area property overrides the EXTENSION file access block property when you
use both in the same definition.
6The BUCKET_SIZE area property overrides the BUCKET_SIZE file definition property when you
use both in the same definition.

(continued on next page)

A–2 Mapping of Keywords with the DEFINE_RMS_DATABASE Command

Table A–1 (Cont.) Mapping of Keywords to Symbolic Field Offsets

Keyword Symbolic Field Offset

Key Properties

CHANGES XAB$V_CHG

DATA_AREA XAB$B_DAN

DATA_FILL XAB$W_DFL

DATA_KEY_COMPRESSION XAB$V_KEY_NCMPR

DATA_RECORD_COMPRESSION XAB$V_DAT_NCMPR

DESCENDING XAB$B_DTP

DUPLICATES XAB$V_DUP

INDEX_AREA XAB$B_IAN

INDEX_COMPRESSION XAB$V_IDX_NCMPR

INDEX_FILL XAB$W_IFL

LEVEL1_INDEX_AREA XAB$B_LAN

NODATA_KEY_COMPRESSION XAB$V_KEY_NCMPR

NODATA_RECORD_COMPRESSION XAB$V_DAT_NCMPR

NOINDEX_COMPRESSION XAB$V_IDX_NCMPR

NULL_KEY XAB$V_NUL

NULL_VALUE XAB$B_NUL

PROLOG XAB$B_PROLOG

Table A–2 shows the mapping of keywords to symbolic constants.

Table A–2 Mapping of Keywords to Symbolic Constants

Keyword Symbolic Constant Constant Type

Access Mode

EXECUTIVE PSL$C_EXEC FAB$V_CHAN_MODE

NONE (default) 0 FAB$V_CHAN_MODE

SUPER PSL$C_SUPER FAB$V_CHAN_MODE

USER PSL$C_USER FAB$V_CHAN_MODE

(continued on next page)

Mapping of Keywords with the DEFINE_RMS_DATABASE Command A–3

Table A–2 (Cont.) Mapping of Keywords to Symbolic Constants

Keyword Symbolic Constant Constant Type

File Access Control

BLOCK_IO FAB$V_BIO FAB$B_FAC

DELETE FAB$V_DEL FAB$B_FAC

GET FAB$V_GET FAB$B_FAC

PUT FAB$V_PUT FAB$B_FAC

RECORD_IO FAB$V_BRO FAB$B_FAC

TRUNCATE FAB$V_TRN FAB$B_FAC

UPDATE FAB$V_UPD FAB$B_FAC

File Organization

INDEXED FAB$C_INX FAB$B_ORG

RELATIVE FAB$C_REL FAB$B_ORG

SEQUENTIAL (default) FAB$C_SEQ FAB$B_ORG

Position Type

CYLINDER XAB$C_CYL XAB$B_ALN

FILE_ID XAB$C_RFI XAB$B_ALN

LOGICAL XAB$C_LBN XAB$B_ALN

NONE (default) XAB$C_ANY XAB$B_ALN

VIRTUAL XAB$C_VBN XAB$B_ALN

(continued on next page)

A–4 Mapping of Keywords with the DEFINE_RMS_DATABASE Command

Table A–2 (Cont.) Mapping of Keywords to Symbolic Constants

Keyword Symbolic Constant Constant Type

Record Format

FIXED FAB$C_FIX FAB$B_RFM

STREAM FAB$C_STM FAB$B_RFM

STREAM_CR FAB$C_STMCR FAB$B_RFM

STREAM_LF FAB$C_STMLF FAB$B_RFM

UNDEFINED FAB$C_UDF FAB$B_RFM

VARIABLE FAB$C_VAR FAB$B_RFM

VFC FAB$C_VFC FAB$B_RFM

Table A–3 shows the mapping of keywords to symbolic bit offsets.

Table A–3 Mapping of Keywords to Symbolic Bit Offsets

Keyword Symbolic Bit Offset
Symbolic Bit Offset
Type

Carriage Control Options

CARRIAGE_RETURN (default) FAB$V_CR FAB$B_RAT

FORTRAN FAB$V_FTN FAB$B_RAT

PRINT FAB$V_PRN FAB$B_RAT

File Processing Options—Allocation and Extension

BEST_TRY_CONTIGUOUS FAB$V_CBT RMS1

CONTIGUOUS FAB$V_CTG RMS2

TRUNCATE_ON_CLOSE FAB$V_TEF RMS

File Processing Options—Disposition

DELETE_ON_CLOSE FAB$V_DLT RMS

1The BEST_TRY_CONTIGUOUS area property overrides the BEST_TRY_CONTIGUOUS file
processing property when you use both in the same definition.
2The CONTIGUOUS area property overrides the CONTIGUOUS file processing property when you
use both in the same definition.

(continued on next page)

Mapping of Keywords with the DEFINE_RMS_DATABASE Command A–5

Table A–3 (Cont.) Mapping of Keywords to Symbolic Bit Offsets

Keyword Symbolic Bit Offset
Symbolic Bit Offset
Type

File Processing Options—Disposition

PRINT_ON_CLOSE FAB$V_SPL RMS

SUBMIT_ON_CLOSE FAB$V_SCF RMS

TEMPORARY FAB$V_TMD RMS

NO_DIRECTORY_ENTRY FAB$V_TMP RMS

File Processing Options—Name Parsing Modifiers

CREATE_IF FAB$V_CIF RMS

MAXIMIZE_VERSION FAB$V_MXV RMS

SUPERSEDE FAB$V_SUP RMS

File Processing Options—Magnetic Tape

MT_NOT_EOF FAB$V_NEF RMS

MT_CURRENT_POSITION FAB$V_POS RMS

MT_CLOSE_REWIND FAB$V_RWC RMS

MT_OPEN_REWIND FAB$V_RWO RMS

File Processing Options—Nonstandard

NON_FILE_STRUCTURED FAB$V_NFS RMS

USER_FILE_OPEN FAB$V_UFO RMS

File Processing Options—Performance

DEFERRED_WRITE FAB$V_DFW RMS

SEQUENTIAL_ONLY FAB$V_SQO RMS

File Processing Options—Reliability

READ_CHECK FAB$V_RCK RMS

WRITE_CHECK FAB$V_WCK RMS

(continued on next page)

A–6 Mapping of Keywords with the DEFINE_RMS_DATABASE Command

Table A–3 (Cont.) Mapping of Keywords to Symbolic Bit Offsets

Keyword Symbolic Bit Offset
Symbolic Bit Offset
Type

Share Options

DELETE FAB$V_SHRDEL FAB$B_SHR

GET FAB$V_SHRGET FAB$B_SHR

MULTISTREAM FAB$V_MSE FAB$B_SHR

PROHIBIT FAB$V_NIL FAB$B_SHR

PUT FAB$V_SHRPUT FAB$B_SHR

UPDATE FAB$V_SHRUPD FAB$B_SHR

USER_INTERLOCK FAB$V_UPI FAB$B_SHR

Table A–4 and Table A–5 show the mapping of area properties keywords to
symbolic field offsets and constants.

Table A–4 Mapping of CDO Area Properties to RMS Symbolic Field Offsets

CDO Property RMS Symbolic Field Offset

ALLOCATE XAB$L_ALQ

ANY_CYLINDER XAB$V_ONC

BEST_TRY_CONTIGUOUS XAB$V_CBT1

BUCKET_SIZE XAB$B_BKZ2

CONTIGUOUS XAB$V_CTG3

EXACT_POSITIONING XAB$V_HRD

EXTENSION XAB$W_DEQ4

POSITION XAB$B_ALN

VOLUME XAB$W_VOL

1The BEST_TRY_CONTIGUOUS area property overrides the BEST_TRY_CONTIGUOUS field
property when you use both in the same definition.
2The BUCKET_SIZE area property overrides the BUCKET_SIZE field property when you use both
in the same definition.
3The CONTIGUOUS area property overrides the CONTIGUOUS field property when you use both
in the same definition.
4The EXTENSION area property overrides the EXTENSION field property when you use both in
the same definition.

Mapping of Keywords with the DEFINE_RMS_DATABASE Command A–7

Table A–5 Mapping of CDO Position Type Options to XAB$B_ALN Symbolic
Constants

CDO Option Symbolic Constant

CYLINDER XAB$C_CYL

FILE_ID XAB$C_RFI

LOGICAL XAB$C_LBN

NONE (default) XAB$C_ANY

VIRTUAL XAB$C_VBN

Table A–6 shows the mapping of key properties keywords to symbolic field
offsets.

Table A–6 Mapping of CDO Key Properties to RMS Symbolic Field Offsets

CDO Property RMS Symbolic Field Offset

ASCENDING XAB$B_DTP

DESCENDING XAB$B_DTP

DUPLICATES XAB$V_DUP

CHANGES XAB$V_CHG

NULL_KEY XAB$V_NUL

NULL_VALUE XAB$B_NUL

DATA_AREA XAB$B_DAN

DATA_FILL XAB$W_DFL

DATA_KEY_COMPRESSION XAB$V_KEY_NCMPR

DATA_RECORD_COMPRESSION XAB$V_DAT_NCMPR

INDEX_AREA XAB$B_IAN

INDEX_COMPRESSION XAB$V_IDX_NCMPR

INDEX_FILL XAB$W_IFL

LEVEL1_INDEX_AREA XAB$B_LAN

NODATA_KEY_COMPRESSION XAB$V_KEY_NCMPR

NODATA_RECORD_COMPRESSION XAB$V_DAT_NCMPR

NOINDEX_COMPRESSION XAB$V_IDX_NCMPR

PROLOG XAB$B_PROLOG

A–8 Mapping of Keywords with the DEFINE_RMS_DATABASE Command

B
Repository Logical Names Table

Table B–1 describes the logical names that are associated with Oracle
CDD/Repository.

Table B–1 Oracle CDD/Repository Logical Names

Logical Name Mode Table Purpose

CDD$CHARACTER_SET Executive System Specifies the character set used
for Japanese input during a
CDO session.

CDD$COMPATIBILITY Executive System Specifies OpenVMS anchor
directory for CDO repository
portion of compatibility
repository.

CDD$CONTEXT User Process
or Job

Specifies the current context.

(continued on next page)

Repository Logical Names Table B–1

Table B–1 (Cont.) Oracle CDD/Repository Logical Names

Logical Name Mode Table Purpose

CDD$DEBUG_FLAGS User Process
or Job

Specifies values for setting of
debugger instructions. Valid
values are:

B - Dump all buffers.

C - Dump Oracle CDD/Repository-
Oracle Rdb change buffers.

D - Display a message when a
deadlock occurs.

I - Dump inheritance informa-
tion.

M - Display the names of all
methods called by the method
dispatcher.

R - Dump reservation and
replacement information.

T - Write out an informational
line indicating when a
transaction is started and when
it is committed or rolled back.

CDD$DEFAULT User Process
or Job

Specifies the default repository
directory.1

CDD$DICTIONARY Executive System Specifies OpenVMS directory
location of DMU root repository
file. See the Oracle Dictionary
Management Utility (DMU)
Documentation Kit for more
information on DMU.

CDD$EXTENSIONS Executive System Specifies the location of
the Oracle CDD/Repository
extensions directory.

1If you enter a utility that deals with the repository, Oracle CDD/Repository automatically places
you in the directory specified by the CDD$DEFAULT logical name. If you create a definition in
a utility that deals with the repository and you do not specify a directory as part of the path
name, Oracle CDD/Repository automatically places the definition in the directory specified by the
CDD$DEFAULT logical name. Use the SET DEFAULT command in any utility that deals with the
repository to change the default repository directory.

(continued on next page)

B–2 Repository Logical Names Table

Table B–1 (Cont.) Oracle CDD/Repository Logical Names

Logical Name Mode Table Purpose

CDD$MAX_OBJECTS_
IN_MEMORY

User Process
or Job

Specifies the number of
repository objects Oracle
CDD/Repository caches in
memory. The default is 10,000.

CDD$SMGSHR Executive System Specifies the Japanese input
method for the CDO interface
when using the Japanese
screen management library
(SMG) with the Japanese
OpenVMS operating system.
The equivalence name is
SYS$LIBRARY:JSY$SMGSHR.

CDD$SMG_CHARACTER_
SET

Executive System Required to invoke Japanese
SMG for CDO. If the character
set input is Japanese Kanji, the
equivalence name is KANJI; if
the character set is the Japanese
phonetic alphabet, Narrow
Katakana, the equivalence name
is SDK.

CDD$TEMPLATE Executive System Specifies the OpenVMS directory
for new CDO repositories.

CDD$TEMPLATEDB Executive System Specifies the OpenVMS directory
for new multifile databases.

CDD$TOP User Process
or Job

Specifies the first part of a
path name. If you work in a
directory many levels down, you
can set CDD$TOP a repository
directory that CDD/Repository
treats as the topmost directory
of interest.2

CDD$VERSION_LIMIT User Process Specifies maximum number of
versions of a data entity in a
DMU repository.

2If you enter a utility that deals with the repository, Oracle CDD/Repository automatically places
you in the directory specified by the CDD$DEFAULT logical name. If you create a definition in
a utility that deals with the repository and you do not specify a directory as part of the path
name, Oracle CDD/Repository automatically places the definition in the directory specified by
CDD$DEFAULT. Use the SET DEFAULT command in any utility that deals with the repository to
change the default repository directory.

(continued on next page)

Repository Logical Names Table B–3

Table B–1 (Cont.) Oracle CDD/Repository Logical Names

Logical Name Mode Table Purpose

CDD$WAIT User Process Specifies whether a command
will wait until the DMU
repository is unlocked from
another user’s operation.

B–4 Repository Logical Names Table

Index

A
Access control lists

adding entries (ACEs), 1–93
creating, 1–93 to 1–98
deleting entries (ACEs), 1–137
displaying, 1–210, 1–211
modifying, 1–26 to 1–28

Access rights
See also Access control list
See also Protection
coverting DMU rights to CDO, 1–56
displaying, 1–210, 1–211

ACEs (access control list entries)
See Access control lists

ACLs
See Access control list

ALPHABETIC data type, 2–14
Anchor directory

See OpenVMS anchor directory
AND logical operator, 4–22
Area Properties, 3–8 to 3–10
Arithmetic expression

arithmetic operator, 4–9t
Arithmetic operator

in arithmetic expressions, 4–9t
Array

fixed-length, 2–42
multidimensional, 2–2
one-dimensional, 2–2, 2–42, 2–43

ARRAY field property, 2–2

ARRAY record property, 2–2
At Sign (@) command, 1–2 to 1–4
ATTACH command, 1–5 to 1–6
ATTACH TO COMPOSITE command, 1–7 to 1–8

B
BASED ON field property, 2–4

changing field properties, 2–4
BIT data type, 2–14
Boolean expression

See conditional expression
See Conditional value expression

BYTE data type, 2–22

C
CDD$COMPATIBILITY dictionary

upgrading types, 1–54
CDD$CONTEXT, 1–183
CDD$DATABASE elements

deleting, 1–127
CDD$FILE elements

deleting, 1–127
CDD$PROCESSING_NAME

FILLER field property, 2–31
CDD$PROTOCOLS directory, 1–119
CDD$RECORD

in CONVERT command, 1–54
CDD$RMS_DATABASE elements, 1–69

deleting, 1–141
CDD$TEMPLATE repository, 1–119

See also Template repository

Index–1

CDD/Repository version numbers
See Version numbers

CDO Editor
accessing, 1–148

CDO sessions
attaching, 1–5
capturing output from, 1–187
spawning, 1–231
verifying commands, 1–188

CDO utility
displaying version number, 1–227

CDO version numbers
See Version numbers

CHANGE COLLECTION command, 1–9 to 1–10
CHANGE commands

analyzing impact of, 1–229
CHANGE CONTEXT command, 1–11 to 1–12
CHANGE DATABASE command, 1–13 to 1–14
CHANGE FIELD command, 1–15 to 1–16
CHANGE FILE_ELEMENT command, 1–17 to

1–18
CHANGE GENERIC command, 1–19 to 1–22
CHANGE PARTITION command, 1–23 to 1–25
CHANGE PROTECTION command, 1–26 to

1–28
CHANGE RECORD command, 1–29 to 1–46

Included Name Change clause, 1–33 to 1–34
Record Change clause, 1–35 to 1–38
Structure Change clause, 1–39 to 1–41
Variant Change clause, 1–42 to 1–44
Variants Change clause, 1–45 to 1–46

Changing field property
BASED ON field property, 2–4

Character set
session, 1–181

Character sets
displaying, 1–191

Character string literal
evaluation by languages and products, 4–22
quotation marks in, 4–14t
valid characters, 4–14

Children
displaying, 1–223

CLEAR NOTICES command, 1–47
CLOSE FILE_ELEMENT command, 1–48
COBOL

edit string, 5–2t
COBOL level 88 condition, 2–7
COBOL REDEFINES statement

in defining records, 1–112
COLLATING_SEQUENCE field property, 2–6
Collection hierarchy

creating, 1–8
Collections

creating, 1–62
deleting, 1–123
displaying, 1–192
modifying, 1–9

Command procedures
capturing output from, 1–154, 1–187
error handling, 1–163
executing, 1–2, 1–164
verifying, 1–188

COMMIT command, 1–49 to 1–50
Complex numbers, 2–25
Composites

attaching to, 1–7
detaching from, 1–143

COMPUTED BY field property, 2–7
conditional value expression, 2–7
value expression, 2–7

Concatenated expression, 4–12e
Conditional expression, 2–7, 2–48

logical operators in, 4–22
relational operators in, 4–22
uses of, 4–22
value expressions in, 4–22

Conditional name
COBOL level 88, 2–7

Conditional value expression, 2–7
CONSTRAIN command, 1–51 to 1–53
Contexts

creating, 1–65
deleting, 1–125
displaying, 1–193
modifying, 1–11
setting, 1–183
setting CDD$CONTEXT, 1–183

Index–2

CONTINUE action error handling, 1–163t
CONVERT command, 1–54 to 1–58
COPY command, 1–59 to 1–61
Creating definitions

See Field definitions
See Generic element definitions
See Record definitions
See RMS database definitions
See Type definitions

Currency sign
defining, 2–11

CURRENCY_SIGN field property, 2–11
Customized protocols

adding to template repository, 1–119
Customized types

See User-defined types

D
Data types

ALPHABETIC, 2–14
BIT, 2–14
BYTE, 2–22t
complex numbers, 2–25t
description and list, 2–14
D_FLOATING, 2–24t
D_FLOATING COMPLEX, 2–25t
error handling, 2–30
fixed-point, 2–22t
floating-point, 2–24t
F_FLOATING, 2–24t
F_FLOATING COMPLEX, 2–25t
G_FLOATING, 2–24t
G_FLOATING COMPLEX, 2–25t
H_FLOATING, 2–24t
H_FLOATING COMPLEX, 2–25t
LONGWORD, 2–23t
OCTAWORD, 2–23t
POINTER, 2–14
QUADWORD, 2–23t
REAL, 2–14
SEGMENTED STRING, 2–15
TEXT, 2–15
UNSPECIFIED, 2–16
VARYING STRING, 2–16

Data types (cont’d)
WORD, 2–23t

Database definitions
See Oracle Rdb databases
See RMS databases

Databases
See Oracle Rdb databases
See RMS databases

DATATYPE field property, 2–12
Decimal string data type

LEFT OVERPUNCHED NUMERIC, 2–20
LEFT SEPARATE NUMERIC, 2–20
PACKED DECIMAL, 2–20
RIGHT OVERPUNCHED NUMERIC, 2–21
RIGHT SEPARATE NUMERIC, 2–21
UNSIGNED NUMERIC, 2–21
ZONED NUMERIC, 2–21

DECIMAL_POINT field property, 2–26
Default repository directory

setting, 1–185
Default value for SQL

defining, 2–27
DEFAULT_VALUE FOR SQL field property,

2–27
DEFINE COLLECTION command, 1–62 to 1–64
DEFINE CONTEXT command, 1–65 to 1–67
DEFINE DATABASE command, 1–68 to 1–70
DEFINE DIRECTORY command, 1–71
DEFINE FIELD command, 1–72 to 1–73
DEFINE FILE_ELEMENT command, 1–74 to

1–75
DEFINE GENERIC command, 1–76 to 1–86

Relationship Member Options clause, 1–79
DEFINE KEY command, 1–87 to 1–89
DEFINE PARTITION command, 1–90 to 1–92
DEFINE PROTECTION command, 1–93 to 1–98
DEFINE RECORD command, 1–99 to 1–114

Aligned clause, 1–105 to 1–107
Constraint clause, 1–102 to 1–104
Included Name clause, 1–105 to 1–107
Local Field clause, 1–108 to 1–109
Occurs...Depending clause, 1–110
Structure Name clause, 1–110 to 1–111
Variants clause, 1–112 to 1–114

Index–3

DEFINE REPOSITORY command, 1–115 to
1–119

DEFINE RMS_DATABASE command, 1–120 to
1–122

attributes
area, A–7t
key, A–8t

options
position type, A–8t

properties, 3–1 to 3–13
area, 3–8 to 3–10
file definition, 3–2 to 3–7
key, 3–11 to 3–13

Defining conditional names, 2–7
Defining field

equivalent to COBOL 88 level condition, 2–7
Definition names

See Directory names
See Processing names

Definitions
See Field definitions
See Generic element definitions
See Record definitions
See RMS database definitions
See User-defined types
assigning directory names, 1–149
copying, 1–59
displaying, 1–189
displaying children, 1–223
displaying in DEFINE format, 1–153
displaying parents, 1–225
displaying protection, 1–210, 1–211
displaying reserved, 1–218
displaying type, 1–212
format

converting from DMU to CDO, 1–54
listing in directories, 1–145
promoting, 1–166
protecting, 1–93
removing directory names, 1–170
replacing, 1–171
reserving, 1–174
unreserving, 1–235
updating, 1–237
without parents and children, 1–221

DELETE COLLECTION command, 1–123 to
1–124

DELETE CONTEXT command, 1–125 to 1–126
DELETE DATABASE command, 1–127
DELETE DIRECTORY command, 1–128
DELETE FIELD command, 1–129
DELETE FILE_ELEMENT command, 1–130 to

1–131
DELETE GENERIC command, 1–132 to 1–133
DELETE HISTORY command, 1–134
DELETE PARTITION command, 1–135 to 1–136
DELETE PROTECTION command, 1–137 to

1–138
DELETE RECORD command, 1–139
DELETE REPOSITORY command, 1–140
DELETE RMS_DATABASE command, 1–141 to

1–142
Dependency tracking

See Pieces tracking
DETACH FROM COMPOSITE command, 1–143

to 1–144
Dictionaries

See Repositories
protecting, 1–97
upgrading types, 1–54

DIGITAL DATATRIEVE
edit string, 5–2t
query name, 2–47

Directories
corrupted

fixing, 1–239
creating, 1–71
deleting, 1–128
displaying default, 1–196
displaying definitions, 1–189
fixing corruption, 1–239
listing definitions in, 1–145
setting default, 1–185
showing definitions in, 1–145

DIRECTORY command, 1–145 to 1–147
Directory names

assigning, 1–149
removing, 1–170

Index–4

Display scale
defining, 2–28

Displaying data
See Reports

DISPLAY_SCALE field property, 2–28
DMU records

converting to CDO, 1–54
D_FLOATING COMPLEX data type, 2–25
D_FLOATING data type, 2–24

E
EDIT command, 1–148
Edit strings

alphabetic character, 5–4e
alphanumeric character, 5–4e

any character, 5–5e
long text character, 5–5e

am/pm character, 5–10e
comma character, 5–6e
day number character, 5–7e
decimal digit character, 5–12e
decimal point character, 5–11e
encoded minus character, 5–12e
encoded plus character, 5–13e
encoded sign character, 5–13e
error handling, 2–30
exponent character, 5–14e
floating blank character, 5–18e
floating currency character, 5–17e
floating minus character, 5–16e
floating plus character, 5–17e
floating sign character, 5–14e
floating zero replace character, 5–15e, 5–16t
fraction second character, 5–11e
generic, 2–29
hexadecimal digit character, 5–11e
Japanese, 5–21
Julian digit character, 5–7e
language-specific, 2–29
literal strings, 5–18t
logical characters, 5–19e
lowercase characters, 5–19e
minus literal character, 5–19e, 5–20t
minus parentheses character, 5–20e

Edit strings (cont’d)
minute character, 5–9e
missing separator character, 5–20e
month name character, 5–8e
month number character, 5–8e
octal digit character, 5–12e
product-specific, 2–29
removing, 2–30
repeat count character, 5–21e
second character, 5–9e
twelve hour mode character, 5–7e
twenty-four hour mode character, 5–9e
uppercase character, 5–21e
weekday name character, 5–9e
year character, 5–10e

EDIT_STRING field property, 2–29
removing, 2–30

Elements
See Field definitions
See Generic element definitions
See Record definitions
See RMS database definitions
See Type definitions

ENTER command, 1–149 to 1–151
EQ or (=) relational operator, 4–21
Error handling

data type, 2–30
edit string, 2–30
for CONTINUE action, 1–163t
for STOP action, 1–164t
in command procedures, 1–163

Executing command procedures, 1–164
EXIT command, 1–152
Expression

order of evaluation, 4–2
precedence of symbols, 4–3e

Extending types
See DEFINE GENERIC command

External references
fixing corruption, 1–239
verifying, 1–239

EXTRACT command, 1–153 to 1–156

Index–5

F
FETCH command, 1–157
Field

calculating value at run time, 2–7
Field definition

committing, 1–49
controlling, 1–51

Field definitions
adding to included name definitions, 1–33
adding to record definitions, 1–35
adding to structure definitions, 1–39
adding to variant definitions, 1–42, 1–45
aligning in record definitions, 1–105
assigning null values, 2–40
based on existing field, 2–4
changing within structures, 1–38
constraint definitions, 1–102
creating, 1–72
declaring value of, 2–35
defining a currency sign, 2–11
defining array, 2–2
defining datatype of, 2–12
defining decimal point, 2–26
defining default value for SQL, 2–27
defining display scale, 2–28
defining edit strings, 2–29
defining generic property, 2–32
defining help text, 2–33
defining input value, 2–37
defining language-specific name, 2–41
defining occurrences of array, 2–42
defining query headers, 2–46
defining query names, 2–47
defining unnamed, 2–31
defining validation conditions, 2–48
deleting, 1–129
deleting properties, 2–1
displaying, 1–197
field attribute definitions, 1–108
including in record definitions, 1–105
justifying, 2–38
modifying, 1–15
modifying within structure definitions, 1–39

Field definitions (cont’d)
modifying within variant definitions, 1–42,

1–45
properties of, 2–1 to 2–48
purging, 1–168
removing from included name definitions,

1–33
removing from record definitions, 1–35
removing from structure definitions, 1–39
removing from variant definitions, 1–42, 1–45
showing, 1–203
tag variable, 1–113
without assigned value, 2–40

Field properties
defining, 2–1 to 2–48

Field property
ARRAY, 2–2
BASED ON, 2–4
COLLATING_SEQUENCE, 2–6
COMPUTED BY, 2–7
CURRENCY_SIGN, 2–11
DATATYPE, 2–12
DECIMAL_POINT, 2–26
DEFAULT_VALUE FOR SQL, 2–27
defining, 2–1
deleting, 2–1
DISPLAY_SCALE, 2–28
EDIT_STRING, 2–29
FILLER, 2–31
GENERIC, 2–32
HELP_TEXT, 2–33
INITIAL_VALUE, 2–35
INPUT_VALUE, 2–37
JUSTIFIED, 2–38
MISSING_VALUE, 2–40
NAME, 2–41

caution in using, 2–41
OCCURS, 2–42
QUERY_HEADER, 2–46
QUERY_NAME, 2–47
VALID IF, 2–48

File Definition Properties, 3–2 to 3–7
File element definition

closing, 1–48

Index–6

File element definitions
creating, 1–74
deleting, 1–130
modifying, 1–17
opening, 1–165
showing, 1–200

Files
opening internal, 1–165

FILLER field property, 2–31
CDD$PROCESSING_NAME, 2–31

FIRST FROM expression, 4–12e
Foreign commands

executing from CDO, 1–231
Format

See Definitions
Formatted output

See Reports
Full DMU path name

in CONVERT command, 1–54
F_FLOATING COMPLEX data type, 2–25
F_FLOATING data type, 2–24

G
GE (>=) relational operator, 4–21
Generic edit string, 2–29
Generic element definitions

controlling, 1–51
creating, 1–76
deleting, 1–132
displaying, 1–202
modifying, 1–19
purging, 1–168

GENERIC field property, 2–32
Graphic data

storing in field, 2–14
GT (>) relational operator, 4–21
G_FLOATING COMPLEX data type, 2–25
G_FLOATING data type, 2–24

H
HELP command, 1–159
HELP_TEXT field property, 2–33
History entries

deleting, 1–134
H_FLOATING COMPLEX data type, 2–25
H_FLOATING data type, 2–24

I
INITIAL_VALUE field property, 2–35
Input value

defining, 2–37
INPUT_VALUE field property, 2–37

J
Japanese edit strings, 5–21
JUSTIFIED field property, 2–38

K
Key Properties, 3–11 to 3–13
Keys

See Terminal keys
defining, 1–186
displaying state, 1–204

L
Language-specific edit string, 2–29
LE (<=) relational operator, 4–21
LEFT OVERPUNCHED NUMERIC data type,

2–20
LEFT SEPARATE NUMERIC data type, 2–20
Lines of descent

developing multiple, 1–8
merging, 1–160

Literal
numeric literal

See Numeric literal

Index–7

Logical databases
See DEFINE RMS_DATABASE command

Logical operators
AND, 4–22
AND in conditional expressions, 4–22
defined, 4–19
in conditional expressions, 4–19
NOT, 4–22
NOT in conditional expressions, 4–22

caution in using, 4–22e
OR, 4–22
OR in conditional expressions, 4–22

Logical RMS databases
See RMS databases

LONGWORD data type, 2–23
LT (<) relational operator, 4–21

M
MCS_processingName property

in element definitions, 1–77
MERGE command, 1–160 to 1–161
MISSING relational operator, 4–22
Missing values

assigning, 2–40
MISSING_VALUE field property, 2–40
MOVE REPOSITORY command, 1–162
Moving repositories

between clusters, 1–227

N
NAME field property, 2–41

caution in using, 2–41
NE (<>) relational operator, 4–21
NOT logical operator, 4–22
Notices

clearing, 1–47
displaying, 1–206

Null values
assigning, 2–40

Numeric literals
as a value expression, 4–16
defined, 4–16
in assigning values, 4–16

O
OCCURS field property, 2–42
OCCURS...DEPENDING record property, 2–43
OCTAWORD data type, 2–23
ON command, 1–163 to 1–164

error handling for CONTINUE action, 1–163t
error handling for STOP action, 1–164t

OPEN FILE_ELEMENT command, 1–165
OpenVMS anchor directory

protecting, 1–97
OR logical operator, 4–22
Oracle Rdb database definitions

displaying
physical, 1–194

showing, 1–195e
showing field definitions from, 1–198e

Oracle Rdb databases
displaying physical definitions, 1–194

Orphans
See Unused definitions
See Definitions

without parents and children
Output

capturing with SET OUTPUT command,
1–187

verifying, 1–188
Overlays

See Variant definitions
creating within record definitions, 1–35

P
PACKED DECIMAL data type, 2–20
Parents

analyzing impact of CHANGE command,
1–229

displaying, 1–225
Partitions

creating, 1–90
deleting, 1–135
displaying, 1–209
modifying, 1–23

Index–8

Path name
displaying default, 1–196
SHOW DEFAULT command, 1–196

Pattern testing
with relational operators, 4–21

Physical databases
See Databases
See DEFINE DATABASE command
See RMS databases

Pieces tracking
analyzing impact of CHANGE command,

1–229
displaying children, 1–223
displaying notices, 1–206
displaying parents, 1–225
showing definitions without parents and

children, 1–221
showing unused definitions, 1–221

PL/I
edit string, 5–2t

POINTER data type, 2–14
Precedence

in expressions, 4–2, 4–3e
Printouts

See Reports
Privileges

See also Protection
displaying, 1–210

Processes
attaching to, 1–5
capturing output from, 1–154, 1–187
spawning from, 1–231
verifying commands, 1–188

Processing names, 1–21, 1–55, 1–59, 1–77, 1–78,
1–81, 1–82, 1–149, 1–223, 1–225, 1–230

Product-specific edit string, 2–29
PROMOTE command, 1–166 to 1–167
Properties

See Field property
See File Definition, Area, or Key Properties
See Record property

Protection
defining, 1–93
deleting, 1–137

Protection (cont’d)
displaying, 1–211
displaying user privileges, 1–210
modifying, 1–26

Protocols
adding to template repository, 1–119

PURGE command, 1–168 to 1–169

Q
QUADWORD data type, 2–23
Query headers, 2–46
Query names

defining, 2–47
QUERY_HEADER field property, 2–46
QUERY_NAME field property, 2–47

R
RDB$LENGTH

CDO data type corresponding to, 2–14
RDB$VALUE

CDO data type corresponding to, 2–14
REAL data type, 2–14
Record definitions

adding to included name definitions, 1–33
adding to record definitions, 1–35
adding to structure definitions, 1–39
adding to variant definitions, 1–42, 1–45
aligning in record definitions, 1–105
changing within variant definitions, 1–38
COBOL REDEFINES statement, 1–112
committing, 1–49
constraint definitions, 1–102
controlling, 1–51
converting from DMU to CDO, 1–54
creating, 1–99 to 1–114
creating structure definitions within, 1–110
creating variants definitions within, 1–112
defining array, 2–2
defining occurrences of element, 2–43
deleting, 1–139
deleting properties, 2–1
displaying, 1–215
field attribute definitions, 1–108
including in record definitions, 1–105

Index–9

Record definitions (cont’d)
modifying, 1–29 to 1–46
modifying within structure definitions, 1–39
modifying within variant definitions, 1–42,

1–45
overlay, 1–112
purging, 1–168
removing from included name definitions,

1–33
removing from record definitions, 1–35
removing from structure definitions, 1–39
removing from variant definitions, 1–42, 1–45
showing, 1–203

Record property
ARRAY clause, 2–2
defining, 2–1
deleting, 2–1
OCCURS...DEPENDING clause, 2–43

Record selection expression
defined, 4–26

Recovering
See Fixing corrupted directories

Relational operators, 4–20
comparing values, 4–21
defined, 4–22
EQ (=), 4–21
GE (>=), 4–21
GT (>), 4–21
LE (<=), 4–21
LT (<), 4–21
mathematical, 4–21t
MISSING, 4–22
NE (<>), 4–21
pattern testing, 4–21
types of, 4–22

Relationship members
defining with the DEFINE GENERIC

command, 1–79
Relative DMU path name

in CONVERT command, 1–54
REMOVE command, 1–170
REPLACE command, 1–171 to 1–173
Reports

column headings, 2–46

Reports (cont’d)
displaying fields without assigned values,

2–40
Repositories

accessing, 1–185
creating, 1–115
deleting, 1–140
displaying, 1–217
displaying version numbers, 1–227
fixing corruption, 1–239
moving, 1–162
moving between clusters, 1–227
protecting, 1–93
purging

See PURGE command
verifying, 1–239

Repository anchor
See OpenVMS anchor directory

Repository template
See CDD$TEMPLATE repository

Reservations
displaying, 1–218

RESERVE command, 1–174 to 1–178
RIGHT OVERPUNCHED NUMERIC data type,

2–21
RIGHT SEPARATE NUMERIC data type, 2–21
Rights

See Access rights
RMS database definitions

creating
logical, 1–120
physical, 1–68

deleting
logical, 1–141
physical, 1–127

displaying
logical, 1–219
physical, 1–194

modifying, 1–13
purging, 1–168

RMS databases
defining on disk, 1–68
deleting, 1–127
displaying physical definitions, 1–194

Index–10

RMS databases (cont’d)
moving, 1–13

ROLLBACK command, 1–179 to 1–180
Rolling back a transaction, 1–179
RPG

edit string, 5–2t
Run time

evaluating expressions, 2–7

S
Search lists, 1–185
SEGMENTED STRING data type, 2–15
Session character set

setting, 1–181
SET CHARACTER_SET command, 1–181 to

1–182
SET CONTEXT command, 1–183 to 1–184
SET DEFAULT command, 1–185
SET KEY command, 1–186
SET OUTPUT command, 1–187
SET VERIFY command, 1–188
Setting session character sets, 1–181
SHOW ALL command, 1–189 to 1–190
SHOW CHARACTER_SET command, 1–191
SHOW COLLECTION command, 1–192
SHOW CONTEXT command, 1–193
SHOW DATABASE command, 1–194 to 1–195
SHOW DEFAULT command, 1–196
SHOW FIELD command, 1–197 to 1–199
SHOW FILE_ELEMENT command, 1–200 to

1–201
displaying, 1–200

SHOW GENERIC command, 1–202 to 1–203
SHOW KEY command, 1–204 to 1–205
SHOW NOTICES command, 1–206 to 1–208

Oracle Rdb database, 1–207e
RMS databases, 1–208e

SHOW PARTITION command, 1–209
SHOW PRIVILEGES command, 1–210
SHOW PROTECTION command, 1–211
SHOW PROTOCOL command, 1–212 to 1–214
SHOW RECORD command, 1–215 to 1–216

SHOW REPOSITORIES command, 1–217
SHOW RESERVATIONS command, 1–218
SHOW RMS_DATABASE command, 1–219 to

1–220
SHOW UNUSED command, 1–221 to 1–222

Oracle Rdb database, 1–221e
SHOW USED_BY command, 1–223 to 1–224
SHOW USES command, 1–225 to 1–226

Oracle Rdb database, 1–226e
SHOW VERSION command, 1–227 to 1–228
SHOW WHAT_IF command, 1–229 to 1–230

Oracle Rdb database, 1–230e
SPAWN command, 1–231 to 1–232
START_TRANSACTION command, 1–233 to

1–234
Statistical expression

AVERAGE, 4–12e
statistical operator, 4–9t

Statistical operators
AVERAGE, 4–9
COUNT, 4–9
in statistical expressions, 4–9t
MAC, 4–9
MIN, 4–9
TOTAL, 4–9

STOP action error handling, 1–164t
Structure definitions

adding to structure definitions, 1–39
adding to variant definitions, 1–42, 1–45
creating, 1–110
creating within record definitions, 1–35
modifying within structure definitions, 1–39
modifying within variant definitions, 1–42,

1–45
OCCURS...DEPENDING clause, 1–41
removing from record definitions, 1–35
removing from structure definitions, 1–39
removing from variant definitions, 1–42, 1–45

Subprocesses
creating, 1–231

SYS$OUTPUT, 1–240

Index–11

T
Tag variables

run-time value, 1–113
Template repository (CDD$TEMPLATE)

customizing
adding extended protocols, 1–119
adding user-defined protocols, 1–119

Terminal keys
defining, 1–87

on different terminals, 1–89t
Terminating a transaction, 1–179
TEXT data type, 2–15
Transactions

rolling back, 1–179
terminating, 1–179

Type definitions
and starting a transaction, 1–234
defining within generic elements, 1–77
displaying within generic elements, 1–202
modifying within generic elements, 1–21
stored in CDD$PROTOCOL, 1–118, 1–190

Types
displaying, 1–212
purging, 1–168
upgrading in dictionaries, 1–54

U
UNRESERVE command, 1–235 to 1–236
UNSPECIFIED data type, 2–16
Unused definitions

displaying, 1–221
UPDATE command, 1–237 to 1–238
Upgrading types supplied by Oracle

CDD/Repository, 1–54
Usage tracking

See Pieces tracking

User-defined protocols
adding to template repository, 1–119

User-defined types
required properties

MCS_processingName, 1–21

V
VALID IF field property, 2–48
Value expression

calculating at run time, 2–7
conditional expression, 2–7
missing value, 2–40

Variant definitions
adding to structure definitions, 1–39
adding to variant definitions, 1–42, 1–45
creating within record definitions, 1–35
modifying within structure definitions, 1–39
modifying within variant definitions, 1–42,

1–45
removing from record definitions, 1–42, 1–45
removing from variant definitions, 1–42, 1–45

Variants definitions
creating, 1–112

VARYING STRING data type, 2–16
VERIFY command, 1–239 to 1–242
Version numbers, 1–227
Versions

merging, 1–160
replacing, 1–171
reserving, 1–174
unreserving, 1–235
updating, 1–237

W
Wildcard characters

See also descriptions for individual commands
using with COPY command, 1–60t

WORD data type, 2–23

Z
ZONED NUMERIC data type, 2–21

Index–12

