
VSI OpenVMS
VSI COBOL Reference Guide

Document Number: XX-XXXXXX-XXX

Publication Date: month year

This manual provides reference information and syntax for the VSI COBOL
programming language on its platforms: OpenVMS Alpha, OpenVMS Industry
Standard 64, and Tru64 UNIX Alpha.

Revision Update Information: This is a new manual.

Operating system and Version: VSI OpenVMS Version X.X

Software Version: VSI COBOL Version X.X

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS VSI COBOL Reference Guide:

Copyright © 2018 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Oracle is a registered trademark of Oracle and/or its affiliates.

The VSI OpenVMS documentation set is available on DVD.

ii

VSI COBOL Reference Guide

Preface .. vii
1. About VSI ... vii
2. Intended Audience ... vii
3. Structure of This Document .. vii
4. Associated Documents ... viii
5. Related Documents ... ix
6. Conventions .. ix
7. References .. xi
8. How to Order Additional Documentation .. xi
9. VSI Encourages Your Comments .. xi

Chapter 1. Overview of the COBOL Language ... 1
1.1. The COBOL Character Set ... 1
1.2. Character Strings .. 2

1.2.1. COBOL Words .. 2
1.2.2. Literals ... 10
1.2.3. Figurative Constants .. 14
1.2.4. PICTURE Character-Strings ... 15
1.2.5. Separators ... 16

1.3. Source Reference Format .. 17
1.3.1. ANSI Format ... 18
1.3.2. Terminal Format ... 22

1.4. Sample Entry Format ... 23

Chapter 2. Organization of a COBOL Program ... 25
Chapter 3. Identification Division ... 31

PROGRAM-ID ... 31
AUTHOR .. 33
DATE-COMPILED .. 34
OPTIONS .. 35

Chapter 4. Environment Division .. 39
SOURCE-COMPUTER .. 40
OBJECT-COMPUTER ... 40
SPECIAL-NAMES .. 43
FILE-CONTROL .. 56
ASSIGN .. 63
BLOCK CONTAINS ... 69
CODE-SET .. 70
LOCK MODE (Alpha, I64) .. 71
ORGANIZATION ... 73
PADDING CHARACTER .. 73
RECORD DELIMITER (OpenVMS) .. 74
RESERVE .. 75
I-O-CONTROL ... 76

Chapter 5. Data Division .. 83
5.1. Logical Concepts of Data Storage .. 83

5.1.1. Record Description Entries ... 83
5.1.2. Level-Numbers ... 84
5.1.3. Multiple Record Description Entries for the Same Data .. 85

5.2. Physical Concepts of Data Storage ... 86
5.2.1. Categories and Classes of Data ... 86
5.2.2. COBOL Standard Alignment Rules .. 87
5.2.3. Additional Alignment Rules for Record Allocation ... 88
5.2.4. Alpha and I64 Alignment and Padding ... 93

5.3. DATA DIVISION General Format and Rules ... 94

iii

VSI COBOL Reference Guide

Chapter 6. Procedure Division ... 197
6.1. Verbs, Statements, and Sentences ... 197

6.1.1. Compiler-Directing Statements and Sentences .. 202
6.1.2. Imperative Statements and Sentences .. 202
6.1.3. Conditional Statements and Sentences ... 202
6.1.4. Scope of Statements .. 203

6.2. Uniqueness of Reference .. 204
6.2.1. Qualification .. 204
6.2.2. Subscripts and Indexes ... 206
6.2.3. Reference Modification .. 209
6.2.4. Identifiers .. 210
6.2.5. Ensuring Unique Condition-Names ... 211
6.2.6. Scope of Names .. 211
6.2.7. External and Internal Data .. 218

6.3. Explicit and Implicit Specifications ... 218
6.3.1. Explicit and Implicit Procedure Division References .. 219
6.3.2. Explicit and Implicit Control Transfers .. 219
6.3.3. Explicit and Implicit Attributes .. 220
6.3.4. Explicit and Implicit Scope Terminators .. 220

6.4. Arithmetic Expressions ... 220
6.4.1. Arithmetic Operators ... 221
6.4.2. Formation and Evaluation of Arithmetic Expressions ... 221
6.4.3. Standard Arithmetic (Alpha, I64) ... 222
6.4.4. Native Arithmetic (Alpha, I64) .. 223

6.5. Conditional Expressions .. 224
6.5.1. Relation Conditions ... 225
6.5.2. Class Condition .. 227
6.5.3. Condition-Name Condition ... 228
6.5.4. Switch-Status Condition ... 228
6.5.5. Sign Condition ... 229
6.5.6. Success/Failure Condition ... 229
6.5.7. Complex Conditions .. 231
6.5.8. Abbreviated Combined Relation Conditions ... 233
6.5.9. Condition Evaluation Rules ... 233

6.6. Common Rules and Options for Data Handling ... 234
6.6.1. Arithmetic Operations .. 235
6.6.2. Multiple Receiving Fields in Arithmetic Statements ... 235
6.6.3. ROUNDED Phrase .. 235
6.6.4. ON SIZE ERROR Phrase ... 235
6.6.5. CORRESPONDING Phrase .. 237
6.6.6. ON EXCEPTION Phrase .. 237
6.6.7. Overlapping Operands and Incompatible Data .. 238
6.6.8. I-O Status .. 238
6.6.9. AT END Phrase .. 242
6.6.10. INVALID KEY Phrase ... 243
6.6.11. FROM Phrase ... 244
6.6.12. INTO Phrase .. 244

6.7. Segmentation .. 245
6.8. General Formats and Rules for Statements ... 246
6.9. ... 269

Chapter 7. Intrinsic Functions ... 401
Intrinsic Function .. 401
ACOS .. 406
ANNUITY ... 406
ARGCOUNT (OpenVMS Only) ... 407
ASIN ... 407
ATAN .. 408

iv

VSI COBOL Reference Guide

CHAR ... 408
COS .. 409
CURRENT-DATE ... 410
DATE-OF-INTEGER ... 411
DATE-TO-YYYYMMDD ... 411
DAY-OF-INTEGER ... 412
DAY-TO-YYYYDDD .. 413
FACTORIAL .. 414
INTEGER .. 414
INTEGER-OF-DATE ... 415
INTEGER-OF-DAY ... 416
INTEGER-PART ... 416
LENGTH ... 417
LOG .. 418
LOG10 .. 418
LOWER-CASE ... 419
MAX ... 419
MEAN ... 421
MEDIAN ... 421
MIDRANGE ... 422
MIN .. 423
MOD ... 424
NUMVAL .. 424
NUMVAL-C ... 425
ORD ... 426
ORD-MAX ... 427
ORD-MIN .. 428
PRESENT-VALUE .. 428
RANDOM .. 429
RANGE ... 430
REM ... 431
REVERSE .. 431
SIN ... 432
SQRT .. 433
STANDARD-DEVIATION .. 433
SUM ... 434
TAN .. 435
TEST-DATE-YYYYMMDD .. 435
TEST-DAY-YYYYDDD ... 436
UPPER-CASE ... 437
VARIANCE .. 437
WHEN-COMPILED .. 438
YEAR-TO-YYYY ... 439

Chapter 8. Source Text Manipulation ... 441
8.1. Text-Word Definition Rules ... 441

Appendix A. VSI COBOL Reserved Words ... 461
Appendix B. Character Sets ... 477
Appendix C. File Status Values ... 485
Appendix D. Report Writer Presentation Rules and Tables ... 489

D.1. Organization .. 489
D.2. LINE NUMBER Clause Notation .. 489
D.3. LINE NUMBER Clause Sequence Substitutions ... 490
D.4. Saved-Next-Group-Integer Description .. 490
D.5. REPORT HEADING Group Presentation Rules .. 490
D.6. PAGE HEADING Group Presentation Rules .. 491

v

VSI COBOL Reference Guide

D.7. Body Group Presentation Rules ... 492
D.8. PAGE FOOTING Group Presentation Rules .. 496
D.9. REPORT FOOTING Group Presentation Rules .. 497

Appendix E. RTL Routines for Accessing the RAB and FAB Structures (OpenVMS
Alpha and I64 Only) ... 499
Index ... 503

vi

Preface

Preface

This book describes the constructs and rules of the VSI COBOL programming language, which is a VSI
Company implementation of COBOL (COmmon Business-Oriented Language) for the OpenVMS and Tru64
UNIX platforms. It includes information about language syntax and semantics, as well as information about
adherence and extensions to various COBOL standards.

This documentation set also includes the VSI COBOL User Manual and, optionally, the HPE COBOL DBMS
Database Programming.

VSI COBOL is the new name for what has formerly been known as HP COBOL, Compaq COBOL, DEC COBOL,
DIGITAL COBOL. VSI COBOL, unmodified, refers to the following products:

VSI COBOL for OpenVMS Industry Standard 64
VSI COBOL for OpenVMS Alpha
VSI COBOL for Tru64 UNIX

Any references to the former names in product documentation or other components should be construed as
references to the VSI COBOL names.

1. About VSI
VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard Enterprise to develop
and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so closely
associated with the OpenVMS operating system and its original author, Digital Equipment Corporation.

2. Intended Audience
This manual is intended for experienced applications programmers who have a thorough understanding of the
COBOL language and some familiarity with their operating system. This is not a tutorial manual.

If you are a new COBOL user, you may need to read introductory COBOL textbooks or take COBOL courses.

3. Structure of This Document
This manual is organized as follows:

• Chapter 1, Overview of the COBOL Language presents the elements of the COBOL language, describes two
format options for a COBOL program, and explains how the remaining chapters organize and present the
COBOL general formats.

• Chapter 2, Organization of a COBOL Program describes the organization of a COBOL program. It presents the
general format for the four COBOL divisions and introduces the concept of contained programs. This chapter
shows the relationship between a program name and a source file name.

• Chapter 3, Identification Division describes the general format and contents of the Identification Division. It
explains how to identify a COBOL program and its source listing.

• Chapter 4, Environment Division describes the general format and contents of the Environment Division. It
explains how to describe the program's physical environment.

• Chapter 5, Data Division describes the general format and contents of the Data Division. It explains how to
describe data the program receives, creates, manipulates, and produces as output.

vii

Preface

• Chapter 6, Procedure Division describes the general format and contents of the Procedure Division. It describes
COBOL verbs, which process the files and data in the Environment and Data Divisions.

• Chapter 7, Intrinsic Functions describes the general format and use of the intrinsic functions.

• Chapter 8, Source Text Manipulation describes the general format of the COPY and REPLACE statements.

• Appendix A, VSI COBOL Reserved Words lists the VSI COBOL reserved words, which are words that cannot
be used as system names or user-defined names.

• Appendix B, Character Sets lists the ASCII, EBCDIC, and NATIVE character sets.

• Appendix C, File Status Values lists the exception condition values that can appear in File Status data items.

• Appendix D, Report Writer Presentation Rules and Tables contains individual presentation rules and tables for
each type of report group.

• Appendix E, RTL Routines for Accessing the RAB and FAB Structures (OpenVMS Alpha and I64 Only) describes
RTL routines for accessing the RAB and FAB structures on OpenVMS systems.

• The Index indexes and references terms and concepts in this manual.

4. Associated Documents
The following documents contain additional information directly related to various topics covered in this manual:

VSI COBOL User Manual
This manual describes how to use features of the VSI COBOL language to develop programs on the Tru64 UNIX
or the OpenVMS operating systems on Alpha, I64, and VAX.

Release Notes
Consult the VSI COBOL release notes for your installed version for late corrections and new features.

On the OpenVMS Alpha, I64 operating system, the release notes are in:

SYS$HELP:COBOL nnn.RELEASE_NOTES (ASCII text)
SYS$HELP:COBOL nnn_RELEASE_NOTES.PS

Where nnn is the version and release number.

On the Tru64 UNIX, the release notes are in:

/usr/lib/cmplrs/cobol/relnotes

DEC COBOL Installation Guide for VSI UNIX Systems
This manual provides instructions for installing VSI COBOL on the Tru64 UNIX.

DEC COBOL Installation Guide for OpenVMS Alpha
Systems
This manual provides instructions for installing VSI COBOL on the OpenVMS Alpha and OpenVMS I64 operating
systems.

HPE COBOL DBMS Database Programming
This manual provides information on using VSI COBOL for database programming with Oracle CODASYL
DBMS on the OpenVMS Alpha, the OpenVMS I64, or OpenVMS VAX operating systems.

viii

Preface

The OpenVMS Calling Standard and other manuals in
the OpenVMS Documentation Set
This set contains information about using the features of the OpenVMS I64, OpenVMS Alpha operating systems
and their tools.

The Tru64 UNIX Documentation Set
This set contains introductory and detailed information about using the features of the Tru64 UNIX operating
system and its tools.

The Alpha Architecture Reference Manual
This manual is available from Digital Press.

5. Related Documents
For additional information about VSI OpenVMS products and services, visit:

https://www.vmssoftware.com

6. Conventions
The following product names may appear in this manual:

• VSI OpenVMS for Integrity servers

• OpenVMS I64

• I64

All three names — the longer form and the two abbreviated forms — refer to the version of the OpenVMS operating
system that runs on the Intel ® Itanium ® architecture.

The following typographic conventions may be used in this manual:

Convention Meaning

RECORD KEY IS Underlined uppercase words are required when used in
a general format. Uppercase words not underlined are
optional.

sortfile Lowercase words used in a general format are generic
terms that indicate entries you must provide.

{ | | } Braces used in a general format enclose lists from
which you must choose only one item. For example:

{ SEQUENTIAL | RANDOM | DYNAMIC }
{ | | } Brackets used in a general format enclose optional

items from which you can choose none or one. For
example:

{ RECORD | ALL RECORDS }
{ { | | } } Choice indicators, vertical lines inside a set of braces,

used in a general format enclose lists from which
you must choose one or more items, using each item
chosen only once. For example:

ix

Preface

Convention Meaning
{ { COMMON | INITIAL } }

… A horizontal ellipsis indicates that the item preceding
the ellipsis can be repeated. For example:

{ switch-name … }
.

.

.

A vertical ellipsis indicates that not all of the
statements are shown.

Format Program examples are shown in terminal format,
rather than in ANSI standard format.

special-character words The following symbols, when used in a general format,
constitute required special-character words:

Plus sign (+)
Minus sign (-)
Single (=) and double (==) equal signs
Less than (<) or greater than (>) symbols
Less than or equal to (<=) and greater than or equal to
(>=) symbols
Period (.)
Colon (:)
Single (*) and double (**) asterisks
Slash (/)
Left parenthesis (bold or right parenthesis (bold))

quotation mark The term quotation mark is used to refer to the double
quotation mark character (").

apostrophe The term apostrophe is used to refer to the single
quotation mark character (’).

user input In examples, user input (what you enter) is shown as
monospaced text.

light blue color Light blue color indicates the language extensions to
the Fortran 95 Standard.

report file Bold type indicates a new term.
full-file-name This syntax term refers to the name of a file and the

device and directory, or path, in which it is located. For
example:

DISK2$:[HOME.PUBLIC]FILENAME.TXT;
 (OpenVMS file specification)
/disk2/home/public/filename.txt
 (Tru64 UNIX file specification)

compiler option This term refers to command-line qualifiers
(OpenVMS Alpha and I64 systems) or flags (Tru64
UNIX systems). For example:

/LIST (OpenVMS qualifier
 specification)
-list (Tru64 UNIX flag
 specification)

COBOL This term refers to language information common to
ANSI-85 COBOL, VSI COBOL, and VSI COBOL.

x

Preface

Convention Meaning

Enter A boxed symbol indicates that you must press a key
on the terminal; for example, Enter indicates that you
press the Enter key.

Tab This symbol indicates a nonprinting tab character.
Ctrl/x The symbol Ctrl/x indicates that you hold down the

key labeled CTRL while you press another key, for
example, Ctrl C or Ctrl O.

$ The dollar sign ($) represents the OpenVMS system
prompt.

% The percent sign (%) represents the Tru64 UNIX
system prompt.

7. References
The following table shows certain references and their respective meanings in this manual:

Reference Meaning

Alpha OpenVMS Alpha or Tru64 UNIX Alpha operating
system

OpenVMS OpenVMS Alpha or OpenVMS I64 operating system
Tru64 UNIX Tru64 UNIX Alpha operating system

Tru64 UNIX was formerly known as DEC OSF/1 or as DIGITAL UNIX. VSI COBOL was formerly known as
HP COBOL, Compaq COBOL, DIGITAL COBOL, or DEC COBOL.

8. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information account:
<info@vmssoftware.com>. We will be posting links to documentation on our corporate website soon.

9. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending electronic
mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have OpenVMS support
contracts through VSI can contact <support@vmssoftware.com> for help with this product. Users who
have OpenVMS support contracts through HPE should contact their HPE Support channel for assistance.

xi

Preface

xii

Overview of the COBOL Language

Chapter 1. Overview of the COBOL
Language
This chapter provides information about the structure and language of COBOL source programs. It describes the
elements of the COBOL language, reference formats, and language organization.

The COBOL language consists of the following components:

• Programs

• Divisions

• Sections

• Paragraphs

• Sentences

• Statements

• Clauses

• Entries

• Words

• Characters

A separately compiled COBOL program is a program that, together with its contained programs (if present), is
compiled separately from all other programs. Each COBOL program is divided into four parts, called divisions:
the Identification Division, Environment Division, Data Division, and Procedure Division. Divisions can contain
sections, which in turn can contain paragraphs. Paragraphs can contain sentences, clauses, statements, or entries.

The building blocks of these language components include the COBOL character set, character-strings, separators,
punctuation, and literals.

A COBOL program is a string of characters that is syntactically correct according to the COBOL language rules.

1.1. The COBOL Character Set
The COBOL character set, shown in Table 1.1, “The COBOL Character Set”, is used to form character-strings
and separators.

The only components of a COBOL program that can contain characters outside this set are nonnumeric literals,
comment-entries, and comment lines. Appendix B, Character Sets specifies the more inclusive computer character
sets these elements can use.

Table 1.1. The COBOL Character Set

Character
Meaning

0, 1, …, 9 digit
A, B, …, Z letter
a, b, …, z lowercase letter (equivalent to letter)
+ plus sign
- minus sign (hyphen)

1

Overview of the COBOL Language

Character
Meaning

* asterisk
/ slash (stroke, virgule)
\ backslash
= equal sign
$ currency sign
> greater than symbol
< less than symbol
: colon
_ underline (underscore)

space
Tab horizontal tab
(left parenthesis
) right parenthesis
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark (double quotation mark)
’ apostrophe (single quotation mark)
{ left brace
} right brace
[left bracket
] right bracket
<< double left-angle brackets
>> double right-angle brackets

Except in nonnumeric literals, the compiler treats lowercase letters as if they were uppercase. Therefore, a program
can contain COBOL words without regard to case. For example, the compiler recognizes the COBOL words in
each of the following pairs as identical:

WORKING-STORAGE Working-Storage
 Input input file-a FILE-A
 INSPECT InSpect

1.2. Character Strings
A character-string is a character or a sequence of contiguous characters that form a COBOL word, a literal,
a PICTURE character-string, or a comment-entry. Separators delimit character-strings. The following sections
describe these topics in detail.

1.2.1. COBOL Words
A COBOL word is a character-string of not more than 31 characters that forms one of the following:

• A user-defined word

• A system-name

2

Overview of the COBOL Language

• A reserved word

• A function-name

A user-defined word or system-name cannot be a reserved word. However, a program can use the same COBOL
word as both a user-defined word and a system-name. The compiler determines the word's class from its context.

1.2.1.1. User-Defined Words
A user-defined word is a COBOL word that you must supply to satisfy the format of a clause or statement. This
word consists of characters selected from the set A to Z, 0 to 9, the currency sign ($), underline (_), and hyphen
(-). Throughout this manual, and except where specific rules apply, the hyphen (-) and the underline (_) are treated
as the same character in a user-defined word. The underline (_), however, can begin or end a user-defined word,
and the hyphen (-) cannot. By convention, names containing a currency sign ($) are reserved for VSI.

Table 1.2, “ COBOL User-Defined Words” provides brief descriptions of the COBOL user-defined words.

Table 1.2. COBOL User-Defined Words

User-Defined Word
Purpose

Alphabet-Name Assigns a name to a character set, collating sequence,
or both. Alphabet-names must be defined in the
SPECIAL-NAMES paragraph. (See SPECIAL-
NAMES in Chapter 4: Environment Division.)

Class-Name Relates a name to a specified set of characters listed
in that clause. (See SPECIAL-NAMES in Chapter 4:
Environment Division.)

Condition-Name Assigns a name to a value, set of values, or range of
values in the complete set of values that a data item
can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names
assigned in the SPECIAL-NAMES paragraph to the
"on" or "off" status of switches are also condition-
names.

Data-Name Names a data item described in a data description
entry. When specified in a general format, data-name
cannot be reference modified, subscripted, indexed, or
qualified unless specifically allowed by the rules for
that format.

File-Name Names a file connector. A file connector is a storage
area that contains information about a file and is the
link between:

• A file-name and a physical file

• A file-name and its associated storage area

File description entries and sort-merge file description
entries describe file connectors.

Index-Name Names an index associated with a specific table.
Level-Number Is a one- or two-digit number that describes a data

item's special properties or its position in the structure
of a record. (See Sections 5.1.1 and 5.1.2.)

3

Overview of the COBOL Language

User-Defined Word
Purpose

Library-Name Names a COBOL library used in a source program
compilation. (See the COPY statement in Chapter 8,
Source Text Manipulation.)

Mnemonic-Name Associates a name with a system-name, such as
CONSOLE, SYSERR, ARGUMENT-NUMBER,
ENVIRONMENT-NAME, C01, OR SWITCH-8.
(See SPECIAL-NAMES in Chapter 4, Environment
Division.)

Paragraph-Name Names a Procedure Division paragraph. (See the
section called “Paragraph, Paragraph Header,
Paragraph-Name”.) Paragraph-names are equivalent
only if they are identical; that is, if they are composed
of the same sequence and number of digits and/or
characters.

For example:

START-UP START-UP Equivalent
START-UP STARTUP Different
Start-up START-UP Equivalent
001-START-UP 01-START-UP Different
017 017 Equivalent
017 17 Different

Program-Name Identifies a COBOL source program. (See the
PROGRAM-ID paragraph in Chapter 3, Identification
Division, and the section on CALL in Chapter 6,
Procedure Division, for a description of case-
sensitivity on the Tru64 UNIX. Also refer to the VSI
COBOL User Manual for a description of the -names
lowercase, -names uppercase, and -names
as_is flags.)

Record-Name Names a data item described with level-number 01 or
77.

Report-Name Names a report produced by the Report Writer
Control System (RWCS). (See the REPORT clause in
Chapter 5, Data Division.)

Screen-Name (Alpha, I64) Names a screen item defined in the SCREEN
SECTION of a program. (See the Screen Description
(Alpha, I64) section of Chapter 5, Data Division.)

Section-Name Names a Procedure Division section. Section-names
are equivalent only if they are identical; that is, when
they are composed of the same sequence and number
of digits and/or characters. (See the section called
“Section Header”.)

Segmented-Key-Name Identifies a segmented key, which is a concatenation of
one or more (up to eight) data items (segments) within
a record associated with an indexed file. A segmented
key is a form of primary or alternate key. It offers
flexibility in defining record description entries for

4

Overview of the COBOL Language

User-Defined Word
Purpose

indexed files. (Refer to the section on segmented keys
in the VSI COBOL User Manual.)

Segment-Number Is a 1- or 2-digit number that classifies a Procedure
Division section for segmentation. In VSI COBOL
programs, segment-numbers specify independent and
fixed segments. (See Section 6.7, “Segmentation”.)

Symbolic-Character Identifies a user-defined figurative constant.
Text-Name Identifies library text in a COBOL library. (See

the COPY statement in Chapter 8, Source Text
Manipulation.)

Within a given program, but excluding any contained program, the user-defined words are grouped into the
following disjoint sets:

alphabet-names
class-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
screen-names
section-names
segmented-key-names
symbolic-characters
text-names

All user-defined words in a program, except segment-numbers and level-numbers, can belong to only one of these
sets. User-defined words in each set must be unique, except as described in the rules for uniqueness of reference.
(See Section 6.2, “Uniqueness of Reference”).

Except for section-names, paragraph-names, segment numbers, and level-numbers, all user-defined words must
contain at least one alphabetic character. Segment-numbers and level-numbers need not be unique. Any segment-
number or level-number can be the same as any other segment-number or level-number.

1.2.1.2. System-Names
System-names are COBOL words that refer to the program's operating environment. The same COBOL word can
be used in a program as both a user-defined word and a system-name. The compiler determines the word's class
from its context.

The system-names are as follows:

ALPHA
ASCII
CARD-READER
CONSOLE
CONTIGUOUS
CONTIGUOUS-BEST-TRY
C01

5

Overview of the COBOL Language

DEFERRED-WRITE
EBCDIC
EXTENSION
FILL-SIZE
I64
LINE-PRINTER
LOCK-HOLDING
MASS-INSERT
OPERATOR
PAPER-TAPE-PUNCH
PAPER-TAPE-READER
PREALLOCATION
PRINT-CONTROL
SWITCH
WINDOW

1.2.1.3. Reserved Words
A reserved word can be used only as specified in the general formats. It cannot be a user-defined word. (See
Appendix A, VSI COBOL Reserved Words for a list of reserved words.)

The three types of reserved words follow:

• Required words

• Optional words

• Special-purpose words

Required Word

A required word must be used when its format is used in a program.

The two types of required words are keywords and special character words. In general formats, keywords are
uppercase and underlined. Arithmetic operators and relation characters are special character words; they are not
underlined in the general format.

In the following sample format, the keywords are COMPUTE, ROUNDED, SIZE, ERROR, NOT, and END-
COMPUTE. The equal sign (=) is a special-character word.

Optional Words

In general formats, uppercase words that are not underlined are optional words. They can make a program more
human-readable, but have no semantic effect. In the previous sample format, ON is an optional word.

Special-Purpose Words

The two types of special-purpose words are figurative constants and special registers. Figurative constants name
and refer to specific constant values and are described in detail in Section 1.2.3, “Figurative Constants”. Special
registers name and refer to special storage areas that the compiler provides.

The VSI COBOL special registers are primarily used to store information related to or produced by specific VSI
COBOL features. Table 1.3, “Special Registers” shows the special registers, their usage, and their descriptions.

6

Overview of the COBOL Language

Table 1.3. Special Registers

Special Register
Usage—Description

RETURN-CODE (Alpha, I64) X/OPEN—Names an VSI COBOL special register that
may be used to set a return value for a calling program
or to retrieve the value returned from a called program.
It is represented by PIC S9(9) USAGE IS COMP. It is
implicitly defined with GLOBAL scope.

The RETURN-CODE register is initialized with the
platform-specific success code. On OpenVMS Alpha
and OpenVMS I64, it is initialized to one. On Tru64
UNIX it is initialized to zero.

The RETURN-CODE special register can be set by
a called program, prior to the execution of a STOP
RUN or EXIT PROGRAM statement, to pass a value
to the calling program or the execution environment.
For a calling program, it can be read, subsequent to the
CALL, to obtain the value of the RETURN-CODE set
by the called program.

On Tru64 UNIX the main program sets the shell
variable status to the value of the RETURN-CODE.
On OpenVMS Alpha and OpenVMS I64 the main
program sets the symbol $STATUS to the value of the
RETURN-CODE.

If you use the GIVING phrase on the CALL statement
or on the Procedure Division header, specifying a
data item as its argument, this data item (instead of
RETURN-CODE) receives the return value. Note that
you can specify the special register RETURN-CODE
as the argument to GIVING, in which case RETURN-
CODE receives the return value. For more information
on the relationship between the GIVING phrase and
the RETURN-CODE special register, see Table 6.7,
“Relation of GIVING Phrase to RETURN-CODE
Special Register (Alpha, I64)” in Chapter 6, Procedure
Division.

Because the reserved word RETURN-CODE is one
of the X/Open reserved words, you cannot use the
noxopen keyword in the reserved_words
compiler option if you want to use the RETURN-
CODE special register.

For related information, see Section 6.8, “General
Formats and Rules for Statements” for the syntax and
description of the GIVING phrase of the Procedure
Divison header; and the CALL statement for the
syntax and description of CALL GIVING.

LINAGE-COUNTER LINAGE files—A line counter that the compiler
provides when a file description entry contains a
LINAGE clause. Its value is the number of the current
record within the page body. (See the LINAGE
clause in Chapter 5, Data Division.) The implicit

7

Overview of the COBOL Language

Special Register
Usage—Description

size of LINAGE-COUNTER is nine decimal digits
represented by PIC S9(9) COMP. You can qualify
LINAGE-COUNTER with a file-name. Procedure
Division statements and the SOURCE clause of the
Report Section can access the value of LINAGE-
COUNTER but cannot change its value. LINAGE-
COUNTER is global if file-name is global and
external if file-name is external.

PAGE-COUNTER REPORT WRITER—A page counter that the compiler
provides for each report in the Report Section of the
Data Division. You can qualify PAGE-COUNTER
with a report-name. Its value is the number of the
current page within a report. The implicit size of
PAGE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer
Control System (RWCS) maintains the value of
PAGE-COUNTER and uses this value to number the
pages of a report. The SOURCE clause of the Report
Section can reference PAGE-COUNTER. The values
in PAGE-COUNTER range from 1 to 999999 and can
be altered by Procedure Division statements.

LINE-COUNTER REPORT WRITER—A line counter that the compiler
generates for each report in the Report Section of
the Data Division. It may be qualified by a report-
name. Its value is the number of the current line within
a page. (See PAGE-COUNTER.) The implicit size
of LINE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer
Control System (RWCS) maintains the value of LINE-
COUNTER and uses this value to determine the
vertical positioning of a report. The SOURCE clause
of the Report Section can reference LINE-COUNTER.
The values in LINE-COUNTER range from 0 to
999999. Procedure Division statements can access the
values in LINE-COUNTER; however, only the RWCS
can change its value.

RMS-STS1(OpenVMS) RMS—Contains the primary RMS status value of
an I/O operation. (RMS-STV contains the secondary
value.) RMS-STS provides additional information
on COBOL File Status values resulting from I/O
operations.2It is represented by PIC S9(9) USAGE IS
COMP. You must qualify RMS-STS with a file-name.
If the file-name is global, RMS-STS is also global. If
the file-name is external, RMS-STS is also external.

Before the program opens the file for the first time, the
value of RMS-STS is undefined. After your program
executes an OPEN or CLOSE statement, RMS-STS
is set to the value of the STS field in the associated
file access block (FAB). After executing a READ,
WRITE, REWRITE, DELETE, START, or UNLOCK
statement, RMS-STS is set to the value of the STS
field in the associated record access block (RAB).

8

Overview of the COBOL Language

Special Register
Usage—Description

RMS-STV 1(OpenVMS) RMS—Contains the secondary (RMS-STS is
primary) RMS status value of an I/O operation. The
interpretation of this value is dependent on the value in
RMS-STS. It is represented by PIC S9(9) USAGE IS
COMP. You must qualify RMS-STV with a file-name.
If the file-name is global, RMS-STV is also global. If
the file-name is external, RMS-STV is also external.

The value in RMS-STV is undefined prior to the initial
OPEN of the file. After your program executes an
OPEN or CLOSE statement, RMS-STV is set to the
value of the STV field in the associated FAB. After
executing a READ, WRITE, REWRITE, DELETE, or
START statement, RMS-STV is set to the value of the
STV field in the associated RAB.

RMS-FILENAME 1(OpenVMS) RMS—Names the complete RMS filename. It consists
of 255 alphanumeric characters represented by PIC
X(255) USAGE IS DISPLAY. You must qualify it
with a file-name. If the file-name is global, RMS-
FILENAME is also global. If the file-name is external,
RMS-FILENAME is also external.

Before the program opens the file for the first time,
the value of RMS-FILENAME is undefined. For each
COBOL OPEN statement, RMS-FILENAME is set
to the complete RMS file specification string of file-
name: for example, DBB1:[COBOL]MASTER.DAT.

RMS-CURRENT-STS 1(OpenVMS) RMS—Names an VSI COBOL exception condition
register. It contains the primary RMS status value of
the most recent RMS I/O operation, regardless of the
file operated on. (RMS-CURRENT-STV contains
the secondary value.) It is represented by PIC S9(9)
USAGE IS COMP. Since this register can contain the
primary RMS status value for any file, you must not
qualify it with a file-name.

After your program executes any RMS I/O operation,
it sets RMS-CURRENT-STS to the value contained in
RMS-STS for that file.

RMS-CURRENT-STV 1(OpenVMS) RMS—Names an VSI COBOL exception condition
register. It contains the secondary RMS status value
of the most recent RMS I/O operation, regardless of
the file operated on. (RMS-CURRENT-STS contains
the primary value.) It is represented by PIC S9(9)
USAGE IS COMP. Since this register can contain
the secondary RMS status value for any file, you
must not qualify it with a file-name. After your
program executes any RMS I/O operation, it sets
RMS-CURRENT-STV to the value contained in RMS-
STV for that file.

RMS-CURRENT-FILENAME 1(OpenVMS) RMS—Names an VSI COBOL exception
condition register. It contains the complete RMS
file specification string of the file most recently
operated on by an I/O statement. It consists of 255

9

Overview of the COBOL Language

Special Register
Usage—Description

alphanumeric characters represented by PIC X(255)
USAGE IS DISPLAY. Since this register can contain
the file-name for any file, you must not qualify it with
a file-name.

After your program executes any I/O operation, it sets
RMS-CURRENT-FILENAME to the string contained
in RMS-FILENAME for that file.

1Procedure Division statements can the values or strings stored in the RMS special registers; however, only the RMS facility can the contents
of the registers. Refer to the VSI COBOL User Manual for programming examples. For an explanation and a listing of RMS STS and STV
values, refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived manual available on the OpenVMS
Documentation CD-ROM, or the online OpenVMS Help Message utility. Refer to the OpenVMS Record Management Services Reference
Manual for information on RMS. (RMS is on OpenVMS systems only.)
2The FILE STATUS data item (see Section 6.6.8: I-O Status) provides the primary source of status information for the file I-O verbs, and
RMS-STS and RMS-STV provide supplementary information.

1.2.1.4. Function-Names
A function-name is the name of a function as shown in Table 7.1: Intrinsic Functions. Note that function-names are
not reserved words and may appear in a different context in a program as a user-defined word or a system-name.

1.2.2. Literals
A literal is a character-string whose value is specified by: (1) the ordered set of characters it contains, or (2) a
reserved word that is a figurative constant.

VSI COBOL provides two types of literals: numeric and nonnumeric. Numeric literals include floating-point
literals and nonnumeric literals include hexadecimal and national literals. Floating-point, hexadecimal, and
national literals are VSI extensions. The following two sections describe literals in detail.

1.2.2.1. Numeric Literals
A numeric literal is a character string of 1 to 33 characters on Alpha and I64 selected from the digits 0 to 9, the
plus sign (+), the minus sign (-), and the decimal point (.).

The value of a numeric literal is the algebraic quantity represented by the characters in the literal.

Syntax Rules
1. A numeric literal must contain at least 1 digit and not more than 31 digits on Alpha and I64.

2. A numeric literal must not contain more than one sign character, which must be the leftmost character. If the
literal is unsigned, its value is positive.

3. A numeric literal must not contain more than one decimal point. The decimal point is treated as an assumed
decimal point. It can be used anywhere in the literal except as the rightmost character.

If a numeric literal contains no decimal point, it is an integer.

4. The compiler treats a numeric literal enclosed in quotation marks as a nonnumeric literal.

Table 1.4, “Numeric Literals” provides examples of numeric literals.

Table 1.4. Numeric Literals

Literal Value

12 12

10

Overview of the COBOL Language

Literal Value

0.12000 0.12
-123456789012345678 -123456789012345678
000000003 3
-34.455445555 -34.455445555
0 0
+0.000000000001 +0.000000000001
+0000000000001 +1

Floating-Point Literals
A floating-point literal, a VSI extension to numeric literals, is a character-string whose value is specified by 4 to
37 characters on Alpha and I64, selected from the digits 0 to 9, the plus sign (+), the minus sign (-), the decimal
point (.), and the letter E (uppercase or lowercase).

You can use floating-point literals to achieve a wider range of numeric literal values.

Syntax Rules
1. A floating-point literal must be between 4 and 37 (Alpha, I64) characters in length.

2. A floating-point literal must contain the following characters:

• At least 1 digit to the left of the E

• A decimal point to the left of the E

• An E (uppercase or lowercase)

• At least 1 digit to the right of the E

3. The maximum number of characters to the left of the E is 33 (Alpha, I64) of which no more than 31 can be digits.

4. The maximum number of characters to the right of the E is 4 (Alpha, I64) of which no more than 3 can be digits.

5. A floating-point literal must not contain more than two sign characters as follows:

• The first character of the literal

• The first character following the E

6. If the first character of the literal is not a sign character, the literal is positive.

7. If the first character following the E is not a sign character, the value of the numeric component following the
E is positive.

8. A floating-point literal must contain only one decimal point that can appear only to the left of the E.

9. A comma must be used in place of the decimal point, if the DECIMAL POINT IS COMMA clause is specified.

The value of a floating-point literal is the algebraic quantity represented by the characters in the literal that precede
the E multiplied by ten raised to the power of the algebraic quantity represented by the characters in the literal
following the E.

Table 1.5, “Floating-Point Literals” provides a few examples of floating-point literals.

Table 1.5. Floating-Point Literals

Literal Value

1.6e5 160000.0

11

Overview of the COBOL Language

Literal Value

3.2E-3 0.0032
-1.e4 -10000.0
0.002e+6 2000.0
-.8E-2 -0.008

1.2.2.2. Nonnumeric Literals
A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited on both ends by quotation marks (")
or apostrophes (’). A nonnumeric literal delimited by apostrophes is treated in the same manner as a nonnumeric
literal delimited by quotation marks.

The value of a nonnumeric literal is the value of the characters in the character-string. It does not include
the quotation marks (or apostrophes) that delimit the character-string. All other punctuation characters in the
nonnumeric literal are part of its value.

The compiler truncates nonnumeric literals to a maximum of 256 characters.

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately precede the opening quotation mark
(or apostrophe).

2. The closing quotation mark (or apostrophe) must be immediately followed by one of the following:

• Space

• Comma

• Semicolon

• Period

• Right parenthesis

• Pseudo-text delimiter

3. If a nonnumeric literal is delimited by quotation marks ("), two consecutive quotation mark characters in the
literal represent one quotation mark character.

4. If a nonnumeric literal is delimited by apostrophes (’), two consecutive apostrophes in the literal represent
one apostrophe (’).

Table 1.6, “Nonnumeric Literals” provides examples of nonnumeric literals. In these examples, s represents a
space character.

Table 1.6. Nonnumeric Literals

Literal Value

"ABC " ABC
"01 " 01
"s01 " s01
"D " "E " "F " D "E "F
"a.b " a.b
’GHI ’ GHI

12

Overview of the COBOL Language

Literal Value

’02 ’ 02
’s02 ’ s02
’c.d ’ c.d
" " " " "
’ " " ’ " "
’ ’ ’ ’ ’
" ’ ’ " ’ ’
’J " "K ’ J " "K
"J " " " "K " J " "K
’J ’ ’ ’ ’K ’ J ’ ’K
"J ’ ’K " J ’ ’K
’L ’ ’M ’ ’N ’ L ’M ’N
"L ’M ’N " L ’M ’N
’O "P "Q ’ O "P "Q
"O " "P " "Q " O "P "Q
’R " "S " "T ’ R " "S " "T
"R " " " "S " " " "T " R " "S " "T
’U ’ ’ ’ ’V ’ ’ ’ ’W ’ U ’ ’V ’ ’W
"U ’ ’V ’ ’W " U ’ ’V ’ ’W

Hexadecimal Literals

A hexadecimal literal (a VSI extension to nonnumeric literals) is a character string of 2 to 256 hexadecimal digits.
On the left it is delimited by the separator X (or x) immediately followed by a quotation mark (") or apostrophe
('); on the right it is delimited by a matching quotation mark or apostrophe. For example:

03 HEX_VAL PIC X VALUE X"00".

The character string consists only of pairs of hexadecimal digits representing a byte value ranging from 00 to FF;
hence, only the characters 0 to 9, A to F, and a to f are valid.

The value of a hexadecimal literal is the composite value of the paired hexadecimal representations. The compiler
truncates hexadecimal literals to a maximum of 128 hexadecimal representations (pairs of hexadecimal digits).

A hexadecimal literal can be used interchangeably wherever a nonnumeric literal can appear in VSI COBOL
syntax. (Thus, hexadecimal literals cannot be used as operands in arithmetic statements.)

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately precede the opening character X (or
x).

2. The closing quotation mark or apostrophe must be immediately followed by one of the following:

• Space

• Comma

• Semicolon

13

Overview of the COBOL Language

• Period

• Right parenthesis

• Pseudo-text delimiter

Table 1.7, “Hexadecimal Literals” provides examples of hexadecimal literals.

Table 1.7. Hexadecimal Literals

Literal Value

X "00 " NUL
x "0D " CR
x "2424 " $$
X ’7b7a ’ {z

National Literals

National literals can be from 0 to 128 2-byte characters (hence 256 bytes). The syntax is:

 VALUE N"".

National literals are made available when /NATIONALITY=JAPAN or -nationality japan is specified.

1.2.3. Figurative Constants
Figurative constants name and refer to specific constant values generated by the compiler. The singular and
plural forms of figurative constants are equivalent and interchangeable. Table 1.8, “Figurative Constants” lists the
figurative constants.

Table 1.8. Figurative Constants

Figurative Constant Value

ZERO, ZEROS, ZEROES Represent the value zero, or one or more occurrences
of the character 0 from the computer character set,
depending on context. In the following example, the
first use of the word ZERO represents a zero value; the
second represents six 0 characters:

03 ABC PIC 9(5) VALUE ZERO.
03 DEF PIC X(6) VALUE ZERO.

SPACE, SPACES Represent one or more space characters from the
computer character set.

HIGH-VALUE, HIGH-VALUES Represent one or more occurrences of the character
with the highest ordinal position in the program
collating sequence. For example, HIGH-VALUE for
the native collating sequence is hexadecimal FF.

The value of HIGH-VALUE depends on the collating
sequence specified by clauses in the OBJECT-
COMPUTER and SPECIAL-NAMES paragraphs. For
example, if the program collating sequence is ASCII,

14

Overview of the COBOL Language

Figurative Constant Value
HIGH-VALUE is hexadecimal 7F (hexadecimal FF
for EBCDIC). For more information, see OBJECT-
COMPUTER and SPECIAL-NAMES sections in
Chapter 4: Environment Division.

LOW-VALUE, LOW-VALUES Represent one or more occurrences of the character
with the lowest ordinal position in the program
collating sequence (hexadecimal 00 for the native
collating sequence).

The value of LOW-VALUE depends on the program
collating sequence specified by clauses in the
OBJECT-COMPUTER and SPECIAL-NAMES
paragraphs. For more information, see the OBJECT-
COMPUTER and SPECIAL-NAMES sections in
Chapter 4: Environment Division.

QUOTE, QUOTES Represent one or more occurrences of the quotation
mark character. QUOTE or QUOTES cannot be used
in place of a quotation mark to bound a nonnumeric
literal. The following examples are not equivalent:

QUOTE abcd QUOTE
"abcd"

ALL Literal Represents one or more occurrences of the string
of characters making up the literal. The literal must
be either nonnumeric, a symbolic-character, or a
figurative constant other than ALL literal. For a
figurative constant, the word ALL is redundant and
serves only to enhance readability.1

Symbolic-character Represents one or more occurrences of the character
specified as the value of symbolic-character. (See
SPECIAL-NAMES in Chapter 4: Environment
Division.)

1The reserved word ALL, not followed by a literal, can be a subscript of an identifier that is a function argument. (The function must allow a
variable number of arguments in this argument position; see Chapter 7, Intrinsic Functions.)

When a figurative constant represents a string of one or more characters, the string's length depends on its context:

• The string's length can vary for a figurative constant in a VALUE IS clause, or for one associated with
another data item (for example, when the figurative constant is moved to or compared with another data item).
Proceeding from left to right, the compiler repeats the string of characters that represents the figurative constant.
It repeats them, character by character, until the size of the resultant string equals that of the associated data item.
This is done before and independent of the application of any JUSTIFIED clause specified for the data item.

• When a figurative constant is not associated with another data item (for example, when it is in a DISPLAY,
STRING, STOP, or UNSTRING statement), the length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid wherever the word literal (or its abbreviation, "lit") appears in a general format or
its associated rules. However, ZERO (ZEROS or ZEROES, plural) is the only valid figurative constant for literals
restricted to numeric characters.

The actual characters associated with HIGH-VALUE, HIGH-VALUES, LOW-VALUE, and LOW-VALUES
depend on the program collating sequence. For more information, see OBJECT-COMPUTER and SPECIAL-
NAMES in Chapter 4: Environment Division.

1.2.4. PICTURE Character-Strings

15

Overview of the COBOL Language

A PICTURE character-string defines the size and category of an elementary data item. It can consist of the currency
symbol ($) and certain combinations of characters in the COBOL character set. (See PICTURE.)

A punctuation character that is part of a PICTURE character-string is not considered to be a punctuation character.
Instead, the compiler treats it as a symbol within the PICTURE character-string.

1.2.5. Separators
A separator delimits character-strings. It can be one character or two contiguous characters formed according to
the rules in Table 1.9, “Separators”.

Table 1.9. Separators

Separator Usage Rules

Space The space can be a separator or part of a separator.

• Where a space is used as a separator or part of a
separator, more than one space can be used.

• A space can immediately precede any separator
except:

• As specified by the rules for reference formats
(see Section 1.3, “Source Reference Format”)

• The closing quotation mark of a nonnumeric
literal; the space is then considered part of the
nonnumeric literal rather than a separator

• A space can immediately follow any separator
except the opening quotation mark of a nonnumeric
literal. After an opening quotation mark, the space is
considered part of the nonnumeric literal rather than
a separator.

Comma and Semicolon

The comma and semicolon are separators when they
immediately precede a space. In this case, the comma
and semicolon are interchangeable with each other and
with the separator space. They can be used anywhere
in a source program that a separator space can be used.

Period

The period is a separator when it immediately precedes
a space or a return character. It can be used only where
allowed by:

• Statement and sentence structure definitions (see
Section 6.1, “Verbs, Statements, and Sentences”)

• Reference format rules (see Section 1.3, “Source
Reference Format”)

Parentheses

Parentheses can be used only in balanced pairs of left
and right parentheses to delimit:

• Subscripts

16

Overview of the COBOL Language

Separator Usage Rules
• Indexes

• Arithmetic expressions

• Conditions

• Reference modification

• Boolean expressions

• Intrinsic function argument lists
Quotation Marks Apostrophes

An opening quotation mark or apostrophe must be
immediately preceded by a separator space or a
left parenthesis. A closing quotation mark (") or
apostrophe (') must be immediately followed by one
of the separators: space, comma, semicolon, period, or
right parenthesis.

Horizontal Tab

The horizontal tab aligns statements or clauses on
successive columns of the source program listing. It
is interchangeable with the separator space. When
the compiler detects a tab character (other than in a
nonnumeric literal), it generates one or more space
characters consistent with the tab character position in
the source line. (See Section 1.3, “Source Reference
Format”.)

Pseudo-Text Delimiter

The pseudo-text delimiter is two contiguous equal
signs (==), both of which must be on the same source
line. A space must immediately precede an opening
pseudo-text delimiter. One of the following separators
must immediately follow a closing pseudo-text
delimiter: spaces, commas, semicolons, or periods.

Pseudo-text delimiters can be used only in balanced
pairs. They delimit pseudo-text. (See Chapter 8,
Source Text Manipulation.)

Colon

The separator colon delimits operands in reference
modification. It is required when shown in a general
format. (See Section 6.2.3, “Reference Modification”.)

1.3. Source Reference Format
The VSI COBOL compiler recognizes two source program formats: ANSI and terminal.

• ANSI format conforms to the American National Standard COBOL reference format.

• Terminal format is a concise VSI specified format. It shortens source program lines by allowing horizontal
tab characters and carriage returns. In terminal format, you do not use the ANSI format sequence numbers or
identification area.

17

Overview of the COBOL Language

By default, the compiler expects terminal-format source lines. The compiler expects ANSI format only when the
command line includes the ansi compiler option.

The reference format rules for spacing take precedence over all other spacing rules.

1.3.1. ANSI Format
The ANSI source reference format describes COBOL programs in terms of character positions on an input line. A
source program line has 80 character positions as shown in Figure 1.1, “Source Program Line”.

Figure 1.1. Source Program Line

Margin L
Immediately to the left of the leftmost character position.

Margin C
Between character positions 6 and 7.

Margin A
Between character positions 7 and 8.

Margin B
Between character positions 11 and 12.

Margin R
Between character positions 72 and 73.

Sequence Number Area
The six character positions between Margin L and Margin C. The contents can be any characters from the computer
character set.

The compiler does not check the uniqueness of the contents. However, the compiler does check for the ascending
sequence of the contents if the compiler command line includes the sequence compiler option.

Indicator Area
The seventh character position. The character in this position directs the compiler to interpret the source line in
one of the following ways:

Character Source Line Interpretation

space () Default. The compiler processes the line as normal
COBOL text.

hyphen (-) Continuation line. The compiler processes the line as a
continuation of the previous source line.

18

Overview of the COBOL Language

Character Source Line Interpretation

asterisk (*) Comment line. The compiler ignores the contents
of the line. However, the source line appears on the
program listing.

slash (/) New listing page. The compiler treats the line as a
comment line. However, it advances the program
listing to the top of the next page before printing the
line.

A-Z, a-z

Conditional compilation lines. The compiler processes
the line as normal COBOL text if you specify the
DEBUGGING MODE clause in the SOURCE-
COMPUTER paragraph, or if you specify the
conditionals compiler option in the command
line. If you do not specify either, the compiler
processes this line as a comment line.

Area A
The four character positions between Margin A and Margin B. Area A contains division headers, section headers,
paragraph headers, paragraph-names, level indicators, and certain level-numbers.

Area B
The 61 character positions between Margin B and Margin R. Area B contains all other COBOL text.

Identification Area
The eight character positions immediately following Margin R. The compiler ignores the contents of the
identification area. However, the contents appear on the source program listing.

Line Continuation
Sentences, entries, phrases, and clauses that continue in Area B of subsequent lines are called continuation lines.
The line being continued is called the continued line.

A hyphen in a line's indicator area causes its first nonblank character in Area B to be the immediate successor
of the last nonblank character of the preceding line. This continuation excludes intervening comment lines and
blank lines.

However, if the continued line ends with a nonnumeric literal without a closing quotation mark, the first nonblank
character in Area B of the continuation line must be a quotation mark. The continuation starts with the character
immediately after the quotation mark. All spaces at the end of the continued line are part of the literal. Area A
of the continuation line must be blank.

If the indicator area is blank:

• The compiler treats the first nonblank character on the line as if it followed a space.

• The compiler treats the last nonblank character on the preceding line as if it preceded a space.

ANSI Format Example
001010 01 NUMERIC-CONTINUATION.
001020 03 NUMERIC-LITERAL PIC 9(16) VALUE IS 123

19

Overview of the COBOL Language

001030- 4567890123456.
001040 01 NONNUMERIC-CONTINUATION.
001050 03 NONNUMERIC-LITERAL PIC X(40) VALUE IS "AB
001060- "CDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmn".
001070 PROCEDURE DIVISION.
001080 SENTENCE-CONTINUATION.
001090 IF NUMERIC-LITERAL NOT = SPACES
001100 DISPLAY "NUMERIC-LITERAL NOT = SPACES"
001110 ELSE
001120 DISPLAY NUMERIC-LITERAL.

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050 and 001060 continue a nonnumeric
literal. A sentence that spans four lines begins on line 001090.

Blank Lines
A blank line contains no characters other than spaces between Margin C and Margin R. Blank lines can be anywhere
in a source program or library text.

Comment Lines
A comment line is any source line with an asterisk (*) or slash (/) in its indicator area. Area A and Area B can
contain any characters from the computer character set. Comment lines can be anywhere in a source program or
library text.

Conditional Compilation Lines
A conditional compilation line is any source line after the OBJECT COMPUTER paragraph that includes one of
these uppercase or lowercase alphabetic characters in its indicator area: A to Z, a to z. The compiler processes
the line as normal COBOL text if you specify the DEBUGGING MODE clause in the SOURCE COMPUTER
paragraph.

The compiler processes the line as normal COBOL text if you include the appropriate conditionals compiler
option in the command line.

If you specify neither, the compiler processes this line as a comment line.

Lines conditioned by one letter can be compiled or treated as comments independently of other conditional
compilation lines. On OpenVMS systems, for instance, if you compile with /CONDITIONALS=(A,B), lines
conditioned with A and B compile while those conditioned by other letters are treated as comments.

See Chapter 8, Source Text Manipulation for additional information on the interaction between conditional
compilation lines and the COPY statement.

Pseudo-Text
Pseudo-text character-strings and separators can start in either Area A or Area B. However, if there is a hyphen in
the indicator area of a line that follows the opening pseudo-text delimiter, Area A of the line must be blank.

The normal rules for line continuation apply to the formation of text-words.

Pseudo-text is described in Chapter 8, Source Text Manipulation.

Short Lines and Tab Characters
If the source program input medium is not punched cards, carriage return and horizontal tab characters can shorten
source lines.

20

Overview of the COBOL Language

The compiler recognizes the end of the input line as Margin R. Tab characters, other than those in nonnumeric
literals, cause the compiler to generate enough space characters to position the next character at the next tab stop.
The compiler's tab stops are at character positions 8, 12, 20, 28, 36, 44, 52, 60, 68, and 76.

The following example shows how the compiler interprets carriage return and horizontal tab characters in a source
program:

Shortened ANSI Format Source Line
 000100*The following record description shows the source line format
 Return
000110 01 Tab RECORD-A. Return
000120 Tab Tab03 GROUP-A. Return
000130 Tab Tab Tab05 ITEM-A Tab PIC X(10). Return
000140* Tab The tab character in the nonnumeric literal Return
000150* Tab on the next line is stored as one character Return
000160 Tab Tab Tab05
ITEM-B Tab PIC X VALUE IS " Tab". Return
000170 Tab Tab03 ITEM-C Tab Tab PIC X(10). Return
000180D01 Tab RECB REDEFINES RECORD-A Tab PIC X(21). Return

Source Line as Interpreted by the Compiler
000100*The following record description shows the source line format
000110 01 RECORD-A.
000120 03 GROUP-A.
000130 05 ITEM-A PIC X(10).
000140* The tab character in the nonnumeric literal
000150* on the next line is stored as one character
000160 05 ITEM-B PIC X VALUE IS " Tab".
000170 03 ITEM-C PIC X(10).
000180D01 RECB REDEFINES RECORD-A PIC X(21).

Use more tab characters only when necessary. Compiler error diagnostics result if you use tab characters beyond the
permissible character positions for a COBOL statement or entry. The following example shows how the compiler
treats source program lines 000004 and 000005. Line 000004: contains one too many tab characters, which places
paragraph-name P0 out of Area A.

Shortened ANSI Format Source Line
000001 TabIDENTIFICATION DIVISION.
000002 TabPROGRAM-ID. ANSI-TEST.
000003 TabPROCEDURE DIVISION.
000004 Tab TabP0.
000005 Tab TabSTOP RUN.

Listing File Result on OpenVMS Alpha, I64
000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
000004 P0.
.........^
%COBOL-F-UNDEFSYM, Undefined name
at line number 4 in file DISK:[DIRECTORY]ANSI.COB;1
000005 STOP RUN.
........^
%COBOL-W-SYN6, Missing paragraph header

21

Overview of the COBOL Language

at line number 5 in file DISK:[DIRECTORY]ANSI.COB;1

Listing File Result on Tru64 UNIX
000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
cobol: Severe: dwork/t.cob, line 4: Undefined name
000004 P0.
--------^
cobol: Warning: dwork/t.cob, line 5: Missing paragraph header
000005 STOP RUN.
--------^

Note

The previous error messages have no additional online explanations. If a diagnostic message has a further
explanation, an asterisk (*) is displayed (to the left of the error message). On OpenVMS Alpha and I64 systems,
the VSI COBOL online help file lists and describes error messages that have further explanations.

1.3.2. Terminal Format
The VSI COBOL terminal format shortens program preparation time and reduces storage space for source
programs. This format eliminates the sequence number and identification areas. It also combines the indicator area
with Area A. Except for the differences described in this section, the rules for ANSI format also apply to terminal-
format source programs.

In terminal format, the compiler recognizes the following valid indicator area characters in the first character
position:

(-) hyphen
(*) asterisk
(/) slash

The compiler also recognizes the following conditional compilation line characters as valid indicator area
characters in the first and second character positions:

(\x) backslash and x

where x can be any uppercase or lowercase alphabetic character.

Area A then begins in character position 2 (or 3 if using \x). Otherwise, Area A begins in the first character position.

Area B begins four character positions to the right of the beginning of Area A. It ends when the compiler detects
a carriage return, or at Margin R.

The maximum length of a terminal-format source line is 256 characters. The compiler's tab stops are immediately
to the right of Margin B, and every eight character positions to the right, until the end of the line.

Note

The maximum length of the source line on the program listing is 125 characters, including the sequence field.
The compiler processes the complete source line but displays only the first 125 characters on the listing. It also
replaces all nonprintable ASCII characters with periods (or other symbols depending on the device) in the listing
file. (Refer to the VSI COBOL User Manual.)

The following example shows source lines in terminal format. It is equivalent to the ANSI-format source line
examples in the previous section.

22

Overview of the COBOL Language

*The following record description shows the source line format Return
01 Tab RECORD-A. Return
Tab03 GROUP-A. Return
Tab Tab05 ITEM-A Tab PIC X(10). Return
* Tab The tab character in the nonnumeric literal Return
* Tab on the next line is stored as one character Return
Tab Tab05 ITEM-B Tab PIC X VALUE IS " Tab". Return
Tab03 ITEM-C Tab Tab PIC X(10). Return
\D01 Tab RECB REDEFINES RECORD-A Tab PIC X(21). Return

1.4. Sample Entry Format
The following format is used to describe most entries in this manual. Each COBOL division or major topic begins
a new chapter and each entry begins on a new page. The entries are in functional or alphabetical order.

Entry-Name
Function

The function paragraph describes the function or the effect of the entry.

General Format

A general format shows the specific arrangement of elements in the entry. If there is more than one arrangement,
the formats are numbered. All clauses (mandatory and optional) must be used in the sequence shown in the format.
However, the syntax rules sometimes allow exceptions.

generic-term

Following the general format are definitions of its generic terms. These terms appear in the rules in italic type.

Syntax Rules

Syntax rules define or clarify the arrangement of words or elements. They can also impose further restrictions or
relax restrictions implied by the general format.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an element or set of elements. They
also define the semantics of an entry, describing its effects on program compilation or execution.

Technical Notes

Technical notes describe, in system-specific terms, any system-specific behavior, and any other VSI COBOL
behavior of note not described in the rules. They define relationships between the COBOL program and the
operating system and its components.

Additional References

Additional references point to other relevant information in this manual, the VSI COBOL User Manual, and other
VSI documentation sets.

Examples

Examples show the use of a statement, clause, or other entry. The VSI COBOL User Manual contains other
examples in application contexts.

The following example shows a general format:

23

Overview of the COBOL Language

General Format

Additional References
• Chapter 3: Identification Division

• Chapter 4: Environment Division

• Chapter 5: Data Division

• Chapter 6: Procedure Division

24

Organization of a COBOL Program

Chapter 2. Organization of a COBOL
Program
A COBOL source program is a syntactically correct set of COBOL statements that:

• Mark the beginning of the program

• Describe its physical environment

• Describe the data the program creates, receives as input, manipulates, and produces as output

• Specify the processing of the program's files and data

General Format

[identification-division]

represents a COBOL Identification Division.

[environment-division]

represents a COBOL Environment Division.

[data-division]

represents a COBOL Data Division.

[procedure-division]

25

Organization of a COBOL Program

represents a COBOL Procedure Division.

[source-program]

represents a contained (nested) COBOL source program. A COBOL source program may be nested; more than
one source program may be present in a single source file.

[end-program-header]

represents a COBOL END PROGRAM header.

Syntax Rule
The end-program-header must be present if either:

1. The COBOL source program contains one or more other COBOL source programs.

2. The COBOL source program is contained within another COBOL source program.

3. The COBOL source program precedes another separately compiled program.

General Rules
1. The appropriate division header indicates the beginning of a division.

2. The following indicates the end of a division:

a. Another division header

b. An Identification Division header that indicates the start of another source program

c. The end-program-header

d. The physical position at which no further source lines occur

3. A COBOL source program may contain other COBOL source programs.

4. A COBOL source program that is directly or indirectly contained within another program is called a contained
or nested program. It may reference certain resources in the containing program.

5. A separately compiled program has a nesting level number of 1. If this program contains other source-programs,
it is the outermost containing program.

6. A contained program has a nesting level number greater than 1.

Additional References
• Identification Division

• Environment Division

• Data Division

• Procedure Division

• END PROGRAM Header

Program Structure
Figure 2.1, “Structure of a COBOL Program” shows the basic structure of a COBOL program, which is organized
in divisions, sections, paragraphs, sentences, and entries.

26

Organization of a COBOL Program

Figure 2.1. Structure of a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
OPTIONS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.
DATA DIVISION.
SUBSCHEMA SECTION.
 subschema entries and keeplist entries
FILE SECTION.
 file and record description entries
 report file description entries
 sort-merge file and record description entries
WORKING-STORAGE SECTION.
 record description entries
LINKAGE SECTION.
 record description entries
REPORT SECTION.
 report and report group description entries.
SCREEN SECTION. (Alpha, I64)
 screen description entries (Alpha, I64)
PROCEDURE DIVISION.
DECLARATIVES.
 sections
 paragraphs
 sentences
END DECLARATIVES.
.
.
.
sections
 paragraphs
 sentences
.
.
.
END PROGRAM header

Division Header
A division header identifies and marks the beginning of a division. It is a specific combination of reserved words
followed by a separator period. Division headers start in Area A.

Except for the COPY and REPLACE statements, and the END PROGRAM header (see END PROGRAM in
Chapter 6, Procedure Division), the statements, entries, paragraphs, and sections of a COBOL source program are
grouped into four divisions in this order:

27

Organization of a COBOL Program

1. IDENTIFICATION DIVISION.

2. ENVIRONMENT DIVISION.

3. DATA DIVISION.

4. PROCEDURE DIVISION.

The end of a COBOL source program is indicated either by the END PROGRAM header (END PROGRAM) or
by the end of that program's Procedure Division.

Only these items can immediately follow a division header:

• Another division header

• A section header

• A paragraph header or paragraph-name

• A comment line

• A blank line

• A DECLARATIVES header for the USE procedure sections (after the PROCEDURE DIVISION header only)

• A PROGRAM-ID paragraph (after the IDENTIFICATION DIVISION header only)

Only this item can immediately follow a DECLARATIVES header:

• A section header for a USE procedure

Note

The PROCEDURE DIVISION header can contain a USING and GIVING phrase. (See Section 6.8, “General
Formats and Rules for Statements”.)

Section Header
A section header identifies and marks the beginning of a section in the Environment, Data, and Procedure
Divisions. In the Environment and Data Divisions, a section header is a specific combination of reserved words
followed by a separator period. In the Procedure Division, a section header is a user-defined word followed by the
word SECTION (and an optional segment-number). A separator period always follows a section header. Section
headers start in Area A.

The valid section headers follow for each division.

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
REPORT SECTION.
SCREEN SECTION. (Alpha, I64)

In the Procedure Division:

28

Organization of a COBOL Program

user-name SECTION [segment-number].

Only these items can immediately follow a section header:

• A division header

• Another section header

• A paragraph header or paragraph-name

• A comment line

• A USE statement (in the DECLARATIVES part of the Procedure Division only)

• A blank line

• A DATA DIVISION entry (in the Data Division)

Paragraph, Paragraph Header, Paragraph-Name
A paragraph consists of a paragraph header or paragraph-name (depending on the division) followed by zero,
one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period. Paragraph headers identify paragraphs in
the Identification and Environment Divisions.

The paragraph headers are as follows:

Identification Division Environment Division

PROGRAM-ID. SOURCE-COMPUTER.
AUTHOR. OBJECT-COMPUTER.
INSTALLATION. SPECIAL-NAMES.
DATE-WRITTEN. FILE-CONTROL.
DATE-COMPILED. I-O-CONTROL.
SECURITY.
OPTIONS.

A paragraph-name is a user-defined word followed by a separator period. Paragraph-names identify paragraphs
in the Procedure Division.

Paragraph headers and paragraph-names start in Area A of any line after the first line of a division or section.

The first entry or sentence of a paragraph begins either:

• On the same line as the paragraph header or paragraph-name

• In Area B of the next nonblank line that is not a comment line

Successive sentences or entries begin in Area B of either:

• The same line as the preceding entry or sentence

• The next nonblank line that is not a comment line

Data Division Entries
A Data Division entry begins with a level indicator or level-number and is followed, in order, by:

29

Organization of a COBOL Program

1. A space

2. The name of a data item, file connector, or screen item

3. A sequence of independent descriptive clauses

4. A separator period

The level indicators are as follows:

• FD (for file description entries)

• SD (for sort-merge file description entries)

• RD (for report file description entries)

Level indicators can begin anywhere to the right of Area A.

Entries that begin with level-numbers are called either data description or screen description entries, depending
on their context. The level-number values are 01 to 49, 66, 77, and 88 for data description items and 01 to 49 for
screen description entries. Level-numbers 01 to 09 can be represented as one- or two-digit numbers.

All data description entries and screen description entries can begin anywhere to the right of Margin A. However,
indentation has no effect on level-number magnitude; it merely enhances readability.

Declaratives
Declaratives specify USE procedures to be executed only when certain conditions occur. You must write USE
procedures at the beginning of the Procedure Division in consecutive sections. The key word DECLARATIVES
begins the DECLARATIVES part of the Procedure Division; the pair of key words END DECLARATIVES ends
it. Each of these reserved word phrases must be on a line by itself, starting in Area A; and be followed by a
separator period. For example:

PROCEDURE DIVISION.
DECLARATIVES.
IOERROR SECTION.
USE AFTER
PAR-1.
.
.
.
END DECLARATIVES.

When you specify USE procedures, you must divide the remainder of the Procedure Division into sections.

30

Identification Division

Chapter 3. Identification Division
Function
The Identification Division marks the beginning of a COBOL program. It also identifies a program and its source
listing.

General Format

* These paragraphs are not described in individual entries; they follow the same format as the AUTHOR paragraph
and are for documentation only.

Syntax Rules
1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the IDENTIFICATION DIVISION header. The header consists of
the reserved words IDENTIFICATION DIVISION followed by a separator period.

3. The PROGRAM-ID paragraph must immediately follow the IDENTIFICATION DIVISION header.

PROGRAM-ID
PROGRAM-ID — The PROGRAM-ID paragraph identifies a program and assigns selected program attributes.

31

Identification Division

General Format

[program-name]

is a user-defined word that names the program.

Syntax Rules
1. The PROGRAM-ID paragraph must be present in every program.

2. program-name must contain 1 to 31 characters and follow the rules for user-defined words.

3. Programs contained within a separately compiled program must have a unique program-name.

4. The optional COMMON clause may be used only if the program is contained within another program.

5. ident-string must be a nonnumeric literal 1 to 31 characters in length.

6. The optional IDENT clause cannot be used in a contained program.

General Rules
1. program-name is a user-defined word that identifies a COBOL program and its source listing. It appears as the

first word in the first line of every page in the compiler source listing.

2. program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program, each separately compiled program
must have a unique program-name.

32

Identification Division

4. The COMMON clause specifies a common program. A common program is contained within another program
but may be called from programs other than that directly containing it.

5. Files associated with a called program's internal file connectors are not in the open mode:

a. The first time the program is called

b. The first time the program is called after execution of a CANCEL statement referring to the program

c. Every time the program is called, if it has the INITIAL attribute

On all other entries, the status and positioning of files in a called program are the same as when the program
last exited.

6. The INITIAL clause specifies an initial program. Whenever the program is called, it and any programs contained
within it are placed in their initial state, and the internal data in each program is initialized.

7. On OpenVMS, the IDENT clause specifies a literal string that is used for identification purposes. This string
is written to the object file as the "module version."

When the /ANALYSIS_DATA qualifier is included on the COBOL command, the string is written to the
analysis data file as the module ident.

8. On Tru64 UNIX systems, program-name is case-sensitive. By default, program-name is converted to lowercase
for all separately compiled program units. Any calls from other programs (VSI COBOL as well as other
languages) must specify the routine to be called in lowercase.

However, if the names option is set to uppercase on the command line, calls from other programs must
specify the routine to be called in uppercase. If the names option is set to as_is, the effect on program-
name is as if uppercase were specified. (The as_is setting is used for calling non-COBOL programs with
mixed case.)

Additional Reference
See Section 6.2.6: Scope of Names.

Examples
PROGRAM-ID. PROGA.
PROGRAM-ID. SUBR1 INITIAL.
PROGRAM-ID. COMPUTE-PAY WITH IDENT "JOB6a-V1.1". (OpenVMS)
PROGRAM-ID.
WRITEMASTERREPORT.
PROGRAM-ID. PAYROLL IS COMMON.
Identification

AUTHOR
AUTHOR — The AUTHOR paragraph is for documentation only.

33

Identification Division

General Format

[comment-entry]

is a user-supplied comment about the program's author.

Syntax Rules
1. comment-entry can consist of any combination of characters from the computer character set.

2. comment-entry can span several lines in Area B. However, they cannot be continued by using a hyphen in the
indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

Examples
AUTHOR. JOHN SMITH.

AUTHOR. This program was written by John Smith
 1226 Main St.
 Merrimack, NH 03054

AUTHOR.

DATE-COMPILED
DATE-COMPILED — The DATE-COMPILED paragraph provides the compilation date in the source program
listing file.

34

Identification Division

General format

[comment-entry]

is user-supplied information about the date compiled.

Syntax Rules
1. comment-entry can consist of any combination of characters from the computer character set.

2. comment-entry can span several lines in Area B. However, it cannot be continued by using a hyphen in the
indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

General Rule
The paragraph-name DATE-COMPILED causes the current date to be inserted in your source program listing
during compilation. Therefore, if a DATE-COMPILED paragraph is present in your source program, it will be
replaced with a paragraph of the following form:

DATE-COMPILED. dd-mmm-yyyy.

OPTIONS
OPTIONS — The OPTIONS paragraph specifies information for use by the compiler in generating executable
code for a source unit.

35

Identification Division

General Format

[arithmetic-clause]

specifies the method used in developing the intermediate results. The format is:

36

Identification Division

Syntax Rule
The period appearing in the general format after the arithmetic-clause may be omitted if the arithmetic-clause is
not specified.

General Rules
1. The ARITHMETIC clause in the OPTIONS paragraph applies to the source element in which it is specified

and to all source elements contained in that source element unless overridden by an ARITHMETIC clause in
an OPTIONS paragraph in a contained source element.

2. If the NATIVE phrase is specified, the techniques used in handling arithmetic expressions and arithmetic
statements shall be those specified for native arithmetic in the appendix on compatibility in the VSI COBOL
User Manual.

3. If the STANDARD phrase is specified, the techniques used in handling arithmetic expressions and arithmetic
statements shall be those specified for standard arithmetic in the ANSI Standard for COBOL. (Refer to the
appendix on compatibility in the VSI COBOL User Manual.)

4. If the ARITHMETIC clause is not specified in this source element or a containing source element, it is as if the
ARITHMETIC clause were specified with the NATIVE phrase.

37

Identification Division

38

Environment Division

Chapter 4. Environment Division
Function
The Environment Division describes the program's physical environment. It also specifies input-output control
and describes special control techniques and hardware characteristics.

The Environment Division can contain two sections:

• Configuration Section (see Section : 4.1 CONFIGURATION Section)

• Input-Output Section (see : INPUT-OUTPUT)

Syntax Rules
1. The Environment Division follows the Identification Division.

2. The general format defines the order of appearance of Environment Division entries.

3. A contained program cannot include a Configuration Section.

General Rule
Explicit or implicit Configuration Section entries in a program containing other programs apply to each contained
program.

4.1 CONFIGURATION Section

39

Environment Division

The Configuration Section can contain three paragraphs:

• SOURCE-COMPUTER paragraph (see SOURCE-COMPUTER)

• OBJECT-COMPUTER paragraph (see OBJECT-COMPUTER)

• SPECIAL-NAMES paragraph (see SPECIAL-NAMES)

The Configuration Section must not be stated in a program that is contained within another program. If
Configuration Section entries are stated in a program that contains other programs, they apply to each contained
program.

SOURCE-COMPUTER
SOURCE-COMPUTER — The SOURCE-COMPUTER paragraph specifies the computer on which the source
program is to be compiled.

Description
[computer-type]

is a user-defined word that names the computer.

Syntax Rule
ALPHA and I64 are system-names. They are not reserved words, and are for documentation only.

General Rules
1. If the WITH DEBUGGING MODE clause is not used, this paragraph is for documentation only.

2. All clauses of the SOURCE-COMPUTER paragraph apply to the program that specifies them. They also apply
to any program contained within that program.

3. If you include the WITH DEBUGGING MODE clause in a program, or if you specify the conditionals
command-line option, all conditional compilation lines are compiled. Otherwise, the compiler treats all
conditional compilation lines as comment lines. (See Section 1.3.1, “ANSI Format” for additional information
about source line interpretation.)

OBJECT-COMPUTER
OBJECT-COMPUTER — The OBJECT-COMPUTER paragraph describes the computer on which the program
is to execute.

40

Environment Division

Description

[computer-type]

is a user-defined word that names the computer.

[integer]

is a numeric literal that has no digits to the right of the assumed decimal point.

[alpha-name]

is the name of a collating sequence defined in the ALPHABET clause of the SPECIAL-NAMES paragraph.

[segment-number]

is an integer from 1 to 49.

Syntax Rule
ALPHA and I64 are system-names. They are not reserved words, and are for documentation only.

General Rules
1. All clauses of the OBJECT-COMPUTER paragraph apply to the program that explicitly or implicitly specifies

them. They also apply to any program contained within that program.

2.

3.

41

Environment Division

The PROGRAM COLLATING SEQUENCE clause causes the program to use the collating sequence of alpha-
name to determine the truth value of nonnumeric comparisons in:

• Relation conditions

• Condition-name conditions

• Report description entries, the CONTROL clause

4. The PROGRAM COLLATING SEQUENCE clause also applies to nonnumeric merge and sort keys. However,
the COLLATING SEQUENCE phrase in a MERGE or SORT statement takes precedence over the PROGRAM
COLLATING SEQUENCE clause.

5. If there is no PROGRAM COLLATING SEQUENCE clause, the program uses the NATIVE collating sequence.

6. The SEGMENT-LIMIT clause is for documentation only.

Additional References
• SPECIAL-NAMES Paragraph

• SPECIAL-NAMES Paragraph

• Section 6.5.1: Relation Conditions

• Section 6.5.3: Condition-Name Condition

• Section 6.7: Segmentation

Additionally, refer to the information on SORT and MERGE statements in the VSI COBOL User Manual.

Examples
1. Computer name only:

 OBJECT-COMPUTER. Alpha.

2. No computer name (if the computer is not specified, then no other clause can appear):

 OBJECT-COMPUTER.

3. With PROGRAM COLLATING SEQUENCE clause:

OBJECT-COMPUTER. Alpha
PROGRAM COLLATING SEQUENCE IS ALPH-A.

The SPECIAL-NAMES paragraph must define ALPH-A.

4. With PROGRAM COLLATING SEQUENCE clause:

OBJECT-COMPUTER. Alpha
SEQUENCE IS EBCDIC.

The SPECIAL-NAMES paragraph must define EBCDIC.

If EBCDIC refers to the EBCDIC collating sequence, the SPECIAL-NAMES paragraph must contain the
following clause:

 ALPHABET EBCDIC IS EBCDIC

42

Environment Division

SPECIAL-NAMES
SPECIAL-NAMES — The SPECIAL-NAMES paragraph: (1) associates compiler features and logical names (on
OpenVMS systems) or environment variables (on Tru64 UNIX systems) with user-defined mnemonic-names,
(2) provides a way to reference command-line arguments and (on Tru64 UNIX) environment variables or (on
OpenVMS) logical names with user-defined mnemonic names, (3) defines symbolic-characters, (4) specifies the
currency sign, (5) selects the decimal point, (6) relates alphabet-names to character sets or collating sequences,
(7) relates class-names to character sets, (8) provides for cursor positioning for an ACCEPT (Format 5) statement,
and (9) provides information on the cause of termination of an ACCEPT (Format 5) statement.

Synopsis

43

Environment Division

Description
[device-name]

is a user-defined word for a device. Only the ACCEPT and DISPLAY statements can refer to it.

[argument-number]

is a user-defined word that contains the current argument position indicator number when used with DISPLAY,
or the count of command line arguments when used with ACCEPT. Only the ACCEPT and DISPLAY statements
can refer to it.

[argument-value]

is a user-defined word that contains the value of the current command line argument as indicated by the current
ARGUMENT-NUMBER. Only the ACCEPT and DISPLAY statements can refer to it.

[environment-name]

is a user-defined word that contains the name of an environment variable or system logical. Only the ACCEPT
and DISPLAY statements can refer to it.

[environment-value]

is a user-defined word that contains the value of the environment variable or logical named by the current
ENVIRONMENT-NAME. Only the ACCEPT and DISPLAY statements can refer to it.

[top-of-page-name]

is a user-defined word for the top of a page. Only the WRITE statement can refer to it.

[switch-num]

44

Environment Division

is the number of a program switch. Its value can range from 1 to 16.

[switch-name]

is a mnemonic-name for the program switch.

[cond-name]

is a condition-name for the on or off status of the switch. It always possesses the global attribute. Its truth value is
true when the STATUS phrase matches the status of the switch, false when it does not.

[alpha-name]

is the user-defined word for a character set, collating sequence, or both. It always possesses the global attribute.

[first-literal]

is a literal. It specifies either: (1) the value of one or more alphabet characters, or (2) the first in a range of values.

[last-literal]

is a literal. It specifies the last in a range of values.

[lit]

is a literal. It specifies an alphabet character value.

[symbol-char]

is a user-defined word that names the symbolic-character. It always possesses the global attribute. The same
symbol-char cannot appear more than once in the SYMBOLIC CHARACTERS clause.

[char-val]

is an integer that indicates the ordinal position of a character in the native character set.

[class-name]

is the user-defined word for a class. It always possesses a global attribute.

[char]

is a one-character nonnumeric literal that specifies the currency symbol. It cannot be a symbolic-character or
figurative constant.

[literal-7 (Alpha, I64)]

is an alphanumeric literal. It cannot be a figurative constant.

[literal-8 (Alpha, I64)]

is an alphanumeric literal consisting of a single character. It cannot be a figurative constant. No two occurrences
of literal-8 can have the same value.

[cursor-position (Alpha, I64)]

is a data item declared in the Working-Storage Section of the program. It is either an elementary unsigned numeric
integer either four or six characters in length, described as USAGE IS DISPLAY, or a group item either four or
six characters in length, consisting of two elementary unsigned data items.

[crt-status-code (Alpha, I64)]

is a group data item three characters in length, declared in the Working-Storage Section of the program.

45

Environment Division

Syntax Rules
1. In the first-literal phrase of the ALPHABET or CLASS clauses:

• If alpha-name is in the PROGRAM COLLATING SEQUENCE clause, the ALPHABET clause cannot
specify any character more than once.

• If the ALSO or THRU phrase appears, first-literal must be one character long.

• Numeric literals must be unsigned integers from 1 to 256.

• If last-literal or lit is nonnumeric, it must be one character long.

• THRU and THROUGH are equivalent.

2. If the first-literal phrase appears, alpha-name cannot be referenced in a CODE-SET clause.

3. The following are accessible only by ACCEPT and DISPLAY statements:

argument-count
argument-value
environment-name
environment-value

General Rules
1. All clauses of the SPECIAL-NAMES paragraph apply to the program defining them and to all programs

contained within that program.

device-name Clause
1. The device-name clause associates a device with a user-defined word (device-name).

On Tru64 UNIX, the device name is derived from an environment variable, if that environment variable exists.
Otherwise, the defaults are as follows:

System-Name Tru64 UNIX Environment
Variable

Tru64 UNIX Default File Name

CARD-READER COBOL_CARDREADER stdin

PAPER-TAPE-READER COBOL_PAPERTAPEREADER stdin

CONSOLE COBOL_CONSOLE stderr

LINE-PRINTER COBOL_LINEPRINTER stdout

PAPER-TAPE-PUNCH COBOL_PAPERTAPEPUNCH stdout

SYSIN COBOL_INPUT stdin

SYSOUT COBOL_OUTPUT stdout

SYSERR COBOL_ERROR stderr

The input device for the ACCEPT statement is derived from COBOL_INPUT, if defined, and defaults to
stdin. The output device for the DISPLAY statement is derived from COBOL_OUTPUT, if defined, and
defaults to stdout.

On OpenVMS, the file-name is derived from a logical name if that logical name exists. Otherwise, the defaults
are as follows:

System-Name OpenVMS Logical Name OpenVMS Default File Name

CARD-READER COB$CARDREADER SYS$INPUT

46

Environment Division

System-Name OpenVMS Logical Name OpenVMS Default File Name

PAPER-TAPE-READER COB$PAPERTAPEREADER SYS$INPUT
CONSOLE COB$CONSOLE SYS$ERROR
LINE-PRINTER COB$LINEPRINTER SYS$OUTPUT
PAPER-TAPE-PUNCH COB$PAPERTAPEPUNCH SYS$OUTPUT
SYSIN (Alpha, I64) COB$INPUT SYS$INPUT
SYSOUT (Alpha, I64) COB$OUTPUT SYS$OUTPUT
SYSERR (Alpha, I64) COB$ERROR SYS$ERROR

The input device for the ACCEPT statement is derived from COB$INPUT, if defined, and defaults to SYS
$INPUT. The output device for the DISPLAY statement is derived from COB$OUTPUT, if defined, and defaults
to SYS$OUTPUT. (See the ACCEPT and DISPLAY statements in Chapter 6: Procedure Division, and refer to
the VSI COBOL User Manual for more information.)

top-of-page-name Clause
1. The system-name C01 refers to the first line of a logical page. Only the ADVANCING phrase of the WRITE

statement can refer to the top-of-page-name equated to C01. (See the WRITE statement in Chapter 6: Procedure
Division.)

SWITCH Clause
1. The ON STATUS (or OFF STATUS) phrase of the SWITCH clause associates the status of switch-name with

a corresponding cond-name. The program uses a switch-status condition in the Procedure Division to test the
switch.

Switches can also be read from the OpenVMS logical name COB$SWITCHES or the Tru64 UNIX environment
variable COBOL_SWITCHES.

The compiler interprets SWITCH n and SWITCH- n (where n represents a number from 1 to 8) as identical
clauses. For example, SWITCH 1 is equivalent to SWITCH-1.

Refer to the VSI COBOL User Manual for more information on using switches.

ALPHABET Clause
1. The ALPHABET clause relates a name to a character code set, collating sequence, or both.

The ALPHABET clause specifies:

• A character code set, when alpha-name is in a CODE-SET clause in the FILE-CONTROL paragraph or file
description entry.

• A collating sequence, when alpha-name is in: (1) the PROGRAM COLLATING SEQUENCE clause in
the OBJECT-COMPUTER paragraph or (2) the COLLATING SEQUENCE phrase of a SORT or MERGE
statement.

2.

3. STANDARD-1 refers to the ASCII character set.

4. STANDARD-2 refers to the international version of the ISO 7-bit code. It is defined in International Standard
646, “7-Bit Coded Character Set for Information Processing Interchange. ”

5. NATIVE refers to the native character set. It consists of 256 characters. The lowest-valued 128 characters are
the ASCII character set. The highest-valued 128 characters are reserved for later standardization and definition
by VSI.

47

Environment Division

6.
EBCDIC refers to the EBCDIC character set or collating sequence. It is defined in Appendix B: Character Sets.

7.
The character with the highest ordinal position in the program collating sequence equals the figurative
constant HIGH-VALUE, except when this figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the highest position, HIGH-VALUE is the last character you specify.

8.
The character with the lowest ordinal position in the program collating sequence equals the figurative constant
LOW-VALUE, except when this figurative constant is specified as a literal in the SPECIAL-NAMES paragraph.
If more than one character has the lowest position, LOW-VALUE is the first character you specify.

Literals in the ALPHABET Clause
1. The value of each numeric literal specifies the ordinal number of a character in the native character set. For

example, 66 refers to the ASCII character A.

2. The value of each nonnumeric literal specifies the actual character in the native character set.

3. If the literal contains more than one character, the compiler interprets each character from left to right. It assigns
each a successive ascending position in the collating sequence or character code set.

4. The order of appearance of literals in the ALPHABET clause specifies each character's ordinal number in
ascending sequence. If the ALPHABET clause defines a character code set, the ordinal number identifies the
character's relative position in the set.

5. Any unspecified characters in the native collating sequence have higher positions in the new collating sequence
than all specified characters. The relative order of the unspecified characters is the same as in the native collating
sequence.

For example, the following clauses are equivalent:

 ALPHABET XYZ IS 2 4 ALPHABET XYZ IS 2 4 1 3 5 6 7 ALPHABET XYZ IS 2 4
 1

THROUGH Phrase
1. The THROUGH phrase specifies a set of contiguous characters in the native character set. The first character

is first-literal; the last character is last-literal.

2. The compiler assigns each character in the set a successive ascending position in the collating sequence or
character code set.

3. The THROUGH phrase can specify the set of contiguous characters in either ascending or descending order.
For example, “L” THRU “H” assigns successively higher numbers to L, K, J, I, and H.

4. The ALSO phrase assigns first-literal and each lit to the same position in the collating sequence or character
code set. For example, “A” ALSO “$” causes the characters A and $ to be equivalent in comparisons when the
associated alpha-name is in the PROGRAM COLLATING SEQUENCE clause.

SYMBOLIC CHARACTERS Clause
1. Each symbol-char corresponds to the char-val in the same relative position. In the following example,

CARRIAGE-RET corresponds to 14 and ESCAPE to 28:

SYMBOLIC CHARACTERS CARRIAGE-RET ESCAPE ARE 14 28

2. If the IN phrase is not specified, symbol-char represents the character, in the native character set, that has the
ordinal position specified by char-val.

48

Environment Division

Note

The ordinal position is one greater than the internal representation of the character. For example, the character A
is in ordinal position 66. Its internal representation is decimal 65 (hexadecimal 41).

3. If the IN phrase is specified, char-val represents the character that has the ordinal position specified by the IN
alpha-name phrase.

CLASS Clause
1. The CLASS clause relates a name to a specified set of characters in that clause. class-name can be referenced

only in a class condition. The characters specified by the values of the literals in this clause define the set of
characters of which this class-name consists.

2. The value of each numeric literal specifies the ordinal number of a character in the native character set. This
value must not exceed the value that represents the number of characters in the native character set.

3. The value of each nonnumeric literal specifies the actual character in the native character set. If the nonnumeric
literal contains multiple characters, each character in the literal is included in the set of characters identified
by class-name.

4. The THROUGH phrase specifies a set of contiguous characters in the native character set. The first character
is first-literal; the last character is last-literal. The characters specified by a given THROUGH phrase can be
specified in ascending or descending order.

CURRENCY SIGN Clause
1. In the CURRENCY SIGN clause, char specifies the PICTURE clause currency symbol. It can be any printable

character from the computer character set except:

• 0 through 9

• A, B, C, D, P, R, S, V, X, Z, the lowercase characters a to z, or the space

• Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.), semicolon (;), quotation mark ("), equal
sign (=), slash (/), left parenthesis ((), or right parenthesis ())

2. The CURRENCY SIGN clause cannot contain a symbolic-character or figurative constant.

3. If there is no CURRENCY SIGN clause, the default currency sign used for the PICTURE clause is the "$"
symbol.

On OpenVMS, if you define the logical name SYS$CURRENCY at DCL command level prior to compilation,
the quoted character string to which you define it will be the currency string. To do this, prior to compiling the
COBOL program, issue the following DCL command:

$ DEFINE SYS$CURRENCY "quoted-character-string"

The COBOL compiler will utilize the first character of this string as the currency symbol for the program.

Subsequently, the system default value of SYS$CURRENCY can be restored for the process with the following
DCL command:

$ DEASSIGN SYS$CURRENCY

The default currency sign can also be established based on the nationality compiler option, depending
on the keyword, as follows:

49

Environment Division

US (default) The default currency sign and symbol are the dollar
sign ($), and Japanese language support features are
disabled.

JAPAN The default currency sign and symbol are the Yen sign
(¥) (which is not overridden by a SYS$CURRENCY
definition), and Japanese language support features
are enabled, including national character user-defined-
words, data items (PIC N), and literals (N"").

CURRENCY SIGN Clause (Alpha, I64)
1. To use CURRENCY SIGN IS literal-7, you must compile the program with the /RESERVED_WORDS=200X

qualifier. Without that qualifier, you can specify only CURRENCY SIGN IS char, and specify it only once.

2. The CURRENCY SIGN IS literal-7 clause specifies a currency string that is placed into numeric-edited data
items when they are used as receiving items and de-edited from a data item when the data item is used as a
sending item that has a numeric or numeric-edited receiving item. The clause also determines which symbol
shall be used in a picture character string to specify the presence of this currency string. This symbol is referred
to as the currency symbol.

literal-7 represents the value of the currency string.

If the CURRENCY SIGN clause is specified with the PICTURE SYMBOL phrase, literal-8 is the currency
symbol; if the clause is specified without the PICTURE SYMBOL phrase, literal-7 is the currency symbol,
and it must be one character in length.

If the currency symbol is a lowercase letter, it is treated as its uppercase equivalent.

3. If the PICTURE SYMBOL phrase is not specified, literal-7 must consist of a single character that is not one
of the following:

• 0 through 9

• A, B, C, D, E, N, P, R, S, V, X, Z, or the lowercase equivalents; or the space

• Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.), semicolon (;), quotation mark ("), equal
sign (=), slash (/), left parenthesis ((), or right parenthesis ())

4. If the PICTURE SYMBOL phrase is specified, literal-7 can have any length and:

• Must contain at least one nonspace character, and

• Can consist of any characters from the computer's character set except for the digits 0 through 9 and the
characters asterisk (*), plus sign (+), minus sign (-), comma (,), and period (.)

5. literal-8 can be any character from the computer's character set except for the following:

• 0 through 9

• A, B, C, D, E, N, P, R, S, V, X, Z, or the lowercase equivalents; or the space

• Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.), semicolon (;), quotation mark ("), equal
sign (=), slash (/), left parenthesis ((), or right parenthesis ())

DECIMAL-POINT IS COMMA Clause
1. The DECIMAL-POINT IS COMMA clause exchanges the functions of the comma and period in: (1) the

PICTURE clause character-string and (2) numeric literals.

CURSOR IS Clause (Alpha, I64)

50

Environment Division

1. The CURSOR IS clause specifies the initial position of the cursor at the start of an ACCEPT (Format 5)
statement. If cursor-position is within an input or update field on the screen, then the initial cursor position is
at the start of that field. If the CURSOR IS clause is not specified, or if cursor-position is not within an input
or update field on the screen, the cursor's initial position is at the start of the first input or update field of the
screen. The cursor-position is updated upon completion of the ACCEPT statement to contain the position of
the cursor when the ACCEPT terminated.

2. In the CURSOR IS clause, if cursor-position is four characters in length, the first two characters represent the
line number, and the second two the column number. If cursor-position is six characters in length, the first three
characters represent the line number, and the second three the column number.

CRT STATUS IS Clause (Alpha, I64)
1. If the CRT STATUS IS clause is specified, crt-status-code is updated after every ACCEPT (Format 5) statement.

The first two characters are a termination code that indicates the cause of the termination of the ACCEPT
operation. (The third character is currently not defined, and is reserved for future use.) The termination codes
are explained in Table 4.1, “CRT STATUS Termination Codes (Alpha, I64)”.

Command Line Arguments (Alpha, I64)
2. The ARGUMENT-NUMBER and ARGUMENT-VALUE clauses are used to process command line arguments.

The DISPLAY statement is used to select and modify the values, and the ACCEPT statement is used to retrieve
the values.

Environment Variables and System Logicals (Alpha, I64)
3. The ENVIRONMENT-NAME and ENVIRONMENT-VALUE clauses are used to process environment

variables and system logicals. The DISPLAY statement is used to select and modify the values, and the ACCEPT
statement is used to retrieve the values.

Table 4.1. CRT STATUS Termination Codes (Alpha, I64)

First Character Second Character Meaning

`0' `0' Terminator key pressed by the
operator; normal completion

`0' `1' Auto-skip out of the last field;
normal completion

`1' x`00' – x`1A' User-defined function key number
for F1–F20 and the Find through
Next keys 1

`9' x`00' No items falling within the screen 1
1The second character contains a hexadecimal value. An example of how to examine this value is given in the Examples section.

Additional References
• OBJECT-COMPUTER Paragraph

• CODE-SET Clause

• Section 6.2.6: Scope of Names

• Section 6.5.4: Switch-Status Condition

• ACCEPT Statement

• DISPLAY Statement

• SET Statement

• Appendix B: Character Sets

51

Environment Division

Examples
1. device-name clause:

CARD-READER IS THE-CARDS
CONSOLE IS LOCAL-USER

On Tru64 UNIX, this example allows ACCEPT and DISPLAY statements to use THE-CARDS to refer to
the environment variable COBOL_CARDREADER and LOCAL-USER to refer to the environment variable
COBOL_CONSOLE.

On OpenVMS, this example allows ACCEPT and DISPLAY statements to use THE-CARDS to refer to the
logical name COB$CARDREADER and LOCAL-USER to refer to the logical name COB$CONSOLE.

2. Top-of-page-name clause:

 C01 IS STARTING-NEW-FORM

The following WRITE statement causes the line to appear on the first line of a new page:

 WRITE REPORT-REC AFTER STARTING-NEW-FORM.

3. SWITCH clause:

SWITCH 1 IS FIRST-SWITCH ON IS ONE-ON OFF IS ONE-OFF
SWITCH-4 ON FOUR-ON

(Procedure Division statements can use the condition-names defined in the SWITCH clause. The SET statement
can change the status of a switch.)

The following results assume that switch 1 is on and switch 4 is off:

Condition Truth Value

IF FOUR-ON false
IF ONE-ON true
IF NOT ONE-OFF true
IF ONE-ON AND NOT FOUR-ON true

4. ALPHABET clause:

ALPHABET EB-CONV IS EBCDIC

If a file's SELECT clause contains a CODE-SET IS EB-CONV clause, this ALPHABET clause causes
translation from EBCDIC to the native character set when the program reads data from the file.

5. User-defined collating sequence:

ALPHABET ALPH-B IS
"A" THRU "Z"
"9" THRU "0"
" " ALSO "/" ALSO "\"
","

This ALPHABET clause defines a collating sequence in which uppercase letters are lower than numeric
characters. The space, slash (/), and backslash (\) characters have the same position in the collating sequence.
The comma is the next higher character. It is implicitly followed by the rest of the character set.

The following Procedure Division conditional statements show the effect of this ALPHABET clause when the
OBJECT-COMPUTER paragraph contains the PROGRAM COLLATING SEQUENCE IS ALPH-B clause:

52

Environment Division

Statements Truth Value

MOVE “A” TO ITEMA.
MOVE “9” TO ITEMB.
IF ITEMA < ITEMB true
MOVE “ ” TO ITEMA.
MOVE “ \” TO ITEMB.
IF ITEMA = ITEMB AND ITEMB > “Z” true
MOVE “1” TO ITEMA.
MOVE “9” TO ITEMB.
IF ITEMA < ITEMB false

6. User-defined collating sequence with numeric literals:

 ALPHABET ALPH-C IS 128 THRU 1

This clause inverts the positions of the ASCII characters.

The following Procedure Division statements assume that the OBJECT-COMPUTER paragraph contains the
SEQUENCE IS ALPH-C clause:

Statements Truth Value

MOVE “A” TO ITEMA.
MOVE “B” TO ITEMB.
IF ITEMA < ITEMB false
MOVE “9” TO ITEMA.
IF ITEMA < “2” true
MOVE “HELLO” TO ITEMA.
IF ITEMA > SPACES false

7. SYMBOLIC CHARACTERS clause:

 SYMBOLIC CHARACTERS ESCAPE POUND DOUB-L ARE 28 36 55.

The following DISPLAY statement displays the literal “Enter value” in double width on an ANSI terminal.

DISPLAY "Enter value" ESCAPE POUND DOUB-L.

8. CURRENCY SIGN clause:

a. The following example applies to any system, and (if on Alpha or I64) regardless of whether /
RESERVED_WORDS=200X is specified when the program is compiled:

CURRENCY SIGN "G" .
.
. 01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC ZZZ.ZZ9,99.
01 ITEME PIC ZZZ,.

The following MOVE statements show the effect of the CURRENCY SIGN clause (the character s represents
a space):

53

Environment Division

Statement ITEMC Result

MOVE 12.34 TO ITEMC sssG12.34
MOVE 100 TO ITEMC ssG100.00
MOVE 1000 TO ITEMC G1,000.00

b. The following example applies only on Alpha and I64 and only if /RESERVED_WORDS=200X is specified
when the program is compiled:

CURRENCY SIGN IS "G"
CURRENCY SIGN IS "USD" WITH PICTURE SYMBOL "U"
CURRENCY SIGN IS "DM" WITH PICTURE SYMBOL "D"
CURRENCY SIGN IS "M". .
.
. 01 ITEMA PIC GG,GG9.99.
01 ITEMB PIC U,UUU,UU9.99.
01 ITEMC PIC DD,DD9.99.
01 ITEMD PIC MMM,MM9.99.

Statement Result

MOVE 12.34 TO ITEMA ITEMA = sssG12.34
MOVE 1000 TO ITEMB ITEMB = USD1,000.00
MOVE 12.34 TO ITEMC ITEMC = ssDM12.34
MOVE 1000 TO ITEMD ITEMD = sM1,000.00

9. DECIMAL-POINT IS COMMA clause:

01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC ZZZ.ZZ9,99.
01 ITEME PIC ZZZ,.

The following MOVE statements show the effect of the DECIMAL-POINT IS COMMA clause (the character
s represents a space):

Statement ITEMD Result

MOVE 1 TO ITEMD ITEMD = ssssss1,00
MOVE 1000 TO ITEMD ITEMD = ss1.000,00
MOVE 1,1 TO ITEMD ITEMD = ssssss1,10
MOVE 12 TO ITEME ITEME = s12,

10.CURSOR IS clause (Alpha, I64):

SPECIAL-NAMES.
CURSOR IS CURSOR-POSITION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CURSOR-POSITION.
02 CURSOR-LINE PIC 99.
02 CURSOR-COL PIC 99.

In this example, the cursor's position is defined by data items containing a two-digit line number (CURSOR-
LINE) and a two-digit column number (CURSOR-COL).

54

Environment Division

11.CRT STATUS IS clause (Alpha, I64):

SPECIAL-NAMES.
SYMBOLIC CHARACTERS
FKEY-10-VAL
ARE 11
CRT STATUS IS CRT-STATUS.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CRT-STATUS.
03 KEY1 PIC 9.
03 KEY2 PIC X.
88 FKEY-10 VALUE FKEY-10-VAL.
03 FILLER PIC X.
.
.
.
ACCEPT MENU-SCREEN.
IF KEY1 EQUAL "0"
PERFORM OPTION_CHOSEN
ELSE IF KEY1 EQUAL "1" AND FKEY-10
DISPLAY "You pressed the F10 key; exiting..." LINE 22.

The first two characters (KEY1 and KEY2) constitute the code that shows the cause of termination of an
ACCEPT operation. (See Table 4.1, “CRT STATUS Termination Codes (Alpha, I64)”.) Note that the SPECIAL-
NAMES paragraph provides for the capturing of the F10 function key.

INPUT-OUTPUT
The the section called “INPUT-OUTPUT” contains two paragraphs:

• FILE-CONTROL paragraph (see FILE-CONTROL)

• I-O-CONTROL paragraph (see I-O-CONTROL)

The FILE-CONTROL paragraph can contain the following clauses:

• ACCESS MODE clause

• ASSIGN clause

• BLOCK CONTAINS clause

• CODE-SET clause

• LOCK MODE clause (Alpha, I64)

• ORGANIZATION clause

• PADDING CHARACTER clause

• RECORD DELIMITER clause

• RESERVE clause

The I-O-CONTROL paragraph can contain the following clauses:

• APPLY clause

55

Environment Division

• SAME AREA clause

• RERUN clause

• MULTIPLE FILE clause

This section first describes the FILE-CONTROL paragraph and its clauses, then it describes the I-O-CONTROL
paragraph.

FILE-CONTROL
FILE-CONTROL — The FILE-CONTROL paragraph declares the program's data files.

General format
FILE-CONTROL.

General Format

56

Environment Division

Format 1

57

Environment Division

Format 2

58

Environment Division

Format 3

59

Environment Division

Format 4

60

Environment Division

Format 5

Note

Clauses marked with an asterisk () can be in either the SELECT clause of the Environment Division or the file
description entry of the Data Division. They cannot be in both places for the same file.

[file-name]

is the internal name of a file connector. Each file-name must have a file description (or Sort-Merge File Description)
entry in the Data Division. The same file-name cannot appear more than once in the FILE-CONTROL paragraph.

Syntax Rules

All Formats
1. SELECT is optional in the FILE-CONTROL paragraph.

2. If SELECT is used in the FILE-CONTROL paragraph, it must be the first clause. Other clauses may follow
it in any order.

3. Each file described in the Data Division must be specified only once in the FILE-CONTROL paragraph.

4. On OpenVMS for every format, the first form of ASSIGN TO (marked "OpenVMS ONLY") is available only on
the OpenVMS Alpha and OpenVMS I64 operating systems and only if the default /STANDARD=NOXOPEN
qualifier is in effect.

The second form of ASSIGN TO is available on the OpenVMS Alpha and OpenVMS I64 systems if the /
STANDARD=XOPEN qualifier is in effect.

61

Environment Division

Format 6—Report Files
1. Each SELECT clause specifying a Report File must have a file description entry containing a REPORT clause

in the Data Division of the same program.

General Rules

Formats 1, 2, 3, and 4—Sequential, Line Sequential,
Relative, or Indexed Files
1. You must specify an OPTIONAL phrase for files opened in INPUT, I-O, or EXTEND mode that need not be

present when the program runs.

2. The rules for the OPEN statement describe the effects of the OPTIONAL phrase.

3. If the file connector referenced by file-name is an external file connector, all file control entries in the run unit
that reference this file connector must have the following characteristics:

• The same specification for the OPTIONAL phrase

• A consistent full-file-name

• The same values for reserve-num, smallest-block, and blocksize

• The same organization

Format 6—Report Files
1. If the file connector referenced by file-name is an external file connector, all file control entries in the run unit

that reference this file connector must have the following characteristics:

• A consistent full-file-name

• The same value for reserve-num

• Sequential organization

• The same CODE-SET clause

Additional References
• OPEN statement in Chapter 6: Procedure Division

• BLOCK CONTAINS and CODE-SET clauses in this chapter

• FILE STATUS, ACCESS MODE, RECORD KEY, and ALTERNATE RECORD KEY clauses in Chapter 5:
Data Division

Examples
The following examples assume that the VALUE OF ID clause is not in any associated file description entry.

1. Sequential file:

SELECT FILE-A
ASSIGN TO "INFILE".

62

Environment Division

This example refers to a file with sequential organization. The word INFILE is equivalent to the nonnumeric
literal “INFILE”. If there is no VALUE OF ID clause, the program accesses a file named INFILE.DAT on
OpenVMS Alpha and I64 systems, or a file named INFILE on Tru64 UNIX systems.

2. Indexed file:

SELECT OPTIONAL FILE-A
ASSIGN TO "INFILE"
ORGANIZATION INDEXED.

In this example, the SELECT clause specifies that the indexed file need not be present when the program opens
it for INPUT, I-O, or EXTEND.

3. Sort or merge file:

SELECT SORT-FILE
ASSIGN TO "SDFILE".

4. Report file:

SELECT SUMMARY-REPORT
ASSIGN TO "OUTFIL"
FILE STATUS IS REPORT-ERRORS.

ASSIGN
ASSIGN — The ASSIGN clause associates a file with a partial or complete file specification.

63

Environment Division

Description

Format 1 (OpenVMS)

64

Environment Division

Format 2 (Alpha, I64)

65

Environment Division

Format 3 (Tru64 UNIX)

[file-spec]

on OpenVMS is either a nonnumeric literal or a COBOL word formed according to the rules for user-defined
names. It represents a partial or complete file specification. It must conform to the rules for file specifications as
defined by RMS.

[data-name]

is the name of a COBOL data item that contains a partial or complete file specification.

[literal]

is a nonnumeric literal containing a partial or complete file specification.

[DISK (Alpha, I64)]

uses the file specification declared in the optional VALUE OF ID clause as the file name. If the VALUE OF ID
clause is not present, file-name-1 is used as the file name in the current directory.

[PRINTER (Alpha, I64)]

creates a print file as if the PRINT-CONTROL phrase of the APPLY clause were specified in the I-O CONTROL
paragraph. A print file should contain only printable characters and line and page advancing information written
using the ADVANCING clause of the WRITE verb.

[REEL or UNIT (Tru64 UNIX)]

creates the file on a magnetic tape using the ANSI standard format as defined by American National Standard
X3.27-1978 (Level 3), Magnetic Tape Labels and File Structure for Information Interchange.

66

Environment Division

Syntax Rules
1. data-name cannot be DISK or PRINTER.

2. EXTERNAL and DYNAMIC are allowed for syntax compatibility with other COBOL vendors. They are treated
as documentation only.

3. Format 1 is available only on the OpenVMS operating system and only if the default /STANDARD=NOXOPEN
qualifier is in effect.

Format 2 is available on Alpha and I64 if the /STANDARD=XOPEN qualifier is in effect.

On Tru64 UNIX, format 2 is the default.

General Rules
1. If there is no VALUE OF ID clause in the file description entry, or that clause contains no file specification, the

file specification in the ASSIGN clause is the file specification.

2. If there is a file specification in an associated VALUE OF ID clause, the ASSIGN clause contains the default file
specification. File specification components in the VALUE OF ID clause override those in the ASSIGN clause.

3. On OpenVMS, if file-spec is not a literal, the compiler:

• Translates hyphens in the COBOL word to underline characters

• Treats the word as if it were enclosed in quotation marks

4. file-spec may contain a logical name.

5.
If you specify ASSIGN TO unquoted string, you need not specify this name in the WORKING-STORAGE
section. For example:

 ASSIGN TO TEST1

This assignment would use "TEST1.DAT" on OpenVMS Alpha and I64.

On Tru64 UNIX systems, you would specify:

 ASSIGN TO "TEST1.DAT"

or:

ASSIGN TO TEST1
...
WORKING-STORAGE SECTION.
01 TEST1 PIC X(9) VALUE IS "TEST1.DAT".

6. The file specification derived from one or both of the ASSIGN and VALUE OF ID clauses might refer to an
environment variable.

7. On Tru64 UNIX systems, "" is not a valid file specification.

8. On all platforms, file-spec must conform to the rules of the operating system where the run-time I-O occurs.

For indexed files, file-spec must conform to the rules of the ISAM package being used. Some older versions of
ISAM on Tru64 UNIX may have a 10-character maximum for file-spec length.

Format 3
For files assigned to magnetic tape using ASSIGN TO REEL clause:

67

Environment Division

1. If the length of the file name exceeds 17 characters, it is truncated. Any lowercase characters in a file name are
uppercased and others outside the ANSI-"a" character set are converted to ’Z ’.

An "a" character is one of the set of the digits 0,1..9, the uppercase letters A,B..Z, and the following special
characters:

SP
!
"
%
&
'
()
*
+
,
-
.
/
:
;
<
=
>
?

2. Magnetic tape files must be ORGANIZATION SEQUENTIAL and either fixed or variable length record format.

Technical Notes
• On all platforms, leading and trailing spaces and tabs are removed from file specifications before the OPEN

statement executes.

• When a COBOL OPEN statement executes on an OpenVMS system, the RMS facility:

• Removes spaces and tab characters from the file specification

• Translates lowercase letters in the file specification to uppercase

• Performs logical name translation

• .DAT is the default file type if one is not specified on an OpenVMS system.

•
On Tru64 UNIX, the suffixes added to indexed file names on a Tru64 UNIX system are .idx and .dat.

• On Tru64 UNIX, file specifications are case sensitive.

• Embedded spaces are allowed in file specifications on Tru64 UNIX systems. Thus "file name a" and
"Monthly######Report" are valid file specifications.

• When a COBOL OPEN statement executes on a Tru64 UNIX system, VSI COBOL attempts to match the file
specification against an environment variable with the same spelling declared in the current login environment.
If an exact match is found, the value of the matching environment variable becomes the file specification.
Otherwise, the file specification remains unchanged.

Additional Reference
See VALUE OF ID clause in Chapter 5: Data Division. For information on defining a file connector, refer to the
VSI COBOL User Manual.

68

Environment Division

BLOCK CONTAINS
BLOCK CONTAINS — On OpenVMS systems, the BLOCK CONTAINS clause specifies the size of a physical
record. On Tru64 UNIX systems, block size for INDEXED organization is for documentation purposes only.

General format

[smallest-block]

is an integer literal. It specifies the minimum physical record size.

[blocksize]

is an integer literal. It specifies the exact or maximum physical record size.

Syntax Rule
The BLOCK CONTAINS clause can be in the file's Data Division file description entry. However, it cannot be in
both the SELECT clause and the file description entry for the same file.

General Rules
1. The BLOCK CONTAINS clause specifies physical record size.

2. The compiler ignores smallest-block.

3. The RECORDS phrase specifies physical record size in terms of logical records.

• For a fixed-length record magnetic tape file, each physical record except the last contains blocksize records.

69

Environment Division

• For a variable-length record magnetic tape file, the compiler computes the physical record size. It equals the
size of the largest logical record, plus any overhead bytes, multiplied by blocksize.

4. The CHARACTERS phrase specifies physical record size in terms of characters.

The physical record size is the maximum of: (1) blocksize bytes, and (2) the size of the largest logical record;
plus any overhead bytes for variable-length records.

5. If there is no BLOCK CONTAINS clause, physical record size assumes a default value.

The physical record size is the size of the largest record plus any overhead bytes.

6. The size of physical records (in characters) must be a multiple of four. Otherwise, the I/O system rounds up
the physical record size to the next multiple of four.

CODE-SET
CODE-SET — The CODE-SET clause specifies the representation of data on external media.

General format

[alpha-name]

is the name of a character set defined in the SPECIAL-NAMES paragraph. It cannot be described with literals
in the ALPHABET clause.

Syntax Rules
1. The CODE-SET clause can be in the file's Data Division file description entry. However, it cannot be in both

the SELECT clause and the file description entry for the same file.

70

Environment Division

2. The CODE-SET clause applies only to files with sequential organization.

General Rules
1. The CODE-SET clause identifies alpha-name as the character set used to represent the file data externally.

2. alpha-name specifies how to convert character codes in the file to and from native character codes.

3. Code conversion occurs during execution of an input or output operation. Conversion occurs as if the data were
USAGE DISPLAY.

4. Successful OPEN statement execution establishes the character set for code conversion. The set used is the one
specified by alpha-name in the FILE-CONTROL paragraph implied by the OPEN statement.

5. If there is no CODE-SET clause, no character conversion occurs during input-output operations. The native
character set is the default.

Additional Reference
See the SPECIAL-NAMES paragraph.

Example
In this example, the CODE-SET clause specifies that the data in INFILE is coded in the EBCDIC character code set
as specified by an alphabet named EB. The SPECIAL-NAMES paragraph defines EB as the EBCDIC character set.

SPECIAL-NAMES.
 ALPHABET EB IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT INFILE ASSIGN TO INFILE
 CODE-SET IS EB.

LOCK MODE (Alpha, I64)
LOCK MODE (Alpha, I64) — The LOCK MODE clause specifies a locking technique to use for a file. LOCK
MODE is part of the X/Open COBOL standard.

71

Environment Division

General format

Syntax Rules
1. X/Open standard and VSI standard syntax cannot both be specified for the same file connector. Hence, if

LOCK MODE is specified, the ALLOWING, APPLY LOCK-HOLDING, and REGARDLESS phrases cannot
be specified for that file.

2. The WITH LOCK ON RECORD clause is for documentation purposes only.

3. The LOCK MODE IS MANUAL clause is not available for sequential or line sequential files.

General Rules
1. When you specify LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL, an OPEN statement

(without the WITH LOCK phrase) opens the file in shareable mode. The LOCK MODE clause can be
overridden by the WITH LOCK phrase of the OPEN statement.

2. When you specify LOCK MODE IS EXCLUSIVE, a successful OPEN statement opens the file in exclusive
mode. The OPEN statement cannot override LOCK MODE IS EXCLUSIVE.

3. If you omit the LOCK MODE clause, opening the file causes it to become exclusive, unless you open it for
INPUT, in which case the file becomes shareable.

4. When you specify LOCK MODE IS AUTOMATIC for a file, a record lock is acquired by the successful
execution of the READ statement and released on the successful execution of a subsequent I/O statement.

If you specify LOCK MODE IS MANUAL, a record lock is acquired by the READ WITH LOCK statement.

5. On Tru64 UNIX, the ROLLBACK phrase is used by ACMSxp applications to specify a recoverable file. You
must compile with the -tps option to specify a recoverable file.

72

Environment Division

6. A file that is opened in exclusive mode cannot be opened by any other access stream.

7. A file that is in shareable mode can be opened by any number of access streams that do not require exclusive use.

8. A file that does not reside on a mass storage device cannot be opened in shareable mode.

ORGANIZATION
ORGANIZATION — The ORGANIZATION clause specifies a file's logical structure. On Alpha and I64 systems,
the ORGANIZATION IS LINE SEQUENTIAL clause specifies a variant of sequential files compatible with the
system text editor.

General Rules
1. File organization is established when the file is created. It cannot be subsequently changed.

2. If there is no ORGANIZATION clause, the default is SEQUENTIAL.

3. On Alpha and Itanium systems, when LINE SEQUENTIAL organization is specified, the file is treated as
consisting of variable length records, with each record containing one line of data. A line is a sequence of
characters ending with a record terminator (n or x'0A'). The terminator is not counted in the length of the record.

4. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization should only contain printable
characters and the record terminator.

5. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization may not be opened in I-O mode.

6. All programs that open an existing file must specify the same organization with which the file was created.

Note

On Tru64 UNIX, a third-party product is required for INDEXED run-time support. Refer to the Release Notes for
the latest details on how to obtain the INDEXED run-time support.

PADDING CHARACTER
PADDING CHARACTER — The PADDING CHARACTER clause specifies the character to be used to pad
blocks in sequential files.

73

Environment Division

Description

[pad-char]

is a one-character nonnumeric literal or the data-name of a one-character data item. The data-name can be qualified.

General Rule
The PADDING CHARACTER clause is for documentation only.

RECORD DELIMITER (OpenVMS)
RECORD DELIMITER (OpenVMS) — The RECORD DELIMITER clause indicates the method of determining
the length of a variable record on the external medium. It is for documentation only.

74

Environment Division

General Format

General Rule
On OpenVMS, STANDARD-1 is the I/O system (OpenVMS Record Management System [RMS]) default for tape
files. It is the method used for determining the length of a variable-length record. This method is specified in the
American National Standard X3.27-1978, “Magnetic Tape Labels and File Structure for Information Interchange,
” and International Standard 1001 1979, “Magnetic Tape Labels and File Structure for Information Interchange. ”

Additional Reference
For OpenVMS systems, refer to the OpenVMS Record Management Services Reference Manual for more
information.

RESERVE
RESERVE — The RECORD DELIMITER clause indicates the method of determining the length of a variable
record on the external medium. It is for documentation only.

75

Environment Division

General Format

[reserve-num]

is an integer literal from 1 to 127. It specifies the number of input-output areas for the file.

General Rule
On OpenVMS systems, if there is no RESERVE clause, the number of input-output areas equals the I/O system
default.

Technical Note
For OpenVMS systems, two DCL commands change and display the defaults for block count: SET RMS
DEFAULT and SHOW RMS DEFAULT. The number of areas is stored in the MBF field of the RAB.

Additional References
Refer to the RMS documentation for field RAB$B_MBF.

I-O-CONTROL
I-O-CONTROL — The I-O-CONTROL paragraph specifies the input-output techniques to use for a file. On Tru64
UNIX systems, a number of the elements in the I-O-CONTROL paragraph are for documentation only. See the
Technical Notes for more information.

76

Environment Division

General Format

[extend-amt]

is an integer from 0 to 65,535. It specifies the number of blocks in each extension of a disk file.

[file-name]

is the internal name of a file connector. Each file-name must have a file description (or Sort-Merge File Description)
entry in the Data Division. The same file-name cannot appear more than once in the FILE-CONTROL paragraph.

[preall-amt]

is an integer from 0 to 4,294,967,295. It specifies the number of blocks to initially allocate when the program
creates a disk file.

[window-ptrs]

is an integer from 0 to 127. Its value can also be 255. It specifies the number of retrieval pointers in the window
that maps the disk file.

[same-area-file]

names a file described in a Data Division file description entry to share storage areas with every other same-area-
file.

[rec-count]

is an integer specifying the number of records to process before writing the rerun information.

[clock-count]

77

Environment Division

is an integer specifying an interval of time to elapse before writing the rerun information.

[condition-name]

names a switch status which, when set, causes the rerun information to be written. The switch is defined in the
SPECIAL-NAMES paragraph of Section : 4.1 CONFIGURATION Section.

[multiple-file]

is a file described in a Data Division file description. It specifies that the file shares storage on a reel/unit device
with other files. No more than 255 files can be specified.

[pos-integer]

is an integer from 1 to 255. It specifies the relative location of a file on a tape that contains multiple files.

Syntax Rules
1. The I-O-CONTROL clauses can appear in any order.

2. As the following table shows, each phrase of the APPLY clause can refer only to some file types.

Phrase
File Type

EXTENSION Disk file
FILL-SIZE Indexed organization
LOCK-HOLDING Disk file
MASS-INSERT Indexed organization
PREALLOCATION Disk file
PRINT-CONTROL Sequential organization
WINDOW Disk file

3. More than one APPLY clause can refer to the same file-name.

4. The phrases of the APPLY clause can appear in any order. However, each phrase can be used only once for
each file-name.

5. You can specify the LOCK-HOLDING phrase only if you specify the ALLOWING option of the OPEN
statement.

6. The RERUN and MULTIPLE FILE clauses cannot refer to a sort or merge file.

7. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

8. If same-area-file refers to a sort or merge file, you must use the SORT, SORT-MERGE, or RECORD phrase.

9. A program can contain more than one SAME clause. However, the following conditions apply:

• A same-area-file cannot be in more than one SAME RECORD AREA clause.

• A same-area-file that refers to a sort or merge file cannot be in more than one SAME SORT AREA or SAME
SORT-MERGE AREA clause.

same-area-files cannot have the global or the external attribute if the program specifies the SAME RECORD
AREA phrase.

10.Files specified in a MULTIPLE FILE TAPE clause must be sequential.

78

Environment Division

11.A file cannot be specified in more than one MULTIPLE FILE TAPE clause.

General Rules

APPLY Clause
1. An APPLY clause remains active for a file-name until the image terminates.

2. If the file connector referenced by file-name is an external file connector, all file control entries in the run unit
that reference this file must have the same APPLY clause.

3. The DEFERRED-WRITE phrase causes a physical write operation to occur only when the input-output buffer
for file-name is full. If there is no DEFERRED-WRITE phrase, a physical write occurs each time an output
statement executes for file-name.

4. The EXTENSION phrase specifies the number of disk blocks to be added each time a file is extended. The I/
O system extends a file when it needs more file space to add a record.

If extend-amt equals zero, the I/O system extends the file by its default value.

5. The FILL-SIZE phrase causes the I/O system to use the fill size specified when an indexed file is created to
fill the file's buckets. If there is no FILL-SIZE phrase, the I/O system fills buckets completely. The FILL-SIZE
phrase applies only to indexed files.

6. The LOCK-HOLDING phrase declares the VSI standard manual record-locking attribute for a sequential,
relative, or indexed file in a file-sharing environment on disk.

Once a record is manually locked (see the READ, REWRITE, START, and WRITE statements in Chapter 6:
Procedure Division), it remains locked until one of the following occurs:

• An UNLOCK statement executes.

• A CLOSE statement executes for the subject file.

• The image terminates.

Usage of the APPLY LOCK-HOLDING option requires additional syntax for the OPEN, READ, REWRITE,
START, and WRITE verbs. Table 4.2, “Required Manual Record-Locking Phrases (VSI Standard) ” summarizes
the additional syntax required for Procedure Division I/O statements accessing a file possessing the manual
record-locking attribute.

7. X/Open standard and VSI standard syntax cannot both be specified for the same file connector. Hence, APPLY
LOCK-HOLDING cannot be specified if LOCK MODE was specified for that file in the SELECT statement.

Table 4.2. Required Manual Record-Locking Phrases (VSI Standard)

Procedure Division Options Required by the Manual Record-
Locking Facility (VSI Standard)

I/O Operation ALLOWING … *REGARDLESS OF LOCK
OPEN X N/A
READ X X
REWRITE X N/A
Legend:

X—Required
N/A—Not Applicable
*—If the ALLOWING option is not specified

79

Environment Division

Procedure Division Options Required by the Manual Record-
Locking Facility (VSI Standard)

START X X
WRITE X N/A
Legend:

X—Required
N/A—Not Applicable
*—If the ALLOWING option is not specified

8.
The MASS-INSERT phrase is for documentation only. It has no effect on program execution.

9.

10.

11.

SAME AREA Clause
1. The SAME AREA clause is for documentation only.

SAME RECORD AREA Clause
1. The SAME RECORD AREA clause causes two or more files named by same-area-file to share the same

memory area for the current logical records.

2. If you specify the SAME RECORD AREA clause, more than one same-area-file (or all of them) can be open
at the same time.

3. Any record in the shared area becomes the current logical record of:

• Each same-area-file of the SAME RECORD AREA clause open in OUTPUT mode

• The most recently read same-area-file of the SAME RECORD AREA clause open in INPUT mode

The logical records start with the same leftmost character position. Thus, the SAME RECORD AREA clause
is equivalent to an implicit redefinition of the shared area.

SAME SORT (SORT-MERGE) AREA Clause
1. The SAME SORT (SORT-MERGE) AREA clause is for documentation only.

RERUN Clause
1. The RERUN clause is for documentation only. It has no effect on program execution.

MULTIPLE FILE TAPE Clause
1. The MULTIPLE FILE TAPE clause specifies the location of a file or files on a reel/unit device. The location

of the file or files can be specified as a relative location by providing a multiple-file series. The specific file
location can be specified by the POSITION phrase.

2. The MULTIPLE FILE TAPE clause specifies the location of a file or files when more than one file shares the
same physical reel of tape. If the files in the multiple-file sequence are listed in consecutive order, the POSITION
phrase is not required. If the files in the multiple-file sequence are not listed in consecutive order, the position
of the file or files (relative to the beginning of the tape) must be specified in the POSITION phrase.80

Environment Division

3. Only those multiple-files referenced by the program need to be specified in a MULTIPLE FILE TAPE clause.

4. If a file is specified with a POSITION phrase of a MULTIPLE FILE TAPE clause, subsequent files listed in
that MULTIPLE FILE TAPE clause which are not specified with a POSITION phrase are assumed to be in
the next higher position.

5. Only one file listed in a MULTIPLE FILE TAPE clause sequence can be open at any one time.

6. If, at run-time, the run-time system determines that the files referenced are not located on a reel device, the
MULTIPLE FILE TAPE clause is ignored.

Technical Notes
• On Tru64 UNIX systems, many elements of the I-O-CONTROL paragraph are for documentation only. They

are accepted and ignored by the compiler. These elements are as follows:

DEFERRED-WRITE
EXTENSION
FILL-SIZE
CONTIGUOUS
CONTIGUOUS-BEST-TRY
PREALLOCATION
PRINT-CONTROL
WINDOW

•

Additional References
• RESERVE clause

• Technical Notes for the DELETE statement in Chapter 6: Procedure Division

• OPEN statement in Chapter 6: Procedure Division

• READ statement in Chapter 6: Procedure Division

• REWRITE statement in Chapter 6: Procedure Division

• START statement in Chapter 6: Procedure Division

• UNLOCK statement in Chapter 6: Procedure Division

• WRITE statement in Chapter 6: Procedure Division

Additionally, refer to the VSI COBOL User Manual for more information.

81

Environment Division

82

Data Division

Chapter 5. Data Division
This chapter describes the logical and physical concepts that apply to the Data Division. In addition, this chapter
presents the general formats for all Data Division entries and clauses, describes their basic elements, and lists
rules of use.

The Data Division defines the data processed by your COBOL program in both physical and logical terms. It also
specifies whether the data is contained in files, a database, Oracle CDD/Repository, or is developed only for local
use in your program.

The File and Report Sections of your program define data contained in files. A file description, sort-merge file
description, or report file description entry creates a logical structure, or file connector, that refers to the physical
file. It also can contain clauses that define physical file characteristics. A file description or sort-merge file
description entry must be associated with at least one record description entry. A record description entry is a
set of one or more data description entries, organized in a hierarchical structure which logically defines a set of
related data within the file. The data description entries specify all the data used in your program. You logically
define the record hierarchy by the level numbers you use for the data description entries (or entry) within the
record description entry. Your logical link to a record or to a field in a record is the data-name you assign in a
corresponding data description entry. The clauses in a data description entry also specify physical data attributes,
such as storage format and initial values.

A report description entry must be associated with a report group description, which specifies both the logical
hierarchy of data in the report and the data's physical attributes.

A screen description entry describes a video form or a portion of a video form.

The Working-Storage and Linkage Sections also contain data description entries, which describe characteristics
of data developed for use in your program.

The following sections explain in more detail how a COBOL program specifies physical and logical characteristics.
Additionally, the following sections describe how record descriptions impose logical structures on data, and how
the physical attributes of data affect the way data is stored and manipulated.

5.1. Logical Concepts of Data Storage
Because a record description is a logical, rather than a physical structure, a program can define more than one
record description for the same data. However, this redefinition does not mean that the physical data changes in
any way. Multiple record descriptions for the same data all apply to one physical data unit on the file medium.

When you refer to a data-name in a Procedure Division statement, you are referring to a logical unit, either a
logical record or a logical subset of that record. When your COBOL source statements execute, the logical units
to which they refer are mapped to physical units on media. The logical units are then manipulated according to
their physical attributes.

The correspondence between a logical record and a physical record is not necessarily a one-to-one correspondence.
The term physical record applies to a data unit that is media dependent and defined by the I/O system. On
OpenVMS systems, the I/O system is called OpenVMS Record Management Services (RMS). A logical record
may correspond to one physical record, either alone or grouped with other logical records. Or, on disk, a logical
record may need more than one physical record to contain it.

Several COBOL clauses (in the Environment and Data Divisions) describe the relationships between logical
records and physical records. Programs can then access data as logical entities with little regard to the physical
data definitions that the I/O system requires.

During program execution, data transfer between the program and a physical record can involve translation if the
SELECT clause contains a CODE-SET clause.

5.1.1. Record Description Entries

83

Data Division

Logical records do not have to be subdivided; however, they often are. Subdivision can continue for each of the
record's parts, allowing progressively more detailed data definition.

The basic subdivision of a record is the elementary data item (or elementary item), which you define by specifying
a PICTURE clause (except for COMP-1 or COMP-2). As the term implies, elementary items are never subdivided.
A logical record consists of one or more sets of elementary items, or is itself an elementary item.

A group data item (or group item) is a data set within a record that contains other subordinate data items. The
lowest-level group item is always a named sequence of one or more elementary items. Group items can combine
to form more inclusive group items. Therefore, an elementary item can be subordinate to more than one group
item in the record.

Figure 5.1, “Hierarchical Record Structure” represents a personnel record that illustrates how elementary and
group items can be related in a record hierarchy. The record contains three group items directly subordinate to the
top level: Identification Data, History, and Payroll Data. The first group item, Identification Data, directly contains
two elementary items, Name and Job Title, and two other group items, Employee Number and Address. The group
item, Employee Number, contains two elementary items: Department Code and Badge Number. The group item,
Address, contains four elementary items: Street, City, State, and ZIP Code. The elementary item, City, belongs to
three group items. It is subordinate to Address, Identification Data, and Personnel Record. The second group item,
History, directly contains three elementary items: Hire Date, Last Promotion Date, and Termination Date. The
third group item, Payroll Data, also directly contains two elementary items: Current Salary and Previous Salary.

Figure 5.1. Hierarchical Record Structure

5.1.2. Level-Numbers
Record description entries use a system of level-numbers to specify the hierarchical organization of elementary
and group items. Level-numbers that specify hierarchical structure can range from 01 to 49.

The record is the most inclusive data item; that is, there is no hierarchical relationship between one record
description entry and any other. However, there is a hierarchical relationship between a group item and its
subordinate group or elementary items. The level-number for records is 01. Less inclusive data items have greater
(although not necessarily consecutive) level-numbers.

All items subordinate to a group item must have level-numbers greater than the group's level-number. In a record
description, a group item is delimited by the next level-number that is less than or equal to that group's level number.

Figure 5.2, “Level-Number Record Structure” shows how level-numbers specify hierarchical structure and how
the presence of the PICTURE clause defines an elementary item. Although line indentation can make record

84

Data Division

descriptions easier to read, it does not affect record structure; only the level-number values specify the hierarchy.
The ellipsis (…) indicates that parts of the program line have been omitted.

Figure 5.2. Level-Number Record Structure

Three special level-numbers – 66, 77, and 88 – neither specify hierarchical structure nor actually indicate level.
Rather, they define special types of data entries:

• Level-number 66 identifies RENAMES items, which regroup other data items. See the RENAMES clause for
more information.

• Level-number 77 specifies noncontiguous (elementary) items in the Working-Storage and Linkage Sections.
These data items are not subdivisions of other items and cannot be subdivided. For all other purposes, they are
identical to level 01 elementary entries.

• Level-number 88 associates condition-names with values of a corresponding data item (the conditional variable).

See Chapter 1: Overview of the COBOL Language, for more information on condition-names.

5.1.3. Multiple Record Description Entries for the Same
Data
Example 5.1, “Multiple Record Definition Structure” shows a sample file description entry (FD) that contains
three record description entries. The three record description entries define three logical templates the program
can impose on a record to access data from it.

Example 5.1. Multiple Record Definition Structure

FD MASTER-FILE.
01 T1.
 02 T1-ACCOUNT-NO PIC 9(6).
 02 T1-TRAN-CODE PIC 99.
 02 T1-NAME PIC X(13).
 02 T1-BALANCE PIC 9(5)V99.
 02 REC-TYPE PIC XX.
01 T2.
 02 T2-ACCOUNT-NO PIC 9(6).

85

Data Division

 02 T2-ADDRESS.
 03 T2-STREET PIC X(15).
 03 T2-CITY PIC X(7).
 02 REC-TYPE PIC XX.
01 RECORD-TYPE.
 02 PIC X(28).
 02 REC-TYPE PIC XX.

The three record description entries in Example 5.1, “Multiple Record Definition Structure”, T1, T2, and
RECORD-TYPE, each define a fixed-length record of 30 characters. Once the program reads a record, it can use
the last two characters (REC-TYPE) to determine which record description entry to use.

5.2. Physical Concepts of Data Storage
COBOL programs describe files and data in physical terms for storage on input-output media. The physical
description of data includes the following information:

• The mapping and grouping of logical records within the structure of the file storage medium

• The unit used to transfer records to and from your program

• The size and storage format of an elementary data item

The size of a physical record and the way it is recorded depend on the hardware device involved in an input or
output operation. For example, tape and disk media store physical records differently. On tape, a physical record
is written between interrecord gaps. On disk, a physical record is written in multiple units of a fixed number of
bytes, which is determined by the hardware and operating system involved.

On OpenVMS systems, the term used for a physical record differs according to file organization. A physical record
in a sequential file is called a block. A physical record in a relative or indexed file is called a bucket. A block or
bucket corresponds to the unit used by the I/O system software to transfer records from a file to your program (and
vice versa). The number of records (in logical terms) actually transferred by an input-output operation depends
on the following:

• The block size specified by the BLOCK CONTAINS clause (tape files only)

• The number of logical records contained in a physical record

The maximum physical record size depends on file organization and device. On OpenVMS systems, the maximum
physical record sizes for sequential files on tape devices and for sequential, indexed, and relative files on disk are
shown in terms of number of bytes in Table 5.1, “Maximum Physical Record Size for Tape and Disk Devices”.

Table 5.1. Maximum Physical Record Size for Tape and Disk Devices

Type of File Magnetic Tape Devices Disk

Sequential 65,535 bytes 65,024 bytes
Indexed N/A 32,234 bytes
Relative N/A 32,255 bytes

Note
A compile-time informational diagnostic appears if the physical record size exceeds 65,024 bytes for a sequential
file. However, VSI COBOL programs are device-independent. Therefore, a fatal run-time error can also occur if
the file is assigned to disk when the program runs.

5.2.1. Categories and Classes of Data
The size and storage format of an elementary data item depend upon what class and category of data it represents
and how that data can be used. A data item's PICTURE clause determines its class and category. The item's

86

Data Division

PICTURE clause and USAGE clause, in combination, specify its size and storage format. See the PICTURE and
USAGE clauses for more information.

When an arithmetic or data-movement statement transfers data into an elementary item, the category of the item
affects the way the data is positioned in storage. The COBOL Standard Alignment Rules (see Section 5.2.2,
“COBOL Standard Alignment Rules ”) specify the relationship between category and positioning.

Depending on the symbols contained in its PICTURE clause, every elementary item belongs to one of the classes
and categories of data items shown in Table 5.2, “Classes and Categories of Data Items”. COMP-1, COMP-2,
index data items, and index-names do not have PICTURE clauses; the format of these elementary items is specified
by the compiler and they belong to the numeric category.

The class of a group item is treated as alphanumeric regardless of the class of elementary items subordinate to it.
Therefore, your program statements should not specify a group item when a numeric item is expected or required.

Table 5.2. Classes and Categories of Data Items

Level
Class Category

 Alphabetic Alphabetic

Elementary Numeric Numeric

Alphanumeric Numeric Edited

Alphanumeric Edited

Alphanumeric

Group Alphanumeric

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

5.2.2. COBOL Standard Alignment Rules
The COBOL Standard Alignment Rules specify how characters are positioned in an elementary data item.
Positioning depends on the item's category:

1. For a numeric receiving data item:

• The data is aligned by decimal point. It is moved to the receiving character positions with zero fill or
truncation, if necessary.

• When an assumed decimal point is not explicitly specified, the data item is treated as if it had an assumed
decimal point immediately after its rightmost character. It is then aligned by decimal point as described in
the preceding list item.

2. For a numeric edited receiving data item, the data is aligned by decimal point with zero fill or truncation, if
necessary. Editing requirements can replace leading zeros with some other symbol.

3. For receiving data items that are alphabetic, alphanumeric edited, or alphanumeric (without editing), the data is
aligned at the leftmost character position in the data item, with space fill or truncation to the right, if necessary.

87

Data Division

If the JUSTIFIED clause applies to the receiving item, the rules for the JUSTIFIED clause override rule 3. See
the JUSTIFIED clause for more information.

5.2.3. Additional Alignment Rules for Record
Allocation
As stated in Section 5.2.2, “COBOL Standard Alignment Rules ”, the COBOL Standard Alignment Rules
specify data positioning only within elementary data items. VSI defines additional alignment rules that affect the
positioning of:

• Records on the file media

• Group items within a record

• Elementary items within a group item

On Alpha and I64 systems, VSI COBOL offers the option of allocating subordinate record items along
performance-optimal boundaries through the use of the alignment compiler option or directives (or the
SYNCHRONIZED clause). If you select one of these options, subordinate data items will be aligned automatically
along optimal boundaries for their data type. The compiler may have to skip one or more bytes before assigning a
location to the next data item. These skipped bytes, called fill bytes, are spaces between one data item and the next.
Refer to the VSI COBOL User Manual for information on using alignment compiler options and directives.

If you do not select one of these Alpha- and I64-only alignment options, the VSI COBOL compiler will locate
the data item at the next unassigned byte location.

The presence of fill bytes can make a record's structure different from what you might expect. In particular, if a
record contains many items requiring alignment, its size can increase significantly. If, unaware of the fill bytes, you
tried to move a group item containing fill bytes to a single data item, right-end truncation would occur. You would
not have this problem, however, if you moved the record into another identically defined group item. The method
the compiler uses to allocate storage ensures that identically described group items have the same structure, even
when their subordinate items are aligned on their required boundaries.

Figure 5.3, “Record Alignment Boundaries” shows alignment boundaries for a record. The boundary is the leftmost
location of the 1-, 2-, 4-, or 8-byte area. All boundaries are relative to the beginning of the record as byte number 0.

Figure 5.3. Record Alignment Boundaries

The VSI COBOL compiler allocates storage for data items within records according to the rules of the major-
minor equivalence technique. The major-minor equivalence technique ensures that identically defined group items
have the same structure, even when their subordinate items are aligned. Therefore, group moves always produce
predictable results. This technique is based on the following two rules:

• Location Equivalence—The leftmost location of a group item is the same as the leftmost location of its first
subordinate item.

• Boundary Equivalence—The VSI COBOL compiler aligns a group item on a boundary that is as large as the
largest boundary for any aligned data item within its scope.

88

Data Division

Location Equivalence
Location equivalence forces a group (major) item to the same storage location as its first subordinate (minor) item.
This forced positioning occurs regardless of the boundary alignment of either the group or subordinate item.

Refer to the VSI COBOL User Manual chapter on aligning binary data for information on how location equivalence
allocates storage.

The following example results in the major-minor location format:

 01 ITEM-A.
 03 ITEM-B.
 05 ITEM-C PIC 9(4) COMP SYNCHRONIZED.
 03 FILLER PIC X.
 03 ITEM-D.
 05 ITEM-E PIC 9(4) COMP SYNCHRONIZED.
 03 ITEM-F PIC X.

The following example (omitting SYNCHRONIZED) results in the left-right location format:

 01 ITEM-A.
 03 ITEM-B.
 05 ITEM-C PIC 9(4) COMP.
 03 FILLER PIC X.
 03 ITEM-D.
 05 ITEM-E PIC 9(4) COMP.
 03 ITEM-F PIC X.

Table 5.3, “Comparison of Major-Minor and Left-Right Locations” compares the major-minor technique of storage
allocation with the left-to-right technique that assigns locations to a group item before its subsidiary items. Note
that major-minor storage allocation adds a fill byte before ITEM-D. This forces location equivalence with ITEM-
E, which is explicitly aligned by the SYNCHRONIZED clause.

Table 5.3. Comparison of Major-Minor and Left-Right Locations

Data Item Major-Minor Location Left-Right Location

ITEM-A 00 00
##ITEM-B 00 00
####ITEM-C 00 00
##FILLER 02 02
##ITEM-D 04 03
####ITEM-E 04 03
##ITEM-F 06 05

The following diagram also shows the storage allocation for the record ITEM-A in Table 5.3, “Comparison of
Major-Minor and Left-Right Locations” using both techniques. A hyphen (-) represents fill bytes caused by explicit
alignment; an asterisk (*) represents the FILLER data item.

Regardless of the record allocation technique, an elementary move always produces the expected result. For
example:

89

Data Division

MOVE ITEM-C TO ITEM-E

Effect on Group Moves
A group move may produce an unexpected result, as in the following two situations:

• If ITEM-A of the major-minor location format is moved to ITEM-A of the left-right location format, the fill
byte of the major-minor location format overlays the first byte of ITEM-E in the left-right location format; then
the first byte of ITEM-E in the major-minor location format overlays the second byte of ITEM-E in the left-
right location format, and the second byte of ITEM-E in the major-minor location format overlays ITEM-F in
the left-right location format. Finally, ITEM-F in the major-minor location format is truncated.

• A different set of unexpected results occurs if a group move is done in the reverse direction. If ITEM-A of the
left-right location format is moved to ITEM-A of the major-minor location format, the first byte of ITEM-D of
the left-right location format is moved to the fill byte of the major-minor location format. Then the second byte
of ITEM-E in the left-right location format is moved to the first byte of ITEM-E in the major-minor location
format, and ITEM-F of the left-right location format is moved to the second byte of ITEM-E in the major-minor
location format. Finally, ITEM-F is filled with a space because of the padding rule.

Boundary Equivalence
Boundary equivalence forces a group item to a boundary determined by the alignment of its subordinate items.

Within a record, a group item aligns on a boundary as large as the forced alignment boundary of any data item that:

• Is subordinate to the group

• Redefines the group

• Is subordinate to a data item that redefines the group

Refer to the VSI COBOL User Manual chapter on alignment for more information about boundary equivalence.

Figure 5.4, “Effect of Boundary and Location Equivalence Rules on Sample Record” shows how the compiler
determines the boundary where each item begins when you specify the no-alignment compiler option.

Figure 5.4. Effect of Boundary and Location Equivalence Rules on Sample Record

Figure 5.5, “Storage Allocation for Sample Record” graphically represents Figure 5.4, “Effect of Boundary and
Location Equivalence Rules on Sample Record”. It shows the result of location and boundary equivalence applied
to the description of record ITEM-A. A hyphen (-) indicates fill bytes.

90

Data Division

Figure 5.5. Storage Allocation for Sample Record

Note the location of ITEM-D. Location equivalence requires only that it have the same location as ITEM-E, its first
subordinate item. ITEM-E requires only 2-byte boundary alignment. However, another of ITEM-D's subordinate
items, ITEM-F, contains ITEM-I, which must be aligned on a 4-byte boundary. Therefore, boundary equivalence
forces ITEM-D to a 4-byte boundary as well, causing two fill bytes between ITEM-E and ITEM-F.

This example shows how boundary equivalence helps make group moves predictable:

 01 ITEM-A.
 03 ITEM-B.
 05 ITEM-C PIC X.
 05 ITEM-D PIC 9(8) COMP SYNC.
 03 ITEM-E PIC X.
 03 ITEM-F.
 05 ITEM-G PIC X.
 05 ITEM-H PIC 9(8) COMP SYNC.
 03 ITEM-I PIC XX.

The descriptions of ITEM-B and ITEM-F are equivalent. Therefore, you would not expect the following sentence
to change the values of ITEM-C and ITEM-D:

MOVE ITEM-B TO ITEM-F
MOVE ITEM-F TO ITEM-B.

Figure 5.6, “Storage Allocation Without and With Boundary Equivalence” shows how storage for the record
would be allocated without and with boundary equivalence. A hyphen (-) indicates fill bytes caused by the
SYNCHRONIZED clause. A plus sign (+) represents fill bytes resulting from boundary equivalence.

Figure 5.6. Storage Allocation Without and With Boundary Equivalence

Without boundary equivalence, ITEM-B occupies 8 bytes, and ITEM-F occupies 7 bytes. Moving the contents of
ITEM-B to ITEM-F truncates the last byte of ITEM-D. Moving the contents of ITEM-F to ITEM-B pads the last
byte of ITEM-D with a space character.

In contrast, boundary equivalence eliminates this unforeseen result. The elementary items occupy the same relative
positions in each group. Therefore, the structures of ITEM-B and ITEM-F are the same, and the results of both
group and elementary moves are predictable.

Examples
The following series of examples show major-minor storage allocation. The notes after each example indicate its
significant features. A hyphen (-) represents fill bytes.

91

Data Division

Example 1
 WORKING-STORAGE SECTION.
01 ITEM-A.
 03 ITEM-B PIC X.
 03 ITEM-C.
 05 ITEM-D.
 07 ITEM-E PIC 999 COMP SYNC.
 07 ITEM-F PIC X(10).
 05 ITEM-G REDEFINES ITEM-D.
 07 ITEM-H PIC 9(14) COMP SYNC.
 07 ITEM-I PIC XXXX.
01 ITEM-J.
 03 ITEM-K.
 05 ITEM-L PIC 999 COMP SYNC.
 05 ITEM-M PIC X(10).
 03 ITEM-N REDEFINES ITEM-K.
 05 ITEM-O PIC 9(14) COMP SYNC.
 05 ITEM-P PIC XXXX.

In this example:

• The relative locations of records (01-level items) in the Working-Storage and Linkage Sections are neither
defined nor predictable.

• The structures of ITEM-J (a record) and ITEM-C (a group item within a record) are identical.

Example 2
 WORKING-STORAGE SECTION.
01 ITEM-A.
 03 ITEM-B PIC X.
 03 ITEM-C.
 05 ITEM-D OCCURS 3 TIMES.
 07 ITEM-E PIC X.
 07 ITEM-F PIC 9999 COMP SYNC.
 07 ITEM-G PIC X.
 03 ITEM-H PIC X.

In this example:

92

Data Division

• A fill byte is added after each occurrence of ITEM-D to maintain 2-byte boundary alignment of the next
occurrence.

• ITEM-D is 5 bytes long. The fill byte following ITEM-D is not included in its length.

• ITEM-C is 18 bytes long. Its length includes the fill bytes associated with its subordinate items.

• The record ITEM-A is 21 bytes long.

Example 3
WORKING-STORAGE SECTION.
01 ITEM-A.
 03 ITEM-B PIC X.
 03 ITEM-C.
 05 ITEM-D OCCURS 3 TIMES.
 07 ITEM-E PIC X.
 07 ITEM-F PIC 9999 COMP SYNC.
 03 ITEM-H PIC X.

In this example:

• ITEM-G is omitted.

• ITEM-D is 4 bytes long. No fill bytes are added, since the next occurrence is already aligned on a 2-byte
boundary.

• ITEM-C is 12 bytes long.

• The record ITEM-A is 15 bytes long.

5.2.4. Alpha and I64 Alignment and Padding
The VSI OpenVMS Calling Standard for the Tru64 UNIX, OpenVMS Alpha, and OpenVMS I64 systems specify
Alpha natural data alignment and padding. You invoke this alignment by adding the alignment padding
compiler option to the compile command line, or by using pad align directives in your source code. (Refer to
the VSI COBOL User Manual for additional information on the command.)

The Alpha natural alignments and field sizes that apply to elementary COBOL data fields are shown in Table 5.4,
“Alpha Alignment and Padding”.

Table 5.4. Alpha Alignment and Padding

Data Types Alignment Starting
Position

Pictures Usages

8-bit character string Byte boundary A, X, 9, Edited Display
16-bit integer Word boundary, multiple

of 2
9(4) COMP

93

Data Division

Data Types Alignment Starting
Position

Pictures Usages

32-bit integer Longword boundary,
multiple of 4

9(8) COMP

Single-precision real COMP-1
64-bit integer Quadword boundary,

multiple of 8
9(16) COMP

Double-precision real COMP-2

These alignments and field sizes apply to elementary data items. However, they are extended to group data items
at all level numbers by requiring that the alignment of the group data item conforms to the alignment of the largest
natural alignment of any elementary data item that is subordinate to the group-item. Every intermediate group
data item in VSI COBOL is a candidate for Alpha natural alignment and padding. Every higher-level data item is
padded to be the smallest multiple of the largest natural alignment of any of its subordinate elementary data items
that contains the data structure. The alignment and padding can be determined in all cases by following the tree
structure through as many levels as required until the elementary data item with the largest natural alignment is
found. All elementary data items are aligned and sized within their data structures according to Table 5.4, “Alpha
Alignment and Padding”.

5.3. DATA DIVISION General Format and
Rules
Function
The Data Division describes data the program creates, receives as input, manipulates, and produces as output.

Syntax Rules
1. The Data Division follows the Environment Division.

2. The reserved words DATA DIVISION, followed by a period (.) separator character identify and begin the Data
Division.

General Rules
1. The Data Division is subdivided into sections. These sections must be in the following order:

94

Data Division

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
REPORT SECTION.
SCREEN SECTION. (Alpha, I64)

File Section
1. The File Section defines the structure of data files. It begins with the File Section header containing the reserved

words FILE SECTION, followed by a period (.) separator character.

2. File description entries and sort-merge file description entries follow the File Section header. They can be in
any order.

3. The file description entry consists of a level indicator (FD), a file-name, and a series of independent clauses.

4. The FD clause specifies the following:

• How the file records data

• The sizes of logical and physical records

• The names of data records (except for report files)

• The number of lines on a logical printer page

5. An FD entry, followed by one or more record description entries, defines a sequential, relative, or indexed file.
Record description entries must immediately follow the associated FD entry.

6. No record description entries may follow the report file description entry.

7. The sort-merge file description entry consists of a level indicator (SD), a file-name, and a series of independent
clauses.

8. An SD clause specifies the following:

• How the file records data

• The sizes of logical and physical records

• The names of data records

9. An SD entry specifies the sizes and names of data records for a sort-merge file referred to by SORT and MERGE
statements.

10.An SD entry, followed by one or more record description entries, defines a file. Record description entries must
immediately follow the associated SD entry.

Working-Storage Section
1. The Working-Storage Section describes records and subordinate data items. These records are not parts of files;

rather, the program develops and processes them internally.

2. The Working-Storage Section also describes data items assigned values by the source program.

3. The Working-Storage Section consists of a section header, followed by record description entries.

4. The section header consists of the reserved words WORKING-STORAGE SECTION, followed by a period
(.) separator character.

95

Data Division

5. A record description entry groups data items that bear a hierarchical relationship to each other. Unrelated data
items in the Working-Storage Section can be described as records that are individual elementary items.

6. Record description clauses can be used in the File Section, the Working-Storage Section, or the Linkage Section.

7. The VALUE IS clause can specify the initial value of any item in the Working-Storage Section except index
data items (described by the USAGE IS INDEX clause) and index-names (described by the INDEXED BY
phrase of the OCCURS clause).

8. If the VALUE IS clause does not specify an initial value, the default initial value for an item depends on the
type of data item:

Data Item Type Default Initial Value

Numeric Zero
Index-name Occurrence number one
Index data item Undefined
Tables Undefined
All others Spaces

Linkage Section
1. The Linkage Section is used only in a called program.

2. The Linkage Section describes data available through the calling program; both the calling and called programs
can access this data.

3. To access calling program data items through the Linkage Section, the called program must have a Procedure
Division header USING phrase.

4. The structure of the Linkage Section is the same as that of the Working-Storage Section. It consists of a section
header followed by record description entries. The section header consists of the reserved words LINKAGE
SECTION followed by a period (.) separator character.

Report Section
1. The Report Section defines report files. It begins with the Report Section header: the reserved words REPORT

SECTION, followed by a period (.) separator character.

2. Report description entries follow the Report Section header.

3. The report description entry consists of a level indicator (RD), a report name, and a series of independent clauses.

4. An RD clause specifies the following:

• Identifying characters to be prefixed to each print line in a report

• The physical structure and organization of a report

• The name of the report

5. An RD entry, followed by one or more report group description entries, defines a report. Report group
description entries must immediately follow the associated report description entry.

6. A report group description entry defines a report group. It specifies the characteristics of a report group and
the individual items within a report group.

96

Data Division

Screen Section (Alpha, I64)
1. The Screen Section describes a video form and specifies the attributes, behavior, size, and location of each

screen item within the video form. The Screen Section is for use with ACCEPT and DISPLAY statements.

Additional References
• VALUE IS clause

• CALL statement in Chapter 6, Procedure Division

• User-defined words in Section 1.2.1: COBOL Words

• REPORT clause

• Refer to the chapter describing alignment in the VSI COBOL User Manual.

FD (File Description)
FD (File Description)—Sequential, Line Sequential (Alpha, I64), Relative, Indexed, and Report File Descriptions
— A file description entry describes the physical structure, identification, record names, and names for sequential,
line sequential (Alpha, I64), relative, indexed, and report files. It also specifies the internal or external attributes
of a file connector and the local or global attributes of a file-name.

97

Data Division

Description

98

Data Division

99

Data Division

Clauses marked with an asterisk () can be in either the SELECT clause of the Environment Division or the file
description entry of the Data Division. They cannot be in both places for the same file.

Syntax Rules

Formats 1, 2, 3, and 4—All Files
1. The level indicator FD identifies the start of a file description entry. It must precede file-name.

2. The clauses following file-name can appear in any order.

3. A period (.) separator character must terminate a file description entry.

4. On OpenVMS, the file name written to disk (see the ASSIGN clause in Chapter 4, Environment Division) has
the file type .DAT added if no other file type is specified in the corresponding file specification.

Format 1—Sequential or Line Sequential (Alpha, I64)
Files
1. file-name can refer only to a sequential file.

2. One or more record description entries must follow the file description entry.

Format 2—Relative Files
1. file-name can refer only to a relative file.

2. If a START statement refers to file-name, the file description must include the RELATIVE KEY phrase within
the ACCESS MODE clause.

3. One or more record description entries must follow the file description entry.

Format 3—Indexed Files
1. file-name can refer only to an indexed file.

2. On Tru64 UNIX, for information on file-names for indexed files, see the ASSIGN clause in Chapter 4,
Environment Division.

3. alt-key cannot have the same leftmost character position as that of rec-key or any other alt-key for the same file.

4. One or more record description entries must follow the file description entry.

Format 4—Report Files
1. file-name can refer only to a report file.

2. No record description entries may follow the file description entry for a report file.

3. Only the CLOSE statement and the OPEN statement with the OUTPUT or EXTEND phrase may reference
this file description entry.

General Rules

Formats 1, 2, 3, and 4—All Files
1. A file description entry associates file-name with a file connector.

2. On OpenVMS, if the file description entry contains the EXTERNAL clause, the RMS special registers RMS-
STS, RMS-STV, and RMS-FILENAME are external registers.

100

Data Division

3. If the file description entry contains the GLOBAL clause, the RMS special registers RMS-STS, RMS-STV,
and RMS-FILENAME are global registers.

Format 1—Sequential and Line Sequential (Alpha, I64)
Files
1. If the file description entry contains the LINAGE clause and the EXTERNAL clause, the LINAGE-COUNTER

special register is an external data item.

2. If the file description entry contains the LINAGE clause and the GLOBAL clause, the special register LINAGE-
COUNTER is a global name.

Format 3—Indexed Files
1. If the file description entry contains the EXTERNAL clause, the segmented key seg-key has the external

attribute.

2. If the file description entry contains the GLOBAL clause, the segmented key seg-key is a global name.

Refer to the VSI COBOL User Manual for examples of the file description entry formats.

SD (Sort-Merge File Description)
SD (Sort-Merge File Description) — A sort-merge file description entry describes a sort or merge file's physical
structure, identification, and record names.

General Format

Syntax Rules
1. The level indicator SD identifies the start of a sort-merge file description. It must precede file-name.

2. The clauses following file-name can appear in any order.

3. A period (.) separator character must terminate a sort-merge file description entry.

4. One or more record description entries must follow the sort-merge file description entry.

General Rule
No input-output statements can refer to a file-name in a sort-merge file description.

Examples
Refer to the VSI COBOL User Manual for examples of the sort-merge file description entry.

101

Data Division

RD (Report Description)
RD (Report Description) — The Report Description names a report, specifies any identifying characters to be
prefixed to each print line in the report, and describes the physical structure and organization of that report. It also
determines whether a report-name is a local name or global name.

General Format

Syntax Rules
1. report-name must appear in one and only one REPORT clause.

2. The clauses following report-name may appear in any order. report-name is the highest permissible qualifier
that can be specified for LINE-COUNTER, PAGE-COUNTER, and all data-names in the Report Section.

General Rules
1. If the Report Description entry contains the GLOBAL clause, report-name and the special registers LINE-

COUNTER and PAGE-COUNTER are global names.

2. The reserved word PAGE-COUNTER references a special register that the compiler creates for each report in
the Report Section.

3. In the Report Section, a reference to PAGE-COUNTER can appear only in a SOURCE clause. In the Procedure
Division, PAGE-COUNTER can be used anywhere an integer data item can appear.

4. If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must be qualified by a report-name
wherever it is referenced in the Procedure Division.

In the Report Section, an unqualified reference to PAGE-COUNTER is qualified implicitly by the name of the
report containing the reference. Whenever the PAGE-COUNTER of a different report is referenced, PAGE-
COUNTER must be explicitly qualified by the other report's report-name.

5. The INITIATE statement causes the Report Writer Control System to set the PAGE-COUNTER of the
referenced report to one.

6. PAGE-COUNTER is automatically incremented by one each time the Report Writer Control System executes
a page advance.

7. Procedure Division statements may alter the contents of PAGE-COUNTER.

102

Data Division

8. The reserved word LINE-COUNTER references a special register that the compiler creates for each report in
the Report Section.

9. In the Report Section, a reference to LINE-COUNTER can appear only in a SOURCE clause. In the Procedure
Division, LINE-COUNTER can be used anywhere a data item with an integer value can appear. However, only
the Report Writer Control System can change the contents of LINE-COUNTER.

10.If there is more than one LINE-COUNTER in a program, Procedure Division references to LINE-COUNTER
must be qualified by a report-name.

In the Report Section, an unqualified reference to LINE-COUNTER is qualified implicitly by the name of
the report containing the reference. Whenever the LINE-COUNTER of a different report is referenced, LINE-
COUNTER must be explicitly qualified by the other report's report-name.

11.The INITIATE statement causes the Report Writer Control System to set the LINE-COUNTER of the referenced
report to zero. The Report Writer Control System also automatically resets LINE-COUNTER to zero each time
it executes a page advance.

12.The execution of SUPPRESS statements and the processing of nonprintable report groups do not change the
value of LINE-COUNTER.

13.At the time each print line is presented, the value of LINE-COUNTER represents the line number on which the
print line is presented. After the presentation of the report group, the value of LINE-COUNTER is governed
by the Report Writer Presentation Rules and Tables.

Additional References
• LINE NUMBER (Alpha, I64) clause

• REPORT clause

• FD (File Description)

• Appendix D: Report Writer Presentation Rules and Tables

Example
The following is an example of a global Report Description entry:

FILE SECTION.
FD WEEKLY-REPORTS...
 REPORTS ARE PAYROLL-REPORT
 PAYROLL-IRS.
REPORT SECTION.

RD PAYROLL-REPORT
 IS GLOBAL
 CODE "AA"
 CONTROL GRAND-TOT
 SITE-TOT
 DEPT-TOT
 GROUP-TOT
 PAGE LIMITS ARE 60 LINES
 HEADING 2
 FIRST DETAIL 9
 LAST DETAIL 55
 FOOTING 58.

RD PAYROLL-IRS

103

Data Division

 CODE "BB"...

The previous example uses the CODE clause to flag PAYROLL-REPORT records from other records (see
PAYROLL-IRS) included in the same file (WEEKLY-REPORTS). The entry defines four control totals. GRAND-
TOT is the most major control total; it will be printed only at the end of the report. SITE-TOT, DEPT-TOT, and
GROUP-TOT are major, intermediate, and minor control totals, respectively. These totals are printed whenever
the Report Writer Control System (RWCS) processes a control break. The entry also defines a report page with
60 lines. On each page the RWCS is to print PAYROLL-REPORT headings beginning on line 2, detail lines from
lines 9 to 55, and footings beginning on line 58.

Data Description
Data Description — A data description entry specifies the characteristics of a data item.

General Formats

Syntax Rules
1. level-number in Format 1 can be any number from 01 to 49, or 77.

2. Data description clauses can appear in any order, with two exceptions:

• The optional data-name or FILLER clause must immediately follow level-number.

• The optional REDEFINES clause must immediately follow the optional data-name or FILLER clause.

104

Data Division

3. The EXTERNAL clause can appear in a level 01 or 77 data description entry in the Working-Storage Section.

4. The GLOBAL clause can appear in a level 01 or 77 data description entry in the Working-Storage Section, or
in a level 01 data description entry in the File Section.

5. The EXTERNAL and REDEFINES clauses cannot be in the same data description entry.

6. data-name must appear in any Format 1 entry that contains the EXTERNAL clause or GLOBAL clause, or in
the record descriptions of a file description entry that contains the EXTERNAL or GLOBAL clause.

7. There must be a PICTURE clause for all elementary items except the following:

• An index data item

• A COMP-1 or COMP-2 data item

• The subject of a RENAMES clause

• A POINTER data item

In these cases, there must be no PICTURE clause.

8. The words THRU and THROUGH are equivalent.

9. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO clauses can appear only in Data
Description entries for elementary items.

General Rules
1. Each condition-name requires a separate Format 3 entry. The level 88 entry associates one or more values, or

ranges of values, with condition-name.

All condition-name entries for an associated data item (the conditional variable) must immediately follow that
item's data description entry.

Any condition-name associated with a global conditional variable is global.

A condition-name can be associated with a data item at any level except:

• Another condition-name

• A level 66 item

• A group that contains items with JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS
DISPLAY) clauses

• An index data item

2. Multiple level 01 data description entries subordinate to an FD or SD entry implicitly redefine the same area.

Report Group Description
Report Group Description

Function
The report group description entry specifies the characteristics of a report group and of the individual items within
a report group.

105

Data Division

General Formats

106

Data Division

Syntax Rules

All Formats
1. The report group description entry can appear only in the Report Section.

2. Except for the group-data-name clause, which when present must immediately follow level-number, the clauses
may be in any sequence.

3. The description of a report group may consist of one, two, or three hierarchical levels:

a. The first entry that describes a report group must be a Format 1 entry.

b. Both Format 2 and Format 3 entries may be immediately subordinate to a Format 1 entry.

c. At least one Format 3 entry must be immediately subordinate to a Format 2 entry.

d. Format 3 entries must define elementary data items.

4. In the Report Section, the USAGE clause is used only to declare the usage of printable items.

a. If the USAGE clause appears in a Format 1 or Format 2 entry, at least one subordinate entry must define
a printable item.

b. In Format 3, the USAGE clause must define a printable item.

5. An entry containing a LINE NUMBER clause must not have a subordinate entry that also contains a LINE
NUMBER clause.

Format 1
1. group-data-name is required only when:

a. A GENERATE statement references a DETAIL report group.

b. An UPON phrase of a SUM clause references a DETAIL report group.

c. A USE BEFORE REPORTING sentence references a DETAIL report group.

d. The name of a CONTROL FOOTING report group qualifies a reference to a sum counter.

If specified, group-data-name can be used as a sum counter qualifier and can be referenced only by:

• GENERATE statements

• UPON phrases of the SUM clause

• USE BEFORE REPORTING declaratives

Format 2
1. level-number can be any integer from 02 to 48 inclusive.

2. A Format 2 entry must contain at least one optional clause.

3. In a Format 2 entry, group-data-name is optional. It can only qualify a sum counter reference.

Format 3
1. level-number can be any integer from 02 to 49 inclusive.

107

Data Division

2. A GROUP INDICATE clause can appear only in a DETAIL report group.

3. A SUM clause can appear only in a CONTROL FOOTING report group.

4. An entry containing a COLUMN NUMBER clause but no LINE NUMBER clause must be subordinate to an
entry containing a LINE NUMBER clause.

5. group-data-name is optional but can be specified in any entry. group-data-name can be referenced only if the
entry defines a sum counter.

6. A LINE NUMBER clause must not be the only clause specified. Refer to Syntax Rule 3d.

7. An entry containing a VALUE clause must also have a COLUMN NUMBER clause.

8. A printable item is a data item whose size and content are specified by an elementary report entry.

9. An elementary report entry contains a COLUMN NUMBER clause, a PICTURE clause, and a SOURCE, SUM,
or VALUE clause.

10.Figure 5.7, “Format 3 Clause Combinations” shows all permissible clause combinations for Format 3. You read
the table from left to right along the selected row.

Figure 5.7. Format 3 Clause Combinations

General Rules
1. Format 1 is the Report Group entry. The report group is defined by the contents of this entry and all of its

subordinate entries.

2. The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE clause for Report Writer are the
same as those in the Data Description Section.

Examples
The VSI COBOL User Manual contains examples of each report group description entry format.

Screen Description (Alpha, I64)
Screen Description (Alpha, I64)

Function
A screen description entry describes a video form or a portion of a video form and specifies the attributes, behavior,
size, and location of screen items within the video form. The screen description entry is referenced in the Procedure
Division by the ACCEPT and DISPLAY statements.

108

Data Division

General Formats

109

Data Division

Syntax Rules

All Formats
1. level-number can be any number from 01 to 49.

110

Data Division

2. Each elementary screen description entry must contain at least one of the following clauses:

BELL
BLANK
COLUMN
LINE
PICTURE
VALUE

3. If the FOREGROUND-COLOR, BACKGROUND-COLOR, or SIGN clauses are specified in both the group
screen description entry and the subordinate description entry for a screen item, then the subordinate screen
description entry's clauses will take effect.

4. screen-name assigns a name to the screen item described in the screen description entry and must conform to
the rules for user-defined names. If either the optional screen-name or the key word FILLER is specified, it
must be the first word following the level number in each screen description entry.

5. If both screen-name and FILLER are omitted, the screen item being described is treated as though FILLER had
been specified, and cannot be referenced in an ACCEPT or DISPLAY statement.

6. Each level 01 item must have a screen name.

7. A screen item can be referenced only in an ACCEPT or DISPLAY statement.

8. color-num-1 and color-num-2 are integers in the range 0–7. color-num-1 and color-num-2 represent specific
colors as described in Table 5.5, “Color Table”:

Table 5.5. Color Table

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

9. The USING phrase is equivalent to the combination of FROM and TO phrases, each specifying the same
identifier.

10.identifier-3, identifier-4 and identifier-5 must be defined in the File, Working-Storage, or Linkage Section.

11.identifier-1 and identifier-2 must be described as elementary unsigned numeric integer data items.

12.literal-1 must be a nonnumeric literal.

13.For a description of picture-string-1, see the PICTURE Clause section of this chapter.

General Rules

All Formats
1. An input screen item is one whose description contains a TO clause.

2. An output screen item is one whose description contains a FROM clause.

3. A literal screen item is one whose description contains a VALUE clause.

4. An update screen item is one whose description contains a USING clause.

5. An input-output screen item is one whose description contains both a FROM phrase and a TO phrase that may or
may not reference the same identifier. The rules for update screen items also apply to input-output screen items.

111

Data Division

6. The LINE and COLUMN clauses should not be specified within a screen description entry in such a way that
fields overlap on the screen or fall beyond the screen boundaries.

Format 1
1. Format 1 is used for group screen items.

2. All clauses within a group screen description entry are inherited by subordinate screen description entries with
the exception of the BLANK SCREEN clause.

3. If the SECURE clause is specified, it applies to each subordinate input screen item.

4. If the AUTO, FULL, or REQUIRED clauses are specified, they apply to each subordinate input and update
screen item.

5. If the BACKGROUND-COLOR, FOREGROUND-COLOR, or SIGN clauses are specified, they apply to each
subordinate input, output, and update screen item.

Format 2
1. Format 2 is used to describe a literal screen item.

Format 3
1. Format 3 is used to describe input, output, or update screen items.

ACCESS MODE
ACCESS MODE

Function
The ACCESS MODE clause specifies the order of access for a file's records.

General Format

[rel-key]

is the file's RELATIVE KEY data item.

112

Data Division

Syntax Rules
1. rel-key must be the data-name of an unsigned integer data item whose description does not contain a PICTURE

symbol (P). It can be qualified but cannot be in a record description entry for the same file-name.

2. The ACCESS MODE clause can be in the file's SELECT clause. However, it cannot be in both the SELECT
clause and file description entry for the same file.

3. If the USING or GIVING phrases of a SORT or MERGE statement contain the name of the file, the ACCESS
MODE RANDOM clause cannot be used for the file.

4. If rel-key is associated with an external file connector, rel-key must reference the same data item in every
program in the run unit.

5. If a START statement references a relative file, the program must specify the RELATIVE KEY phrase for that
file.

General Rules

All Formats
1. If there is no ACCESS MODE clause, the access mode is sequential.

2. For sequential access, the sequence in which the program accesses the records depends on the organization of
the file, as follows:

• Sequential files—The sequence is the same as that established by the execution of WRITE statements that
created or extended the file.

• Relative files—The sequence is the order of ascending relative record numbers of the file's existing records.

• Indexed files—The sequence is the sort order (ascending or descending) of record key values in the
established Key of Reference.

Formats 2 and 3
1. For random access, the value of rel-key (for relative files) or a Record Key data item (for indexed files) indicates

the record to be accessed.

2. For dynamic access, the program can access records sequentially and randomly.

Format 2
1. Relative record numbers uniquely identify records in relative files. A record's relative record number identifies

its ordinal position in the file. The first record in the file has a relative record number of 1. Subsequent records
have consecutively higher relative record numbers.

2. The Relative Key data item associated with the execution of an Input/Output statement is rel-key in the file
description entry (or SELECT clause) associated with the statement.

ALTERNATE RECORD KEY
ALTERNATE RECORD KEY

Function
The ALTERNATE RECORD KEY clause specifies an alternate access path to indexed file records.

113

Data Division

General Format

[alt-key]

is the Record Key for the file. It is the data-name of a data item in a record description entry for the file. It can
be qualified, but it cannot be a group item that contains a variable-occurrence data item. The data item must be
described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

• COMP-3 integer

• COMP integer

[seg-key]

is a segmented-key name that represents the concatenation of one or more (up to eight) occurrences of seg.

[seg]

is the data-name of a data item in a record description entry for the file. It can be qualified, but it cannot be a group
item that contains a variable-occurrence data item. The data item must be described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

Syntax Rules
1. The ALTERNATE RECORD KEY clause can be in the file's SELECT clause. However, for the same file, it

cannot be in both the SELECT clause and file description entry.

2. alt-key or the segments of seg-key cannot have the same leftmost character position as that of the Prime Record
Key data item or any other alt-key or segment of seg-key for the same file.

General Rules
1. seg-key is the concatenation of all specified key segments in the order specified.

114

Data Division

2. seg-key can be referenced only in a READ (Format 3) or START statement.

3. When a program creates an indexed file with one or more ALTERNATE RECORD KEY clauses, each
subsequent program referencing this indexed file must:

• Use the same data description for alt-key or the segments of seg-key.

• Define the same relative location in the record as alt-key or the segments of seg-key.

• Specify the same number (or less) of ALTERNATE RECORD KEY clauses.

On Tru64 UNIX systems, you can specify a different number of keys than was specified when the file was
created, if the relaxed key check option (-relax_key_checking) is used.

• Maintain the same order of ALTERNATE RECORD KEY clauses.

• Specify the same order of keys (ASCENDING or DESCENDING) in each ALTERNATE RECORD KEY
clause as the order used when the file was created.

4. The DUPLICATES phrase specifies that two or more records in the file can have duplicate values in the same
alt-key or the segments of seg-key. If there is no DUPLICATES phrase, two records cannot have the same value
in corresponding Alternate Record Keys.

On OpenVMS, if the program was compiled with the /CHECK=DUPLICATE_KEYS qualifier on the command
line, and the duplicate key specification on a file's FD (in other words, specified in the WITH DUPLICATES
phrase) does not match that of the actual file, a run-time diagnostic will be issued when an attempt is made to
open the file with an OPEN statement.

The /CHECK=DUPLICATE_KEYS qualifier is not supported for remotely accessed files. Duplicate keys, key
length, and number of keys are not checked for remote files, that is, files accessed over the network.

On Tru64 UNIX systems, DUPLICATES must match the specification for DUPLICATES when the file was
created, unless the relaxed key check option is used.

5. If a file has more than one record description entry, only one of these record description entries must describe
alt-key or the segments of seg-key. The character positions referenced by alt-key or the segments of seg-key in
that record description are implicitly referenced in all other record description entries for the file.

6. A file can have up to 254 Alternate Record Keys.

7. If the associated file connector is an external file connector, all File Description entries in the run unit that are
associated with the file connector must define the same data description entry for alt-key or the segments of
seg-key, with the same relative location within the record.

8. Each key can be specified as ASCENDING or DESCENDING (ASCENDING is the default). In an
ASCENDING key, lower key values occur toward the beginning of the sorted file. In a DESCENDING key,
higher key values occur toward the beginning of the sorted file.

Additional Reference
• RECORD KEY clause

• SORT statement in Chapter 6, Procedure Division

• MERGE statement in Chapter 6, Procedure Division

AUTO
AUTO

115

Data Division

Function
In the context of ACCEPT, the AUTO clause moves the cursor to the next field when the last character of an input
or update field that was defined with the AUTO clause is entered.

General Format

Syntax Rule
The AUTO clause cannot be specified in the description of a literal screen item.

General Rules
1. If the AUTO clause is specified at group level, it applies to each input and update screen item in that group.

2. The AUTO clause is significant in the context of an ACCEPT.

3. The AUTO clause is ignored in the description of an output screen item.

4. If there is only one field to input, or if the field is the last one of the screen, the ACCEPT statement is completed
when the last character of the field is entered.

Additional Reference
ACCEPT statement in Chapter 6, Procedure Division

BACKGROUND-COLOR (Alpha, I64)
BACKGROUND-COLOR (Alpha, I64)

Function
The BACKGROUND-COLOR clause specifies the background color for the screen item.

General Format

[color-num]

is an integer in the range 0–7 specifying a color as follows:

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

Syntax Rule
The BACKGROUND-COLOR clause can be specified in any screen description entry.

116

Data Division

General Rules
1. The BACKGROUND-COLOR clause is effective only with color screens.

2. If the BACKGROUND-COLOR clause is omitted, the initial default background color is black.

3. If the clause is specified at group level, it applies to all subordinate screen items.

4. If the BLANK SCREEN clause is specified and the BACKGROUND-COLOR clause is specified or inherited,
then when a DISPLAY statement displays the screen item, the specified color becomes the default background
color. It remains the default background color until another screen item with this combination of options is
displayed (whether in the same DISPLAY statement or in another).

Technical Note
The colors in the list above are supported only on terminals and workstations that support the ANSI Standard
color sequences.

Additional References
• ACCEPT statement in Chapter 6, Procedure Division

• DISPLAY statement in Chapter 6, Procedure Division

BELL
 , BELL

Function
The BELL clause sounds the workstation or terminal audio tone.

General Format
BELL

Syntax Rule
The BELL clause can be specified only for elementary screen description entries.

General Rule
The audio tone sounds when a DISPLAY statement displays a screen item whose description contains a BELL
clause.

Additional Reference
DISPLAY statement in Chapter 6, Procedure Division

BLANK
BLANK

Function
The BLANK clause clears a screen line or clears the whole screen before displaying the screen item.

117

Data Division

General Format

Syntax Rules
1. The BLANK SCREEN clause can be specified for any screen description entry.

2. The BLANK LINE clause can be specified only for elementary screen description entries.

General Rules
1. The BLANK SCREEN clause executes before a screen item displays, no matter where it appears in the screen

item's description. When the BLANK SCREEN clause is specified, the screen is cleared and the cursor is placed
at line 1, column 1.

2. When BLANK LINE is specified in an elementary screen item's description, blanking begins at column 1 of
the specified line and continues through to the end of the line.

3. If neither the BLANK clause nor the ERASE clause (Alpha, I64) is specified, only the particular character
positions corresponding to the screen item are modified when the item is displayed. The remainder of the screen
content is not changed.

4. The BLANK SCREEN clause returns the screen to the initial defaults for background and foreground color if
the BACKGROUND-COLOR and FOREGROUND-COLOR clauses are not specified, respectively.

5. The BLANK clause is ignored in an ACCEPT statement.

Additional Reference
DISPLAY statement in Chapter 6, Procedure Division

BLANK WHEN ZERO
BLANK WHEN ZERO

Function
The BLANK WHEN ZERO clause replaces zeros with spaces when a data item's value is zero. In the context of
the Screen Section, it displays spaces when the value of a screen item to be displayed on the screen is zero.

General Format

Syntax Rules
1. The BLANK WHEN ZERO clause can be used only for a numeric or numeric edited elementary item.

2. A data item or screen item containing the BLANK WHEN ZERO clause must be implicitly or explicitly
described with DISPLAY usage.

118

Data Division

3. The syntax for a data item allows the spelling ZERO or ZEROES or ZEROS. The syntax for a screen item
allows the spelling ZERO only.

General Rules
1. The BLANK WHEN ZERO clause causes a data item or screen item to contain spaces when its value is zero.

2. When the data item or screen item has a numeric PICTURE string, the BLANK WHEN ZERO clause makes
the item's category numeric edited.

3. The BLANK WHEN ZERO clause is ignored in the description of an input screen item.

Additional Reference
DISPLAY statement in Chapter 6, Procedure Division

BLINK (Alpha, I64)
BLINK (Alpha, I64)

Function
The BLINK clause displays characters on the screen with the blink on character attribute.

General Format
BLINK

Syntax Rule
The BLINK clause can be specified only in an elementary screen description entry.

General Rule
Blinking is only detectable when any of the following conditions are true:

• Nonspace characters are displayed.

• The underline and/or reverse-video attributes are specified.

• The terminal screen is set to light background.

Additional References
• DISPLAY statement in Chapter 6, Procedure Division

• ACCEPT statement in Chapter 6, Procedure Division

CODE
CODE

Function
The CODE clause specifies a two-character literal that identifies each print line as belonging to a specific report.

119

Data Division

[report-code]

must be a two-character nonnumeric literal.

Syntax Rule
If the CODE clause is specified for any report in a file, it must be specified for all reports in that file.

General Rules
1. When the CODE clause is specified, report-code is automatically placed in the first two character positions of

each Report Writer logical record.

2. The positions occupied by report-code are not included in the description of the print line, but are included
in the logical record size.

Additional Reference
RD (Report Description)

Example
The following file contains three reports:

FILE SECTION.
FD REPORT-FILE
 LABEL RECORDS ARE STANDARD
 REPORTS ARE REPORT1
 REPORT2
 REPORT3.
REPORT SECTION.
RD REPORT1 ...
 CODE "AA".

RD REPORT2...
 CODE "BB".

RD REPORT3...
 CODE "CC".

COLUMN NUMBER
COLUMN NUMBER

Function
In a report group description, the COLUMN NUMBER clause identifies a printable item and specifies the position
of the item on a print line. In a screen description, the COLUMN NUMBER clause specifies the horizontal screen
coordinate for a screen item.

120

Data Division

[column-num]

is a positive integer greater than zero.

[identifier-1]

is an elementary unsigned numeric integer data item. It cannot be subscripted.

[integer-1]

is an unsigned integer value.

Syntax Rules (Report Description)
1. The COLUMN NUMBER clause can be specified only at the elementary level within a report group. The

COLUMN NUMBER clause, if present, must appear in a Format 3 Report Group Description entry, or be
subordinate to an entry that contains a LINE NUMBER clause in a Format 2 Report Group Description entry.

2. A printable item is a data item whose size and content is specified by an elementary report entry.

3. An elementary report entry contains a COLUMN NUMBER clause, a PICTURE clause, and a SOURCE, SUM,
or VALUE clause.

4. Each printable item within a given print line must be defined in ascending column number order such that each
printable item occupies a unique sequence of contiguous character positions.

Syntax Rules (Screen Description)
1. The COLUMN clause can be specified only in an elementary screen description entry.

2. identifier-1 cannot be subscripted.

General Rules (Report Description)
1. The presence of a COLUMN NUMBER clause indicates that these items, if present, are to be presented on

the print line:

• The object of a SOURCE clause

• The object of a VALUE clause

• The sum counter in a SUM clause

The absence of a COLUMN NUMBER clause indicates that the entry is not printable.

2. Column number 1 is the leftmost position of the print line.

3. column-num specifies the column number of the leftmost character position of the printable item.

4. The Report Writer Control System supplies space characters for all positions of a print line not occupied by
printable items.

General Rules (Screen Description)
1. The COLUMN clause, in conjunction with the LINE clause, establishes the starting position for a screen item.

This position is an offset from the starting screen coordinates specified in the ACCEPT or DISPLAY statement.
The COLUMN clause specifies the horizontal coordinate.

2. The COLUMN clause without the PLUS phrase specifies the absolute column position of the screen item.

3. The COLUMN clause with the PLUS phrase specifies a column number relative to that at which the preceding
item ends, regardless of whether or not the ACCEPT or DISPLAY statement displays the preceding item on
the screen.

121

Data Division

4. A setting of COLUMN 1 is assumed in screen description entries that specify the LINE clause but omit the
COLUMN clause.

5. If both the LINE clause and the COLUMN clause are omitted, the following apply:

• If no previous elementary screen item is defined, LINE 1 COLUMN 1 is assumed.

• If a previous screen item is defined, the ending line of that previous item and COLUMN PLUS 1 is assumed.
The screen item then starts immediately following the preceding screen item.

Additional References
• Report Group Description

• LINE NUMBER (Alpha, I64) clause

• ACCEPT statement in Chapter 6, Procedure Division

• DISPLAY statement in Chapter 6, Procedure Division

Examples (Report Description)
1. The following is an example of the COLUMN NUMBER clause in a LINE NUMBER clause:

 02 LINE 10 COLUMN 1 PIC X(11) VALUE "TOTAL ITEMS".

 1 2 3 4
column: 1234567890123456789012345678901234567890

 TOTAL ITEMS

2. The following is an example of the COLUMN NUMBER clause subordinate to a LINE NUMBER clause:

 02 LINE 5 ON NEXT PAGE.
 03 COLUMN 1 PIC X(10) VALUE "(Id Number".
 03 COLUMN 12 PIC 9999 VALUE 1234.
 03 COLUMN 16 PIC X VALUE ")".
 03 COLUMN 18 PIC X(11) VALUE "TOTAL SALES".
 03 TSAL COLUMN 30 PIC $$$$,$$$.99- VALUE 123456.78.

 1 2 3 4
column: 123456789012345678901234567890123456789012345

 (Id Number 1234) TOTAL SALES $123,456.78

CONTROL
CONTROL

Function
The CONTROL clause establishes the levels of the control hierarchy for the report.

[control-name]

122

Data Division

is any data-name in the Subschema, File, Working-Storage, or Linkage Section.

Syntax Rules
1. control-name can be qualified.

2. Each occurrence of control-name must identify a different data item.

3. control-name must not have a variable-occurrence data item subordinate to it.

4. If the associated report file connector is an external file connector, control-name must reference the same
external data item in all programs in the run unit.

General Rules
1. The word FINAL specifies the most major control item. From here, the hierarchy descends to control-name,

which is the major control; to the next recurrence of control-name, which is an intermediate control; and so
forth to the last recurrence of control-name, which is the minor control.

2. A control break is a change in the value of a control-name.

3. FINAL is used when the most inclusive control group in the report is not associated with a control-name.

4. The first time a GENERATE statement is executed, the Report Writer Control System (RWCS) saves the values
of all control data items associated with that report. After that, every time a GENERATE statement is executed,
the RWCS tests those control data items to see if their values have changed. If so, a control break occurs. This
control break is associated with the highest level control item whose value has changed.

5. Control breaks cause the RWCS to present appropriate CONTROL HEADER and CONTROL FOOTING
report groups for printing. Figure 5.8, “Control Break Levels and Their Printed Report Groups” shows the
report groups the RWCS processes (X) when you define FINAL, major, intermediate, or minor control-name in
a CONTROL HEADING or CONTROL FOOTING phrase in a Report Group Description entry. For example,
if the value in a major control-name changes, the RWCS processes all major, intermediate, and minor control
groups specified in CONTROL HEADING and CONTROL FOOTING report groups.

Figure 5.8. Control Break Levels and Their Printed Report Groups

6. The RWCS tests for a control break by comparing the contents of each control data item with the prior contents
of each control data item that were saved when the previous GENERATE statement for the same report was
executed. The RWCS applies the inequality relation test as follows:

• If the control data item is a numeric data item, the relation test is for the comparison of two numeric operands.

• If the control data item is an index data item, the relation test is for the comparison of two index data items.

• If the control data item is other than as described in Figure 5.8, “Control Break Levels and Their Printed
Report Groups”, the relation test is for the comparison of two nonnumeric operands.

Additional References
• Report Group Description

123

Data Division

• Section 6.5.1: Relation Conditions

Examples
1. This example prints a total record count from TOTAL-LINE at the end of the report because control is FINAL.

It is a major control break and prints only once.

WORKING-STORAGE SECTION.
01 RECORD-COUNT PIC 9(9) VALUE 0.

REPORT SECTION.
RD MASTER-REPORT...
 CONTROL IS FINAL.

01 DETAIL-LINE TYPE IS DETAIL...

01 TOTAL-LINE TYPE IS CONTROL FOOTING FINAL.
 02 COLUMN 20 PIC X(17) VALUE "TOTAL RECORDS: ".
 02 COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SOURCE RECORD-COUNT.
PROCEDURE DIVISION.
BEGIN.
 OPEN INPUT...
 OPEN OUTPUT...
 INITIATE MASTER-REPORT.
010-READ-FILE.
 READ... AT END GO TO 999-EOJ.
 GENERATE DETAIL-LINE.
 ADD 1 TO RECORD-COUNT.
 GO TO 010-READ-FILE.
999-EOJ.
 TERMINATE MASTER-REPORT.
 CLOSE...
 STOP RUN.

2. In the following example, a report defines four control totals in the control clause. The source of these control
totals is in an input file—INPUT-FILE. The file is presorted in ascending sequence by MAJOR-CONTROL,
INTERMEDIATE-CONTROL, and MINOR-CONTROL. The RWCS will monitor these fields in the input file
for any changes. If a new record contains data different from the previous record read, the RWCS triggers a
control break.

In this example, if the value in MINOR-CONTROL changes, a break occurs and the RWCS processes the
minor control report group CONTROL FOOTING MINOR-CONTROL. If the value in INTERMEDIATE-
CONTROL changes, a break occurs and the RWCS processes the intermediate and minor control report groups
CONTROL FOOTING INTERMEDIATE-CONTROL and CONTROL FOOTING MINOR-CONTROL. If
the value in MAJOR-CONTROL changes, a break occurs and the RWCS processes the major, intermediate,
and minor control report groups CONTROL FOOTING MAJOR-CONTROL, CONTROL FOOTING
INTERMEDIATE-CONTROL, and CONTROL FOOTING MINOR-CONTROL.

FILE SECTION.

FD INPUT-FILE...
01 INPUT-RECORD.
 02 MAJOR-CONTROL PIC...
 02 ...
 02 MINOR-CONTROL PIC...
 02 ...
 02 INTERMEDIATE-CONTROL PIC...
 02 ...

124

Data Division

FD REPORT-FILE...
 REPORT IS SUMMARY-REPORT.
REPORT SECTION.
RD SUMMARY-REPORT...
 CONTROLS ARE FINAL
 MAJOR-CONTROL
 INTERMEDIATE-CONTROL
 MINOR-CONTROL.

01 DETAIL-LINE TYPE IS DETAIL...

01 TYPE IS CONTROL FOOTING FINAL ...
01 TYPE IS CONTROL FOOTING MINOR-CONTROL...
01 TYPE IS CONTROL FOOTING MAJOR-CONTROL...
01 TYPE IS CONTROL FOOTING INTERMEDIATE-CONTROL...

Data-Name
Data-Name

Function
data-name specifies a data item that your program can explicitly reference. FILLER specifies an item that cannot
be explicitly referenced.

[data-name]

Syntax Rules
1. In the File, Working-Storage, and Linkage Sections, data-name or the key word FILLER (if present) must be

the first word after the level-number in each data description entry.

2. In the Report Section, data-name need not appear in a report group description entry and the key word FILLER
must not be used.

General Rules
1. If there is no data-name or FILLER clause, the compiler treats the data item as a FILLER item.

2. The key word FILLER can name a data item. However, a program cannot explicitly refer to FILLER items.

3. The key word FILLER can name a conditional variable. A program cannot refer to the conditional variable.
However, it can refer to the value of the conditional variable by referring to its associated condition-names.

4. In the Report Section, data-name must be used when:

a. data-name represents a report group to be referred to by a GENERATE or a USE statement in the Procedure
Division.

b. Reference will be made to the sum counter in the Procedure Division or Report Section.

c. The UPON phrase of the SUM clause references a DETAIL report group.

d. data-name provides sum counter qualification.

125

Data Division

5. If this clause is omitted, the Report Writer Control System does not allow explicit references to the data item.

Examples
1. Elementary FILLER items:

In this example, the program can refer only to the group item, ITEMA.

01 ITEMA.
 03 FILLER PIC X(10) VALUE SPACES.
 03 PIC X(2) VALUE "AB".
 03 PIC 9 VALUE 6.

2. Group FILLER items:

In this example, the program can refer to any elementary item. However, it cannot refer to the record or to the
group item that contains ITEMC and ITEMD.

01 FILLER.
 03 ITEMA PIC X(4).
 03 ITEMB PIC 9(7).
 03 FILLER.
 05 ITEMC PIC X.
 05 ITEMD PIC 9(8)V99.
 03 ITEME PIC X.

3. Report Writer items:

In this Report Writer example, the program can refer to DL-NAME and DETAIL-LINE, but not to the data
beginning in LINE 10, COLUMN 25. Note that FILLER cannot be used in place of a Report Writer data-name.

01 DETAIL-LINE TYPE IS DETAIL.
 02 LINE 10.
 03 DL-NAME COLUMN 1 SOURCE INPUT-NAME.
 03 COLUMN 25 SOURCE INPUT-ADDRESS.

DATA RECORDS
DATA RECORDS

Function
The DATA RECORDS clause documents the names of a file's record description entries.

[rec-name]

is the name of a data record. It must be defined by a level 01 data description entry subordinate to the file description
entry.

Syntax Rule
The order of appearance of multiple rec-name entries is not significant.

126

Data Division

General Rule
The DATA RECORDS clause is for documentation only.

ERASE (Alpha, I64)
ERASE (Alpha, I64)

Function
The ERASE clause clears from the starting cursor position to the end of either the line or the screen.

Syntax Rule
The ERASE clause can be specified only for elementary screen description entries.

General Rules
1. Blanking begins at the starting position of the screen item in whose description the ERASE EOL clause is

included, and continues to the end of the line.

2. Blanking begins at the starting position of the screen item in whose description the ERASE EOS clause is
included, and continues through to the end of the screen.

3. If you specify neither the BLANK nor the ERASE clause, only the particular character positions corresponding
to the screen item are modified when the element is displayed. The rest of the screen content remains the same.

4. The ERASE clause is ignored in an ACCEPT statement.

Additional References
DISPLAY statement in Chapter 6, Procedure Division

EXTERNAL
EXTERNAL

Function
The EXTERNAL clause specifies that a data item or a file connector in a defining program is common to other
programs in the run unit if the program defines it identically. The group and elementary data items of an external
data record and files associated with an external file connector are available to every program in the image that
describes them.

Syntax Rules
1. The EXTERNAL clause can appear only in file description entries or in record description entries in the

Working-Storage Section.

2. In a record description entry, only level numbers 01 and 77 can specify the EXTERNAL clause.

127

Data Division

3. A program and any program it contains, cannot define identical data-names if their data description entries or
file description entries have EXTERNAL clauses.

4. The VALUE clause or the REDEFINES clause cannot be in a data description entry that contains or is
subordinate to, an entry that contains the EXTERNAL clause.

5. When using the SAME RECORD AREA clause for several files, the Record Description entries or the file
description entries for these files must not include the EXTERNAL clause.

6. Entries that contain the EXTERNAL clause must be named.

General Rules
1. Data in a record either subordinate to an external FD, or named by the subject of the EXTERNAL clause, is

external. Any program in the image that describes and optionally redefines this data may access and process
this data subject to the following general rules.

2. If two or more programs in the image describe the same external data record, the associated data description
entries (except the GLOBAL clause) must be identical. All subordinate data-names, data items, and
redefinitions must also be identical.

3. A program that describes an external data record can contain a Data Description entry that redefines the
complete external record. This redefinition need not be the same in other programs in the image.

4. Use of the EXTERNAL clause does not imply that the associated file-name or data-name is a global name.

5. The file connector associated with a file description entry is an external file connector.

6. If two or more programs in an image describe the same external file connector, the clauses associated with
the description of that file must be functionally identical and any data items referenced by those clauses must
be external.

Technical Notes
• Each external sequential file becomes a print format file.

• Each external data record becomes a PSECT (on OpenVMS systems) or a global (on Tru64 UNIX systems),
whose name is the 01-level record.

Each file connector for external files becomes a PSECT (on OpenVMS systems) or a global (on Tru64 UNIX
systems), whose name is the name of the file. The records associated with this file become external data records.

External record items and files are implemented as overlayable shared PSECTs (on OpenVMS systems) or
globals (on Tru64 UNIX systems). Therefore, the same storage area is shared among all separately compiled
programs for that named external record or file. The PSECT or global is created for compatibility with BASIC
COMMON/MAP and FORTRAN labeled COMMON.

On OpenVMS, for more information on overlayable PSECTs, refer to the LINK documentation in the OpenVMS
documentation set.

On Tru64 UNIX, for more information on globals, refer to the ld documentation in the Tru64 UNIX
documentation set.

• On Tru64 UNIX systems, an external data item is case-sensitive. By default, an external data item is converted to
lowercase for all separately compiled program units. Other programs (VSI COBOL as well as other languages)
must specify the data item in lowercase.

However, if the names option is set to uppercase on the command line, other programs must specify the data
item in uppercase. If the names option is set to as_is, the effect on an external data item is as if uppercase
were specified. (The as_is setting is used for calling non-COBOL programs with mixed case.)

128

Data Division

Additional References
• GLOBAL clause

• REDEFINES clause

Examples
In the following Working-Storage entries, the data items in RECORD-A are available to any program in the run
unit that also describes RECORD-A and its data items. RECORD-B and the data items in it are not available to
any other program.

01 RECORD-A EXTERNAL.
 03 ITEMA PIC X.
 03 ITEMB PIC X(22).
 03 ITEMC PIC 999.
01 RECORD-B.
 03 ITEMA PIC X(12).
 03 ITEMD PIC X.
 03 ITEME PIC 9(18).

FILE STATUS
FILE STATUS

Function
The FILE STATUS clause specifies a data item to contain the status of an input/output operation.

[file-stat]

is the data-name of a two-character alphanumeric Working-Storage Section, or Linkage Section data item. file-
stat is the file's FILE STATUS data item.

Syntax Rules
1. file-stat can be qualified.

2. The FILE STATUS clause can be in the file's SELECT clause or in its file description entry. However, it cannot
be in both the SELECT clause and the file description entry for the same file.

3. If the FILE STATUS clause is associated with an external file connector, file-stat must reference the same data
item in all programs in the run unit.

General Rule
After the execution of every I-O statement that refers to the specified file, a value is moved to file-stat. This value
indicates the file's I-O status after the execution of the I-O statement.

Additional References
• Appendix C: File Status Values

• Section 6.6.8: I-O Status

129

Data Division

FOREGROUND-COLOR (Alpha, I64)
FOREGROUND-COLOR (Alpha, I64)

Function
The FOREGROUND-COLOR clause specifies the foreground color for a screen item.

[color-num]

is an integer in the range 0–7 specifying a color as follows:

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

Syntax Rule
The FOREGROUND-COLOR clause can be specified in any screen description entry.

General Rules
1. The FOREGROUND-COLOR clause is effective only with color screens.

2. If the FOREGROUND-COLOR clause is omitted, the initial default foreground color is white.

3. If the clause is specified at group level, it applies to all subordinate screen items.

4. If the BLANK SCREEN clause is specified and the FOREGROUND-COLOR clause is specified or inherited,
then when a DISPLAY statement displays the screen item, the specified color becomes the default foreground
color. It remains the default foreground color until another screen item with this combination of options is
displayed (whether in the same DISPLAY statement or in another).

5. If the HIGHLIGHT clause is also specified, foreground and background colors are brightened and lightened;
for example, black may become grey and brown may become yellow.

Technical Note
The colors in the list above are supported only on terminals and workstations that support the ANSI Standard
color sequences.

Additional References
• ACCEPT in Chapter 6, Procedure Division

• DISPLAY in Chapter 6, Procedure Division

FULL (Alpha, I64)
FULL (Alpha, I64)

130

Data Division

Function
The FULL clause specifies that a screen item must be left either completely empty or it must be entirely filled
with data.

FULL

Syntax Rules
1. If the FULL clause is specified in a screen description entry, the JUSTIFIED clause cannot be specified.

2. The FULL clause is valid only in the description of an input or update screen item.

General Rules
1. If the FULL clause is specified at group level, it applies to all subordinate input or update screen items.

2. The FULL clause is effective during the execution of any ACCEPT statement when the cursor enters the screen
item. Until this clause is satisfied, the operator cannot leave the field and normal terminator keystrokes are
rejected.

3. To satisfy the FULL clause for an alphanumeric screen item, either the field must contain all spaces, or both
the first and last character positions must contain nonspace characters.

4. To satisfy the FULL clause for a numeric or numeric edited screen item, either the value must be zero or there
must be no digit position in which zero suppression has taken effect.

5. For update fields, the FULL clause can be satisfied by the contents of the identifier or literal referenced in the
FROM or USING phrase of the PICTURE clause, as well as by operator-keyed data.

6. The FULL clause is not effective if a function key terminates the accept operation.

7. Specifying the FULL and REQUIRED clauses together requires that the user must always entirely fill the field.

8. The FULL clause is ignored for an elementary output field.

Additional Reference
ACCEPT statement in Chapter 6, Procedure Division

GLOBAL
GLOBAL

Function
The GLOBAL clause specifies that data-name, file-name, or report-name is available to every program contained
within the program that declares it.

IS GLOBAL

Syntax Rules
1. The GLOBAL clause can appear only in file description entries, Report Description entries, a data description

entry whose level number is 01, in the File or Working-Storage Section, or a data description entry whose level
number is 77, in the Working-Storage Section.

2. In the same Data Division, the GLOBAL clause must not appear in Data Description entries that contain
identical data-names.

131

Data Division

3. If you use the SAME RECORD AREA clause for several files, the Record Description entries or the file
description entries for these files must not include the GLOBAL clause.

4. Entries that contain the GLOBAL clause must be named.

General Rules
1. Any data-name, file-name, or report-name specifying the GLOBAL clause is a global name. All data items

subordinate to a global data-name or file-name are global names. All condition-names associated with a global
name are global names.

2. A statement in a program contained directly or indirectly within a program that describes a global name may
reference the name without describing it again.

3. If the GLOBAL clause is used in a data description entry that contains the REDEFINES clause, the global
attribute applies only to the subject of the REDEFINES clause.

Technical Note
Each global sequential file becomes a print format file.

Additional Reference
Section 6.2.6: Scope of Names

GROUP INDICATE
GROUP INDICATE

Function
The GROUP INDICATE clause specifies that the associated printable item is presented only on the first occurrence
of its DETAIL report group after a control break or page advance.

GROUP INDICATE

Syntax Rule
The GROUP INDICATE clause must be specified only in a DETAIL report group entry that defines a printable
item.

General Rules
1. If the program contains a GROUP INDICATE clause, the compiler suppresses printing of the printable item

and supplies spaces, except:

a. On the first presentation of the DETAIL report group

b. On the first presentation of the DETAIL report group after every page advance

c. On the first presentation of the DETAIL report group after every control break

2. If the program specifies neither the PAGE clause nor the CONTROL clause in a Report Description entry,
then the first time a DETAIL report group is presented a GROUP INDICATE printable item is also presented.
Thereafter, spaces are supplied for indicated items with SOURCE or VALUE clauses.

Additional Reference
Appendix D: Report Writer Presentation Rules and Tables

132

Data Division

Example
The following example shows the effect of the GROUP INDICATE clause on a printable item (SOURCE I-
NAME).

HIGHLIGHT (Alpha, I64)
HIGHLIGHT (Alpha, I64)

Function

133

Data Division

The HIGHLIGHT clause specifies that the field is to appear on the screen with the highest intensity.

HIGHLIGHT

Syntax Rule
The HIGHLIGHT clause can be specified only for an elementary screen description entry.

Additional References
• ACCEPT in Chapter 6, Procedure Division

• DISPLAY in Chapter 6, Procedure Division

JUSTIFIED
JUSTIFIED

Function
The JUSTIFIED clause specifies nonstandard data positioning in a screen item or another receiving item.

Syntax Rules
1. The JUSTIFIED clause can be used only for elementary items and alphanumeric data items. It cannot be used

for index data items, numeric data items, or edited data items.

2. JUST is the abbreviated form of JUSTIFIED.

General Rules
1. If a COBOL statement transfers data to a receiving item whose data description contains the JUSTIFIED clause,

the Run-Time System:

• Truncates the excess leftmost characters if the sending item is larger than the receiving item.

• Aligns the data at the rightmost character position of the receiving item if the sending item is smaller than
the receiving item. (Spaces fill the excess leftmost character positions.)

2. If there is no JUSTIFIED clause, data movement follows the rules for aligning data in elementary items
(Standard Alignment Rules).

Additional References
• MOVE statement in Chapter 6, Procedure Division

• Section 5.2.2: COBOL Standard Alignment Rules

Examples
The Procedure Division entry for the MOVE statement contains examples using this clause.

LABEL RECORDS
LABEL RECORDS

134

Data Division

Function
The LABEL RECORDS clause specifies the presence or absence of labels.

General Rule
The LABEL RECORDS clause is for documentation only.

Level-Number
Level-Number

Function
The level-number shows the position of a data item or screen item within the hierarchical structure of a logical
record or a report group or a screen description. It also identifies entries for condition-names and the RENAMES
clause.

Syntax Rules
1. The level-number must be the first element in a data description entry or a screen description entry.

2. Data description entries that are subordinate to a file description (FD) entry have level-numbers 01 to 49, 66,
or 88.

3. Data description entries in the Working-Storage and Linkage Sections have level-numbers 01 to 49, 66, 77,
or 88.

4. Report group description entries in the Report Section have level-numbers 01 to 49 only. See the Report Group
Description entry for additional rules for Report Writer level-numbers.

5. Screen description entries in the Screen Section have level-numbers 01 to 49 only. See the Screen Description
(Alpha, I64) entry for additional rules for Screen Section level-numbers.

General Rules
1. The level-number 01 identifies the first entry in a record description, report group description, or screen

description entry.

2. Multiple level 01 entries subordinate to a file description entry represent implicit redefinitions of the same area.

3. Multiple level 01 entries subordinate to a report description entry do not represent implicit redefinitions of the
same area.

4. Level-number 66 identifies a RENAMES entry. It can be used only in a Format 2 data description entry.

5. Level-number 77 identifies a noncontiguous data item entry in the Working-Storage and Linkage Sections. The
level 77 entry can have no subordinate data description entries except level 88 items.

6. Level-number 88 defines a condition-name associated with a conditional variable. It can be used only in a
Format 3 data description entry.

135

Data Division

7. Level-numbers 66, 77, and 88 do not imply a hierarchical position.

Additional References
• RD (Report Description) entry

• Data Description entry

• Report Group Description entry

• RENAMES clause

• Section 1.2.1.1, “User-Defined Words” in Section 1.2.1: COBOL Words

• Section 5.1.1: Record Description Entries

• Screen Description (Alpha, I64) entry

LINAGE
LINAGE

Function
The LINAGE clause specifies the number of lines on a logical page. It can also specify the size of the logical
page's top and bottom margins and the line where the footing area begins in the page body.

[page-lines]

is a positive integer or the data-name of an elementary unsigned integer numeric data item. Its value must be
greater than zero. It specifies the number of lines that can be written or spaced on the logical page. If page-lines
is a data-name, it can be qualified.

[footing-line]

is a positive integer or the data-name of an elementary unsigned integer numeric data item. Its value must be
greater than zero, but cannot be greater than page-lines. footing-line specifies the line number where the footing
area begins in the page body. If footing-line is a data-name, it can be qualified.

[top-lines]

is an integer or the data-name of an elementary unsigned integer numeric data item. Its value can be zero. top-lines
specifies the number of lines in the top margin of the logical page. If top-lines is a data-name, it can be qualified.

[bottom-lines]

is an integer or the data-name of an elementary unsigned integer numeric data item. Its value can be zero. bottom-
lines specifies the number of lines in the bottom margin of the logical page. If bottom-lines is a data-name, it can
be qualified.

General Rules
1. The LINAGE clause specifies the number of lines on a logical page.

136

Data Division

2. Logical page size is the sum of the values specified in all phrases except FOOTING. If there is no LINES
AT TOP or LINES AT BOTTOM phrase, the default value of top-lines or bottom-lines is zero. If there is no
FOOTING phrase, the default value of footing-line equals the value of page-lines.

3. Logical and physical page sizes are not necessarily the same.

4. The page body is the logical page area in which the program can write or space lines. Its size equals the value
of page-lines.

5. The footing area is the area of the logical page between footing-line and page-lines, inclusive.

6.

7. When page-lines, top-lines, and bottom-lines are data-names, their values affect OPEN and WRITE statement
execution as follows:

• When the program executes an OPEN statement with the OUTPUT phrase for the file, the values specify the
number of lines in each of the associated sections of the first logical page.

• When the program executes a WRITE statement with the ADVANCING PAGE phrase, or when a page
overflow condition occurs, the values specify the number of lines in each of the associated sections of the
next logical page.

8. The value of footing-line defines the footing area for the first logical page when the program executes an
OPEN statement with the OUTPUT phrase for the file. The value defines the footing area for the next logical
page when: (a) the program executes a WRITE statement with the ADVANCING PAGE phrase or, (b) a page
overflow condition occurs.

9. For each file with a LINAGE clause, the program has a corresponding special register called LINAGE-
COUNTER. At any time, the value in LINAGE-COUNTER is the line number in the current page body at which
the device is positioned. Other open modes (Input, I-O, and Extend) are not permitted and have unpredictable
results.

10.LINAGE-COUNTER is global if a file description entry specifies the GLOBAL clause and the LINAGE clause.

11.
LINAGE-COUNTER is a 9-digit numeric special register. Procedure Division statements can refer to LINAGE-
COUNTER but cannot change its value.

12.If the program has more than one LINAGE-COUNTER, all Procedure Division references to it must be qualified
by file-name.

13.Execution of a WRITE statement for a file with the LINAGE clause changes the value of the associated
LINAGE-COUNTER:

• If the WRITE statement has the ADVANCING PAGE phrase, its execution resets LINAGE-COUNTER to
one. (The resetting operation implicitly increments the value of LINAGE-COUNTER to exceed the value
of page-lines.)

• If the WRITE statement has the ADVANCING LINES phrase, its execution increments LINAGE-
COUNTER by the value in the ADVANCING phrase.

• If the WRITE statement does not have the ADVANCING phrase, it increments LINAGE-COUNTER by one.

14.

15.Each logical page follows the preceding logical page with no spacing between them.

16.If the file connector associated with this file description entry is an external file connector, all file description
entries in the run unit associated with this file connector must have the following features:

• A LINAGE clause, if any file description entry has a LINAGE clause

• The same corresponding integer values for page-lines, footing-lines, top-lines, and bottom-lines
137

Data Division

• The same corresponding external data items referenced by page-lines, footing-lines, top-lines, and bottom-
lines

Technical Notes
•

• The /NOVFC compiler option can be used on OpenVMS Alpha and I64 to produce a Stream_LF record-
formatted print file. The default (/VFC) behavior is to produce a VFC record-formatted file.

• VSI COBOL on Tru64 UNIX systems writes LINAGE files with blank lines to simulate WRITE ADVANCING
behavior. These blank lines would not be produced on an OpenVMS Alpha or I64 system. When you input a
LINAGE file, you must compensate for the difference. For example, use an extra initial READ statement (on
Tru64 UNIX systems) to skip over the leading blank line in the LINAGE file.

Additional References
• GLOBAL clause

• WRITE statement in Chapter 6, Procedure Division

Example
The following example specifies a logical page whose size is 26 lines:

FD PRINT-FILE
 VALUE OF ID IS "REPORT1.LIS"
 LINAGE IS 16 LINES WITH FOOTING AT 13
 LINES AT TOP 4 LINES AT BOTTOM 6.

In this example, the first line to which the page can be positioned is the fifth line. The end-of-page condition occurs
when a WRITE statement causes the LINAGE-COUNTER value to be in the range 13 to 16. The page overflow
condition occurs when a WRITE statement causes the LINAGE-COUNTER value to exceed 16.

Figure 5.9, “Logical Page Areas Resulting from a LINAGE Clause” shows the logical page areas resulting from
the example.

Figure 5.9. Logical Page Areas Resulting from a LINAGE Clause

LINE NUMBER (Alpha, I64)
LINE NUMBER (Alpha, I64)

138

Data Division

Function
The LINE NUMBER clause specifies vertical positioning information for a report group, or specifies the vertical
screen coordinate for a screen item.

[line-num]

is a nonnegative integer. line-num represents an absolute line number on a logical page and establishes a print line
for a Report Writer report group.

[line-num-plus]

is a positive integer. line-num-plus represents a relative line number on a logical page and establishes a print line
for a Report Writer report group.

[identifier-1]

is an elementary unsigned numeric integer data item. It cannot be subscripted.

[integer-1]

is an unsigned integer value.

Syntax Rules (Report Description)
1. Neither line-num nor line-num-plus can exceed three significant digits.

The PAGE clause defines the length of a logical page and the vertical subdivisions within which each report
group is presented. Neither line-num nor line-num-plus may specify a line outside of the PAGE clause limits.
See PAGE clause for more information.

2. Within a given Report Group Description, an entry containing a LINE NUMBER clause must not contain a
subordinate entry that also contains a LINE NUMBER clause.

3. Within a given Report Group Description, all absolute LINE NUMBER clauses must precede all relative LINE
NUMBER clauses.

4. Within a given Report Group Description, successive absolute LINE NUMBER clauses must specify integers
in ascending order. The integers need not be consecutive.

5. If a given Report Description (RD) does not contain a PAGE clause, the program may specify only relative
LINE NUMBER clauses in any Report Group Description within that report.

6. Within a given Report Group Description, a NEXT PAGE phrase may appear only once. If present, it must be
the first LINE NUMBER clause in that Report Group Description.

7. A LINE NUMBER clause with the NEXT PAGE phrase may appear only in the description of a CONTROL
HEADING, DETAIL, CONTROL FOOTING, or REPORT FOOTING report group.

8. Every entry defining a printable item must either contain a LINE NUMBER clause or be subordinate to an
entry that contains a LINE NUMBER clause. See the COLUMN NUMBER clause for more information.

139

Data Division

9. The first LINE NUMBER clause in a PAGE FOOTING report group must define an absolute line-num value.

10.line-num-plus may be zero. If line-num-plus is zero, the line will be printed on the same line as the previous
print line (overprint); however, line-num-plus cannot be zero for the first print line of a report group.

Syntax Rules (Screen Description)
1. The LINE clause can be specified only in an elementary screen description entry.

2. identifier-1 cannot be subscripted.

General Rules (Report Description)
1. To establish each print line for a report group, a program must specify the LINE NUMBER clause.

2. Before presenting the print line, the Report Writer Control System (RWCS) causes line positioning as specified
by a LINE NUMBER clause.

3. The NEXT PAGE phrase defines the line number of a new page on which to present the report group.

4. For a complete specification on how to determine the first print line for a report group, see Appendix D: Report
Writer Presentation Rules and Tables. A partial summary of these rules follows:

If a relative clause is not the first LINE NUMBER clause in a report group, then the line number on which its
print line is presented is determined by the sum of the following:

• The line number from the previous print line of the report group

• line-num-plus of the relative LINE NUMBER clause

If the first LINE NUMBER clause in the Report Group Description entry is relative and a PAGE clause is
specified, the first print line for the report group is determined as follows. See the PAGE clause for the definitions
of page-size, heading-line, first-detail-line, last-detail-line, and footing-line.

a. REPORT HEADING

The RWCS presents this group on a line number whose value is the sum of line-num of the first LINE
NUMBER clause and heading-line minus 1.

b. PAGE HEADING

If a REPORT HEADING report group has been presented on the page on which this report group is to appear,
the RWCS presents the PAGE HEADING relative to the final LINE-COUNTER setting of the REPORT
HEADING.

If no REPORT HEADING has been presented on the page, the RWCS presents this report group on the line
number whose value is the sum of line-num of the first LINE NUMBER clause and heading-line minus 1.

c. DETAIL, CONTROL HEADING, or CONTROL FOOTING

If the value in LINE-COUNTER is less than first-detail-line, the RWCS presents the report group on first-
detail-line.

If the value in LINE-COUNTER is greater than or equal to first-detail-line and if this is the first body group
to print on the page, the RWCS presents the report group on the line corresponding to the value in LINE-
COUNTER.

If the value in LINE-COUNTER is greater than or equal to first-detail-line and if this is not the first body
group to print on the page, the RWCS presents the report group on the line whose value is the sum of
LINE-COUNTER and line-num of the first LINE NUMBER clause of the current CONTROL HEADING,
DETAIL, or CONTROL FOOTING report group.

140

Data Division

d. PAGE FOOTING

Not applicable. The first LINE NUMBER clause of a PAGE FOOTING report group must contain an
absolute line number reference.

e. REPORT FOOTING

If a PAGE FOOTING report group has been presented on the current page, the RWCS presents the REPORT
FOOTING report group on the line whose value is the sum of the current value in LINE-COUNTER and
line-num of the first LINE NUMBER clause of the REPORT FOOTING report group.

If no PAGE FOOTING report group has been presented on the current page, the RWCS presents the REPORT
FOOTING report group on the line whose value is the sum of footing-line and line-num of the first LINE
NUMBER clause of the REPORT FOOTING report group.

General Rules (Screen Description)
1. The LINE clause, in conjunction with the COLUMN clause, establishes the starting position for a screen item.

This position is an offset from the starting screen coordinates specified in the ACCEPT or DISPLAY statement.
The LINE clause specifies the vertical coordinate.

2. The LINE clause without the PLUS phrase specifies the absolute line number.

3. The LINE clause with the PLUS phrase specifies a line number relative to that at which the preceding item ends,
regardless of whether or not the ACCEPT or DISPLAY statement displays the preceding item on the screen.

4. If the LINE clause is omitted, the following apply:

• If no previous screen item is defined, LINE 1 is assumed.

• If a previous screen item is defined, the ending line of that previous item is assumed.

Additional References
• COLUMN NUMBER clause

• PAGE clause

• Appendix D: Report Writer Presentation Rules and Tables

• ACCEPT statement in Chapter 6, Procedure Division

• DISPLAY statement in Chapter 6, Procedure Division

LOWLIGHT (Alpha, I64)
LOWLIGHT (Alpha, I64)

Function
The LOWLIGHT clause specifies that the field is to appear on the screen with the lowest intensity. When only
two levels of intensity are available, normal intensity and LOWLIGHT will be the same.

Syntax Rule
The LOWLIGHT clause can be specified only for an elementary screen description entry.

141

Data Division

Additional Reference
• ACCEPT in Chapter 6, Procedure Division

• DISPLAY in Chapter 6, Procedure Division

NEXT GROUP
NEXT GROUP

Function
The NEXT GROUP clause specifies information for the vertical positioning of the next report group on a logical
page following the presentation of the last line of a report group.

[next-group-line-num]

is a positive, 1- to 3-digit integer value greater than zero. It represents an absolute line number on a logical page
and establishes a print line for the next Report Writer report group.

[next-group-line-num-plus]

is a positive, 1- to 3-digit integer value. It represents a relative line number on a logical page and establishes a
print line for the next Report Writer report group.

Syntax Rules
1. A Report Group entry must not contain a NEXT GROUP clause unless the description of that Report Group

contains at least one LINE NUMBER clause.

2. next-group-line-num and next-group-line-num-plus must not exceed three significant digits.

3. If a Report Description entry omits the PAGE clause, all Report Group Description entries within that report
can specify a relative NEXT GROUP clause only.

4. A PAGE FOOTING Report Group must not specify the NEXT PAGE phrase of the NEXT GROUP clause.

5. A PAGE HEADING and REPORT FOOTING Report Group must not specify the NEXT GROUP clause.

General Rules
1. Page positioning occurs after the presentation of the Report Group in which the NEXT GROUP clause appears.

2. To determine a new value for LINE-COUNTER, the Report Writer Control System (RWCS) uses the vertical
positioning information from the NEXT GROUP clause along with information from the TYPE and PAGE
clauses, and the value in LINE-COUNTER. See Appendix D: Report Writer Presentation Rules and Tables.

3. The RWCS ignores the NEXT GROUP clause on a CONTROL FOOTING Report group when it detects a
control break at a level other than the highest level.

4. The NEXT GROUP clause of a CONTROL HEADING, DETAIL, and CONTROL FOOTING report group
refers to the next CONTROL HEADING, DETAIL, and CONTROL FOOTING to be presented, and therefore
can affect the location at which the next CONTROL HEADING, DETAIL, and CONTROL FOOTING report
group is presented. See Appendix D, Report Writer Presentation Rules and Tables.

142

Data Division

5. The NEXT GROUP clause of a REPORT HEADING report group can affect the location at which the PAGE
HEADING report group is presented. See Appendix D, Report Writer Presentation Rules and Tables.

6. The NEXT GROUP clause of a PAGE FOOTING report group can affect the location at which the REPORT
FOOTING report group is presented. See Appendix D, Report Writer Presentation Rules and Tables.

Additional References
• General Rules (Report Description) (General Rule 4) of the LINE NUMBER (Alpha, I64) clause

• Appendix D: Report Writer Presentation Rules and Tables

OCCURS
OCCURS

Function
The OCCURS clause defines tables and provides the basis for subscripting and indexing. It eliminates the need
for separate entries for repeated data items.

General Format

[table-size]

is an integer that specifies the exact number of occurrences of a table element.

[min-times]

is an integer that specifies the minimum number of occurrences of a table element. Its value must be greater than
or equal to zero.

[max-times]

is an integer that specifies the maximum number of occurrences of a table element. Its value must be greater than
min-times.

[key-name]

143

Data Division

is the data-name of an entry that contains the OCCURS clause or an entry subordinate to it. key-name can be
qualified. Each key-name after the first must name an entry subordinate to the entry that contains the OCCURS
clause. The values in each key-name are the basis of the ascending or descending arrangement of the table's repeated
data.

[ind-name]

is an index-name. It associates an index with the table and allows indexing in table element references.

[depending-item]

is the data-name of an elementary unsigned integer data item. Its value specifies the current number of occurrences.
depending-item can be qualified.

Syntax Rules
1. The subject of the entry is the data-name that contains the OCCURS clause.

2. A key-name cannot contain an OCCURS clause. However, this rule does not apply to the first key-name if it
is the subject of the entry.

3. There can be no OCCURS clauses between the data description entries for key-names and the subject of the
entry.

4. In the OCCURS clause of the data description entry, key-name cannot be subscripted or indexed.

5. There must be an INDEXED BY phrase if any Procedure Division statements contain indexed references to
the subject of the entry or to any of its subordinates.

6. The INDEXED BY phrase implicitly defines ind-name. The program cannot define ind-name elsewhere.

7. The subject of a Format 2 OCCURS clause can be followed, in the same record description, only by data
description entries subordinate to it.

8. The OCCURS clause cannot be used in a data description entry that has the following:

• A level-number of 01, 66, 77, or 88

• A subordinate variable occurrence data item (Format 2 OCCURS clause)

9. The data item defined by depending-item cannot occupy any character position in the range delimited by the
following:

• The character position defined by the subject of the OCCURS clause

• The last character position defined by the record description entry containing the OCCURS clause

10.Each ind-name must be a unique word in the program.

11.If the OCCURS clause is in a record description entry containing the GLOBAL clause, depending-item must
refer to a global item described in the same Data Division.

12.If the OCCURS clause is in a record description entry containing the EXTERNAL clause, depending-item must
refer to an external item described in the same Data Division.

General Rules
1. The OCCURS clause defines tables and provides the basis for subscripting and indexing.

2. Except for the OCCURS clause itself, all data description clauses associated with the subject of the OCCURS
clause apply to each occurrence of the item.

3. Format 1 specifies that the subject of the entry has a fixed number of occurrences.

144

Data Division

4. Format 2 specifies that the subject of the entry has a variable number of occurrences. min-times and max-times
specify the minimum and maximum number of occurrences. Only the number of the subject's occurrences is
variable; its size is fixed.

The value of depending-item must fall in the range min-times to max-times.

The contents of data items with occurrence numbers exceeding the current value of depending-item are
unpredictable.

5. If a group item with a subordinate entry that has a Format 2 OCCURS clause is a sending item, the operation
uses only the part of the table area specified by depending-item at the start of the operation.

If the group is a receiving item, the part of the table used is determined by the location of depending-item. If
depending-item is included in the group, then the operation uses the maximum length of the group. If depending-
item is not included in the group, then the operation uses only the part of the table area specified by depending-
item.

6. The KEY IS phrase indicates that the repeated data is arranged in ascending or descending order according to
the values in the data items named by key-name. The rules for operand comparison determine the ascending
or descending order. The position of each key-name in the list determines its significance. The first is the most
significant, and the last is least significant.

7. If a Format 2 OCCURS clause is in a record description entry and the associated file description entry has the
VARYING phrase of the RECORD clause, the records are variable length.

If the RECORD clause does not have the DEPENDING ON phrase, the program must set the OCCURS clause
depending-item to the number of occurrences before executing a RELEASE, REWRITE, or WRITE statement.
The depending-item value determines the length of the record to be written.

Technical Note
If the subject of the OCCURS clause (or any of its subordinates) has the SYNCHRONIZED clause, the length of
the subject of the OCCURS clause, or the group containing it, could increase. SYNCHRONIZED clause alignment
can add fill bytes to the group containing the subject of the OCCURS clause and to the subject itself.

Additional References
• SEARCH statement in Chapter 6, Procedure Division

• Section 5.2.3: Additional Alignment Rules for Record Allocation

• Section 6.5.1.1: Comparison of Numeric Operands section in Chapter 6, Procedure Division

• Section 6.5.1.2: Comparison of Nonnumeric Operands section in Chapter 6, Procedure Division

Examples
1. One-dimensional table:

This record description entry describes a 20-character record. The record contains 10 occurrences of ITEMB,
a 2-character data item.

01 ITEMA.
 03 ITEMB OCCURS 10 TIMES PIC XX.

2. Two-dimensional table:

This record description entry describes a 320-character record. The record contains 8 occurrences of ITEMB,
a 40-character data item. ITEMB contains 10 occurrences of ITEMC, a 4-character data item. Each ITEMC
contains 2 data items: ITEMD and ITEME.

01 ITEMA.

145

Data Division

 03 ITEMB OCCURS 8 TIMES.
 05 ITEMC OCCURS 10 TIMES.
 07 ITEMD PIC X.
 07 ITEME PIC XXX.

ITEMB (1) refers to a 40-character data item, the first 10 occurrences of ITEMC. Similarly, ITEMB (5) refers
to the fifth group of 10 occurrences of ITEMC.

ITEME (3,4) refers to ITEME in the fourth occurrence of ITEMC in the third occurrence of ITEMB:

3. Variable occurrence data item:

When ITEMA is a receiving item, its size is 2128 characters. When it is a sending item, its size can vary from
70 to 2128 characters, depending on the value in ITEMC.

Each ITEME is 42 characters long. Its size cannot change. The only effect of the value of ITEMC is to determine
the number of ITEME occurrences.

There are 10 occurrences of ITEMH and ITEMI in each occurrence of ITEME.

01 ITEMA.
 03 ITEMB PIC X(6).
 03 ITEMC PIC 99.
 03 ITEMD PIC X(20).
 03 ITEME OCCURS 1 TO 50 TIMES DEPENDING ON ITEMC.
 05 ITEMF PIC XX.
 05 ITEMG OCCURS 10 TIMES.
 07 ITEMH PIC X.
 07 ITEMI PIC XXX.

PAGE
PAGE

Function
The PAGE clause defines the length of a logical page and the vertical subdivisions within which report groups
are presented.

[page-size]

is a 1- to 3-digit integer. It defines the number of lines available on a logical page.

146

Data Division

[heading-line]

is a 1- to 3-digit integer. It defines the first line number for a REPORT HEADING or PAGE HEADING report
group on the logical page.

[first-detail-line]

is a 1- to 3-digit integer. It defines the first line number for a CONTROL HEADING, DETAIL, and CONTROL
FOOTING report group on the logical page.

[last-detail-line]

is a 1- to 3-digit integer. It defines the last line number for a CONTROL HEADING or DETAIL report group
on the logical page.

[footing-line]

is a 1- to 3-digit integer. It defines the last line number for a CONTROL FOOTING report group and the first line
number for the PAGE FOOTING report group on the logical page.

Syntax Rules
1. The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may be written in any order.

2. page-size must not exceed three significant digits and must be greater than or equal to footing-line.

3. heading-line must be greater than or equal to one.

4. first-detail-line must be greater than or equal to heading-line.

5. last-detail-line must be greater than or equal to first-detail-line.

6. footing-line must be greater than or equal to last-detail-line.

7. The rules in Table 5.6, “Page Regions Established by the PAGE Clause” summarize the rules presented in
Appendix D: Report Writer Presentation Rules and Tables. They indicate the vertical subdivision of the page
in which each type of report group may appear when the PAGE clause is specified.

a. To present a REPORT HEADING report group on a page by itself (NEXT GROUP NEXT PAGE), define
the REPORT HEADING clause to be in the vertical subdivision of the page extending from heading-line
to page-size, inclusive.

To present a REPORT HEADING report group on a page with other report groups, define the REPORT
HEADING clause to be in the vertical subdivision of the page extending from heading-line to first-detail-
line minus one, inclusive.

b. A PAGE HEADING clause must be defined in the vertical subdivision of the page extending from heading-
line to first-detail-line minus one, inclusive.

c. A CONTROL HEADING or DETAIL clause must be defined in the vertical subdivision of the page
extending from first-detail-line to last-detail-line, inclusive.

d. A CONTROL FOOTING clause must be defined in the vertical subdivision of the page extending from first-
detail-line to footing-line, inclusive.

e. A PAGE FOOTING clause must be defined in the vertical subdivision of the page extending from footing-
line plus one to page-size, inclusive.

f. To present a REPORT FOOTING report group on a page by itself, define the REPORT FOOTING clause
in the vertical subdivision of the page extending from heading-line to page-size, inclusive.

To present a REPORT FOOTING report group on a page with other report groups, define the REPORT
FOOTING clause in the vertical subdivision of the page extending from footing-line plus one to page-size.

147

Data Division

8. All report groups must be defined such that they can be presented on one logical page. The Report Writer
Control System (RWCS) never splits a multiline report group across logical page boundaries.

General Rules
1. REPORT HEADING and PAGE HEADING report groups may not be presented on or beyond the first-detail-

line.

2. PAGE FOOTING and REPORT FOOTING report groups must follow the footing-line.

3. If the PAGE clause is specified, the following implicit default values are assumed for any omitted phrases:

a. If the HEADING phrase is omitted, heading-line equals one.

b. If the FIRST DETAIL phrase is omitted, first-detail-line equals heading-line.

c. If the LAST DETAIL and FOOTING phrases are both omitted, last-detail-line and footing-line equal page-
size.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is omitted, last-detail-line equals footing-
line.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is omitted, footing-line equals last-
detail-line.

4. If the PAGE clause is omitted, the report consists of a single page of infinite length with relative line numbering.

5. If a REPORT HEADER report group is to appear on a page with other report groups, the first line following
the heading report groups (REPORT HEADER and PAGE HEADER) must be blank.

6. If a REPORT FOOTING report group is to appear on a page with other report groups, the first line preceding
the footing report groups (PAGE FOOTING and REPORT FOOTING) must be blank.

Additional References
• General Rules (Report Description) (General Rule 4) of the LINE NUMBER (Alpha, I64) clause

• Appendix D: Report Writer Presentation Rules and Tables

Table 5.6, “Page Regions Established by the PAGE Clause” shows the page regions established by the PAGE
clause.

Table 5.6. Page Regions Established by the PAGE Clause

Region Boundaries
Report Groups that Can
Be Presented in a Region

First Line Number of the
Region

Last Line Number of the
Region

Line Positioning for
the First Report Group
Within the Region

Report Heading Described
with NEXT GROUP
NEXT PAGE

Report Footing Described
with LINE line-num
NEXT PAGE

heading-line
page-size LINE-NUMBER

plus

heading-line minus 1

Page Heading

Report Heading Not
Described with NEXT
GROUP NEXT PAGE

heading-line first-detail-line

minus 1

LINE-NUMBER

plus

148

Data Division

Region Boundaries
Report Groups that Can
Be Presented in a Region

First Line Number of the
Region

Last Line Number of the
Region

Line Positioning for
the First Report Group
Within the Region
heading-line minus 1

Control Heading first-detail-line last-detail-line If LINE-COUNTER is
greater than or equal to
first-detail-line, position
on LINE-COUNTER plus
1

Detail If LINE-COUNTER is
less than first-detail-line,
position on first-detail-line

Control Footing first-detail-line footing-line Same as preceding

Page Footing footing line page-size
Report Footing Not
Described with LINE line-
num NEXT PAGE

plus 1 LINE-NUMBER

plus footing-line

PICTURE
PICTURE

Function
The PICTURE clause specifies the general characteristics and editing requirements of an elementary item,
including an elementary screen item.

Syntax Rules (Both Formats)
1. You can use the PICTURE clause only for an elementary item.

2. character-string contains allowable combinations of characters in the COBOL character set. These characters
are called the symbols of the PICTURE character-string.

3. character-string can contain from 1 to 255 symbols.

4. PIC is an abbreviation for PICTURE.

5. The asterisk (*), when used as a zero suppression symbol, and the BLANK WHEN ZERO clause cannot be
used in the same entry.

149

Data Division

Syntax Rule (Format 1)
1. The PICTURE clause is required for every elementary item except an item specified by the USAGE IS

BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE, COMP-1, COMP-2, FLOAT-
SHORT, FLOAT-LONG, FLOAT-EXTENDED, POINTER, or INDEX clause and the subject of a RENAMES
clause. Data description entries for these items cannot contain a PICTURE clause.

Syntax Rules (Format 2)
1. The PICTURE clause for a numeric screen item must either define a numeric edited item or must contain only

“9”s and an optional “S”.

2. Each PICTURE clause in a screen description entry must contain a FROM or a TO phrase, or both, or a USING
phrase.

3. In a screen description entry, if the PICTURE clause is specified, the VALUE clause cannot be specified.

4. identifier-3, identifier-4, and identifier-5 must be defined in the File, Working-Storage, or Linkage Section.

General Rules (Both Formats)
1. The PICTURE clause categorizes a data item or screen item and determines what the item can contain. In the

case of a PICTURE clause containing all Xs, the USAGE clause determines whether the item is alphanumeric
or numeric. Table 5.7, “Summary of PICTURE Clause Rules” shows the valid contents of both character-
string and the item itself for each category. The general rules following this table supplement the information
it contains.

Table 5.7. Summary of PICTURE Clause Rules

Category of Receiving
Item

PICTURE of Receiving
Item

Valid Contents of
Sending Item

Examples

Alphabetic Must contain one or more
As.

One or more alphabetic
characters.

AA

A (9)
Numeric Must contain at least one

9. May contain P's, one S,
and one V. If USAGE IS
COMP-5 or USAGE IS
COMP-X, may contain all
Xs.

One or more numeric
characters.

S9(4)V99

9PPP

SPP9

Alphanumeric Must contain
combinations of As, Xs,
and 9s. Can be all Xs.
Cannot be all As or all 9s.

One or more characters in
computer character set.

XX99XX

AAXA(4)

Alphanumeric

Edited

Must contain at least one
A or X. Must also contain
at least one B, 0, or /. Can
contain one or more 9s.

One or more characters in
computer character set.

XXBXXB9(4)

XX/99/00

9(6)/X
Numeric

Edited

Must contain at least one
0, B, /, Z, *, +, (comma), .,
–, CR, DB, or cs. Can
contain Ps, 9s, and one
V. Must describe 1 to 31
digit positions, which can
be represented by 9s, zero
suppression symbols (Z,

One or more numeric
characters.

*,***.**

ZZ,ZZZ/9(4)

$$,$$$DB

$9,999CR

150

Data Division

Category of Receiving
Item

PICTURE of Receiving
Item

Valid Contents of
Sending Item

Examples

*), and floating insertion
symbols (+, –, cs).

ZZZCR

.

Note
COMP-1 and COMP-2 data items are numeric. However, their data description entries cannot have a PICTURE
clause.

2. In an alphanumeric item definition, each character position is treated as if it were represented by an X, even
though A or 9 may be specified.

3. Some PICTURE symbols represent character positions and some do not. An item's size is determined by adding
up all the symbols that represent a character position. For example, a numeric item with a PICTURE of 999V99
has a size of five characters. The symbol V does not count toward the item's size.

4. character-string can contain a repeat count to represent consecutive occurrences of the following symbols: A,
the comma (,), X, 9, P, Z, *, B, /, 0, +, –, and the currency symbol (cs). The repeat count must be an unsigned,
nonzero integer enclosed in parentheses. For example, S9(6)V9(4) is equivalent to S999999V9999. However,
character-string can contain no more than one of the following symbols: S, V, a period (.), CR, and DB.

5. The PICTURE clause symbols and their functions appear in Table 5.8, “PICTURE Clause Symbols”.

Table 5.8. PICTURE Clause Symbols

Picture Clause Symbol
Function

A Represents a character position that can contain only an alphabetic
character. An alphabetic character belongs to the set of characters: A to Z,
a to z, and the space.
Can occur more than once.
Counts toward the size of the item.

B Represents a character position into which a space is inserted.
Can occur more than once.
Counts toward the size of the item.

N For USAGE IS DISPLAY, represents a character position that can contain
any 2-byte character from the national character set. This is available only
if /NATIONALITY=JAPAN or -nationality japan is specified.

P Specifies an assumed decimal scaling position, defining the location of
the decimal point when one is not specified in character-string.
Can occur more than once, but only as a contiguous string of Ps at either
the leftmost or rightmost end (not both) of character-string. The assumed
decimal point character (V) is redundant when specified. However, when
it is specified, V can appear to the left of the leftmost P or to the right of
the rightmost P.
Does not count toward the size of the item. However, each P counts
toward the maximum number of digit positions (31) in a numeric or
numeric edited item.
Cannot be used if an explicit decimal point (.) appears in character-
string.

151

Data Division

Picture Clause Symbol
Function

In certain operations that refer to an item with P characters in character-
string, the compiler treats each P position as if it contained the value zero.
For example, an item with PICTURE 99PPP can have 100 unique values
that range from 0 to 99,000 (0, 1000, 2000, …, 99,000). An item with
PICTURE PP9 can have 10 unique values (0, .001, .002, … .009). These
operations are any of the following:

• Any operation requiring a numeric sending operand

• A MOVE statement where the sending operand is numeric and its
PICTURE character-string contains the symbol P

• A MOVE statement where the sending operand is numeric edited and
its PICTURE character-string contains the symbol P, and the receiving
operand is numeric or numeric edited

• A comparison operation where both operands are numeric
In all other operations, the compiler ignores the digit positions specified
with the symbol P and does not count them toward the size of the
operand.

S Indicates the presence of an operational sign, but does not specify the sign
representation or position.
Can occur only once, as the leftmost character in character-string.
Does not count toward the size of the item unless the data or screen
description entry contains a SIGN IS SEPARATE clause. If the SIGN
clause does not appear in the item's data description, S is equivalent to
SIGN IS TRAILING.

V Specifies the location of the assumed decimal point.
Can occur only once.
Does not count toward the size of the item.
Cannot be used if an explicit decimal point (.) appears in the PICTURE.

X For USAGE IS DISPLAY, represents a character position that can contain
any character from the computer character set. For USAGE IS COMP-5
or USAGE IS COMP-X, represents a byte of computer storage.
Can occur more than once.
Counts toward the size of the item.

Z Represents a leading digit position that is replaced by a space when its
value and the value of the digits to its left are zero.
Can occur more than once.
Counts toward the size of the item.
Use of Z excludes the use of the asterisk (*) for zero suppression and
replacement.

9 Represents a digit position that can contain only the digits 0 to 9.
Can occur more than once.
Counts toward the size of the item.

0 Represents a character position into which 0 is inserted.
Can occur more than once.
Counts toward the size of the item.

152

Data Division

Picture Clause Symbol
Function

/ Represents a character position into which a slash (/) is inserted.
Can occur more than once.
Counts toward the size of the item.

, Represents a character position into which a comma (,) is inserted. DAG

Can occur more than once.
Counts toward the size of the item.

. Represents a character position into which a decimal point (.) is inserted.
It also represents the decimal point for alignment purposes. DAG

Can occur only once.
Counts toward the size of the item.
Cannot be used if V or P appears in character-string.

+ – Represents the editing sign control symbols, the plus sign (+) and minus
sign (-).
Each can occur more than once.
Each counts as one character toward the size of the item.
character-string can contain either a plus sign (+) or minus (-), but not
both. Also, the use of either character excludes the use of both CR and
DB.

CR DB Represents the editing sign control symbols, credit (CR) and debit (DB).
Each can occur only once, as the two rightmost character positions.
Each counts as two characters toward the size of the item.
character-string can contain either CR or DB, but not both. Also, the use
of either excludes the use of the plus sign (+) and minus sign (-) as fixed
insertion characters.

* Represents a leading digit position that is replaced by an asterisk (*)
when its value and the values of all digit positions to its left are zero.
Can occur more than once.
Counts toward the size of the item.
Use of an asterisk (*) excludes the use of Z for zero suppression and
replacement.

cs Represents a character position into which the currency symbol is
inserted. This symbol is either the currency sign ($) or the character
specified in the CURRENCY SIGN clause of the SPECIAL-NAMES
paragraph or (on OpenVMS) the character specified at DCL command
level in the definition of the SYS$CURRENCY logical name.
Can occur more than once.
Counts as one character toward the size of the item.

DAGWhen a program contains the DECIMAL POINT IS COMMA clause, the functions and rules for the period (.) and comma (,) are exchanged.
In other words, the rules that apply to the period apply to the comma, and vice versa.

General Rules (Format 2)
1. The USING, FROM, and TO phrases have meaning only when the screen item's name or a screen name in its

hierarchy, is specified in an ACCEPT or DISPLAY statement.

2. When data is to be transferred to the screen from one data item, possibly edited, and stored in a different data
item, both the FROM and TO phrases must be used in the PICTURE clause of the screen item.

153

Data Division

3. When data is to be transferred to the screen, possibly modified, and stored in the same data item (as when
reading, modifying, and rewriting records of a file), the USING phrase must be used in the PICTURE clause
of the screen item.

4. identifier-3, identifier-4, identifier-5, and literal-1 need not be the same length as the screen item containing
the PICTURE clause.

5. Transfers between identifier-3, identifier-4, identifier-5, and literal-1, on the one hand, and the screen item are
made in accordance with the rules of the MOVE statement. (See the MOVE Statement in Chapter 6, Procedure
Division.)

6. When the FROM phrase is specified:

a. On DISPLAY statement execution, data is transferred from identifier-4 or literal-1, after being edited in
accordance with character-string, and displayed on the screen. The display begins at the screen position
defined either implicitly or explicitly by the LINE and COLUMN clauses and the starting screen coordinates
specified in the DISPLAY statement.

b. The FROM phrase has no meaning in the execution of an ACCEPT statement.

7. When the TO phrase is specified:

a. At ACCEPT statement completion, the data entered into the field on the screen is transferred to identifier-5,
after being edited in accordance with the picture string specified for identifier-5.

b. The TO phrase has no meaning in the execution of a DISPLAY statement.

8. When the USING phrase, or the FROM and TO phrases are specified:

a. On DISPLAY statement execution, data is transferred from identifier-3, identifier-4, or literal-1 as described
in rule 11a above.

b. On ACCEPT statement execution, data is transferred from identifier-3, identifier-4, or literal-1 as described
in rule 11a above. At ACCEPT statement completion, the data entered into the screen item is transferred to
identifier-3 or identifier-5 as described in rule 12a above.

Editing Rules
1. There are two PICTURE clause editing methods: insertion editing and suppression and replacement editing.

Each method has the following variations:

Editing Method Variations in Each Method

Insertion Simple insertion editing, special insertion editing, fixed insertion editing,
or floating insertion editing

Suppression and Replacement Zero suppression and replacement with spaces, or zero suppression and
replacement with asterisks

2. The types of editing that a program can perform on an item depend on the item's category:

Category Types of Editing Valid Editing Characters

Alphabetic None None
Numeric None None
Alphanumeric None None
Alphanumeric Edited Simple insertion 0, B, and /
Numeric Edited All All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and replacement are mutually exclusive. That is, a
PICTURE clause can use one type of editing or the other, but not both.

154

Data Division

Furthermore, a PICTURE clause can use only one type of replacement symbol for zero suppression. The space
(Z) and asterisk (*) symbols cannot appear in the same PICTURE clause.

Simple Insertion Editing
1. A comma (,) space (B), zero (0), and slash (/) are symbols you can use in simple insertion editing. They indicate

an item position to contain the character they represent. These symbols count toward the size of the item.

If the comma is the last symbol in character-string, the PICTURE clause must be the last clause of the data
description entry. In this case, a comma followed by a period (,.) are the last two characters of the data description
entry. However, if the DECIMAL-POINT IS COMMA clause is in the SPECIAL-NAMES paragraph, the data
description entry ends with two consecutive periods.

Special Insertion Editing
1. The period (.) is the only symbol used in special insertion editing. It represents the item position to contain

the actual decimal point; however, it also represents the decimal point for alignment purposes. Therefore, the
assumed decimal point (V) and the actual decimal point (.) cannot be used in the same character-string. The
period counts toward the size of the item.

If the period is the last symbol in character-string, the PICTURE clause must be the last clause of the data
description entry. In this case, the data description entry ends with two periods. However, if the DECIMAL-
POINT IS COMMA clause is in the SPECIAL-NAMES paragraph, a comma followed by period (,.) are the
last two characters of the data description entry.

Fixed Insertion Editing
1. The currency symbol (cs) and the editing sign control symbols (+, –, CR, and DB) are the symbols used in

fixed insertion editing. character-string can contain only one currency symbol and only one of the editing sign
control symbols as fixed insertion characters.

CR and DB each represent two character positions, which must be the two rightmost positions.

The plus sign (+) and minus sign (-) must be either the leftmost or rightmost character position that counts
toward the size of the item.

The currency symbol (cs) must be the leftmost character position that counts toward the size of the item;
however, a plus sign (+) or minus sign (-) can precede it.

Fixed insertion editing causes the insertion symbol to occupy the same position in the edited item as in
character-string. Table 5.9, “Using Sign Control Symbols in Fixed Insertion Editing” shows that the results of
using editing sign control symbols depend on the item's value.

Table 5.9. Using Sign Control Symbols in Fixed Insertion Editing

Result#########
Editing Symbol in PICTURE
Character-String

Item Positive or Zero Item Negative

+ + –
– space –
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

155

Data Division

1. The currency symbol (cs), the plus sign (+), and the minus sign (-) are the symbols used in floating insertion
editing. They are mutually exclusive in character-string. That is, if any floating insertion symbol appears in
character-string, no other floating insertion symbol can appear.

To indicate floating insertion editing, you must use a string of at least two floating insertion symbols. You can
include simple insertion symbols either within the floating string or immediately to the right of the floating
string. These simple insertion symbols are treated as part of the floating string. That is, they appear in results
only when the value of the item is large enough to include the position occupied by the simple insertion symbol.
You can append the fixed insertion symbols CR or DB immediately to the right of a floating string.

The leftmost symbol of the floating insertion string represents the leftmost position in which a floating insertion
character can appear. This character position cannot be filled by a digit.

The second floating symbol from the left represents the leftmost limit of the numeric data the item can store.
Nonzero numeric characters can replace all symbols at or to the right of this limit.

You can use the floating insertion symbol in only two ways. It can represent the following:

a. Any or all leading numeric character positions to the left of the decimal point

In this case, run-time results show a single insertion character in the position immediately preceding either
the first nonzero digit in the item or the decimal point, whichever appears leftmost in the data. For example,
an item whose PICTURE is $$$.99 and whose value is zero appears as $.00.

b. All numeric character positions in the PICTURE character-string

In this case, you must specify at least one insertion symbol to the left of the decimal point. When the item
has a nonzero value, run-time results are the same as when all the insertion symbols are to the left of the
decimal point. However, when the item has a zero value, run-time results show neither a floating insertion
character nor the decimal point. For example, a item whose PICTURE is $$$.$$ and whose value is zero
appears as spaces.

If the floating insertion symbol is a plus sign (+) or minus sign (-), the actual character inserted depends on
the value of the item. Table 5.10, “Using Sign Control Symbols in Floating Insertion Editing” shows the
possible results of using editing sign control symbols in floating insertion editing.

Table 5.10. Using Sign Control Symbols in Floating Insertion Editing

Result#########
Editing Symbol in PICTURE
Character-String

Item Positive or Zero Item Negative

+ + –
– space –

To avoid truncation, the minimum size of character-string must be the sum of:

• The number of characters in the sending item

• The number of simple, special, or fixed insertion characters edited into the receiving item

• One, for the floating insertion character

Zero Suppression and Replacement Editing
1. One or more occurrences of the space symbol (Z) or the asterisk (*) define a floating suppression string, which

can suppress leading zeros in numeric character positions. The space symbol (Z) causes spaces to replace the
zeros; an asterisk (*) causes asterisks to replace the zeros.

156

Data Division

The suppression symbols are mutually exclusive. That is, character-string can contain either the space symbol
(Z) or the asterisk (*), but not both.

Each suppression symbol counts toward the size of the item.

You can include simple insertion symbols either within the floating string or immediately to its right. These
simple insertion symbols are treated as part of the floating string. That is, they appear in results only when the
value of the item is large enough to include a position occupied by a simple insertion symbol.

You can use zero suppression symbols to represent either:

• Any or all leading numeric character positions to the left of the decimal point

• All numeric character positions on both sides of the decimal point

For example, both ZZZ9.99 and ZZ.ZZ are valid character-strings, but ZZZ.Z9 is not.

The following actions occur if the suppression symbols represent any or all leading numeric character positions
to the left of the decimal point:

• The replacement character replaces any leading zero in the data that corresponds to a suppression symbol
in the string.

• Suppression ends at either the first nonzero digit in the data represented by the suppression string or at the
decimal point, whichever appears first in the data.

The following events occur if the suppression symbols represent all numeric positions in character-string:

• If the value of the data is not zero, the result is the same as if all suppression symbols were to the left of the
decimal point. That is, zeros to the right of the decimal point are not suppressed.

• If the value is zero and the suppression symbol is a Z, all character positions in the edited item (including
any editing characters) contain spaces.

• If the value is zero and the suppression symbol is an asterisk (*), all character positions in the edited item
(including any insertion editing characters other than the decimal point) contain asterisks. The decimal point
appears in the item.

2. The plus sign (+), minus sign (-), asterisk (*), space (Z), and currency symbol (cs) are mutually exclusive when
they are used as floating replacement characters. That is, if any one of these symbols appears as a floating
replacement character, none of the other symbols can appear as a floating replacement character in the same
PICTURE clause.

PICTURE Symbol Precedence Rules
1. character-string must contain either:

• At least one of the symbols A, X, Z, 9, or asterisk (*)

• At least two of the symbols plus sign (+), minus sign (-), or currency symbol (cs)

2. Figure 5.10, “PICTURE Symbol Precedence Rules” summarizes the rules for combining symbols to form
character-strings more complex than the basic possibilities listed in rule 1. The table shows that the use of one
symbol in a character-string excludes the use of certain others before or after it.

The table uses the following conventions:

• A Y at an intersection means the symbols at the top of the column (First Symbol) can precede the symbols
at the left of the row (Second Symbol).

157

Data Division

• Braces ({ }) enclose symbols that are mutually exclusive.

• The currency symbol appears as cs.

• Symbols appear twice in a column or row when their rules of use depend upon their location in a character-
string. These double entry symbols are as follows:

• Fixed insertion symbols (+ and –)

• Floating symbols Z, asterisk (*), plus sign (+), minus sign (-), and currency symbol (cs)

• P

The uppermost entry in a column (or the leftmost entry in a row) represents symbol use left of the actual or
implied decimal point position. The second entry represents symbol use to the right of the decimal point.

Figure 5.10. PICTURE Symbol Precedence Rules

Additional References
• SIGN clause

• MOVE statement in Chapter 6, Procedure Division

• ACCEPT statement in Chapter 6, Procedure Division

• DISPLAY statement in Chapter 6, Procedure Division

Examples
The Procedure Division entry for the MOVE statement contains examples that illustrate this clause.

RECORD
RECORD

Function

158

Data Division

The RECORD clause specifies the number of character positions in either a fixed- or variable-length record. If the
number of character positions does not vary, the RECORD clause specifies the minimum and maximum number
of character positions in a variable-length record.

[shortest-rec]

is an integer that specifies the minimum number of character positions in a variable-length record. Its value must
be greater than or equal to zero.

[longest-rec]

is an integer greater than shortest-rec. It specifies the maximum number of character positions in a variable-length
record or the size of a fixed-length record.

[depending-item]

is the data-name of an elementary unsigned integer data item in the Working-Storage or Linkage Section. It
specifies the number of character positions for an output operation, and it contains the number of character positions
after a successful input operation.

Syntax Rules
1. No record description entry for a file can specify the following:

• Fewer character positions than shortest-rec

• More character positions than longest-rec

2. In a sort-merge file description entry, the first shortest-rec character positions of the record must be large enough
to include all keys specified in any SORT or MERGE statement for the sort or merge file.

3. For an indexed file, the first shortest-rec character positions of the record must be large enough to include all
record keys.

4. If the DEPENDING ON phrase is present and if the associated file connector is an external file connector,
depending-item must have the external attribute and must specify the same data-name in all file description
entries associated with the external file connector.

General Rules

Both Formats
1. The absence of a RECORD clause is the same as a Format 1 RECORD clause with no shortest-rec phrase and

with longest-rec equal to the greatest number of character positions described for any of the file's records.

2. The number of characters described by a record description entry is the sum of both of the following:

• The number of character positions in all elementary items excluding redefinitions and renamings

159

Data Division

• The number of fill bytes added because of alignment requirements

If the record description entry contains a table definition, the sum includes the number of character positions
in the maximum number of table elements.

3. If the associated file connector is an external file connector, all file description entries in the run unit associated
with that file connector must define the same values for shortest-rec and longest-rec. If the RECORD clause is
not specified, all record description entries associated with this file connector must be the same length.

Format 1
1. If there is no shortest-rec phrase, Format 1 specifies fixed-length records. longest-rec then specifies the number

of character positions in each record of the file.

2. If there is a shortest-rec phrase, Format 1 specifies variable-length records, the same as Format 2 without the
DEPENDING phrase.

3. For variable-length records:

• The maximum record size for a READ or RETURN operation is the number of character positions described
in the largest record description entry for the file.

• During execution of a RELEASE, REWRITE, or WRITE statement, the number of character positions in a
record equals the number of character positions in the record description entry referred to by the statement.

• If all record description entries for the file describe records of the same size, RELEASE, REWRITE, and
WRITE statements for the file transfer fixed-length records in variable-length format.

Format 2
1. Format 2 specifies variable-length records.

2. If the clause does not contain shortest-rec, the minimum number of character positions in any of the file's
records is the least number of character positions described by a record description entry for the file.

3. If the clause does not contain longest-rec, the maximum number of character positions in any of the file's records
is the greatest number of character positions described by a record description entry for the file.

4. If there is a DEPENDING phrase, the program must set depending-item to the number of character positions
in the record before executing a RELEASE, REWRITE, or WRITE statement for the file.

5. After successful execution of a READ or RETURN statement for the file, the value of depending-item indicates
the number of character positions in the accessed record.

6. The depending-item value is not changed by executions of:

• DELETE and START statements

• Unsuccessful READ and RETURN statements

7. For RELEASE, REWRITE, and WRITE statement execution, determining the number of character positions in
the record depends partly upon whether or not the record contains a variable occurrence item (an item described
by the OCCURS clause or one that is subordinate to another item so described). During execution of these
statements, three rules determine the number of character positions in the record:

• If there is a depending-item, its value specifies the number of character positions.

• If there is no depending-item and the record does not contain a variable occurrence item, the number of
character positions described by the record description entry specifies the number of character positions.

160

Data Division

• If there is no depending-item and the record contains a variable occurrence item, the number of character
positions is the sum of the character positions in the fixed part of the record and the table elements specified
by the OCCURS clause depending-item when the output statement executes.

Additional References
• EXTERNAL clause

• SYNCHRONIZED clause

• USAGE clause

• Data Description

RECORD KEY
RECORD KEY

Function
The RECORD KEY clause specifies the Prime Record Key access path to indexed file records.

[rec-key]

is the Record Key for the file. It is the data-name of a data item in a record description entry for the file. It can
be qualified, but it cannot be a group item that contains a variable-occurrence data item. The data item must be
described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

• COMP-3 integer

• COMP integer

[seg-key]

is a segmented-key name that represents the concatenation of one or more (up to eight) occurrences of seg.

[seg]

is the data-name of a data item in a record description entry for the file. It can be qualified, but it cannot be a group
item that contains a variable-occurrence data item. The data item must be described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

161

Data Division

• Unsigned numeric display item

Syntax Rule
The RECORD KEY clause is required for indexed files. It can be in either the file description entry or in the file's
Environment Division SELECT clause. However, it cannot be in both the SELECT clause and the file description
entry for the same file.

General Rules
1. seg-key is the concatenation of all specified key segments in the order specified.

2. seg-key can be referenced only in a READ (Format 3) or START statement.

3. The RECORD KEY clause specifies the Prime Record Key for a file.

4. The order of keys, whether ASCENDING or DESCENDING, must be the same as the order used when the
file was created.

5. Each key can be specified as ASCENDING or DESCENDING (ASCENDING is the default). In an
ASCENDING key, lower key values occur toward the beginning of the sorted file. In a DESCENDING key,
higher key values occur toward the beginning of the sorted file.

6. The data description of rec-key, or the segments of seg-key, and their relative locations in the record, must be
the same as those used when the file was created.

7. Only one record description entry for the file must describe rec-key or the segments of seg-key. The Prime
Record Key has the same character positions in every record of the file.

8. If the associated file connector is an external file connector, all File Description entries in the run unit that are
associated with that file connector must define the same data description entry for rec-key or the segments of
seg-key with the same relative location within the record.

9.

Additional Reference
ALTERNATE RECORD KEY

REDEFINES
REDEFINES

Function
The REDEFINES clause allows different data description entries to describe the same storage area.

[other-data-item]

is a data-name. It identifies the data description entry that first defines the storage area.

Note
Level-number, data-name, and FILLER are not part of the REDEFINES clause. They are included in the general
format only to clarify the relative position of the clause.

162

Data Division

Syntax Rules
1. The subject of the REDEFINES clause is the data-name or FILLER in a Format 1 data description entry.

2. The REDEFINES clause must immediately follow its subject.

3. The level-numbers of the subject of the REDEFINES clause and other-data-item must be the same. However,
they cannot be either 66 or 88.

4. The REDEFINES clause cannot be used in a level 01 entry in the File Section.

5. The data description entry for other-data-item cannot contain an OCCURS clause. However, other-data-item
can be subordinate to an item whose data description entry contains an OCCURS clause. In that case, the
reference to other-data-item in the REDEFINES clause cannot be subscripted or indexed.

6. Neither the original definition nor the redefinition can contain a variable occurrence data item.

7. If other-data-item is either an external record or anything other than a level 01 entry, the number of character
positions it contains must be greater than or equal to the number in the subject of the REDEFINES clause. If
other-data-item is a level 01 entry, and is not an external record, its description need not follow this rule; that
is, other-data-item can contain fewer character positions than the subject of the REDEFINES clause.

8. Other-data-item cannot be qualified even if it is not unique. The reference to other-data-item is unique without
qualification because of the placement of the REDEFINES clause.

9. A program can have multiple redefinitions of the same character positions. However, they must all refer to
other-data-item, the data-name that originally defined the area.

10.The redefining entries cannot contain VALUE clauses except in condition-name entries.

11.No entry with a level-number lower than that of other-data-item can occur between the data description entry
for other-data-item and the redefinition.

12.The entries redefining the storage area must immediately follow those that originally defined it. There can be
no intervening entries that define additional storage areas.

General Rules
1. Storage allocation starts at the location of other-data-item. Storage allocation continues until it defines the

number of character positions in the data item referred to by the subject of the REDEFINES clause.

2. If more than one data description entry defines the same character position, the program can refer to the character
position using the data-name associated with any of those data description entries.

Additional References
• Data Description entry

• Section 5.2.3: Additional Alignment Rules for Record Allocation

Example
This example shows the following:

• A sample program containing multiple redefinitions of the same area

• The results of the sample program statements

• The allowable subscripts and the contents for each data item in the program

163

Data Division

164

Data Division

REDEFINES Clause

RENAMES
RENAMES

Function
The RENAMES clause groups elementary items in alternative or overlapping ways.

165

Data Division

[new-name]

is the data-name of the item being described. It identifies an alternate grouping of one or more items in a record.

[rename-start]

is the data-name of the leftmost data item in the area. It can be qualified.

[rename-end]

is the data-name of the rightmost data item in the area. It can be qualified.

Note
Level-number 66 and new-name are not part of the RENAMES clause. They are in the general format only to
clarify the relationship.

Syntax Rules
1. A logical record can have any number of RENAMES entries.

2. All RENAMES entries referring to data items in a logical record must immediately follow the last data
description entry of the record description entry.

3. The program cannot qualify data-names with new-name.

4. The program can qualify new-name only by the names of the associated level 01, FD, or SD entries.

5. The data description entries for rename-start and rename-end:

• Cannot have an OCCURS clause

• Cannot be subordinate to an item whose data description entry has an OCCURS clause

6. rename-start and rename-end must be the names of elementary items or groups of elementary items in the same
logical record. They cannot be the same data-name.

7. A level 66 entry cannot rename another level 66 entry. Nor can it rename a level 88, level 01, or level 77 entry.

8. None of the items in the range, including rename-start and rename-end, can be variable occurrence data items.

9. The words THRU and THROUGH are equivalent.

10.rename-end cannot be subordinate to rename-start. The beginning of rename-end cannot be to the left of the
beginning of rename-start. The end of rename-end must be to the right of the end of rename-start.

General Rules
1. If rename-end is used, new-name includes all elementary items:

• Starting with rename-start, if rename-start is an elementary item or the first elementary item in rename-start,
or if rename-start is a group item

• Ending with rename-end, if rename-end is an elementary item or the last elementary item in rename-end,
or if rename-end is a group item

166

Data Division

2. If rename-end is not used, all data attributes for rename-start become data attributes for new-name. In this case,
you are renaming a single data item. If that item is a group item, new-name is also treated as a group item. If
that item is an elementary item, new-name is also treated as an elementary item.

Additional Reference
Data Description

Example
In the following example, the box RESULTS displays the values given when using the RENAMES clause:

REPORT
REPORT

Function
The REPORT clause in a file description entry (FD) specifies the Report Description (RD) report names that
comprise a report file.

Syntax Rules
1. Each report-name in the REPORT clause must be the subject of a Report Description entry (RD) in the Report

Section of the same program. report-name can appear in only one REPORT clause.

2. report-names can appear in any order.

3. The file-name in a file description entry for a Report File can be referenced only by the OPEN statement with
the OUTPUT or EXTEND phrase or by the CLOSE statement.

General Rules
1. More than one report-name in a REPORT clause indicates that the file contains more than one report.

167

Data Division

2. After executing an INITIATE statement and before executing a TERMINATE statement for the same report
file, the report file is under the control of the Report Writer Control System (RWCS). While a report file is
under control of the RWCS, no input/output statement may reference that report file.

3. If the associated file connector is an external file connector, every file description entry in the run unit associated
with that file connector must describe it as a report file.

Technical Note
On OpenVMS, the DCL PRINT command inserts a form-feed character when a form is within four lines from the
bottom. This positions the report to the top of the next logical page.

Report Writer files are written in print format. Line spacing positions the report to the top of the next logical page.

Therefore, use the PRINT/NOFEED command to suppress the insertion of form-feed characters and to print your
Report Writer files correctly. For example:

$ PRINT/NOFEED full-file-name

Additional References
• FD (File Description)

• RD (Report Description)

REQUIRED (Alpha, I64)
REQUIRED (Alpha, I64)

Function
The REQUIRED clause specifies that in the context of an ACCEPT statement, the user must enter at least one
character in the input or update field.

Syntax Rule
The REQUIRED clause cannot be specified in the description of a literal screen item.

General Rules
1. If the REQUIRED clause is specified at group level, it applies to each input and update screen item in that group.

2. The REQUIRED clause takes effect during the execution of any ACCEPT statement when the cursor enters the
screen item. Until this clause is satisfied, the operator cannot leave the field and normal terminator keystrokes
are rejected.

3. To satisfy this clause, alphanumeric screen items must contain at least one nonspace character, and numeric
screen items must have a nonzero value.

4. For update fields, the REQUIRED clause can be satisfied by the contents of the identifier or literal referenced
in the FROM or USING phrase of the PICTURE clause, as well as by operator-keyed data.

5. The REQUIRED clause is not effective if a function key is used to terminate the accept operation.

6. The specification of the FULL and REQUIRED clauses together requires that the field must always be filled
entirely by the user.

168

Data Division

7. The REQUIRED clause is ignored for an output field.

Additional Reference
ACCEPT statement in Chapter 6, Procedure Division

REVERSE-VIDEO (Alpha, I64)
REVERSE-VIDEO (Alpha, I64)

Function
The REVERSE-VIDEO clause specifies that the field is displayed with the default or specified foreground and
background colors exchanged.

Syntax Rule
The REVERSE-VIDEO clause can be specified only for elementary screen items.

Additional Reference
• ACCEPT statement in Chapter 6, Procedure Division

• DISPLAY statement in Chapter 6, Procedure Division

SECURE (Alpha, I64)
SECURE (Alpha, I64)

Function
The SECURE clause suppresses the display of input characters on the screen.

Syntax Rule
The SECURE clause can only be specified for an input screen item.

General Rules
1. If the SECURE clause is specified at group level, it applies to each input screen item in that group.

2. When the SECURE clause is used, characters introduced for the input field do not appear on the screen, yet
the cursor moves as usual.

Additional Reference
ACCEPT statement in Chapter 6, Procedure Division

SIGN
SIGN

169

Data Division

Function
The SIGN clause specifies the operational sign's position and type of representation.

For screen description entries, the SIGN clause specifies the position of the sign character in the field. The sign
character always occupies a separate position in the field, regardless of whether or not you specify SEPARATE.

Syntax Rules

Format 1
1. The SIGN clause can be used only in a numeric data description entry or screen description entry whose

PICTURE contains the S symbol, or for a group item containing such entries.

2. The data items to which the SIGN clause applies must have display usage.

3. If a file description entry has a CODE-SET clause, all signed numeric data description entries associated with
the file description entry must contain the SIGN IS SEPARATE clause.

General Rules

Both Formats
1. The SIGN clause specifies the operational sign's position and type of representation. It applies to a numeric

data description entry or screen description entry or to each numeric data description entry or screen description
entry subordinate to a group.

2. The SIGN clause applies only to numeric data description entries or screen description entries whose PICTURE
clause contains the S symbol. S indicates the presence of an operational sign. However, S does not specify the
sign's representation or, necessarily, its position.

3. If you specify the SIGN clause for both a group item and a group item subordinate to it, the SIGN clause for
the subordinate group overrides the group item SIGN clause.

4. If you specify the SIGN clause for both a group item and an elementary numeric item subordinate to it, the
SIGN clause for the elementary item overrides the group item SIGN clause.

5. A numeric data description entry or screen description entry to which no optional SIGN clause applies, but
whose PICTURE contains an S symbol, has an operational sign.

• The numeric data description entry is equivalent to an entry that contains the SIGN IS TRAILING clause
without the SEPARATE CHARACTER phrase.

• The screen description entry is equivalent to an entry that contains the SIGN IS TRAILING with the
SEPARATE CHARACTER phrase.

6. If you specify the SEPARATE CHARACTER phrase (or it is implied):

• The operational sign is the leading (or trailing) character of the elementary numeric data item. The sign does
not share this position with a digit.

170

Data Division

• The S symbol in the PICTURE counts toward data or screen item size. That is, it represents a character
position.

• The operational sign for positive is the plus sign (+).

• The operational sign for negative is the minus sign (-).

7. Every numeric data item whose PICTURE contains the S symbol is a signed numeric data item. If you specify
the SIGN clause for such an item, necessary conversions for computations or comparisons occur automatically.

Format 1 (Data Description)
1. If you do not specify the SEPARATE CHARACTER phrase:

• The operational sign is associated with the leading (or trailing) digit position of the elementary numeric item.
The sign shares this character position with a digit.

• The S symbol in the PICTURE does not count toward the size of the item. That is, it does not represent a
character position.

• The character in the operational sign position represents both a numeric digit and the item's algebraic sign.
Table 5.11, “Positive and Negative Signs for All Numeric Digits” shows the characters representing positive
and negative signs for all numeric digits. Where more than one character appears, the first is the character
generated as the result of machine operations.

Table 5.11. Positive and Negative Signs for All Numeric Digits

Digit Values Positive Sign Negative Sign

0 {, [, ?, or 0 },], :, or !
1 A or 1 J
2 B or 2 K
3 C or 3 L
4 D or 4 M
5 E or 5 N
6 F or 6 O
7 G or 7 P
8 H or 8 Q
9 I or 9 R

SOURCE
SOURCE

Function
The SOURCE clause identifies a data item to be sent to an associated printable item defined within a Report Group
Description entry.

[source-id]

171

Data Division

names an elementary item in the Data Division.

Syntax Rules
1. If source-id is a Report Section item it must be either:

• A PAGE-COUNTER

• A LINE-COUNTER

• A sum counter that is part of the report within which the SOURCE clause appears

2. The Report Writer Control System (RWCS) moves the contents of source-id to the printable item. source-id
definitions must conform to the rules for sending items in the MOVE statement.

General Rule
The RWCS executes implicit MOVE statements specified by the SOURCE clauses when it formats the print lines
(just before it presents them).

Additional References
• COLUMN NUMBER clause (printable item)

• TYPE clause

• MOVE statement in Chapter 6, Procedure Division

SUM
SUM

Function
The SUM clause establishes a Report Writer sum counter and names the data items to be summed.

[sum-name]

names a numeric data item with an optional sign in the Subschema, File, Working-Storage, or Linkage Sections,
or another sum counter in the Report Section.

[detail-report-group-name]

names a DETAIL report group.

[control-foot-name]

must reference a control-name in the report's CONTROL clause.

172

Data Division

Syntax Rules
1. A SUM clause can appear only in the description of a CONTROL FOOTING report group.

2. If there is no UPON phrase, any sum-name in the SUM clause that is itself a sum counter must be defined
either in the same report group that contains this SUM clause or in a report group at a lower level in the control
hierarchy of this report.

If there is an UPON phrase, sum-name must not reference a sum counter.

3. If the associated report file connector is an external file connector and if sum-name references a numeric data
item in the Subschema, File, Working-Storage, or Linkage Sections, then sum-name must reference the same
external data item in all programs in the run unit.

4. detail-report-group-name must be a control-name in a CONTROL clause and must be the name of a DETAIL
report group described in the same report as the CONTROL FOOTING report group in which the SUM clause
appears.

5. detail-report-group-name may be qualified by a report-name.

6. control-foot-name must not be at a lower control level than the associated control level for the report group in
which the RESET phrase appears.

If FINAL appears in the RESET phrase, FINAL must also appear in the CONTROL clause for this report.

7. The highest permissible qualifier for sum-name is the report-name.

General Rules
1. The SUM clause establishes a sum counter. At run time, the Report Writer Control System (RWCS) adds the

value in each sum-name to the sum counter. This addition is consistent with the rules for arithmetic statements.

2. The UPON phrase provides for selective subtotalling. Subtotalling occurs each time the RWCS processes the
DETAIL report group referenced by detail-report-group-name.

3. If there is a RESET phrase, the RWCS will set the sum counter to zero when the RWCS is processing the
designated level of control hierarchy. If there is no RESET phrase, the RWCS will set the sum counter in the
CONTROL FOOTING report group to zero when the RWCS processes that report group.

The RWCS initially sets sum counters to zero during the execution of the INITIATE statement for the report
containing the sum counter.

4. The size of the sum counter is equal to the number of receiving character positions defined in the PICTURE
clause that accompanies the SUM clause in the description of the elementary item.

5. Only one sum counter exists for an elementary report entry, regardless of the number of SUM clauses specified
in the elementary report entry.

6. If the elementary report entry for a printable item contains a SUM clause, the sum counter serves as a source data
item. On a control break, the RWCS moves the data from the sum counter to the printable item for presentation
according to the rules of the MOVE statement.

7. If a data-name appears as the subject of an elementary report entry that contains a SUM clause, the data-name
is the name of the sum counter; the data-name is not the name of a printable item that the entry may also define.

8. Procedure Division statements can alter the contents of sum counters.

9. During the execution of GENERATE and TERMINATE statements, the RWCS adds the values in sum-name
to a sum counter.

173

Data Division

10.The RWCS adds each individual sum-name into the sum counter when it processes the CONTROL FOOTING
report group defining the sum counter.

Technical Notes
• The three categories of sum counter accumulation are as follows:

• Subtotalling

• Crossfooting

• Rolling forward

Subtotalling occurs only during execution of GENERATE statements and after any control break processing but
before processing of the DETAIL report group. Crossfooting and rolling forward occur during the processing
of CONTROL FOOTING report groups.

• Subtotalling accumulates numeric data fields (sum-names) into a sum counter. sum-name must not reference
a sum counter when subtotalling. If the SUM clause contains the UPON phrase, sum-names are subtotalled
when a GENERATE statement executes for a DETAIL report group. If there is no UPON phrase, sum-names
are subtotalled when any GENERATE data-name statement is executed for the report in which the SUM clause
appears.

• Crossfooting accumulates sum counters (sum-name) from the same CONTROL FOOTING report group into
another sum counter. It is a horizontal sum of sums.

Crossfooting occurs when a control break takes place and when the CONTROL FOOTING report group is
processed.

Crossfooting is performed according to the sequence in which sum counters are defined within the CONTROL
FOOTING report group. That is, all crossfooting into the first sum counter defined in the CONTROL FOOTING
report group is completed, and then all crossfooting into the second sum counter defined in the CONTROL
FOOTING report group is completed. This procedure repeats until all crossfooting operations are completed.

When one of the sum-names is the sum counter defined by the Data Description entry in which that sum clause
appears, the initial value of that sum counter is used in the summing operation.

• Rolling forward accumulates sum counters (sum-name) defined in lower level CONTROL FOOTING report
groups into another sum counter. It is a vertical sum of sums. A sum counter in a lower level CONTROL
FOOTING report group is rolled forward when a control break occurs and at the time the lower level CONTROL
FOOTING report group is processed.

• If two or more sum-names specify the same sum counter, then the sum counter is added as many times as the
sum counter is referenced in the SUM clause. It is permissible for two or more of the sum-names to specify
the same DETAIL report group. When a GENERATE data-name statement for such a DETAIL report group is
given, the incrementing occurs repeatedly, as many times as the sum-name appears in the UPON phrase.

Additional References
• GENERATE statement in Chapter 6, Procedure Division

• TYPE clause

• Section 6.6.1: Arithmetic Operations

• Section 6.6.7: Overlapping Operands and Incompatible Data

SYNCHRONIZED
SYNCHRONIZED

174

Data Division

Function
The SYNCHRONIZED clause specifies elementary item alignment on word boundary offsets relative to a record's
beginning. These offsets are related to the size and usage of the item being stored.

Syntax Rules
1. SYNC is an abbreviation for SYNCHRONIZED.

2. The SYNCHRONIZED clause can be used only for an elementary item.

General Rules
1. The SYNCHRONIZED clause aligns a data item in a record so that no other data item occupies any character

positions between the required boundaries to the left and right of the data item.

2. If the number of character positions needed to store the data item is less than the number of positions between
the required boundaries, no other data items occupy the unused positions.

However, the unused character positions are included in the size of those group items:

• To which the elementary item belongs

• In which the elementary item is not the first subordinate item

The first elementary item in a group item always aligns on the same boundary as the group item. In this case,
any unused character positions do not affect the size of that group item.

3. The size of a SYNCHRONIZED data item equals the number of character positions between its natural
boundaries. Therefore, the LEFT and RIGHT phrases have the same effect; they are equivalent to each other,
and to the SYNCHRONIZED clause with neither the LEFT nor RIGHT phrases.

4. The SYNCHRONIZED clause does not change the size or operational sign position of the data item it specifies.

5. Each occurrence of the data item is synchronized if the clause applies to a data item whose data description
entry also has an OCCURS clause, or to a data item subordinate to another data item whose data description
entry has an OCCURS clause.

Technical Notes
• The SYNCHRONIZED clause does not affect the alignment of DISPLAY data items.

• The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2, POINTER, and INDEX data items
on boundaries that are related to the size of the item.

One word COMP items are aligned on 2-byte boundaries, longword items on 4-byte boundaries, and quadword
items on 8-byte boundaries. All boundaries are relative to the beginning of the record containing the data item.

• The following table shows the alignment for each data type that the SYNCHRONIZED clause affects:

Data Type Boundary

COMP (1 to 4 digits) 2-byte
COMP (5 to 9 digits) 4-byte

175

Data Division

Data Type Boundary

COMP (10 to 18 digits) 8-byte
COMP (19 to 31 digits) 16-byte
COMP-1 4-byte
COMP-2 8-byte
INDEX 4-byte
POINTER 4-byte (OpenVMS)
POINTER 8-byte (Tru64 UNIX)

Additional Reference
Section 5.2.3: Additional Alignment Rules for Record Allocation

TYPE
TYPE

Function
The TYPE clause identifies the report group type and indicates when the Report Writer Control System (RWCS)
is to process it.

[control-head-name]

names a control-name in the CONTROL clause.

[control-foot-name]

names a control-name in the CONTROL clause.

Syntax Rules
1. RH is an abbreviation for REPORT HEADING.

176

Data Division

PH is an abbreviation for PAGE HEADING.

CH is an abbreviation for CONTROL HEADING.

DE is an abbreviation for DETAIL.

CF is an abbreviation for CONTROL FOOTING.

PF is an abbreviation for PAGE FOOTING.

RF is an abbreviation for REPORT FOOTING.

2. These report groups may appear no more than once in the description of a report:

• REPORT HEADING

• PAGE HEADING

• CONTROL HEADING FINAL

• CONTROL FOOTING FINAL

• PAGE FOOTING

• REPORT FOOTING

3. The TYPE DETAIL report group may appear more than once in the description of a report.

4. If the TYPE clause specifies a CONTROL HEADING or CONTROL FOOTING report group, the control-
head-name, control-foot-name, or FINAL entries must be specified in the CONTROL clause of the
corresponding Report Description entry. For each control-name or FINAL phrase in the CONTROL clause
of a Report Description entry, you can specify one CONTROL HEADING report group and one CONTROL
FOOTING report group. However, the RWCS does not require either a CONTROL HEADING report group
or a CONTROL FOOTING report group for each control-name or FINAL phrase in the CONTROL clause of
a Report Description.

5. PAGE HEADING and PAGE FOOTING report groups may appear only if the corresponding Report
Description entry specifies a PAGE clause.

6. In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT FOOTING report groups,
SOURCE clauses and USE statements must not reference any of the following:

• Formats 2 and 3 Report Group Description data items containing a control data item

• Data items subordinate to a control data item

• A redefinition or renaming of any part of a control data item

7. In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE statements must not
reference either control-head-name or control-foot-name.

8. When the Procedure Division specifies a GENERATE report-name statement, the corresponding Report
Description entry must define no more than one DETAIL report group. If there are no GENERATE group-data-
name statements in the Procedure Division, the RWCS does not require a DETAIL report group. If there are
multiple TYPE DETAIL report groups in the report, the GENERATE group-data-name statement must be used.

General Rules
1. The Report Writer Control System (RWCS) processes DETAIL report groups as a direct result of the

GENERATE statement. If a report group specified in the GENERATE statement is not a TYPE DETAIL report

177

Data Division

group, a summary report is produced. If a report group specified in the GENERATE statement is a TYPE
DETAIL report group, a detailed report is produced.

2. The RWCS executes the following procedures (a to f) when it processes a DETAIL report group in response
to a GENERATE statement.

When the description of a report includes exactly one DETAIL report group, the detail-related processing that
the RWCS executes in response to a GENERATE report-name statement is described in procedures a to d. The
RWCS performs these procedures as though a GENERATE group-data-name statement were being executed.

When the description of a report includes no DETAIL report groups, the detail-related processing that the
RWCS executes in response to a GENERATE report-name statement is described in procedures a and b. These
procedures are performed as though the description of the report included exactly one DETAIL report group,
and a GENERATE detail-report-group statement were being executed.

a. The RWCS performs any control break processing.

b. The RWCS performs any subtotalling that has been designated for the DETAIL report group.

c. If there is a USE BEFORE REPORTING procedure referring to the data-name of the report group, the RWCS
executes the USE procedure.

d. If a SUPPRESS statement has been executed, or if the report group is not printable, no further processing
is done for the report group.

e. If the RWCS processes a DETAIL report group as a consequence of the GENERATE report-name statement,
no further processing is done for the report group.

f. If neither procedure d nor procedure e applies, the RWCS formats the print lines and presents the DETAIL
report group.

3. To detect and trigger control breaks for a specific report, the RWCS:

a. Establishes the initial values of control data items as the prior values when the INITIATE statement executes.

b. Compares the prior values to the current values of control data items when a GENERATE statement executes.
If the current values do not compare to the prior values, a control break occurs. If a control break occurs, the
current values are saved as prior values and steps c, d, and e are performed.

c. Presents the CONTROL FOOTING and CONTROL HEADING report groups associated with the control
break. The CONTROL FOOTING report groups presented are at a less major level than the level at which
the control break occurred. The CONTROL HEADING report groups presented are in the order of major
level to break level.

d. Processes any PAGE HEADING and PAGE FOOTING report groups when it must start a new page to
present a CONTROL HEADING, DETAIL, or CONTROL FOOTING.

e. Repeats steps b, c, and d until the last control break is processed.

4. The prior values (refer to General Rule 3) may be referenced by the program:

• During the control break processing of a CONTROL FOOTING report group. Any references to control data
items in a USE procedure or SOURCE clause associated with that CONTROL FOOTING report group are
supplied with prior values.

• When a TERMINATE statement executes. The RWCS makes the prior values available to the SOURCE
clause or the USE procedure references in CONTROL FOOTING report groups as though the control break
had been detected in the highest control data-name.

• At the time the RWCS processes the report group. All other data item references within report groups and
their USE procedures access the current values contained within the data items.

178

Data Division

5. The RWCS presents the REPORT HEADING report group only once for each report, as the first report group
of that report. It is processed when the first GENERATE statement is executed.

6. The RWCS presents the PAGE HEADING report group as the first report group on each page of the report,
except for the following conditions:

• A page containing only a REPORT HEADING report group.

• A page containing only a REPORT FOOTING report group.

• A page containing a REPORT HEADING report group that is not the only report group on the page. In this
case, the PAGE HEADING report group is the second report group on the page.

7. The RWCS processes the CONTROL HEADING report group at the end of a control break for a specific
control-head-name.

The CONTROL HEADING FINAL report group is presented only once for each report, as the first body group
(CONTROL HEADING, DETAIL, and CONTROL FOOTING) of that report. Other CONTROL HEADING
report groups are presented when the RWCS detects a control break on the control-head-name during the
execution of GENERATE statements. Control break processing for any CONTROL HEADING report group
occurs with the highest control level of the break and includes all lower levels.

8. The RWCS presents CONTROL FOOTING report group at the beginning of a control break for a specific
control-foot-name.

The CONTROL FOOTING FINAL report group is presented only once for each report, as the last body group
(CONTROL HEADING, DETAIL, and CONTROL FOOTING) of that report. If, during the execution of
a GENERATE statement, the RWCS detects a control break, control break processing for any CONTROL
FOOTING report group occurs with the highest control level of the break and includes all lower levels. Upon
execution of the TERMINATE statement, the RWCS processes all CONTROL FOOTING report groups if the
GENERATE statement has executed at least once.

9. The RWCS processes the PAGE FOOTING report group as the last report group on each page of the report,
except for the following conditions:

• A page containing only a REPORT HEADING report group.

• A page containing only a REPORT FOOTING report group.

• A page containing a REPORT FOOTING report group that is not to be the only report group on the page. In
this case, the PAGE FOOTING report group is the second to the last report group on the page.

10.The RWCS processes the REPORT FOOTING report group, if defined, only once per report and as the last
report group of that report. During the execution of a TERMINATE statement, the RWCS processes the
corresponding REPORT FOOTING report group if at least one GENERATE statement is executed for the report.

11.The RWCS checks for these three conditions before it processes a REPORT HEADING, PAGE HEADING,
CONTROL HEADING, PAGE FOOTING, or a REPORT FOOTING report group:

• If there is a USE BEFORE REPORTING procedure referencing the data-name of the report group, the USE
procedure executes.

• If a SUPPRESS statement has been executed, or if the report group is not printable, there is no further
processing for the report group.

• If a SUPPRESS statement has not been executed and the report group is printable, the RWCS formats the
print lines and presents the report group according to the presentation rules for that type of report group.

12.The RWCS executes the following procedures when it processes a CONTROL FOOTING report group.

Control breaks occur during the processing of a GENERATE statement. The GENERATE rules specify that
the RWCS produces the CONTROL FOOTING report groups beginning at the minor level, and proceeding

179

Data Division

upwards, through and including the highest control level. Although no CONTROL FOOTING report group
has been defined for a given control data-name, the RWCS will still have to execute procedure 12f if a RESET
phrase within the report description specifies that control data-name.

a. Sum counters are crossfooted. All sum counters defined in this report group that are operands of SUM clauses
in the same report group are added to their sum counters.

b. Sum counters are rolled forward. All sum counters defined in the report group that are operands of SUM
clauses in higher level CONTROL FOOTING report groups are added to the higher level sum counters.

c. If there is a USE BEFORE REPORTING group-data-name declarative procedure, the RWCS executes the
USE procedure.

d. If a SUPPRESS statement has been executed, or if the report group is not printable, the RWCS executes
procedure 12f.

e. If a suppress statement has not been executed and the report group is printable, the RWCS formats the print
lines and presents the report group according to the presentation rules for CONTROL FOOTING report
groups.

f. The RWCS resets those sum counters that are to be reset when the RWCS processes this level in the control
hierarchy.

Additional References
• CONTROL clause

• Data-Name

• LINE NUMBER (Alpha, I64) clause (General Rule 4)

• SUM clause

• TERMINATE statement in Chapter 6, Procedure Division

• Appendix D: Report Writer Presentation Rules and Tables

UNDERLINE
UNDERLINE

Function
The UNDERLINE clause specifies that each character of the field is underlined when it is displayed on the screen.

Syntax Rule
The UNDERLINE clause may be specified only for elementary screen items.

USAGE
USAGE

Function

180

Data Division

The USAGE clause specifies the internal format of a data item or screen item.

Syntax Rules
1. BINARY is a synonym for COMPUTATIONAL and COMP.

On Alpha and I64 systems, except for restrictions on the PICTURE clause, COMPUTATIONAL-5 and
COMPUTATIONAL-X are synonyms for COMPUTATIONAL and COMP.

2. COMP is an abbreviation for COMPUTATIONAL.

3. COMP-1 is an abbreviation for COMPUTATIONAL-1.

4.

5. COMP-3 is an abbreviation for COMPUTATIONAL-3.

6.
PACKED-DECIMAL is a synonym for COMPUTATIONAL-3 and COMP-3.

7. On Alpha and I64 systems, COMP-5 is an abbreviation for COMPUTATIONAL-5.

8.

9. On Alpha and I64 systems, FLOAT-SHORT is a synonym for COMPUTATIONAL-1.

10.On Alpha and I64 systems, FLOAT-LONG and FLOAT-EXTENDED are synonyms for
COMPUTATIONAL-2.

11.You can use the USAGE clause in any data description entry with a level-number other than 66 or 88.

12.If the USAGE clause is in the data description for a group item, it can also be in data description entries for
subordinate elementary and group items. However, the usage of a subordinate item must be the same as that
in the group item data description entry.

13.The PICTURE character-string of a COMP or COMP-3 item can contain only the following symbols:

• 9
181

Data Division

• S

• V

• P

14.On Alpha and I64 systems, the PICTURE character-string of a COMP-5 or COMP-X item can contain only
the following symbols:

• 9

• S

• X (but not in combination with 9 or S)

15.An index data item reference can appear in only:

• A SEARCH or SET statement

• A relation condition

• The USING phrase of the Procedure Division header

• The USING phrase of the CALL statement

16.A report description entry or a screen description entry can only specify USAGE IS DISPLAY.

17.The data description entry for a USAGE IS INDEX data item cannot contain any of the following clauses:

• BLANK WHEN ZERO

• JUSTIFIED

• PICTURE

• VALUE IS

18.An elementary item with the USAGE IS INDEX clause cannot be a conditional variable; that is, the elementary
item's value cannot be specified by level 88 items.

19.The data description entry of a BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE,
COMP-1, COMP-2, POINTER, or POINTER-64 item cannot have a PICTURE clause. However, they are
numeric and signed.

20.The subject of a data description entry containing the USAGE IS POINTER clause must not include any of
the following clauses:

• BLANK WHEN ZERO

• JUSTIFIED

• PICTURE

General Rules
1. You can specify the USAGE clause in the data description entry for a group item. In this case, it applies to

each elementary item in the group. However, you cannot reference the group item in any operations that do not
permit alphanumeric operands. See rules 4 and 8 for more information.

2. The USAGE clause specifies the representation of an elementary data item in storage. It does not affect the
way that the program uses the item. However, the rules for some Procedure Division statements restrict the
USAGE clause of statement operands.

182

Data Division

3. A BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE, COMP, COMP-1, COMP-2,
COMP-3, COMP-5, COMP-X, FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED item can represent
a value used in computations. The PICTURE clauses for COMP and COMP-3 items must be numeric. The
PICTURE clauses for COMP-5 and COMP-X items may be numeric or X.

4. A POINTER data item can represent an address value used in computations. The compiler internally treats this
item as a binary integer. References to a POINTER item are allowed in the same context as references to a
COMP integer.

5. If the data description entry for a group item specifies BINARY-CHAR, BINARY-SHORT, BINARY-LONG,
BINARY-DOUBLE, COMP, COMP-1, COMP-2, COMP-3, COMP-5, COMP-X, FLOAT-SHORT, FLOAT-
LONG, FLOAT-EXTENDED, POINTER, or POINTER-64 usage, the usage applies to elementary items in the
group. It does not apply to the group itself; and the program cannot use the group item in computations.

6. The USAGE IS DISPLAY clause specifies that the data item is in Standard Data Format.

7. If no USAGE clause applies to an elementary item, its usage is DISPLAY.

8.
If the USAGE IS INDEX clause applies to an elementary item, the elementary item is called an index data item.
It contains a value that must correspond to an occurrence number of a table element.

9. If the data description entry for a group item specifies USAGE IS INDEX, all elementary items in the group
are index data items. However, the group itself is not an index data item.

10.When a MOVE or input-output statement refers to a group that contains an index data item, the index data
item is not converted to another format during the operation. Conversion will occur when the CONVERSION
option is specified on ACCEPT or DISPLAY.

11.The USAGE IS POINTER clause can be used only in a File, Working-Storage, or Linkage Section data
description entry.

12.On OpenVMS Alpha and I64 systems, the USAGE IS POINTER-64 clause is provided for limited use in
interfacing with applications in languages requiring a 64-bit pointer. See Technical Notes.

Technical Notes
1. The way a data item is represented in the Data Division of a COBOL program determines whether it will be

stored as an integer, floating-point, packed decimal, display numeric, or character string (text) data type. Tables
5.12 and 5.13 show the following:

• COBOL data description entries and their corresponding data types

• The allocated storage in bytes for each entry; allocated storage is the same on Tru64 UNIX and OpenVMS
Alpha and I64 (except for POINTER)

Table 5.12, “Unscaled Data Items, Allocated Storage, and Corresponding Data Types ” gives the corresponding
data types for unscaled data items, and Table 5.13, “Scaled Data Items, Allocated Storage, and Data Types ”
gives the data types for scaled data items.

For example, a data item described as PIC S9(4) USAGE IS DISPLAY SIGN IS TRAILING is stored in 4
bytes of storage as a right overpunch value.

Note

The default USAGE for a data item is DISPLAY. Therefore, you do not need to specify the USAGE clause for
display numeric, alphabetic, and alphanumeric data items.

183

Data Division

Table 5.12. Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE Clause
USAGE Clause SIGN Clause Allocated Storage

in Bytes
Standard Data
Type

PIC S9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY n Right (trailing)
overpunch

PIC S9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY TRAILING n Right (trailing)
overpunch

PIC S9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY LEADING n Left (leading)
overpunch

PIC S9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY TRAILING
SEPARATE

n+1 Right (trailing)
separate

PIC S9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY LEADING
SEPARATE

n+1 Left (leading)
separate

PIC 9(n)

[n <= 31 (Alpha,
I64)]

DISPLAY n Unsigned numeric

PIC 9(n)

[n <= 4]

COMP

COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

 2 Word integer1

PIC 9(n)

[5 <= n <= 9]

COMP

COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

 4 Longword integer 1

PIC 9(n) COMP 8 Quadword integer 1

184

Data Division

PICTURE Clause
USAGE Clause SIGN Clause Allocated Storage

in Bytes
Standard Data
Type

[10 <= n <= 18] COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

PIC 9(n)

[19 <= n <= 31]
(Alpha, I64)

COMP

COMP-5

COMP-X

 16 Octaword integer 1
(Alpha, I64)

PIC S9(n)

[n <= 4]

COMP

COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

 2 Word integer

PIC S9(n)

[5 <= n <= 9]

COMP

COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

 4 Longword integer

PIC S9(n)

[10 <= n <= 18]

COMP

COMP-5 (Alpha,
I64)

COMP-X (Alpha,
I64)

 8 Quadword integer

PIC S9(n)

[19 <= n <= 31]
(Alpha, I64)

COMP

COMP-5

COMP-X

 16 Octaword integer
(Alpha, I64)

PIC X(n)

[n <= 2] (Alpha, I64)

COMP-5

COMP-X

 2 Word integer 1
(Alpha, I64)

PIC X(n)

[3 <= n <= 4]
(Alpha, I64)

COMP-5

COMP-X

 4 Longword integer 1
(Alpha, I64)

185

Data Division

PICTURE Clause
USAGE Clause SIGN Clause Allocated Storage

in Bytes
Standard Data
Type

PIC X(n)

[5 <= n <= 8]
(Alpha, I64)

COMP-5

COMP-X

 8 Quadword integer 1
(Alpha, I64)

Not applicable INDEX 4 Longword integer

Not applicable POINTER 4 Longword integer

(OpenVMS)
 POINTER 8 Quadword integer

(Tru64 UNIX)
 POINTER-64

(Alpha, I64)
 8 Quadword integer

(OpenVMS Alpha,
I64)

Not applicable BINARY-CHAR

UNSIGNED (Alpha,
I64)

 2 Word integer 1
(Alpha, I64)

Not applicable BINARY-SHORT

UNSIGNED (Alpha,
I64)

 2 Word integer 1
(Alpha, I64)

Not applicable BINARY-LONG

UNSIGNED (Alpha,
I64)

 4 Longword integer 1
(Alpha, I64)

Not applicable BINARY-DOUBLE

UNSIGNED (Alpha,
I64)

 8 Quadword integer 1
(Alpha, I64)

Not applicable BINARY-CHAR

SIGNED (Alpha,
I64)

BINARY-CHAR
(Alpha, I64)

 2 Word integer (Alpha,
I64)

Not applicable BINARY-SHORT

SIGNED (Alpha,
I64)

BINARY-SHORT
(Alpha, I64)

 2 Word integer (Alpha,
I64)

Not applicable BINARY-LONG

SIGNED (Alpha,
I64)

 4 Longword integer
(Alpha, I64)

186

Data Division

PICTURE Clause
USAGE Clause SIGN Clause Allocated Storage

in Bytes
Standard Data
Type

BINARY-LONG
(Alpha, I64)

Not applicable BINARY-DOUBLE

SIGNED (Alpha,
I64)

BINARY-DOUBLE
(Alpha, I64)

 8 Quadword integer
(Alpha, I64)

Not applicable COMP-1 4 F_floating

S_format 2 (Alpha,
I64)

Not applicable COMP-2 8 D_floating

G_floating (Alpha,
I64)

T_format 2 (Alpha,
I64)

PIC 9(n)

[n <= 31 (Alpha,
I64)]

COMP-3 (n+1)/2 rounded up Packed decimal 1

PIC S9(n)

[n <= 31 (Alpha,
I64)]

COMP-3 (n+1)/2 rounded up Packed decimal

PIC X(n)

[n <= 268,435,455]

DISPLAY n ASCII text

PIC A(n)

[n <= 268,435,455]

DISPLAY n ASCII text

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand. In this case, the compiler
stores the absolute value of the source data item.
2On OpenVMS Alpha and I64 systems, the data type depends on the /FLOAT qualifier. On Tru64 UNIX systems, it is always S format for
COMP-1, and always T format for COMP-2. Refer to the VSI COBOL User Manual Appendix B, describing compatibility with VSI COBOL
for information on the /FLOAT=IEEE qualifier.

Table 5.13. Scaled Data Items, Allocated Storage, and Data Types

PICTURE Clause USAGE Clause SIGN Clause Allocated Storage
in Bytes

Standard Data
Type

PIC S9(n)V9(s) DISPLAY n+s Right (trailing)

187

Data Division

PICTURE Clause USAGE Clause SIGN Clause Allocated Storage
in Bytes

Standard Data
Type

[(n+s) <= 31 (Alpha,
I64)]

overpunch

PIC S9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

DISPLAY TRAILING n+s Right (trailing)

overpunch

PIC S9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

DISPLAY LEADING n+s Left (leading)

overpunch

PIC S9(n)V9(s)

[(n+s) <= 31

(Alpha, I64)]

DISPLAY TRAILING

SEPARATE

n+s+1 Right (trailing)

separate

PIC S9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

DISPLAY LEADING

SEPARATE

n+s+1 Left (leading)

separate

PIC 9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

DISPLAY n+s Unsigned numeric

PIC 9(n)V9(s)

[(n+s) <= 4]

COMP 2 Word integer 1

PIC 9(n)V9(s)

[5 <= (n+s) <= 9]

COMP 4 Longword integer 1

PIC 9(n)V9(s)

[10 <= (n+s) <= 18]

COMP 8 Quadword integer 1

PIC 9(n)V9(s)

[19 <= (n+s) <= 31]
(Alpha, I64)

COMP 16 Octaword integer 1
(Alpha, I64)

PIC S9(n)V9(s)

[(n+s) <= 4]

COMP 2 Word integer

188

Data Division

PICTURE Clause USAGE Clause SIGN Clause Allocated Storage
in Bytes

Standard Data
Type

PIC S9(n)V9(s)

[5 <= (n+s) <= 9]

COMP 4 Longword integer

PIC S9(n)V9(s)

[10 <= (n+s) <= 18]

COMP 8 Quadword integer

PIC S9(n)V9(s)

[19 <= (n+s) <= 31]

COMP 16 Octaword integer
(Alpha, I64)

PIC 9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

COMP-3 (n+s+1)/2

rounded up

Packed decimal 1

PIC S9(n)V9(s)

[(n+s) <= 31 (Alpha,
I64)]

COMP-3 (n+s+1)/2

rounded up

Packed decimal

1The generated code treats this data type as a positive operand in all contexts except when it is a receiving-field operand. In this case, the
compiler stores the absolute value of the data type.

2.

Additional References
• PICTURE clause

• VALUE IS clause (Format 3) Alpha Architecture Reference Manual, available from Digital Press.

VALUE IS
VALUE IS

Function
The VALUE IS clause defines the values associated with condition-names, the initial value of Working-Storage
Section data items, the value of Report Section printable items, the compile-time initialization of variables to the
address of data, external constants, and the constant values of literal screen items.

189

Data Division

[lit]

is a numeric or nonnumeric literal. In a screen description entry, it is a nonnumeric literal.

[external-name]

names a COBOL link-time bound constant. It must define a word or longword integer value. See Technical Notes
for more information.

[data-name]

names a data item in the File or Working-Storage or Subschema Section. data-name may be qualified.

[low-val]

is a numeric or nonnumeric literal. It is the lowest value in a range of values associated with a condition-name
in a level 88 data description entry.

[high-val]

is a numeric or nonnumeric literal. It is the highest value in a range of values associated with a condition-name
in a level 88 data description entry.

[numeric-integer-lit]

is a positive numeric integer literal.

Syntax Rules
1. The words THRU and THROUGH are equivalent.

2. You must associate a signed numeric literal with either of the following:

a. A data item that has a signed numeric PICTURE character-string

b. A COMP-1 or COMP-2 data item

3. If you specify a numeric literal value:

190

Data Division

a. It must fall in the range of values defined by the data item's PICTURE clause.

b. It must not require truncation of nonzero digits; that is, it cannot have nonzero digits in positions represented
by Ps in the item's PICTURE clause.

4. If you specify a nonnumeric literal value, it must not exceed the size defined by the data item's PICTURE clause.

5. The Format 1, 3, and 4 VALUE IS clause cannot be used in any entry that is part of the description or redefinition
of an external data record.

6. The Format 3 VALUE IS clause is allowed only for an item containing the USAGE IS POINTER phrase.

7. The subject of the associated data description entry in a Format 4 VALUE IS clause must define a word or
longword data item.

8. In a screen description entry, the VALUE clause can be specified only at the elementary level.

General Rules
1. The VALUE IS clause must be consistent with other clauses in the data description of both the item and all

subordinate items. The following rules apply:

• If the category of the item is numeric, all literals in the VALUE IS clause must be numeric. lit is aligned in
the data item according to Standard Alignment Rule 1.

• If the category of the item is alphabetic, alphanumeric, alphanumeric edited, or numeric edited, all VALUE
IS clause literals must be nonnumeric. lit is aligned in the data item as if the data item were defined as
alphanumeric. Editing characters in the PICTURE clause count toward data item size but have no effect on
initialization. Therefore, if lit applies to an edited item, it must be in an edited form; Standard Alignment
Rule 3 applies.

• The BLANK WHEN ZERO clause does not directly affect initialization. However, the BLANK WHEN
ZERO clause can change the category of the data item. If the category of the data item changes, the rules
that apply change accordingly.

• The JUSTIFIED clause does not affect initialization.

2. In the File Section, the VALUE IS clause can apply only to condition-name entries. That is, you can use the
clause only for level 88 data items. In the Linkage Section, VALUE IS produces a warning for the other 88
data items.

3. Format 2 applies only to condition-name entries.

4. If a VALUE IS clause is specified in a data description entry that contains an OCCURS clause with a
DEPENDING ON phrase, every occurrence of the associated data item is set to the maximum value.

A data item is associated with a variable occurrence data item in any of the following cases:

• It is a group data item that contains a variable occurrence data item.

• It is a variable occurrence data item.

• It is subordinate to a variable occurrence data item.

If a VALUE IS clause is associated with the data item referenced by a DEPENDING ON phrase, that value is
considered to be placed in the data item after the variable occurrence data item is initialized.

5. If a VALUE IS clause is specified in a data description entry that contains an OCCURS clause, or in an entry
that is subordinate to an OCCURS clause, every occurrence of the associated data item is assigned the specified
value. (This applies to General Formats 1, 3, and 4.)

191

Data Division

Condition-Name Rules for Format 2
1. The VALUE IS clause is required in a condition-name entry. The condition-name entry can contain only the

condition-name itself and the VALUE IS clause.

2. The characteristics of a condition-name are implicitly the same as those of its conditional variable.

3. When using the EXTERNAL option, the associated conditional variable must be a word or longword COMP
data item.

4. When using the REFERENCE option, the associated conditional variable must be POINTER usage.

5. If the THRU phrase is used, each low-val, external-name, and data-name must be less than the corresponding
high-val, external-name, and data-name.

Rules for Other Data Description Entries
1. A Working-Storage Section VALUE IS clause takes effect only when the program enters its initial state.

2. The VALUE IS clause initializes the data item to the value of lit.

3. If a data item's data description entry does not have a VALUE IS clause, the initial contents of the data item
are the following:

• Zero, for numeric items

• Undefined, for index data items, and data items whose descriptions include or are subordinate to an OCCURS
clause

• Spaces, for all other items

4. In the Report Section, if an elementary report entry contains a VALUE IS clause but does not contain a GROUP
INDICATE clause, the printable item assumes the specified value each time the Report Writer Control System
(RWCS) prints the Report Group. However, if the entry contains the GROUP INDICATE clause, the RWCS
presents the specified value only when certain run-time conditions exist. See the description of the GROUP
INDICATE clause for more information.

5. The VALUE IS clause cannot be used in a data description entry that has a REDEFINES clause or is subordinate
to a data description entry with a REDEFINES clause.

6. The VALUE IS clause can be in a data description entry for a group item. In this case:

• lit must be a figurative constant or nonnumeric literal.

• The group area is initialized as if the group were an elementary alphanumeric data item.

• Initialization of group items is not affected by the characteristics of the group's subordinate group or
elementary items.

• The VALUE IS clause cannot be used in data description entries for the group's subordinate group or
elementary items.

7. The VALUE IS clause cannot be used in the data description entry for a group that contains subordinate items
with any of the following clauses:

• JUSTIFIED

• SYNCHRONIZED

• USAGE (other than USAGE IS DISPLAY)

8. The VALUE IS clause cannot be used in the report group description entry for a group that contains subordinate
items with a JUSTIFIED clause.

192

Data Division

9. The Format 3 VALUE IS clause results in the compile-time initialization of its data description entry to the
address of data-name or to numeric-integer-lit. Use this clause to pass arguments to non-COBOL procedures
requiring an address rather than a user-defined word.

10.In Format 4, external-name must be the name of an external symbol (a symbol in another program unit) that
is known to the linker when the program is linked.

11.The Format 4 VALUE IS clause results in the linker storing the value of external-name at the storage location
defined by the data description entry containing the VALUE IS EXTERNAL clause.

Technical Notes
• external-name is a COBOL word formed according to the rules for user-defined names. The compiler translates

hyphens in the COBOL word to underscore characters.

• external-name names a constant whose value is unknown at compile time but known at link time.

• Although the VALUE IS clause is not valid in the LINKAGE SECTION, the compiler allows such a
specification, as a VSI extension. The clause, when specified in the LINKAGE SECTION, has no effect on
program execution, and is flagged with an informational VSI extension diagnostic.

Additional References
• PROGRAM-ID paragraph in Chapter 3, Identification Division

• PICTURE clause

• USAGE clause

• Section 1.2.1.1, “User-Defined Words” in Section 1.2.1, “ COBOL Words”

• Section 5.2.2: COBOL Standard Alignment Rules

Examples
1. The following is an example of initializing alphanumeric data items:

01 ITEMA PIC X(20) VALUE IS "12345678901234567890".
01 ITEMB PIC XX VALUE IS "NH".

2. The following is an example of initializing numeric data items:

01 ITEMX PIC S9999 VALUE IS -39.
01 ITEMZ PIC 9 VALUE ZERO.

3. The following is an example of assigning condition-name values:

01 ITEMC PIC 99.
 88 VAL1 VALUE IS 4.
 88 VAL2 VALUE IS 5 THRU 9 12.
 88 VAL3 VALUES ARE 10 14 THRU 23 27 29 30.
 88 VAL4 VALUES ARE 0 THRU 49, 51 THRU 99.
 88 VAL5 VALUES ARE 0 10 20 30 40 50.

4. The VALUE IS EXTERNAL clause allows a COBOL program to equate a mnemonic system constant to a
value representing a return status code rather than the numeric equivalent. The following are some examples
of this clause:

On OpenVMS

WORKING-STORAGE SECTION.

193

Data Division

*
* System Services
*
01 BADHEADER PIC S9(9) COMP
 VALUE IS EXTERNAL SS$_BADFILHDR.
01 BADNAME PIC S9(9) COMP
 VALUE IS EXTERNAL SS$_BADFILENAME.
01 NORMAL PIC S9(9) COMP
 VALUE IS EXTERNAL SS$_NORMAL.
*
* Record Management Services
*
01 RMSDEV PIC S9(9) COMP
 VALUE IS EXTERNAL RMS$_DEV.
*
* Database
*
01 DBMDBBUSY PIC S9(9) COMP
 VALUE IS EXTERNAL DBM$_DBBUSY.
01 DBMEND PIC S9(9) COMP
 VALUE IS EXTERNAL DBM$_END.
*
* Run-Time Library
*
01 LIBINVARG PIC S9(9) COMP
 VALUE IS EXTERNAL LIB$_INVARG.
01 LIBINVSCRPOS PIC S9(9) COMP
 VALUE IS EXTERNAL LIB$_INVSCRPOS.

PROCEDURE DIVISION.

 OPEN...
 IF RMS-STS = BADHEADER PERFORM...
 IF RMS-STS = BADNAME PERFORM 100-FIX-NAME.

5. The following example shows the VALUE IS REFERENCE clause:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEM-LIST.
 02 ITEM-PROCESS-NAME.
 03 PIC S9(4) COMP VALUE 15.
 03 PIC S9(4) COMP VALUE EXTERNAL JPI$_PRCNAM.
 03 POINTER VALUE REFERENCE PROCESS-NAME.
 03 POINTER VALUE REFERENCE PROCESS-NAME-LENGTH.
 02 ITEM-USER-NAME.
 03 PIC S9(4) COMP VALUE 12.
 03 PIC S9(4) COMP VALUE EXTERNAL JPI$_USERNAME.
 03 POINTER VALUE REFERENCE USER-NAME.
 03 PIC S9(9) COMP VALUE 0.
 02 ITEM-CPU-TIME.
 03 PIC S9(4) COMP VALUE 4.
 03 PIC S9(4) COMP VALUE EXTERNAL JPI$_CPUTIM.
 03 POINTER VALUE REFERENCE CPU-TIME.
 03 PIC S9(9) COMP VALUE 0.
 02 ITEM-TURMINAL.
 03 PIC S9(4) COMP VALUE 7.
 03 PIC S9(4) COMP VALUE EXTERNAL JPI$_TERMINAL.

194

Data Division

 03 POINTER VALUE REFERENCE TURMINAL.
 03 POINTER VALUE REFERENCE TURMINAL-LENGTH.
 02 TERMINATOR-ENTRY PIC S9(9) COMP VALUE 0.

01 PROCESS-NAME PIC X(15) VALUE SPACES.
01 PROCESS-NAME-LENGTH PIC S9(4) COMP VALUE 0.
01 USER-NAME PIC X(12) VALUE SPACES.
01 CPU-TIME PIC S9(9) COMP VALUE 0.
01 TURMINAL PIC X(7) VALUE SPACES.
01 TURMINAL-LENGTH PIC S9(4) COMP VALUE 0.

VALUE OF ID
VALUE OF ID

Function
The VALUE OF ID clause specifies, replaces, or completes a file specification.

[file-name]

is a nonnumeric literal. It contains the full or partial file specification.

[data-name]

is the data-name of an alphanumeric Working-Storage Section data item. It contains the full or partial file
specification.

General Rules
1.

Each file specification field in file-name augments the specification in the ASSIGN clause of the SELECT
statement.

2. A file specification field in the VALUE OF ID clause overrides the corresponding field in the SELECT
statement. If a file specification field is either in the SELECT statement or in the VALUE OF ID clause (but
not in both), it becomes part of the file specification.

3. On Tru64 UNIX systems, if you specify a VALUE OF ID clause with which you specified an OpenVMS logical,
you must use an environment variable, as follows:

VALUE OF ID "DISK1"

Define the environment variable using one of the following:

% setenv DISK1
% setenv DISK1 /usr/data/
% setenv DISK1 /usr/data/test1.dat

4. The number of bytes in the string making up file-name or data-name must not exceed 255.

Technical Notes
•

195

Data Division

• If the associated file connector is an external file connector, all file description entries in the run unit that are
associated with that file connector must define the same file specification. For a data-name it must be external
and reference the same data item in all programs defining the file.

Additional References
• ASSIGN

• VSI COBOL User Manual, on exception condition handling

• On OpenVMS, OpenVMS Record Management Services Reference Manual in the OpenVMS documentation set

196

Procedure Division

Chapter 6. Procedure Division
This chapter includes the general formats for all Procedure Division statements, describes their basic elements,
and explains how to use them.

6.1. Verbs, Statements, and Sentences
A COBOL verb is a reserved word that expresses an action to be taken by the compiler or the object program.
A verb and its operands make up a COBOL statement. One or more statements terminated by a separator period
form a COBOL sentence.

At the statement level, actions can be further differentiated: actions taken by the object program can be conditional
or unconditional. In some cases, the verb in the statement defines whether the action is conditional or unconditional.
One verb, IF, always defines a conditional action. Other verbs, such as READ, can define conditional action
when you use phrases with them that make the action conditional. PERFORM and MOVE are examples of verbs
that always define unconditional action. Most often, however, whether an action is conditional or unconditional
depends on not only which verb, but also which phrases you use in the statement.

There are four types of COBOL statements:

• Compiler-directing statements specify an action taken by the compiler during compilation. See Section 6.1.1,
“Compiler-Directing Statements and Sentences” for more information.

• Imperative statements specify an unconditional action taken by the object program at run time. See Section 6.1.2,
“Imperative Statements and Sentences” for more information.

• Conditional statements specify a conditional action taken by the object program at run time. See Section 6.1.3,
“Conditional Statements and Sentences” for more information.

• Delimited-scope statements specify their explicit scope terminator. See Section 6.1.4, “Scope of Statements”
for more information.

Table 6.1, “Types and Categories of COBOL Statements” shows the four types of COBOL statements. It also
shows that the imperative statements are further subdivided into nine categories and specifies the verbs that each
category includes. When associated phrases are not specified, the verb alone defines the category. For compiler-
directing and conditional statements, type and category are synonymous.

Table 6.1. Types and Categories of COBOL Statements

Type Category Verb

Compiler-Directing Compiler-Directing COPY

REPLACE

USE

RECORD

Conditional Conditional ACCEPT ([NOT] AT END or
Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase
(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase
(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
(5) Without the optional [NOT] ON OVERFLOW phrase
(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

197

Procedure Division

Type Category Verb
[NOT] ON EXCEPTION)

ADD ([NOT] ON SIZE ERROR)

CALL ([NOT] ON EXCEPTION or

[NOT] ON OVERFLOW)

COMPUTE ([NOT] ON SIZE
ERROR)

DELETE ([NOT] INVALID KEY)

DISPLAY ([NOT] ON
EXCEPTION)

DIVIDE ([NOT] ON SIZE
ERROR)

EVALUATE

IF

MULTIPLY ([NOT] ON SIZE
ERROR)

READ ([NOT] AT END or

[NOT] INVALID KEY)

RETURN([NOT] AT END)

REWRITE ([NOT] INVALID
KEY)

SEARCH(AT END)

START ([NOT] INVALID KEY)

STRING ([NOT] ON
OVERFLOW)

SUBTRACT ([NOT] ON SIZE
ERROR)

UNSTRING ([NOT] ON
OVERFLOW)

WRITE ([NOT] INVALID KEY or

[NOT] END-OF-PAGE)
Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase
(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase
(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
(5) Without the optional [NOT] ON OVERFLOW phrase
(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

198

Procedure Division

Type Category Verb

Imperative Arithmetic ADD (1)

COMPUTE (1)

DIVIDE (1)

INSPECT (TALLYING)

MULTIPLY (1)

SUBTRACT (1)

 Data-Movement ACCEPT (DATE, DAY, DAY-OF-

WEEK or TIME)

INITIALIZE

INSPECT (REPLACING or
CONVERTING)

MOVE

SET (TO TRUE)

STRING (5)

UNSTRING (5)

 Ending STOP

Imperative Input-Output ACCEPT (identifier or CONTROL

KEY IN identifier)

CLOSE

DELETE (3)

DISPLAY

OPEN

READ (4)

REWRITE (3)

SET (TO ON or TO OFF)
Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase
(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase
(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
(5) Without the optional [NOT] ON OVERFLOW phrase
(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

199

Procedure Division

Type Category Verb
START (3)

STOP (literal)

UNLOCK

WRITE (6)

 Inter-Program

Communications

CALL (2)

CANCEL

 Procedure-Branching ALTER

CALL

CONTINUE

EXIT

GO TO

PERFORM

 Table-Handling SEARCH

SET (TO, UP BY, or DOWN BY)

SORT

 Ordering MERGE

RELEASE

RETURN

SORT

 Report Writing GENERATE

INITIATE

SUPPRESS

TERMINATE

Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase
(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase
(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
(5) Without the optional [NOT] ON OVERFLOW phrase
(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

200

Procedure Division

Type Category Verb

Delimited-Scope Delimited-Scope ACCEPT (END-ACCEPT)

ADD (END-ADD)

CALL (END-CALL)

COMPUTE (END-COMPUTE)

DELETE (END-DELETE)

DIVIDE (END-DIVIDE)

EVALUATE (END-EVALUATE)

IF (END-IF)

MULTIPLY (END-MULTIPLY)

PERFORM (END-PERFORM)

READ (END-READ)

RETURN (END-RETURN)

REWRITE (END-REWRITE)

SEARCH (END-SEARCH)

START (END-START)

STRING (END-STRING)

SUBTRACT (END-SUBTRACT)

UNSTRING (END-UNSTRING)

WRITE (END-WRITE)
Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase
(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase
(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
(5) Without the optional [NOT] ON OVERFLOW phrase
(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

Like statements, COBOL sentences also can be compiler-directing, imperative, or conditional. Sentence type
depends upon the types of statements the sentence contains. Table 6.2, “Contents of COBOL Sentences”
summarizes the contents of the three types of COBOL sentences. The remaining text in this section describes each
type of statement and sentence in greater detail.

Table 6.2. Contents of COBOL Sentences

Type Contents of Sentence

Imperative One or more consecutive imperative statements ending with a period
Conditional One or more conditional statements, optionally preceded by an imperative

statement, terminated by the separator period
Compiler-Directing Only one compiler-directing statement ending with a period

201

Procedure Division

6.1.1. Compiler-Directing Statements and Sentences
A compiler-directing statement causes the compiler to take an action during compilation. The verbs COPY,
REPLACE, RECORD, and USE define compiler-directing statements. A compiler-directing sentence can contain
other statements but it must contain only one compiler-directing statement. The compiler-directing statement must
be the last statement in the sentence and must be followed immediately by a period.

6.1.2. Imperative Statements and Sentences
An imperative statement specifies an unconditional action for the program. It must contain a verb and the verb's
operands, and cannot contain any conditional phrases. For example, the following statements are imperative:

OPEN INPUT FILE-A

COMPUTE C = A + B

However, the following statement is not imperative because it contains the phrase, ON SIZE ERROR, which makes
the program's action conditional:

COMPUTE C = A + B ON SIZE ERROR PERFORM NUM-TOO-BIG.

In the Procedure Division rules, an imperative statement can be a sequence of consecutive imperative statements.
The sequence must end with: (1) a separator period or (2) any phrase associated with a statement that contains
the imperative statement. For example, the following sentence contains a sequence of two imperative statements
following the AT END phrase.

READ FILE-A AT END PERFORM NO-MORE-RECS
 DISPLAY "No more records." END-READ.

An imperative sentence contains only imperative statements and ends with a separator period.

6.1.3. Conditional Statements and Sentences
A conditional statement determines a condition's truth value. (A truth value is either a yes or no answer to the
question, “Is the condition true?”.) The statement uses the truth value generated by the program to determine
subsequent program action.

Conditional statements are as follows:

• An EVALUATE, IF, RETURN, or SEARCH statement

• An ACCEPT statement with the [NOT] AT END or [NOT] ON EXCEPTION phrase

• A DISPLAY statement with the [NOT] ON EXCEPTION phrase

• A READ statement with the [NOT] AT END or [NOT] INVALID KEY phrase

• A WRITE statement with the [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

• A DELETE, REWRITE, or START statement with the [NOT] INVALID KEY phrase

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT) with the [NOT] ON SIZE
ERROR phrase

• A STRING or UNSTRING statement with the [NOT] ON OVERFLOW phrase

• A CALL statement with the [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase

A conditional sentence is a conditional statement that ends with a separator period. It can include an optional
preceding imperative statement. For example, the following sentence is conditional even though it contains the
imperative statement, GO TO PROC-A:

202

Procedure Division

READ FILEA AT END GO TO PROC-A.

The program interprets this sentence to mean “If not at the end of the file, read the next record; otherwise, go
to PROC-A.”

6.1.4. Scope of Statements
Scope terminators delimit the scope of some Procedure Division statements.

The scope of statements contained (nested) in other statements can also terminate implicitly. When statements are
contained in other statements, a separator period (that terminates the sentence) terminates all nested statements
as well.

In the following example, the separator period terminates the IF, MOVE, and PERFORM statements:

IF ITEMA = ITEMB
 MOVE ITEMC TO ITEMB
 PERFORM PROCA.

In the following example, the ELSE phrase of the IF statement terminates the scope of the READ and the first
MOVE statements:

IF ITEMA = ITEMB
 READ FILEA
 AT END MOVE ITEMC TO ITEMB
ELSE
 MOVE ITEMD TO ITEME.

A delimited-scope statement is a special category of statement used in structured programming. A delimited-scope
statement is any statement that includes its explicit scope terminator. See Section 6.3.4, “Explicit and Implicit
Scope Terminators” for a list of explicit scope terminators.

A delimited-scope statement can be nested in another delimited-scope statement with the same verb. Then, each
explicit scope terminator terminates the statement that begins with the closest unpaired preceding occurrence of
the verb.

In the following example, the END-IF after the ADD statements (line 8) terminates the IF on line 5. The END-IF
after the SUBTRACT (line 10) terminates the IF on line 3. The scope of the first IF statement (line 1) is terminated
by the separator period on line 11.

1. IF ITEMA = ITEMB

2. ##MULTIPLY ITEMH BY ITEMI

3. ##IF ITEMI > 18

4. ####MOVE ITEMC TO ITEMD

5. ####IF ITEMD > ITEME

6. ######ADD ITEME TO ITEMF

7. ######ADD ITEMG TO ITEMH

8. ####END-IF

9. ####SUBTRACT 6 FROM ITEMH

10.##END-IF

11.##PERFORM PROCA.

203

Procedure Division

6.2. Uniqueness of Reference
Every user-defined name in a COBOL program names a resource. (See the section on User-Defined Words in
Section 1.2.1, “ COBOL Words”.) To use a resource, however, a statement in a COBOL program must contain a
reference that uniquely identifies that resource. Qualification, reference modification, and subscripting or indexing
allow unique and unambiguous references to that resource. Qualified procedure-names allow uniqueness of
reference to procedures, and qualified condition-names allow uniqueness of reference to condition-names.

When you assign the same name in separate (contained) programs to two or more occurrences of a resource, certain
conventions apply that limit the scope of names. Name scoping and scope of names are COBOL language terms
that describe the methods for resolving references to user-defined words in a contained program environment.
(See Section 6.2.6: Scope of Names.)

Some user-defined words can be made available to every program in the run unit. (See the EXTERNAL clause in
Chapter 5, Data Division.) These words are called external data. Other user-defined words can be made available
to programs contained within the program that defines that resource. (See the GLOBAL clause in Chapter 5, Data
Division.) These words are called global data.

6.2.1. Qualification
A reference to a user-defined word is unique if one or more of the following conditions exists:

• No other name has the same spelling, including hyphenation.

• It is part of a REDEFINES clause. (The reference following the word REDEFINES is unique because of the
placement of the REDEFINES clause.) See the Syntax Rules for the REDEFINES clause.

• Scoping rules make it unique. (See Section 6.2.6: Scope of Names.)

A nonunique name within a hierarchy of names can be used in more than one place in your program. Unless you are
redefining it, you must refer to this nonunique name using one or more higher-level names in the hierarchy. These
higher-level names are called qualifiers. Using them to achieve uniqueness of reference is called qualification.

To make your reference unique, you need not specify all available qualifiers for a name, only those necessary to
eliminate ambiguity.

Consider the following two record descriptions:

01 REC1.
 05 ITEMA PIC XX.
 05 ITEMB PIC X(20).

01 REC2.
 05 GROUP1.
 10 ITEMA PIC 9(5).
 10 ITEMB PIC X(3).
 05 GROUP2.
 10 ITEMC PIC X(4).
 10 ITEMD PIC X(8).

ITEMA and ITEMB appear in both record descriptions. Therefore, you must use qualifiers when you refer to
these items in Procedure Division statements. For example, all of the following references to ITEMA are unique:
ITEMA OF GROUP1, ITEMA OF REC1, ITEMA IN GROUP1 OF REC2.

Regardless of the preceding, you cannot use the same data-name as:

• The name of an external record and as the name of any other external data item in any program contained within
or containing the program describing the external data record

• The name of an item possessing the global attribute and as the name of any other data item in the program
describing the global data item

204

Procedure Division

When a program is contained within a program or contains another program, specific conventions apply. (See
Section 6.2.6, “Scope of Names”.)

The general formats for qualification are as follows:

The following syntax rules apply to qualification:

1. Each reference to a nonunique, user-defined name must use a sequence of qualifiers that eliminates ambiguity
from the reference.

2. A name can be qualified even if it does not need qualification. If more than one set of qualifiers ensures
uniqueness, any set can be used.

3. IN and OF are equivalent.

205

Procedure Division

4. In Format 1, each qualifier must be either the name associated with a level indicator, the name of a group to
which the item being qualified is subordinate, or the name of a condition variable with which the condition-
name being qualified is associated. (See Section 6.2.5, “Ensuring Unique Condition-Names”.) Qualifiers must
be ordered from least- to most-inclusive levels in the hierarchy.

5. In Format 7, each qualifier must be the name of a group to which the item being qualified is subordinate.
Qualifiers must be ordered from least- to most-inclusive levels in the hierarchy.

6. In Format 1, data-name-2 can be a record-name.

7. If the program contains explicit references to a paragraph-name, the paragraph-name cannot appear more than
once in the same section. When a section-name qualifies a paragraph-name, the word SECTION cannot appear.
A paragraph-name need not be qualified in a reference from within the same section. You cannot reference a
paragraph-name or section-name from any other program.

8. On OpenVMS, in Format 3, a COPY statement that accesses an OpenVMS Librarian library-record must
qualify text-name with library-name.

9. In Format 3, on Tru64 UNIX systems, the library-name for the COPY statement will direct COPY to access
the text-name file from the library-name subdirectory.

See Chapter 8, Source Text Manipulation for information on the COPY statement.

10.If the program has more than one file description entry with a LINAGE clause, every reference to LINAGE-
COUNTER must be qualified.

11.If the program has more than one report description entry, every Procedure Division reference to LINE-
COUNTER must be qualified.

12.In the Report Section, an unqualified reference to LINE-COUNTER is qualified implicitly by the name of the
report in whose report description entry the reference is made. Whenever the LINE-COUNTER of a different
report is referenced, LINE-COUNTER must be qualified explicitly by the report name associated with the
different report.

13.If the program has more than one report description entry, every Procedure Division reference to PAGE-
COUNTER must be qualified.

14.In the Report Section, an unqualified reference to PAGE-COUNTER is qualified implicitly by the name of the
report in whose report description entry the reference is made. Whenever the PAGE-COUNTER of a different
report is referenced, PAGE-COUNTER must be qualified explicitly by the report name associated with the
different report.

15.On OpenVMS, if the program has more than one file description entry, every reference to RMS-STS, RMS-
STV, and RMS-FILENAME must be qualified.

6.2.2. Subscripts and Indexes
Occurrences of a table are not individually named. You refer to them by using a subscript or index to specify
their location relative to the table's beginning. Subscripting is a general operation; indexing is a special form of
subscripting.

Unless otherwise specified by the rules for a statement, subscripts and indexes are evaluated once, at the beginning
of a statement. If a statement contains rules describing the evaluation of subscripts, those rules also apply to the
evaluation of indexes.

Subscripting

206

Procedure Division

Subscripts can appear only in references to individual elements in a list, or table, of like elements that do not have
individual data-names. (See the OCCURS clause in Chapter 5, Data Division.)

The general format for subscripting is as follows:

All restrictions in the rules for subscripting also apply to indexing (See the following subsection describing the
section called “Indexing”.) The following rules apply to subscripting:

1. A subscript can be represented by any arithmetic expression.

2. In Format 2, argument is an intrinsic function argument that is allowed to be repeated a variable number of
times. Note that Format 1 also applies to intrinsic function arguments, but not with ALL subscripts. When
ALL is specified as a subscript, the effect is as if each table element associated with that subscript position
were specified. (For a list of the intrinsic functions that permit arguments with ALL subscripts, and for more
information, see Chapter 7, Intrinsic Functions.) Also in Format 2, data-name is the data-name of a numeric
integer elementary item.

3. Identifiers in subscript arithmetic expressions must refer to elementary numeric data items.

4. The lowest valid subscript value is 1. This value points to the first element of the table. Subscript values 2, 3,
and so on, point to the next consecutive table elements.

5. The highest valid subscript value is the maximum number of occurrences of the item specified in the OCCURS
clause.

6. The subscript or set of subscripts that identifies the table element is delimited by a balanced pair of left and
right parentheses.

7. Each table element reference must include subscripting. However, the reference cannot include subscripting
when it is one of the following:

• The subject of a SEARCH statement

• In a REDEFINES clause

• In the KEY IS phrase of an OCCURS clause

8. The subscript or set of subscripts follows the table element's data-name. The data-name is then called a
subscripted data-name or an identifier.

9. The number of subscripts following a table element reference must equal the number of dimensions in the table;
that is, there must be a subscript for each OCCURS clause in the hierarchy that contains the table element and
one for the table element itself.

10.A data-name can have up to 48 subscripts.

11.Subscripts must appear in the order of successively less inclusive dimensions of the table.

12.An arithmetic expression in a subscript cannot begin with a left parenthesis if the preceding arithmetic
expression ends with a data-name.

207

Procedure Division

Note

Use the check compiler option with the bounds keyword for run-time upper- and lower-bound subscript range
verification. The default action is not to check. For more information, refer to the COBOL online help file for
your particular platform.

In the following examples, references to ITEME require two subscripts. The first subscript refers to the occurrence
number of the most inclusive dimension, ITEMD (that contains ITEME).

Example 6.1. Subscripting Example

WORKING-STORAGE SECTION.
01 ITEMA PIC 99 COMP VALUE IS 3.
01 ITEMB PIC 99 COMP VALUE IS 5.
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".
 03 ITEMD OCCURS 4 TIMES.
 05 ITEME OCCURS 6 TIMES PIC X.

IDENTIFIER VALUE
ITEME (4,3) ##U
ITEME (ITEMA,ITEMB) ##Q
ITEME (ITEMA * 2 - 4, ITEMB - 2) ##I
ITEME (ITEMA * ITEMB / 15, (ITEMA + ITEMB) /
4)

##B

Indexing
Indexing is a special subscripting procedure. In indexing, you use the INDEXED BY phrase of the OCCURS clause
to assign an index-name to each table level. You then refer to a table element using the index-name as a subscript.

The general format for indexing follows:

All the restrictions in the rules for subscripting apply to indexing. (See the section called “Subscripting”.) The
following rules apply only to indexing:

1. You must give index-name an initial value before using it. You can do this in:

• A SET statement

• A SEARCH statement with the ALL phrase

• A PERFORM statement with the VARYING phrase

Furthermore, only the statements in the previous list can change the value of index-name.

2. Indexing can be either direct or relative. Direct indexing means that the value of index-name or literal-1 is the
occurrence number. Relative indexing means that the occurrence number is the value of index-name plus or
minus literal-2. literal-2 must be an unsigned integer.

208

Procedure Division

Note

Use the check compiler option with the bounds keyword for run-time upper- and lower-bound index range
verification. The default is not to check. For more information, refer to the COBOL online help file for your
particular platform.

Example 6.2, “Indexing Example” is similar to Example 6.1, “Subscripting Example” that illustrates subscripting.
However, this example shows the use of index-names in references to the table, initializing indexes with the SET
statement, and storing index-name values in index data items.

Example 6.2. Indexing Example

WORKING-STORAGE SECTION.
01 ITEMA USAGE IS INDEX.
01 ITEMB USAGE IS INDEX.
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".
 03 ITEMD OCCURS 4 TIMES
 INDEXED BY DX.
 05 ITEME OCCURS 6 TIMES
 INDEXED BY EX PIC X.
PROCEDURE DIVISION.
PARA.
 SET DX TO 4.
 SET EX TO 1.
 DISPLAY ITEMD (DX).
 DISPLAY ITEME (DX, EX).
 DISPLAY ITEME (DX - 3, EX)
 SET ITEMA TO DX. SET ITEMB TO EX.

This example produces the following results:

:STUVWX
:S
:A

6.2.3. Reference Modification
Reference modification defines a subset of a data item by specifying its leftmost character and length.

data-name must refer to a data item whose usage is DISPLAY.

function-name must refer to an alphanumeric function.

The specifications for leftmost-character-position and length must be arithmetic expressions.

Each character of a data item has an ordinal number corresponding to its position. The leftmost position is number
1; successive positions to the right are numbered 2, 3, 4, and so on. If the data-name's data description entry has
a SIGN IS SEPARATE clause, the sign position is assigned an ordinal number in the data item.

For a data item defined as numeric, numeric edited, alphanumeric, alphabetic, or alphanumeric edited, reference
modification operates as if the data item were redefined as an alphanumeric data item the same size as that referred
to by data-name.

209

Procedure Division

Unless otherwise specified by the rules for a statement, reference modification is evaluated only once, at
the beginning of a statement. Reference modification is evaluated immediately after subscripting or indexing
evaluation. Rules that describe the evaluation of subscripting for the various statements also apply to the evaluation
of reference modification.

The components of reference modification define the data item as follows:

• The evaluation of leftmost-character-position specifies the ordinal position of the data item's leftmost character.
This position is relative to the leftmost character of the data item referred to by data-name. Evaluation of
leftmost-character-position must result in an integer that is not less than 1, or greater than the number of
characters in the data item referred to by data-name.

• The evaluation of length specifies the size of the unique data item. The evaluation must result in a positive
integer. The sum of leftmost-character-position and length minus the value 1 must not exceed the number of
characters in the data item referred to by data-name.

• If there is no length, the data item extends:

• From and including the character identified by leftmost-character-position of the data item referred to by
data-name

• To and including the rightmost character of the data item referred to by data-name

The resulting unique data item is treated as an elementary item without the JUSTIFIED clause. It has the same
class and category as the data item referred to by data-name. However, the categories numeric, numeric edited,
and alphanumeric edited are considered category alphanumeric.

Reference modification is valid anywhere an alphanumeric identifier is allowed unless specific rules for a general
format prohibit it.

Note

Use the check compiler option with the bounds keyword for run-time upper- and lower-bound reference
modification range verification. The default is not to check. For more information, refer to the COBOL online
help file for your particular platform.

Examples
WORKING-STORAGE SECTION.
01 ITEMA PIC X(15) VALUE IS "ABCDEFGHIJKLMNO".
01 ITEMB PIC 99 VALUE IS 10.

IDENTIFIER VALUE
ITEMA (2:3) BCD
ITEMA (ITEMB:2) JK
ITEMA (ITEMB / 2:ITEMB - 6) EFGH
ITEMA (ITEMB:) JKLMNO

6.2.4. Identifiers
In Procedure Division rules, the term identifier means the complete specification of a data item. The term refers
to all words required to make your reference to the item unique.

To reference a data item that is a function, a function-identifier is used. For information on functions, see Chapter 7,
Intrinsic Functions.

The general formats for identifiers are as follows:

210

Procedure Division

For more information on the methods of uniquely specifying data items, see the following:

• Section 6.2.1: Qualification

• Section 6.2.2: Subscripts and Indexes

• Section 6.2.3: Reference Modification

• Section 6.2.6: Scope of Names

6.2.5. Ensuring Unique Condition-Names
If the name you use as a condition-name appears in more than one place in your program, it can be made unique
through qualification, indexing, or subscripting. Your condition-name also is unique when the scope of names
conventions by themselves ensure this as described in Section 6.2.6: Scope of Names.

The first qualifier for a condition-name can be the name of the item with which it is associated (the conditional
variable). When qualifying condition-names, you must use the name of the conditional variable itself or the names
of items that contain it.

References to a condition-name must have the same combination of subscripting or indexing that you use for the
conditional variable.

The formats you use to ensure unique condition-names are the same as those used for an identifier, except
condition-name replaces data-name.

In Procedure Division rules, the term condition-name refers to a condition-name along with any qualification and
subscripting or indexing needed to avoid ambiguity.

6.2.6. Scope of Names
A contained COBOL program can refer to a user-defined word in its containing program if the user-defined word
has the global attribute. (See Section 1.2.1.1, “User-Defined Words” in Section 1.2.1, “ COBOL Words”.) Some
user-defined words always have the global attribute, some never have the attribute (that is, they are local), and
some might or might not, depending on the use of the GLOBAL clause. The following rules explain how to use
different kinds of user-defined words and what kinds of local and global name scoping to expect.

1. The following types of user-defined words are always local and can be referenced only by statements and entries
in the program declaring them:

• Paragraph-name

• Section-name

2. These user-defined words are always local when you define them in the Report Section. Only those statements
and entries in the program containing the entries can reference them.

• Condition-name

• Data-name

211

Procedure Division

• Record-name

3. The following user-defined word is always local when you define it in the Screen Section. Only those statements
and entries in the program containing the entries can reference it.

• Screen-name

4. Because you cannot specify a Configuration Section for a program contained within another program, the
following types of user-defined words are always global when declared in the Configuration Section. You can
reference them only by statements and entries either in the program that contains the Configuration Section or
in any program contained within that program.

• Alphabet-name

• Condition-name (declared in the Special Names paragraph)

• Mnemonic-name

• Symbolic-character-name

• Switch-name

• Class-name

5. The following user-defined words are global if you specify the GLOBAL clause:

• Condition-name (declared in the Data Division)

• Data-name

• File-name

• Index-name

• Record-name

• Report-name

• Segmented-key-name (if you specify the GLOBAL clause on the corresponding file-name)

Specific conventions for declarations and references apply to these types of user-defined words whenever the
previous conditions do not apply.

Whenever duplicate names exist, a program always references the resource in its own program. If the resource is
not in the referencing program, the following two conventions are used:

• Conventions for resolving program-name references

• Conventions for resolving other references

The next two sections describe these conventions.

6.2.6.1. Conventions for Resolving Program-Name References
The PROGRAM-ID paragraph of the Identification Division declares the program-name; a user-defined word to
identify the program. Only the CALL and CANCEL statements and the END PROGRAM header can reference
a program-name.

A run unit can contain multiple programs with duplicated program-names. However, when two programs have
duplicate program-names, one of the two programs must directly or indirectly be contained within a separately
compiled program that does not contain the program with the duplicated program-name.

The following rules regulate the scope of program-name:

212

Procedure Division

1. Within a run unit, any separately compiled program can reference any other separately compiled program.

2. If a program-name does not have the COMMON attribute and it is contained directly within another program,
the contained program can be referenced only by statements included in the directly containing program.

For example, in the run unit consisting of the three separately compiled programs illustrated in Example 6.3,
“Separately Compiled Program 1”, Example 6.4, “Separately Compiled Program 2”, and Example 6.5,
“Separately Compiled Program 3”:

• MAIN-PROGRAM (See in Example 6.3, “Separately Compiled Program 1”) directly contains program
PROG-NAME-A and indirectly contains PROG-NAME-B , PROG-NAME-C , PROG-NAME-D ,
and PROG-NAME-F .

• PROG-NAME-B (See in Example 6.4, “Separately Compiled Program 2”.)

• PROG-NAME-E (See in Example 6.5, “Separately Compiled Program 3”.)

The CALL “PROG-NAME-B” statement in PROG-NAME-A (See in Example 6.3, “Separately Compiled
Program 1”.) references PROG-NAME-B in the same separately compiled program (MAIN-PROGRAM)
because PROG-NAME-B is directly contained in PROG-NAME-A. All other CALL “PROG-NAME-
B” statements (and and in Example 6.3, “Separately Compiled Program 1” and in Example 6.5,
“Separately Compiled Program 3”) all reference PROG-NAME-B in Example 6.4, “Separately Compiled
Program 2”, the second separately compiled program.

Example 6.3. Separately Compiled Program 1

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN-PROGRAM.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-A.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-C.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-D.
 .
 .

213

Procedure Division

 .
 CALL "PROG-NAME-B".
 .
 .
 .
 END PROGRAM PROG-NAME-D.
 END PROGRAM PROG-NAME-C.
 END PROGRAM PROG-NAME-B.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-F.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 END PROGRAM PROG-NAME-F.
 END PROGRAM PROG-NAME-A.
 END PROGRAM MAIN-PROGRAM.

Example 6.4. Separately Compiled Program 2

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 .
 .
 .

Example 6.5. Separately Compiled Program 3

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-E.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .

a. If a program-name has the COMMON attribute and it is contained directly within another program, the
contained program can be referenced only by the following:

• Statements in the directly containing program

• Statements in any programs, directly or indirectly contained within the directly containing program, except
statements in the program with the COMMON attribute and in any program it directly or indirectly
contains

For example, in the run unit consisting of the three separately compiled programs illustrated in Example 6.6,
“Separately Compiled Program 1”, Example 6.7, “Separately Compiled Program 2”, and Example 6.8,
“Separately Compiled Program 3”:

214

Procedure Division

• MAIN-PROGRAM (see in Example 6.6, “Separately Compiled Program 1”) directly contains PROG-
NAME-A , and indirectly contains PROG-NAME-B (IS COMMON) , PROG-NAME-C , PROG-
NAME-D , PROG-NAME-F , and PROG-NAME-G .

• PROG-NAME-B (See in Example 6.7, “Separately Compiled Program 2”.)

• PROG-NAME-E (See in Example 6.8, “Separately Compiled Program 3”.)

The CALL “PROG-NAME-B” statement in PROG-NAME-A (See in Example 6.6, “Separately
Compiled Program 1”) references PROG-NAME-B IS COMMON because it is directly contained in
PROG-NAME-A. The CALL “PROG-NAME-B” statement in PROG-NAME-F (See in Example 6.6,
“Separately Compiled Program 1”) references PROG-NAME-B IS COMMON because PROG-NAME-
F is directly contained in PROG-NAME-A. The CALL “PROG-NAME-B” statement in PROG-NAME-
G (See in Example 6.6, “Separately Compiled Program 1”) references PROG-NAME-B IS COMMON

 because PROG-NAME-G is indirectly contained in PROG-NAME-A. The remaining CALL “PROG-
NAME-B” statements (and in MAIN-PROGRAM and in PROG-NAME-E) all reference the
separately compiled program, PROG-NAME-B .

Example 6.6. Separately Compiled Program 1

 IDENTIFICATION DIVISION.
 PROGRAM-ID. MAIN-PROGRAM.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-A.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B IS COMMON.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-C.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-D.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .

215

Procedure Division

 END PROGRAM PROG-NAME-D.
 END PROGRAM PROG-NAME-C.
 END PROGRAM PROG-NAME-B.
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-F.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-G.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .
 END PROGRAM PROG-NAME-G.
 END PROGRAM PROG-NAME-F.
 END PROGRAM PROG-NAME-A.
 END PROGRAM MAIN-PROGRAM.

Example 6.7. Separately Compiled Program 2

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 .
 .
 .

Example 6.8. Separately Compiled Program 3

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-E.
 .
 .
 .
 CALL "PROG-NAME-B".
 .
 .
 .

6.2.6.2. Conventions for Resolving Other References
When a source program declares condition-names, data-names, file-names, record-names, report-names, and
segmented-key-names, only the declaring source program can reference these names. The only exception is when
names have the GLOBAL attribute and the program contains other programs.

For example, when a program such as PROG-NAME-A (See in Example 6.9, “Resolving References to
Miscellaneous Names”) contains other programs (PROG-NAME-B and PROG-NAME-C), each program
can define the same user-defined word. When such duplicated names are referenced, the rules for qualification of

216

Procedure Division

names (see Section 6.2.1, “Qualification”) apply; and, if necessary, the following three hierarchical rules resolve
any ambiguity:

1. References in a program to names defined in that program are resolved within the program. For example:

• The following names: , , , and are both defined and referenced within PROG-NAME-A.

• The following names: , , , , and are both defined and referenced within PROG-NAME-B.

• The following names: and are both defined and referenced within PROG-NAME-C.

2. A program cannot reference any condition-name, data-name, file-name, record-name, or report-name defined
in a program it contains. For example, statements in PROG-NAME-A (See , , , and) cannot reference
items in either PROG-NAME-B or PROG-NAME-C. Statements in PROG-NAME-B (see through) cannot
reference items in PROG-NAME-C.

3. If a program contains another program, any GLOBAL names defined in the containing program can be
referenced by the following:

• Statements in a directly contained program, provided that the directly containing program does not declare
the same user-defined word, in which case, rule 1 applies. For example, compare the Procedure Division
statement MOVE EXAMPLE1 … with MOVE EXAMPLE2 … in the same contained program.

• Statements in an indirectly contained program, provided that neither the indirectly containing program nor
any program in between declare the same name as a GLOBAL name. For example, compare the Procedure
Division statement MOVE EXAMPLE3 … with MOVE EXAMPLE2 … in the same contained program.

Example 6.9. Resolving References to Miscellaneous Names

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-A.
 DATA DIVISION.
 FILE SECTION.
 FD FILE-NAME …
 01 RECORD-NAME …
 FD GLOBAL-FILE-NAME... IS GLOBAL...
 WORKING-STORAGE SECTION.
 01 EXAMPLE1 ... IS GLOBAL...
 01 EXAMPLE2 ... IS GLOBAL...
 01 EXAMPLE3 ... IS GLOBAL...
 01 SWITCH-STATUS.
 88 ON VALUE IS "1".
 88 OFF VALUE IS "0".
 01 DATA-NAME …
 PROCEDURE DIVISION.
 MOVE DATA-NAME TO …
 IF SWITCH-STATUS IS ON …
 MOVE RECORD-NAME TO ...
 OPEN INPUT FILE-NAME ...

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 DATA DIVISION.
 FILE SECTION.
 FD FILE-NAME ...
 01 RECORD-NAME ...
 WORKING-STORAGE SECTION.
 01 SWITCH-STATUS.

217

Procedure Division

 88 ON VALUE IS "1".
 88 OFF VALUE IS "0".
 01 DATA-NAME ...
 01 EXAMPLE2 ...
 01 EXAMPLE3 ... IS GLOBAL...
 01 EXAMPLE4 ... IS GLOBAL...
 PROCEDURE DIVISION.
 MOVE DATA-NAME TO ...
 IF SWITCH-STATUS IS ON ...
 MOVE RECORD-NAME TO ...
 OPEN INPUT FILE-NAME ...
 OPEN OUTPUT GLOBAL-FILE-NAME.
 MOVE EXAMPLE1 ...
 MOVE EXAMPLE2 ...
 MOVE EXAMPLE3 ...
 MOVE EXAMPLE4 ...

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-C.
 WORKING-STORAGE SECTION.
 01 EXAMPLE2 ...
 01 EXAMPLE4 ...
 PROCEDURE DIVISION.
 OPEN OUTPUT GLOBAL-FILE-NAME.
 MOVE EXAMPLE1 ...
 MOVE EXAMPLE2 ...
 MOVE EXAMPLE3 ...
 MOVE EXAMPLE4 ...

END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.
END PROGRAM PROG-NAME-A.

If a data item possesses either or both the EXTERNAL or GLOBAL attributes and includes a table defining an
index-name, that index-name also possesses either or both attributes.

If the file associated with a segmented key possesses either or both the EXTERNAL or GLOBAL attributes, that
segmented key also possesses either or both attributes.

6.2.7. External and Internal Data
External data is associated with a run unit. Any program in the run unit describing the external data can reference
that data. (See the EXTERNAL clause in Chapter 5, Data Division.) There is only one representation of an external
data object.

Internal data is associated with a specific program.

External and internal data can have global names. (See the GLOBAL clause in Chapter 5, Data Division.)

6.3. Explicit and Implicit Specifications
The four types of explicit and implicit specifications follow:

• Procedure Division references

• Control transfers

218

Procedure Division

• Attributes

• Scope terminators

6.3.1. Explicit and Implicit Procedure Division
References
A source program can refer to data items explicitly or implicitly in Procedure Division statements.

An explicit reference occurs when the name of the item is in a Procedure Division statement or copied into the
Procedure Division by a COPY statement.

An implicit reference occurs under the following conditions:

• When a Procedure Division statement refers to an item whose name does not appear in the statement.

• During PERFORM statement execution. The PERFORM statement's control mechanism can initialize, change,
and evaluate an index or data item referred to in the VARYING, AFTER, and UNTIL phrases. These implicit
references occur only if the PERFORM statement execution involves the data item.

6.3.2. Explicit and Implicit Control Transfers
The mechanism that controls program flow implicitly transfers control from one statement to another in the order in
which the statements appear in the source program. The transfer occurs in this sequence unless an explicit control
transfer overrides it, or there is no next executable statement.

A program can contain both explicit and implicit changes to the control transfer mechanism.

Implicit control transfer can also occur when normal program flow changes without executing a procedure-
branching statement. For example:

• A paragraph can execute under the control of another COBOL statement (such as PERFORM, USE, SORT, and
MERGE). If the paragraph is the last in the controlling statement's range, an implied control transfer occurs
from the last statement in the paragraph to the controlling statement's control mechanism.

An implicit control transfer occurs between the control mechanism of a PERFORM statement that causes
iterative execution and the first paragraph in its range. The transfer occurs for each iterative execution of the
paragraph.

• When a SORT or MERGE statement executes, an implicit control transfer occurs to associated input or output
procedures.

• When the execution of a statement causes the execution of a Declaratives Section, the control transfer is implicit.
Another implicit control transfer occurs after execution of the Declaratives Section.

• If the Procedure Division does not have any Declaratives Sections, the program's first executable statement is
the first executable statement in the Procedure Division. Otherwise, the program's first executable statement is
the first executable statement after the declaratives part of the Procedure Division.

An explicit control transfer is a change to the implicit control transfer mechanism caused only by execution of
either:

• A procedure-branching statement

• A conditional statement

The EXIT procedure-branching statement causes an explicit control transfer only when it has the PROGRAM
phrase.

219

Procedure Division

The Procedure Branching statement ALTER does not cause an explicit control transfer. However, it affects the
explicit control transfer of the associated GO TO statement.

The term next executable statement refers to the next COBOL statement to which control transfers according to
these rules and those associated with each language element.

There is no next executable statement when the program has no Procedure Division. This is also the case after:

• The last statement in a Declaratives Section, when the paragraph in which it appears is not executing under the
control of another COBOL statement

• The last statement in a program, when the paragraph in which it appears is not executing under the control of
another COBOL statement

• A STOP RUN or EXIT PROGRAM statement, when execution control transfers outside of the COBOL program
containing the statement

• An END PROGRAM header

When there is no next executable statement and control does not transfer out of the program, program control
flow is undefined. However, an EXIT PROGRAM statement implicitly executes when the program is under the
control of a CALL statement.

6.3.3. Explicit and Implicit Attributes
An explicit attribute is an attribute the program explicitly specifies. If the program does not explicitly specify an
attribute, the attribute assumes a default; it is then an implicit attribute.

For example, a program need not specify USAGE for a data item. If it does not, the data item's implicit usage
is DISPLAY.

6.3.4. Explicit and Implicit Scope Terminators
Scope terminators delimit the scope of some Procedure Division statements as described in Section 6.1.4, “Scope
of Statements”.

The following are explicit scope terminators:

END-ACCEPT END-ADD END-CALL
END-COMPUTE END-DELETE END-DIVIDE
END-EVALUATE END-IF END-MULTIPLY
END-PERFORM END-READ END-RETURN
END-REWRITE END-SEARCH END-START
END-STRING END-SUBTRACT END-UNSTRING
END-WRITE

The following are implicit scope terminators:

• At the end of a sentence the separator period terminates the scope of all previously unterminated statements.

• In a statement containing another statement the next phrase of the containing statement after the end of the
contained statement terminates the scope of all unterminated contained statements. Examples are ELSE and
WHEN.

6.4. Arithmetic Expressions
Whenever the term arithmetic expression appears in Procedure Division rules, it refers to one of the following:

220

Procedure Division

• An identifier of a numeric elementary item

• A numeric literal

• A figurative constant ZERO (ZEROS, ZEROES)

• Two or more of the above separated by arithmetic operators

• Two or more arithmetic expressions separated by arithmetic operators

•

A unary operator (a sign) can precede any arithmetic expression.

The identifiers and literals in an arithmetic expression must represent either of the following:

• Numeric elementary items

• Numeric literals on which arithmetic can be performed

Evaluation rules for arithmetic expressions depend on whether the mode of arithmetic in effect is native or standard.

6.4.1. Arithmetic Operators
Arithmetic expressions can use five binary and two unary arithmetic operators. A space must precede each operator
and follow each binary operator.

The operators are as follows:

Binary Arithmetic Operator Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
Unary Arithmetic Operator Meaning
+ The effect of multiplication by +1
- The effect of multiplication by -1

6.4.2. Formation and Evaluation of Arithmetic
Expressions
The following rules apply regardless of the mode of arithmetic that is in effect.

Parentheses can be used to specify the order in which elements in an arithmetic expression are evaluated.
Expressions within parentheses are evaluated first. If you nest sets of parentheses, evaluation starts with the
innermost set of parentheses and proceeds to the outermost set.

If the arithmetic expression contains no parentheses, the compiler evaluates arithmetic operators in the following
hierarchical order:

First Unary plus and minus
Second Exponentiation
Third Multiplication and division

221

Procedure Division

Fourth Addition and subtraction

This order also applies within a single set of parentheses.

If two or more operators are at the same hierarchical level, and parentheses do not specify the sequence of
operations, evaluation proceeds from left to right.

Parentheses can eliminate ambiguities in logic when there are consecutive operations at the same hierarchical
level, or change the normal hierarchical sequence of evaluation.

Consider the following expression:

(3 * ITEMA - 2) / ((4 + ITEMB) * -ITEMA - ITEMC ** 2)

The order of evaluation is as follows:

1. 4 + ITEMB

2. -ITEMA

3. 3 * ITEMA

4. (The results of step 3) - 2

5. ITEMC ** 2

6. (The results of step 1) * (the results of step 2)

7. (The results of step 6) - (the results of step 5)

8. (The results of step 4) / (the results of step 7)

Each left parenthesis in an arithmetic expression must have a matching right parenthesis, and each right parenthesis
must have a matching left parenthesis.

If the first operator in an arithmetic expression is a unary operator, a left parenthesis (() must immediately precede
it when the arithmetic expression immediately follows an identifier or another arithmetic expression. For example:

CALL "OTHERPROG" USING ITEMA (-ITEMB) ITEMC.

The following rules apply to the evaluation of exponentiation:

1. If the value of an expression to be raised to a power is zero, the exponent value must be greater than zero.
Otherwise, the size error condition exists. (See Section 6.6.4, “ON SIZE ERROR Phrase”.)

2. If the evaluation yields both a positive and negative real number, the positive number is the result.

3. If the evaluation yields no real number, the size error condition exists.

If the evaluation of the arithmetic expression results in an attempted division by zero, the size error condition exists.

When a statement with an arithmetic expression does not refer to a resultant identifier, the compiler stores the
results of the arithmetic expression in an intermediate data item. (See Section 6.6.1, “Arithmetic Operations”.)

6.4.3. Standard Arithmetic (Alpha, I64)
When a floating-point data item is an operand in an arithmetic expression or an arithmetic statement, the rules for
evaluation are described in Section 6.4.4.1, “FLOAT Arithmetic (Alpha, I64)”.

When standard arithmetic is in effect, the following rules apply:

222

Procedure Division

1. Any operand of an arithmetic expression that is not already contained in a standard intermediate data item is
converted into a standard intermediate data item.

2. The size error condition is raised if the value is too large or too small to be contained in a standard intermediate
data item.

A standard intermediate data item is of the class numeric and the category numeric. It is the unique value zero or
an abstract, signed, normalized decimal floating-point temporary data item.

A standard intermediate data item has the unique value of zero or a value whose magnitude is in the range 10**-100
through 10**99 - 10**67, that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through (.999 999 999
999 999 999 999 999 999 999 99E+99) inclusive, with a precision of 32 decimal digits.

When the value of a standard intermediate data item is not zero, the fraction contains no digits to the left of the
decimal point and contains a digit other than zero to the immediate right of the decimal point.

A standard intermediate data item is rounded to 31 digits in the situations listed below.

1. When a standard intermediate data item is compared.

2. When a standard intermediate data argument is the argument of a function and there is no equivalent arithmetic
expression defined for the rules of the function, unless otherwise specified in the rules for a function or unless
situation 1, above, applies.

3. When a standard intermediate data item is being moved to a resultant-identifier for which the ROUNDED
phrase has not been specified. Rounding of a standard intermediate data item may cause the size error condition
to be raised.

When a standard intermediate data item is being moved to a resultant-identifier for which the ROUNDED phrase
is specified, the number of digits to which rounding occurs is as specified in the ROUNDED phrase.

When arithmetic expressions using addition, subtraction, multiplication, division, exponentiation, unary plus, and
unary minus are evaluated, the exact result is truncated to 32 significant digits, normalized, and stored in a standard
intermediate data item.

6.4.4. Native Arithmetic (Alpha, I64)
When a floating-point data item is an operand in an arithmetic expression or an arithmetic statement, the rules for
evaluation are those described in Section 6.4.4.1, “FLOAT Arithmetic (Alpha, I64)”.

When native arithmetic is in effect, the following rules apply:

1. If the result of an arithmetic expression can be represented without loss of significance in 38 decimal digits or
less, then decimal or computational operations are used to evaluate the expression.

2. When it is possible for an expression to produce more than 38 decimal digits, an intermediate data item is
selected based on the MATH_INTERMEDIATE qualifier.

The compiler assumes that all possible digit positions of a variable are significant.

6.4.4.1. FLOAT Arithmetic (Alpha, I64)
A double-precision binary floating-point intermediate data item is selected when /
MATH_INTERMEDIATE=FLOAT is specified. On OpenVMS Alpha and I64 this is a G_floating or T_floating
data item; on Tru64 UNIX, this is a T_floating data item. Refer to the Alpha Architecture Reference Manual for
more information on floating-point data types and operations.

A G_floating data item has a sign bit, an 11-bit binary exponent, and a normalized 53-bit fraction with the redundant
most significant fraction bit not represented. The magnitude of a G_floating data item is in the approximate range
0.56 * 10**-308 through 0.9 * 10**308. The precision of a G_floating data item is approximately one part in
2**52, typically 15 decimal digits.

223

Procedure Division

A T_floating data item has a sign bit, an 11-bit binary exponent, and a 52-bit fraction. VSI COBOL generates code
that uses the finite, normalized, floating-point range capabilities of T_floating. The magnitude of a T_floating data
item is in the approximate range 2.2 * 10**-308 through 1.8 * 10**308. The precision of a T_floating data item
is approximately one part in 2**52, typically 15 decimal digits.

When the destination of an arithmetic statement is a floating-point data item, normal rounding takes place.

When an arithmetic expression references a floating-point operand, floating-point operations are used to evaluate
the expression, and the result is represented in a floating-point intermediate data item. Floating-point operations
use normal rounding; implicit conversions to integer are chopped. VSI COBOL provides support for finite
(normalized) floating-point values only.

When arithmetic expressions using addition, subtraction, multiplication, division, exponentiation, unary plus, and
unary minus are evaluated, the exact result is truncated to 53 significant bits, normalized, and stored in a floating-
point intermediate data item.

6.4.4.2. CIT3 Arithmetic (Alpha, I64)
A decimal floating-point intermediate data item is selected when the qualifier /MATH_INTERMEDIATE=CIT3
is specified.

A CIT3 intermediate data item has the unique value of zero or a value whose magnitude is in the range 10**-100
through 10**99 - 10**81, that is, (.100 000 000 000 000 000E-99) through (.999 999 999 999 999 999E+99)
inclusive, with a precision of 18 decimal digits.

When a CIT3 intermediate data item is being moved to a resultant-identifier for which the ROUNDED phrase
is specified, the number of digits to which rounding occurs is as specified in the ROUNDED phrase; when the
ROUNDED phrase is not present, no rounding takes place.

When arithmetic expressions addition, subtraction, multiplication, division, exponentiation, unary plus, and unary
minus are evaluated, the exact result is truncated to 18 significant digits, normalized, and stored in a CIT3
intermediate data item.

6.4.4.3. CIT4 Arithmetic (Alpha, I64)
A decimal floating-point intermediate data item is selected when /MATH_INTERMEDIATE=CIT4 is specified.

A CIT4 intermediate data item has the unique value of zero or a value whose magnitude is in the range 10**-100
through 10**99 - 10**67, that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through (.999 999 999
999 999 999 999 999 999 999 99E+99) 4 inclusive, with a precision of 32 decimal digits.

Rounding rules for CIT4 arithmetic are the same as those described in Section 6.4.3, “Standard Arithmetic (Alpha,
I64)”.

When arithmetic expressions using addition, subtraction, multiplication, division, exponentiation, unary plus, and
unary minus are evaluated, the exact result is truncated to 32 significant digits, normalized, and stored in a CIT4
intermediate data item.

6.5. Conditional Expressions
A conditional expression specifies a condition the program must evaluate to determine the path of program flow. If
the condition is true, the program takes one path; if it is false, the program takes another path. The IF, EVALUATE,
PERFORM UNTIL, PERFORM VARYING, and SEARCH statements use conditional expressions. Any statement
that can contain another imperative statement can contain a conditional expression.

A conditional expression can be either a simple or a complex condition. The types of simple conditions are the
relation, class, condition-name, switch-status, sign, and success/failure conditions. Complex conditions are formed

4The blanks are added for readability.

224

Procedure Division

by using logical operators (AND, OR, NOT) with simple conditions. You can enclose conditions within any number
of paired parentheses. However, embedding conditions this way has no effect on whether they are considered
simple or complex.

6.5.1. Relation Conditions
A relation condition states a relation between two operands. The program compares the operands to determine
whether the stated relation is true or false. The first operand is called the condition's subject. The second operand
is called its object. Either operand can be an identifier, a literal, or the value of an arithmetic expression. The set
of words that specifies the type of comparison is called the relational operator.

The format for a relation condition is as follows:

You can compare two numeric operands regardless of their USAGE. However, if one or both of the operands are
not numeric, they must have the same USAGE. If either operand is a group item, then the comparison is treated
as nonnumeric, since group items are always considered alphanumeric.

You must refer to at least one variable in a relation condition; you cannot refer only to literals.

A space must precede and follow each word in the relational operator. However, NOT and the key word or relation
character that follows NOT are treated as a unit.

The following relational operators are equivalent:

• IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO

• IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO

Table 6.3, “Relational Operators and Corresponding True Conditions” specifies valid true conditions that
correspond to each relational operator.

Table 6.3. Relational Operators and Corresponding True Conditions

Relational Operator True Condition

IS GREATER THAN

IS > THAN

Subject is greater than object.

IS NOT GREATER THAN

IS NOT > THAN

Subject is either less than or equal to object.

225

Procedure Division

Relational Operator True Condition

IS LESS THAN

IS < THAN

Subject is less than object.

IS NOT LESS THAN

IS NOT < THAN

Subject is either greater than or equal to object.

IS EQUAL TO

IS = TO

Subject is equal to object.

IS NOT EQUAL TO

IS NOT = TO

Subject is either greater than or less than object.

IS GREATER THAN OR EQUAL TO

IS >=

Subject is greater than or equal to object.

IS LESS THAN OR EQUAL TO

IS <=

Subject is less than or equal to object.

The following two sections specify the rules that apply to numeric and nonnumeric comparisons in relation
conditions.

6.5.1.1. Comparison of Numeric Operands
When both operands are numeric, their algebraic values are compared. The program performs the necessary
conversion if the data descriptions of the operands specify different USAGE. When you use operands that are
literals or arithmetic expressions, their length (in terms of the number of digits represented) is not significant.

Unsigned numeric operands are assumed to be positive for comparison. A zero value is always treated the same
way, whether or not the operand contains a sign.

6.5.1.2. Comparison of Nonnumeric Operands
When one (or both) of the operands is nonnumeric, each operand is considered a string of alphanumeric
characters. Therefore, the operands are compared according to the program's collating sequence. (See the OBJECT-
COMPUTER paragraph in Chapter 4, Environment Division.)

If one of the operands is numeric, it must be either an integer literal or a data item described as an integer. The
data item must be implicitly or explicitly described with USAGE DISPLAY. The treatment of the numeric data
item is further affected by the following:

• If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric data item is treated
as though it were moved to an elementary alphanumeric data item of the same size. The content of this
alphanumeric data item is then compared to the nonnumeric operand.

• If the nonnumeric operand is a group item, the numeric operand is treated as though it were moved to a group
item of the same size. The content of this group item is then compared to the nonnumeric operand.

• When a numeric operand contains a sign, its sign is part of the string only if the other operand is a group item.
Otherwise, the sign is removed and is not part of the comparison.

The two operands are compared character by character, beginning at the left end of each string. When the operation
finds an unequal character pair, it uses that pair to evaluate the comparison. The greater operand is the one that
contains the character with the higher collating sequence position. If the operands are of unequal size, the shorter
operand is treated as if it were extended on the right with spaces to make it the same size as the other. Therefore,
ABCD is greater than ABC (unless the program's collating sequence dictates otherwise).

226

Procedure Division

Comparisons of Index-Names or Index Data Items

A program can compare the following:

• Two index-names

• One index-name and one literal or data item (other than an index data item)

• One index-name and one index data item

• Two index data items

6.5.2. Class Condition
The class condition tests whether the contents of an operand are numeric or alphabetic. It also determines if
an alphabetic operand contains only uppercase characters, only lowercase characters, or if an operand is in
conformance with class-name. The general format is as follows:

The identifier must reference a data item whose usage is explicitly or implicitly DISPLAY or COMP-3. If the
identifier is a function-identifier, it must reference an alphanumeric function.

The following rules apply to the NUMERIC test:

1. The test is true when the operand contains only the characters 0 to 9 and the operational sign (subject to the
next rule); otherwise, it is false.

2. The operand must contain an operational sign if its PICTURE clause specifies a sign. If the PICTURE clause
does not specify a sign, the operand must not contain one. If the operand contains a sign that is not specified,
or if a sign is specified and the operand does not contain one, the NUMERIC test is false.

3. You cannot use the test for an operand described as alphabetic or a group item containing signed elementary
items.

The following rules apply to the ALPHABETIC test:

1. The test is true when the operand contains only the characters A to Z, a to z, and the space; otherwise, it is false.

2. You cannot use the ALPHABETIC test for an operand described as numeric.

The ALPHABETIC-LOWERCASE test is true when the operand contains only the characters a to z, and the space;
otherwise, it is false.

The ALPHABETIC-UPPERCASE test is true when the operand contains only the characters A to Z, and the space;
otherwise, it is false.

The class-name test is true when the operand consists entirely of the characters listed in the definition of class-name
in the SPECIAL-NAMES paragraph. The class-name test must not be used with an item whose data description
describes the item as numeric.

227

Procedure Division

NOT and the key word following it are treated as a unit. For example, NOT NUMERIC is a test for determining
that the operand is nonnumeric.

6.5.3. Condition-Name Condition
The condition-name condition determines if a data item contains a value assigned to one of that item's condition-
names. The term conditional variable refers to the data item. condition-name refers to a level 88 entry associated
with that item.

The general format for this condition is:

The condition is true if one of the values corresponding to condition-name equals the value of the associated
conditional variable. The data description for a variable can associate condition-name with one or more ranges of
values. In this case, the condition tests to determine if the value of the variable falls in the specified range (end
values included).

The following example illustrates testing condition-names associated with both one value and a range of values:

 WORKING-STORAGE SECTION.
 01 STUDENT-REC.
 05 YEAR-ID PIC 99.
 88 FRESHMAN VALUE IS 1.
 88 SOPHOMORE VALUE IS 2.
 88 JUNIOR VALUE IS 3.
 88 SENIOR VALUE IS 4.
 88 GRADUATE VALUE IS 5 THRU 10.
 .
 .
 .
PROCEDURE DIVISION.
 .
 .
 .
 IF FRESHMAN ...
 IF SOPHOMORE ...
 IF JUNIOR ...
 IF SENIOR ...
 IF GRADUATE ...

Condition-Name Test Is True When the Value of the Conditional
Variable YEAR-ID Equals:

FRESHMAN 1
SOPHOMORE 2
JUNIOR 3
SENIOR 4
GRADUATE 5, 6, 7, 8, 9, or 10

When your program evaluates a conditional variable and its condition-name, the procedure is the same as the one
used with the relation condition. (See Section 6.5.1, “Relation Conditions”.)

6.5.4. Switch-Status Condition
The switch-status condition tests the on or off setting of an external logical program switch. Its general format
is as follows:

228

Procedure Division

You use the SWITCH clause of the SPECIAL-NAMES paragraph to associate condition-name with a logical
switch setting. (See the SPECIAL-NAMES paragraph in Chapter 4, Environment Division.) The condition is true
if the switch setting in effect during program execution is the same one assigned to condition-name.

Note

The translated value of the OpenVMS Alpha or I64 logical name COB$SWITCHES or the Tru64 UNIX
environment variable COBOL_SWITCHES specifies logical program switch settings. (Refer to the description of
program switches in the VSI COBOL User Manual.)

6.5.5. Sign Condition
The sign condition determines if the algebraic value of an arithmetic expression is less than, greater than, or equal
to zero.

Its general format is as follows:

An operand is defined as:

• POSITIVE, if its value is greater than zero

• NEGATIVE, if its value is less than zero

• ZERO, if its value equals zero

arithmetic-expression must contain at least one reference to a variable.

NOT and the key word following it are treated as a unit. For example, NOT ZERO tests for a nonzero condition.

6.5.6. Success/Failure Condition
The success/failure condition tests the return status codes of COBOL and non-COBOL procedures for success
or failure conditions.

[status-code-id]

must be a COMP integer represented by PIC 9(1 to 9) COMP or PIC S9(1 to 9) COMP.

You can use the SET statement to initialize or alter the status of status-code-id.

The SUCCESS class condition is true if you specify status-code-id IS SUCCESS and status-code-id is in a
SUCCESS state. Otherwise, the SUCCESS class condition is false.

229

Procedure Division

The FAILURE class condition is true if you specify status-code-id IS FAILURE and status-code-id is in a
FAILURE state. Otherwise, the FAILURE class condition is false.

status-code-id is in the SUCCESS state when the low-order bit of status-code-id is 1. It is in the FAILURE state
when its low-order bit is 0.

Examples
1. On OpenVMS, calling a non-COBOL procedure:

WORKING-STORAGE SECTION.
01 RMS-EOF PIC S9(9) COMP VALUE EXTERNAL RMS$_EOF.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.
A000-BEGIN.
 .
 .
 .
 CALL "LIB$GET_SCREEN"
 USING BY DESCRIPTOR INPUT-TEXT, PROMPT,
 BY REFERENCE OUT-LEN,
 GIVING RETURN-STATUS.
 IF RETURN-STATUS = RMS-EOF PERFORM CTRL-Z-TRAP-ROUTINE.
 IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.
 .
 .
 .

2. Calling a COBOL procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.
 .
 .
 .
 CALL "SUB" GIVING RETURN-STATUS.
 IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.
 .
 .
 .
IDENTIFICATION DIVISION.
PROGRAM-ID. SUB.
 .
 .
 .
WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION GIVING RETURN-STATUS.
 .
 .
 .
 IF A = B
 SET RETURN-STATUS TO SUCCESS
 ELSE
 SET RETURN-STATUS TO FAILURE.

230

Procedure Division

 .
 .
 .
 EXIT PROGRAM.
END PROGRAM SUB.
END PROGRAM MAIN-PROGRAM.

6.5.7. Complex Conditions
You form complex conditions by combining or negating other conditions. The conditions being combined or
negated can be either simple or complex.

The logical operators AND and OR combine conditions. The logical operator NOT negates conditions. A space
must precede and follow each logical operator in your program.

The truth value of a complex condition depends upon the following:

• The truth value of each condition it contains

• The effect of the logical operators

Table 6.4, “How Logical Operators Affect Evaluation of Conditions” shows the effect of each logical operator
in complex conditions.

Table 6.4. How Logical Operators Affect Evaluation of Conditions

Logical Operator Meaning and Effect

AND Logical conjunction. The truth value is true if both connected conditions are true.
It is false if one or both connected conditions are false.

OR Logical inclusive OR. The truth value is true if one or both connected conditions
are true. It is false if both conditions are false.

NOT Logical negation or reversal of truth value. The truth value is true if the original
condition is false. It is false if the original condition is true.

Negated Simple Conditions
The logical operator NOT negates a simple condition. The truth value of a negated simple condition is the opposite
of the simple condition's truth value. Thus, the truth value of a negated simple condition is true only if the simple
condition's truth value is false. It is false only if the simple condition's truth value is true.

The format for a negated simple condition is as follows:

Combined and Negated Combined Conditions
A combined condition results from connecting conditions with one of the logical operators AND or OR.

The general format is as follows:

231

Procedure Division

In the general format, condition can be one of the following:

• A simple condition

• A negated simple condition

• A combined condition

•
A negated combined condition; that is, NOT followed by a combined condition enclosed in parentheses

• Valid combinations of the preceding conditions (see Table 6.5, “Combinations of Conditions, Logical Operators,
and Parentheses”)

You can use matched pairs of parentheses in a combined condition. You do not need to write parentheses if the
condition combines two or more conditions with the same logical operator (either AND or OR). In this case, the
parentheses have no effect on the condition's evaluation. However, you might have to use parentheses if you use a
mixture of AND, OR, and NOT logical operators. In this case, the parentheses can affect the condition's evaluation.

When the relevant parentheses are missing from a complex condition, the evaluation order of the logical operators
determines the conditions to which the specified logical operators apply and implies the equivalent parentheses.
The evaluation order is NOT, AND, OR. Thus, specifying:

 a OR NOT b AND c

implies and is equivalent to specifying:

 a OR ((NOT b) AND c)

(See also Section 6.5.9, “Condition Evaluation Rules”.)

Table 6.5, “Combinations of Conditions, Logical Operators, and Parentheses” shows the permissible combinations
of conditions, logical operators, and parentheses.

Table 6.5. Combinations of Conditions, Logical Operators, and Parentheses

 In a Conditional Expression In a Left-to-Right Element Sequence
Element Can Element Be

First?
Can Element Be
Last?

Element, When
Not First, Can
Immediately Follow

Element, When
Not Last, Can
Immediately
Precede

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)
OR or AND No No simple-condition,) simple-condition,

NOT, (
NOT Yes No OR, AND, (simple-condition, (
(Yes No OR, NOT, AND, (simple-condition,

NOT, (
) No Yes simple-condition,) OR, AND,)

For example, Table 6.5, “Combinations of Conditions, Logical Operators, and Parentheses” shows whether or not
the following element pairs can occur in your program:

Element Pair Permitted?

OR NOT Yes
NOT OR No
NOT (Yes

232

Procedure Division

Element Pair Permitted?

NOT NOT No

6.5.8. Abbreviated Combined Relation Conditions
When you combine simple or negated simple conditions in a consecutive sequence, you can abbreviate any of the
relation conditions except the first. You do this by either:

• Omitting the subject of the relation condition

• Omitting both the subject and the relational operator of the condition

• Ensuring that a relation condition in the consecutive sequence contains a subject (or subject and relational
operator) that is common with the preceding relation condition

• Ensuring that there are no parentheses in the consecutive sequence

The general format for abbreviated combined relation conditions is as follows:

The evaluation of a sequence of combined relation conditions proceeds as if the last preceding subject appears in
place of the omitted subject and the last preceding relational operator appears in place of the omitted relational
operator. The result of these substitutions must form a valid condition. (See Table 6.5, “Combinations of
Conditions, Logical Operators, and Parentheses”.)

When the word NOT appears in a sequence of abbreviated conditions, its treatment depends upon the word that
follows it. NOT is considered part of the relational operator when immediately followed by: GREATER, >, LESS,
<, EQUAL, or =. Otherwise, NOT is considered a logical operator that negates the relation condition.

Table 6.6, “Expanded Equivalents for Abbreviated Combined Relation Conditions” shows abbreviated combined
(and negated combined) relation conditions and their expanded equivalents:

Table 6.6. Expanded Equivalents for Abbreviated Combined Relation Conditions

Abbreviated Combined Relation Condition Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)
a NOT = b OR c (a NOT = b) OR (a NOT = c)
NOT a = b OR c (NOT (a = b)) OR (a = c)
NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))
a / b NOT = c AND NOT d ((a / b) NOT = c) AND (NOT ((a / b) NOT = d))
NOT (a NOT > b AND c AND NOT d) NOT ((((a NOT > b) AND (a NOT > c)) AND (NOT

(a NOT > d))))

6.5.9. Condition Evaluation Rules
Parentheses can specify the evaluation order in complex conditions. Conditions in parentheses are evaluated first.
In nested parentheses, evaluation starts with the innermost set of parentheses. It proceeds to the outermost set.

233

Procedure Division

Conditions are evaluated in a hierarchical order when there are no parentheses in a complex condition. This same
order applies when all sets of parentheses are at the same level (none are nested). The hierarchy is shown in the
following list:

1. Values for arithmetic expressions

2. Truth values for simple conditions, in this order:

a. Relation

b. Class

c. Condition-name

d. Switch-status

e. Sign

f. Success/failure

3. Truth values for negated simple conditions

4. Truth values for combined conditions, in this order:

a. AND logical operators

b. OR logical operators

5. Truth values for negated combined conditions

In the absence of parentheses, the order of evaluation of consecutive operations at the same hierarchical level is
from left to right.

6.6. Common Rules and Options for Data
Handling
This section describes the rules and options that apply when statements handle data. Data handling includes the
following:

• Arithmetic operations

• Multiple receiving fields in arithmetic statements

• The ROUNDED phrase

• The ON SIZE ERROR phrase

• The CORRESPONDING phrase

• The ON EXCEPTION phrase

• Overlapping operands and incompatible data

• I/O status

• The INVALID KEY phrase

• The AT END phrase

• The FROM phrase

234

Procedure Division

• The INTO phrase

6.6.1. Arithmetic Operations
The arithmetic statements begin with the verbs ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT. When
an operand in these statements is a data item, its PICTURE must be numeric and specify no more than 31 digit
positions on Alpha or I64. However, operands do not have to be the same size, nor must they have the same
USAGE. Conversion and decimal point alignment occur throughout the calculation.

When you write an arithmetic statement, you specify one or more data items to receive the results of the operation.
These data items are called resultant identifiers. However, the evaluation of each arithmetic statement can also
use an intermediate data item. An intermediate data item is a compiler-supplied signed numeric data item that the
program cannot access. It stores the results of intermediate steps in the arithmetic operation before moving the
final value to the resultant identifiers.

When the final value of an arithmetic operation is moved to the resultant identifiers, it is transferred according to
MOVE statement rules. Rounding and size error condition checking occur just before this final move. (See the
MOVE statement, Section 6.6.4: ON SIZE ERROR Phrase, and Section 6.6.3: ROUNDED Phrase.)

6.6.2. Multiple Receiving Fields in Arithmetic
Statements
An arithmetic statement can move its final result to more than one data item. In this case, the statement is said to
have multiple receiving fields (or multiple results). The statement operates as if it had been written as a series of
statements. The following example illustrates these steps. The first statement in the example is equivalent to the
four that follow it. (Temp is an intermediate data item.)

ADD a, b, c TO c, d (c), e

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

6.6.3. ROUNDED Phrase
The ROUNDED phrase allows you to specify rounding at the end of an arithmetic operation. The rounding
operation adds 1 to the absolute value of the low-order digit of the resultant identifier if the absolute value of the
next least significant (lower-valued) digit of the intermediate data item is greater than or equal to 5.

When the PICTURE string of the resultant identifier represents the low-order digit positions with the P character,
rounding or truncation is relative to the rightmost integer position for which the compiler allocates storage.
Therefore, when PIC 999PPP describes the item, the value 346711 is rounded to 347000.

If you do not use the ROUNDED phrase, any excess low-order digits in the arithmetic result are truncated when
the result is moved to the resultant identifiers.

6.6.4. ON SIZE ERROR Phrase
The ON SIZE ERROR phrase allows you to specify an action for your program to take when a size error condition
exists.

The NOT ON SIZE ERROR phrase allows you to specify an action for your program to take when a size error
condition does not exist.

The format is as follows:

235

Procedure Division

stment is an imperative statement.

Size error checking occurs after decimal point alignment. Rounding occurs before size error checking. Also,
truncation of rightmost digits occurs before size error checking.

A size error condition is caused by the following:

• Division by zero or invalid evaluation of exponentiation (see Section 6.4.2, “Formation and Evaluation of
Arithmetic Expressions”). Both actions terminate the arithmetic operation.

• The absolute value of an arithmetic operation's result exceeds the value that is specified by the PICTURE clause
of one or more of the resultant identifiers.

• Evaluation of an arithmetic expression would cause the new value to be outside the allowed range for the
intermediate data item.

In the second case above, the size error condition affects the contents of only those resultant identifiers for which
the size error exists.

When a size error condition occurs and the statement contains an ON SIZE ERROR phrase:

1. When standard arithmetic is in effect, the values of those resultant identifiers for which the size error exists are
the same as before the operation began; when native arithmetic is in effect, those values are undefined.

2. The values of those resultant identifiers for which no size error exists are the same as they would have been if
the size error condition had not occurred for any of the resultant identifiers.

3. The imperative statement in the ON SIZE ERROR phrase executes.

4. The NOT ON SIZE ERROR phrase, if specified, is ignored.

5. Control is transferred to the end of the arithmetic statement unless control has been transferred by executing
the imperative statement of the ON SIZE ERROR phrase.

6. When a size error occurs in any arithmetic statement with multiple results, your program must analyze the
results to determine where the size error occurred.

When a size error condition occurs and the statement does not contain an ON SIZE ERROR phrase:

1. The values of those resultant identifiers for which the size error exists are undefined.

2. The NOT ON SIZE ERROR phrase, if specified, is ignored.

3. Control is transferred to the end of the arithmetic statement.

When a size error condition does not occur:

1. The ON SIZE ERROR phrase, if specified, is ignored.

2. The imperative-statement in the NOT ON SIZE ERROR phrase, if specified, is executed.

3. Control is transferred to the end of the arithmetic statement unless control has been transferred by executing
the imperative statement of the NOT ON SIZE ERROR phrase.

If you use the ADD or SUBTRACT statements with the CORRESPONDING phrase, any individual operation can
cause a size error condition. In this instance, the imperative statement in the ON SIZE ERROR phrase executes
after all the individual additions or subtractions are complete.

236

Procedure Division

6.6.5. CORRESPONDING Phrase
The CORRESPONDING phrase allows you to specify group items as operands in order to use their corresponding
subordinate items in an operation. See the ADD, SUBTRACT, and MOVE statements.

The following rules apply to the identifiers of operands in a statement containing the CORRESPONDING phrase:

1. All identifiers must refer to group items.

2. The data description entries of these identifiers can contain a REDEFINES or OCCURS clause.

3. Identifiers can be subordinate to a data description entry that has a REDEFINES or OCCURS clause.

4. You cannot specify identifiers with level-number 66, 77 or 88, or the USAGE IS INDEX clause.

5. Identifiers cannot be reference-modified.

The following rules describe the requirements for correspondence between data items subordinate to the identifiers.
In these rules, identifier-1 refers to the sending group item and identifier-2 refers to the group in which results
of the operation are stored.

1. Data items subordinate to both identifier-1 and identifier-2 must have the same data-name.

2. All possible qualifiers for a data item contained in identifier-1 (up to but not including identifier-1), must be
identical to all possible qualifiers for the matching item in identifier-2 (up to but not including identifier-2).

3. In an ADD or SUBTRACT statement, the CORRESPONDING phrase affects only elementary numeric data
items. Other data items do not take part in the operation.

4. In a MOVE statement, either the sending or receiving subordinate item can be a group item, but both cannot be.
The classes of the data items in any corresponding pair can be different, but the resulting move must be legal
according to the MOVE statement rules. (See the MOVE statement.)

5. The CORRESPONDING phrase disallows data items with the following:

• Level-number 66

• Level-number 88

• A data description entry containing a REDEFINES, OCCURS, or USAGE IS INDEX clause

A data item subordinate to one that is not eligible for correspondence is also disallowed.

6. FILLER data items and their subordinates are disallowed.

7. Neither identifier-1 nor identifier-2 can be reference modified.

6.6.6. ON EXCEPTION Phrase
The ON EXCEPTION phrase allows execution of an imperative statement when an exception (or error) condition
occurs.

The NOT ON EXCEPTION phrase allows execution of an imperative statement when an exception condition (or
any other error condition) does not occur.

The format is as follows:

237

Procedure Division

stment is an imperative statement.

The ON EXCEPTION phrase of the CALL statement prevents control transfer of the CALL and triggers the
execution of the imperative statement related to the CALL.

The ON EXCEPTION phrase of the ACCEPT statement (Formats 3 and 4) allows you to handle data entry errors
when data is accepted into a numeric data field using ACCEPT WITH CONVERSION. For additional information,
see the ACCEPT statement.

The ON EXCEPTION phrase allows execution of an imperative statement when an ACCEPT statement (Format 5)
terminates unsuccessfully. When there is an applicable CRT STATUS clause, unsuccessful termination is indicated
by a value of '1' or '9' in the first character of the CRT STATUS data item (see the SPECIAL-NAMES section of
Chapter 4, Environment Division).

When an exception condition occurs and the statement contains an ON EXCEPTION phrase:

1. The imperative statement associated with the ON EXCEPTION phrase is executed.

2. The NOT ON EXCEPTION phrase, if specified, is ignored.

3. Control is transferred to the end of the statement unless control has been transferred by executing the imperative
statement of the ON EXCEPTION phrase.

When an exception condition occurs and the statement does not contain an ON EXCEPTION phrase:

1. The NOT ON EXCEPTION phrase, if specified, is ignored.

2. The program terminates abnormally.

When an exception condition does not occur:

1. The imperative statement associated with the NOT ON EXCEPTION phrase, if specified, is executed.

2. The ON EXCEPTION phrase, if specified, is ignored.

3. Control is transferred to the end of the statement unless control has been transferred by executing the imperative
statement of the NOT ON EXCEPTION phrase.

6.6.7. Overlapping Operands and Incompatible Data
When statements refer to data items, two conditions can occur that can make program results unpredictable.

Undefined results occur when a sending and receiving item in an arithmetic statement or an INITIALIZE,
INSPECT, MOVE, SET, STRING, or UNSTRING statement share a part of their storage areas.

Procedure Division references to a data item are undefined when a data item's contents are incompatible with the
class of data defined by the item's PICTURE clause, or (if the item is a function) its function definition. Conditional
statements containing the class condition allow you to do the following:

• Determine whether or not an item contains numeric or alphabetic data.

• Specify corrective action when it does not.

See Section 6.5.2, “Class Condition” for more information on class condition.

6.6.8. I-O Status
If a file description entry has a FILE STATUS clause, a value is placed in the two-character FILE STATUS data
item during execution of the following I/O statements:

238

Procedure Division

• CLOSE

• DELETE

• OPEN

• READ

• REWRITE

• START

• UNLOCK

• WRITE

The two characters from the FILE STATUS data item combine to form a file status value. The first character (Status
Key 1), which occupies the leftmost character position in the item, represents a specific class of I/O operation (
0–success, 1–at end, 2–invalid key, 3–permanent error, 4–logic error, or 9–VSI defined). The second character
(Status Key 2), which occupies the rightmost position, provides additional information about the result of an I/O
operation. In combination, Status Key 1 and Status Key 2 indicate the status of an I/O operation. For example, if
you are interested in duplicate keys, you check for File Status 02.

When Status Key 1 contains 1, the AT END phrase executes. When Status Key 1 contains 2, the INVALID KEY
phrase executes. When Status Key 1 contains 3, 4, or 9 the Declarative USE procedure executes. Any applicable
USE AFTER EXCEPTION procedure executes after the FILE STATUS value is set.

Figure 6.1, “Possible Combinations of Status Keys 1 and 2” shows the possible combinations of Status Keys 1
and 2. In the figure, X indicates a valid combination of keys.

Figure 6.1. Possible Combinations of Status Keys 1 and 2

Status Key 1
Status Key 1 indicates one of the following conditions when an input-output operation ends:

0 Successful Completion. The input-output statement executed successfully.

1. At End. A sequential READ statement unsuccessfully executed because of the following:

• The file has no next logical record.

239

Procedure Division

• An optional file was not present.

• The program did not establish a valid next record.

2. Invalid Key. The input-output statement executed unsuccessfully because of one of the following conditions:

• Sequence Error

• Duplicate Key

• No Record Found

• Boundary Violation on a relative or indexed file

• Optional File Not Present

3. Permanent Error. The input-output statement executed unsuccessfully because of a boundary error for a
sequential file. This value can also indicate an input-output error, such as data check, parity error, or transmission
error.

4. Logic Error. The input-output statement was unsuccessfully executed as a result of an improper sequence of
input-output operations that were performed on the file or as a result of violating a limit set by the user.

9. VSI defined. The input-output statement executed unsuccessfully because of a condition defined by VSI.

Status Key 2
Status Key 2 further describes the result of the input-output operation as follows:

• If no further information about the input-output operation is available, Status Key 2 contains 0.

• When Status Key 1 contains 0 (indicating successful completion), Status Key 2 can contain a 2, 4, 5, or 7.

2. Applies to a REWRITE, WRITE, or READ statement.

• For REWRITE and WRITE statements it means that the record just written created a duplicate key value
for at least one alternate record key for which duplicates are allowed.

• For READ statements it means that the record just read has duplicate key values for the current key of
reference.

4. Applies to a READ statement. It means the size of the record read does not agree with the size defined in
the program.

5. Applies to the OPEN statement. It means that the optional file was not present when the OPEN statement
executed. If the open mode is I-O or EXTEND, the file has been created.

7. Applies to the CLOSE and OPEN statements. It means one of the following:

• The program tried to execute a CLOSE REEL/UNIT, a CLOSE NO REWIND, or a CLOSE FOR
REMOVAL statement for a file on a nonreel/unit medium.

• The program tried to execute an OPEN NO REWIND statement for a file on a nonreel/unit medium.

• When Status Key 1 contains 1 (indicating an at end condition), Status Key 2 describes the condition's cause:

0 Indicates that the file has no next logical record or it indicates that a file you specified as optional is not
present.

4. Means that the relative record number of the record read was too big for the relative key data item.

240

Procedure Division

• When Status Key 1 contains 2 (indicating an invalid key condition), Status Key 2 describes the condition's
cause as follows:

1. Indicates a sequence error for a sequential access indexed file. This means that the program changed the prime
record key value between a successfully executed READ statement and the next REWRITE statement for the
file. This value can also indicate that the program violated sort order sequence requirements for successive
record key values. (See the WRITE statement.)

2. Indicates a duplicate key value. The program tried to write or rewrite a record that would have created a
duplicate key in an indexed file. This value can also mean that the program tried to write a record that would
have created a duplicate in a relative file.

3. Means that the program could not find a record. The program tried to access a record identified by a key, but
the record does not exist in the file, or the file you specified as optional is not present.

4. Indicates a boundary violation. The program tried to write beyond the boundaries defined for the file by the
I/O system OpenVMS Record Management Services (RMS) on OpenVMS Alpha and I64 systems), or the
program attempted a sequential WRITE statement and the number of significant digits in the relative record
number is larger than the size of the relative key data item.

• When Status Key 1 contains 3 (indicating a permanent error condition), Status Key 2 describes the condition
causes as follows:

0 Indicates that no more information is available. This value results from any input-output error that cannot
be described by any other combination of values in Status Keys 1 and 2. For example, "filename too long"
is indicated this way.

4. Indicates a boundary violation on a sequential file. This means that the program tried to write to a disk that
was full.

5. Indicates that the program tried to open a file that does not exist.

7. Indicates that the program tried to create a file on a device that is not appropriate for the OPEN statement
mode.

8. Indicates that the program tried to open a file that is closed with a lock.

9. Indicates a conflict of file attributes. The attributes of the file that the program attempted to open do not
match the attributes of the file described in the program. The attributes that are checked are BLOCK SIZE,
ORGANIZATION, INDEX KEYS, and MAXIMUM RECORD SIZE. (Refer to the Tru64 UNIX reference
page or COBOL online help for information on the effect of the relaxed key checking option.)

• When Status Key 1 contains 4 (indicating an error in the program's logic), Status Key 2 describes the condition's
cause:

1. Indicates that the program tried to open a file that is already open.

2. Indicates that the program tried to close a file that either: (a) is already closed, or (b) has not been opened
during the program's execution.

3. Indicates that the program tried to execute either: (a) a DELETE or REWRITE statement without first
successfully executing a READ or START statement, or (b) an UNLOCK RECORD statement without first
establishing a current record.

4. Indicates that the program attempted to REWRITE a record that is not the same size as the record being
replaced.

6. Indicates that the program did not establish a valid next record.

The values 10 and 46 can occur for the same READ operation when a program is in an infinite loop. In this
case, the FILE STATUS data item contains the following sequence of values:

241

Procedure Division

00, 00, … , 00, 10, 46, 46, … , 46

7. Indicates the program tried a READ or START operation on a file that: (a) has not been opened, or (b) has
been opened in a mode that is incompatible with the operation.

8. Indicates the program attempted a WRITE operation on a file that: (a) has not been opened, or (b) has been
opened in a mode that is incompatible with the operation.

9. Indicates the program tried a DELETE or REWRITE on a file that: (a) has not been opened, or (b) has been
opened in a mode that is incompatible with the operation.

• When Status Key 1 contains 9 (indicating a VSI defined condition), Status Key 2 further describes the condition,
as follows:

0 Means that the record your program is reading has been locked by another access stream. Because the
record is available in the record area, the input operation is successful. This condition results from using
the REGARDLESS option. Without the REGARDLESS option, the same scenario causes a Status Key 2
value of 2.

1. Indicates that a file is locked. The access stream tried to open a file that had been locked by another program.

2. Means that a record is locked. The program tried to access a record that had been locked by another access
stream.

In this case, the record is not available in the record area, so the input operation is unsuccessful.

5. Means that the program tried to open a file when there was not enough space on the device.

8. Indicates that an unspecified error occurred when the program attempted to close a file.

Appendix C, File Status Values lists all the possible file status values that can appear in the FILE STATUS data
item, along with the I-O status condition corresponding to each value.

6.6.9. AT END Phrase
The AT END phrase specifies the action your program takes when an at end condition occurs (when Status Key
1 contains 1).

The NOT AT END phrase specifies the action your program takes if an at end (or any other error condition) does
not occur.

The format is as follows:

stment is one or more imperative statements.

When a program detects the end of a file, the condition is called the at end condition. The at end condition might
occur as a result of ACCEPT, READ, RETURN, or SEARCH statement execution. (For additional information,
see the previously mentioned statements.)

When an at end condition occurs and the statement contains an AT END phrase:

1. The imperative statement associated with the AT END phrase, if specified, executes.

2. The NOT AT END phrase, if specified, is ignored.

3. Control is transferred to the end of the ACCEPT, READ, RETURN, or SEARCH statement unless control has
been transferred by executing the imperative statement of the AT END phrase.

242

Procedure Division

When an at end condition occurs and the statement does not contain an AT END phrase:

1. If the at end condition is associated with a READ statement, the applicable USE AFTER EXCEPTION
procedure, if specified, executes.

2. If the at end condition is associated with an ACCEPT, RETURN, or SEARCH statement, any USE procedure
associated with that file is not applicable.

3. The NOT AT END phrase, if specified, is ignored.

When an at end condition does not occur, and no other exception condition exists:

1. The AT END phrase, if specified, is ignored.

2. The imperative statement associated with the NOT AT END phrase, if specified, is executed. Otherwise, control
is transferred to the end of the ACCEPT, READ, RETURN, or SEARCH statement.

When an at end condition does not occur, and another exception condition does exist:

• The applicable USE AFTER EXCEPTION procedure, if specified, executes and control is then transferred
according to the rules of the USE statement.

• If there is no applicable USE AFTER EXCEPTION procedure, the imperative statement associated with the
NOT AT END phrase, if specified, is executed, unless the exception condition causes the run unit to terminate
abnormally.

• If there is neither a USE AFTER EXCEPTION procedure nor a NOT AT END phrase, then control is transferred
to the end of the statement, unless the exception condition causes the run unit to terminate abnormally.

6.6.10. INVALID KEY Phrase
The INVALID KEY phrase specifies the action your program takes when an invalid key condition is detected
(when Status Key 1 contains 2) for the file being processed.

The NOT INVALID KEY phrase specifies the action your program takes when an invalid key condition (or any
other error condition) is not detected for the file being processed.

The format is as follows:

stment is one or more imperative statements.

The invalid key condition occurs when the I/O system cannot complete a COBOL DELETE, READ, REWRITE,
START, or WRITE statement because of one of the following conditions:

• Sequence error

• Duplicate key when the COBOL program did not specify this condition

• No record found

• Boundary violation on a relative or indexed file

• Optional file not present

(For more information on these conditions, refer to Section 6.6.8, “I-O Status”.) When the invalid key condition
occurs, execution of the statement that produced the condition is unsuccessful, and the file is unaffected. (For
additional information, see the previously mentioned statements.)

When the invalid key condition occurs:

1. A value that indicates the invalid key condition is placed in the FILE STATUS data item for the file.

243

Procedure Division

2. If the statement that caused the condition has the INVALID KEY phrase:

a. Any USE AFTER EXCEPTION procedure is not executed.

b. The imperative statement associated with the INVALID KEY phrase executes.

c. The NOT INVALID KEY phrase, if specified, is ignored.

d. Control is transferred to the end of the I-O statement unless control has been transferred by executing the
imperative statement of the INVALID KEY phrase.

3. If the statement that caused the condition does not have an INVALID KEY phrase:

a. The NOT INVALID KEY phrase, if specified, is ignored.

b. Control is transferred to the applicable USE AFTER EXCEPTION procedure for the file.

When an invalid key condition does not occur, and no other exception condition exists:

1. The INVALID KEY phrase, if specified, is ignored.

2. The imperative statement associated with the NOT INVALID KEY phrase, if specified, is executed. Otherwise,
control is transferred to the end of the I/O statement.

When an invalid key condition does not occur, and another exception condition does exist:

• The applicable USE AFTER EXCEPTION procedure, if specified, executes and control is then transferred
according to the rules of the USE statement.

• If there is no applicable USE AFTER EXCEPTION procedure, the imperative statement associated with the
NOT INVALID KEY phrase, if specified, is executed, unless the exception condition causes the run unit to
terminate abnormally.

• If there is neither a USE AFTER EXCEPTION procedure nor a NOT INVALID KEY phrase, then control is
transferred to the end of the statement, unless the exception condition causes the run unit to terminate abnormally.

6.6.11. FROM Phrase

record-name and identifier must not refer to the same storage area.

The result of executing a RELEASE, REWRITE, or WRITE statement with the FROM phrase is equivalent to:
(1) executing the statement “MOVE identifier TO record-name” according to the rules of the MOVE statement
without the CORRESPONDING phrase, followed by (2) executing the same RELEASE, REWRITE, or WRITE
statement without the FROM phrase.

After statement execution ends, the data in the area referenced by identifier is available to the program. The data
is not available in the area referenced by record-name, unless there is an applicable SAME clause. (See I-O-
CONTROL, the REWRITE statement, and the WRITE statement.)

6.6.12. INTO Phrase
The INTO phrase implicitly moves a current record from the record storage area into an identifier.

The format is as follows:

244

Procedure Division

A READ or RETURN statement can have the INTO phrase if either of the following conditions is true:

• Only one record description is subordinate to the file description entry.

• All record-names associated with file-name and the data item associated with identifier describe a group item
or an elementary alphanumeric item.

Executing a READ or RETURN statement with the INTO phrase is equivalent to: (1) executing the same statement
without the INTO phrase, then (2) moving the current record from the record area to the area specified by identifier.
The move occurs according to the rules of the MOVE statement without the CORRESPONDING phrase. The
move does not occur for an unsuccessful execution of the READ or RETURN statement.

Subscript or index evaluation occurs after the input operation and immediately before the move.

The record is available to the program in both the record area and the area associated with the identifier.

6.7. Segmentation
VSI COBOL programs execute in a virtual memory environment. Therefore, programs need not manage physical
memory by overlaying Procedure Division code. VSI COBOL provides support for segmentation only for
compatibility with existing applications developed on older hardware such as the PDP-11. You should not use
segmentation in newly written COBOL programs since segmentation results in the generation of extra code which
might impact performance.

Segmentation controls the assignment of Procedure Division sections to fixed or independent segments. The
optional segment-number in the section header determines the type of segment.

[section-name]

names a Procedure Division section.

[segment-number]

must be an integer in the range 0 to 99. If there is no segment-number in a section header, the implied segment-
number is 0.

segment-number classifies a segment into fixed segments or independent segments. Sections with segment-numbers
from 0 to 49 are in fixed segments. Those with segment-numbers from 50 to 99 are in independent segments.

Sections in the Declaratives part of the Procedure Division must have segment-numbers less than 50.

A segment consists of all sections that have the same segment-number.

Both fixed and independent segments are in their initial state the first time entered. A fixed segment appears to
reside in memory at all times and is, therefore, in its last used state each time it is entered.

The state of an independent segment depends on how and when it receives control. On subsequent control transfers,
VSI COBOL resets the segment's ALTERed GO TO statements to their initial states whenever an independent
segment is entered in one of the following ways:

1. Explicitly, by means of a GO TO statement with a target within the section.

2. Explicitly, by means of an out-of-line PERFORM statement in another segment whose range is within the
section.

3. Implicitly, when a SORT or MERGE statement in another segment specifies an input or output procedure within
the section.

245

Procedure Division

4. Implicitly, by transfer of control between consecutive statements from a segment with a different segment-
number.

6.8. General Formats and Rules for
Statements
Function
The Procedure Division contains the routines that process the files and data described in the Environment and
Data Divisions.

Syntax Rules
1. The Procedure Division follows the Data Division.

2. The Procedure Division must begin with the Procedure Division header.

3. The end of the Procedure Division is indicated by one of the following:

• The Identification Division header of another source program

• The END PROGRAM header

• The physical position in the Procedure Division after which no further processing occurs

4. A procedure consists of either:

• One or more successive sections

• One or more successive paragraphs

5. If one paragraph is in a section, all paragraphs must be in sections.

246

Procedure Division

6. A procedure-name refers to a paragraph or section in the source program. It is either paragraph-name (which
can be qualified) or section-name.

7. A section consists of a section header followed by zero or more successive paragraphs. A section ends
immediately before the next section or at the end of the Procedure Division. In the declaratives part of the
Procedure Division, a section can also end at the key words END DECLARATIVES. See the section called
“Declaratives” for more information on declaratives.

8. A paragraph consists of a paragraph-name followed by a separator period, and by zero or more successive
sentences. A paragraph ends immediately before the next paragraph-name or section-name or at the end of
the Procedure Division. In the declaratives part of the Procedure Division, a paragraph can also end at the key
words END DECLARATIVE. See the section called “Declaratives” for more information on declaratives.

9. sentence contains one or more statements terminated by a separator period.

10.A statement is a syntactically valid combination of words and symbols that begins with a COBOL verb.

11.identifier is the word or words necessary to refer uniquely to a data item.

Procedure Division Header
1. The Procedure Division header identifies and begins the Procedure Division. It consists of the reserved words

PROCEDURE DIVISION and optional USING and GIVING phrases followed by a separator period.

2. The USING phrase is required only if the program is invoked by a CALL statement with a USING phrase.

3. The Procedure Division header USING phrase identifies the names used in the program to refer to arguments
from the calling program. In the calling program, the USING phrase of the CALL statement identifies the
arguments. The data items in the two USING phrase lists correspond positionally.

4. Each data-name in the USING phrase must be defined in the Linkage Section with a level-01 or level-77 entry.

5. Each data-name cannot appear more than once in the USING phrase.

6. In the USING phrase, data-name cannot have the external attribute.

7. In the USING phrase, the data description for data-name cannot contain a REDEFINES clause. However, the
data description can be the object of a REDEFINES clause.

8. The Procedure Division header GIVING phrase specifies a function result of the program. The identifier must
refer to an elementary integer numeric data item with COMP, COMP-1, or COMP-2 usage and no scaling
positions. The identifier cannot be subscripted, but it can be qualified.

Procedure Division Body
1. The Procedure Division body consists of all Procedure Division text following the Procedure Division header.

General Rules
1. References to USING phrase data-names operate according to data descriptions in the called program's Linkage

Section, regardless of the descriptions in the calling program.

2. The called program can refer, in its Procedure Division, to a Linkage Section data item only if the data item
satisfies one of these conditions:

• It is in the Procedure Division header USING phrase.

• It is subordinate to data-name that is in the Procedure Division header USING phrase.

• Its definition includes a REDEFINES or RENAMES clause, the object of which is in the Procedure Division
header USING phrase.

247

Procedure Division

• It is subordinate to an item that satisfies the previous conditions.

• It is a condition-name or index-name associated with a data item that satisfies any of the previous conditions.

3. On Alpha and I64 systems, when a called program returns control to the calling program, the return value is
made available to the calling program in the data item specified in its CALL statement GIVING phrase. The
value is moved to that data item according to the rules for the MOVE statement. If the calling program does not
specify a GIVING phrase, then the return value is made available in the calling program's RETURN-CODE
special register. Note that the value in the called program's RETURN-CODE is not returned to the caller.

4.
On Alpha and I64 systems, if no GIVING phrase is specified in the called program, the value in the RETURN-
CODE special register is made available to the calling program in the data item specified in the calling program's
CALL statement GIVING phrase. The value is moved according to the rules for the MOVE statement. If the
calling program does not specify a CALL GIVING phrase, the value in the called program's RETURN-CODE
special register is made available to the calling program in the calling program's RETURN-CODE special
register.

Table 6.7, “Relation of GIVING Phrase to RETURN-CODE Special Register (Alpha, I64)” shows the
relationship between the GIVING phrase and RETURN-CODE.

Table 6.7. Relation of GIVING Phrase to RETURN-CODE Special Register (Alpha, I64)

Calling program has
CALL GIVING X

Called program
has PROCEDURE
DIVISION GIVING Y

Called program puts
result in

Calling program gets
result in

YES YES Y (also RETURN-CODE) X (moved from Y)
YES NO RETURN-CODE X (moved from called

program's RETURN-
CODE)

NO YES Y (also RETURN-CODE) RETURN-CODE (moved
from Y)

NO NO RETURN-CODE RETURN-CODE (moved
from called program's
RETURN-CODE)

Technical Notes
1. On Alpha and I64 systems, because the reserved word RETURN-CODE is one of the X/Open reserved words,

you cannot use the compilation flag -rsv noxopen (for Tru64 UNIX systems) or the corresponding qualifier /
RESERVED_WORDS = NOXOPEN (for OpenVMS systems) if your program uses the RETURN-CODE
special register.

2.
On Alpha and I64 systems, VSI COBOL supports passing status to the operating system for RETURN-CODE
and PROCEDURE DIVISION GIVING when EXIT PROGRAM or STOP RUN is executed.

Four of the data types supported by PROCEDURE DIVISION GIVING can be used to communicate status
to the operating system. Following is a summary of what is supported for both RETURN CODE and
PROCEDURE DIVISION GIVING:

 RETURN-CODE (Alpha and I-64 only*)
 EXIT PROGRAM /STA=V3 yes
 EXIT PROGRAM /STA=85 yes
 STOP RUN yes
 PROCEDURE DIVISION GIVING
 EXIT PROGRAM /STA=V3 yes

248

Procedure Division

 EXIT PROGRAM /STA=85 yes
 STOP RUN yes*
 Data Types
 COMP-1,COMP-2 no
 PIC 9(04) COMP no
 PIC S9(04) COMP no
 PIC 9(09) COMP yes
 PIC S9(09) COMP yes
 PIC 9(18) COMP yes
 PIC S9(18) COMP yes
 PIC 9(31) COMP no
 PIC S9(31) COMP no

This support is subject to the limitations on status handling imposed by the operating system. If PIC S9(18)
COMP or PIC 9(18) COMP is used, the high-order 32 bits are truncated before the status is passed on to the
operating system.

To display the operating system status information, do the following:

[UNIX] echo $status
[OpenVMS] show symbol $status

Additional References
• CALL statement

• USE statement

• Section 6.7: Segmentation

Example
The following is an example of a Procedure Division header:

WORKING-STORAGE SECTION.
01 RETURN-RESULT PIC 9(8) COMP.
LINKAGE SECTION.
01 ARG1.
 03 ARG2 PIC X(6).
 03 ARG3 PIC S9(6) COMP.
01 ARG4 PIC X(4).
PROCEDURE DIVISION USING ARG1 ARG4 GIVING RETURN-RESULT.
 .
 .
 .
 MOVE 17 TO RETURN-RESULT.
 EXIT PROGRAM.

ACCEPT
ACCEPT

Function
The ACCEPT statement makes low-volume data available to the program. The VSI extensions to the ACCEPT
statement (Formats 3, 4, and 5) are COBOL language additions that facilitate video forms design and data handling.
The WITH CONVERSION phrase and some other options in Format 1 are also VSI extensions.

249

Procedure Division

Format 6 retrieves the number of arguments on the program run command line, Format 7 reads those command
line arguments into designated program variables, and Format 8 reads environment variables and logicals into
designated program variables.

[dest-item]

is the identifier of a data item into which data is accepted.

[input-source]

is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the Environment Division.

[stment]

is an imperative statement executed when the relevant condition (at end or on exception) occurs.

[stment2]

is an imperative statement executed when the relevant condition (not at end or not on exception) occurs.

[stment3]

is an imperative statement executed when an attempt is made to read beyond the last argument on the command
line, or if the command line argument does not exist.

[stment4]

is an imperative statement executed if the name of a referenced environment variable or logical has not been set,
or if the referenced environment variable or logical does not exist.

[stment5]

is an imperative statement executed if the exception condition does not exist.

[line-num]

is a numeric literal that specifies a line position on the terminal screen. line-num must be a positive integer; it
cannot be zero.

[line-id]

is the identifier of a data item that provides a line position on the terminal screen. It must be a positive integer;
it cannot be zero.

[plus-num]

is a numeric literal that increments the current value for line or column position, or that increments the value of
line-id or column-id. plus-num can be zero or a positive integer.

[column-num]

is a numeric literal that specifies a column position on the terminal screen. column-num must be a positive integer;
it cannot be zero.

[column-id]

is the identifier of a data item that provides a column position on the terminal screen. It must be a positive integer;
it cannot be zero.

[prot-size-lit]

is a numeric literal that specifies the maximum length of the video screen field into which data can be typed. prot-
size-lit must be a positive integer; it cannot be zero.

250

Procedure Division

[prot-size-item]

is the identifier of a numeric integer data item that specifies the maximum length of the video screen field into
which data can be typed. prot-size-item must be a positive integer; it cannot be zero.

[prot-fill-lit]

is a single character alphanumeric literal that is used to initialize each character position of a protected video screen
field into which data can be typed.

[def-src-lit]

is a nonnumeric literal or a figurative constant. However, it cannot be the figurative constant ALL literal.

[def-src-item]

is the identifier of an alphanumeric data item.

[key-dest-item]

is the identifier of a data item that defines a control key. key-dest-item must specify an alphanumeric data item
at least four characters in length.

[screen-name]

is the name of a screen item defined in the SCREEN SECTION of the program.

[arg-count]

is a mnemonic name associated with ARGUMENT-NUMBER in the SPECIAL-NAMES paragraph in the
Environment Division. It represents the number of arguments present on the run command line.

[arg-value]

is a mnemonic name associated with ARGUMENT-VALUE in the SPECIAL-NAMES paragraph in the
Environment Division. It contains the value of the argument on the run command line specivied by the current
argument position indicator.

[envlog-value]

is a mnemonic name associated with ENVIRONMENT-VALUE in the SPECIAL-NAMES paragraph in the
Environment Division. It contains the value of a selected environment variable or system logical.

Syntax Rules

Format 3
1. You cannot specify a phrase more than once for any dest-item.

2. When you use the DEFAULT phrase and the PROTECTED phrase without the SIZE option, the size of def-
src-item or def-src-lit must be less than or equal to the size of dest-item.

3. When you use the DEFAULT phrase and the PROTECTED phrase with the SIZE option, the size of def-src-
item and def-src-lit must be less than or equal to prot-size-lit. If prot-size-item is specified and the specified size
at run time is less than the length of def-src-item or def-src-lit, reprompting occurs.

4. The FILLER phrase cannot be used with the EDITING phrase. If both are present, the FILLER phrase is ignored.

Format 4
5. You cannot specify a phrase more than once for any key-dest-item.

251

Procedure Division

Format 6 (Alpha, I64)
6. dest-item must reference a data item described as an unsigned integer.

Formats 7 and 8 (Alpha, I64)
7. dest-item must reference an alphanumeric data item.

General Rules

Format 1
1. The ACCEPT statement transfers data from input-source. The transferred data replaces the contents of dest-

item.

2. The ACCEPT statement transfers a stream of characters with no editing or conversion, unless the WITH
CONVERSION phrase is specified. Data transfer begins with the leftmost character position of dest-item and
continues to the right.

3. If the data does not completely fill dest-item, remaining character positions are filled with spaces. If the data
is too long for dest-item, it is truncated on the right.

4. The ACCEPT statement treats dest-item as alphanumeric, regardless of its class, unless the WITH
CONVERSION phrase is specified.

5. If there is no FROM phrase, the ACCEPT statement transfers data from the default system input device.

Format 2
6. The ACCEPT statement transfers data to dest-item according to the MOVE statement rules.

7. DATE, DAY, DAY-OF-WEEK, and TIME are not actual data items. Therefore, the source program must not
describe them.

8. DATE has three elements. From left to right, they are as follows:

• Year of century (four digits if you specify YYYYMMDD, two digits if you do not)

• Month of year (two digits)

• Day of month (two digits)

The ACCEPT statement operates as if DATE were described in the program as an eight-digit or six-digit,
unsigned, elementary, numeric integer data item (PIC 9(8) or PIC 9(6)).

For example, June 3, 1997 is expressed as 19970603 or 970603.

• DAY has two elements. From left to right, they are as follows:

Year of century (four digits if you specify YYYYDDD, two digits if you do not)

• Day of year (three digits)

The ACCEPT statement operates as if DAY were described in the program as a seven-digit or five-digit,
unsigned, elementary, numeric integer data item (PIC 9(7) or (PIC 9(5)).

For example, the fifteenth day of 1998 is expressed as 1998015 or 98015.5

5VSI COBOL also supports four-digit years using the CURRENT-DATE intrinsic function (see Chapter 7, Intrinsic Functions.) VSI
recommends the use of four-digit years.

252

Procedure Division

The YYYYMMDD and YYYYDDD options are VSI extensions.

9. DAY-OF-WEEK is a one-digit item that represents the day of the week.

The ACCEPT statement operates as if DAY-OF-WEEK were described in the program as a one-digit, unsigned,
elementary numeric integer data item.

The values of DAY-OF-WEEK range from 1 (for Monday) to 7 (for Sunday).

10.TIME represents elapsed time after midnight, as shown on a 24-hour clock. It has four, two-digit elements.
From left to right, they are as follows:

• Hours

• Minutes

• Seconds

• Hundredths of a second

The ACCEPT statement operates as if TIME were described in the program as an eight-digit, unsigned
elementary numeric integer data item (PIC 9(8)).

The time 6:13 PM is expressed as 18130000. The minimum and maximum values of TIME are 00000000 and
23595999.

Formats 3 and 4
12.The ACCEPT statement transfers data from a video terminal. The data replaces the contents of dest-item (Format

3), or key-dest-item (Format 4). Format 3 can also update key-dest-item.

13.The presence of either the LINE NUMBER phrase or the COLUMN NUMBER phrase implies NO
ADVANCING. The cursor remains on the character position immediately following the position of the last input
character or in the position immediately following the rightmost position in the protected area. (For example,
ACCEPT … PROTECTED SIZE 10 LINE 1 COLUMN 1, leaves the cursor at line 1, column 11, no matter
what is typed in.) This is the default starting position of the next data item the program will input from or
display upon the terminal.

14.If you do not use either the LINE NUMBER phrase or the COLUMN NUMBER phrase, data is accepted
according to positioning rules for the Format 1 ACCEPT statement.

Formats 3, 4, and 5
15.The execution of certain extended ACCEPTs when the input source is assigned to a file (for example, in batch

mode on OpenVMS systems), is a restriction. Syntax and actions that result in outputs from the ACCEPT
operation (positioning, erasing, setting character attributes, reprompting, and protecting) to a nonvideo terminal
are not supported and are ignored.

LINE NUMBER Phrase (Formats 3 and 4)
16.The LINE NUMBER phrase positions the cursor on a specific line of the video screen for data input.

17.If the LINE NUMBER phrase does not appear, but the COLUMN NUMBER phrase does, then data is accepted
from the current line position and specified column position.

18.If line-num or the value of line-id is greater than the bottommost line position of the current screen, program
results are undefined. (See Technical Notes.) Scrolling results if relative positioning is attempted past the bottom
of the screen.

253

Procedure Division

19.If you use line-id without its PLUS option, the line position is the value of line-id.

20.If you use line-id with its PLUS option, the line position is the sum of plus-num and the value of line-id.

21.If you use the PLUS option without line-id, the line position is the sum of plus-num and the value of the current
line position.

22.If you use the PLUS option, but you do not specify plus-num, then PLUS 1 is implied.

23.Data input results are undefined if your program generates a value for line-id that is one of the following:

• Zero

• Negative

• Greater than the bottommost line position of the current screen

COLUMN NUMBER Phrase (Formats 3 and 4)
24.The COLUMN NUMBER phrase positions the cursor on a specific column of the video screen.

25.If the COLUMN NUMBER phrase does not appear, but the LINE NUMBER phrase does, then data is accepted
from column 1 of the specified line position.

26.If you use column-id without its PLUS option, the column position is the value of column-id.

27.If you use column-id with its PLUS option, the column position is the sum of plus-num and the value of column-
id.

28.If you use the PLUS option without column-id, the column position is the sum of plus-num and the value of
the current column position.

29.If you use the PLUS option, but do not specify plus-num, PLUS 1 is implied.

30.Data input results are undefined if the program generates a value for column position that is one of the following:

• Zero

• Negative

• Greater than the last column position on the screen

LINE NUMBER and COLUMN NUMBER Phrases
(Format 5) (Alpha, I64)
31.The LINE NUMBER and COLUMN NUMBER phrases together give the starting screen coordinates.

32.The position of each screen item within the referenced screen-name is offset from the LINE and COLUMN
positions.

33.If either LINE or COLUMN is not specified, the default value is 1.

ERASE Phrase (Formats 3 and 4)
34.The ERASE phrase erases all, or part, of a line (or screen) before accepting data. You must specify SCREEN

or LINE with the ERASE phrase.

35.If you use the TO END option, the ERASE phrase erases the line (or screen) from the implied, or stated, cursor
position to the end of the line (or screen).

254

Procedure Division

36.If you do not use the TO END option, the ERASE phrase erases the entire line (or screen).

BELL Phrase (Formats 3 and 4)
37.The BELL phrase rings the terminal bell before accepting data.

CONTROL KEY Phrase (Formats 3 and 4)
38.If you use the CONTROL KEY phrase, the characters representing PF keys and arrow keys, as well as TAB

and RETURN, are legal terminator keys and can be accepted from the terminal. (See Technical Notes.)

39.key-dest-item stores the terminator key code; unused character positions, if any, are filled with spaces. (See
Technical Notes.)

ON EXCEPTION Phrase (Formats 3 and 4)
40.The ON EXCEPTION phrase allows execution of an imperative statement when an exception (or error)

condition occurs. ON EXCEPTION takes effect when illegal numeric data has been entered or there is an
overflow on the left or right of the decimal point when CONVERSION is specified.

41.ON EXCEPTION can be used to detect numeric data entry errors only when accepting numeric data while
CONVERSION is being used.

42.ON EXCEPTION can be used to detect end-of-file in any Format 3 or Format 4 ACCEPT statement.

43.ON EXCEPTION and AT END are mutually exclusive. If ON EXCEPTION is specified, the end-of-file
indication is also a control key.

44.
A DISPLAY statement within an ACCEPT ON EXCEPTION must be terminated (with, for example, END-
DISPLAY) on Alpha and I64 systems. (If you are concerned with the different VAX behavior, refer to the
appendix on compatibility in the VSI COBOL User Manual.)

NOT ON EXCEPTION Phrase (Formats 3 and 4)
45.The NOT ON EXCEPTION phrase allows execution of an imperative statement when an exception (or error)

condition does not occur.

ON EXCEPTION Phrase (Format 5, Alpha, I64)
46.The ON EXCEPTION phrase allows execution of an imperative statement when the ACCEPT statement

terminates unsuccessfully. When there is an applicable CRT STATUS clause, unsuccessful termination is
indicated by a value of '1' or '9' in the first character of the CRT STATUS data item (see the SPECIAL-NAMES
section of Chapter 4, Environment Division).

NOT ON EXCEPTION Phrase (Format 5, Alpha, I64)
47.The NOT ON EXCEPTION phrase allows execution of an imperative statement when the ACCEPT statement

terminates successfully. When there is an applicable CRT STATUS clause, successful termination is indicated
by a value of '0' in the first character of the CRT STATUS data item (see the SPECIAL-NAMES section of
Chapter 4, Environment Division).

NOT ON EXCEPTION Phrase (Formats 3 and 4; and
Formats 5, 7, and 8, Alpha, I64)
48.A DISPLAY statement within an ACCEPT [NOT] ON EXCEPTION statement must be terminated (with, for

example, END-DISPLAY).

255

Procedure Division

AT END Phrase (Formats 3 and 4)
49.The AT END phrase allows execution of an imperative statement when an end-of-file condition occurs.

50.AT END and ON EXCEPTION are mutually exclusive.

51.If AT END is specified, the end-of-file indication is also a control key. If you do not specify AT END or ON
EXCEPTION, and end-of-file is entered, an error condition occurs.

NOT AT END Phrase (Formats 3 and 4)
52.The NOT AT END phrase allows execution of an imperative statement when an end-of-file condition (or other

error) does not occur.

Format 3

UNDERLINED Phrase (Format 3)
53.The UNDERLINED phrase echoes input characters to the terminal with the underscore on character attribute.

54.When you use the UNDERLINED phrase with the PROTECTED phrase, the input field is underlined prior
to accepting data.

BOLD Phrase (Format 3)
55.The BOLD phrase echoes input characters to the terminal with the bold on character attribute.

56.When you use the BOLD phrase with the PROTECTED phrase, the input field is visibly bolded prior to
accepting data only if: (1) the underlined or reversed attributes are also specified, or (2) the video terminal
screen is set to light background.

BLINKING Phrase (Format 3)
57.The BLINKING phrase echoes input characters to the terminal with the blink on character attribute.

58.When you use the BLINKING phrase with the PROTECTED phrase, the input field is visibly blinked prior
to accepting data only if: (1) the underlined or reversed attributes are also specified, or (2) the video terminal
screen is set to light background.

REVERSED Phrase (Format 3)
59.The REVERSED phrase echoes input characters to the terminal with the reverse video on character attribute.

60.When you use the REVERSED phrase with the PROTECTED phrase, the input field appears in reverse video
prior to accepting data.

CONVERSION Phrase (Formats 1 and 3)
61.The CONVERSION phrase allows you to accept data into a field and achieve the same results as you would

with the MOVE statement for non-floating-point items, and provides conversion from display, display scaled
or E-notation to floating point in the case of floating-point data items. It enables validation of the accepted data
and facilitates editing and alignment of data within dest-item. The effect of the CONVERSION phrase on data
handling depends on the category of dest-item. (Numeric data can be described by any USAGE clause.)

62.When dest-item is numeric or numeric edited (other than floating point), the CONVERSION phrase:

256

Procedure Division

• Converts input numeric data to a numeric literal (TRAILING SEPARATE SIGNED DISPLAY DECIMAL)

• Moves the result to dest-item (using MOVE statement rules)

63.When dest-item is floating point, the CONVERSION phrase:

• Converts input data to floating point (COMP-1 or COMP-2 as appropriate).

• Moves the converted result to the destination as if a numeric literal equivalent to the input data was moved
to the destination with the MOVE statement.

64.When dest-item is numeric or numeric edited (other than floating point), and you use the CONVERSION phrase,
valid input characters are as follows:

• 0 to 9

• Period (.), unless DECIMAL POINT IS COMMA is specified

• Comma (,), if DECIMAL POINT IS COMMA is specified

• Space (leading and trailing)

• Sign (+ or -)

The terminal operator can input space characters only as leading and trailing spaces. If this occurs, space
characters are simply ignored during numeric conversion.

However, the operator cannot input space characters between numeric characters, between numeric characters
and a decimal point, or between a sign and any other input character. When this occurs, the input data is invalid,
and an error condition results.

The operator can input only one sign character and one decimal point character.

When the operator inputs a sign character, it must precede or follow all numeric characters and the decimal point.

The default sign character is a plus sign (+).

The default number of decimal places is zero.

65.When dest-item is floating point, and you use the CONVERSION phrase, valid input characters are as follows:

• <zero or more blanks>

• < “+”, “-”, or null>

• <zero or more decimal digits>

• < “.” or null> if DECIMAL POINT IS COMMA then < “,” or null>

• <zero or more decimal digits>

For example:

2.5E2
-0.08e4
10.0E-1
-2.14158E0

Note that numbers can be expressed in several ways. For example, the number 257.0 can be represented in any
of the following ways:

257e0 2.57E2 0.000257E+6 2570E-1

257

Procedure Division

66.When you use the CONVERSION phrase and dest-item is numeric, data input results in a conversion error
condition if the operator enters any of the following:

• For fixed point numeric, too many characters on either side of the decimal point. (The PICTURE clause of
dest-item determines this overflow condition.)

• For floating-point numeric, an exponent outside the valid range:

• For IEEE double format (T_floating format) and G_floating format, the valid range is +308 to -308.

• For IEEE single format (S_floating format), D_floating format, and F_floating format, the valid range is
+38 to -38.

• Invalid numeric data (for both fixed and floating-point numeric).

When one of these error conditions occurs, and you do not specify the ON EXCEPTION phrase: (1) the contents
of dest-item do not change, (2) the terminal bell rings, (3) the input field is erased, and (4) the ACCEPT statement
executes again. The input field is not erased if the EDITING phrase is used.

When one of these error conditions occurs, and you do specify the ON EXCEPTION phrase: (1) the contents
of dest-item do not change, (2) the input field is left as if no error occurred, and (3) the imperative statement
of the ON EXCEPTION phrase executes.

67.When dest-item is not numeric, the CONVERSION phrase moves input characters to dest-item as an
alphanumeric string (MOVE statement rules apply). Therefore, data can be accepted into an alphanumeric
edited field, or a reference modified field, and the JUSTIFIED clause, if it applies to dest-item, can take effect.

An overflow condition is not an error condition when dest-item is alphanumeric; in this case, right-end
truncation occurs. However, you can specify the PROTECTED and SIZE phrases to limit the amount of input
data when dest-item is alphanumeric.

68.When you use the CONVERSION phrase, and the operator types the terminator key prior to any data input:

• ZEROES (or spaces if BLANK WHEN ZERO is specified) are moved to a numeric or numeric edited dest-
item, if you do not specify the DEFAULT phrase.

• SPACES are moved to an alphanumeric or alphanumeric edited dest-item, if you do not specify the DEFAULT
phrase.

• However, the default value is moved to dest-item, if you do specify the DEFAULT phrase.

If the default value is not a valid value for dest-item, an error condition results. If ON EXCEPTION is used, an
exception path is followed. If ON EXCEPTION is not used, an automatic reprompt for data occurs.

69.If you do not use the CONVERSION phrase, data is transferred to dest-item according to Format 1 ACCEPT
statement rules when CONVERSION is not specified.

PROTECTED Phrase (Format 3)
70.The PROTECTED phrase limits the number of characters that can be entered from the terminal.

71.If you do not specify the PROTECTED phrase, the cursor remains on the character position immediately
following the position of the last input character. This is the default starting position of the next data item you
input from or display upon the terminal.

However, if you use the PROTECTED phrase to delimit the field of a data item, the cursor moves to the character
position immediately following the last position of the input field. In this case, the default starting position of
the next data item is always to the right of the input field, as determined by the SIZE phrase or PICTURE clause.

72.When you specify the PROTECTED phrase without the AUTOTERMINATE phrase:

258

Procedure Division

• If the operator attempts to type beyond the rightmost position of the input field: (1) the terminal bell rings,
(2) the cursor remains on the position to the right of the rightmost position, and (3) character entry attempts
beyond the rightmost position are not echoed to the terminal screen.

• If the operator attempts to delete beyond the leftmost position of the input field: (1) the terminal bell rings,
and (2) the cursor remains on the leftmost position.

73.If you use the PROTECTED phrase without the SIZE phrase, the maximum number of characters that the
operator can enter is as follows:

• The number of characters in a fixed point dest-item

• Thirteen, if dest-item is COMP-1 F_floating format or IEEE S_floating format

• Twenty two, if dest-item is COMP-2 D_floating or G_floating format or IEEE T_floating format

For non-floating-point numeric items, the maximum number of characters allows for entry of sign and decimal
point characters when these are implied by dest-item's PICTURE clause. For example, if PIC S9(4)V99 is the
PICTURE clause for dest-item, all of the following character strings are valid input:

2222.22

2222

.22

+2222.22

222.22-

-02.2

Although the sign does not represent a character position (and does not count toward item size), a space in the
input field is allocated for it. A space is also allocated for the implied decimal point.

74.When you use the PROTECTED phrase without the NO BLANK or FILLER phrase, the input field is filled
with spaces prior to accepting data. If you also use the UNDERLINED, REVERSED, BOLD, or BLINKING
phrase, those spaces have the specified character attributes.

75.If you use the PROTECTED phrase on a field that causes the cursor to position past the last column position
of the screen, the results are undefined.

76.If you do not use the PROTECTED phrase, an overflow condition is treated according to rules for the Format
1 ACCEPT statement.

SIZE Phrase (Format 3)
77.You can use the SIZE phrase only when you also specify the PROTECTED phrase.

78.The SIZE phrase specifies the number of characters in the input field. It allows you to specify fewer or more
characters than are specified in the PICTURE clause for dest-item.

79.Data input results are undefined if the program generates a value for prot-size-item that is zero or negative.

AUTOTERMINATE Phrase (Format 3)
80.You can use the AUTOTERMINATE phrase only when you also specify the PROTECTED phrase.

81.The AUTOTERMINATE phrase terminates a protected ACCEPT as soon as the maximum number of characters
has been entered. If the maximum number is entered, you should not enter a legal terminator. If you enter
the maximum number of characters and a terminator, the terminator is retained in the terminal driver type-

259

Procedure Division

ahead buffer and will terminate the next ACCEPT statement. If you enter fewer than the maximum number
of characters, a legal terminator is required to terminate the ACCEPT statement. The maximum number of
characters is determined by the same rules that apply to the PROTECTED phrase.

82.If you do not use the AUTOTERMINATE phrase, the ACCEPT statement is terminated when you enter a legal
terminator key.

NO BLANK Phrase (Format 3)
83.You can use the NO BLANK phrase only when you also specify the PROTECTED phrase.

84.The NO BLANK phrase specifies that the input field is not to be changed until you enter the first keystroke.
Once you enter a keystroke, the remainder of the field is filled with spaces or filler (or the default value, if the
EDITING and DEFAULT phrases are used) using any character attributes specified on the ACCEPT statement.

EDITING Phrase (Format 3)
85.You can use the EDITING phrase only when you also specify the PROTECTED phrase.

86.On OpenVMS systems, the EDITING phrase enables keys to perform field editing functions, described in
Table 6.8, “Field Editing Keys for OpenVMS Systems”.

Table 6.8. Field Editing Keys for OpenVMS Systems

Key Description

Left, Ctrl/D Move left.
Right, Ctrl/F Move right.
Ctrl/H, F12 Move to beginning of line.
Ctrl/E Move to end of line.
Ctrl/A, F14 Toggle insert and overstrike mode.
Ctrl/K Erase to end of line.
Ctrl/U Erase to beginning of line.
Ctrl/M, TAB, CR Terminate input.
Ctrl/Z End-of-file termination.

On Tru64 UNIX systems, the EDITING phrase enables the keys described in Table 6.9, “Field Editing Keys
for Tru64 UNIX Systems ”.

Table 6.9. Field Editing Keys for Tru64 UNIX Systems

Key Description

Left, Ctrl/B Move left
Right, Ctrl/F Move right
Ctrl/H Erase previous character
F12, Ctrl/A Move to beginning of line
Ctrl/E Move to end of line
F14, Ctrl/T Toggle insert and overstrike mode
Ctrl/K Erase to end of line
Ctrl/U Erase to beginning of line
Ctrl/M, TAB, CR Terminate input
Ctrl/D End of file termination

260

Procedure Division

87.In insert editing, each new character is entered where the cursor indicates and the cursor moves to the right.
The rest of the field also moves one character position to the right. A character moved beyond the last character
position of the field is lost. The delete key causes the character to the left of the cursor to be deleted. The rest
of the field moves one character position to the left, and space is inserted in the last position of the field.

In overstrike editing, each new character replaces the one where the cursor is positioned and the cursor moves
to the right. The delete key causes the character to the left of the cursor to be replaced by a space and the cursor
moves to the left.

88.When program execution begins, overstrike or insert editing is used, according to your terminal's current setting.
The same editing mode is used for all ACCEPT statements with the EDITING phrase until the next use of the
switch-mode function.

89.The EDITING phrase affects the syntax and semantics of other phrases. For more information, see the sections
on NO BLANK, FILLER, CONVERSION, NO ECHO, DEFAULT, CURRENT VALUE, and CONTROL
KEY.

FILLER Phrase (Format 3)
90.You can use the FILLER phrase only when you also specify the PROTECTED phrase.

91.The FILLER phrase initializes each character position of the input field with the character specified in prot-fill-
lit. As you enter characters, the filler characters are replaced by your input. If you strike the delete key after you
have entered data, the position made available by the delete operation is refilled with the character specified in
prot-fill-lit. When you terminate the ACCEPT operation, any remaining filler characters are replaced by space
characters.

92.When you use the FILLER phrase with the NO BLANK phrase, the input field is filled with the character
specified in prot-fill-lit, after you have entered the first character.

93.The FILLER phrase is not allowed to be used with the EDITING phrase. If both are present, the FILLER phrase
is ignored.

NO ECHO Phrase (Format 3)
94.The NO ECHO phrase suppresses the display of input characters on the screen.

95.When you do not use the NO ECHO phrase, valid input characters are displayed on the screen as they are typed.

96.When the EDITING phrase is used, the field editing functions still take place, but the display field is not
modified.

DEFAULT Phrase (Format 3)
97.The DEFAULT phrase specifies default input values when no characters are entered from the terminal. Null

input is signaled by entering a legal terminator key that is not preceded by data. (See the general rules for the
CONTROL KEY phrase.)

98.When the null input condition occurs, def-src-lit or the value of def-src-item is moved to dest-item according
to theMOVE rules. When the move occurs, the specified default value is not displayed on the terminal screen.

99.Conversion of the DEFAULT item will occur if CONVERSION is specified.

100.When the EDITING phrase is used, the default value is displayed in the input field. The value can be blank-
filled on the right or truncated, depending on the relative lengths of the default value and the input field.

101.When the EDITING phrase is used and a terminator is entered, the contents of the input field are moved to
dest-item according to the MOVE rules.

261

Procedure Division

CURRENT VALUE Phrase (Format 3)
102.#The CURRENT VALUE phrase can be used only when you specify the DEFAULT phrase.

103.#The CURRENT VALUE phrase specifies that the default input value is the initial value of the ACCEPT
destination item.

104.#The value of the ACCEPT destination item is the same as it was before the execution of the ACCEPT statement
if all the following conditions exist:

• You specify the CURRENT VALUE phrase.

• The EDITING phrase is not used.

• The default path is taken.

105.#When you use the EDITING phrase, dest-item can be alphabetic, alphanumeric, or non-floating-point numeric.
In this case, the input field is always updated to be what is on the screen. It cannot be numeric edited,
alphanumeric edited, COMP-1, or COMP-2; if it is, the program will ignore the DEFAULT and CURRENT
VALUE phrases.

CONTROL KEY Phrase (Format 3)
106.#When you use the CONTROL KEY phrase in Format 3, the operator must terminate data input with a legal

terminator key. Ctrl/Z is a legal terminator if ON EXCEPTION or AT END is specified.

107.#When you do not use the CONTROL KEY phrase in Format 3, the operator can terminate data input only
with RETURN or TAB.

108.#When the EDITING phrase is used, the keys which invoke field editing functions do not terminate the
ACCEPT statement and are not stored in key-dest-item.

Format 4
109.#When any key other than a valid control key is entered: (1) the contents of key-dest-item do not change, and

(2) the terminal bell rings. This occurs until a proper control key is entered.

Format 5
110.The end-of-file indication is considered a normal, successful termination.

111.The data in each field is converted and validated as you leave the field. The updated value is displayed in the
field if the SECURE clause is not specified.

Conversion occurs in the following instances:

• If the field is not numeric and the JUSTIFIED clause is specified, the data is right-justified.

• If the field is numeric or numeric edited, the data is formatted according to the PICTURE, SIGN, and BLANK
WHEN ZERO clauses. This formatting is always successful because only the following characters from the
data are formatted:

• 0–9

• Period (.), if DECIMAL POINT IS COMMA is not specified

• Comma (,), if DECIMAL POINT IS COMMA is specified

• Sign (+, −, DB, db, CR, or cr)

262

Procedure Division

Note that only the first occurrence of the period, comma and sign is accepted; multiple occurrences are
ignored. Also, to the left and right of the decimal point excess leftmost digits and excess rightmost digits
are truncated, respectively.

Validation occurs when the FULL or REQUIRED clauses are specified.

112.The default value for each field is displayed when the operator enters the field for the first time during an
ACCEPT statement. The default value is determined as follows:

• If the USING clause is specified, the default is the current value of the USING item.

• If the TO and FROM clauses are specified, the default is the current value of the FROM item.

• If only the TO clause is specified:

• The default is ZEROES (or SPACES if BLANK WHEN ZERO is specified) for numeric and numeric
edited items.

• The default is SPACES for alphabetic, alphanumeric, and alphanumeric edited items.

113.If the operator types a terminator key prior to entering data in every field, the default value for each untouched
field is moved to the field's destination item.

114.The operator is limited to entering the number of characters specified by the PICTURE clause. If the operator
attempts to type beyond the rightmost position of the field: (1) the cursor remains on the position to the right
of the rightmost position and (2) the last character of the field is overwritten with the new character.

115.There are special keys that allow the operator to edit data within a field and to move among the fields within a
screen. Except where noted otherwise, the operator is allowed to move among the fields in the order in which
the fields are defined within the Screen Description Entry.

The keys defined on OpenVMS Alpha and I64 systems are described in Table 6.10, “SCREEN SECTION Keys
for OpenVMS Alpha and I64 Systems”.

Table 6.10. SCREEN SECTION Keys for OpenVMS Alpha and I64 Systems

Key Description

Left,

Ctrl/B,

Ctrl/D

Move left (if not at beginning of field, move left within field; if at
beginning of field, move to previous field).

Right,

Ctrl/F

Move right (if not at end of field, move right within field; if at end of
field, move to next field).

Up Move to the nearest field that is positioned above the current cursor
position; this movement ignores the order in which fields are defined
within the Screen Description Entry and is based simply on the
location of items on the screen.

Down Move to the nearest field that is positioned below the current cursor
position; this movement ignores the order in which fields are defined
within the Screen Description Entry and is based simply on the
location of items on the screen.

Ctrl/P,

Ctrl/L

Move to previous field.

TAB, Move to next field.

263

Procedure Division

Key Description
Ctrl/N,

Ctrl/I
Ctrl/H,

Ctrl/W

Move to beginning of line (if at beginning of line within a multiple-
line field, move to beginning of previous line).

Ctrl/E Move to end of text (if at end of text within a multiple-line field, move
to end of text on next line).

Ctrl/A,

Ctrl/T

Toggle insert and overstrike mode (if $ SET NOCONTROL=T).

Ctrl/K Erase to end of line (always performed in insert mode).
Ctrl/U,

Ctrl/X

Erase to beginning of line (always performed in insert mode).

CR,

Ctrl/M,

Ctrl/Z

Terminate input.

The keys defined on Tru64 UNIX systems are described in Table 6.11, “SCREEN SECTION Keys for Tru64
UNIX Systems ”.

Table 6.11. SCREEN SECTION Keys for Tru64 UNIX Systems

Key Description

Left,

Ctrl/B,

Ctrl/D

Move left (if not at beginning of field, move left
within field; if at beginning of field, move to previous
field).

Right,

Ctrl/F

Move right (if not at end of field, move right within
field; if at end of field, move to next field).

Up Move to the nearest field that is positioned above the
current cursor position; this movement ignores the
order in which fields are defined within the Screen
Description Entry and is based simply on the location
of items on the screen.

Down Move to the nearest field that is positioned below the
current cursor position; this movement ignores the
order in which fields are defined within the Screen
Description Entry and is based simply on the location
of items on the screen.

Ctrl/P,

Ctrl/L

Move to previous field.

TAB,

Ctrl/N,

Ctrl/I

Move to next field.

264

Procedure Division

Key Description

Ctrl/A,

Ctrl/H,

Ctrl/W

Move to beginning of line (if at beginning of line
within a multiple-line field, move to beginning of
previous line).

Ctrl/E Move to end of text (if at end of text within a multiple-
line field, move to end of text on next line).

Ctrl/T Toggle insert and overstrike mode.
Ctrl/K Erase to end of line (always performed in insert mode).
Ctrl/U,

Ctrl/X

Erase to beginning of line (always performed in insert
mode).

CR,

Ctrl/M

Terminate input.

116.The description of insert and overstrike editing for the EDITING Phrase (Format 3) also applies here.

Formats 6, 7, and 8
117.When a Format 6 ACCEPT statement is specified, the value of arg-count is moved to dest-item. This represents

the number of arguments on the program run command line (see ARGUMENT-NUMBER in the SPECIAL-
NAMES paragraph in Chapter 4, Environment Division).

118.When the current argument position indicator is zero, it refers to the zeroth command line argument, in other
words the command that invoked the COBOL program.

119.When a Format 7 ACCEPT statement is specified, the value of the command line argument indicated by the
current argument position indicator is moved to dest-item (see ARGUMENT-VALUE in the SPECIAL-NAMES
paragraph in Chapter 4, Environment Division).

120.The current argument position indicator is determined by the following:

• In the absence of a Format 4 DISPLAY, the initial value of the current argument position indicator is 1.

• The current argument position indicator is incremented by 1 after execution of a Format 7 ACCEPT
statement.

121.When a Format 8 ACCEPT statement is specified, the value of envlog-value is moved to dest-item (refer to
ENVIRONMENT-VALUE and ENVIRONMENT-NAME in the SPECIAL-NAMES paragraph in Chapter 4,
Environment Division). This value represents the value of the environment variable or system logical named
by the current ENVIRONMENT-NAME item.

122.stment3 is executed if an attempt is made to read beyond the last argument on the command line, or if the
argument does not exist.

123.stment4 is executed if the name of the environment variable or logical has not been set by a Format 5 DISPLAY,
or if the environment variable or logical does not exist.

124.stment5 is executed if the exception condition does not exist.

Technical Notes

All Formats
1. On OpenVMS systems, if the data transfer is from a terminal, Ctrl/Z is equivalent to an end-of-file indication.

265

Procedure Division

2. On Tru64 UNIX systems, if the data transfer is from a terminal, Ctrl/D is equivalent to an end-of-file indication.

Format 1
3. An ACCEPT statement without the FROM phrase takes input from the default input device (the keyboard).

To take input from a file on Tru64 UNIX systems, the environment variable COBOL_INPUT can be used
to specify a text file containing input data. To take input from a file on OpenVMS systems, the logical COB
$INPUT or SYS$INPUT can be used to specify a text file containing input data.

Alternatively, input device redirection (<) can be used on Tru64 UNIX systems to name an input file.

4. An ACCEPT statement that includes the FROM phrase transfers data from the file-device-name associated with
the SPECIAL-NAMES paragraph description of input-source.

5. On OpenVMS systems, the object of a logical name is not necessarily a device. Therefore, no open mode is
implied. As a result, input-source can be associated with any device-name in the SPECIAL-NAMES paragraph.
For example, input-source can refer to PAPER-TAPE-PUNCH as well as PAPER-TAPE-READER.

6. An end-of-file indication during ACCEPT statement execution with an AT END phrase causes control to
transfer to the AT END imperative statement.

7. An end-of-file indication during ACCEPT statement execution without the AT END phrase is an error. The
program terminates abnormally.

8. The ACCEPT statement fills dest-item with spaces if the input is an empty record (for example, a carriage
return only).

9. On Tru64 UNIX, you can enter a maximum of 256 characters during a Format 1 ACCEPT statement.

Formats 3 and 4
• The VSI extensions to the ACCEPT and DISPLAY statements support data input and display only on VT100

and later terminal types, including emulators of these terminal types.

• On OpenVMS Alpha and I64 systems, control sequences from SMGTERMS.TXT are used to accomplish cursor
positioning, screen erasure, and video attributes. Refer to the chapter on support for non VSI terminals of the
OpenVMS RTL Screen Management (SMG$) Manual if you wish to customize SMGTERMS.TXT.

• You should accept data only from input fields that are within screen boundaries. That is, the terminal operator
should see all the characters entered (assuming the NO ECHO, CONVERSION, and PROTECTED phrases are
not specified). If you accept data from an input field that positions the cursor outside screen boundaries, the
result is not an error condition, but your program might produce unexpected results.

Values for screen boundaries depend on the terminal attributes. Refer to the appropriate terminal user's guide
for more information on screen boundaries.

• Line positioning can be a one- or two-step process. The first (or only) step is absolute positioning, which is
using the value of line-num or line-id to determine the line position. The second step is relative positioning,
which is adding the value of plus-num to line-id to determine the line position. Relative positioning beyond the
bottom line of the current screen results in scrolling.

For example, suppose that the screen for which you are programming has a maximum of 24 lines and you need to
scroll the screen up one line before accepting data. The following sample statements illustrate how to use relative
positioning to accomplish this operation (assume ITEMA has a value of 14, and the current line position is 20):

ACCEPT DEST-EXAMPLE FROM LINE NUMBER PLUS 5.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMA PLUS 11.

The following sample statements would produce undefined results because absolute line positioning is beyond
the bottom of the screen (assume ITEMB has a value of 25):

266

Procedure Division

ACCEPT DEST-EXAMPLE FROM LINE NUMBER 25.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB PLUS 0.

The last ACCEPT statement illustrates that use of the PLUS option does not necessarily mean that scrolling will
always occur. Absolute line positioning always occurs before the relative positioning specified by the PLUS
option. In this case, line-id (ITEMB) has a value of 25. Therefore, the line position is outside the screen boundary
before the PLUS option executes, and program results are undefined.

• When you use the CONTROL KEY phrase, key-dest-item stores the terminator key code. The VSI COBOL
User Manual contains information on these key code values in its description of programming video forms.

• In Formats 3 and 4, the maximum number of characters in dest-item or key-dest-item is 1024.

• When you use the CONTROL KEY phrase with the PROTECTED WITH AUTOTERMINATE phrase, and
the maximum number of characters is entered to terminate the ACCEPT statement, key-dest-item is filled with
spaces.

• The ALPHABET clause has no effect on the CONVERSION clause for either ACCEPT or DISPLAY.

• Unexpected behavior can occur when an ACCEPT statement with the EDITING, PROTECTED, and DEFAULT
IS CURRENT phrases and without the CONVERSION phrase is executed. The behavior occurs when a numeric
data item has a negative scale factor or is signed. To avoid this behavior, it is suggested that the CONVERSION
phrase be used in these circumstances.

Additional References
• SPECIAL-NAMES section in Chapter 4, Environment Division

• VSI COBOL User Manual sections on using command-line arguments and environment variables

• Section 6.1.4: Scope of Statements

• DISPLAY

• MOVE statement

Examples
In the following examples, the character s represents a space. The examples assume that the time is just after 2:15
p.m. on October 7, 1992. The Environment and Data Divisions contain the following entries:

SPECIAL-NAMES.
 CONSOLE IS IN-DEVICE.
DATA DIVISION.
01 ITEMA PIC X(6).
01 ITEMB PIC 99V99.
01 ITEMC PIC 9(8).
01 ITEMD PIC 9(5).
01 ITEME PIC 9(6).
01 ITEMF PIC 9.
01 ITEMG COMP-1.
01 ITEMH PIC S9(5) COMP.

1. ACCEPT ITEMA.

Input ITEMA

COMPUTER COMPUT

267

Procedure Division

Input ITEMA

VAX VAXsss
12.6 12.6ss

2. ACCEPT ITEMB FROM IN-DEVICE.

Input ITEMB Equivalent to

1623 1623 16.23
4 4sss Invalid data
60000 6000 60.00
-1.2 -1.2 Invalid data
1.23 1.23 Invalid data
COMPUTER COMP Invalid data

3. ACCEPT ITEMB WITH CONVERSION.

Input ITEMB Equivalent to

1623 1623 16.23
4 4sss 04.00
60000 6000 60.00
-1.2 -1.2 01.20
1.23 1.23 01.23
COMPUTER COMP Invalid data

STATEMENT RESULT
ACCEPT ITEME FROM DATE. ITEME = 921007
ACCEPT ITEMC FROM TIME. ITEMC = 14150516 (OpenVMS and Tru64 UNIX)
ACCEPT ITEMD FROM DAY. ITEMD = 92280
ACCEPT ITEMF FROM DAY-OF-WEEK. ITEMF = 3
ACCEPT ITEMA FROM TIME. ITEMA = 141505
ACCEPT ITEME FROM TIME. ITEME = 150516
ACCEPT ITEMD FROM DAY-OF-WEEK. ITEMD = 00003
ACCEPT ITEMG WITH CONVERSION.

Input Result Equivalent to

.123E-02 0.00123
-12.3E+02 -1230
1004E-07 1.004000E-04

4. ACCEPT ITEMH WITH CONVERSION.

Input Result Equivalent to

27 27
-44 -44

Additional examples containing VSI extensions to the ACCEPT statement (Formats 3, 4, and 5) are described in
the VSI COBOL User Manual. Refer to the description of programming video forms.

268

Procedure Division

Also, examples containing extensions to the ACCEPT statement (Formats 6, 7 and 8) that access command line
arguments are described in the VSI COBOL User Manual.

6.9.

ADD
ADD

Function
The ADD statement adds two or more numeric operands and stores the sum in one or more receiving fields.

[num]

is a numeric literal or the identifier of an elementary numeric item.

[rsult]

is the identifier of an elementary numeric item. However, in Format 2, rsult can be an elementary numeric edited
item. It is the resultant identifier.

[stment]

is an imperative statement executed when a size error condition has occurred.

[stment2]

is an imperative statement executed when no on size error condition has occurred.

[grp-1]

is the identifier of numeric group item.

[grp-2]

is the identifier of numeric group item.

Syntax Rule
CORR is an abbreviation for CORRESPONDING.

General Rules
1. In Format 1, the values of the operands before the word TO are added together. This total is then added to each

occurrence of rsult.

2. In Format 2, the values of the operands before the word GIVING are added. The sum is then stored in each rsult.

3. In Format 3, data items in grp-1 are added to and stored in the corresponding data items in grp-2.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.6.1: Arithmetic Operations

• Section 6.6.2: Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3: ROUNDED Phrase

269

Procedure Division

• Section 6.6.4: ON SIZE ERROR Phrase

• Section 6.6.5: CORRESPONDING Phrase

• Section 6.6.7: Overlapping Operands and Incompatible Data

Examples
Each of the examples assume the following data descriptions and initial values:

INITIAL VALUES

 03 ITEMA PIC 99 VALUE 85. 85
 03 ITEMB PIC 99 VALUE 2. 2
 03 ITEMC VALUE "123".
 05 ITEMD OCCURS 3 TIMES 1 2 3
 PIC 9.

1. TO phrase: RESULTS

ADD 2 ITEMB TO ITEMA. ITEMA = 89

2. SIZE ERROR clause:

ADD 38 TO ITEMA ITEMB ITEMA = 85
 ITEMB = 40
 ON SIZE ERROR
 MOVE 0 TO ITEMB. ITEMB = 0

(When the SIZE ERROR condition occurs, the value of the affected resultant identifier does not change. The
SIZE ERROR condition occurs on ITEMA but not on ITEMB.)

3. NOT ON SIZE ERROR clause:

ADD 14 TO ITEMA ITEMA = 99
 ON SIZE ERROR
 MOVE 0 TO ITEMB.
 NOT ON SIZE ERROR
 MOVE 1 TO ITEMB. ITEMB = 1

(If the SIZE ERROR condition had occurred, the value of ITEMA would have been 85 and ITEMB would
have been 0.)

4. Multiple receiving fields:

ADD 1 TO ITEMB ITEMD (ITEMB). ITEMB = 3
 ITEMD (3) = 4

(The operations proceed from left to right. Therefore, the subscript for ITEMD is evaluated after the addition
changes its value.)

5. GIVING phrase:

ADD ITEMB ITEMD (ITEMB) GIVING ITEMA. ITEMA = 4

6. END-ADD:

IF ITEMB < 10
 ADD 7 ITEMB TO ITEMD (ITEMB) ITEMD (2) = 2
 ON SIZE ERROR
 MOVE 0 TO ITEMB ITEMB = 0
 END-ADD

270

Procedure Division

 ADD 1 TO ITEMB. ITEMB = 1

(The first ADD terminates with END-ADD. If the SIZE ERROR condition had not occurred, the second ADD
statement would have executed anyway; the value of ITEMB would have been 3.)

ALTER
ALTER

Function
The ALTER statement changes the destination of a GO TO statement.

[proc]

is the name of a paragraph that contains one sentence: a GO TO statement without the DEPENDING phrase.

[new-proc]

is a procedure-name.

General Rules
1. The ALTER statement changes the destination of the GO TO statement in proc.

2. When the changed GO TO executes, it transfers control to new-proc instead of the procedure it previously
referred to.

However, when the GO TO statement is in an independent segment (segment-number 50 to 99), the GO TO
statement could return to its initial state under some circumstances.

3. A GO TO statement in a section with a segment-number greater than 49 cannot be changed by an ALTER
statement in a section with a different segment-number.

Additional References
• Section 6.7: Segmentation

• GO TO statement

Examples
The examples assume the following Procedure Division code:

PROC-AA.
 DISPLAY "PROC-A".
PROC-A.
 GO TO PROC-BB.
PROC-BB.
 DISPLAY "PROC-B".
PROC-B.
 GO TO PROC-DD.
PROC-CC.
 DISPLAY "PROC-C".
PROC-C.
 GO TO PROC-FF.
PROC-DD.

271

Procedure Division

 DISPLAY "PROC-D".
PROC-D.
 GO TO PROC-CC.
PROC-EE.
 DISPLAY "PROC-E".
PROC-E.
 GO TO.
PROC-FF.
 DISPLAY "PROC-F".
PROC-F.
 EXIT.

1. As written.

Output
PROC-A
PROC-B
PROC-D
PROC-C
PROC-F

2. ALTER PROC-A TO PROC-EE PROC-E TO PROC-CC.

Output
PROC-A
PROC-E
PROC-C
PROC-F

3. ALTER PROC-D TO PROC-EE PROC-C TO PROC-AA.

Output
PROC-A
PROC-B
PROC-D
PROC-E
error at PROC-E

CALL
CALL

Function
The CALL statement transfers control to another program in the executable image.

[prog-name]

is a nonnumeric literal or the identifier of an alphanumeric data item. It is the name of the program to which
control transfers.

[arg]

is the argument. It identifies the data that is available to both the calling and called programs. It is any data item
described in the File Section, Working-Storage Section, or Linkage Section, or it is a nonnumeric literal. It must
not be a function-identifier.

[function-res]

272

Procedure Division

is the identifier of an elementary integer numeric data item with COMP, COMP-1, or COMP-2 usage and no scaling
positions. function-res can be subscripted, and it can be qualified. When control returns to the calling program,
function-res can contain a function result.

[stment]

is an imperative statement executed for an on exception or an overflow condition.

[stment2]

is an imperative statement executed for a not on exception or a not on overflow condition.

Syntax Rules
1. prog-name must be from 1 to 31 characters long. It can contain the characters "A" to "Z", "a" to "z", "0" to "9",

and hyphen (-), dollar sign ($), and underline (_).

2. prog-name is the entry-point in the called program. For COBOL programs, prog-name is the program-name
specified in the PROGRAM-ID paragraph.

3.
The same arg can appear more than once in the USING phrase.

4. The maximum number of arguments is 255.

5. If there is no initial argument-passing mechanism (REFERENCE, VALUE, CONTENT, or, for DESCRIPTOR),
BY REFERENCE is the default.

6. An argument-passing mechanism applies to every arg following it until a new mechanism (if any) appears.

7.
The CALL statement has a USING phrase only if a USING phrase is in the Procedure Division header of the
called program. Both USING phrases must have the same number of arguments.

8. If arg is a nonnumeric literal, only BY REFERENCE, BY CONTENT, or for OpenVMS systems, BY
DESCRIPTOR can be used.

9. OMITTED, a reserved word, indicates the absence of a specific argument. OMITTED does not change the
default argument-passing mechanism; it generates BY VALUE 0 for the omitted argument.

10.If the argument-passing mechanism is BY VALUE, arg must be either: (a) an integer numeric literal in the
range -2**31 to +2**31-1, (b) a COMP-1 data item, or (c) a word or longword integer COMP data item.

General Rules
1. The program whose name is specified by prog-name is the called program. The program containing the CALL

statement is the calling program.

2. When the CALL statement executes, the contents of prog-name are interpreted as follows:

• Hyphens are treated as underline characters.

• Lowercase letters are treated as uppercase (See the Technical Notes relating to case sensitivity later in this
section).

• Leading and trailing spaces and tab characters are ignored.

3. The CALL statement transfers control to the called program.

4. Two or more programs in the run unit can have the same prog-name. The scope of names conventions
for program-names resolve the CALL statement references to duplicate prog-names. (See the section on
Conventions for Resolving Program-Name References.)

273

Procedure Division

5. If prog-name is an identifier, the CALL statement can transfer control only to VSI COBOL programs.

6. The ON EXCEPTION phrase is interchangeable with the ON OVERFLOW phrase.

7. If prog-name is not in the executable image and there is an ON EXCEPTION phrase, any NOT ON
EXCEPTION phrase is ignored, stment executes, and control is transferred to the end of the CALL statement.

8. If prog-name is in the executable image, and there is an ON OVERFLOW phrase or ON EXCEPTION phrase,
both phrases are ignored. Control is transferred either to the end of the CALL statement or, if NOT ON
EXCEPTION is specified, to stment2. After stment2 executes, control is transferred to the end of the CALL
statement.

9. If prog-name is not in the executable image and there is no ON EXCEPTION phrase, an error condition exists;
the program terminates abnormally.

10.If the called program does not have the initial attribute, it, and each program directly or indirectly contained
in it, is in its initial state: (a) the first time it is called in an image, and (b) the first time it is called after a
CANCEL to the called program.

On all other entries, the state of the called program is the same as when it was last exited. The program state
includes internal data.

11.If the called program has the initial attribute, it, and each program directly or indirectly contained in it, is in
its initial state every time it is called.

12.Files associated with a called program's internal file connectors are not in the open mode:

• The first time the program is called

• The first time the program is called after execution of a CANCEL statement referring to the program

• Every time the program is called, if it has the initial attribute

On all other entries, the status and positioning of such files in a called program are the same as when the program
was last exited.

13.The process of calling a program or exiting from a called program does not alter the status or positioning of
a file associated with any external file connector.

14.The arguments' order of appearance in the USING phrases of the CALL statement and the called program's
Procedure Division header determine correspondence between the data-names used by the calling and called
programs. Data-names correspond by position in the USING phrase, not by name.

No correspondence exists for index-names. If a table is passed as an argument, the index associated with that
table in the called program will be the one specified in the INDEXED BY phrase in the called program, not
the index specified in the calling program.

15.The arguments in the CALL statement USING phrase are made available to the called program when the CALL
executes.

16.Called programs can contain CALL statements. However, a called program must not execute a CALL statement
that directly or indirectly calls the calling program.

17.The CALL statement can make data available to the called program by four argument-passing mechanisms:

• REFERENCE—The address of (pointer to) arg is passed to the called program. This is the default
mechanism: arguments are passed BY REFERENCE if there is no explicit mechanism in the CALL
statement.

• CONTENT—The address of a temporary data item that contains the contents of arg is passed to the called
program.

274

Procedure Division

•

• VALUE—The value of arg is passed to the called program. If arg is a data-name, its description in the Data
Division can be either:

• COMP usage with no scaling positions; the picture can specify no more than nine digits

• COMP-1 usage

Note that OMITTED, an VSI COBOL reserved word, is equivalent to BY VALUE 0 and can be used in place
of that BY VALUE argument-passing mechanism.

18.

19.If the BY REFERENCE phrase is either specified or implied for a parameter, the called program references
the same storage area for the data item as the calling program. This mechanism ensures that the contents of the
parameter in the calling program are always identical with the contents of the parameter in the called program.

20.If the BY CONTENT phrase is either specified or implied for a parameter, a copy of arg is moved to a temporary
memory location, and the address of the temporary memory location is passed to the called program. This
mechanism ensures that the called program cannot change the original contents of arg. However, the called
program can change the value of the temporary memory location.

21.
The data description of each arg in the calling program must be identical to each arg in the called program. The
compiler does not convert, extend, or truncate any arg passed to a called program.

22.On Alpha and I64 systems, if the GIVING phrase of the CALL statement is not specified, the function result
is made available in the RETURN-CODE special register when control returns to the calling program.

23.If the GIVING phrase is specified, the function result is made available in function-res when control returns
to the calling program.

Technical Notes
• On Alpha and I64 systems, because the reserved word RETURN-CODE is one of the X/Open reserved words,

you cannot use the reserved words compiler option with the noxopen setting if you want to use the
RETURN-CODE special register.

For more information on the relationship between the GIVING phrase and the RETURN-CODE special register,
see Table 6.7, “Relation of GIVING Phrase to RETURN-CODE Special Register (Alpha, I64)” in this chapter.

• On Tru64 UNIX systems, the linker is case sensitive, whereas the COBOL language is case insensitive. When
prog-name in a CALL statement is a literal, and you are calling a program in a case-sensitive language (such as
C), you might need to use a form of the names option when you compile.

If you do not specify the names option on the command line, the default setting is lowercase, which causes
the VSI COBOL compiler to force all external names to be lowercase. Hence, there is no problem when you
call a C program whose name contains no uppercase letters. If the name consists of all uppercase letters, use the
uppercase setting of the names option. If it is mixed-case (for example, "Cprog") use the as_is setting.
When you use names as_is, only literals in the CALL program name are affected.

•

• CALL identifier (CALL data name) requires that all modules be specified to link the run unit. Since there are no
link-time references to routines to be called with CALL identifier, the linkers on OpenVMS and Tru64 UNIX
do not resolve these references at link time. Instead, the references are dynamically resolved at run-time using
modules which have been explicitly linked into the run unit.

Additional References
• Section 6.8: General Formats and Rules for Statements

• PROGRAM-ID paragraph in Chapter 3, Identification Division

275

Procedure Division

• Section 6.1.4: Scope of Statements

• Subsection Section 6.2.6.1: Conventions for Resolving Program-Name References in Section 6.2.6: Scope of
Names

•

Refer to the OpenVMS Calling Standard for more information.

Examples
1. Passing arguments by reference:

CALL "DATERTN" USING ITEMA ITEMB ITEMC.

2. On OpenVMS, mixing argument-passing mechanisms: Reference arguments are ITEMA, ITEMD, and
“PAYROLL”. Descriptor arguments are ITEMB, ITEMC, ITEMD, “TOTALS”, and ITEMF. The value
arguments are ITEME and “995.99”. ITEMD is passed twice—by reference and by descriptor. The content
arguments are ITEMG and “SUMMARY FLAG”.

CALL "NEWPROG" USING ITEMA
 BY DESCRIPTOR ITEMB ITEMC "TOTALS"
 BY REFERENCE ITEMD "PAYROLL"
 BY VALUE ITEME 995.99
 BY DESCRIPTOR ITEMD ITEMF
 BY CONTENT ITEMG "SUMMARY FLAG".

3. Mixing argument-passing mechanisms: Reference arguments are ITEMA, ITEMD, and “PAYROLL”. The
value arguments are ITEME and “995.99”. The content arguments are ITEMG and “SUMMARY FLAG”.

CALL "NEWPROG" USING ITEMA
 BY REFERENCE ITEMD "PAYROLL"
 BY VALUE ITEME 995.99
 BY CONTENT ITEMG "SUMMARY FLAG".

4. Calling a program whose name is selected at run time:

MOVE "PROG009" TO PROG-TO-CALL.
.
.
.
CALL PROG-TO-CALL USING ITEMA.

5. Receiving a function result:

CALL "PROG010" USING ITEMA ITEMB "XYZ"
 GIVING ITEMC.

CANCEL
CANCEL

Function
The CANCEL statement returns the named program to its initial state.

[prog-name]

276

Procedure Division

is a nonnumeric literal or the identifier of an alphanumeric data item. It contains the program-name of the program
to be canceled.

Syntax Rules
1. prog-name must be from 1 to 31 characters long. It can contain the characters A to Z, a to z, 0 to 9, dollar sign

($), hyphen (-), and underline (_).

2. prog-name must be the name of an VSI COBOL program.

General Rules
1. Two or more programs in the run unit can have the same prog-name. The scope of names conventions for prog-

names resolve the CANCEL statement references to duplicate prog-names. (See the section on Conventions
for Resolving Program-Name References.)

2. Using the scope of names conventions (See Section 6.2.6, “Scope of Names”), if prog-name is called again
after the CANCEL statement successfully executes, prog-name, and all programs contained within it, are in
their initial state.

3. prog-name must be callable by the program that contains the CANCEL statement.

4. The program named by prog-name must not refer directly or indirectly to any program that: (a) has been called,
and (b) has not yet executed an EXIT PROGRAM statement.

5. When the CANCEL statement executes, the contents of prog-name are interpreted as follows:

• Hyphens are treated as underline characters.

• Lowercase letters are treated as uppercase.

• Leading and trailing spaces and tab characters are ignored.

6. A called program can be canceled in three ways:

• By being named in a CANCEL statement

• When the executable image ends

• When an EXIT PROGRAM statement executes if the program has the initial attribute

7. When canceling a program these items do not change: (a) the contents of its data items in external data records,
and (b) the status and positioning of a file associated with any external file connector.

8. During the execution of a CANCEL statement, an implicit CLOSE statement without any optional phrases
executes for each file in the open mode that is associated with an internal file connector in prog-name.

Additional References
• PROGRAM-ID paragraph in Chapter 3, Identification Division

• Section 6.1.4: Scope of Statements

• Section 6.2.6: Scope of Names

• CALL statement

• VSI COBOL User Manual cobcall, cobcancel, cobfunc references

Examples
1. CANCEL “PROG10”.

277

Procedure Division

2. CANCEL THE-PROG.

3. CANCEL SUB-PROG-A “PROG12” SUB-PROG-B.

CLOSE
CLOSE

Function
The CLOSE statement ends processing of reels (or units) and files. It can also perform rewind, lock, and removal
operations.

[file-name]

is the name of a file described in the Data Division. It cannot be a sort or merge file.

Syntax Rules
1. The REEL or UNIT phrase can be used only for sequential and line sequential files.

2. The words REEL and UNIT are equivalent.

General Rules
1. A CLOSE statement can execute only for an open file.

2. Executing a CLOSE statement updates the value of the FILE STATUS data item associated with the file.

3. The TERMINATE statement must be executed before a CLOSE statement can reference a report file.

4. If an optional file is not present, standard end-of-file processing does not occur.

5. The WITH NO REWIND and FOR REMOVAL phrases have no effect at execution time if they do not apply
to the file's storage medium, except as specified in General Rule 2.

6. When the CLOSE statement applies to an output or extend file described with the LINAGE clause, end-of-
page processing occurs before the file is closed.

7. After successful CLOSE statement execution (without the REEL or UNIT phrase), the file's record area is no
longer available. After unsuccessful execution, record area availability is undefined.

8. After successful CLOSE statement execution (without the REEL or UNIT phrase), the file is no longer: (a) in
the open mode or (b) associated with the file connector.

9. If the CLOSE statement has more than one file-name, the statement executes as if there were a separate CLOSE
statement for each file-name.

10.In the file-sharing environment, CLOSE statement execution unlocks all locks for file-name.

11.If both the REEL/UNIT and WITH NO REWIND phrases are specified in the same CLOSE statement, the
WITH NO REWIND phrase is ignored.

12.To show the effects of CLOSE statements, all files are categorized as follows:

• Nonreel: a file for which the concepts of rewind and reel have no meaning because of its input or output
medium (for example, a terminal device)

• Sequential single-reel: a sequential file contained entirely on one reel

• Sequential multireel: a sequential file contained on more than one reel

278

Procedure Division

• Nonsequential: a file with other than sequential organization, whose medium is on a mass storage device

13.For files specified with a MULTIPLE FILE TAPE clause the NO REWIND phrase, if any, is ignored.

14.Table 6.12, “Effects of CLOSE Statement Formats on Files by Category” summarizes CLOSE statement results.
Symbol definitions follow the table.

Where definitions differ for input, output, and input-output files, separate definitions appear. Otherwise, a
definition applies to files in all open modes.

Table 6.12. Effects of CLOSE Statement Formats on Files by Category

File Category
CLOSE Statement
Format

Nonreel Sequential Single-
Reel

Sequential
Multireel

Nonsequential

CLOSE C C,G C,G,A C
CLOSE WITH
LOCK

C,E C,G,E C,G,E,A C,E

CLOSE WITH NO
REWIND

C,H C,B C,B,A X

CLOSE REEL F F,G F,G X
CLOSE REEL FOR
REMOVAL

F F,D,G F,D,G X

• Previous reels unaffected

For input and input-output files: All reels in the file before the current reel are processed according to the
standard reel swap procedure. However, reels controlled by an earlier CLOSE REEL/UNIT statement are
not affected. If other reels in the file follow the current reel, they are not processed.

For output files: All reels in the file before the current reel are processed according to the standard reel swap
procedure. However, reels controlled by an earlier CLOSE REEL/UNIT statement are not affected.

• No rewind of current reel

The position of the current reel remains the same.

• Close file

The file is closed.

• Reel/unit removal

The current reel rewinds and is logically removed from the run unit However, the run unit can access the
reel again in its proper order of reels in the file. To do this, the executable image must subsequently execute
the following:

• A CLOSE statement without the REEL/UNIT phrase for the file

• An OPEN statement for the file

• File lock

The executable image cannot open the file again in its current execution.

• Close reel/unit

For input and input-output files, if the current reel is the last or only reel for the file:

279

Procedure Division

• A reel swap does not occur.

• The Current Volume Pointer remains the same.

• The File Position Indicator denotes that there is no next logical record.

If another reel follows the current reel for the file:

• A reel swap occurs.

• The Current Volume Pointer points to the next reel for the file.

• The File Position Indicator points to the next record in the file. If there are no records for the current
volume, another reel swap occurs.

For output files (reel/unit media), a reel swap occurs. The Current Volume Pointer points to the new reel.

Executing the next WRITE statement for the file transfers a logical record to the new reel of the file.

For output files (nonreel/unit media), execution of this statement is considered successful. The file remains
in the open mode and no action takes place, except as specified in General Rule 2.

• Rewind

The current reel (or device) is positioned to its physical beginning.

• Optional phrases ignored

The CLOSE statement is executed as if none of the optional phrases are present.

• Invalid

This is an invalid combination of CLOSE option and file category. It results in FILE STATUS data item
value 30.

Technical Note
CLOSE statement execution can result in these FILE STATUS data item values:

File Status Meaning

00 Successful
07 CLOSE statement with NO REWIND, REEL/UNIT, or FOR REMOVAL phrase

referenced a file on a nonreel/unit medium
30 Any other CLOSE error
42 File never opened, already closed, or not currently open

Additional Reference
See Section 6.6.8: I-O Status for more information.

COMPUTE
COMPUTE

Function
The COMPUTE statement evaluates an arithmetic expression and stores the result in one or more data items.

280

Procedure Division

[rsult]

is the identifier of an elementary numeric item or elementary numeric edited item. It is the resultant identifier.

[arithmetic-expression]

is an expression as described in Section 6.4: Arithmetic Expressions.

[stment]

is an imperative statement executed when a size error condition has occurred.

[stment2]

is an imperative statement executed when no size error condition has occurred.

General Rules
1. The arithmetic expression is evaluated. Its value then replaces the current value of each occurrence of rsult,

from left to right.

2. If the arithmetic-expression consists of a single identifier or literal, the COMPUTE statement behaves like a
MOVE statement with the single identifier or literal acting as the source operand and each result operand acting
as a destination operand.

3. For any rsult specification that includes the word rounded, the value of the expression is rounded before being
moved to rsult.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.6.1: Arithmetic Operations

• Section 6.6.2: Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3: ROUNDED Phrase

• Section 6.6.4: ON SIZE ERROR Phrase

• Section 6.6.7: Overlapping Operands and Incompatible Data

Examples
Each of the examples assume these data descriptions and initial values:

INITIAL VALUES

03 ITEMA PIC 999V99 VALUE 2. 2.00
03 ITEMB PIC 999V99 VALUE 3. 3.00
03 ITEMC PIC 999V99 VALUE 4. 4.00
03 ITEMD PIC 999V99 VALUE 5. 5.00

RESULTS

1. No rounding:

COMPUTE ITEMC = ITEMC = 2.82
 (ITEMA + 6) ** (.1 * ITEMD).

2. With rounding:

COMPUTE ITEMC ROUNDED = ITEMC = 2.83
 (ITEMA + 6) ** (.1 * ITEMD).

281

Procedure Division

3. The ON SIZE ERROR phrase:

COMPUTE ITEMB = (ITEMA * ITEMD) ** 3 ITEMB = 3.00
 ON SIZE ERROR
 MOVE 100 TO ITEMC. ITEMC = 100.00

4. The NOT ON SIZE ERROR phrase:

COMPUTE ITEMB = (ITEMA * ITEMD) ** 2 ITEMB = 100.00
 ON SIZE ERROR
 MOVE 100 TO ITEMC
 NOT ON SIZE ERROR
 MOVE 200 TO ITEMC. ITEMC = 200.00

CONTINUE
CONTINUE

Function
The CONTINUE statement indicates that no executable statement is present. It causes an implicit control transfer
to the next executable statement.

Syntax Rule
The CONTINUE statement can be used wherever a conditional or imperative statement can be used.

General Rule
The CONTINUE statement causes an implicit control transfer to the next executable statement.

Example
READ FILE-A
 INVALID KEY
 CONTINUE.
MOVE ...

This example shows how CONTINUE can replace an INVALID KEY imperative statement. Control passes to the
MOVE statement whether or not the INVALID KEY condition occurs.

DELETE
DELETE

Function
The DELETE statement logically removes a record from a mass storage file.

[file-name]

is the name of a relative or indexed file described in the Data Division. It cannot be the name of a sequential or
line sequential file or a sort or merge file.

[stment]

282

Procedure Division

is one or more imperative statements executed for an invalid key condition.

[stment2]

is one or more imperative statements executed for a not invalid key condition.

Syntax Rules
1. There cannot be an INVALID KEY phrase or a NOT INVALID KEY phrase for a DELETE statement that

references a file in sequential access mode.

2. There must be an INVALID KEY phrase if: (a) the file is not in sequential access mode and (b) there is no
applicable USE AFTER EXCEPTION procedure.

General Rules
1. The file must be open in I-O mode when the DELETE statement executes.

2. For a file in sequential access mode, a successfully executed READ statement must be the last input-output
statement executed for the file before the DELETE statement. The I/O system logically removes the record that
the READ statement accessed.

3. For a relative file in random or dynamic access mode, the I/O system logically removes the record identified
by the file's RELATIVE KEY data item. If the file does not contain that record, an invalid key condition exists.

4. For an indexed file in random access mode, the I/O system (logically removes the record identified by the file's
primary record key data item. If the file does not contain that record, an invalid key condition exists.

5. For an indexed file in dynamic access mode, the behavior depends on the DUPLICATES phrase of the RECORD
KEY clause of the SELECT statement. If the primary key allows duplicates, Rule 2 applies. If the primary key
does not allow duplicates, Rule 4 applies.

6. After successful DELETE statement execution, the identified record has been logically removed from the file.
It is no longer accessible.

7. DELETE statement execution does not affect the contents of the record area. It also does not affect the contents
of the data item referred to in the DEPENDING ON phrase of the file's RECORD clause.

8. For sequential access files, DELETE statement execution does not affect the File Position Indicator.

9. For dynamic access files, the File Position Indicator can point to the record to be deleted before the DELETE
statement executes. In this case, once the DELETE statement executes, the File Position Indicator:

• Points to a relative file's next existing record

• Points to an indexed file's next existing record, as established by the Key of Reference

• Indicates the at end condition if the file has no next record

In all other cases, the File Position Indicator is not affected by the execution of a DELETE statement.

10.DELETE statement execution updates the value of the FILE STATUS data item for the file.

11.If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input or output condition
occurs that would result in a nonzero value in the first character of a FILE STATUS data item. However, it
does not execute if the condition is invalid key, and there is an INVALID KEY phrase. If the condition is not
invalid key and no applicable USE AFTER EXCEPTION Declarative procedure exists, the run unit terminates
abnormally.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

Technical Notes

283

Procedure Division

• In a VSI standard file-sharing environment for relative files, records that are manually locked and then deleted
retain a lock on the deleted record. This affects a subsequent WRITE from a different access stream (either
from a different file connector in the same run-unit or from a file connector in a different run-unit). A WRITE
statement under such conditions gets a file status 92 (record locked by another program). All other statements
will treat a record that was locked and subsequently deleted in the same manner as a record that was not locked
and subsequently deleted.

• DELETE statement execution can result in the following FILE STATUS data item values:

File Status Access Method Meaning

00 All Successful
23 Rand, Dyn Record not in file (invalid key)
43 Seq No previous READ or record not

locked by prior READ or START
49 All File not open, or incompatible open

mode
92 All Record locked by another program
30 All All other permanent errors

• If the current record to be deleted is not locked by the current stream, the delete results in a permanent error.
On OpenVMS systems, RMS-STS indicates the record is not locked.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.6.8: I-O Status

• Section 6.6.10: INVALID KEY Phrase

• OPEN statement

• USE statement

DISPLAY
DISPLAY

Function
The DISPLAY statement transfers low-volume data from the program to the default system output device or to
the object of a mnemonic-name. The WITH CONVERSION phrase in Format 1 contains a VSI extension to the
DISPLAY statement. The VSI extensions to Formats 2 and 3 are COBOL language additions that facilitate video
forms design and data handling.

Format 4 sets a program variable to the current command line argument number (to read with a Format 7 ACCEPT),
Format 5 sets the name of an environment variable or system logical, and Format 6 sets the value of an environment
variable or system logical.

[src-item]

is a literal or the identifier of a data item. The literal can be any figurative constant.

[arg-position]

is a literal or identifier that specifies the desired argument position (on the run command line). It must be an
unsigned integer.

284

Procedure Division

[argument-number]

is a mnemonic name associated with ARGUMENT-NUMBER in the SPECIAL-NAMES paragraph in the
Environment Division, representing the current argument position.

[environment-name]

is a mnemonic name associated with ENVIRONMENT-NAME in the SPECIAL-NAMES paragraph in the
Environment Division, representing the name of an environment variable or system logical.

[environment-value]

is a mnemonic name associated with ENVIRONMENT-VALUE in the SPECIAL-NAMES paragraph in the
Environment Division, representing the contents of the variable associated with the ENVIRONMENT-NAME.

[envlog-name]

references an alphanumeric data item, or is a nonnumeric literal.

[envlog-value]

references an alphanumeric data item, or is a nonnumeric literal.

[output-dest]

is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the Environment Division.

[line-num]

is a numeric literal that specifies a line position on the terminal screen. line-num must be a positive integer. It
cannot be zero.

[line-id]

is the identifier of a data item that provides a line position on the terminal screen. It must be a positive integer;
it cannot be zero.

[plus-num]

is a numeric literal that increments the current value for line or column position, or that increments the value of
line-id or column-id. plus-num can be zero or a positive integer.

[column-num]

is a numeric literal that specifies a column position on the terminal screen. column-num must be a positive integer.
It cannot be zero.

[column-id]

is the identifier of a data item that provides a column position on the terminal screen. It must be a positive integer;
it cannot be zero.

[screen-name]

is the name of a screen item defined in the SCREEN SECTION of the program.

[stment]

is an imperative statement executed if an exception condition exists; for Format 6, this means the name of the
environment variable or logical has not been set by DISPLAY, or not enough space can be allocated to store the
environment variable or logical.

[stment2]

is an imperative statement executed if the exception condition does not exist.

285

Procedure Division

Syntax Rules

All Formats
1. In a DISPLAY statement, the number of src-item entries cannot exceed 254.

2. Each DISPLAY phrase can be specified only once for any src-item.

Formats 1 and 2
1. The WITH NO ADVANCING phrase can be specified only once per DISPLAY statement. It must be specified

last (or just preceding END-DISPLAY, if used) if multiple src-item entries or options are specified in the
statement.

Format 1
1. The UPON phrase can be specified only once per DISPLAY statement.

General Rules

Formats 1 and 2
1. The UPON and WITH NO ADVANCING phrases apply to all instances of src-item.

2. All phrases other than UPON and WITH NO ADVANCING apply to the immediately preceding src-item only.

3. If there is a WITH NO ADVANCING phrase, the DISPLAY statement does not transfer any device positioning
information after the last src-item value.

CONVERSION Phrase (Formats 1 and 2)
1. The CONVERSION phrase allows you to display data in a field and achieve data conversion, sign, and decimal

point placement. How the CONVERSION phrase affects data handling depends on the category of src-item.
(Numeric data can be described by any USAGE clause.)

2.
Numeric items do not require the CONVERSION phrase to be displayed correctly with conversion if you
specify /DISPLAY_FORMATTED (on OpenVMS Alpha and I64) or -display_formatted (on Tru64
UNIX) when you compile. (For more information on the qualifier, refer to the VSI COBOL User Manual.)

3. The CONVERSION phrase or the /DISPLAY_FORMATTED (OpenVMS Alpha and I64) qualifier displays
nonnumeric items and numeric edited items without change.

4. The CONVERSION phrase or the /DISPLAY_FORMATTED (OpenVMS Alpha and I64) qualifier displays
non-floating-point numeric items according to the following rules:

• The size of the displayed field is determined from the PICTURE character string.

• Leading zeroes are displayed only when they immediately precede a decimal point.

• If the sign is negative, a minus sign (-) is displayed. If the sign is positive, a space character is displayed. If
the item is unsigned, no sign position is displayed.

• Items with DISPLAY usage (for example, PIC 99, or PIC S99V99) are displayed after including a space,
when needed, for a decimal point or sign or both.

If you specify the SIGN TRAILING SEPARATE clause for the data item, the sign is displayed as a trailing
sign. Otherwise, the sign is displayed as a leading sign.

286

Procedure Division

• Items other than DISPLAY (for example, PIC 99 COMP, or PIC S9V999 COMP SYNC) are displayed after
conversion to DISPLAY usage SIGN LEADING.

•
Nonprinting numeric values are not human-readable on the terminal display unless the
CONVERSION phrase or the /DISPLAY_FORMATTED qualifier (on OpenVMS Alpha and I64) or -
display_formatted (on Tru64 UNIX) is specified.

5. On OpenVMS, the CONVERSION phrase or /DISPLAY_FORMATTED (OpenVMS Alpha, I64), or -
display_formatted (on Tru64 UNIX), displays floating-point items as follows:

• The floating-point data item is converted from internal floating point to E-notation representation. (E-notation
consists of a mantissa and, optionally, an exponent.)

The E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (F-floating, S-floating) plus
decimal point and sign

COMP-2 has 15 digits (G-floating, T-floating) or 16
digits (D-floating) plus decimal point and sign

Sign of mantissa Sign shown only for negative, space if positive
Form of mantissa d.dddddd for COMP-1

d.dddddddddddddd for COMP-2 (G-floating, T-
floating)

d.ddddddddddddddd for COMP-2 (D-floating)

“.” replaced by “,” if DECIMAL POINT IS COMMA
Size of exponent 2 decimal digits for COMP-1 (F-floating, S-floating)

2 decimal digits for COMP-2 (D-floating)

3 decimal digits for COMP-2 (G-floating, T-floating)
Range of exponent -38 to +38 (base 10) for COMP-1 (F-floating, S-

floating)

-38 to +38 (base 10) for COMP-2 (D-floating)

-308 to +308 (base 10) for COMP-2 (G-floating, T-
floating)

Form of exponent E begins exponent sign shown for negative and
positive; all digits shown (for example, E+01)

• The size of the displayed field is 13 characters for COMP-1, and 22 characters for COMP-2.

1. The CONVERSION phrase or the /DISPLAY_FORMATTED qualifier (on OpenVMS Alpha or I64) or -
display_formatted (on Tru64 UNIX) displays floating-point items as follows:

• The floating-point data item is converted from internal floating point to E-notation representation. (E-notation
consists of a mantissa and, optionally, an exponent.)

• The size of the displayed field is 13 characters for COMP-1 and 22 characters for COMP-2.

• On Tru64 UNIX systems, the E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (plus decimal point and sign).

287

Procedure Division

COMP-2 has 16 digits (plus decimal point and sign).
Sign of mantissa Sign shown only for negative; space if positive.
Form of mantissa d.dddddd for COMP-1.

d.ddddddddddddddd for COMP-2.

“.” replaced by “,” if DECIMAL POINT IS COMMA.
Size of exponent 3 decimal digits for COMP-1 and COMP-2.
Range of exponent -308 to +308 (base 10) for COMP-1 and COMP-2.
Form of exponent E begins exponent sign shown for negative and

positive; both digits shown (for example, E+01).

On OpenVMS Alpha and I64 systems, compiled with the appropriate option on the /FLOAT qualifier, the
E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (F-floating, S-floating) plus
decimal point and sign.

COMP-2 has 15 digits (G-floating, T-floating) or 16
digits (D-floating) plus decimal point and sign.

Sign of mantissa Sign shown only for negative; space if positive.
Form of mantissa d.dddddd for COMP-1 (F-floating, S-floating)

d.dddddddddddddd for COMP-2 (G-floating, T-
floating.)

d.ddddddddddddddd for COMP-2 (D-floating).

“.” replaced by “,” if DECIMAL POINT IS COMMA.
Size of exponent 2 decimal digits for COMP-1 (F-floating, S-floating).

2 decimal digits for COMP-2 (D-floating).

3 decimal digits for COMP-2 (G-floating, T-floating).
Range of exponent -38 to +38 (base 10) for COMP-1 (F-floating, S-

floating).

-38 to +38 (base 10) for COMP-2 (D-floating).

-308 to +308 (base 10) for COMP-2 (G-floating, T-
floating).

Form of exponent E begins exponent sign shown for negative and
positive; all digits shown (for example, E+01).

Format 1
1. The DISPLAY statement transfers data from each src-item (in its order of appearance in the statement) to

output-dest.

2. No editing or conversion occurs during DISPLAY execution unless there is an applicable WITH
CONVERSION phrase.

3. If src-item is a figurative constant, only one occurrence is displayed.

4. When there is more than one src-item, sending item size is the sum of the src-item sizes.

288

Procedure Division

5. If there is no UPON phrase, the DISPLAY statement transfers data to the default system output device.

6. If there is no WITH NO ADVANCING phrase, the DISPLAY statement transfers device positioning
information. It resets the output-dest position to the leftmost position on the next line.

7. If DECIMAL POINT IS COMMA is specified, comma replacement occurs upon display.

Format 2
8. The presence of either the LINE NUMBER phrase or the COLUMN NUMBER phrase implies NO

ADVANCING; that is, no line feed or carriage return is generated automatically following data output. The
cursor remains on the character position immediately following the position of the last character displayed.
This is the default starting position for the next data item you input from or display upon the terminal.

9. If you specify neither the LINE NUMBER phrase, the COLUMN NUMBER phrase, nor the WITH NO
ADVANCING phrase, data is output according to Format 1 positioning rules for the DISPLAY statement. That
is, a line feed and carriage return are generated automatically following data display.

LINE NUMBER Phrase (Format 2)
10.The LINE NUMBER phrase positions the cursor on a specific line of the video screen prior to displaying.

11.If the LINE NUMBER phrase does not appear but the COLUMN NUMBER phrase does, then data is displayed
to the current specified column position.

12.If line-num or the value of line-id is greater than the bottommost line position of the current screen, program
results are undefined.

13.If you use line-id without its PLUS option, the line position is the value of line-id.

14.If you use line-id with its PLUS option, the line position is the sum of plus-num and the value of line-id.

15.If you use the PLUS option without line-id, the line position is the sum of plus-num and the value of the current
line position.

16.If you use the PLUS option, but you do not specify plus-num, then PLUS 1 is implied.

17.Data output results are undefined if your program generates a value for line-id that is one of the following:

• Zero

• Negative

• Greater than the bottommost line position of the current screen

COLUMN NUMBER Phrase (Format 2)
18.The COLUMN NUMBER phrase positions the cursor on a specific column of the video screen.

19.If the COLUMN NUMBER phrase does not appear but the LINE NUMBER phrase does, then data is displayed
to column 1 of the specified line position.

20.If you use column-id without its PLUS option, the column position is the value of column-id.

21.If you use column-id with its PLUS option, the column position is the sum of plus-num and the value of column-
id.

22.If you use the PLUS option without column-id, the column position is the sum of plus-num and the value of
the current column position.

289

Procedure Division

23.If you use the PLUS option, but do not specify plus-num, PLUS 1 is implied.

24.Data output results are undefined if the program generates a value for column position that is one of the
following:

• Zero

• Negative

• Greater than the last column position on the screen

LINE NUMBER and COLUMN NUMBER Phrases
(Format 3)
25.The LINE NUMBER and COLUMN NUMBER phrases together give the starting screen coordinates.

26.The position of each screen item within the referenced screen-name is offset from the LINE and COLUMN
positions.

27.If either LINE or COLUMN is not specified, the default value is 1.

ERASE Phrase (Format 2)
28.The ERASE phrase erases all, or part, of a line (or screen) before displaying data. You must specify SCREEN

or LINE.

29.If you use its TO END option, the ERASE phrase erases the line (or screen) from the implied, or stated, cursor
position to the end of the line (or screen).

30.If you do not use its TO END option, the ERASE phrase erases the entire line (or screen).

BELL Phrase (Format 2)
31.The BELL phrase rings the terminal bell before displaying data.

UNDERLINED Phrase (Format 2)
32.The UNDERLINED phrase displays characters on the screen with the underscore on character attribute.

BOLD Phrase (Format 2)
33.The BOLD phrase displays characters on the screen with the bold on character attribute. The BOLD attribute

is only detectable when any of the following conditions are true:

• Nonspace characters are displayed.

• The underlined or reversed attributes are specified.

• The terminal screen is set to light background.

BLINKING Phrase (Format 2)
34.The BLINKING phrase displays characters on the screen with the blink on character attribute. The BLINKING

attribute is only detectable when any of the following conditions are true:

• Nonspace characters are displayed.

• The underlined or reversed attributes are specified.

290

Procedure Division

• The terminal screen is set to light background.

REVERSED Phrase (Format 2)
1. The REVERSED phrase displays characters on the screen with the reverse video on character attribute.

Formats 4, 5, and 6
1. When a Format 4 DISPLAY statement is specified, the value stored in arg-position is moved to argument-

number. This updates the current argument position indicator for the command line (see ARGUMENT-
NUMBER in the SPECIAL-NAMES paragraph in Chapter 4, Environment Division). This points to the selected
argument to be read by a Format 7 ACCEPT statement.

2. arg-position must be in the range 0 to 99 and can refer to arguments, switches, and flags that appear on the run
command line of the COBOL program. When the current argument position indicator is zero, it refers to the
zeroth command line argument, in other words the command that invoked the COBOL program.

3. When a Format 5 DISPLAY statement is specified, the value stored in envlog-name is moved to environment-
name (see ENVIRONMENT-NAME in the SPECIAL-NAMES paragraph in Chapter 4, Environment Division).
The updated value of environment-name becomes the environment variable or logical to be accessed by
subsequent Format 6 DISPLAY and Format 8 ACCEPT statements.

4. environment-value, when used with a Format 6 DISPLAY, receives the value stored in envlog-value. The
environment variable or logical is the one named by a Format 5 DISPLAY statement (see ENVIRONMENT-
VALUE in the SPECIAL-NAMES paragraph in Chapter 4, Environment Division).

5. stment is executed if the name of the environment variable or logical has not been set by a Format 5 DISPLAY,
or if the environment variable or logical does not exist.

6. stment2 is executed if the exception condition does not exist.

Technical Notes

Format 1
1. On OpenVMS, the DISPLAY statement transfers data through the I/O system (RMS), using the Variable with

Fixed-Length Control (VFC) format.

2. A DISPLAY statement without the UPON phrase transfers data to the default output device (the terminal).
To transfer data to a file on Tru64 UNIX systems, the environment variable COBOL_OUTPUT can be used
to specify a text file containing output data. To transfer data to a file on OpenVMS systems the logical COB
$OUTPUT or SYS$OUTPUT can be used to specify a text file containing output data.

Alternatively, output device redirection (>) can be used on Tru64 UNIX systems to name an output file.

3. A DISPLAY statement that includes the UPON phrase transfers data to the file-device-name associated with
the SPECIAL-NAMES paragraph description of output-dest.

4. Because the object of a logical name (on OpenVMS systems) is not necessarily a device, no open mode is
implied. As a result, output-dest can be associated with any device-name in the SPECIAL-NAMES paragraph.
For example, output-dest can refer to PAPER-TAPE-READER as well as PAPER-TAPE-PUNCH.

Format 2
5. Format 2 is a VSI extension to the standard COBOL use of the DISPLAY statement.

6. The VSI extensions to the ACCEPT and DISPLAY statements support data input and display only on the VT100
and later terminal types, including emulators of these terminal types.

291

Procedure Division

7. The UNDERLINED, BOLD, BLINKING, and REVERSED character attributes are not available on VT100
terminals without the advanced video option.

8. You should display data only on fields that are within screen boundaries. That is, the terminal operator should
see all the characters displayed. If data is displayed on fields that position the cursor outside screen boundaries,
it does not result in an error condition. However, your program might not produce the results you expect.

Values for screen boundaries depend on the terminal type and the column mode in which it is operating. Refer
to the appropriate terminal user's guide for more information on screen boundaries.

9. Line positioning can be a one- or two-step process. The first (or only) step is absolute positioning, which is
using the value of line-num or line-id to determine the line position. The second step is relative positioning,
which is adding the value of plus-num to line-id to determine the line position.

The following sample statements would produce undefined results because they use absolute line positioning
to reach a line beyond the bottom of the screen (assume ITEMB has a value of 25):

DISPLAY SRC-EXAMPLE AT LINE NUMBER 25.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB PLUS 0.

The last DISPLAY statement illustrates that use of the PLUS option does not necessarily mean that relative
positioning will always occur. When you specify line-id, absolute line positioning always occurs before a PLUS
option can execute. In this case, line-id (ITEMB) is specified, and it has a value of 25. Therefore, the line
position is outside the screen boundary before the PLUS option executes, and program results are undefined.

10.When there is more than one src-item, each specific src-item is displayed, after application of any phrases
specific to that src-item, in order of occurrence in the DISPLAY statement.

Formats 2 and 3
11.On OpenVMS, control sequences from SMGTERMS.TXT are used to accomplish cursor positioning, screen

erasure, and video attributes. Refer to the Support for Non-HP Terminals chapter of the OpenVMS RTL Screen
Management (SMG$) Manual if you wish to customize SMGTERMS.TXT.

All Formats
12.VSI COBOL parses the contents of the data being displayed to determine how they affect the terminal and the

cursor position. The parsing of control sequences is performed according to the DEC STD 138-0 Registry of
Control Functions for Character Imaging Devices. VSI COBOL does not modify the control sequences in any
way; if an invalid control sequence is found, VSI COBOL does not attempt to correct the sequence.

Therefore when you display an escape or control sequence, the entire sequence must be displayed in one
operation:

• If you use DISPLAY Format 1, the complete sequence must be contained in one or more src-items within
one DISPLAY statement.

• If you use DISPLAY Format 2, the complete sequence must be contained in one src-item.

• If you use DISPLAY Format 3, the complete sequence must be contained within one elementary screen item.

13.
A DISPLAY statement used in an ACCEPT [NOT] ON EXCEPTION statement must be terminated (with, for
example END-DISPLAY) on Alpha and I64 systems. If you are concerned with the different VAX behavior,
refer to the appendix on compatibility in the VSI COBOL User Manual.

Additional References
• SPECIAL-NAMES section in Chapter 4, Environment Division

292

Procedure Division

• VSI COBOL User Manual sections on using command line arguments and environment variables

Examples
In the example results, the character “s” represents a space. The examples assume a maximum screen size of 24
lines. They also assume the following Environment and Data Division entries:

SPECIAL-NAMES.
 LINE-PRINTER IS ERR-REPORTER.

01 ITEMA PIC X(6) VALUE "ITEMS ".
01 ITEMB PIC X(8) VALUE "VALID".
01 ITEMC PIC X(5) VALUE "TODAY".
01 ITEMD PIC 99 VALUE 2.
01 ITEME PIC X(10) VALUE "MONDAY".

 RESULT:

1. DISPLAY ITEMC. TODAY

2. DISPLAY ITEMD UPON ERR-REPORTER. 02

3. DISPLAY ITEMD ITEMA "ARE" ITEMB. 02ITEMSsAREVALIDsss

4. DISPLAY ITEMD SPACE ITEMA "AREs" ITEMB. 02sITEMSsAREsVALIDsss

5. DISPLAY ITEMC "sISs" NO ADVANCING.
 DISPLAY ITEME.
 DISPLAY ITEME.
 TODAYsISsMONDAYssss
 MONDAYssss

The following program uses VSI DISPLAY extensions (Format 2).

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLES.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEMF COMP-1.
01 ITEMG COMP-2 .
01 ITEMH PIC S9(9) COMP VALUE IS 123456789.
01 ITEMI PIC S9(9) COMP-3.
PROCEDURE DIVISION.
01.
 MOVE 101.000000000 TO ITEMF.
 MOVE .109999999 TO ITEMG.
 MOVE 123456789 TO ITEMI.
 DISPLAY
 ITEMF WITH CONVERSION LINE PLUS
 ITEMG WITH CONVERSION LINE PLUS
 ITEMH WITH CONVERSION LINE PLUS
 ITEMI WITH CONVERSION LINE PLUS
 .
 .
 .

The VSI COBOL User Manual contains additional examples using VSI extensions to the DISPLAY statement.
Refer to the chapters that describe screen handling, command line variables, environment variables and logicals.

293

Procedure Division

DIVIDE
DIVIDE

Function
The DIVIDE statement divides one or more numeric data items by another and sets the value of the data items
equal to the quotient, optionally storing the remainder.

[num]

is a numeric literal or the identifier of an elementary numeric item.

[rsult]

is the identifier of an elementary numeric item or an elementary numeric edited item. However, in Format 1, rsult
must be an elementary numeric item. It is the resultant identifier.

[stment]

is an imperative statement executed when a size error condition has occurred.

[stment2]

is an imperative statement executed when no size error condition has occurred.

[remaind]

is the identifier of an elementary numeric item or an elementary numeric edited item.

General Rules

Format 1
1. The value of num is divided into the value of the first rsult. This quotient replaces the current value of the first

rsult. The process repeats for each of the other occurrences of rsult.

Format 2
2. The value of the first num is divided into the value of the second. This quotient replaces the current value of

each rsult.

Format 3
3. The value of the first num is divided by the value of the second. This quotient replaces the current value of

each rsult.

Formats 4 and 5
4. These formats produce a remainder (remaind) from the division operation. The remainder is the result of

subtracting the product of the quotient (rsult) and the divisor from the dividend.

If rsult refers to a numeric edited item, the quotient is an equivalent unedited intermediate field. For example,
if you describe rsult with the PICTURE -ZZ.99, the compiler uses an intermediate field with the implicit
PICTURE S99V99.

294

Procedure Division

When the ROUNDED phrase is present, the remainder computation uses an intermediate quotient field that is
truncated rather than rounded.

5. The computation described in rule 4 determines the accuracy of remaind. It includes decimal point alignment
and truncation (not rounding) required by the description of remaind.

6. When the ON SIZE ERROR phrase is present:

• If the size error occurs on rsult, the contents of both rsult and remaind are unchanged.

• If the size error occurs on remaind, its contents are unchanged.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.6.1: Arithmetic Operations

• Section 6.6.2: Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3: ROUNDED Phrase

• Section 6.6.4: ON SIZE ERROR Phrase

• Section 6.6.7: Overlapping Operands and Incompatible Data

Examples
The following example shows a run-time message issued for an illegal attempt to divide by zero:

%COB-E-DIVBY-ZER, divide by zero; execution continues

Each of the examples assume the following data descriptions and initial values. The initial values are listed in
the righthand column:

INITIAL VALUES

 03 ITEMA PIC 99V99 VALUE 9. 9.00
 03 ITEMB PIC 99V99 VALUE 24. 24.00
 03 ITEMC PIC 99V99 VALUE 8. 8.00
 03 ITEMD PIC 99 VALUE 12. 12
 03 ITEME PIC 99V99 VALUE 3. 3.00
 03 ITEMF PIC 99 VALUE 47. 47
 03 ITEMG PIC 9 VALUE 9. 9
 03 ITEMH PIC 9 VALUE 2. 2
 03 ITEMI PIC 99 VALUE 4. 4

In each of the following examples, the righthand column shows the results of the DIVIDE operation.

1. Without GIVING phrase or rounding:

RESULTS

DIVIDE ITEMA INTO ITEMB. ITEMB = 2.66

2. With rounding:

DIVIDE ITEMA INTO ITEMB ROUNDED. ITEMB = 2.67

3. GIVING phrase:

295

Procedure Division

DIVIDE ITEMA INTO ITEMB ITEMD = 2
 GIVING ITEMD.

4. GIVING phrase with rounding:

DIVIDE ITEMA INTO ITEMB ITEMD = 3
 GIVING ITEMD ROUNDED.

5. BY phrase:

DIVIDE ITEMA BY ITEMB ITEMD = 0
 GIVING ITEMD.

6. REMAINDER phrase:

DIVIDE ITEMA INTO ITEMB ITEMD = 2
 GIVING ITEMD REMAINDER ITEMC. ITEMC = 6.00

7. REMAINDER phrase with rounding:

DIVIDE ITEMA INTO ITEMB ITEMD = 3
 GIVING ITEMD ROUNDED REMAINDER ITEMC. ITEMC = 6.00

8. Effects of decimal alignment on quotient and remainder:

DIVIDE ITEMA INTO ITEMB ITEME = 2.66
 GIVING ITEME REMAINDER ITEMC. ITEMC = .06

9. Effects of decimal alignment on remainder and quotient with rounding:

DIVIDE ITEMA INTO ITEMB ITEME = 2.67
 GIVING ITEME ROUNDED REMAINDER ITEMC. ITEMC = .06

10.The ON SIZE ERROR phrase: (IF ON SIZE ERROR occurs on an occurrence of rsult, the contents of that
occurrence of rsult are unchanged.)

DIVIDE ITEME INTO ITEMF
 GIVING ITEMG ITEMD ITEMD = 15
 ON SIZE ERROR ITEMG = 9
 MOVE 0 TO ITEMH. ITEMH = 0

11.The ON SIZE ERROR phrase:

(IF ON SIZE ERROR occurs on remaind, the contents of remaind are unchanged.)

DIVIDE ITEMD INTO ITEMF
 GIVING ITEMI REMAINDER ITEMG ITEMI = 3
 ON SIZE ERROR ITEMG = 9
 MOVE 0 TO ITEMH. ITEMH = 0

12.The NOT ON SIZE ERROR phrase:

DIVIDE ITEMD INTO ITEMF ITEMI = 3
 GIVING ITEMI REMAINDER ITEMC ITEMC = 11.00
 ON SIZE ERROR
 MOVE 0 TO ITEMH
 NOT ON SIZE ERROR
 MOVE 1 TO ITEMH. ITEMH = 1

296

Procedure Division

EVALUATE
EVALUATE

Function
The EVALUATE statement selects a program action based on the evaluation of one or more conditions.

General Format

[subj-item]

is an identifier, an arithmetic or conditional expression, or a literal other than the figurative constant ZERO.

[cond]

is a conditional expression.

[obj-item]

is a literal, an identifier, or an arithmetic expression.

[stment1]

is an imperative statement.

[stment2]

is an imperative statement.

Syntax Rules
1. Before the first WHEN phrase: (a) subj-item and the words TRUE and FALSE are called subjects, and (b) all

subjects comprise the subject set.

2. In a WHEN phrase: (a) ANY, TRUE, FALSE, and the operands are called objects, and (b) all objects in a single
WHEN phrase comprise an object set.

3. The number of objects in the object set must equal the number of subjects in the subject set.

4. The words THROUGH and THRU are equivalent.

5. Two obj-items connected by a THROUGH phrase:

• Must be of the same class

• Combine to form one object

6. Each object in an object set must correspond to the subject by appearing in the same ordinal position as in the
subject set. For each pair:

• The obj-item must be a valid operand for comparison to the subject.

• TRUE, FALSE, or cond as an object must correspond only to TRUE, FALSE, or a conditional expression
as the subject.

• ANY can correspond to any type of subject.

7. Conditional expressions can be simple or complex conditions.

297

Procedure Division

General Rules

Evaluation Procedure
1. The EVALUATE statement operates as if each subject and object were evaluated and assigned one of the

following:

• A numeric or nonnumeric value

• A range of numeric or nonnumeric values

• A truth value

The statement assigns values according to the following rules:

 Condition Value Assigned

a. An identifier for a subject, or for an object
without the NOT or THROUGH phrases

Value and class of the identifier's data item.

b. A literal for a subject, or for an object without
the NOT or THROUGH phrases

Value and class of the literal.

c. The figurative constant ZERO for an object
without the NOT or THROUGH phrases

Value and class of the corresponding subject.

d. An arithmetic expression for a subject, or for
an object without the NOT or THROUGH
phrases

Numeric value, according to the rules for
evaluating arithmetic expressions.

e. A conditional expression for a subject or a
conditional expression for an object

Truth value, according to the rules for
evaluating conditional expressions.

f. TRUE or FALSE as a subject or object Truth value: true for the word TRUE and false
for the word FALSE.

g. ANY for an object No further evaluation.
h. THROUGH phrase for an object without the

NOT phrase
The range of values is all values that, when
compared to the subject, are greater than or
equal to the first obj-item and less than or equal
to the second obj-item. If the first obj-item is
greater than the second obj-item, there are no
values in the range.

i. Object with the NOT phrase All values not equal to the value (or range of
values) that would be assigned without the
NOT phrase.

Comparison Procedure
1. After values have been assigned to each subject and object, comparison begins. It proceeds as if the values were

compared to determine if any WHEN phrase satisfies the subject set.

2. EVALUATE compares each object in the object set of the first WHEN phrase to the subject in the same ordinal
position in the subject set. The comparison is satisfied if one of the following conditions is true:

• The items being compared are assigned numeric or nonnumeric values or a range of numeric or nonnumeric
values; and the value assigned to the subject equals the value, or one of the range of values, assigned to the
object, according to the rules for comparison.

• The items being compared are assigned identical truth values.

• The word ANY represents the object.

298

Procedure Division

3. If the comparison is satisfied for every object in an object set, the WHEN phrase containing that object set
is selected.

4. If the comparison is not satisfied for every object in an object set, the object set does not satisfy the subject set.

5. The comparison procedure is repeated for each object set, in order of appearance, until one of these conditions
occur:

• A WHEN phrase is selected by satisfying the subject set.

• A WHEN OTHER phrase is selected.

• There are no more object sets.

• The END-EVALUATE statement is reached.

• A separator period is reached.

Execution Procedure
1. If a WHEN phrase is selected, execution continues with stment1.

2. If no WHEN phrase is selected, and a WHEN OTHER phrase is present, execution continues with stment2.

3. EVALUATE statement execution ends when one of the following conditions occurs:

• Execution reaches the end of the selected WHEN phrase.

• Execution reaches the end of the WHEN OTHER phrase.

• No WHEN phrase is selected and there is no WHEN OTHER phrase.

• Execution reaches END-EVALUATE.

• Execution reaches a separator period.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.4: Arithmetic Expressions

• Section 6.5: Conditional Expressions

• Section 6.5.1: Relation Conditions

• Section 6.6.1: Arithmetic Operations

Examples
In these examples, the results are shown as either data item values or procedure branches. However, stment can
be any imperative statement, including multiple statements.

1. One condition.

EVALUATE ITEMA
 WHEN "A01" MOVE 1 TO ITEMB
 WHEN "A02" THRU "C16" MOVE 2 TO ITEMB
 WHEN "C20" THRU "L86" MOVE 3 TO ITEMB
 WHEN "R20" ADD 1 TO R-TOT

299

Procedure Division

 GO TO PROC-A
 WHEN OTHER MOVE 0 TO ITEMB
 END-EVALUATE.

Samples:

ITEMA Result

“A15” ITEMB = 2
“P80” ITEMB = 0
“F01” ITEMB = 3
“M19” ITEMB = 0
“A01” ITEMB = 1
“R20” PROC-A

2. Multiple conditions. This example shows how EVALUATE can represent a decision table.

EVALUATE LOW-STOK WEEK-USE LOC-VNDR ON-ORDER
 WHEN "Y", 16 THRU 999, ANY, "N" GO TO RUSH-ORDER
 WHEN "Y", 16 THRU 999, ANY, "Y" GO TO NORMAL-ORDER
 WHEN "Y", 8 THRU 15, "N", "N" GO TO RUSH-ORDER
 WHEN "Y", 8 THRU 15, "N", "Y" GO TO NORMAL-ORDER
 WHEN "Y", 8 THRU 15, "Y", "N" GO TO NORMAL-ORDER
 WHEN "Y", 0 THRU 7, ANY, "N" GO TO NORMAL-ORDER
 WHEN "N", ANY, ANY, "Y" GO TO CANCEL-ORDER
 END-EVALUATE.

Samples:

LOW-STOK WEEK-USE LOC-VNDR ON-ORDER Result

“Y” 38 “N” “Y” NORMAL-ORDER
“N” 20 “Y” “Y” CANCEL-ORDER
“N” 12 “Y” “N” next statement
“Y” 12 “Y” “N” NORMAL-ORDER
“Y” 12 “Y” “Y” next statement
“Y” 40 “N” “N” RUSH-ORDER

3. Relation conditions and arithmetic expressions.

EVALUATE-ITEM-ROUTINE.
*
* After the imperative statement in the selected WHEN phrase
* executes (for example PERFORM PROC-A), control then
* transfers to the first statement following the end of the
* EVALUATE statement (MOVE A TO B).
*

 EVALUATE ITEMA > 6 AND < 30, 8 * ITEMB - 1
 WHEN TRUE, 5 * ITEMC PERFORM PROC-A
 WHEN FALSE, ITEMC PERFORM PROC-B
 WHEN ITEMC > 12, -1 PERFORM PROC-C
 WHEN TRUE, NOT 7 THRU 40 PERFORM PROC-D
 WHEN OTHER PERFORM PROC-E
 END-EVALUATE.
 MOVE A TO B.

300

Procedure Division

Samples:

ITEMA ITEMB ITEMC Result

12 2 3 PROC-A
25 0 14 PROC-C
30 0 14 PROC-E
6 3 23 PROC-B
14 0 5 PROC-D
5 0 11 PROC-C

Consider how the EVALUATE statement works using the values in the previous sample:

1. The value of the first subject is a truth value (General Rule 1e). ITEMA is not greater than 6 and less than 30;
therefore, the value of the first subject is false.

2. The value of the second subject is a numeric value (General Rule 1d):

8 * 0-1 = -1.

3. When the first WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f): true.

• The value of the second object is a numeric value: 55.

• The value of the first object does not equal that of the first subject. Furthermore, the values of the second
object and subject do not match. Therefore, this WHEN phrase is not selected (General Rule 5).

4. When the second WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f): false.

• The value of the second object is a numeric value: 11.

• The value of the first object equals that of the first subject. However, the values of the second object and
subject do not match. Therefore, this WHEN phrase is not selected (General Rule 5).

5. When the third WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f). Because the value of ITEMC is not greater
than 12, the value of this object is false.

• The value of the second object is a numeric value: -1.

• The value of the first object equals that of the first subject. The values of the second object and subject also
match. Therefore, this WHEN phrase is selected (General Rule 4).

6. The statement following the third WHEN phrase is PERFORM PROC-C. Control transfers to that procedure,
and the EVALUATE statement ends.

EXIT
EXIT

Function
The EXIT statement provides a common logical end point for a series of procedures.

301

Procedure Division

Syntax Rule
The EXIT statement must appear in a sentence by itself and be the only sentence in the paragraph.

General Rule
The EXIT statement associates a procedure-name with a point in the program. It has no other effect on program
compilation or execution.

Example
REPORT-INVALID-ADD.
 DISPLAY " ".
 DISPLAY "INVALID ADDITION".
 DISPLAY "RECORD ALREADY EXISTS".
 DISPLAY "UPDATE ATTEMPT: " UPDATE-REC.
 DISPLAY "EXISTING RECORD: " OLD-REC.
REPORT-INVALID-ADD-EXIT.
 EXIT.

EXIT PROGRAM
EXIT PROGRAM

Function
The EXIT PROGRAM statement marks the logical end of a called program.

Syntax Rules
1. If the EXIT PROGRAM statement is in a consecutive sequence of imperative statements, it must be the last

statement in that sequence.

2. The EXIT PROGRAM statement cannot appear in a GLOBAL USE procedure.

General Rules
1. If EXIT PROGRAM executes in a program that is not a called program, it causes execution to continue with

the next executable statement. Refer to the VSI COBOL User Manual for information on how the v3 setting
of the standard compiler option affects the EXIT PROGRAM statement.

2. If the EXIT PROGRAM statement executes in a called program without the INITIAL clause in its PROGRAM-
ID paragraph, execution continues with the next executable statement after the CALL statement in the calling
program.

The state of the calling program does not change; it is the same as when the program executed the CALL
statement. However, the contents of data items and the positioning of data files shared by the calling and called
programs can change.

The state of the called program does not change. However, the called program is considered to have reached
the ends of the ranges of all PERFORM statements it executed. Therefore, an error does not occur if the called
program is entered again during image execution.

3. When EXIT PROGRAM executes in a called program with the INITIAL attribute, the actions described in
General Rule 2 also apply. In addition, executing the EXIT PROGRAM statement is equivalent to executing
a CANCEL statement that names the called program.

302

Procedure Division

4. Special handling of the EXIT PROGRAM statement is performed when you specify the standard compiler
option with the v3 setting on the compiler command line. Refer to the VSI COBOL User Manual for more
information.

Example
TEST-RETURN.
 IF ITEMA NOT = ITEMB
 MOVE ITEMA TO ITEMB
 EXIT PROGRAM.

GENERATE
GENERATE

Function
The GENERATE statement directs the Report Writer Control System (RWCS) to produce a report according to
the Report Description entry (RD) in the Report Section of the Data Division.

[report-item]

names either a report-name in a Report Description entry, or the group-data-name of a TYPE IS DETAIL report
group.

Syntax Rules
1. If report-item references a group-data-name, it must name a TYPE DETAIL report group. Group-data-name

can be qualified by report-name.

2. If report-item references a report-name, its report description must contain:

• A CONTROL clause

• At least one CONTROL HEADING, DETAIL, or CONTROL FOOTING report group

• No more than one DETAIL report group

General Rules
1. An INITIATE statement must be executed before a GENERATE statement is executed for a specific report.

2. The RWCS produces a summary report if all of the GENERATE statements for a report reference report-name.
A summary report contains no TYPE IS DETAIL report groups.

3. The RWCS produces a detail report if a GENERATE statement references a DETAIL report group.

4. To detect and trigger control breaks for a specific report, the RWCS:

• Saves the initial values within control data items as prior values when the GENERATE statement executes.

• Compares the prior values to the current values of control data items when subsequent GENERATE
statements execute. Only if the current values change does a control break occur. If a control break occurs,
the current values are saved as prior values.

• Repeats the preceding step until the last control break is processed.

303

Procedure Division

5. The RWCS automatically processes any PAGE HEADING and PAGE FOOTING report groups when it must
start a new page to present a CONTROL HEADING, DETAIL, or CONTROL FOOTING.

6. When the first GENERATE statement for a specific report is executed, the RWCS processes these report groups,
if present in the report description, in this order:

a. The REPORT HEADING report group.

b. The PAGE HEADING report group.

c. All CONTROL HEADING report groups from major to minor.

d. For GENERATE group-data-name statements (detail reporting), the RWCS presents the specific DETAIL
report group for processing.

e. For GENERATE report-name statements (summary reporting), the RWCS does not present the DETAIL
report group for processing; however, the RWCS does perform all other DETAIL report group functions.

7. When subsequent GENERATE statements are executed for a specific report, the RWCS:

• Checks for control breaks. The rules governing the inequality of control data items are identical to the rules
for relation conditions. If a control break occurs, the RWCS:

a. Enables the CONTROL FOOTING USE procedures and CONTROL FOOTING SOURCE clauses. This
allows program access to the control data item values that the RWCS uses to detect a given control break.

b. Processes the CONTROL FOOTING report groups starting with the minor. Only CONTROL FOOTING
report groups less major than the highest level at which a control break occurs are processed.

c. Processes the CONTROL HEADING report groups in the order major to minor. Only the CONTROL
HEADING report groups less major than the highest level at which a control break occurs are processed.

• Processes the GENERATE statement. For GENERATE group-data-name statements (detail reporting), the
RWCS processes the specific DETAIL report group. For GENERATE report-name statements (summary
reporting), the RWCS does not present the DETAIL report group for processing; however, the RWCS does
perform all other DETAIL report group functions.

8. No GENERATE statements can reference a file after executing a TERMINATE statement for the same file.

Additional References
• TYPE clause in Chapter 5, Data Division

• USE statement

GO TO
GO TO

Function
The GO TO statement transfers control from one part of the Procedure Division to another.

[proc-name]

is a procedure-name.

[num]

is the identifier of an elementary numeric item described with no positions to the right of the assumed decimal point.

304

Procedure Division

Syntax Rules
1. A Format 1 GO TO statement that is in a consecutive sequence of imperative statements in a sentence must

be the last statement in the sentence.

2. If an ALTER statement refers to a paragraph, the paragraph must consist of only a paragraph header followed
by a Format 1 GO TO statement.

3. A Format 1 GO TO statement without proc-name can only be in a single-statement paragraph.

General Rules

Format 1
1. The GO TO statement transfers control to proc-name.

2. If there is no proc-name, the GO TO statement cannot execute before an ALTER statement changes its
destination.

Format 2
1. The GO TO statement transfers control to the proc-name in the ordinal position indicated by the value of num.

No transfer occurs, and control passes to the next executable statement if the value of num is one of the
following:

• Not greater than zero

• Greater than the number of proc-names in the statement

Examples
1. Format 1:

GO TO ENDING-ROUTINE.

2. Format 2:

GO TO FRESHMAN
 SOPHOMORE
 JUNIOR
 SENIOR
 DEPENDING ON YEAR-LEVEL.
MOVE ...

Sample Results

YEAR-LEVEL Transfers to

1 FRESHMAN label
2 SOPHOMORE label
3 JUNIOR label
4 SENIOR label
5 MOVE statement
0 MOVE statement
-10 MOVE statement

305

Procedure Division

IF
IF

Function
The IF statement evaluates a condition. The condition's truth value determines the program action that follows.

[stment-1]

is an imperative or conditional statement. An imperative statement can precede a conditional statement.

[stment-2]

is an imperative or conditional statement. An imperative statement can precede a conditional statement.

Syntax Rules
1. The ELSE NEXT SENTENCE phrase is optional if it immediately precedes a separator period.

2. If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be specified.

General Rules
1. The scope of an IF statement ends with any of the following:

• An END-IF phrase at the same nesting level

• A separator period

• An ELSE phrase associated with an IF statement at a higher nesting level

2. If the condition is true, the following control transfers occur:

• If there is a stment-1, it executes.

stment-1 can contain a procedure branching or conditional statement. Control then transfers according to the
rules of the statement.

Otherwise, the ELSE phrase (if any) is ignored. Control passes to the end of the IF statement.

• If you use NEXT SENTENCE instead of stment-1, the ELSE phrase (if any) is ignored. Control passes to
the next executable sentence.

3. If the condition is false, the following control transfers occur:

• stment-1 or its substitute NEXT SENTENCE is ignored. If stment-2 is used, it executes.

stment-2 can contain a procedure branching or conditional statement. Control then transfers according to the
rules of the statement. Otherwise, control passes to the end of the IF statement.

• If there is no ELSE phrase, stment-1 is ignored. Control passes to the end of the IF statement.

• If the ELSE NEXT SENTENCE phrase is present, stment-1 is ignored. Control passes to the next executable
sentence.

4. An IF statement can appear in either or both stment-1 and stment-2. In this case, the IF statement is considered
nested, because its scope is entirely within the scope of another IF statement.

5. IF statements within IF statements are paired combinations, beginning with IF and ending with ELSE or END-
IF; this pairing proceeds from left to right. Thus, an ELSE or END-IF phrase applies to the first preceding
unpaired IF.

306

Procedure Division

Additional References
• Section 6.1: Verbs, Statements, and Sentences

• Section 6.1.4: Scope of Statements

• Section 6.5: Conditional Expressions

Examples
1. No ELSE phrase:

IF ITEMA < 20
 MOVE "X" TO ITEMB.

ITEMA ITEMB

4 “X”
35 ?
19 “X”

2. With ELSE phrase:

IF ITEMA > 10
 MOVE "X" TO ITEMB
ELSE
 GO TO PROC-A.
ADD ...

ITEMA Next Statement ITEMB

96 ADD “X”
8 PROC-A ?

3. With NEXT SENTENCE phrase:

(In each case, the next executable statement is the ADD statement.)

IF ITEMA < 10 OR > 20
 NEXT SENTENCE
ELSE
 MOVE "X" TO ITEMB.
ADD ...

ITEMA ITEMB

5 ?
17 “X”
35 ?

4. Nested IF statements:

IF ITEMA > 10
 IF ITEMA = ITEMC
 MOVE "X" TO ITEMB
 ELSE
 MOVE "Y" TO ITEMB
ELSE
 GO TO PROC-A.

307

Procedure Division

ADD ...

Input Values Output Value
ITEMA ITEMC Next Statement ITEMB

12 6 ADD “Y”
12 12 ADD “X”
8 8 PROC-A ?

5. END-IF:

(In this example, the initial value of ITEMD is 5.)

IF ITEMA > 10
 IF ITEMA = ITEMC
 ADD 1 TO ITEMD
 MOVE "X" TO ITEMB
 END-IF
 ADD 1 TO ITEMD.

ITEMA ITEMC ITEMB ITEMD

4 6 ? 5
15 6 ? 6
13 13 “X” 7
7 7 ? 5

INITIALIZE
INITIALIZE

Function
The INITIALIZE statement sets selected types of data fields to predetermined values.

General Format

[fld-name]

is the identifier of the receiving area data item.

[val]

is the sending area. It can be a literal or the identifier of a data item.

Syntax Rules
1. The phrase after the word REPLACING is the category phrase.

2. The category of the data item referred to by val must be consistent with that in the category phrase. The
combination of categories must allow execution of a valid MOVE statement.

3. The same category cannot be repeated in a REPLACING phrase.

4. The description of fld-name or any item subordinate to it cannot contain the OCCURS clause DEPENDING
phrase.

308

Procedure Division

5. Neither fld-name nor val can be index data items.

6. fld-name cannot contain a RENAMES clause.

General Rules
1.

The key word that follows the word REPLACING corresponds to a category of data. (See the section on
Categories and Classes of Data in the Data Division chapter.)

2. fld-name can be an elementary or group item. If it is a group item, the INITIALIZE statement operates on
the elementary items within the group item. For a table within a group item, INITIALIZE operates on the
elementary items within the table.

3. Whether fld-name is an elementary item or a group item, if the REPLACING phrase is specified, all data
movement operations occur as if they resulted from a series of MOVE statements with elementary item
receiving areas:

• If the receiving area is a group item, INITIALIZE affects only those subordinate elementary items whose
category matches a category phrase. General Rule 6 describes the effect on elementary items when there is
no REPLACING phrase.

• INITIALIZE affects all eligible elementary items, including all occurrences of table items in the group.

• If the receiving area is an elementary item, that item is initialized only if it matches a category phrase.

4. INITIALIZE does not affect index data items and FILLER data items.

5. INITIALIZE does not affect items subordinate to fld-name that contain a REDEFINES clause. Nor does it
affect data items subordinate to those items. However, fld-name itself can have a REDEFINES clause or be
subordinate to a data item that does.

6. When there is a REPLACING phrase, val is the sending field for each of the implicit MOVE statements.

7. When there is no REPLACING phrase, the sending field for the implicit MOVE statements is as follows:

• SPACES, if the data item category is alphabetic, alphanumeric, or alphanumeric edited

• ZEROS, if the data item category is numeric or numeric edited

8. INITIALIZE operates on each fld-name in the order it appears in the statement. When fld-name is a group item,
INITIALIZE operates on its eligible subordinate elementary items in the order they are defined in the group.

9. If fld-name occupies the same storage area as val, the execution result of this statement is undefined. (See the
section on Overlapping Operands and Incompatible Data.)

Additional References
• MOVE statement

• Section 6.6.7: Overlapping Operands and Incompatible Data

Examples
In the examples' results, a hyphen (-) means that the value of the data item is unchanged; s represents the character
space. The examples assume this data description:

01 ITEMA.
 03 ITEMB PIC X(4).
 03 ITEMC.
 05 ITEMD PIC 9(5).
 05 ITEME PIC $$$9.99.
 05 ITEMF PIC XX/XX.

309

Procedure Division

 03 ITEMG.
 05 ITEMH PIC 999.
 05 ITEMI PIC XX.
 05 ITEMJ PIC 99.9.
 03 ITEMK PIC X(4) JUSTIFIED RIGHT.

1. INITIALIZE ITEMA.

2. INITIALIZE ITEMB ITEMG.

3. INITIALIZE ITEMA REPLACING ALPHANUMERIC BY “ABCDE”.

4. INITIALIZE ITEMG REPLACING NUMERIC BY 9.

5. INITIALIZE ITEMA REPLACING NUMERIC-EDITED BY 16.

6. INITIALIZE ITEMA REPLACING ALPHANUMERIC-EDITED BY “ABCD”.

7. INITIALIZE ITEMA REPLACING ALPHANUMERIC BY “99”.

ITEMB ITEMD ITEME ITEMF ITEMH ITEMI ITEMJ ITEMK

1. ssss 00000 ss$0.00 ss/ss 000 ss 00.0 ssss
2. ssss – – – 000 ss 00.0 –
3. ABCD – – – – AB – BCDE
4. – – – – 009 – – –
5. – – s$16.00 – – – 16.0 –
6. – – – AB/CD – – – –
7. 99ss – – – – 99 – ss99

INITIATE
INITIATE

Function
The INITIATE statement causes the Report Writer Control System (RWCS) to begin processing a report.

[report-name]

names a report defined by a Report Description entry (RD) in the Report Section of the Data Division.

General Rules
1. The INITIATE statement does not automatically open a report file. The program must execute either an OPEN

OUTPUT or an OPEN EXTEND statement before it can execute an INITIATE statement.

2. Upon execution of the INITIATE statement, the RWCS sets all sum counters, LINE-COUNTER, and PAGE-
COUNTER to zero.

3. If the INITIATE statement has more than one report-name, the statement executes as if there were a separate
INITIATE statement for each report-name.

4. A program must execute a TERMINATE statement before it can execute another INITIATE statement for the
same report-name.

Additional Reference
USE statement

310

Procedure Division

INSPECT
INSPECT

Function
The INSPECT statement counts or replaces occurrences of single characters or groups of characters in a data item.

[src-string]

is the identifier of a group item or an elementary data item with DISPLAY usage. INSPECT operates on the
contents of this data item.

[tally-ctr]

is the identifier of an elementary numeric data item.

[delim-val]

is the character-string that delimits the INSPECT operation. Its content restrictions are the same as those for
compare-val.

[compare-val]

is the character-string INSPECT uses for comparison. It is a nonnumeric literal (or figurative constant other than
ALL literal) or the identifier of an elementary alphabetic, alphanumeric, or numeric data item with DISPLAY
usage.

[replace-char]

is the one-character item that replaces all characters. Its content restrictions are the same as those for compare-val.

[replace-val]

is the character-string that replaces occurrences of compare-val. Its content restrictions are the same as those for
compare-val.

[compare-chars]

is the string that contains the individual characters that convert to those in convert-chars. It is the same kind of
item as compare-val.

[convert-chars]

is the string that contains the individual characters to which the characters in compare-chars convert. It is the same
kind of item as compare-val.

Syntax Rules

All Formats
1. If compare-val, delim-val, replace-char, or compare-chars is a figurative constant, it refers to an implicit one-

character data item.

2. A compare-val of an ALL or LEADING phrase, and a CHARACTERS, FIRST, or CONVERTING phrase can
have no more than one BEFORE and one AFTER phrase following it.

Format 2
3. The sizes of the data referred to by replace-val and compare-val must be equal. When replace-val is a figurative

constant, its size equals that of the data referred to by compare-val.

311

Procedure Division

4. When there is a CHARACTERS phrase, the size of the data referred to by delim-val must be one character.

Format 3
5. A Format 3 INSPECT statement is equivalent to a Format 1 statement followed by a Format 2 statement.

Therefore, Syntax Rules 3 and 4 apply to the REPLACING clause of Format 3.

Format 4
6. The sizes of the data referred to by convert-chars and compare-chars must be equal. When convert-chars is a

figurative constant, its size equals that of the data referred to by compare-chars.

7. The same character cannot appear more than once in the data referred to by compare-chars.

General Rules

All Formats
1. Inspection includes: (a) comparison, (b) setting boundaries for the BEFORE and AFTER phrases, and (c)

tallying or replacing. Inspection starts at the leftmost character position of the src-string data item. It proceeds
to the rightmost character position, as described in General Rules 3 to 5.

2. If src-string, compare-val, delim-val, replace-val, compare-chars, or convert-chars refers to a data item, the
INSPECT statement treats the contents of the item according to the category implied by its data description.

a. For an alphabetic or alphanumeric item – INSPECT treats the data item as a character-string.

b. For an alphanumeric edited, numeric edited, or unsigned numeric item – INSPECT treats the data item as
though:

• The data item were redefined as alphanumeric.

• The INSPECT statement were written to refer to the redefined data item. (See General Rule 2a.)

c. For a signed numeric item – INSPECT treats the data item as though it were moved to an unsigned numeric
data item of the same length. It then applies General Rule 2b.

3. If the size of src-string is zero characters, inspection does not occur.

4. If the size of compare-val is zero characters, compare-val does not match in any src-string comparison.

5. If any identifier is subscripted or is a function-identifier, the subscript or function-identifier is evaluated only
once as the first operation in the execution of the INSPECT statement.

6. During inspection of src-string, each matched occurrence of compare-val is:

a. Tallied (Formats 1 and 3)

b. Replaced by replace-char or replace-val (Formats 2 and 3)

7. The comparison operation determines which occurrences of compare-val are tallied or replaced:

a. INSPECT processes the operands of the TALLYING and REPLACING phrases in the order they appear,
from left to right. The first compare-val is compared to the same number of contiguous characters, starting
with the leftmost character position in src-string. compare-val and the compared characters in src-string
match if they are equal, character for character. Otherwise, they do not match.

b. If the comparison of the first compare-val does not produce a match, the comparison repeats for each
successive compare-val until either:

• A match results

312

Procedure Division

• There is no next compare-val

When there is no next compare-val, INSPECT determines the leftmost character position in src-string for the
next comparison. This position is to the immediate right of the leftmost character position for the preceding
comparison. The comparison cycle starts again with the first compare-val.

c. For each match, tallying, replacing, or both occur, as described in General Rules 9 to 17. INSPECT
determines the leftmost character position in src-string for the next comparison. This position is to
the immediate right of the rightmost character position that matched in the preceding comparison. The
comparison cycle starts again with the first compare-val.

d. Inspection ends when the rightmost character position of src-string has either:

• Participated in a match

• Served as the leftmost character position

e. When the CHARACTERS phrase is present, INSPECT does not perform any comparison on the contents
of src-string. The cycle described in General Rules 6a to 6d operates as if:

• Inspection compares a one-character data item to each character in src-string

• A match occurs for each comparison

8. The BEFORE phrase determines the character position in src-string that will be the final leftmost position in
the comparison operation.

a. Comparison occurs on src-string only:

• From its leftmost character position

• To, but not including, the first occurrence of delim-val

b. The position of the first occurrence of delim-val in src-string is determined before the first comparison
operation.

c. If delim-val does not occur in src-string, the comparison operation proceeds as if there were no BEFORE
phrase.

9. The AFTER phrase determines the character position in src-string that will be the first leftmost position in the
comparison operation.

a. Comparison occurs on src-string only:

• From the character position to the immediate right of the rightmost character position of delim-val's first
occurrence

• To the rightmost position of src-string

b. The position of the first occurrence of delim-val in src-string is determined before the first comparison
operation.

c. If delim-val is not in src-string, no match occurs, and inspection causes no tallying or replacement.

Format 1
10.Executing the INSPECT statement does not initialize the value of tally-ctr.

11.If the ALL phrase is present, the value of tally-ctr is incremented by one for each occurrence of compare-val
in src-string.

313

Procedure Division

12.If the LEADING phrase is present, the value of tally-ctr is incremented by one for each contiguous occurrence
of compare-val in src-string. The leftmost occurrence of compare-val must be at the position where comparison
begins in the first comparison cycle. Otherwise, no tallying occurs.

13.If the CHARACTERS phrase is present, the value of tally-ctr is incremented by one for each character matched
in src-string (see General Rule 6e).

Format 2
14.The adjectives ALL, LEADING, and FIRST apply to succeeding BY phrases until the next adjective appears.

15.If the CHARACTERS phrase is present, each character matched in src-string is replaced by replace-char (see
General Rule 6e).

16.When ALL is present, each occurrence of compare-val in src-string is replaced by replace-val.

17.When LEADING is present, each contiguous occurrence of compare-val in src-string is replaced by replace-val.
The leftmost occurrence of compare-val must be at the position where comparison begins in the first comparison
cycle. Otherwise, no replacement occurs.

18.When FIRST is present, the leftmost occurrence of compare-val in src-string is replaced by replace-val.

Format 3
19.A Format 3 INSPECT statement executes as if there were two successive INSPECT statements with the same

src-string. Execution proceeds as if:

• The first statement were a Format 1 statement with TALLYING phrases identical to those in the Format 3
statement

• The second statement were a Format 2 statement with REPLACING phrases identical to those in the Format
3 statement

The General Rules for Formats 1 and 2 apply to the corresponding phrases in the Format 3 statement.

Format 4
20.A Format 4 statement executes as if:

• It were a Format 2 INSPECT statement with a series of ALL phrases, one for each character of compare-chars

• compare-val in each ALL phrase referred to a single character of compare-chars

• replace-val in each ALL phrase referred to a single character of replace-chars

The individual characters of compare-chars and replace-chars correspond by ordinal position in the data items.

Additional Reference
• MOVE

Examples
In the following examples, the initial values of COUNT1 and COUNT2 are zero.

1. TALLYING phrase with BEFORE option:

INSPECT ITEMA TALLYING COUNT1 FOR LEADING "L" BEFORE "A",
 COUNT2 FOR LEADING "A" BEFORE "L".

314

Procedure Division

ITEMA COUNT1 COUNT2

LARGE 1 0
ANALYST 0 1

2. TALLYING phrase and REPLACING LEADING phrase with AFTER option:

INSPECT ITEMA TALLYING COUNT1 FOR ALL "L" "R"
 REPLACING LEADING "A" BY "E" AFTER INITIAL "L".

ITEMA COUNT1 ITEMA

CALLAR 3 CALLAR
SALAMI 1 SALEMI
LATTER 2 LETTER

3. REPLACING ALL phrase with BEFORE option:

INSPECT ITEMA REPLACING ALL "A" BY "G" BEFORE "X".

ITEMA ITEMA

ARXAX GRXAX
HANDAX HGNDGX
HANDAA HGNDGG

4. TALLYING and REPLACING ALL phrases:

INSPECT ITEMA TALLYING COUNT1 FOR CHARACTERS AFTER "J"
 REPLACING ALL "A" BY "B".

ITEMA COUNT1 ITEMA

ADJECTIVE 6 BDJECTIVE
JACK 3 JBCK
JUJMAB 5 JUJMBB

5. REPLACING ALL phrase:

INSPECT ITEMA REPLACING ALL "X" BY "Y", "B" BY "Z",
 "W" BY "Q" AFTER "R".

ITEMA ITEMA

RXXBQWY RYYZQQY
YZACDWBR YZACDWZR
RAWRXEB RAQRYEZ

1. REPLACING CHARACTERS phrase:

INSPECT ITEMA REPLACING CHARACTERS BY "B" BEFORE "A".

ITEMA ITEMA

12RXZABCD BBBBBABCD
12RXZBBCD BBBBBBBBB

2. REPLACING ALL phrase:

315

Procedure Division

INSPECT ITEMA REPLACING ALL "A" BY "X" ALL "R" BY "X"
 AFTER "XXL".

ITEMA ITEMA

AALRRRA XXLRRRX
AXXLRRR XXXLXXX

3. CONVERTING phrase:

INSPECT ITEMA CONVERTING "SIR" TO "DTA"
 AFTER QUOTE BEFORE "@".

ITEMA ITEMA

TIRMS "SRXIL@STAR TIRMS "DAXTL@STAR

MERGE
MERGE

Function
The MERGE statement takes two or more identically sequenced files and combines them according to the key
values you specify. During the process, it makes records available, in merged order, to routines in OUTPUT
PROCEDURE or to an output file.

[mergefile]

is a file-name described in a sort-merge file description (SD) entry in the Data Division.

[mergekey]

is the data-name of a data item in a record associated with mergefile.

[alpha]

is an alphabet-name defined in the SPECIAL-NAMES paragraph of the Environment Division.

[infile]

is the file-name of an input file. It must be described in a file description (FD) entry in the Data Division.

[first-proc]

is the section-name or paragraph-name of the output procedure's first (or only) section or paragraph.

[end-proc]

is the section-name or paragraph-name of the output procedure's last section or paragraph.

[outfile]

is the file-name of an output file. It must be described in a file description (FD) entry in the Data Division.

Syntax Rules
1. MERGE statements can appear anywhere in the Procedure Division except in:

316

Procedure Division

• DECLARATIVES

• Sections of a SORT or MERGE statement's INPUT or OUTPUT PROCEDURE

2. If mergefile contains variable length records, infile records must not be smaller than the smallest record in
mergefile nor larger than the largest.

3. If mergefile contains fixed-length records, infile records must not be larger than the largest record described
for mergefile.

4. If outfile contains variable length records, mergefile records must not be smaller than the smallest record in
outfile nor larger than the largest.

5. If outfile contains fixed-length records, mergefile records must not be larger than the largest record described
for outfile.

6. Each mergekey must be described in records associated with mergefile.

7. mergekey can be qualified.

8. mergekey cannot be a group that contains variable occurrence data items.

9. The description of mergekey cannot contain an OCCURS clause or be subordinate to one that does.

10.mergefile can have more than one record description. However, mergekey need not be described in more than
one of the record descriptions. The character positions referenced by mergekey are used as the key for all the
file's records.

11.The words THRU and THROUGH are equivalent.

12.If outfile is an indexed file, the first mergekey must be in the ASCENDING phrase. It must specify the same
character positions in its record as the prime record key for outfile.

General Rules
1. The MERGE statement merges all records in the infile files.

2. If mergefile contains fixed-length records, any shorter infile records are space-filled on the right after the last
character. Space-filling occurs before the infile record is released to mergefile.

3. The leftmost mergekey is the major key, and the next mergekey is the next most significant key. The significance
of mergekey data items is not affected by how they are divided into KEY phrases. Only left-to-right order
determines significance.

4. The ASCENDING phrase causes the merged sequence to be from the lowest mergekey value to the highest.

5. The DESCENDING phrase causes the merged sequence to be from the highest mergekey value to the lowest.

6. Merge sequence follows the rules for relation condition comparisons.

7. When the contents of all key data items of one record equal the contents of the corresponding key data items
in another record, the order of return from the merge:

• Follows the order of the associated input files in the MERGE statement

• Causes all records with equal key values from one input file to be returned before any are returned from
another

8.
The MERGE statement determines the comparison collating sequence for nonnumeric mergekey items when
it begins execution. If there is a COLLATING SEQUENCE phrase in the MERGE statement, MERGE uses

317

Procedure Division

that sequence. Otherwise, it uses the collating sequence that was established for the program as a whole in the
PROGRAM COLLATING SEQUENCE clause of the OBJECT-COMPUTER paragraph. If you do not specify
the collating sequence in either the MERGE statement or the OBJECT-COMPUTER paragraph, the program
uses the NATIVE collating sequence.

9. The results of the merge are undefined unless the records in the infile files are ordered as described in the
MERGE statement's ASCENDING or DESCENDING KEY clause.

10.The MERGE statement transfers all records in infile to mergefile. When the MERGE statement executes, infile
must not be open.

11.For each infile, the MERGE statement:

• Begins file processing as if the program had executed an OPEN statement with the INPUT phrase.

• Obtains the logical records and releases them to the merge operation. MERGE obtains each record as if the
program had executed a READ statement with the NEXT and AT END phrases.

• Terminates file processing as if the program had executed a CLOSE statement with no optional phrases.

These implicit OPEN, READ, and CLOSE operations cause associated USE procedures to execute if an
exception condition occurs.

12.OUTPUT PROCEDURE consists of one or more sections that are as follows:

• Contiguous in the source program

• Not a part of any other procedure

13.When the MERGE statement enters the OUTPUT PROCEDURE range, it is ready to select the next record in
merged order. Statements in the OUTPUT PROCEDURE range must execute at least one RETURN statement
to make records available for processing.

14.The OUTPUT PROCEDURE can consist of any procedure needed to select, modify, or copy the next record
made available by the RETURN statement in merged order from the file referenced by mergefile.

15.The range of the OUTPUT PROCEDURE additionally includes all statements executed as a result of a CALL,
EXIT, GO TO, or PERFORM statement. The range of the OUTPUT PROCEDURE also includes all statements
in the Declaratives Section that can be executed if control is transferred from statements in the range of the
OUTPUT PROCEDURE.

16.The range of the OUTPUT PROCEDURE must not contain MERGE, SORT, or RELEASE statements.

17.If the MERGE statement is in a fixed segment, the OUTPUT PROCEDURE range must be either:

• Completely in fixed segments

• Completely contained in one independent segment

18.If the MERGE statement is in an independent segment, the OUTPUT PROCEDURE range must be either:

• Completely in fixed segments

• Completely contained in the same independent segment as the MERGE statement itself

19.If OUTPUT PROCEDURE is used, control passes to its sections during execution of the MERGE statement.
When control passes to the last statement in the OUTPUT PROCEDURE range, the MERGE statement ends.
Control then transfers to the next executable statement after the MERGE statement.

20.During execution of statements in the OUTPUT PROCEDURE range – or any USE AFTER EXCEPTION
procedure implicitly invoked during the MERGE statement – no statement outside the range can manipulate
the files or record areas associated with infile or outfile.

318

Procedure Division

21.If there is a GIVING phrase, the MERGE statement writes all merged records to each outfile. This transfer
is an implied MERGE statement OUTPUT PROCEDURE. Therefore, when the MERGE statement executes,
outfile must not be open.

22.The MERGE statement begins outfile processing as if the program had executed an OPEN statement with the
OUTPUT phrase.

23.The MERGE statement gets the merged logical records and writes them to each outfile. MERGE writes each
record as if the program had executed a WRITE statement with no optional phrases.

For relative files, the value of the relative key data item is 1 for the first returned record, 2 for the second,
and so on. When the MERGE statement ends, the value of the relative key data item indicates the number of
outfile records.

24.The MERGE statement terminates outfile processing as if the program had executed a CLOSE statement with
no optional phrases.

25.These implicit OPEN, WRITE, and CLOSE operations cause associated USE procedures to execute if an
exception condition occurs. If the MERGE statement tries to write beyond the boundaries of outfile, the
applicable USE AFTER EXCEPTION procedure executes. If control returns from the USE procedure, or if
there is no USE procedure, outfile processing terminates as if the program had executed a CLOSE statement
with no optional phrases.

26.If outfile contains fixed-length records, any shorter mergefile records are space-filled on the right after the last
character. Space-filling occurs before the mergefile record is released to outfile.

Additional References
• OBJECT-COMPUTER paragraph in Chapter 4, Environment Division

• SPECIAL-NAMES paragraph in Chapter 4, Environment Division

• I-O-CONTROL paragraph in Chapter 4, Environment Division

• USE statement

MOVE
MOVE

Function
The MOVE statement transfers data to one or more data areas. The editing rules control data transfer.

[src-item]

is an identifier that represents the sending area.

[lit]

is a literal that represents the sending area.

[dest-item]

is an identifier that represents the receiving area.

Syntax Rules
1. CORR is an abbreviation for CORRESPONDING.

319

Procedure Division

2. In the CORRESPONDING phrase, both src-item and dest-item must be group items, and there can be only
one dest-item.

3. If any dest-item is numeric or numeric edited, lit cannot be any of the following:

• HIGH-VALUE

• HIGH-VALUES

• LOW-VALUE

• LOW-VALUES

• SPACE

• SPACES

• QUOTE

• QUOTES

4. If lit is the figurative constant ALL literal and the usage of dest-item is COMP-1 or COMP-2, the MOVE
statement uses only one occurrence of literal.

5. No operand can be an index data item.

General Rules
1. In Format 2, when the CORRESPONDING phrase is present, selected items in src-item are moved to selected

items in dest-item. The rules for the CORRESPONDING option control these moves. The results are the same
as if the MOVE statement were replaced by separate MOVE statements for each pair of corresponding items
in src-item and dest-item.

2. In Format 1, the MOVE statement moves the sending area to the first dest-item, then to each additional dest-
item, in the same order in which they appear in the statement.

3. If src-item is reference-modified, subscripted, or indexed, or is a function-identifier, the reference modifier,
subscript, index, or function-identifier is evaluated once, immediately before the move to the first dest-item.

4. Subscript or index evaluation for a dest-item occurs immediately before the move to that item.

5. The length of src-item is evaluated once, immediately before the move to the first dest-item.

6. The length of each dest-item is evaluated immediately before the move to that item.

7. The result of the first of the following MOVE statements is equivalent to the three that follow. The word temp
represents an intermediate result item supplied by the compiler.

MOVE ITEMA (ITEMB) TO ITEMB, ITEMC (ITEMB).

MOVE ITEMA (ITEMB) TO temp.
MOVE temp TO ITEMB.
MOVE temp TO ITEMC (ITEMB).

Elementary Moves
8. A move is elementary when dest-item is an elementary item, and the sending area is either an elementary data

item or a literal.

a. An elementary item belongs to one of these categories, depending on its PICTURE clause:

• Numeric

320

Procedure Division

• Alphabetic

• Alphanumeric

• Numeric edited

• Alphanumeric edited

b. Numeric literals are numeric. Nonnumeric literals are alphanumeric.

c. The figurative constant ZERO is numeric when moved to a numeric or numeric edited item. Otherwise, it
is alphanumeric.

d. The figurative constant SPACE is alphabetic.

e. All other figurative constants are alphanumeric.

9. These rules apply to elementary moves between categories:

a. The figurative constant SPACE, or an alphanumeric edited or alphabetic data item, cannot be moved to a
numeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, or a numeric or numeric edited data item, cannot be moved
to an alphabetic data item.

c. A noninteger numeric literal or data item cannot be moved to an alphanumeric or alphanumeric edited data
item.

d. All other elementary moves are valid.

Editing, De-Editing, and Data Conversion During
Elementary Moves
10.Editing, de-editing, or other required internal data conversions occur during elementary moves. They are

controlled by the description of dest-item.

11.When dest-item is alphanumeric or alphanumeric edited, alignment and space-filling occur according to the
Standard Alignment Rules.

If lit or src-item is signed numeric, the operational sign is not moved. If the operational sign occupies a separate
character position:

a. The sign character is not moved.

b. The size of lit or src-item is considered to be one less than its actual size (in terms of Standard Data Format
characters).

If the sending operand is numeric and contains the PICTURE symbol (P), all digit positions specified with this
symbol are considered to have the value zero and are counted in the size of the sending operand.

12.When dest-item is numeric or numeric edited, decimal point alignment and zero-filling occur according to the
Standard Alignment Rules.

a. When dest-item is a signed numeric item, the sign from lit or src-item is placed in it. If the sending item is
unsigned, a positive sign is placed in dest-item.

b. When dest-item is an unsigned numeric item, the absolute value of lit or src-item is moved.

c. When lit or src-item is alphanumeric, the move occurs as if the sending item were described as an unsigned
numeric integer.

321

Procedure Division

d. When src-item is numeric edited, the compiler de-edits it before moving it to dest-item. Src-item can be
signed.

13.When dest-item is alphabetic, justification and space-filling occur according to the Standard Alignment Rules.

Nonelementary Moves
14.A nonelementary move occurs as if it were an alphanumeric-to-alphanumeric elementary move. However,

there is no internal data conversion. The move is not affected by individual elementary or group items in either
src-item or dest-item, except as noted in the General Rules for the OCCURS clause.

Summary
Table 6.13, “Valid MOVE Statements” summarizes the valid types of MOVE statements. References after slash
marks show the applicable General Rule. For example, moving a numeric edited item to an alphabetic item is
invalid because of General Rule 9b.

Table 6.13. Valid MOVE Statements

 Category of Receiving Data Item (dest-item)
Category of Sending
Data Item

(lit or src-item)

Alphabetic Alphanumeric Edited
Alphanumeric

Numeric Integer
Numeric Noninteger
Numeric Edited

Alphabetic Yes/13 Yes/11 No/9a
Alphanumeric Yes/13 Yes/11 Yes/12
Alphanumeric Edited Yes/13 Yes/11 No/9a
Numeric Integer No/9b Yes/11 Yes/12
Numeric Noninteger No/9b No/9c Yes/12
Numeric Edited No/9b Yes/11 Yes/12

Additional References
• Section 5.2.2: COBOL Standard Alignment Rules

• OCCURS clause in Chapter 5, Data Division

• PICTURE clause in Chapter 5, Data Division

• SIGN clause in Chapter 5, Data Division

• Section 6.6.5: CORRESPONDING Phrase

Examples
The following examples show the result of executing the statement:

MOVE ITEMA TO ITEMB.

An s indicates a space character.

• Numeric edited receiving item:

(The PICTURE of ITEMA is S9999V99.)

 ITEMA Value ITEMB PICTURE ITEMB Contents

a. +0023.00 ZZZZ.99 ss23.00

322

Procedure Division

 ITEMA Value ITEMB PICTURE ITEMB Contents

b. -0036.93 ++++.99 s-36.93
c. +1234.56 Z,ZZZ.99 1,234.56
d. +1234.56 Z,ZZZ.99- 1,234.56s
e. +1234.56 Z,ZZZ.99+ 1,234.56+
f. -1234.56 $,$$$,$$$.99DB sss$1,234.56DB
g. -1234.56 $,$$$.99- s$234.56-
h. +0001.25 $,$$$.99 sss$1.25
i. -0001.25 $,$$$.99 sss$1.25
j. +0000.00 $,$$9.99 sss$0.00
k. +0000.00 $,$$$.$$ ssssssss

• Alphanumeric receiving item:

(The PICTURE of ITEMA is X(4).)

 ITEMA Value ITEMB Description ITEMB Contents

a. ABCD PIC X(4) ABCD
b. ABCD PIC X(6) ABCDss
c. ABCD PIC X(6) JUST ssABCD
d. ABCs PIC X(6) JUST ssABCs
e. ABCD PIC XXX ABC
f. ABCD PIC XX JUST CD

• Alphanumeric edited receiving item:

(The PICTURE of ITEMA is X(7).)

 ITEMA Value ITEMB Description ITEMB Contents

a. 063080s XX/99/XX 06/30/80
b. 30JUN80 99BAAAB99 30sJUNs80
c. 6374823 XXXBXXX/XX/X 637s482/3s/s
d. 123456s 0XB0XB0XB0XB 01s02s03s04s

• Numeric edited sending item:

 ITEMA PICTURE ITEMA Value ITEMB PICTURE ITEMB Value

a. Z,ZZZ.99- 1,234.56- 999.999- 234.560-
b. ZZZ,ZZZ.99- ss1,234.56- $$$,$$$.99- s$1,234.56-
c. $$$,$$$.99CR s$1,234.56CR $$$,$$$.99- s$1,234.56-
d. $$$,$$$.99DB s$1,234.56DB ZZZ,ZZZ.99CR ss1,234.56CR
e. +++++.99 +1234.56 ZZZZZ.99+ s1234.56+
f. ++++++.99 #s-1234.56 ZZZZZZ.99- ss1234.56-
g. − − − − −.99 -1234.56 ZZZZZ.99DB s1234.56DB
h. − − − − − −.99 ss1234.56 $$,$$$.99 $1,234.56
i. $$$$.99- $123.45- /XXBXXBXXBXX/ /$1s23s.4s5-/
j. $$$$.99- $123.45- /99B99B99B99/ /00s00s01s23/

323

Procedure Division

MULTIPLY
MULTIPLY

Function
The MULTIPLY statement multiplies two numeric operands and stores the product in one or more data items.

[num]

is a numeric literal or the identifier of an elementary numeric item.

[rsult]

is the identifier of an elementary numeric item. However, in Format 2, rsult can be an elementary numeric edited
item. It is the resultant identifier.

[stment]

is an imperative statement executed when an on size error condition has occurred.

[stment2]

is an imperative statement executed when no on size error condition has occurred.

General Rules
1. In Format 1, the value of num is multiplied by the value of the first rsult. The product replaces the current value

of the first rsult. The process repeats for each succesive occurrence of rsult.

2. In Format 2, the values of the two operands before the word GIVING are multiplied together. The product
replaces the current value of each rsult.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.6.1: Arithmetic Operations

• Section 6.6.3: ROUNDED Phrase

• Section 6.6.4: ON SIZE ERROR Phrase

• Section 6.6.7: Overlapping Operands and Incompatible Data

• Section 6.6.2: Multiple Receiving Fields in Arithmetic Statements

Examples
Each of the examples assume these data descriptions and beginning values:

INITIAL VALUES

 03 ITEMA PIC S99 VALUE 4. 4
 03 ITEMB PIC S99 VALUE -35. -35
 03 ITEMC PIC S99 VALUE 10. 10
 03 ITEMD PIC S99 VALUE 5. 5

1. Without GIVING phrase:

324

Procedure Division

RESULTS

MULTIPLY 2 BY ITEMB. ITEMB = -70

2. SIZE ERROR phrase:

(When the SIZE ERROR condition occurs, the values of the affected resultant identifiers do not change.)

MULTIPLY 3 BY ITEMB
 ON SIZE ERROR ITEMB = -35
 MOVE 0 TO ITEMC. ITEMC = 0

3. NOT ON SIZE ERROR phrase:

MULTIPLY 2 BY ITEMB
 ON SIZE ERROR ITEMB = -70
 MOVE 0 TO ITEMC
 NOT ON SIZE ERROR
 MOVE 1 TO ITEMC. ITEMC = 1

4. END-MULTIPLY and MULTIPLY results with SIZE ERROR:

(The stment in the SIZE ERROR phrase executes if any operation causes a size error condition. The first
MULTIPLY statement terminates with END-MULTIPLY. The second MULTIPLY executes whether or not the
SIZE ERROR condition occurs.)

 MULTIPLY 4 BY ITEMA ITEMB ITEMC
 ON SIZE ERROR
 MOVE 1 TO ITEMD
 END-MULTIPLY
 MULTIPLY 2 BY ITEMA ITEMB ITEMC
 ON SIZE ERROR
 ADD 1 TO ITEMD
 END-MULTIPLY.

After First MULTIPLY After Second MULTIPLY

ITEMA = #16 ITEMA = #32
ITEMB = -35 ITEMB = -70
ITEMC = #40 ITEMC = #80
ITEMD = ##1 ITEMD = ##1

If the initial value of ITEMB had been -20, a SIZE ERROR condition would not have occurred during the first
MULTIPLY. However, the second MULTIPLY would have caused the condition:

After First MULTIPLY After Second MULTIPLY

ITEMA = 16 ITEMA =##32
ITEMB = -80 ITEMB =#-80
ITEMC = 40 ITEMC =##80
ITEMD = #5 ITEMD =###6

OPEN
OPEN

325

Procedure Division

Function
The OPEN statement creates an access stream to the file, makes the file available to the program, begins the
processing of a file, and specifies file sharing.

[file-name]

is the name of a file described in the Data Division. It cannot be the name of a sort or merge file.

Leading and trailing blanks are removed from file specifications on all platforms before an OPEN is attempted.
Embedded blanks and tabs are removed on OpenVMS systems only.

Syntax Rules

Format 1—Sequential, Line Sequential (Alpha, I64),
Relative, or Indexed Files
1. The NO REWIND phrase can be used only for files with sequential organization.

2. The I-O phrase can be used only for mass storage files.

3. The I-O phrase cannot be used with LINE SEQUENTIAL.

4. The EXTEND phrase can be used for sequential access mode files only.

5. The WITH LOCK phrase cannot be used with the ALLOWING phrase, because it is invalid to specify both X/
Open standard (WITH [NO] LOCK or LOCK MODE) and VSI standard (LOCK-HOLDING, ALLOWING,
or REGARDLESS) file sharing for the same file connector.

Format 2—Report Writer Files
6. file-name must be in a file description entry containing a REPORT clause.

General Rules

All Files
1. Successful OPEN statement execution:

• Creates an access stream to the file

• Makes the file available to the program

• Puts the file in an open mode

• Associates the file with file-name through the file connector

2. An executable image can open a file-name more than once with the INPUT, OUTPUT, I-O, and EXTEND
phrases. After the first OPEN statement, each later OPEN for the same file-name must follow the execution
of a CLOSE statement for the file-name. However, the CLOSE statement must not have a REEL, UNIT, or
LOCK phrase.

3. The OPEN statement does not get or release the first data record.

4. For an OPEN statement with the INPUT, I-O, or EXTEND phrases, file-name's file description entry must be
equivalent to that used when the file was created.

5. The NO REWIND phrase applies only to sequential single-reel/unit files. If the concept of rewinding does not
apply to the file's storage medium, then the open is successful and an I-O status is set.

6. If the file's storage medium allows rewinding, and:

326

Procedure Division

• There is neither an EXTEND nor a NO REWIND phrase, then OPEN statement execution positions the file
at its beginning.

• There is a NO REWIND phrase, then the OPEN statement does not reposition the file. The file must already
be positioned at its beginning before the OPEN statement executes.

7. Successful execution of an OPEN statement sets the Current Volume Pointer to:

• The first or only reel/unit for an available input or input-output file

• The reel/unit containing the last logical record for an extend file

• The new reel/unit for an unavailable output, input-output, or extend file

8. If more than one file-name is in the OPEN statement, execution is the same as if there were a separate OPEN
statement for each file-name.

9. A file's maximum record size is established when the file is created and must not subsequently be changed.

Format 1—Sequential, Line Sequential (Alpha, I64),
Relative, or Indexed Files
10.A file is available if it is both:

• Physically present

• Recognized by the I-O system

Table 6.14, “Opening Available and Unavailable Sequential, Line Sequential (Alpha, I64), Relative, and
Indexed Files” shows the result of opening available and unavailable sequential, relative, and indexed files.

Table 6.14. Opening Available and Unavailable Sequential, Line Sequential (Alpha, I64),
Relative, and Indexed Files

Open Mode File Is Available File Is Unavailable

INPUT Normal open Error

INPUT (Optional File) Normal open Normal open

The first read causes the at end
condition or invalid key condition

I-O Normal open Error

I-O (Optional File) Normal open The OPEN creates the file

OUTPUT Creates a new version of the file

See General Rule 24

The OPEN creates the file

EXTEND Normal open Error

EXTEND (Optional File) Normal open The OPEN creates the file

327

Procedure Division

11.Successful OPEN statement execution makes the file's record area available to the program. If the file connector
is an external file connector, the file has only one record area for the executable image.

12.When a file is not in an open mode, no statement that references the file can execute either implicitly or explicitly,
except for:

• A MERGE statement

• An OPEN statement

• A SORT statement with the USING or GIVING phrase

13.An OPEN statement for a file must successfully execute before any allowable input-output statement executes
for the file. Table 6.15, “Allowable Input-Output Statements for Sequential, Line Sequential (Alpha, I64),
Relative, and Indexed Files” shows allowable input-output statements by file organization, access mode, and
open mode for sequential, line sequential, relative, and indexed files.

Table 6.15. Allowable Input-Output Statements for Sequential, Line Sequential (Alpha,
I64), Relative, and Indexed Files

 Open Mode
File
Organization

Access Mode Statement INPUT OUTPUT I-O EXTEND

SEQUENTIAL SEQUENTIAL READ

REWRITE

WRITE

UNLOCK

Yes

No

No

Yes

No

No

Yes

Yes

Yes

Yes

No

Yes

No

No

Yes

Yes

LINE
SEQUENTIAL
(Alpha, I64)

SEQUENTIAL READ

REWRITE

WRITE

UNLOCK

Yes

No

No

Yes

No

No

Yes

Yes

No

No

No

No

No

No

Yes

Yes

RELATIVE SEQUENTIAL DELETE

READ

REWRITE

START

WRITE

UNLOCK

No

Yes

No

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

Yes

Yes

RANDOM DELETE

READ

REWRITE

WRITE

No

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

No

No

No

328

Procedure Division

 Open Mode
File
Organization

Access Mode Statement INPUT OUTPUT I-O EXTEND

UNLOCK Yes Yes Yes No

DYNAMIC DELETE

READ

READ NEXT

REWRITE

START

WRITE

UNLOCK

No

Yes

Yes

No

Yes

No

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

INDEXED SEQUENTIAL DELETE

READ

REWRITE

START

WRITE

UNLOCK

No

Yes

No

Yes

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

No

No

No

No

Yes

Yes

 RANDOM DELETE

READ

REWRITE

WRITE

UNLOCK

No

Yes

No

No

Yes

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

 DYNAMIC DELETE

READ

READ NEXT

READ PRIOR

REWRITE

START

WRITE

UNLOCK

No

Yes

Yes

Yes

No

Yes

No

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

329

Procedure Division

14.If the file opened with the INPUT phrase is an optional file that is not present, the OPEN statement sets the
File Position Indicator to indicate this condition.

15.An OPEN statement with the EXTEND phrase positions the file immediately after its last logical record. The
definition of last logical record differs by file organization:

• For sequential and line sequential files, it is the last record written in the file.

• For relative files, it is the currently existing record with the highest relative record number.

• For indexed files in ascending sort order, it is the currently existing record with the highest prime record
key value.

For indexed files in descending sort order, it is the currently existing record with the lowest prime record key.

• For Report Writer files, the last logical record is the last record written in the file.

16.Files for which the LINAGE clause has been specified must not be opened in the EXTEND mode.

17.The I-O phrase opens a mass storage file for both input and output operations.

18.

19.When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL is specified and WITH LOCK is not
specified, the file is shareable, and can be opened by more than one access stream (except for files opened in
OUTPUT mode, which cannot be shared).

20.The NO OTHERS option or WITH LOCK option specifies exclusive file access by this access stream. The
access stream created by the OPEN ALLOWING NO OTHERS or OPEN WITH LOCK statement has exclusive
access to the file and, therefore, no other concurrent access stream can access (or open) the file.

21.The READERS option permits read-only access to the file for concurrent access streams.

However, on Tru64 UNIX systems, the ALLOWING READERS phrase is minimally supported for indexed
files, and should not be used. Refer to the description of file handling for indexed files in the VSI COBOL User
Manual, in the section on sharing files.

22.The ALL, WRITERS, and UPDATERS phrases allow concurrent access streams access to the file.

23.If there is no ALLOWING phrase or WITH LOCK phrase, the default file-sharing behavior for files depends
on the open mode and whether X/Open standard (Alpha or I64) or VSI standard file sharing is in effect.

For files opened in input mode:

• VSI standard—The default is ALLOWING READERS (see General Rule 21 for the exception).

• X/Open standard (Alpha, I64)—The default is to make the file fully shareable.

For files opened in modes other than input mode, the default is always to make the file exclusive. (Also see
General Rule 24.)

The selection of X/Open (Alpha, I64) or VSI standard file-sharing default behavior is made as follows by the
compiler:

• On Alpha and I64, if X/Open standard syntax (LOCK MODE or WITH [NO] LOCK) has been specified
for file-name prior to the OPEN statement, the compiler interprets the statement according to the X/Open
standard.

• If VSI standard syntax (LOCK-HOLDING, ALLOWING, or REGARDLESS) has been specified for file-
name prior to the OPEN statement, the compiler interprets the statement according to the VSI standard.

• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS, LOCK MODE, or WITH
[NO] LOCK) has been specified for file-name prior to the OPEN statement, then the compiler uses the /
STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or the Tru64 UNIX equivalent -std

330

Procedure Division

[no]xopen flag) to determine whether the OPEN INPUT statement is interpreted as X/Open or VSI
standard: a setting of xopen selects the X/Open standard, whereas a setting of noxopen selects the VSI
standard.

Any subsequent I-O locking syntax for the same file connector in your program must be consistent: X/Open
standard locking (Alpha, I64) and VSI standard locking (implicit or explicit) cannot be mixed for the same
file connector.

24.On Tru64 UNIX systems, files opened in OUTPUT mode adhere to the same file-sharing protocols as do files
opened in the EXTEND and I-O modes. Access can be denied or granted depending on the file lock requested
and the file lock held.

On OpenVMS systems, file sharing is limited for OUTPUT mode. A higher-numbered version is always created
by default.

On Alpha and I64 systems, if X/Open standard file sharing is in effect, files opened in OUTPUT mode cannot
be shared.

25.On Tru64 UNIX systems, when two file connectors in one process concurrently access the same physical file,
a file-locked condition is not generated.

On OpenVMS systems, when two file connectors in one process concurrently access the same physical file, a
file-locked condition might be generated.

26.For files specified with a MULTIPLE FILE TAPE clause:

• The NO REWIND phrase, if specified, is ignored.

• Any required rewinding or positioning of the reel (or device) is accomplished according to the relative
position of the file as specified in the MULTIPLE FILE TAPE clause.

27.An OPEN OUTPUT statement for a file specified with a POSITION phrase of a MULTIPLE FILE TAPE clause
is invalid unless the tape contains all the files at positions prior to the position specified.

28.An OPEN OUTPUT statement for a file specified with a POSITION phrase of a MULTIPLE FILE TAPE clause
is invalid if the tape already contains a file at the position specified.

29.An OPEN INPUT statement for a file specified with a POSITION phrase of a MULTIPLE FILE TAPE clause
is invalid unless the tape contains a file at that position, as well as all the files at the positions prior to the
position specified.

30.A file specified in a MULTIPLE FILE TAPE clause cannot be opened in either I-O or EXTEND mode.

Format 2—Report Writer Files
31.A file is available if it is physically present and recognized by the I-O system.

Table 6.16, “Opening Available and Unavailable Report Writer Files” shows the results of opening available
and unavailable Report Writer files.

Table 6.16. Opening Available and Unavailable Report Writer Files

Open Mode File Is Available File Is Unavailable

OUTPUT Creates a new version of the file The OPEN creates the file
EXTEND Normal OPEN The OPEN is unsuccessful
EXTEND (optional file) Normal OPEN The OPEN creates the file

32.Successful OPEN statement execution makes the file's record area available to the Report Writer Control
System. If the file connector is an external file connector, the file has only one record area for the executable
image.

331

Procedure Division

33.When a file is not in an open mode, no statement that references the file can execute either implicitly or explicitly,
except for the OPEN statement.

34.An OPEN statement for a file-name must execute successfully before an INITIATE statement executes for the
file. Table 6.17, “Allowable Statements for Report Writer Files” shows allowable Report Writer statements by
file organization and open mode for Report Writer files.

Table 6.17. Allowable Statements for Report Writer Files

 Open Mode
Statement OUTPUT EXTEND

INITIATE Yes Yes
GENERATE Yes Yes
SUPPRESS Yes Yes
TERMINATE Yes Yes
All other I-O statements No No (for record I-O only)

Technical Notes
• OPEN statement execution can result in these FILE STATUS data item values:

File Status Meaning

00 Open is successful.
05 Optional file not present.
07 No rewind on non-reel device.
35 File not found.
37 An open in I-O mode is attempted for a nonmass storage file, or an open is

attempted for nonmass storage file that was declared as a relative or indexed file.
38 An open is attempted on a file closed with lock.
39 A mismatch exists between the current program's description of an index key and

the existent file's description of the key, or (for OpenVMS systems) there is a
conflict of maximum record size or record type.

41 File is already open
91 Open is unsuccessful; file locked by another access stream.
95 No file space on device.
30 All other permanent errors.

You must use the I-O-CONTROL statement APPLY PREALLOCATION with a value greater than 0 (the default
is 0) to enable the detection of "device full" (file status 95) with the OPEN statement.

• Attempts to specify both X/Open standard and VSI standard file-sharing syntax for the same file connector are
invalid. When the compiler cannot detect such attempts because they occur in different compilation units, the
run-time system detects and reports the violations (file status 30). This holds for explicit and implicit usage.

Additional References
• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4, Environment Division

• I-O-CONTROL paragraph in Chapter 4, Environment Division

• CLOSE statement

332

Procedure Division

• USE statement

PERFORM
PERFORM

Function
The PERFORM statement executes one or more intra-program procedures. It returns control to the end of the
PERFORM statement when all procedures have completed execution.

[first-proc]

is a procedure-name that identifies a paragraph or section in the Procedure Division. The set of statements in first-
proc is the first (or only) set of statements in the PERFORM range.

[end-proc]

is a procedure-name that identifies a paragraph or section in the Procedure Division. The set of statements in end-
proc is the last set of statements in the PERFORM range.

[stment]

is an imperative statement.

[repeat-count]

is a numeric integer literal or the identifier of a numeric integer elementary item. It controls how many times the
statement set (or sets) executes.

[cond]

can be any conditional expression.

[var]

is an index-name or the identifier of a numeric integer elementary data item. Its value is changed by increm each
time all statements in the PERFORM range execute.

[init]

is a numeric literal, index-name, or the identifier of a numeric elementary data item. It specifies the value of var
before any statement in the PERFORM range executes.

[increm]

is a nonzero numeric literal or the identifier of a numeric elementary data item. It systematically changes the value
of var each time the program executes all statements in the PERFORM range.

Syntax Rules

All Formats
1. If there is no first-proc, the PERFORM statement must contain stment and the END-PERFORM phrase. If there

is a first-proc, the statement cannot have the END-PERFORM phrase.

333

Procedure Division

2. If either first-proc or end-proc is placed in the Declaratives part of the Procedure Division, both must also be
placed in the same DECLARATIVES section.

3. The words THRU and THROUGH are equivalent and interchangeable.

Formats 3 and 4
4. If there is no TEST BEFORE or TEST AFTER phrase, TEST BEFORE is the default.

Format 4
5. If there is no first-proc, there can be no AFTER phrase.

6. If var is an index-name:

• init must be an integer data item or a positive integer literal

• increm must be an integer data item or a nonzero integer literal

7. If init is an index-name:

• var must be an integer data item

• increm must be an integer data item or a positive integer literal

General Rules

All Formats
1. When first-proc appears, the statement is an out-of-line PERFORM statement. Otherwise, it is an in-line

PERFORM statement.

2. The statements in the range of first-proc to end-proc for an out-of-line PERFORM are the statement set. For an
in-line PERFORM, the statement set is contained within the scope of the PERFORM...END-PERFORM syntax.

3. Unless restricted to in-line or out-of-line statements, all General Rules apply to both types of PERFORM
statements. An in-line PERFORM statement operates according to the general rules for an out-of-line
PERFORM, except for periods, which are not allowed within the body of the PERFORM. The statements in
the in-line PERFORM execute in place of the statements in the range of first-proc to end-proc.

4. When the PERFORM statement executes, control transfers to the first statement of first-proc. However, for
Format 2, 3, or 4 PERFORM statements, transfer of control depends on evaluation of the specified condition.

Transfer of control occurs only once for each PERFORM statement executed. When transfer of control does
occur, after the statement set executes, control implicitly transfers back to the to the end of the perform statement
as follows:

• If first-proc is a paragraph-name and there is no end-proc, the return is after the last statement of first-proc.

• If first-proc is a section-name and there is no end-proc, the return is after the last statement of the last
paragraph of first-proc.

• If end-proc is a paragraph-name, the return is after the last statement of end-proc.

• If end-proc is a section-name, the return is after the last statement of the last paragraph of end-proc.

• If the statement is an in-line PERFORM, execution ends after the last statement of the statement set.

5. first-proc and end-proc need not be related except that first-proc is the beginning and end-proc is the last in
a consecutive series of operations.

334

Procedure Division

GO TO and PERFORM statements can occur between first-proc and end-proc. If there are two or more logical
paths to the return point, end-proc can be a paragraph, consisting of the EXIT statement, to which all these
paths must lead.

6. If a statement other than a PERFORM statement, transfers control to the statement set, at the end of the statement
set, control transfers through the last statement of the set to the next executable statement following the set as
if no PERFORM statement referenced the set.

7. The range of a PERFORM statement consists of all statements executed as a result of executing the PERFORM.
It continues through execution of the implicit control transfer to the end of the PERFORM statement.

8. The range of the PERFORM statement additionally includes all statements executed as a result of a CALL,
EXIT, GO TO, or PERFORM statement. The range the PERFORM statement also includes all statements in the
Declaratives Section that can be executed if control is transferred from statements in the range of the PERFORM
statement.

9. Statements executed as the result of a control transfer caused by an EXIT PROGRAM statement are not part
of the range when:

• The EXIT PROGRAM statement is specified in the same program as the PERFORM statement, and

• The EXIT PROGRAM statement is within the range of the PERFORM statement.

10.A PERFORM statement in a fixed segment can have only one of the following in its range:

• Sections and paragraphs completely contained in one or more nonindependent segments

• Sections and paragraphs completely contained in one independent segment

However, the PERFORM statement range also includes any Declarative procedures activated during its
execution.

11.A PERFORM statement in an independent 1 segment can have only one of the following in its range:

• Sections and paragraphs completely contained in one or more nonindependent segments

• Sections and paragraphs completely contained in the same independent segment as the PERFORM statement
itself

However, the PERFORM statement range also includes any Declarative procedures activated during its
execution.

12.first-proc and end-proc cannot name sections or paragraphs in any other program in the executable image.
Statements in other programs are in a PERFORM statement's range only if the range includes a CALL statement.

13.A PERFORM statement range can contain another PERFORM statement. In that case, the included PERFORM
statement's sequence of procedures must be either totally included in, or excluded from, the logical sequence
of the first PERFORM statement.

For example:

• An active PERFORM statement whose execution point is in the range of another active PERFORM statement
must not allow control to pass to the exit of the other active PERFORM.

• Two or more active PERFORM statements cannot have a common exit.

Use the check compiler option with the perform keyword to verify at run time that there is no recursive
activation of a PERFORM.

1Segmentation is described in Section 6.7, “Segmentation”. VSI COBOL supports segmentation for compatibility with existing applications
only. VSI recommends that you do not use segmentation in new applications.

335

Procedure Division

Figure 6.2, “Valid and Invalid Nested PERFORM Statements” shows valid and invalid nested PERFORM
statements.

14.Undocumented results might occur when end-proc precedes first-proc or when first-proc and end-proc are not
in the same program segment.

Figure 6.2. Valid and Invalid Nested PERFORM Statements

Format 1
15.Format 1 is the basic PERFORM statement. The statement sets in the PERFORM range execute once. Control

then passes to the end of the PERFORM statement.

Format 2
16.The statement sets execute the number of times specified by repeat-count. If the value of repeat-count is zero

or negative when the PERFORM statement executes, control passes to the end of the PERFORM statement.

During PERFORM statement execution, changing the value of repeat-count does not change the number of
times the statement sets execute.

Format 3
17.The statement sets execute until cond is true. Control then transfers to the end of the PERFORM statement.

18.If cond is true when the PERFORM statement executes:

• If there is a TEST BEFORE phrase or one is implied, there is no transfer to first-proc; control passes to the
end of the PERFORM statement.

• If there is a TEST AFTER phrase, the PERFORM statement tests cond after the statement set executes.

Format 4
19.The Format 4 PERFORM statement systematically changes the value of var during its execution.

20.If var is an index-name, its value, when the PERFORM statement execution begins, must equal the occurrence
number of an element in its table.

21.If init is an index-name, var must equal the occurrence number of an element in the table associated with init.
As the value of the var index changes during PERFORM execution, it cannot contain a value outside the range
of its table. However, when the PERFORM statement ends, the var index can contain a value outside the range
of the table by one increment or decrement value.

22.increm must not be zero.

23.init must be positive when var is an index-name and init is an identifier.

24.If there is a TEST BEFORE phrase (or one is implied), and one var is varied (see Figure 6.3, “PERFORM …
VARYING with the TEST BEFORE Phrase and One Condition”):

• var is set to the value of init when the PERFORM statement begins to execute.

• If cond is false, the statement set executes once. The value of var changes by the increment or decrement
value (increm), and cond is evaluated again. This cycle continues until cond is true. Control then transfers
to the end of the PERFORM statement.

336

Procedure Division

• If cond is true when the PERFORM statement begins executing, control transfers to the end of the PERFORM
statement.

Figure 6.3. PERFORM … VARYING with the TEST BEFORE Phrase and One
Condition

25.If there is a TEST BEFORE phrase (or one is implied), and the PERFORM statement has two vars (see
Figure 6.4, “PERFORM … VARYING with the TEST BEFORE Phrase and Two Conditions”):

• The first and second vars are set to the value of the first and second init when the PERFORM statement
begins to execute.

• If the first cond is true, control transfers to the end of the PERFORM statement.

• If the second cond is false, the statement set executes once. The second var changes by the value of increm,
and the second cond is evaluated again. This cycle continues until the second cond is true.

• When the second cond is true, the value of the first var changes by the value of the first increm, and the
second var is set to the value of the second init. The first cond is reevaluated. The PERFORM statement ends
if the first cond is true. Otherwise, the cycle continues until cond is true.

Figure 6.4. PERFORM … VARYING with the TEST BEFORE Phrase and Two
Conditions

26.At the end of a PERFORM statement with the TEST BEFORE phrase:

• The value of the first var exceeds the last-used value by one increment or decrement value. However, if cond
was true when the PERFORM statement began, var contains the current value of init.

• The value of each other var equals the current value of its associated init.

27.If there is a TEST AFTER phrase and one var is varied (see Figure 6.5, “PERFORM … VARYING with the
TEST AFTER Phrase and One Condition”):

• var is set to the value of init when the PERFORM statement starts to execute.

• The statement set executes once. Then, cond is evaluated. If it is false, the value of var changes by the
increment or decrement value (increm), and the statement set executes again. This cycle continues until cond
is true. Control then transfers to the end of the PERFORM statement.

Figure 6.5. PERFORM … VARYING with the TEST AFTER Phrase and One
Condition

28.If there is a TEST AFTER phrase, and two vars are varied (see Figure 6.6, “PERFORM … VARYING with
the TEST AFTER Phrase and Two Conditions”):

• The first and second vars are set to the value of the first and second init when the PERFORM statement
starts to execute.

• The statement set executes. The second cond is then evaluated. If it is false, the second var changes by the
value of increm, and the statement set executes again. This cycle continues until the second cond is true.

• When the second cond is true, the first cond is evaluated. If it is false, the value of the first var changes
by the value of the first increm, the second var is set to the value of the second init, and the statement set

337

Procedure Division

executes again. The PERFORM statement ends if the first cond is true. Otherwise, the cycle continues until
cond is true.

Figure 6.6. PERFORM … VARYING with the TEST AFTER Phrase and Two
Conditions

29.At the end of a PERFORM statement with the TEST AFTER phrase, the value of each var is the same as at
the end of the most recent statement set execution.

30.During execution of the sets of statements in the range, any change to var, increm, or init affects PERFORM
statement operation.

31.When there is more than one var, var in each AFTER phrase goes through a complete cycle each time var in
the preceding AFTER (or VARYING) phrase is varied.

Additional References
• Section 6.1.4: Scope of Statements

• Section 6.5: Conditional Expressions

• SET statement

• Online help, check compiler option

Examples
In the examples' results, s represents a space. The examples assume these Data Division and Procedure Division
entries:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEMA VALUE "ABCDEFGHIJ".
 03 CHARA OCCURS 10 TIMES PIC X.
01 ITEMB VALUE SPACES.
 03 CHARB OCCURS 10 TIMES PIC X.
01 ITEMC PIC 99 VALUE 1.
01 ITEMD PIC 99 VALUE 7.
01 ITEME PIC 99 VALUE 4.
01 ITEMF VALUE SPACES.
 03 ITEMG OCCURS 4 TIMES.
 05 ITEMH OCCURS 5 TIMES.
 07 ITEMI PIC 99.

PROCEDURE DIVISION.

 .
 .
 .

PROC-A.
 MOVE CHARA (ITEMC) TO CHARB (ITEMC).
PROC-B.
 MOVE CHARA (ITEMC) TO CHARB (10).
PROC-C.
 ADD 2 TO ITEMC.
PROC-D.

338

Procedure Division

 MULTIPLY ITEMC BY ITEMD
 GIVING ITEMI (ITEMC, ITEMD).

1. Performing one procedure (Format 1):

PERFORM PROC-A.

ITEMB = Asssssssss

2. Performing a range of procedures (Format 1):

PERFORM PROC-A THRU PROC-B.

ITEMB = AssssssssA

3. Performing a range of procedures (Format 2):

PERFORM PROC-A THRU PROC-C
 3 TIMES.

ITEMB = AsCsEssssE

ITEMC = 07

4. Performing a range of procedures (Format 4):

PERFORM PROC-A THRU PROC-B
 VARYING ITEMC FROM 1 BY 1
 UNTIL ITEMC > 5.

ITEMB = ABCDEssssE

ITEMC = 06

5. Testing the UNTIL condition after execution (Format 4):

PERFORM PROC-A THRU PROC-B
 TEST AFTER
 VARYING ITEMC FROM 1 BY 1
 UNTIL ITEMC > 5.

ITEMB = ABCDEFsssF

ITEMC = 06

6. Performing a range of procedures varying a data item by a negative amount (Format 4):

PERFORM PROC-A THRU PROC-B
 VARYING ITEMC FROM ITEMD BY -1
 UNTIL ITEMC < ITEME.

ITEMB = sssDEFGssD

ITEMC = 03

7. In-line PERFORM (Format 4):

PERFORM
 VARYING ITEMC FROM 1 BY 2
 UNTIL ITEMC > 7
 MOVE CHARA (ITEMC) TO CHARB (ITEMC)
 MOVE CHARA (ITEMC) TO CHARB (ITEMC + 3)

339

Procedure Division

END-PERFORM.

ITEMB = AsCAECGEsG

8. Varying two data items (Format 4):

PERFORM PROC-D
 VARYING ITEMC FROM 1 BY 1 UNTIL ITEMC > 4
 AFTER ITEMD FROM 1 BY 1 UNTIL ITEMD > 5.

ITEMG (1) = 01s02s03s04s05s

ITEMG (2) = 02s04s06s08s10s

ITEMG (3) = 03s06s09s12s15s

ITEMG (4) = 04s08s12s16s20s

READ
READ

Function
For sequential access files, the READ statement makes the next logical record available. For random access files,
READ makes a specified record available.

[file-name]

is the name of a file described in the Data Division. It cannot be a sort or merge file.

[dest-item]

is the identifier of a data item that receives the record accessed by the READ statement.

[stment]

is an imperative statement executed when the relevant condition (at end or invalid key) occurs.

[stment2]

is an imperative statement executed when the relevant condition (not at end or not invalid key) occurs.

[key-data]

is the data-name of a data item specified as a record key for file-name or the segmented-key name specified as a
record key for file-name. It can be qualified.

Syntax Rules
1. Format 1 must be used for a sequential access mode file.

2. There must be a NEXT phrase for dynamic access mode files to retrieve records sequentially.

3. READ file-name PRIOR and READ file-name PREVIOUS are equivalent syntax.

4. Format 2 can be used for random or dynamic access mode files to retrieve records randomly.

5. The KEY phrase can be used only for indexed files.

340

Procedure Division

6. To use the REGARDLESS or ALLOWING options the program must specify these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

7. There must be an INVALID KEY or AT END phrase when there is no applicable USE AFTER EXCEPTION
procedure for the file.

8. The storage area associated with dest-item and the record area associated with file-name cannot be the same
storage area.

9. On Alpha and I64 systems, the WITH [NO] LOCK phrase is X/Open standard syntax. It is invalid to specify
both X/Open standard and VSI standard (LOCK-HOLDING, ALLOWING, OR REGARDLESS) file-sharing
syntax for the same file connector. Hence, the WITH [NO] LOCK phrase cannot be used with the ALLOWING
or REGARDLESS phrase.

General Rules
1. The file must be open in the INPUT or I-O mode when the READ statement executes.

2. For sequential access mode files, the NEXT phrase is optional. It has no effect on READ statement execution.

3. READ PRIOR can only be used with an INDEXED file whose organization is INDEXED and whose access
mode is DYNAMIC. The file must be opened for INPUT or I-O.

4. Executing a Format 1 READ statement can cause the following to occur:

• The record pointed to by the File Position Indicator becomes available in the file's record area.

• For sequential and relative files, the File Position Indicator points to the file's next existing record.

• For indexed files, the File Position Indicator points to the next existing record established by the file's Key
of Reference.

• If the file has no next record, the File Position Indicator indicates that no next logical record exists.

5. The READ statement updates the value of the FILE STATUS data item for the file.

6. A record is available before any statement executes after the READ.

7. More than one record description can describe a file's logical records. The records then share the same record
area in storage. Sharing a record area is equivalent to implicit redefinition.

READ statement execution does not change the contents of data items in the record area beyond the range of
the current data record. The contents of those items are undefined.

8. A Format 1 READ statement can recognize the end of reel/unit during its execution. If it has not reached the
logical end of the file, the READ statement performs a reel/unit swap. The Current Volume Pointer points to
the file's next reel/unit.

9. During execution of a Format 2 READ statement, the File Position Indicator can indicate that an optional file
is not present. The invalid key condition then exists, and READ statement execution is unsuccessful.

10.When a Format 1 READ statement executes, the File Position Indicator can indicate that:

• There is no next logical record.

• No valid next record has been established.

• An optional file is not present.

• The number of significant digits in the relative record number is larger than the relative key data items.

341

Procedure Division

When the READ statement detects the no valid next record condition, the READ is unsuccessful.

When the READ statement detects one of the above conditions, not including the no valid next record condition:

• It updates the FILE STATUS data item for the file to indicate the at end condition.

• If the READ statement has an AT END phrase, control transfers to stment. No USE AFTER EXCEPTION
procedure for the file executes.

• If there is no AT END phrase, a USE AFTER EXCEPTION procedure must be associated with the file.
Control transfers to that procedure. Control returns from the USE AFTER EXCEPTION procedure to the
next executable statement after the end of the READ statement.

When the at end condition occurs, execution of the READ statement is unsuccessful.

11.After the unsuccessful execution of a READ statement, the contents of the file's record area are undefined. If
an optional file is not present, the File Position Indicator is unchanged; otherwise, it indicates that no valid next
record has been established. For indexed files, the Key of Reference is undefined.

12.READ PRIOR retrieves a record from an Indexed file which logically precedes the one which was made current
by the previous file access operation, if such a logically previous record exists.

13.For a relative or indexed file in dynamic access mode, a Format 1 READ statement with the NEXT phrase
retrieves the file's next logical record. For an indexed file, when the Key of Reference has ascending sort order,
the next logical record is the next record with a key value equal to or greater than the previous key value.
When the Key of Reference has descending sort order, the next logical record is the next record with a key
value equal to or less than the previous key value.

14.For a relative file, a Format 1 READ statement updates the contents of the file's RELATIVE KEY data item.
The data item contains the relative record number of the available record.

15.For a relative file, a Format 2 READ statement sets the File Position Indicator to the record whose relative record
number is in the file's RELATIVE KEY data item. Execution then continues as specified in General Rule 3.

If the record is not in the file, the invalid key condition exists, and READ statement execution is unsuccessful.

16.When your program sequentially accesses an indexed file for records with duplicate record key values in the
Key of Reference, those records are made available to your program in the same order in which they were
created. The duplicate values can be created by execution of WRITE or REWRITE statements.

17.For an indexed file, a Format 2 READ statement with the KEY phrase establishes key-name as the Key of
Reference for the retrieval. For a dynamic access mode file, the same Key of Reference applies to later retrievals
by Format 1 READ statement executions for the file. The Key of Reference continues in effect until a new Key
of Reference is established.

18.For an indexed file, a Format 2 READ statement without the KEY phrase establishes the prime record key as
the Key of Reference for the retrieval. For a dynamic access mode file, the same Key of Reference applies to
later retrievals by Format 1 READ statement executions for the file. The Key of Reference continues in effect
until a new Key of Reference is established.

19.For an indexed file, a Format 2 READ statement compares the value in the Key of Reference with the value
in the corresponding data item in the file's records. The comparison continues until the READ statement finds
the first record with an equal value. The READ statement sets File Position Indicator to the record. Execution
then continues as specified in General Rule 3.

If the READ statement cannot identify a record with an equal value, the invalid key condition exists. READ
statement execution is then unsuccessful.

20.The Format 2 READ verb can use the KEY IS syntax to establish the key field within the file record which is
the Key of Reference. An immediately subsequent READ PRIOR will follow the order of the Key of Reference

342

Procedure Division

to access the logically previous record in the file according to that Key of Reference. If the KEY IS syntax is
not used, the Key of Reference is understood to be the file's primary key field.

21.When a successful READ PRIOR has occurred and the Key of Reference has ascending order, the record
retrieved can have the same key value or a smaller key value than the preceding record for the Key of Reference.
If the Key of Reference has descending order, the record retrieved can have the same key value or a higher key
value for the Key of Reference. The retrieved record can have the same key value if duplicate values for the
Key of Reference exist on the file.

22.When a READ PRIOR has been executed and a logically previous record does not exist, a File Status value of
10 indicating END-OF-FILE is returned. A READ PRIOR which is done immediately after Opening the file
will produce the END-OF-FILE status.

23.If the number of character positions in the record being read is less than the minimum size specified by the
record description entries for the file, the record area to the right of the last valid character read is undefined.

If the number of character positions in the record being read is greater than the maximum size specified by the
record description entries for the file, the record is truncated on the right to the maximum size.

In both cases, the READ operation is successful and the I-O status is set to indicate a record length conflict
has occurred.

24.The REGARDLESS and ALLOWING options can be used only in a VSI standard manual record-locking
environment. To create a manual record-locking environment, an access stream must specify the APPLY
LOCK-HOLDING clause of the I-O-CONTROL paragraph.

25.On Tru64 UNIX and OpenVMS, the REGARDLESS option enables an access stream to read a record regardless
of any record locks held by other concurrent access streams. READ REGARDLESS holds no lock on the record
read.

This statement generates a soft record lock condition if the record is locked by another access stream. This
condition results in a File Status value of 90 and invokes an applicable USE procedure, if any. Execution of the
READ REGARDLESS statement is considered successful and program execution resumes at the next statement
following the READ REGARDLESS statement.

However, on Tru64 UNIX systems, the soft lock condition (file status 90) is not recognized for indexed files. A
READ REGARDLESS statement for a record locked by another process performs the requested read operation
on the record and returns a file status of 00.

26.The ALLOWING UPDATERS and WITH NO LOCK options permit other concurrent access streams in a
manual record-locking environment to simultaneously READ, DELETE, START, and REWRITE the current
record. These options hold no locks on the current record.

27.The ALLOWING READERS option permits other concurrent access streams in a VSI standard, manual record-
locking environment to simultaneously read the current record. This option holds a read-lock on each such
record read. No access stream can update the current record until it is unlocked.

On Tru64 UNIX systems, for indexed files, the ALLOWING READERS phrase has some limitations, which
are described in the VSI COBOL User Manual (see the section on indicating access allowed to other streams
in the chapter on sharing files).

28.The ALLOWING NO OTHERS or WITH LOCK option locks the record read by the current access stream. No
other concurrent access stream can access this record until it is unlocked. Only this access stream can update
this record. This option applies to files opened in I-O mode. See general rule 29.

29.For files opened for input, a READ statement does not acquire a record lock, regardless of the locking syntax
specified. This applies to X/Open standard and VSI standard locking.

30.If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input condition occurs
that would result in a nonzero value in the first character of a FILE STATUS data item. However, it does not

343

Procedure Division

execute if: (a) the condition is invalid key, and there is an INVALID KEY phrase or (b) the condition is at end,
and there is an AT END phrase.

31.If no exception condition exists, the record is made available in the record area. Control is transferred to the
end of the READ statement; however, if stment2 is specified, stment2 executes before control is transferred to
the end of the READ statement.

Technical Note
• READ statement execution can result in these FILE STATUS data item values:

File Status File Organization Access Method Meaning

00 All All Read is successful;
record is available;
lock acquired as
requested

02 Ind All Read is successful;
duplicate key
detected

04 All All Record read larger or
smaller than record
area

10 All Seq No next logical
record (at end),
optional file not
present (at end), or
no valid next record
(at end)

14 Rel Seq Relative record
number too large for
relative key data item
(at end)

23 Ind, Rel Rand Record not in file
(invalid key) or
optional file not
present (invalid key)

46 All Seq No valid next record
47 All All File not open, or

incompatible open
mode

90 All All Record locked by
another user; record
is available in record
area; no lock is
acquired (soft lock
for VSI standard
locking only)

92 All All Record locked by
another user; record
is not available; no
lock is acquired
(hard lock)

30 All All All other permanent
errors

344

Procedure Division

• On Alpha and I64 systems, use START before initiating a sequence of either READ NEXT statements or READ
PRIOR/READ PREVIOUS statements. You should use START, if you switch between READ NEXT and READ
PRIOR/READ PREVIOUS or vice versa.

• On Alpha and I64 systems, the order of duplicate key values for a descending key is not necessarily the same
as the order of duplicate key values for READ PRIOR/READ PREVIOUS used with an ascending key defined
as the same file record location as the descending key.

Additional References
• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4, Environment Division

• I-O-CONTROL paragraph in Chapter 4, Environment Division

• Section 6.1.4: Scope of Statements

• Section 6.6.8: I-O Status

• Section 6.6.10: INVALID KEY Phrase

• Section 6.6.9: AT END Phrase

• Section 6.6.12: INTO Phrase

• OPEN statement

• UNLOCK statement

• USE statement

RECORD (OpenVMS Only)
RECORD (OpenVMS Only)

Function
The RECORD statement creates an Oracle CDD/Repository dependency relationship between an VSI COBOL
program and the Oracle CDD/Repository entity referred to by the RECORD statement.

[path-name]

is a partial or complete Oracle CDD/Repository path name. It specifies a dictionary entity in CDO format.

[relation-type]

is a valid Oracle CDD/Repository protocol. It specifies the type of relationship to be created between the VSI
COBOL program and the CDO dictionary entity specified in the path name. The default relationship type is CDD
$COMPILED_DEPENDS_ON.

Syntax Rules
1. A space must precede the word RECORD.

2. The RECORD statement must be terminated by the separator period.

General Rules
1. path-name refers to the Oracle CDD/Repository path for a dictionary entity. The entity must be in CDO format.

345

Procedure Division

2. The RECORD statement creates an Oracle CDD/Repository relationship between the VSI COBOL program
through a compiled module entity (see Technical Notes) and the dictionary entity specified in the path name.
This relationship information is then stored in Oracle CDD/Repository.

3. The RECORD statement is ignored unless the /DEPENDENCY_DATA compiler option is specified.

4. If the RECORD statement is in a contained program, the relationship created is between the outermost
containing program and the entity specified in the path name.

Technical Notes
1. The path-name can be a nonnumeric literal or COBOL word formed according to the rules for user-defined

names. It represents a complete or partial Oracle CDD/Repository path name specifying an Oracle CDD/
Repository entity. If path-name is not a literal, the compiler translates hyphens in the COBOL word to
underscore characters.

The resultant path name must conform to all rules for forming Oracle CDD/Repository path names.

2. The relation-type can be a nonnumeric literal or COBOL word formed according to the rules for user-defined
names. It must be a valid Oracle CDD/Repository protocol type. For example:

• CDD$COMPILED_DEPENDS_ON is an example of a COBOL word that is a valid Oracle CDD/Repository
protocol type.

• CDD$COMPILED_DERIVED_FROM is an example of a nonnumeric literal that is also a valid Oracle
CDD/Repository protocol type.

3. The RECORD statement creates a relationship between an Oracle CDD/Repository compiled module dictionary
entity and the dictionary entity specified in the path name. A compiled module entity is automatically created
and stored in Oracle CDD/Repository when the /DEPENDENCY_DATA compiler option is specified. The
name of the compiled module entity is the program-name from the PROGRAM-ID paragraph, with hyphens
translated to underscores.

Additional References
• The description of Oracle CDD/Repository in the VSI COBOL User Manual

• Oracle CDD/Repository Documentation Set

RELEASE
RELEASE

Function
The RELEASE statement transfers records to the initial phase of a sort operation.

[rec]

is the name of a logical record in a sort-merge file description (SD) entry. It can be qualified.

[src-area]

is the identifier of the data item that contains the data.

Syntax Rules
1. A RELEASE statement can be used only in an input procedure in the same program as the SORT verb. The

input procedure must be associated with a SORT statement for the sort or merge file that contains rec.

346

Procedure Division

2. If src-area is a function-identifier, it must reference an alphanumeric function. When src-area is not a function-
identifier, rec and src-area must not reference the same storage area.

General Rules
1. See the FROM Phrase section for a list of rules.

2. The RELEASE statement transfers the contents of rec to the first phase of the sort.

3. After the RELEASE statement executes, the record is no longer available in rec unless the associated sort or
merge file-name is in a SAME RECORD AREA clause. In that case, the record is available to the program as
a record of the sort-merge file-name. It is also available as a record of all other file-names in the same SAME
RECORD AREA clause.

Additional References
• I-O-CONTROL paragraph in Chapter 4, Environment Division

• Section 6.6.11: FROM Phrase phrase

RETURN
RETURN

Function
The RETURN statement obtains sorted records from a sort operation. It also returns merged records in a merge
operation.

[smrg-file]

is the name of a file described in a sort-merge file description (SD) entry.

[dest-area]

is the identifier of the data item to which the returned smrg-file record is moved.

[stment]

is an imperative statement executed for an at end condition.

[stment2]

is an imperative statement executed for a not at end condition.

Syntax Rules
1. A RETURN statement can be used only in an output procedure in the same program as the SORT verb. The

output procedure must be associated with a SORT or MERGE statement for smrg-file.

2. The storage area associated with dest-area and the record area associated with smrg-file cannot be the same
storage area.

General Rules
1. See the INTO Phrase section for a list of rules.

347

Procedure Division

2. When more than one record description describes the logical records for smrg-file, the records share the same
storage area. The contents of storage positions beyond the range of the returned record are undefined when the
RETURN statement ends.

3. Before the output procedure executes, the File Position Indicator is updated. It points to the record whose key
values make it first in the file. If there are no records, the File Position Indicator indicates the at end condition.

4. The RETURN statement makes the next record (pointed to by the File Position Indicator) available in the record
area for smrg-file.

5. The File Position Indicator is updated to point to the next record in smrg-file. The key values in the SORT or
MERGE statement determine the next record.

6. If smrg-file has no next record, the File Position Indicator is updated to indicate the at end condition.

7. If the File Position Indicator indicates the at end condition when the RETURN statement executes, stment
executes and control is transferred to the end of the RETURN statement. If the NOT AT END phrase is specified,
it is ignored. The contents of the smrg-file record areas are undefined.

8. If the File Position Indicator does not indicate an at end condition when the RETURN statement executes,
after the record is made available and after executing any implicit move resulting from the presence of an
INTO phrase, control is transferred to stment2, if specified. Otherwise, control is transferred to the end of the
RETURN statement.

9. When the at end condition occurs:

• RETURN statement execution is unsuccessful.

• The File Position Indicator is not changed.

10.See the Scope of Statements section for a description of scope terminators such as END-RETURN.

Additional References
• Section 6.1.4: Scope of Statements

• I-O-CONTROL paragraph in Chapter 4, Environment Division

• Section 6.6.9: AT END Phrase

• Section 6.6.12: INTO Phrase

REWRITE
REWRITE

Function
The REWRITE statement logically replaces a mass storage file record.

[rec-name]

is the name of a logical record in the Data Division File Section. It can be qualified.

[src-item]

is the identifier of the data item that contains the data.

348

Procedure Division

[stment]

is an imperative statement executed for an invalid key condition.

[stment2]

is an imperative statement executed for a not invalid key condition.

Syntax Rules
1. To use the ALLOWING option, the program must include these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING clause of the OPEN statement

2. The INVALID KEY and the NOT INVALID KEY phrases cannot be specified in a REWRITE statement that
refers to a sequential file or to a relative file with sequential access mode.

3. For a relative file with random or dynamic access mode, or for an indexed file, the REWRITE statement must
have an INVALID KEY phrase when there is no applicable USE AFTER EXCEPTION procedure for the file.

4. If src-item is a function-identifier, it must reference an alphanumeric function. When src-item is not a function-
identifier, rec-name and src-item must not reference the same storage area.

5. The ALLOWING clause is VSI standard file-sharing syntax, and cannot be used for a file connector that has
had X/Open standard file-sharing syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules

All Files
1. The file associated with rec-name must be a mass storage file. It must be open in the I-O mode when the

REWRITE statement executes.

Because line sequential files (Alpha, I64) cannot be opened in I-O mode, REWRITE cannot be used with line
sequential files.

2. For sequential access mode files, the last input-output statement executed for the file before the REWRITE
statement must be a successfully executed READ statement. The REWRITE statement logically replaces the
record accessed by the READ.

3. The READ must lock the record for the REWRITE statement to be successful.

4. The record in rec-name is no longer available after the REWRITE statement successfully executes unless the
associated file-name is in a SAME RECORD AREA clause. In this case, the record is also available to record
areas of other file-names in the SAME RECORD AREA clause.

5. The REWRITE statement does not affect the File Position Indicator.

6. The REWRITE statement updates the value of the FILE STATUS data item for the file.

7. The ALLOWING option can be used only in a VSI standard, manual record-locking environment. To create
a manual record-locking environment, the program must OPEN file-name with an ALLOWING option and
specify the APPLY LOCK-HOLDING phrase of the I-O-CONTROL paragraph.

8. The ALLOWING option locks the current record rewritten by the current access stream. No other concurrent
access stream can access this record until it is unlocked.

However, on Tru64 UNIX systems, for indexed files the REWRITE statement with the ALLOWING clause
does not acquire a record lock.

349

Procedure Division

9. See the FROM Phrase section for a list of rules for the FROM phrase.

Sequential Files
10.The record named by rec-name must be the same size as the record being replaced.

Relative Files
11.For a random or dynamic access mode file, the REWRITE statement logically replaces the record specified

in the RELATIVE KEY data item for rec-name's file. If the record is not in the file, the invalid key condition
exists. The update does not occur, and the data in the record area is not affected.

Indexed Files
12.For a sequential access mode file, the prime record key specifies the record to be replaced. The values of the

prime record keys in the record to be replaced and the last record read from (or positioned in) the file must
be equal.

13.For a random access mode file, the prime record key specifies the record to replace. If the program specifies
duplicates on the prime record key, then it can replace only the first occurrence of a key value using random
access mode. Replacing subsequent records with the same prime key value is done by sequentially positioning
to the desired record in sequential or dynamic access mode.

14.For indexed files in dynamic access mode, the presence of DUPLICATES on the prime record key determines
the behavior. If DUPLICATES are allowed, Rule 11 applies. If DUPLICATES are not allowed, Rule 12 applies.

15.For a record with an alternate record key:

• When the REWRITE does not change the value of an alternate record key, the order of retrieval is unchanged
when the key is the Key of Reference.

• When duplicate key values are allowed, and the value of an alternate record key changes, the later retrieval
order of the record changes when the key is the Key of Reference. The record's logical position is last in the
group of records with the same value in the alternate record key that changed.

16.Any of the following occurrences cause the invalid key condition:

• The access mode is sequential, and the values in the prime record keys of the record to replace and the last
record read from (or positioned in) the file are not equal.

• The value in the prime record key does not equal that of any record in the file.

• The value in an alternate record key whose definition does not have a DUPLICATES clause equals that of
a record already in the file.

The update does not occur, and the data in the record area is not affected.

17.If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input or output condition
occurs that would result in a nonzero value in the first character position of a FILE STATUS data item. However,
the INVALID KEY phrase (if present) supersedes a USE AFTER EXCEPTION procedure when there is an
invalid key condition. In this case, the USE AFTER EXCEPTION procedure does not execute.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

18.The number of character positions in the record to be updated must not be less than the lowest or greater
than the highest number of character positions allowed by the RECORD VARYING clause. In either case, the
REWRITE statement is unsuccessful and the following occurs:

• The updating operation does not take place.

350

Procedure Division

• The contents of the record area remain unaffected.

• The I-O status of the file is set to a value that indicates the cause of the condition.

Technical Notes
• REWRITE statement execution can result in these FILE STATUS data item values:

File Status File Organization Access Method Meaning

00 All All Rewrite is successful.
02 Ind All Created duplicate primary

or alternate key.
21 Ind Seq Primary key changed after

read.
22 Ind All Duplicate primary or

alternate key (invalid key).
23 Ind, Rel Rand Record not in file (invalid

key).
43 All Seq No previous read or record

not locked by prior READ
or START.

44 All All Invalid record size.
49 All All File not open, or

incompatible open mode.
92 Ind, Rel All Record locked by another

user; record is not
available.

30 All All All other permanent
errors.

Additional References
• I-O-CONTROL paragraph in Chapter 4, Environment Division

• Section 6.1.4: Scope of Statements

• Section 6.6.8: I-O Status

• Section 6.6.10: INVALID KEY Phrase

• Section 6.6.11: FROM Phrase

• OPEN statement

• READ statement

• UNLOCK statement

• USE statement

SEARCH
SEARCH

351

Procedure Division

Function
The SEARCH statement searches for a table element that satisfies a condition. It sets the value of the associated
index to point to the table element.

[src-table]

is a table identifier.

[pointr]

is an index-name or the identifier of a data item described as USAGE INDEX, or an elementary numeric data item
with no positions to the right of the assumed decimal point.

[cond]

is any conditional expression.

[stment]

is an imperative statement.

[elemnt]

is an indexed data-name. It refers to the table element against which the argument is compared.

[arg]

is the argument tested against each elemnt in the search. It is an identifier, a literal, or an arithmetic expression.

[cond-name]

is a condition-name.

Syntax Rules

Both Formats
1. src_table must not be subscripted, indexed, or reference modified. However, its description must contain an

OCCURS clause with the INDEXED BY phrase.

2. If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must not be specified.

Format 2
1. src_table must contain the KEY IS phrase in its OCCURS clause.

2. Each cond-name must be defined as having only one value. The data-name associated with cond-name must
be in the KEY IS phrase of the OCCURS clause for src-table.

3. Each elemnt:

• Can be qualified

• Must be indexed by the first index-name associated with src-table, in addition to other indexes or literals
required for uniqueness

• Must be in the KEY IS phrase of the OCCURS clause for src-table

4. Neither arg nor any identifier in its arithmetic expression can either:

352

Procedure Division

• Be used in the KEY IS phrase of the OCCURS clause for src-table

• Be indexed by the first index-name associated with src-table

5. When elemnt or the data-name associated with cond-name is in the KEY phrase of the OCCURS clause for src-
table, each preceding data-name (or associated cond-name) in that phrase must also be referenced.

General Rules

Both Formats
1. After executing a stment that does not end with a GO TO statement, control passes to the end of the SEARCH

statement.

2. src_table can be subordinate to a data item that contains an OCCURS clause. In that case, an index-name must
be associated with each dimension of the table through the INDEXED BY phrase of the OCCURS clause. The
SEARCH statement modifies the setting of only the index-name for src-table (and pointr, if there is one).

A single SEARCH statement can search only one dimension of a table; therefore, you must execute SEARCH
statements repeatedly to search through a multidimensional table. Before each execution, SET statements must
execute to change the values of index-names that need adjustment.

Format 1
3. The Format 1 SEARCH statement searches a table serially, starting with the current index setting.

a. The index-name associated with src-table can contain a value that indicates a higher occurrence number than
is allowed for src-table. If the SEARCH statement execution starts when this condition exists, the search
terminates immediately. If there is an AT END phrase, stment then executes. Otherwise, control passes to
the end of the SEARCH statement.

b. If the index-name associated with src-table indicates a valid src-table occurrence number, the SEARCH
statement evaluates the conditions in the order they appear. It uses the index settings to determine the
occurrence numbers of items to test.

If no condition is satisfied, the index-name for src-table is incremented to refer to the next occurrence. The
condition evaluation process repeats using the new index-name settings. However, if the new value of the
index-name for src-table indicates a table element outside its range, the search terminates as in General Rule
3a.

When a condition is satisfied:

• The search terminates immediately.

• The stment associated with the condition executes.

• The index-name remains set at the occurrence that satisfied the condition.

4. If there is no VARYING phrase, the index-name used for the search is the first index-name in the OCCURS
clause for src-table. Other src-table index-names are unchanged.

5. If there is a VARYING phrase, pointr can be an index-name for src-table. (pointr is named in the INDEXED
BY phrase of the OCCURS clause for src-table.) The search then uses that index-name. Otherwise, it uses the
first index-name in the INDEXED BY phrase.

6. pointr also can be an index-name for another table. (pointr is named in the INDEXED BY phrase in the
OCCURS clause for that table entry.) In this case, the search increments the occurrence number represented
by pointr by the same amount, and at the same time, as it increments the occurrence number represented by
the src-table index-name.

353

Procedure Division

7. If pointr is an index data item rather than an index-name, the search increments it by the same amount, and at
the same time, as it increments the src-table index-name. If pointr is not an index data item or an index-name,
the search increments it by one when it increments the src-table index-name.

8. Example 3, "Serial search with two WHEN phrases," illustrates the operation of a Format 1 SEARCH statement
with two WHEN phrases.

Format 2
9. A SEARCH ALL operation yields predictable results only when:

• The data in the table has the same order as described in the KEY IS phrase of the OCCURS clause for src-
table.

• The contents of the keys in the WHEN phrase identify a unique table element.

10.

11.If the WHEN phrase conditions are not satisfied for any index setting in the allowed range, control passes to
the AT END phrase stment, if there is one, or to the end of the SEARCH statement. In either case, the setting
of the src-table index-name is not predictable.

12.If all the WHEN phrase conditions are satisfied for an index setting in the allowed range, control passes to
either stment or the next sentence, whichever is in the statement. The src-table index-name then indicates the
occurrence number that satisfied the conditions.

13.The index-name used for the search is the first index-name in the OCCURS clause for src-table. Other src-
table index-names are unchanged.

Additional References
• On Alpha and I64, SORT statement (Format 2, for table sorting), useful for SEARCH ALL (which presumes

a sorted table)

• OCCURS statement

• Section 6.1.4: Scope of Statements

• Section 6.5: Conditional Expressions

Examples
The examples assume these Data Division entries:

01 CUSTOMER-REC.
 03 CUSTOMER-USPS-STATE PIC XX.
 03 CUSTOMER-REGION PIC X.
 03 CUSTOMER-NAME PIC X(15).
01 STATE-TAB.
 03 FILLER PIC X(153)
 VALUE
 "AK3AL5AR5AZ4CA4CO4CT1DC1DE1FL5GA5HI3
- "IA2ID3IL2IN2KS2KY5LA5MA1MD1ME1MI2MN2
- "MO5MS5MT3NC5ND3NE2NH1NJ1NM4NV4NY1OH2
- "OK4OR3PA1RI1SC5SD3TN5TX4UT4VA5VT1WA3
- "WI2WV5WY4".
01 STATE-TABLE REDEFINES STATE-TAB.
 03 STATES OCCURS 51 TIMES
 ASCENDING KEY IS STATE-USPS-CODE
 INDEXED BY STATE-INDEX.
 05 STATE-USPS-CODE PIC XX.
 05 STATE-REGION PIC X.

354

Procedure Division

01 STATE-NUM PIC 99.
01 STATE-ERROR PIC 9.
01 NAME-TABLE VALUE SPACES.
 03 NAME-ENTRY OCCURS 8 TIMES
 INDEXED BY NAME-INDEX.
 05 LAST-NAME PIC X(15).
 05 NAME-COUNT PIC 999.

1. Binary search:

(The correctness of this statement's operation depends on the ascending order of key values in the source table.)

INITIALIZE-SEARCH.
 MOVE "NH" TO CUSTOMER-USPS-STATE.

 SEARCH ALL STATES
 AT END
 MOVE 1 TO STATE-ERROR
 GO TO SEARCH-END
 WHEN STATE-USPS-CODE (STATE-INDEX) = CUSTOMER-USPS-STATE
 MOVE 0 TO STATE-ERROR
 MOVE STATE-REGION (STATE-INDEX) TO CUSTOMER-REGION.

SEARCH-END.
 DISPLAY " ".
 DISPLAY "Customer State index number = " STATE-INDEX WITH CONVERSION
 " Region = " STATE-REGION (STATE-INDEX)
 " State Error Code = " STATE-ERROR.

Following are the results of the binary search:

Customer State index number = 31 Region = 1 State Error Code = 0

2. Serial search with WHEN phrase:

INITIALIZE-SEARCH.
 MOVE "2" TO CUSTOMER-REGION.
SEARCH-LOOP.
 SEARCH STATES
 AT END
 MOVE 1 TO STATE-ERROR
 GO TO SEARCH-END
 WHEN STATE-REGION (STATE-INDEX) = CUSTOMER-REGION
 MOVE 0 TO STATE-ERROR
 DISPLAY STATE-USPS-CODE (STATE-INDEX)
 " " STATE-INDEX WITH CONVERSION
 " " STATE-ERROR.
 SET STATE-INDEX UP BY 1.
 GO TO SEARCH-LOOP.

SEARCH-END.

The following lists the results of this serial search:

 IA 13 0 IL 15 0 IN 16 0 KS 17 0 MI 23 0 MN 24 0 NE 30 0 OH 36 0 WI 49 0

3. Serial search with two WHEN phrases:

IA 13 0
IL 15 0

355

Procedure Division

IN 16 0
KS 17 0
MI 23 0
MN 24 0
NE 30 0
OH 36 0
WI 49 0
INITIALIZE-SEARCH.
 MOVE 1 TO CUSTOMER-REGION.
 MOVE "NH" TO CUSTOMER-USPS-STATE.

 DISPLAY "States in customer's region:".

SEARCH-LOOP.
 SEARCH STATES
 AT END
 GO TO SEARCH-END
 WHEN STATE-USPS-CODE (STATE-INDEX) = CUSTOMER-USPS-STATE
 SET STATE-NUM TO STATE-INDEX
 WHEN STATE-REGION (STATE-INDEX) = CUSTOMER-REGION
 DISPLAY STATE-USPS-CODE (STATE-INDEX)
 " " WITH NO ADVANCING.
 SET STATE-INDEX UP BY 1.
 GO TO SEARCH-LOOP.

SEARCH-END.
 DISPLAY " "
 DISPLAY "Customer state index number = " STATE-NUM.

The following lists the results of the serial search with two WHEN phrases:

States in customer's region:
CT DC DE MA MD ME NJ NY PA RI VT

Customer state index number = 31

4. Updating a table in a SEARCH statement:

GET-NAME.
 DISPLAY "Enter name: " NO ADVANCING.
 ACCEPT CUSTOMER-NAME.
 SET NAME-INDEX TO 1.
 SEARCH NAME-ENTRY
 AT END
 DISPLAY " Table full"
 SET NAME-INDEX TO 1
 PERFORM SHOW-TABLE 8 TIMES
 STOP RUN
 WHEN LAST-NAME (NAME-INDEX) = CUSTOMER-NAME
 ADD 1 TO NAME-COUNT (NAME-INDEX)
 WHEN LAST-NAME (NAME-INDEX) = SPACES
 MOVE CUSTOMER-NAME TO LAST-NAME (NAME-INDEX)
 MOVE 1 TO NAME-COUNT (NAME-INDEX).
 GO TO GET-NAME.
SHOW-TABLE.
 DISPLAY LAST-NAME (NAME-INDEX) " " NAME-COUNT (NAME-INDEX).
 SET NAME-INDEX UP BY 1.

The following lists the results of updating a table in a SEARCH statement:

356

Procedure Division

Enter name: CRONKITE
Enter name: GEORGE
Enter name: PHARES
Enter name: CRONKITE
Enter name: BELL
Enter name: SMITH
Enter name: FRANKLIN
Enter name: HENRY
Enter name: GEORGE
Enter name: ROBBINS
Enter name: BELL
Enter name: FRANKLIN
Enter name: SMITH
Enter name: BELL
Enter name: SMITH
Table full
CRONKITE 002
GEORGE 002
PHARES 001
BELL 003
SMITH 003
FRANKLIN 002
HENRY 001
ROBBINS 001

SET
SET

Function
The SET statement sets values of indexes associated with table elements. It can also change the value of a
conditional variable, change the status of an external switch, and store the address of a COBOL identifier reference
at run time.

[rsult]

is an index-name, the identifier of an index data item, or an elementary numeric data item described as an integer.

[val]

is a positive integer, which can be signed. It can also be an index-name (or the identifier of an index data item)
or an elementary numeric data item described as an integer.

[indx]

is an index-name.

[increm]

is an integer, which can be signed. It can also be the identifier of an elementary numeric data item described as
an integer.

[cond-name]

is a condition-name that must be associated with a conditional variable.

357

Procedure Division

[switch-name]

is the name of an external switch defined in the SPECIAL-NAMES paragraph.

[pointer-id]

is a data-name whose data description entry must contain the USAGE IS POINTER clause.

[identifier]

is a data item in the File, Working-Storage, Linkage, or Subschema Section.

[status-code-id]

is a word or longword integer data item represented by PIC S9(1) to S9(9) COMP or PIC 9(1) to 9(9) COMP.

Syntax Rule
No two occurrences of cond-name can refer to the same conditional variable.

General Rules

Formats 1 and 2
1. Index-names are associated with a table in the table's OCCURS clause INDEXED BY phrase.

2. If rsult is an index-name, its value after SET statement execution must correspond to an occurrence number
of an element in the associated table.

3. If val is an index-name, its value before SET statement execution must correspond to an occurrence number
of an element in the table associated with rsult.

4. The value of indx, both before and after SET statement execution, must correspond to an occurrence number
of an element in the table associated with indx.

Format 1
5. The SET statement sets the value of rsult to refer to the table element whose occurrence number corresponds

to the table element referred to by val. If val is an index data item, no conversion occurs.

6. If rsult is an index data item, val cannot be an integer. No conversion occurs when rsult is set to the value of val.

7. If rsult is not an index data item or an index-name, val can only be an index-name.

8. When there is more than one rsult, SET uses the original value of val in each operation. Subscript or index
evaluation for rsult occurs immediately before its value changes.

9. Table 6.18, “Validity of Operand Combinations in Format 1 SET Statements” shows the validity of operand
combinations. An asterisk (*) means that no conversion occurs during the SET operation.

Table 6.18. Validity of Operand Combinations in Format 1 SET Statements

Sending Item Receiving Item
Integer Data Item Index Index Data Item

Integer Literal Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6
Integer Data Item Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6
Index Valid/Rule 7 Valid/Rule 5 Valid/Rule 6*

358

Procedure Division

Sending Item Receiving Item
Integer Data Item Index Index Data Item

Index Data Item Invalid/Rule 7 Valid/Rule 5* Valid/Rule 6*

Format 2
10.The SET statement increments (UP) or decrements (DOWN) indx by a value that corresponds to the number

of occurrences increm represents.

11.When there is more than one indx, SET uses the original value of increm in each operation.

Format 3
12.SET moves the literal in the VALUE clause for cond-name to its associated conditional variable. The transfer

occurs according to the rules for elementary moves. If the VALUE clause contains more than one literal, the
first is moved.

Format 4
13.SET changes the status of each switch-name in the statement.

14.The ON phrase changes the status of switch-name to on.

15.The OFF phrase changes the status of switch-name to off.

16.The SET statement changes the switch status only for the image in which it executes. When the image
terminates, the status of each external switch is the same as when the image began.

Format 5
17.The address of identifier is evaluated and stored in pointer-id.

Format 6
18.Specifying the SUCCESS option sets status-code-id to the SUCCESS state (the low-bit of status-code-id is

set to 1).

19.Specifying the FAILURE option sets status-code-id to the FAILURE state (the low-bit of status-code-id is set
to 0).

Additional References
• SPECIAL-NAMES paragraph in Chapter 4, Environment Division

• Section 6.5.4: Switch-Status Condition

• Section 6.5.6: Success/Failure Condition

• MOVE statement

• PERFORM statement

• SEARCH statement

Examples
The examples assume these Environment and Data Division entries:

 SPECIAL-NAMES.

359

Procedure Division

 SWITCH 1 UPDATE-RUN ON STATUS IS DO-UPDATE
 SWITCH 3 REPORT-RUN ON STATUS IS DO-REPORT
 OFF STATUS IS SKIP-REPORT
 SWITCH 4 IS NEW-YEAR ON STATUS IS BEGIN-YEAR
 OFF IS CONTINUE-YEAR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 YEAR-LEVEL PIC 99.
 88 FRESHMAN VALUE 1.
 88 SOPHOMORE VALUE 2.
 88 JUNIOR VALUE 3.
 88 SENIOR VALUE 4.
 88 FIRST-MASTERS VALUE 5.
 88 MASTERS VALUE 5,6.
 88 FIRST-DOCTORAL VALUE 7.
 88 DOCTORAL VALUE 7,8.
 88 NON-DEGREE-UNDERGRAD VALUE 9.
 88 NON-DEGREE-GRAD VALUE 10.
 88 UNDERGRAD VALUE 9, 1 THROUGH 4.
 88 GRAD VALUE 10, 5 THROUGH 8.
01 COURSES-AVAILABLE.
 02 OCCURS 100 TIMES INDEXED BY COURSE-INDEX.
 03 COURSE-NAME PIC X(10).
 03 COURSE-INSTRUCTOR PIC X(20).
 03 COURSE-LOCATION PIC X(10).
 03 COURSE-CODE PIC 9(5).
01 POINTER-VAL USAGE IS POINTER.
01 THREE-DIMENSIONAL-TABLE.
 02 X OCCURS 5 TIMES INDEXED BY I.
 03 Y OCCURS 7 TIMES INDEXED BY J.
 04 Z PIC X(17) OCCURS 3 TIMES.
01 K PIC S9(9) COMP.
01 RETURN-STATUS PIC S9(9) COMP.
01 DECREMENT-VALUE PIC 9 VALUE 1.

1. Format 1—Initializing COURSE-INDEX.

SET COURSE-INDEX TO 5.

2. Format 2—Adding to or subtracting from the index-name COURSE-INDEX.

SET COURSE-INDEX UP BY 1.

SET COURSE-INDEX DOWN BY DECREMENT-VALUE.

3. Format 3—Initializing a conditional variable:

YEAR-LEVEL

SET SOPHOMORE TO TRUE 02
SET MASTERS TO TRUE 05
SET GRAD TO TRUE 10
SET NON-DEGREE-GRAD TO TRUE 10

4. Format 4—Setting external switches. The truth value shows the result of the IF statements:

TRUTH VALUE

SET UPDATE-RUN TO ON.
SET REPORT-RUN TO OFF.

360

Procedure Division

SET NEW-YEAR TO ON.
IF DO-UPDATE ... true
IF DO-REPORT ... false
IF CONTINUE-YEAR... false
SET REPORT-RUN TO ON.
IF DO-REPORT ... true
IF SKIP-REPORT ... false

5. Format 5—Setting POINTER-VAR to the address of the subscripted table item named Z(I,J,K).

SET POINTER-VAR TO REFERENCE OF Z(I,J,K).

6. Format 6—On OpenVMS Alpha and I64, initializing RETURN-STATUS to FAILURE before calling
subprogram SUBPROGA and a Run-Time Library Procedure, then checking for SUCCESS from each.

 .
 .
 .
 SET RETURN-STATUS TO FAILURE.
 CALL "SUBPROGA" GIVING RETURN-STATUS.
 IF RETURN-STATUS IS SUCCESS
 THEN
 GO TO A0200-PARA
 ELSE
 DISPLAY "SUBPROGA failed"
 STOP RUN.
A0200-PARA.
 SET RETURN-STATUS TO FAILURE.
 CALL "SCR$SET_CURSOR" USING BY VALUE 4, 22 GIVING RETURN-STATUS.
 IF RETURN-STATUS IS SUCCESS
 THEN
 DISPLAY "UPDATE ROUTINE COMPLETED"
 ELSE
 DISPLAY "Cursor positioning failed"
 STOP RUN.
 .
 .
 .

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGA.
 .
 .
 .
01 PROGRAM-STATUS PIC S9(9) COMP.
 .
 .
 .
PROCEDURE DIVISION GIVING PROGRAM-STATUS.
A000-BEGIN.
 .
 .
 .

 IF ... SET PROGRAM-STATUS TO SUCCESS
 ELSE SET PROGRAM-STATUS TO FAILURE.
 EXIT PROGRAM.

361

Procedure Division

SORT
SORT

Function
The SORT statement (Format 1) creates a sort file by executing input procedures or transferring records from an
input file. It sorts the records in the sort file using one or more keys that you specify. Finally, it returns each record
from the sort file, in sorted order, to output procedures or an output file.

SORT (Format 2) orders the elements in a table. This is especially useful for tables used with SEARCH ALL. The
table elements are sorted based on the keys as specified in the OCCURS for the table unless you override them by
specifying keys in the SORT statement. If no key is specified, the table elements are the SORT keys.

[sortfile]

is a file-name described in a sort-merge file description (SD) entry in the Data Division.

[sortkey]

(Format 1) is the data-name of a data item in a record associated with sortfile.

(Format 2) is the data-name of a data item in the table-name table.

[first-proc]

is the section-name or paragraph-name of the first (or only) section or paragraph of the INPUT or OUTPUT
procedure range.

[end-proc]

is the section-name or paragraph-name of the last section or paragraph of the INPUT or OUTPUT procedure range.

[infile]

is the file-name of the input file. It must be described in a file description (FD) entry in the Data Division.

[outfile]

is the file-name of the output file. It must be described in a file description (FD) entry in the Data Division.

[table-name (Alpha, I64)]

is a table described with OCCURS in the Data Division.

[alpha]

is an alphabet-name defined in the SPECIAL-NAMES paragraph of the Environment Division.

Syntax Rules

All Formats
1. You can use SORT statements anywhere in the Procedure Division except in:

• Declaratives (Format 1)

• SORT or MERGE statement input or output procedures

362

Procedure Division

2. sortkey can be qualified.

3. sortkey cannot be in a group item that contains variable occurrence data items.

4. The sortkey description cannot contain an OCCURS clause or be subordinate to a data description entry that
does.

Format 1
5. If sortfile contains variable-length records, infile records must not be smaller than the smallest in sortfile nor

larger than the largest.

6. If sortfile contains fixed-length records, infile records must not be larger than the largest record described for
sortfile.

7. If outfile contains variable-length records, sortfile records must not be smaller than the smallest in outfile nor
larger than the largest.

8. If outfile contains fixed-length records, sortfile records must not be larger than the largest record described for
outfile.

9. sortfile can have more than one record description. However, sortkey needs to be described in only one of the
record descriptions. The character positions referenced by sortkey are used as the key for all the file's records.

10.The words THRU and THROUGH are equivalent.

11.If outfile is an indexed file, the first sortkey must be in the ASCENDING phrase. It must specify the same
character positions in its record as the prime record key for outfile.

Format 2 (Alpha, I64)
12.table-name may be qualified and must have an OCCURS clause in its data description entry. If table-name is

subject to more than one level of OCCURS clauses, subscripts must be specified for all levels with OCCURS
INDEXED BY.

13.table-name is a key data-name, subject to the following rules:

• The data item identified by a key data-name must be the same as, or subordinate to, the data item referenced
by table-name.

• Key data items may be qualified.

• The data items identified by key data-names must not be variable-length data items.

• If the data item identified by a key data-name is subordinate to table-name, it must not be described with
an OCCURS clause, and it must not be subordinate to an entry that is also subordinate to table-name and
contains an OCCURS clause.

14.The KEY phrase may be omitted only if the description of the table referenced by table-name contains a KEY
phrase.

General Rules

All Formats
1. The first sortkey you specify is the major key, the next sortkey you specify is the next most significant key, and

so forth. The significance of sortkey data items is not affected by how you divide them into KEY phrases. Only
first-to-last order determines significance.

363

Procedure Division

2. The ASCENDING phrase causes the sorted sequence to be from the lowest to highest sortkey value.

3. The DESCENDING phrase causes the sorted sequence to be from the highest to the lowest sortkey value.

4. Sort sequence follows the rules for relation condition comparisons.

5. The DUPLICATES phrase affects the return order of records or table elements whose corresponding sortkey
values are equal.

• When there is a USING phrase, return order is the same as the order of appearance of infile names in the
SORT statement.

• When there is an INPUT PROCEDURE, return order is the same as the order in which the records were
released.

• When table elements are returned, the order is the relative order of the contents of these table elements before
sorting.

6. If there is no DUPLICATES phrase, the return order for records or table elements with equal corresponding
sortkey values is unpredictable.

7. The SORT statement determines the comparison collating sequence for nonnumeric sortkey items when it
begins execution. If there is a COLLATING SEQUENCE phrase in the SORT statement, SORT uses that
sequence. Otherwise, it uses the program collating sequence described in the OBJECT-COMPUTER paragraph.

Format 1
8. If sortfile contains fixed-length records, any shorter infile records are space-filled on the right, following the

last character. Space-filling occurs before the infile record is released to sortfile.

9. The INPUT PROCEDURE range consists of one or more sections or paragraphs that:

• Appear contiguously in the source program

• Do not form a part of an OUTPUT PROCEDURE range

10.The statements in the INPUT PROCEDURE range must include at least one RELEASE statement to transfer
records to sortfile.

11.The INPUT PROCEDURE range can consist of any procedure needed to select, modify, or copy the next record
made available by the RELEASE statement to the file referenced by sortfile.

12.The range of the INPUT PROCEDURE additionally includes all statements executed as a result of a CALL,
EXIT, GO TO, or PERFORM statement. The range of the INPUT PROCEDURE also includes all statements
in the Declaratives Section that can be executed if control is transferred from statements in the range of the
INPUT PROCEDURE.

13.The INPUT PROCEDURE range must not contain MERGE, RETURN, or SORT statements.

14.If there is an INPUT PROCEDURE phrase, control transfers to the first statement in its range before the SORT
statement sequences the sortfile records. When control passes the last statement in the INPUT PROCEDURE
range, the records released to sortfile are sorted.

15.During execution of the INPUT or OUTPUT procedures, or any USE AFTER EXCEPTION procedure
implicitly invoked during the SORT statement, no outside statement can manipulate the files or record areas
associated with infile or outfile.

16.If there is a USING phrase, the SORT statement transfers all records in infile to sortfile. This transfer is an
implied SORT statement input procedure. When the SORT statement executes, infile must not be open.

17.For each infile, the SORT statement:

364

Procedure Division

• Initiates file processing as if the program had executed an OPEN statement with the INPUT phrase.

• Gets the logical records and releases them to the sort operation. SORT obtains each record as if the program
had executed a READ statement with the NEXT and AT END phrases.

• Terminates file processing as if the program had executed a CLOSE statement with no optional phrases. The
SORT statement ends file processing before it executes any output procedure.

These implicit OPEN, READ, and CLOSE operations cause associated USE procedures to execute when an
exception condition occurs.

18.OUTPUT PROCEDURE consists of one or more sections or paragraphs that:

• Appear contiguously in the source program

• Do not form part of an INPUT PROCEDURE range

19.When the SORT statement begins the OUTPUT PROCEDURE phrase, it is ready to select the next record in
sorted order. The statements in the OUTPUT PROCEDURE range must include at least one RETURN statement
to make records available for processing.

20.When the MERGE statement enters the OUTPUT PROCEDURE range, it is ready to select the next record in
merged order. Statements in the OUTPUT PROCEDURE range must execute at least one RETURN statement
to make records available for processing.

21.The OUTPUT PROCEDURE can consist of any procedure needed to select, modify, or copy the next record
made available by the RETURN statement in sorted order from the file referenced by sortfile.

22.The range of the OUTPUT PROCEDURE additionally includes all statements executed as a result of a CALL,
EXIT, GO TO, or PERFORM statement. The range of the OUTPUT PROCEDURE also includes all statements
in the Declarative USE procedures that can be executed if control is transferred from statements in the range
of the OUTPUT PROCEDURE.

23.The OUTPUT PROCEDURE range must not include MERGE, RELEASE, or SORT statements.

24.If there is an OUTPUT PROCEDURE phrase, control passes to the first statement in its range after the
SORT statement sequences the records in sortfile. When control passes the last statement in the OUTPUT
PROCEDURE range, the SORT statement ends. Control then transfers to the next executable statement after
the SORT statement.

25.If there is a GIVING phrase, the SORT statement writes all sorted records to each outfile. This transfer is an
implied SORT output procedure. When the SORT statement executes, outfile must not be open.

26.The SORT statement initiates outfile processing as if the program had executed an OPEN statement with the
OUTPUT phrase. The SORT statement does not initiate outfile processing until after INPUT PROCEDURE
execution.

27.The SORT statement obtains the sorted logical records and writes them to each outfile. SORT writes each record
as if the program had executed a WRITE statement with no optional phrases.

For relative files, the value of the relative key data item is 1 for the first returned record, 2 for the second,
and so on. When the SORT statement ends, the value of the relative key data item indicates the number of
outfile records.

28.The SORT statement terminates outfile processing as if the program had executed a CLOSE statement with
no optional phrases.

29.These implicit OPEN, WRITE, and CLOSE operations can cause associated USE procedures to execute if
they are present. If a USE procedure is present, processing terminates after the USE procedure has completed
execution. If a USE procedure is not present, processing terminates as if the program had executed a CLOSE
statement with no optional phrases.

365

Procedure Division

30.If outfile contains fixed-length records, any shorter sortfile records are space-filled on the right, after the last
character. Space-filling occurs before the sortfile record is released to outfile.

31.If the SORT statement is in a fixed segment, its input and output procedures must be completely in either:

• Fixed segments

• One independent segment

32.If the SORT statement is in an independent segment, its input and output procedures must be completely in
either:

• Fixed segments

• The same independent segment as the SORT statement itself

Format 2 (Alpha, I64)
33.The SORT statement sorts the table referenced by table-name and presents the sorted table in table-name either

in the order determined by the ASCENDING or DESCENDING phrases, if specified, or in the order determined
by the KEY phrase associated with table_name.

34.To determine the relative order in which the table elements are stored after sorting, the contents of corresponding
key data items are compared according to the rules for comparison of operands in a relation condition, starting
with the most significant key data item.

• If the contents of the corresponding key data items are not equal and the key is associated with the
ASCENDING phrase, the table element containing the key data item with the lower value has the lower
occurrence number.

• If the contents of the corresponding key data items are not equal and the key is associated with the
DESCENDING phrase, the table element containing the key data item with the higher value has the lower
occurrence number.

Additional References
• OBJECT-COMPUTER paragraph in Chapter 4, Environment Division

• SPECIAL-NAMES paragraph in Chapter 4, Environment Division

• I-O-CONTROL paragraph in Chapter 4, Environment Division

• Section 6.5.1: Relation Conditions

• Section 6.7: Segmentation

• USE statement

• VSI COBOL User Manual, chapter on using SORT and MERGE statements

Examples (Alpha, I64)
The following examples all illustrate the use of table sorting (Format 2). For examples on Format 1 sorting, refer
to the VSI COBOL User Manual.

The first example is a simple sort in which the table is sorted by the key definitions in the OCCURS clause of data
item tabl. elem-item2 is the major key (ascending) and elem-item1 is the secondary key (descending). A SEARCH
ALL statement is used.

 identification division.
 program-id. EXAMPLE1.
 data division.

366

Procedure Division

 working-storage section.
 01 group-item.
 05 tabl occurs 10 times
 ascending elem-item2
 descending elem-item1
 indexed by ind.
 10 elem-item1 pic x.
 10 elem-item2 pic x.
 procedure division.
 1. display "Example 1".
 move "13n3m3p3o3x1x1x1x1x1" to group-item.
 sort tabl.
 search all tabl
 at end
 display "not found"
 when elem-item1 (ind) = "m"
 if (elem-item1 (ind - 1) = "n")
 and (elem-item1 (ind + 1) = "1")
 display "elem-item1 is descending order - 2nd key"
 else
 display "sort failed"
 end-if
 end-search.
 exit program.
 end program EXAMPLE1.

The following example is also a simple sort in which the table is sorted by the key definitions in the OCCURS
clause of data item tabl. elem-item2 is the major key (ascending) and elem-item1 is the secondary key (descending).
A SEARCH ALL statement is used.

 identification division.
 program-id. EXAMPLE2.
 data division.
 working-storage section.
 01 group-item.
 05 tabl occurs 10 times.
 10 elem-item1 pic x.
 10 elem-item2 pic x.
 procedure division.
 2. display "Example 2".
 move "13n3m3p3o3x1x1x1x1x1" to group-item.
 sort tabl ascending.
 if tabl (1) = "13"
 and tabl (2) = "m3"
 display "tabl is ascending order"
 else
 display "sort failed"
 end-if.
 exit program.
 end program EXAMPLE2.

This following example is a simple sort in which the table is sorted in ascend- ing order using each entire element
of the table (data item tabl) to determine the sequence.

 identification division.
 program-id. EXAMPLE3.
 data division.
 working-storage section.
 01 group-item.

367

Procedure Division

 05 tabl occurs 10 times
 ascending elem-item3
 descending elem-item1.
 10 elem-item1 pic x.
 10 elem-item2 pic x.
 10 elem-item3 pic x.
 procedure division.
 3. display "Example 3".
 move "13bn3cm3ap3do3fx1ex1ix1hx1gx1a" to group-item.
 sort tabl descending elem-item2 elem-item3.
 if tabl (1) = "o3f"
 and tabl (2) = "p3d"
 display "tabl is descending order"
 else
 display "sort failed"
 end-if.
 exit program.
 end program EXAMPLE3.

The following example sorts only the third instance of tabl2, that is, tabl1(3). The qualified data item, elem-item1
of group2 is its key. In normal PROCEDURE DIVISION reference, elem-item1 of group2 requires two levels of
subscripting/indexing, whereas here it has none. Similarly, tabl2 normally requires one level of subscripting, but
cannot be subscripted as data-name2 in the SORT statement. Instead it uses the value of t1-ind for determining
which instance is sorted.

 identification division.
 program-id. EXAMPLE4.
 data division.
 working-storage section.
 01 group-item.
 05 tabl1 occurs 3 times
 indexed by t1-ind t2-ind.
 10 tabl2 occurs 5 times.
 15 group1.
 20 elem-item1 pic x.
 15 group2.
 20 elem-item1 pic 9.
 procedure division.
 4. display "Example 4".
 move "x5z4y6z6x4a3b2b1a2c1j7j8k8l7j9" to group-item.
 set t1-ind to 3.
 sort tabl2 descending elem-item1 of group2.
 if group1 (3 1) = "j"
 and group2 (3 1) = "9"
 and tabl1 (1) = "x5z4y6z6x4"
 and tabl1 (2) = "a3b2b1a2c1"
 display "tabl1 (3) is descending order"
 else
 display "sort failed"
 end-if.
 exit program.
 end program EXAMPLE4.

START
START

368

Procedure Division

Function
The START statement establishes the logical position of the File Position Indicator in an indexed or relative file.
The logical position affects subsequent sequential record retrieval.

[file-name]

is the name of an indexed or relative file with sequential or dynamic access. It cannot be the name of a sort or
merge file.

[key-data]

is one of the following:

• The data-name specified as a record key

• The segmented-key name specified as a record key

• The leftmost part of a record key

• The relative key for file-name

It can be qualified.

[stment]

is an imperative statement executed for an invalid key condition.

[stment2]

is an imperative statement executed for a not invalid key condition.

Syntax Rules
1. To use the REGARDLESS or ALLOWING options, the program must include these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

2. There must be an INVALID KEY phrase if file-name does not have an applicable USE AFTER EXCEPTION
procedure.

3. For a relative file, key-data must be the file's RELATIVE KEY data item.

4. For an indexed file, key-data can be either:

• A record key for the file.

• A data item subordinate to the description of a record key for the file. The data item must have the same
leftmost character position as the record key, and must be one of the following:

• A group, alphanumeric, or alphabetic item

• An unsigned numeric display item

• A COMP-3 integer or a COMP integer

All the data types in the preceding list except alphanumeric are VSI extensions.

369

Procedure Division

5. The REGARDLESS and ALLOWING options are VSI standard syntax, and cannot be used for a file connector
that has had (on Alpha and I64) X/Open standard syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules

All Files
1. The file must be open in the INPUT or I-O mode when the START statement executes.

2. If there is no KEY phrase, the implied relational operator is EQUAL.

3. START statement execution does not change: (a) the contents of the record area or (b) the contents of the data
item referred to in the DEPENDING ON phrase of the file's RECORD clause.

4. The comparison specified by the KEY phrase relational operator occurs between a key for a record in the file
and a data item. If the file is indexed, and the operand sizes are unequal, the comparison operates as if the longer
one was truncated on the right to the size of the shorter.

5. START LESS can only be used with a file whose organization is INDEXED and whose access mode is
DYNAMIC. The file must be opened for INPUT or I-O.

6. For indexed files, the file system compares the Key of Reference according to the native collating sequence
and the sort order of the Key of Reference. The comparisons IS GREATER THAN, IS GREATER THAN OR
EQUAL TO, and IS NOT LESS THAN refer to the logical record order, according to the sort order of the key.
For example, if the sort order is descending, the KEY GREATER THAN key-data phrase positions the file at
the next record whose key is less than key-data.

All other numeric or nonnumeric comparison rules apply.

The File Position Indicator is set to the first logical record in the file whose key satisfies the comparison.

If no record in the file satisfies the comparison:

• The invalid key condition exists.

• START statement execution is unsuccessful.

• The File Position Indicator denotes that no valid next record is established.

7. On Alpha and I64 systems, START LESS, LESS OR EQUAL, and NOT GREATER set the file position
indicator by making reference to the logical record order in the same manner as START GREATER, GREATER
OR EQUAL and NOT LESS.

8. The START verb can use the KEY IS syntax to establish the key field within the file record which is the Key of
Reference. An immediately subsequent READ PRIOR will follow the order of the Key of Reference to access
the logically previous record in the file according to that Key of Reference. If the KEY IS syntax is not used,
the Key of Reference is understood to be the file's primary key field.

9. On Alpha and I64 systems, when a successful START LESS, LESS OR EQUAL or NOT GREATER has
occurred and the Key of Reference has ascending order, the record pointed to by the file position indicator can
have the same key value or a smaller key value than the preceding record for the Key of Reference. If the Key
of Reference has descending order, the record pointed to can have the same key value or a higher key value
for the Key of Reference. The record pointed to can have the same key value if duplicate values for the Key
of Reference exist on the file.

10.On Alpha and I64 systems, when an unsuccessful START LESS, LESS OR EQUAL or NOT GREATER has
occurred the key of reference is undefined and a File Status value of 23 is returned, which indicates the INVALID
KEY condition, or record not found.

11.The START statement updates the FILE STATUS data item for the file.

370

Procedure Division

12.If the File Position Indicator denotes that an optional file is not present when the START statement executes,
the invalid key condition exists. START statement execution is then unsuccessful.

13.The REGARDLESS and ALLOWING options can be used only in a manual record-locking environment. To
create a manual record-locking environment, an access stream must specify the APPLY LOCK-HOLDING
clause of the I-O-CONTROL paragraph.

14.The REGARDLESS option allows an access stream to position to a record regardless of any record locks held by
other concurrent access streams. The START REGARDLESS option holds no lock on the record positioned to.

This statement generates a soft record lock condition if the record that is pointed to is locked by another access
stream. This condition results in a File Status value of 90 and invokes an applicable USE procedure, if any.
Execution of the START REGARDLESS statement is considered successful and execution resumes at the next
statement following the START REGARDLESS statement.

However, on Tru64 UNIX systems, the soft lock condition (file status 90) is not recognized for indexed files.
A START REGARDLESS statement for a record locked by another process performs the requested operation
on the record and returns a file status of 00.

15.On OpenVMS, the ALLOWING UPDATERS option permits other concurrent access streams in the manual
record-locking environment to simultaneously READ, DELETE, START, and REWRITE the current record.
This option holds no lock on the current record.

16.The ALLOWING READERS option permits other concurrent access streams in the manual record-locking
environment to simultaneously READ the current record. This option holds a read-lock on each such record
read. No access stream can update the current record until it is unlocked.

17.On OpenVMS, the ALLOWING NO OTHERS option locks the current record. No other concurrent access
stream can access this record until it is unlocked. Only this access stream can update this record.

18.On Tru64 UNIX systems, for indexed files the START statement (with or without the ALLOWING phrase)
does not detect or acquire a record lock on the current record.

19.On Alpha and I64 systems, if X/Open file sharing is in effect, the START statement does not detect or acquire
a lock.

20.If VSI standard record locking is in effect and the ALLOWING or REGARDLESS option is not specified, the
default behavior for a START statement is that a lock is acquired if the file is opened in I-O mode and locks
are detected in any mode.

21.On Alpha and I64, if ALLOWING or REGARDLESS is not specified, there is potential for ambiguity regarding
VSI standard record locking or X/Open standard record locking. The selection of X/Open standard (rule 19) or
VSI standard (rule 20) behavior is made as follows by the compiler:

• If (on Alpha and I64) X/Open standard syntax (LOCK MODE or WITH (NO) LOCK) has been specified
for file-name prior to the START statement, the compiler interprets the statement according to the X/Open
standard.

• If VSI standard syntax (LOCK-HOLDING, ALLOWING, or REGARDLESS) has been specified for file-
name prior to the START statement, the compiler interprets the statement according to the VSI standard.

• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS, LOCK MODE, or WITH
[NO] LOCK) has been specified for file-name prior to the START statement, then the compiler uses the /
STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or the Tru64 UNIX equivalent -std
[no]xopen flag) to determine whether the START statement is interpreted as X/Open or VSI standard: a
setting of xopen selects the X/Open standard, whereas a setting of noxopen selects the VSI standard.

Any subsequent I-O locking syntax for the same file connector in your program must be consistent: X/Open
standard locking (Alpha, I64) and VSI standard locking (implicit or explicit) cannot be mixed for the same
file connector.

371

Procedure Division

Relative Files
22.The comparison described in General Rule 4 uses the data item referred to by the RELATIVE KEY phrase in

the file's ACCESS MODE clause.

Indexed Files
23.The START statement establishes a Key of Reference as follows:

• If there is no KEY phrase, the file's prime record key becomes the Key of Reference.

• If there is a KEY phrase, and key-data is a record key for the file, that record key becomes the Key of
Reference.

• If there is a KEY phrase, and key-data is not a record key for the file, the record key whose leftmost character
corresponds to the leftmost character of key-data becomes the Key of Reference.

The Key of Reference establishes the record ordering for the START statement. (See General Rule 4.) If
the execution of the START statement is successful, later sequential READ statements use the same Key of
Reference.

24.If there is a KEY phrase, the comparison described in General Rule 4 uses the contents of key-data.

25.If there is no KEY phrase, the comparison described in General Rule 4 uses the data item referred to in the
file's RECORD KEY clause.

26.If START statement execution is not successful, the Key of Reference is undefined.

27.If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input or output condition
occurs that would result in a nonzero value in the first character of a FILE STATUS data item. However, it does
not execute if the condition is invalid key and there is an INVALID KEY phrase.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

Technical Notes
• START statement execution can result in these FILE STATUS data item values:

File Status Meaning

00 Start is successful
23 Record not in file or optional file not present (invalid key)
47 File not open, or incompatible open mode
90 Record locked by another user; record available; soft lock
92 Record locked by another user; record not available; hard lock
30 All other permanent errors

Additional References
• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4, Environment Division

• LOCK-HOLDING phrase in Section : APPLY Clause in I-O-CONTROL paragraph in Chapter 4, Environment
Division

• Section 6.1.4: Scope of Statements

• Section 6.5.1.1: Comparison of Numeric Operands

372

Procedure Division

• Section 6.5.1.2: Comparison of Nonnumeric Operands

• Section 6.6.8: I-O Status

• Section 6.6.10: INVALID KEY Phrase

• OPEN statement

• READ statement

• UNLOCK statement

• USE statement

STOP
STOP

Function
The STOP statement permanently terminates or temporarily suspends image execution.

[disp]

is any literal, or any figurative constant except ALL literal.

Syntax Rule
If a STOP RUN statement is in a consecutive sequence of imperative statements in a sentence, it must be the last
statement in that sequence.

General Rules
1. STOP RUN terminates image execution.

2. STOP disp temporarily suspends the image. It displays the value of disp on the user's standard display device.
If the user continues the image, execution resumes with the next executable statement.

Technical Notes
1. STOP RUN causes all open files to be closed before control returns to the operating system prompt.

2. STOP disp returns control to the operating system command language interpreter level without terminating the
image as follows:

• On Tru64 UNIX systems, STOP disp resumes execution when a carriage return is entered.

• On Open VMS systems, control returns to DCL. The user can continue image execution with a CONTINUE
command, which returns control to the program at the next executable statement.

Additional Reference (OpenVMS)
Refer to the OpenVMS User's Manual and the OpenVMS DCL Dictionary for more information on the Digital
Command Language (DCL).

STRING
STRING

373

Procedure Division

Function
The STRING statement concatenates the partial or complete contents of one or more data items into a single data
item.

[src-string]

is a nonnumeric literal or identifier of a DISPLAY data item. It is the sending area.

[delim]

is a nonnumeric literal or the identifier of a DISPLAY data item. It is the delimiter of src-string.

[dest-string]

is the identifier of a DISPLAY data item. It cannot be reference modified. dest-string is the receiving area that
contains the result of the concatenated src-strings.

[pointr]

is an elementary numeric data item described as an integer. It points to the position in dest-string to contain the
next character moved.

[stment]

is an imperative statement executed for an on overflow condition.

[stment2]

is an imperative statement executed for a not on overflow condition.

Syntax Rules
1. pointr cannot define the assumed decimal scaling position character (P) in its PICTURE clause.

2. Literals can be any figurative constant other than ALL literal.

3. The description of dest-string cannot: (a) have a JUSTIFIED clause or (b) indicate an edited data item.

4. The size of pointr must allow it to contain a value one greater than the size of dest-string.

General Rules
1. delim specifies the characters to delimit the move.

2. If the size of delim is zero characters, it never matches a src-string delimiter.

3. If src-string is a variable-length item, SIZE refers to the number of characters currently defined for it.

4. When src-string or delim is a figurative constant, its size is one character.

5. The STRING statement moves characters from src-string to dest-string according to the rules for alphanumeric
to alphanumeric moves. However, no space-filling occurs.

6. When the DELIMITED phrase contains delim:

• The contents of each src-string are moved to dest-string in the sequence in which they appear in the statement.

• Data movement begins with the leftmost character and continues to the right, character by character.

374

Procedure Division

• Data movement ends when the STRING operation:

a. Reaches the end of src-string

b. Reaches the end of dest-string

c. Detects the characters specified by delim

7. No data movement occurs if the size of src-string is zero characters.

8. When the DELIMITED phrase contains the SIZE phrase:

• The contents of each src-string are moved to dest-string in the same sequence in which they appear in the
statement.

• Data movement begins with the leftmost character and continues to the right, character by character.

• Data movement ends when the STRING operation either:

a. Has transferred all data in each src-string

b. Reaches the end of dest-string

• If src-string is a variable-length data item, the STRING statement moves the number of characters currently
defined for the data item.

9. When the POINTER phrase appears, the program must set pointr to an initial value greater than zero before
executing the STRING statement.

10.When there is no POINTER phrase, the STRING statement operates as if pointr were set to an initial value of 1.

11.When the STRING statement transfers characters to dest-string, the moves operate as if:

• The characters were moved one at a time from src-string.

• Each character were moved to the position in dest-string indicated by pointr (if pointr does not exceed the
length of dest-string).

• The value of pointr were increased by one before moving the next character.

12.When the STRING statement ends, only those parts of dest-string referenced during statement execution
change. The rest of dest-string contains the same data as before the STRING statement executed.

13.Before it moves each character to dest-string, the STRING statement tests the value of pointr.

If pointr is less than 1 or greater than the number of character positions in dest-string, the STRING statement:

• Moves no further data to dest-string

• Executes the ON OVERFLOW phrase stment

• Transfers control to the end of the STRING statement if there is no ON OVERFLOW phrase

If pointr is not less than 1 or not greater than the number of character positions in dest-string after the data is
transferred, the STRING statement:

• Executes the NOT ON OVERFLOW phrase stment2 and then transfers control to the end of the STRING
statement

• Transfers control to the end of the STRING statement if the NOT ON OVERFLOW phrase is not specified

14.Subscript evaluation for dest-string and pointr occurs at the beginning of the statement.

375

Procedure Division

Additional References
• Section 6.1.4: Scope of Statements

• MOVE statement

Examples
The examples assume the following data description entries:

WORKING-STORAGE SECTION.
01 TEXT-STRING PIC X(30).
01 INPUT-MESSAGE PIC X(60).
01 NAME-ADDRESS-RECORD.
 03 CIVIL-TITLE PIC X(5).
 03 LAST-NAME PIC X(10).
 03 FIRST-NAME PIC X(10).
 03 STREET PIC X(15).
 03 CITY PIC X(15).
* Assume CITY ends with "/"
 03 STATE PIC XX.
 03 ZIP PIC 9(5).
01 PTR PIC 99.
01 HOLD-PTR PIC 99.
01 LINE-COUNT PIC 99.

• Using both delimiters and SIZE:

DISPLAY " ".
DISPLAY NAME-ADDRESS-RECORD.
MOVE SPACES TO TEXT-STRING.
STRING CIVIL-TITLE DELIMITED BY " "
 " " DELIMITED BY SIZE
 FIRST-NAME DELIMITED BY " "
 " " DELIMITED BY SIZE
 LAST-NAME DELIMITED BY SIZE
 INTO TEXT-STRING.
DISPLAY TEXT-STRING.
DISPLAY STREET.
MOVE SPACES TO TEXT-STRING.
STRING CITY DELIMITED BY "/"
 ", " DELIMITED BY SIZE
 STATE DELIMITED BY SIZE
 " " DELIMITED BY SIZE
 ZIP DELIMITED BY SIZE
 INTO TEXT-STRING.
DISPLAY TEXT-STRING.

Results
Mr. Smith Irwin 603 Main St. Merrimack/ NH03054
Mr. Irwin Smith
603 Main St.
Merrimack, NH 03054

Miss Lambert Alice 1229 Exeter St.Boston/ MA03102
Miss Alice Lambert
1229 Exeter St.

376

Procedure Division

Boston, MA 03102

Mrs. Gilbert Rose 8 State Street New York/ NY10002
Mrs. Rose Gilbert
8 State Street
New York, NY 10002

Mr. Cowherd Owen 1064 A St. Washington/ DC20002
Mr. Owen Cowherd
1064 A St.
Washington, DC 20002

• Using the POINTER phrase:

 MOVE 0 TO LINE-COUNT.
 MOVE 1 TO PTR.
GET-WORD.
 IF LINE-COUNT NOT < 4
 DISPLAY " " TEXT-STRING
 GO TO GOT-WORDS.
 ACCEPT INPUT-MESSAGE.
 DISPLAY INPUT-MESSAGE.
SAME-WORD.
 MOVE PTR TO HOLD-PTR.
 STRING INPUT-MESSAGE DELIMITED BY SPACE
 ", " DELIMITED BY SIZE
 INTO TEXT-STRING
 WITH POINTER PTR
 ON OVERFLOW
 STRING " " DELIMITED BY SIZE
 INTO TEXT-STRING
 WITH POINTER HOLD-PTR
 DISPLAY " " TEXT-STRING
 MOVE SPACES TO TEXT-STRING
 ADD 1 TO LINE-COUNT
 MOVE 1 TO PTR
 GO TO SAME-WORD.
 GO TO GET-WORD.
GOT-WORDS.
 EXIT.

Results
This
example
demonstrates
how
 This, example, demonstrates,
the
STRING
statement
can
 how, the, STRING, statement,
construct
text
strings
 can, construct, text,
using

377

Procedure Division

the
POINTER
phrase
 strings, using, the, POINTER,
 phrase,

SUBTRACT
SUBTRACT

Function
The SUBTRACT statement subtracts one, or the sum of two or more, numeric items from one or more items. It
stores the difference in one or more items.

[num]

is a numeric literal or the identifier of an elementary numeric item.

[rsult]

is the identifier of an elementary numeric item. However, in Format 2, rsult can be an elementary numeric edited
item. It is the resultant identifier.

[stment]

is an imperative statement executed when a size error condition has occurred.

[stment2]

is an imperative statement executed when no size error condition has occurred.

[grp-1]

is the identifier of a group item.

[grp-2]

is the identifier of a group item.

Syntax Rule
CORR is an abbreviation for CORRESPONDING.

General Rules
1. In Format 1, the values of the operands before the word FROM are summed. This total is then subtracted from

each rsult.

2. In Format 2, the values of the operands before the word FROM are summed. This total is subtracted from the
num following the word FROM. The result replaces the current value of each rsult.

3. In Format 3, data items in grp-1 are subtracted from and stored in the corresponding data items in grp-2.

Additional References
• Section 6.1.4: Scope of Statements

378

Procedure Division

• Section 6.6.1: Arithmetic Operations

• Section 6.6.2: Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3: ROUNDED Phrase

• Section 6.6.4: ON SIZE ERROR Phrase

• Section 6.6.5: CORRESPONDING Phrase

• Section 6.6.7: Overlapping Operands and Incompatible Data

Examples
Each of the examples assume these data descriptions and initial values.

INITIAL VALUES

 03 ITEMA PIC S99 VALUE -85. -85
 03 ITEMB PIC 99 VALUE 2. 2
 03 ITEMC VALUE "123".
 05 ITEMD OCCURS 3 TIMES 1 2 3
 PIC 9.
 03 ITEME PIC S99 VALUE -95. -95

1. Without GIVING phrase: RESULTS

SUBTRACT 2 ITEMB FROM ITEMA. ITEMA = -89

2. SIZE ERROR clause:

(When the size error condition occurs and the SIZE ERROR clause is specified, the values of the affected
resultant identifiers do not change.)

SUBTRACT 14 FROM ITEMA, ITEME ITEMA = -99
 ON SIZE ERROR ITEME = -95
 MOVE 0 TO ITEMB. ITEMB = 0

3. NOT ON SIZE ERROR clause:

SUBTRACT 14 FROM ITEMA ITEMA = -99
 ON SIZE ERROR
 MOVE 9 TO ITEMB.
 NOT ON SIZE ERROR
 MOVE 1 TO ITEMB. ITEMB = 1

4. Multiple receiving fields:

(The operations proceed from left to right. Therefore, the subscript for ITEMB is evaluated after the subtraction
changes its value.)

SUBTRACT 1 FROM ITEMB ITEMD (ITEMB). ITEMB = 1
 ITEMD (1) = 0

5. GIVING phrase:

SUBTRACT ITEME ITEMD (ITEMB) FROM ITEMA ITEMB = 8
 GIVING ITEMB.

6. END-SUBTRACT:

379

Procedure Division

(The first SUBTRACT terminates with END-SUBTRACT. If the SIZE ERROR condition had not occurred,
the second SUBTRACT statement would have executed anyway: the value of ITEMA would have been -86.)

SUBTRACT 10 ITEMB FROM ITEMD (ITEMB) ITEMD (2) = 2
 ON SIZE ERROR ITEMA = 0
 MOVE 0 TO ITEMA
 END-SUBTRACT.
SUBTRACT 1 FROM ITEMA. ITEMA = -1

(The following example shows the usefulness of END-SUBTRACT inside an IF statement. Without it, there
would be no way to code the DISPLAY statements.)

IF ITEMB < 3 AND > 1
 SUBTRACT 1 FROM ITEMD(ITEMB)
 ON SIZE ERROR
 MOVE 0 TO ITEMA
 END-SUBTRACT
 DISPLAY 'yes'
ELSE
 DISPLAY 'no'.

SUPPRESS
SUPPRESS

Function
The SUPPRESS statement causes the Report Writer Control System (RWCS) to inhibit the presentation of a report
group.

Syntax Rule
The SUPPRESS statement can appear only in a USE BEFORE REPORTING Declarative procedure.

General Rules
1. The SUPPRESS statement inhibits only the presentation of a report-group-name (a 01-level Report Group

Description entry).

2. Each time the presentation of a report group is to be inhibited, the program must execute a SUPPRESS
statement.

3. The SUPPRESS statement directs the Report Writer Control System (RWCS) to inhibit the processing of these
report group functions:

• The presentation of the print lines

• The processing of all LINE clauses

• The processing of the NEXT GROUP clause

• The adjustment of LINE-COUNTER

4. The SUPPRESS statement does not inhibit the processing of sum counters or control breaks.

380

Procedure Division

Additional References
• Section 6.6.7: Overlapping Operands and Incompatible Data

• USE statement

Example
PROCEDURE DIVISION.
DECLARATIVES.
DET SECTION.
 USE BEFORE REPORTING DETAIL-LINE.
DETA-1.
 IF SORTED-NAME = NAME
 ADD A TO B
 SUPPRESS PRINTING.
 IF NAME = SPACES SUPPRESS PRINTING.
END DECLARATIVES.
MAIN SECTION.
 .
 .
 .

TERMINATE
TERMINATE

Function
The TERMINATE statement causes the Report Writer Control System (RWCS) to complete the processing of the
specified report.

[report-name]

names a report defined by a Report Description entry in the Report Section of the Data Division.

General Rules
1. If the TERMINATE statement includes more than one report-name, the statement executes as if there were a

separate TERMINATE statement for each report-name.

2. The program cannot execute a TERMINATE statement unless an INITIATE statement was executed before
the TERMINATE statement for that report, and the program did not already execute a TERMINATE statement
for that report.

3. If the program did not execute a GENERATE statement, the execution of a TERMINATE statement does not
cause the RWCS to produce any of its report groups or perform any of the related processing.

4. The TERMINATE statement causes the RWCS to:

• Produce all CONTROL FOOTING report groups beginning with the minor CONTROL FOOTING report
group.

• Produce the REPORT FOOTING report group.

The RWCS makes the prior set of control data item values available to these two report groups and to any
associated USE procedure. This action simulates a control break at the most major level.

381

Procedure Division

5. The RWCS automatically processes the PAGE HEADING and PAGE FOOTING report groups, if present,
when it must advance the report to a new page to present a CONTROL HEADING, DETAIL, or CONTROL
FOOTING report group.

6. The TERMINATE statement does not automatically close a report file; the program must close the file. The
program must terminate the report before the CLOSE statement can close the report file.

Additional Reference
USE statement.

UNLOCK
UNLOCK

Function
The UNLOCK statement removes a record lock from the current record or from all locked records in the file.
On Alpha and I64 systems, the X/Open standard UNLOCK statement always removes the record lock from all
locked records in the file.

[file-name]

is the name of a sequential, relative, or indexed file described in the Data Division.

Syntax Rules
1. For Format 1, if the UNLOCK statement does not include the RECORD or the ALL RECORDS option, the

singular RECORD option is the default. (However, see General Rule 3.)

2. For Format 2, the RECORD and RECORDS options have the same effect: to unlock all currently locked records.
This behavior also is the default if neither option is specified.

General Rules
1. The first access stream to lock a record owns the record lock for that record.

2. Only the owner of a record lock can unlock the record.

3. For Format 1, implicitly (by default) or explicitly specifying the RECORD option unlocks the current record.
Therefore, you must specify ALL RECORDS explicitly to unlock all the record locks held on file-name.

The single exception to this rule for Format 1 is that for indexed files the RECORD option (implicitly or
explicitly) is unsupported on Tru64 UNIX systems. The ALL RECORDS phrase is assumed.

4. For Format 2, whether you specify the RECORD option or the RECORDS option, the effect is the same: to
unlock all record locks held on file-name by the current access stream.

5. If an access stream attempts to unlock a record (or records) in a file containing no record locks, the statement
is considered successful and execution resumes at the statement following the UNLOCK statement.

6. Because both formats of the UNLOCK statement include the UNLOCK RECORD and UNLOCK forms, the
compiler determines whether to interpret these forms of the statement as X/Open standard (on Alpha and I64)
or VSI standard as follows:

• If on Alpha and I64 X/Open standard syntax (LOCK MODE or WITH (NO) LOCK) has been specified for
file-name prior to the UNLOCK statement, the compiler interprets the statement according to the X/Open
standard.

382

Procedure Division

• If VSI standard syntax (LOCK-HOLDING, ALLOWING, or REGARDLESS) has been specified for file-
name prior to the UNLOCK statement, the compiler interprets the statement according to the VSI standard.

• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS, LOCK MODE, or WITH [NO]
LOCK) has been specified for file-name prior to the UNLOCK statement, then the compiler uses the /
STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or the Tru64 UNIX equivalent -std
[no]xopen flag) to determine whether the START statement is interpreted as X/Open or VSI standard: a
setting of xopen selects the X/Open standard, whereas a setting of noxopen selects the VSI standard.

Any subsequent I-O locking syntax for the same file connector in your program must be consistent: X/Open
standard locking and VSI standard locking (implicit or explicit) cannot be mixed for the same file connector.

Technical Notes
• UNLOCK statement execution can result in these FILE STATUS data item values:

File Status File Organization Access Method Meaning

00 All All Unlock is successful
93 All All No current record
94 All All File not open, or

incompatible open mode
30 All All All other permanent errors

Additional References
• LOCK-HOLDING phrase in Section : APPLY Clause in I-O-CONTROL paragraph in Chapter 4, Environment

Division

• LOCK MODE phrase in SELECT clause in File Control paragraph in Chapter 4, Environment Division

• Technical Notes for DELETE statement

• OPEN statement

VSI Standard Examples
These examples assume only one access stream for the image. The following examples refer to this partial program:

CONFIGURATION SECTION.
FILE-CONTROL.
 SELECT MASTER-FILE ASSIGN TO "CLIENT.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS MASTER-KEY
 FILE STATUS IS FILE-STAT.
I-O-CONTROL.

*
* This APPLY clause is required syntax for manual record locking
*

 APPLY LOCK-HOLDING ON MASTER-FILE.

DATA DIVISION.
FD MASTER-FILE
 LABEL RECORDS STANDARD.

383

Procedure Division

01 MASTER-RECORD.
 .
 .
 .
PROCEDURE DIVISION.
A100-BEGIN.

*
* The ALLOWING phrase enables file sharing
*

 OPEN I-O MASTER-FILE ALLOWING ALL.
 .
 .
 .
A900-END-OF-JOB.

1. Unlocking the record lock on the current record by taking the default RECORD option:

 READ MASTER-FILE KEY IS MASTER-KEY
 ALLOWING NO OTHERS.
 REWRITE MASTER-RECORD ALLOWING NO OTHERS.
 UNLOCK MASTER-FILE.

2. Explicitly unlocking the record lock on the current record:

 READ MASTER-FILE KEY IS MASTER-KEY
 ALLOWING NO OTHERS.
 .
 .
 .
 UNLOCK MASTER-FILE RECORD.

3. Unlocking all records in MASTER-FILE:

 PERFORM A100-READ-MASTER UNTIL
 MASTER-KEY = ID-KEY
 OR
 MASTER-KEY > ID-KEY.
 .
 .
 .
 UNLOCK MASTER-FILE ALL RECORDS.
 .
 .
 .
 A100-READ-MASTER.
 READ MASTER-FILE ALLOWING NO OTHERS.

X/Open Standard Example (Alpha, I64)
The following example shows the use of X/Open standard syntax:

 SELECT employee-file ASSIGN TO "EMPFIL"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS employee-id
 LOCK MANUAL LOCK ON MULTIPLE RECORDS
 FILE STATUS IS emp-stat.

384

Procedure Division

 .
 .
 .
* The file is implicitly shareable via the SELECT specification.
 OPEN I-O employee-file.

 PERFORM UNTIL emp-stat = end-of-file
 READ employee-file NEXT RECORD
 WITH LOCK

 IF employee-job-code = peon-code
 PERFORM find-boss-record
 ENDIF
 .
 .
 .
 REWRITE employee-record

* This will unlock this record and the boss's
* record found earlier.

 UNLOCK employee-file RECORDS

 END-PERFORM.

FIND-BOSS-RECORD.
 START employee-file
 KEY > employee-job-code.
 READ employee-file NEXT WITH LOCK.

UNSTRING
UNSTRING

Function
The UNSTRING statement separates contiguous data in a sending field and stores it in one or more receiving fields.

[src-string]

is the identifier of an alphanumeric class data item. It cannot be reference modified. Src-string is the sending field.

[delim]

is a nonnumeric literal or the identifier of an alphanumeric data item. It is the delimiter for the UNSTRING
operation.

[dest-string]

is the identifier of an alphanumeric, alphabetic, or numeric DISPLAY data item. It is the receiving field for the
data from src-string.

[delim-dest]

is the identifier of an alphanumeric data item. It is the receiving field for delimiters.

[countr]

385

Procedure Division

is the identifier of an elementary numeric data item described as an integer. It contains the count of characters
moved.

[pointr]

is the identifier of an elementary numeric data item described as an integer. It points to the current character
position in src-string.

[tally-ctr]

is the identifier of an elementary numeric data item described as an integer. It counts the number of dest-string
fields accessed during the UNSTRING operation.

[stment]

is an imperative statement executed for an on overflow condition.

[stment2]

is an imperative statement executed for a not on overflow condition.

Syntax Rules
1. Literals can be any figurative constant other than ALL literal.

2. pointr must be large enough to contain a value one greater than the size of src-string.

3. The DELIMITER IN and COUNT IN phrases can appear only if there is a DELIMITED BY phrase.

4. countr, pointr, dest-string, and tally-ctr cannot define the assumed decimal scaling position character P in their
PICTURE clauses.

General Rules
1. countr represents the number of characters in src-string isolated by the delimiters for the move to dest-string.

The count does not include the delimiter characters.

2. When delim is a figurative constant, its length is one character.

3. When the ALL phrase is present:

• One occurrence, or two or more contiguous occurrences, of delim (whether or not they are figurative
constants) is treated as only one occurrence.

• One occurrence of delim is moved to delim-dest when there is a DELIMITER IN phrase.

4. When any examination finds two contiguous delimiters, the current dest-string is filled with:

• Spaces, if its class is alphabetic or alphanumeric

• Zeros, if its class is numeric

5. delim can contain any characters in the computer character set.

6. Each delim is one delimiter. When delim contains more than one character, all its characters must be in src-
string (in contiguous positions and the given order) to qualify as a delimiter.

7. When the DELIMITED BY phrase contains an OR phrase, an OR condition exists between all occurrences of
delim. Each delim is compared to src-string. If a match occurs, the character in src-string is a single delimiter.
No character in src-string can be part of more than one delimiter.

386

Procedure Division

8. Each delim applies to src-string in the order it appears in the UNSTRING statement.

9. When execution of the UNSTRING statement begins, the current receiving field is the first dest-string.

10.If there is a POINTER phrase, the string of characters in src-string is examined, beginning with the position
indicated by pointr. Otherwise, examination begins with the leftmost character position.

11.If there is a DELIMITED BY phrase, examination proceeds to the right until the UNSTRING statement detects
delim. (See General Rule 6.)

12.If there is no DELIMITED BY phrase, the number of characters examined equals the size of the current dest-
string. However, if the sign of dest-string is defined as occupying a separate character position, UNSTRING
examines one less character than the size of dest-string. If dest-string is a variable-length data item, its current
size determines the number of characters examined.

13.If the UNSTRING statement reaches the end of src-string before detecting the delimiting condition,
examination ends with the last character examined.

14.The characters examined (excluding delim) are:

• Treated as an elementary alphanumeric data item

• Moved to the current dest-string according to the MOVE statement rules

15.When there is a DELIMITER IN phrase, the delimiter is:

• Treated as an elementary alphanumeric data item

• Moved to delim-dest according to the MOVE statement rules

If the delimiting condition is the end of src-string, delim-dest is space-filled.

16.The COUNT IN phrase causes the UNSTRING statement to:

• Count the number of characters examined (excluding the delimiter).

• Move the count to countr according to the elementary move rules.

17.When there is a DELIMITED BY phrase, UNSTRING continues examining characters immediately to the right
of the delimiter. Otherwise, examination continues with the character immediately to the right of the last one
transferred.

18.After data transfers to dest-string, the next dest-string becomes the current receiving field.

19.The process described in General Rules 12 to 18 repeats until either:

• There are no more characters in src-string.

• The last dest-string has been processed.

20.The UNSTRING statement does not initialize pointr or tally-ctr. The program must set their initial values before
executing the UNSTRING statement.

21.The UNSTRING statement adds one to pointr for each character it examines in src-string. When UNSTRING
execution ends, pointr contains a value equal to its beginning value plus the number of characters the statement
examined in src-string.

22.At the end of an UNSTRING statement with the TALLYING phrase, tally-ctr contains a value equal to its
beginning value plus the number of dest-string fields the statement accessed.

23.An overflow condition can arise from either of these conditions:

387

Procedure Division

• When the UNSTRING statement begins, the value of pointr is less than one or greater than the number of
characters in src-string.

• During UNSTRING execution, all dest-string fields have been processed, and there are unexamined src-
string characters.

24.When an overflow condition occurs, if there is a NOT ON OVERFLOW phrase, this phrase is ignored and
the UNSTRING operation ends. If there is an ON OVERFLOW phrase, stment executes. Otherwise, control
passes to the end of the UNSTRING statement.

25.At the end of the UNSTRING operation, when an overflow condition does not exist, the ON OVERFLOW
phrase is ignored and the UNSTRING operation ends if a NOT ON OVERFLOW phrase does not exist. If
there is a NOT ON OVERFLOW phrase, stment2 executes. After stment2 executes, control is passed to the
end of the UNSTRING statement.

26.If there is a DELIMITED BY phrase and the size of dest-string is zero characters, no characters are moved.
However, delim-dest contains the matched delimiter and countr contains the character count.

27.If there is no DELIMITED BY phrase and the size of dest-string is zero characters, no characters are moved.
The value of pointr does not change. UNSTRING continues with the next dest-string.

28.If the size of delim is zero characters, delim does not match any characters in src-string.

Additional References
• Section 6.1.4: Scope of Statements

• MOVE statement

Examples
The examples assume these data descriptions:

WORKING-STORAGE SECTION.
01 INMESSAGE PIC X(20).
01 THEDATE.
 03 THEYEAR PIC XX JUST RIGHT.
 03 THEMONTH PIC XX JUST RIGHT.
 03 THEDAY PIC XX JUST RIGHT.
01 HOLD-DELIM PIC XX.
01 PTR PIC 99.
01 FIELD-COUNT PIC 99.
01 MONTH-COUNT PIC 99.
01 DAY-COUNT PIC 99.
01 YEAR-COUNT PIC 99.

• With OVERFLOW phrase:

 DISPLAY "Enter a date: " NO ADVANCING.
 ACCEPT INMESSAGE.
 UNSTRING INMESSAGE
 DELIMITED BY "-" OR "/" OR ALL " "
 INTO THEMONTH DELIMITER IN HOLD-DELIM
 THEDAY DELIMITER IN HOLD-DELIM
 THEYEAR DELIMITER IN HOLD-DELIM
 ON OVERFLOW MOVE ALL "0" TO THEDATE.
 INSPECT THEDATE REPLACING ALL " " BY "0".
 DISPLAY THEDATE.

388

Procedure Division

Results
Enter a date: 6/13/87
870613
Enter a date: 6-13-87
870613
Enter a date: 6-13 87
870613
Enter a date: 6/13/87/2
000000
Enter a date: 1-2-3
030102

• With POINTER and TALLYING phrases:

 DISPLAY "Enter two dates in a row: " NO ADVANCING.
 ACCEPT INMESSAGE.
 MOVE 1 TO PTR.
 PERFORM DISPLAY-TWO 2 TIMES.
 GO TO DISPLAYED-TWO.
DISPLAY-TWO.
 MOVE SPACES TO THEDATE.
 MOVE 0 TO FIELD-COUNT.
 UNSTRING INMESSAGE
 DELIMITED BY "-" OR "/" OR ALL " "
 INTO THEMONTH DELIMITER IN HOLD-DELIM
 THEDAY DELIMITER IN HOLD-DELIM
 THEYEAR DELIMITER IN HOLD-DELIM
 WITH POINTER PTR
 TALLYING IN FIELD-COUNT.
 INSPECT THEDATE REPLACING ALL " " BY "0".
 DISPLAY THEDATE " " PTR " " FIELD-COUNT.
DISPLAYED-TWO.
 EXIT.

Results
Enter two dates in a row: 6/13/87 8/15/87
870613 09 03
870815 21 03
Enter two dates in a row: 10 15 87-1 1 88
871015 10 03
880101 21 03
Enter two dates in a row: 6/13/87-12/31/87
870613 09 03
871231 21 03
Enter two dates in a row: 6/13/87-12/31
870613 09 03
001231 21 02
Enter two dates in a row: 6/13/87/12/31/87
870613 09 03
871231 21 03

• With COUNT phrase:

 DISPLAY "Enter two dates in a row: " NO ADVANCING.
 ACCEPT INMESSAGE.

389

Procedure Division

 MOVE 1 TO PTR.
 PERFORM DISPLAY-TWO 2 TIMES.
 GO TO DISPLAYED-TWO.
DISPLAY-TWO.
 MOVE SPACES TO THEDATE.
 MOVE 0 TO FIELD-COUNT MONTH-COUNT DAY-COUNT YEAR-COUNT.
 UNSTRING INMESSAGE
 DELIMITED BY "-" OR "/" OR ALL " "
 INTO THEMONTH DELIMITER IN HOLD-DELIM COUNT MONTH-COUNT
 THEDAY DELIMITER IN HOLD-DELIM COUNT DAY-COUNT
 THEYEAR DELIMITER IN HOLD-DELIM COUNT YEAR-COUNT
 WITH POINTER PTR
 TALLYING IN FIELD-COUNT.
 INSPECT THEDATE REPLACING ALL " " BY "0".
 DISPLAY THEDATE " " PTR " " FIELD-COUNT
 " : " MONTH-COUNT "-" DAY-COUNT "-" YEAR-COUNT.
DISPLAYED-TWO.
 EXIT.

Results
Enter two dates in a row: 6/13/87 8/15/87
870613 09 03 : 01-02-02
870815 21 03 : 01-02-02
Enter two dates in a row: 10 15 87-1 1 88
871015 10 03 : 02-02-02
880101 21 03 : 01-01-02
Enter two dates in a row: 6/13/87-12/31/87
870613 09 03 : 01-02-02
871231 21 03 : 02-02-02
Enter two dates in a row: 6/13/87-12/31
870613 09 03 : 01-02-02
001231 21 02 : 02-02-00
Enter two dates in a row: 6/13/87/12/31/87
870613 09 03 : 01-02-02
871231 21 03 : 02-02-02

USE
USE

Function
The USE statement specifies Declarative USE procedures to handle input/output exceptions and errors. It can also
specify procedures to be executed before the program processes a specific report group.

[file-name]

is the name of a file connector described in a file description entry in a Data Division. It cannot refer to a sort
or merge file.

[group-data-name]

is the name of a report group in a report group description entry in a Data Division. It must not appear in more
than one USE statement.

390

Procedure Division

Syntax Rules

All Formats
1. A USE statement can be used only in a sentence immediately after a section header in the Procedure Division

declaratives area. It must be the only statement in the sentence. The rest of the section can contain zero, one,
or more paragraphs to define the USE procedures.

2. The USE statement itself does not execute. It defines the conditions that cause execution of the USE procedure.

Format 1
3. The ERROR and EXCEPTION syntax are equivalent and interchangeable.

Format 2
4. Of the four Report Writer Procedure Division verbs (SUPPRESS, GENERATE, INITIATE, or TERMINATE),

only the SUPPRESS statement can appear in a USE BEFORE REPORTING procedure. A PERFORM
statement in a USE BEFORE REPORTING procedure must not have GENERATE, INITIATE, or TERMINATE
statements in its range.

The USE procedure must not alter the value of any control data item.

General Rules

All Formats
1. At run time, two special precedence rules apply for the selection of a USE procedure when a program is

contained within another program. In applying these rules, only the first qualifying USE procedure is selected
for execution. The order of precedence for the selection of a USE procedure is as follows:

• First, select the applicable USE procedure within the program containing the statement that caused the
qualifying condition.

• If a USE procedure is not found in the program using the previous rule, the Run-Time System searches all
programs directly or indirectly containing that program for a USE GLOBAL procedure. This search continues
until the Run-Time System either: (a) finds an applicable USE GLOBAL procedure, or (b) finds the outermost
containing program, if there is no applicable USE GLOBAL procedure. Either condition terminates the
search.

2. A Declarative USE procedure cannot refer to a non-Declarative procedure. However, only the PERFORM
statement can transfer execution control from:

• A Declarative USE procedure to another Declarative USE procedure

• A non-Declarative procedure to a Declarative USE procedure

3. After a USE procedure executes, control returns to the next executable statement in the invoking routine, if one
is defined. Otherwise, control transfers according to the rules for Explicit and Implicit Transfers of Control.

4. A program must not execute a statement in a USE procedure that would cause execution of a USE procedure
that had been previously executed and had not yet returned control to the routine that invoked it.

Format 1
5. A USE procedure executes automatically:

391

Procedure Division

• After the system's input-output exception processing completes

• When an invalid key or at end condition results from an input-output statement that has no INVALID KEY
or AT END clause

6. If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input or output condition
occurs that would result in a nonzero value in the first character of a FILE STATUS data item. However, it does
not execute if: (a) the condition is invalid key and there is an INVALID KEY phrase, or (b) the condition is
at end, and there is an AT END phrase.

7. One input-output exception cannot cause more than one USE AFTER EXCEPTION procedure to execute.

8. More than one USE AFTER EXCEPTION procedure can relate to an input-output operation when there is one
procedure for file-name and another for the applicable open mode. In this case, only the procedure for file-name
executes. This rule applies only to USE procedures in the same program.

9. If no applicable USE procedures are found in the local program, then containing programs are searched upwards
for: (a) USE GLOBAL procedures for the file, and then (b) for USE GLOBAL procedures for the input-output
type.

10.A USE AFTER EXCEPTION procedure specifying an open mode applies to an input-output operation only
when all of the following are true:

• The open mode (INPUT, OUTPUT, I-O, or EXTEND) specified in the USE AFTER EXCEPTION procedure
is identical to the open mode in effect (that is, the open mode established by the OPEN statement).

• The file is open or in the process of being opened.

• There is no file-name declarative procedure for that file within the same program.

11.If an input-output error occurs for a file that is not open or not in the process of being opened, the only applicable
USE procedure is a file-name USE procedure.

Format 2
12.The Report Writer Control System (RWCS) executes the USE BEFORE REPORTING procedure before it

processes the named group-data-name report group. Only during the processing of the report group does
the RWCS change prior values, execute control breaks, adjust LINE-COUNTER and PAGE-COUNTER, and
present the report group.

Additional References
• Section 6.2.6: Scope of Names

• Section 6.3.1: Explicit and Implicit Procedure Division References

• Description of exception handling in the VSI COBOL User Manual.

Example

* This example assumes that SELECT and FD statements exist
* for FILE1-SEQ, FILE1-RAN, FILE1-DYN and FILE1-EXT.
* All three USE procedures are local to the program
* that hosts this fragment.
* At run-time if there is an exception on opening FILE1-RAN
* or FILE1-DYN, FILE1-ERR section can be invoked.
* If there is an exception on opening FILE1-SEQ, INPUT-ERR

392

Procedure Division

* section can be invoked. Since there is no USE procedure
* declared for the EXTEND mode or for FILE1-EXT,
* an exception on opening that file will cause an abnormal
* termination of the program. Also, since FILE1-SEQ in the
* fragment is not opened for OUTPUT mode, the OUTPUT-ERR USE
* procedure is not eligible to be invoked here.

PROCEDURE DIVISION.
DECLARATIVES.
INPUT-ERR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
INP-1.
 DISPLAY "INVOKED USE PROCEDURE FOR INPUT".
OUTPUT-ERR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT.
OUT-1.
 DISPLAY "INVOKED USE PROCEDURE FOR OUTPUT".
FILE1-ERR SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON FILE1-RAN, FILE1-DYN.
FILE1-1.
 DISPLAY "INVOKED USE PROCEDURE FOR FILES".

END DECLARATIVES.
MAIN-PROGRAM SECTION.
P0. DISPLAY "***ENTERED USE TEST PROGRAM FRAGMENT***".

 OPEN INPUT FILE1-SEQ.

 OPEN OUTPUT FILE1-RAN.

 OPEN I-O FILE1-DYN.

 OPEN EXTEND FILE1-EXT.

 ...

WRITE
WRITE

Function
The WRITE statement releases a logical record to an output or input-output file. It can also position lines vertically
on a logical page.

[rec-name]

is the name of a logical record described in the Data Division File Section. The logical record cannot be in a sort-
merge file description entry.

[src-item]

is the identifier of the data item that contains the data.

[advance-num]

393

Procedure Division

is an integer or the identifier of an unsigned data item described as an integer. Its value can be zero.

[top-of-page-name]

is a mnemonic-name equated to C01 in the SPECIAL-NAMES paragraph of the Environment Division. It
represents top-of-page and is equivalent to the PAGE phrase.

[stment]

is an imperative statement executed when the relevant condition (end-of-page or invalid key) occurs.

[stment2]

is an imperative statement executed when the relevant condition (not at end-of-page or not invalid key) occurs.

Syntax Rules
1. Format 1 must be used for sequential files.

2. Format 2 must be used for relative and indexed files.

3. If the file description entry containing rec-name has a LINAGE clause, the WRITE statement cannot have an
ADVANCING top-of-page-name phrase.

4. If there is an END-OF-PAGE phrase, the file description entry containing rec-name must have a LINAGE
clause.

5. The words END-OF-PAGE and EOP are equivalent.

6. In Format 2, there must be an INVALID KEY phrase if there is no applicable USE AFTER EXCEPTION
procedure for the file.

7. To use the ALLOWING option, the program must include these entries:

• LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

8. If src-item is a function-identifier, it must reference an alphanumeric function. When src-item is not a function-
identifier, rec-name and src-item must not reference the same storage area.

9. The ADVANCING PAGE and END-OF-PAGE phrase cannot be used in the same WRITE statement.

10.ADVANCING cannot be used with LINE SEQUENTIAL (Alpha, I64).

11.The ALLOWING clause is VSI standard file-sharing syntax, and cannot be used for a file connector that has
had X/Open standard file-sharing syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules

All Files
1. The record is no longer available in rec-name after a WRITE statement successfully executes. However, if the

associated file-name is in a SAME RECORD AREA clause, the record is available in rec-name. In this case,
the record is also available in the record areas of other file-names in the same SAME RECORD AREA clause.

2. The FROM Phrase section lists the rules for the FROM phrase.

3. For mass storage files, the WRITE statement does not affect the File Position Indicator.

394

Procedure Division

4. The WRITE statement updates the value of the FILE STATUS data item for the file.

5. A file's maximum record size is set when it is created. It cannot be changed later.

6. On a mass storage device, the number of characters required to store a logical record in a file depends on file
organization and record type. (See Technical Notes.)

7. WRITE statement execution releases a logical record to the I-O system.

8. The ALLOWING NO OTHERS option can be used only in a VSI standard manual record-locking environment.
To create a manual record-locking environment, the program must open file-name with an ALLOWING option
and specify the APPLY LOCK-HOLDING phrase of the I-O-CONTROL paragraph. If you use manual locking
(APPLY LOCK-HOLDING), then the ALLOWING NO OTHERS clause on the WRITE statement is required.

9. The ALLOWING NO OTHERS option locks the current record. No other concurrent access stream can access
this record until it is unlocked.

However, on Tru64 UNIX systems, for indexed files the WRITE statement with the ALLOWING clause does
not acquire a record lock.

10.If there is an applicable USE AFTER EXCEPTION procedure, it executes whenever an input or output condition
occurs that would result in a nonzero value in the first character of a FILE STATUS data item. However, it does
not execute if: (a) the condition is invalid key, and (b) there is an INVALID KEY phrase.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

11.The number of character positions in the record to be written must not be less than the lowest or greater than the
highest number of character positions allowed by the RECORD VARYING clause. In either case, the WRITE
statement is unsuccessful and the following occurs:

• The WRITE operation does not take place.

• The contents of the record area remain unaffected.

• The I-O status of the file is set to a value that indicates the cause of the condition.

Sequential or Line Sequential (Alpha, I64) Files
12.The file must be open in the OUTPUT or EXTEND mode when the WRITE statement executes. (See Table 6.15,

“Allowable Input-Output Statements for Sequential, Line Sequential (Alpha, I64), Relative, and Indexed
Files”.)

13.The sequence of records in a sequential file is set by the order of WRITE statement executions that create the
file. The relationship does not change, except when records are added to the end of the file.

14.For a sequential file open in the extend mode, the WRITE statement adds records to the end of the file as if the
file were open in the output mode. If the file has records, the first record written after execution of an OPEN
statement with the EXTEND phrase is the successor of the file's last record.

15.When a program tries to write beyond a sequential file's externally defined boundaries (for example,attempting
to write to a full disk device), an exception condition exists as follows:

• The contents of the record area are unaffected.

• The value of the FILE STATUS data item for the file indicates a boundary violation.

• If a USE AFTER EXCEPTION procedure applies to the file, it executes.

• If there is no applicable USE AFTER EXCEPTION procedure, the program terminates abnormally.

16.If the end of a reel/unit is recognized, and the WRITE does not exceed the externally defined file boundaries:

395

Procedure Division

• A reel/unit swap occurs.

• The Current Volume Pointer points to the file's next reel/unit.

17.If the program reaches the end of the logical page during execution of a WRITE statement with the END-OF-
PAGE phrase, stment executes. The LINAGE clause associated with the file specifies the logical end.

18.An end-of-page condition is reached when a WRITE statement with the END-OF-PAGE phrase causes printing
or spacing in the footing area of the page body.

This condition occurs when the WRITE statement causes the LINAGE-COUNTER to equal or exceed the value
in the LINAGE clause FOOTING phrase. stment then executes after rec-name is written to the file.

If this statement does not occur and the NOT END-OF-PAGE is specified, rec-name is written to the file, file
status is updated, and control is transferred to stment2.

19.An automatic page overflow condition occurs when the page body cannot fully accommodate a WRITE
statement (with or without the END-OF-PAGE phrase).

This condition occurs when WRITE statement execution would cause the LINAGE-COUNTER to exceed the
number of lines in the page body specified in the LINAGE clause. When this happens, the line is presented on
the logical page before or after (depending on the phrase) device positioning. The device is positioned to the
first line that can be written on the next logical page (as described in the LINAGE clause). stment then executes
after rec-name is written to the file.

20.If there is no LINAGE clause FOOTING phrase, the WRITE statement operates as if the FOOTING phrase
value was beyond the limits of the page. That is, the end-of-page condition occurs after the specified number
of lines per page are written. No space is reserved for a footing.

21.If there is a FOOTING phrase, and a WRITE statement would cause the LINAGE-COUNTER to exceed both
the number of lines in a logical page and the value in the LINAGE clause FOOTING phrase, the WRITE
statement operates as if there were no FOOTING phrase.

Relative Files
22.The file must be open in the OUTPUT, I-O, or EXTEND mode when the WRITE statement executes. (See

Table 6.15, “Allowable Input-Output Statements for Sequential, Line Sequential (Alpha, I64), Relative, and
Indexed Files”.)

23.When a relative file with sequential access mode is open in the output mode, the WRITE statement releases a
record to the I-O system. The first record has a relative record number of 1. Subsequent records have relative
record numbers of 2, 3, 4, and so on. If rec-name has an associated RELATIVE KEY data item, the WRITE
places the relative record number of the released record into it.

24.When a relative file with sequential access mode is open in the extend mode, the WRITE statement releases
a record to the I-O system. The first record has a relative record number one greater than the highest relative
record number existing in the file. Subsequent records have consecutively higher relative record numbers. If
rec-name has an associated RELATIVE KEY data item, the WRITE statement places the relative record number
of the released record into it.

25.When a relative file with random or dynamic access mode is open in the output mode, the program must place a
value in the RELATIVE KEY data item before executing the WRITE statement. The value is the relative record
number to associate with the record in rec-name. The WRITE statement releases the record to the I-O system.

26.When a relative file is open in the I-O mode and the access mode is random or dynamic, the program must place
a value in the RELATIVE KEY data item before executing the WRITE statement. The value is the relative
record number to associate with the record in rec-name. Executing a Format 2 WRITE statement releases the
record to the I-O system.

27.The invalid key condition exists when:

396

Procedure Division

• The access mode is random or dynamic, and the RELATIVE KEY data item specifies a record that already
exists in the file.

• The program tries to write a record beyond the externally defined file boundaries.

• The number of significant digits in the relative record number is larger than the size of the relative key data
item described for the file.

28.When the program detects an invalid key condition, WRITE statement execution is unsuccessful. The following
results occur:

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to indicate the cause of the condition.

• Program execution continues according to the rules for the invalid key condition.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

Indexed Files
29.The file must be open in the OUTPUT, I-O, or EXTEND mode when the WRITE statement executes. (See

Table 6.15, “Allowable Input-Output Statements for Sequential, Line Sequential (Alpha, I64), Relative, and
Indexed Files”.)

30.Executing a Format 2 WRITE statement releases a record to the I-O system. The contents of the record keys
enable later record access based on any defined key.

31.When the file description entry has a RECORD KEY IS clause, the prime record key value is unique unless
the DUPLICATES phrase is specified. When a program later accesses these records sequentially, the retrieval
order is the same as the order in which they were written in the program.

32.The program must set the value of the prime record key data item before executing the WRITE statement.

33.If the file is open in the sequential access mode, the program must release records in ascending or descending
order of prime record key values, depending on the sort order specified in the RECORD KEY clause. If the file
is open in the extend mode, the first released record must have a prime record key value that logically follows
the last record in the file according to the prime key sort order.

34.If the file is open in the random or dynamic access mode, the program can release records in any order.

35.When the file description entry has an ALTERNATE RECORD KEY clause, the alternate record key value is
unique unless the program specifies the DUPLICATES phrase. When a program later accesses these records
sequentially, the retrieval order is the same as the order in which they were written in the program.

36.The invalid key condition occurs for any of the following:

• The file is open in the sequential access mode and in the OUTPUT or EXTEND mode, and the prime record
key value does not logically follow the prime record key value of the previous record.

• The file is open in the OUTPUT, EXTEND, or I-O mode, the prime record key value duplicates an existing
record's prime record key value, and the program does not specify duplicates on the prime record key.

• The file is open in the OUTPUT, EXTEND, or I-O mode, and the value of an alternate record key (for which
duplicates are not allowed) duplicates the value of the corresponding data item in an existing record.

• The program tries to write a record beyond the externally defined file boundaries.

37.When the program detects an invalid key condition, WRITE statement execution is unsuccessful. The following
results occur:

397

Procedure Division

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to indicate the cause of the condition.

• Program execution continues according to the rules for the invalid key condition.

See the rules for the INVALID KEY phrase, Section 6.6.10, “INVALID KEY Phrase”.

Technical Notes
• WRITE statement execution can result in these FILE STATUS data item values:

File Status File Organization Access Method Meaning

00 All All Write is successful
02 Ind All Created duplicate primary

or alternate key
21 Ind Seq Attempted key value not

in prime key sort order
(invalid key)

22 Ind, Rel All Duplicate key (invalid
key)

24 Ind, Rel All Boundary violation
(relative or indexed files)
or relative record number
is too large for relative key
data item (invalid key)

34 Seq Seq Boundary violation
(sequential files)

44 All All Boundary violation. An
attempt was made to write
a record that is larger
than the largest or smaller
than the smallest record
allowed

48 All All File not open, or
incompatible open mode

92 Ind, Rel All Record locked by another
process

30 All All All other permanent errors

In order to detect "device full" (file status 34) on a sequential WRITE operation, each WRITE needs to be
followed by a call to SYS$FLUSH to ensure that an attempt has been made to write any buffered records to
disk. For more information, at the OpenVMS system prompt, type

HELP RMS $FLUSH

Additional References
• LOCK-HOLDING Phrase in Section : APPLY Clause in I-O-CONTROL paragraph in Chapter 4, Environment

Division

• Section 6.1.4: Scope of Statements

• Section 6.6.8: I-O Status

398

Procedure Division

• Section 6.6.10: INVALID KEY Phrase

• Section 6.6.11: FROM Phrase

• OPEN statement

• UNLOCK statement

END PROGRAM
END PROGRAM

Function
The END PROGRAM header indicates the end of the named COBOL source program. Alternatively, the end of
a named COBOL source program can be indicated by the end of the program's Procedure Division.

[program-name]

must contain 1 to 31 characters and follow the rules for user-defined words. It must be identical to a program-
name declared in a preceding PROGRAM-ID paragraph.

Syntax Rules
1. An inside PROGRAM-ID/END PROGRAM pair must be contained within the outside pair.

2. The END PROGRAM header must be present in every program that either contains or is contained within
another program.

3. The END PROGRAM header indicates the end of a specific COBOL source program.

4. The END PROGRAM header starts in Area A.

5. The only COBOL statements that can follow an END PROGRAM header are as follows:

• An Identification Division header of another program

• Another END PROGRAM header

The last END PROGRAM header must reference the outermost containing program.

6. If a program includes an END PROGRAM header and if it is not contained in another program, the next COBOL
statement, if any, must be the Identification Division header of another program to be compiled.

Additional Reference
PROGRAM-ID paragraph in Chapter 3, Identification Division

Examples
1. This separately compiled program (PROG-NAME-A) contains one program (PROG-NAME-B) .

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-A.
 PROCEDURE DIVISION.
 ...

399

Procedure Division

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 PROCEDURE DIVISION.
 ...

 END PROGRAM PROG-NAME-B.
 END PROGRAM PROG-NAME-A.

2. This separately compiled program (PROG-NAME-A) contains eight other programs through . Also, is
contained within , and is contained within . , , and are contained within . , , and are directly
contained within .

 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-A.
 …
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-B.
 …
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-C.
 …
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-D.
 …
 END PROGRAM PROG-NAME-D.
 END PROGRAM PROG-NAME-C.
 END PROGRAM PROG-NAME-B.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-F.
 …
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-G.
 …
 END PROGRAM PROG-NAME-G.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-H.
 …
 END PROGRAM PROG-NAME-H.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-I.
 …
 END PROGRAM PROG-NAME-I.
 END PROGRAM PROG-NAME-F.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PROG-NAME-J.
 …
 END PROGRAM PROG-NAME-J.
 END PROGRAM PROG-NAME-A.

400

Intrinsic Functions

Chapter 7. Intrinsic Functions
Data processing problems frequently require the use of values not directly accessible in the data storage associated
with a program. These data values must be derived through operations on other data. Instead of having to write code
to specify many common operations step by step, the programmer can use intrinsic functions. An intrinsic function
is treated as a temporary elementary data item that contains a temporary data value to be derived automatically at
the time of reference during execution of the program.

The uses of the intrinsic functions can be summarized briefly in the following listing by category:

CATEGORY
FUNCTIONS

Scientific/Mathematical ACOS, ASIN, ATAN, COS, FACTORIAL, LOG,
LOG10, MOD, REM, SIN, SQRT, SUM, TAN

Relational MAX, MIN, ORD-MAX, ORD-MIN

String Manipulation LOWER-CASE, NUMVAL, NUMVAL-C,
REVERSE, UPPER-CASE

Date Manipulation CURRENT-DATE, DATE-OF-INTEGER, DATE-
TO-YYYYMMDD, DAY-TO-YYYYDDD, DAY-
OF-INTEGER, INTEGER-OF-DATE, INTEGER-
OF-DAY, TEST-DATE-YYYYMMDD, TEST-DAY-
YYYYDDD, WHEN-COMPILED, YEAR-TO-YYYY

Statistical/Accounting ANNUITY, MEAN, MEDIAN, MIDRANGE,
PRESENT-VALUE, RANGE,STANDARD-
DEVIATION, VARIANCE

Other ARGCOUNT (OpenVMS), CHAR, INTEGER,
INTEGER-PART, LENGTH, ORD, RANDOM

Later in this chapter (in : Function Descriptions) you will find a comprehensive table (Table 7.1, “Intrinsic
Functions”) of functions, including their types, arguments, and values returned. Following the table are complete
descriptions, including formats, of the individual functions in alphabetic order.

Intrinsic Function
Intrinsic Function

Description
A call to an intrinsic function is constructed as a function-identifier made up of the word FUNCTION and a name, as
well as any applicable arguments and modifiers. The name is one of those shown in Table 7.1, “Intrinsic Functions”.
An argument (see the description in the argument section) is selected according to application requirements.

A function-identifier is a syntactically correct combination of character strings and separators that uniquely
references the data item resulting from the evaluation of a function. Although intrinsic functions are treated as
elementary data items, they cannot be receiving operands.

A function-identifier that references an alphanumeric function can generally be specified wherever a sending
identifier is permitted and wherever a reference to a function is not specifically prohibited by general-format rules.
(For example, the rules for the CALL statement prohibit a function from being referenced in a CALL statement
as an argument.) An integer or numeric function can be used anywhere an arithmetic expression (defined in
Section 6.4, “Arithmetic Expressions”) can be used.

General Format

401

Intrinsic Functions

FUNCTION function-name [({argument}…)] [reference-modifier]

[function-name]

is one of the names listed in the first column of Table 7.1, “Intrinsic Functions”. A function-name must be specified
as part of a function-identifier. Most function-names are not reserved words, and can be used in a program outside
the context of a function.

[argument]

is an identifier, a literal, or an arithmetic expression. It complies with the specific rules governing the number,
class, and category of arguments for the function. If it is an identifier, it can be subscripted, qualified, or reference-
modified, and it can be a function-identifier. Functions may have between 0 and 250 arguments as specified by
the definition of each function. The arguments in an argument list may be separated by a comma. Arguments are
evaluated individually, from left to right.

Most intrinsic functions require one or more arguments. The programmer must specify arguments of the proper
type and number and within the legal constraints for the function; otherwise, the result of the statement may be
undefined.

[reference-modifier]

can be specified only for alphanumeric functions. It specifies the beginning character position to be selected in
the resulting data item and optionally the length of the resulting data item. (For more information on reference
modification, see Section 6.2.3, “Reference Modification”.)

Functions and Subscripting
An argument of an intrinsic function that permits a variable number of arguments can be a generically subscripted
table or portion of a table. Generic, or ALL, subscripting (available only for intrinsic function arguments) is the
use of the word ALL to specify all elements in one or more dimensions of a table. (A table element is a data item
that contains or is subordinate to an OCCURS clause; if it is an OCCURS DEPENDING ON clause, the range of
values is determined by the object of the clause.) Additional arguments, if any, of the function may or may not
be table names. The evaluation of an ALL subscript must result in at least one argument; otherwise the result of
executing the statement is undefined.

The order of the implicit specification of each occurrence of a table element is from left to right. This process is
spelled out in detail in the following paragraph:

The first (or leftmost) specification is the identifier with each subscript specified by ALL replaced by one, and the
next specification is the same identifier with the rightmost subscript specified by ALL incremented by one. This
process continues with the rightmost ALL subscript being incremented by one for each implicit specification until
the rightmost ALL subscript has been incremented through its range of values. If there are any additional ALL
subscripts, the ALL subscript immediately to the left of the rightmost ALL is incremented by one, the rightmost
ALL is reset to one, and the process of varying the rightmost ALL subscript is repeated. The ALL subscript to the
left of the rightmost ALL subscript is incremented by one through its range of values. For each additional ALL
subscript, this process is repeated in turn until the leftmost ALL subscript has been incremented by one through
its range of values. If the ALL subscript is associated with an OCCURS DEPENDING ON clause, the range of
values is determined by the object of that clause.

The reference modifier (if any) of an argument with an ALL subscript applies to each of the implicitly specified
elements of the table. See Chapter 6: Procedure Division for the general format of ALL subscripting.

When one subscript of a multidimensional table is ALL, every other subscript must be one of the following:

Another ALL subscript
A positive integer literal
The data-name of a numeric integer elementary item (optionally followed by a plus or minus sign and an integer
literal)
An index-name (optionally followed by a plus or minus sign and an integer literal)

402

Intrinsic Functions

The functions that permit generic subscripting of arguments are the following:

MAX
MEAN
MEDIAN
MIDRANGE
MIN
ORD-MAX
ORD-MIN
PRESENT-VALUE
RANGE
STANDARD-DEVIATION
SUM
VARIANCE

See MAX and SUM for examples of generically subscripted arguments.

Function Descriptions
There are three types of functions, based on the type of their resultant values, as follows:

• Alphanumeric—A function whose resultant value is composed of a string of one or more characters from the
computer's character set, and whose implicit usage is DISPLAY

• Integer—A function whose resultant value is a number that cannot have any nonzero digits to the right of the
decimal point

• Numeric—A function whose resultant value is a number that may have nonzero digits to the right of the decimal
point

Table 7.1, “Intrinsic Functions” lists the intrinsic functions, along with their types, their arguments, and the values
they return. Complete descriptions of the functions, arranged alphabetically, follow.

Table 7.1. Intrinsic Functions

Function
Number and Type of
Arguments

Function Type Value Returned

ACOS 1 numeric, num Numeric Arccosine of num
ANNUITY 1 numeric, num, and 1

integer, int
Numeric Ratio of annuity paid

for each of int periods
at interest of num to
initial investment of one
monetary unit

ARGCOUNT (OpenVMS) None Integer Number of arguments
passed to the COBOL
program

ASIN 1 numeric, num Numeric Arcsine of num
ATAN 1 numeric, num Numeric Arctangent of num
CHAR 1 integer, int Alphanumeric Character in position

int of program collating
sequence

COS 1 numeric, num Numeric Cosine of num
CURRENT-DATE None Alphanumeric Current date and time
DATE-OF-INTEGER 1 integer Integer Standard date equivalent

(YYYYMMDD) of
integer date 5

403

Intrinsic Functions

Function
Number and Type of
Arguments

Function Type Value Returned

DATE-TO-YYYYMMDD 1 or 2 integer Integer YYYYMMDD date
converted from
YYMMDD date

DAY-OF-INTEGER 1 integer Integer YYYYDDD date
equivalent of integer date 5

DAY-TO-YYYYDDD 1 or 2 integer Integer YYYYDDD date
converted from YYDDD
date

FACTORIAL 1 integer, int Integer Factorial of int
INTEGER 1 numeric, num Integer The greatest integer not

greater than num
INTEGER-OF-DATE 1 integer Integer Integer date 5 equivalent

of standard date
(YYYYMMDD)

INTEGER-OF-DAY 1 integer Integer Integer date 5 equivalent
of date in YYYYDDD
format

INTEGER-PART 1 numeric, num Integer Integer part of num
LENGTH 1 alphabetic or numeric or

alphanumeric data item, or
1 nonnumeric literal

Integer Length of argument

LOG 1 numeric, num Numeric Natural logarithm of num
LOG10 1 numeric, num Numeric Logarithm to base 10 of

num
LOWER-CASE 1 alphabetic or 1

alphanumeric
Alphanumeric All letters in the argument

set to lowercase
MAX 1 or more alphabetic and/

or alphanumeric, or 1
or more integer and/or
numeric

Depends on arguments 6 Value of maximum
argument

MEAN 1 or more numeric Numeric Arithmetic mean of
arguments

MEDIAN 1 or more numeric Numeric Median of arguments
MIDRANGE 1 or more numeric Numeric Mean of minimum and

maximum arguments
MIN 1 or more alphabetic and/

or alphanumeric, or 1
or more integer and/or
numeric

Depends on arguments 6 Value of minimum
argument

MOD 2 integer, int-1 and int-2 Integer Value of int-1 modulo
int-2

NUMVAL 1 alphanumeric Numeric Numeric value of simple
numeric string

NUMVAL-C 1 or 2 alphanumeric Numeric Numeric value of numeric
string with optional
commas and currency sign

404

Intrinsic Functions

Function
Number and Type of
Arguments

Function Type Value Returned

ORD 1 alphabetic or 1
alphanumeric

Integer Ordinal position of the
argument in collating
sequence

ORD-MAX 1 or more alphabetic, or 1
or more numeric, or 1 or
more alphanumeric

Integer Ordinal position of
maximum argument

ORD-MIN 1 or more alphabetic, or 1
or more numeric, or 1 or
more alphanumeric

Integer Ordinal position of
minimum argument

PRESENT-VALUE 1 numeric, num-1; and
1 or more additional
numeric, num-2

Numeric Present value of a series
of future period-end
amounts, num-2, at a
discount rate of num-1

RANDOM 1 integer or none Numeric Pseudo-random number
RANGE 1 or more integer, or 1 or

more numeric
Integer or numeric
depending on arguments

Value of maximum
argument minus value of
minimum argument

REM 2 numeric, num-1 and
num-2

Numeric Remainder of num-1/
num-2

REVERSE 1 alphabetic or 1
alphanumeric

Alphanumeric Reverse order of the
characters of the argument

SIN 1 numeric, num Numeric Sine of num
SQRT 1 numeric, num Numeric Square root of num
STANDARD-
DEVIATION

1 or more numeric Numeric Standard deviation of
arguments

SUM 1 or more integer or 1 or
more numeric

Integer or numeric
depending on arguments

Sum of arguments

TAN 1 numeric, num Numeric Tangent of num
TEST-DATE-
YYYYMMDD

1 integer Integer 0,1,2, or 3, indicating
whether the date is a valid
date in the Gregorian
calendar, and reason if
invalid

TEST-DAY-YYYYDDD 1 integer Integer 0, 1, or 2, indicating
whether the Julian date
is a valid date in the
Gregorian calendar, and
reason if invalid

UPPER-CASE 1 alphabetic or 1
alphanumeric

Alphanumeric All letters in the argument
set to uppercase

VARIANCE 1 or more numeric Numeric Variance of argument
WHEN-COMPILED None Alphanumeric Date and time program

was compiled
YEAR-TO-YYYY 1 or 2 integer Integer 4-digit year, converted

from 2-digit year
5An integer date is a positive integer representing the number of days after December 31, 1600, in the Gregorian calendar.
6A function that has only alphabetic and/or alphanumeric arguments is type alphanumeric. A function that has only integer arguments is type
integer. A function that has both integer and numeric arguments is type numeric.

405

Intrinsic Functions

ACOS
ACOS

Description
The ACOS function returns a numeric value in radians that approximates the arccosine of the argument.

General Format
FUNCTION ACOS (arg)

[arg]

is a numeric argument with a value greater than or equal to -1 and less than or equal to +1.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the arccosine of arg and is greater than or equal to 0 and less than
or equal to π (approximately 3.14159).

Example
COMPUTE RSULT = FUNCTION ACOS (.85).

The value returned and stored in RSULT (a numeric data item) is a number that approximates the arccosine of .85.

ANNUITY
ANNUITY

Description
The ANNUITY function (annuity immediate) returns a numeric value that approximates the ratio of an annuity
paid at the end of each period for the number of periods specified (by the second argument) to an initial investment
of one. Interest is earned at the rate specified (by the first argument), and is applied at the end of the period, before
the payment.

General Format
FUNCTION ANNUITY (interest-rate num-periods)

[interest-rate]

is a numeric argument with a value greater than or equal to 0, representing the interest rate applied at the end of
the period before the payment.

[num-periods]

is a positive integer argument representing the number of periods.

Rules
1. The type of this function is numeric.

406

Intrinsic Functions

2. When the value of interest-rate is 0, the value of the function is the approximation of 1 / num-periods.

3. When the value of interest-rate is not 0, the value of the function is the approximation of interest-rate / (1 –
(1 + interest-rate) ** (– num-periods)).

Example
COMPUTE RSULT = FUNCTION ANNUITY (INTEREST-RATE, NUM-PERIODS).

INTEREST-RATE is a numeric data item, and NUM-PERIODS is a numeric integer data item. If the value of
INTEREST-RATE is 0 and the value of NUM-PERIODS is 6, RSULT has a value approximating 1/6. If the value
of INTEREST-RATE is .11 and the value of NUM-PERIODS is 6, RSULT (a numeric data item) has a value of
approximately 0.2364.

ARGCOUNT (OpenVMS Only)
ARGCOUNT (OpenVMS Only)

Description
The ARGCOUNT function returns a numeric integer equal to the number of arguments passed to the VSI COBOL
program.

General Format
FUNCTION ARGCOUNT

Rules
1. The type of this function is integer.

2. The returned value represents the actual number of arguments passed to the VSI COBOL program that contains
the function.

Example
IF FUNCTION ARGCOUNT = 3
 PERFORM PROCESS-OPTIONAL-3RD-ARGUMENT.

If there are three arguments passed to the VSI COBOL program containing the ARGCOUNT function, a third
argument supplied with the COBOL program calling command will be parsed and processed.

Additional Reference
Refer to the Argument Information Register in the OpenVMS Calling Standard.

ASIN
ASIN

Description
The ASIN function returns a numeric value in radians that approximates the arcsine of the argument.

407

Intrinsic Functions

General Format
FUNCTION ASIN (arg)

[arg]

is a numeric argument with a value greater than or equal to -1 and less than or equal to +1.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the arcsine of arg and is greater than or equal to - π/2 and less than
or equal to + π/2. (π is approximately 3.14159.)

Example
COMPUTE RSULT = FUNCTION ASIN (.675).

The value returned and stored in RSULT (a numeric data item) is a number that approximates the arcsine of .675.

ATAN
ATAN

Description
The ATAN function returns a numeric value in radians that approximates the arctangent of the argument.

General Format
FUNCTION ATAN (arg)

[arg]

is a numeric argument.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the arctangent of arg and is greater than - π/2 and less than + π/2.
(π is approximately 3.14159.)

Example
COMPUTE RSULT = FUNCTION ATAN (MEASUREMENT-IN-RADIANS).

MEASUREMENT-IN-RADIANS and RSULT are numeric data items. The value returned and stored in RSULT
is a number that approximates the arctangent of the value of MEASUREMENT-IN-RADIANS.

CHAR
CHAR

408

Intrinsic Functions

Description
The CHAR function returns a one-character alphanumeric value that is a character in the program collating
sequence having the ordinal position equal to the value of the argument.

General Format
FUNCTION CHAR (position)

[position]

is a positive integer argument representing the ordinal position of the desired character in the program collating
sequence, and having a value less than or equal to the number of positions in the collating sequence.

Rules
1. The type of this function is alphanumeric.

2. The character returned as the function value is the character in the program collating sequence. (See the
information on the ALPHABET clause in Chapter 4, Environment Division.)

3. If more than one character has the same position in the program collating sequence, the character returned as
the function value is that of the first literal specified for that character position in the ALPHABET clause.

Example
MOVE FUNCTION CHAR (13) TO FORM-FEED-CH.

The character occupying the 13th position in the program collating sequence (that is, a form feed in the default
collating sequence) is returned and stored in FORM-FEED-CH, which is an alphanumeric data item one character
in length. (The numeric representation of a character is not the same as its ordinal position. Numeric representation
starts at 0, whereas ordinals start at 1. Always add 1 to the numeric value of the desired character.)

COS
COS

Description
The COS function returns a numeric value that approximates the cosine of an angle or arc, expressed in radians,
that is specified by the argument.

General Format
FUNCTION COS (angle)

[angle]

is a numeric argument having the value of the measurement in radians of an angle or arc.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the cosine of angle, and is greater than or equal to -1 and less than
or equal to +1.

409

Intrinsic Functions

Example
COMPUTE COSIN-RSLT = FUNCTION COS (X).

X and COSIN-RSULT are numeric data items. If the value of X is 3, the approximate cosine of an angle of 3
radians is moved to COSIN-RSLT.

CURRENT-DATE
CURRENT-DATE

Description
The CURRENT-DATE function returns a 21-character alphanumeric value that represents the calendar date and
the time of day.

General Format
FUNCTION CURRENT-DATE

Rules
1. The type of this function is alphanumeric.

2. The contents of the character positions returned, numbered from left to right, are as follows:

Character Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.
5-6 Two numeric digits of the month of the year, in the range 01 through 12.
7-8 Two numeric digits of the day of the month, in the range 01 through 31.
9-10 Two numeric digits of the hours past midnight, in the range 00 through

23.
11-12 Two numeric digits of the minutes past the hour, in the range 00 through

59.
13-14 Two numeric digits of the seconds past the minute, in the range 00

through 59.
15-16 Two numeric digits of the hundredths of a second past the second, in the

range 00 through 99.
17-21 The value 00000. (Reserved for future use.)

Example
The COBOL syntax for this function (similar to the example) is common to all platforms:

MOVE FUNCTION CURRENT-DATE TO RSULT.

199701101652313200000

This is a sample value returned by the example CURRENT-DATE function. Reading from left to right, it shows

• The year, 1997

• The month, January

410

Intrinsic Functions

• The day of the month, the 10th

• The time of day, 16:52 (4:52 P.M.)

• The seconds, 31, and the hundredths of seconds, 32, after 16:52:31

DATE-OF-INTEGER
DATE-OF-INTEGER

Description
The DATE-OF-INTEGER function converts a date from an integer date form representing the number of days
after December 31, 1600, to standard date form (YYYYMMDD).

General Format
FUNCTION DATE-OF-INTEGER (num-days)

[num-days]

is a positive integer argument that represents a number of days succeeding December 31, 1600, in the Gregorian
calendar.

Rules
1. The type of this function is integer.

2. The returned value represents the ISO Standard date, in the form YYYYMMDD, that is equivalent to the integer
specified. YYYY is an integer in the range 1601 through 9999. MM is an integer in the range 1 through 12.
DD is an integer in the range 1 through 31.

Example
COMPUTE RSULT = FUNCTION DATE-OF-INTEGER (20).

The value returned and stored in RSULT (a numeric integer data item) is

16010120

This value represents January 20, 1601, which is 20 days after December 31, 1600.

DATE-TO-YYYYMMDD
DATE-TO-YYYYMMDD

Description
The DATE-TO-YYYYMMDD function converts a date in the form YYMMDD to the form YYYYMMDD. An
optional second argument, when added to the current year (at the time the program executes), defines the ending
year of a 100-year interval. This interval determines to what century the two-digit year belongs.

General Format
FUNCTION DATE-TO-YYYYMMDD(arg-1 [arg-2])

411

Intrinsic Functions

[arg-1]

is a nonnegative integer between 0 and 999999.

[arg-2]

is an integer. Its value, when added to the current year, must be between 1700 and 9999. If it is omitted, the default
value is 50.

Rules
1. The type of this function is integer.

2. The returned value is an integer representing YYYYMMDD and is calculated as follows:

 YY = int(arg-1 / 10000)
 mmdd = mod (arg-1, 10000)
 return FUNCTION YEAR-TO-YYYY(YY, arg-2) * 10000 + mmdd

Example
IF FUNCTION DATE-TO-YYYYMMDD (801123, 50) = 19801123
 DISPLAY "correct".
IF FUNCTION DATE-TO-YYYYMMDD (801123, 100) = 20801123
 DISPLAY "correct".
IF FUNCTION DATE-TO-YYYYMMDD (801123, -100) = 18801123
 DISPLAY "correct".

DATE-TO-YYYYMMDD implements a sliding window algorithm. To use it for a fixed window, you can specify
arg-2 as follows:

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then in 1999 arg-2 has the value 101. If arg-1 is 501123, the returned-value is
20501123. If arg-1 is 991123, the returned-value is 20991123.

DAY-OF-INTEGER
DAY-OF-INTEGER

Description
The DAY-OF-INTEGER function converts a date from an integer date form representing the number of
days succeeding December 31, 1600, to a date form (sometimes called "Julian") representing year and days
(YYYYDDD).

General Format
FUNCTION DAY-OF-INTEGER (num-days)

[num-days]

is a positive integer argument that represents a number of days succeeding December 31, 1600, in the Gregorian
calendar.

Rules
1. The type of this function is integer.

412

Intrinsic Functions

2. The returned value is an integer of the form YYYYDDD, where YYYY represents a year in the Gregorian
calendar and DDD represents the day of that year. YYYY is an integer in the range 1601 through 9999. DDD
is an integer in the range 1 through 366.

Example
COMPUTE RSULT = FUNCTION DAY-OF-INTEGER (28).

The value returned and stored in RSULT (a numeric integer data item) shows the 28th day of the year 1601 (that
is, 28 days succeeding December 31, 1600), as follows:

1601028

DAY-TO-YYYYDDD
DAY-TO-YYYYDDD

Description
The DAY-TO-YYYYDDD function converts a date in the form YYDDD to the form YYYYDDD. An optional
second argument, when added to the current year (at the time the program executes), defines the ending year of a
100-year interval. This interval determines to what century the two-digit year belongs.

General Format
FUNCTION DAY-TO-YYYYDDD (arg-1 [arg-2])

[arg-1]

is a nonnegative integer between 0 and 99999.

[arg-2]

is an integer. Its value, when added to the current year, must be between 1700 and 9999. If it is omitted, the default
value is 50.

Rules
1. The type of this function is integer.

2. The returned value is an integer representing YYYYDDD and is calculated as follows:

 YY = int(arg-1 / 1000)
 ddd = mod (arg-1, 1000)
 return FUNCTION YEAR-TO-YYYY(YY, arg-2) * 1000 + ddd

Example
IF FUNCTION DAY-TO-YYYYDDD (80111, 50) = 1980111
 DISPLAY "correct".
IF FUNCTION DAY-TO-YYYYDDD (80111, 100) = 2080111
 DISPLAY "correct".
IF FUNCTION DAY-TO-YYYYDDD (80111, -100) = 1880111
 DISPLAY "correct".

DAY-TO-YYYYDDD implements a sliding window algorithm. To use it for a fixed window, you can specify
arg-2 as follows:

413

Intrinsic Functions

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then for 1999 arg-2 has the value 101. If arg-1 is 50111, the returned-value is 2050111.
If arg-1 is 99111, the returned-value is 2099111.

FACTORIAL
FACTORIAL

Description
The FACTORIAL function returns an integer that is the factorial of the argument specified.

General Format
FUNCTION FACTORIAL (num)

[num]

is 0 or a positive integer argument whose value is less than or equal to 19.

Rules
1. The type of this function is integer.

2. If the value of the argument is 0, the value 1 is returned.

3. If the value of the argument is positive, its factorial is returned.

Example
COMPUTE RSULT = FUNCTION FACTORIAL (NUM).

NUM and RSULT are numeric integer data items. If NUM has the value of 5, the value returned and stored in
RSULT is 120.

(5! = 5 * 4 * 3 * 2 * 1 = 120.)

INTEGER
INTEGER

Description
The INTEGER function returns the greatest integer value that is less than or equal to the argument.

General Format
FUNCTION INTEGER (num)

[num]

is a numeric argument.

414

Intrinsic Functions

Rule
The type of this function is integer.

Example
COMPUTE RSULT = FUNCTION INTEGER (NUM).

If the value of NUM (a numeric data item) is -1.5, the value returned and stored in RSULT (a numeric integer data
item) is -2, because -2 is the greatest integer that is less than or equal to -1.5. If the value of NUM is +1.5, the
value returned and stored in RSULT is +1, because +1 is the greatest integer that is less than or equal to +1.5.

INTEGER-OF-DATE
INTEGER-OF-DATE

Description
The INTEGER-OF-DATE function converts a date from standard date form (YYYYMMDD) to an integer date
form representing the number of days after December 31, 1600.

General Format
FUNCTION INTEGER-OF-DATE (num)

[num]

is an integer argument of the form YYYYMMDD representing a date subsequent to December 31, 1600.

Rules
1. The type of this function is integer.

2. The value of the argument is obtained from the calculation (YYYY * 10,000) + (MM * 100) + DD. YYYY
represents the year in the Gregorian calendar, and must be an integer in the range 1601 through 9999. MM
represents a month and is an integer in the range 1 through 12. DD represents a day and is an integer in the
range 1 through 31; the value of DD must be valid for the specified month and year combination.

3. The returned value is an integer that is the number of days the specified date succeeds December 31, 1600,
in the Gregorian calendar.

Examples
1. COMPUTE RSULT = FUNCTION INTEGER-OF-DATE (NUM).

NUM and RSULT are numeric integer data items. If NUM has the value 16010215 (that is, February 15, 1601),
the value returned and stored in RSULT is 46 (the 46th day after December 31, 1600).

2. COMPUTE DAYS-IN-BILLING-CYCLE =
 FUNCTION INTEGER-OF-DATE(THIS-ENDING-DATE) -
 FUNCTION INTEGER-OF-DATE(LAST-ENDING-DATE)

DAYS-IN-BILLING-CYCLE, THIS-ENDING-DATE, and LAST-ENDING-DATE are numeric integer items.
If THIS-ENDING-DATE has the value 19970301 (representing March 1, 1997), and LAST-ENDING-DATE
has the value 19970201 (representing February 1, 1997), the value returned is 28.

415

Intrinsic Functions

INTEGER-OF-DAY
INTEGER-OF-DAY

Description
The INTEGER-OF-DAY function converts a date in the Gregorian calendar from year-day (YYYYDDD) form
(sometimes called "Julian") to an integer date form representing the number of days after December 31, 1600.

General Format
FUNCTION INTEGER-OF-DAY (num)

[num]

is an integer argument of the form YYYYDDD representing a date subsequent to December 31, 1600.

Rules
1. The type of this function is integer.

2. The value of the argument is obtained from the calculation (YYYY * 1000) + DDD. YYYY represents the year
in the Gregorian calendar, and must be an integer in the range 1601 through 9999. DDD represents a day and
is an integer in the range 1 through 366; the value of DDD must be valid for the specified year.

3. The returned value is an integer that is the number of days the specified date succeeds December 31, 1600,
in the Gregorian calendar.

Example
COMPUTE RSULT = FUNCTION INTEGER-OF-DAY (1601365).

The value returned and stored in RSULT (a numeric integer data item) is 365, which is the number of days
succeeding December 31, 1600, and which represents December 31, 1601.

INTEGER-PART
INTEGER-PART

Description
The INTEGER-PART function returns an integer that is the integer portion of the argument.

General Format
FUNCTION INTEGER-PART (num)

[num]

is a numeric argument.

Rules
1. The type of this function is integer.

2. If the value of the argument is 0, the returned value is 0.

416

Intrinsic Functions

3. If the value of the argument is positive, the returned value is the greatest integer less than or equal to the value
of the argument.

4. If the value of the argument is negative, the returned value is the least integer greater than or equal to the value
of the argument.

Example
COMPUTE RSULT = FUNCTION INTEGER-PART (NUM).

NUM is a numeric data item, and RSULT is a numeric integer data item. If NUM has the value 0, the value returned
is 0. If NUM has the value +1.5, the value returned is +1. If NUM has the value -1.5, the value returned is -1 (the
least integer greater than or equal to the value of -1.5).

LENGTH
LENGTH

Description
The LENGTH function returns an integer equal to the length of the argument in character positions.

FUNCTION LENGTH (arg)

[arg]

is a nonnumeric literal or a data item of any class or category.

Rules
1. The type of this function is integer.

2. The value returned is an integer equal to the length of the argument in character positions. However, if the
argument is a group data item containing a variable occurrence data item, the returned value is an integer
determined by evaluation of the data item specified in the DEPENDING phrase of the OCCURS clause for that
variable occurrence data item. This evaluation is accomplished according to the rules in the OCCURS clause
dealing with the data item as a sending data item.

3. The returned value includes implicit FILLER characters, if any.

4. For items that are not USAGE DISPLAY, the returned value represents the allocated physical storage in bytes
as described in Tables 5.12 and 5.13.

Examples
1. COMPUTE RSULT = FUNCTION LENGTH ("J. R. Donaldson").

The value 15 is returned and stored in RSULT (a numeric integer data item).

2. 01 RECORD-SIZE PIC 9(9).
01 RECORD1.
 05 REC-TYPE PIC 9(4) VALUE 23.
 05 REC-CNT PIC 9(4) VALUE 50.
 05 A-REC PIC X(30) OCCURS 1 TO 100 TIMES
 DEPENDING ON REC-CNT.
 .
 .
 .

417

Intrinsic Functions

COMPUTE RECORD-SIZE = FUNCTION LENGTH (RECORD1).
CALL 'SUBR' USING RECORD1, RECORD-SIZE.

RECORD-SIZE is a numeric integer data item. The value returned by the function and stored in RECORD-
SIZE is 1508. (The computation is 4 + 4 + (50 * 30) = 1508.)

LOG
LOG

Description
The LOG function returns a numeric value that approximates the logarithm to the base e (natural log) of the
argument.

General Format
FUNCTION LOG (num)

[num]

is a positive numeric argument.

Rules
1. The type of this function is numeric.

2. The returned value is an approximation of the logarithm to the base e of the argument.

Example
COMPUTE RSULT = FUNCTION LOG (NUM).

NUM and RSULT are numeric data items; the value of NUM must be greater than 0. The value returned and stored
in RSULT is an approximation of the logarithm to the base e of NUM.

LOG10
LOG10

Description
The LOG10 function returns a numeric value that approximates the logarithm to the base 10 of the argument.

General Format
FUNCTION LOG10 (num)

[num]

is a positive numeric argument.

Rules
1. The type of this function is numeric.

418

Intrinsic Functions

2. The returned value is an approximation of the logarithm to the base 10 of the argument.

Example
COMPUTE RSULT = FUNCTION LOG10 (NUM).

NUM and RSULT are numeric data items; the value of NUM must be greater than 0. The value returned and stored
in RSULT is an approximation of the logarithm to the base 10 of NUM.

LOWER-CASE
LOWER-CASE

Description
The LOWER-CASE function returns a character string that is the same length as the argument with each uppercase
letter in the argument replaced by the corresponding lowercase letter.

General Format
FUNCTION LOWER-CASE (string)

[string]

is an alphabetic or alphanumeric argument at least one character in length.

Rules
1. The type of this function is alphanumeric.

2. The returned value is the same character string as the argument, except that each uppercase letter in the argument
is replaced by the corresponding lowercase letter.

Example
MOVE FUNCTION LOWER-CASE (STR) TO LC-STR.

If STR (an alphanumeric data item six characters in length) contains the value "Autumn" the value returned and
stored in LC-STR (also an alphanumeric data item six characters in length) is "autumn"; if STR contains "fall98"
the value returned is unchanged ("fall98").

MAX
MAX

Description
The MAX function returns the contents of the argument that contains the maximum value.

General Format
FUNCTION MAX ({argument}…)

[argument]

419

Intrinsic Functions

is an alphabetic, alphanumeric, integer, or numeric argument.

Rules
1. The arguments must be all alphabetic, all alphanumeric, all integer, or all numeric, except that integer and

numeric arguments can be mixed and alphabetic and alphanumeric arguments can be mixed.

2. The type of the function depends on the arguments, as follows:

Arguments Function Type

Alphabetic and/or alphanumeric Alphanumeric
Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

3. The returned value consists of the contents of the argument having the greatest value, as determined by
comparisons made according to the rules for simple conditions. (See Chapter 6, Procedure Division.)

4. If more than one argument has the same value, and that value is the maximum, the returned value consists of
the contents of the leftmost of these arguments.

5. If there is only one argument, the returned value consists of the contents of that argument.

6. If the type of the function is alphanumeric, the size of the returned value is the same as the size of the argument
selected as the maximum.

Examples
1. MOVE FUNCTION MAX ("A", "B", "C") TO MAX-LETTER-OUT.
MOVE FUNCTION MAX (1, 2, 3) TO MAX-NUMBER-OUT.

MAX-LETTER-OUT is alphabetic or alphanumeric, and receives the value "C"; MAX-NUMBER-OUT is
integer and receives the value 3.

2. COMPUTE ITEMC = (ITEMA + FUNCTION MAX (ITEMB, 10)).

If ITEM A and ITEMB both contain the value 1, this statement results in ITEMC having the value 11.

IF FUNCTION MAX (A, B, C) > 100 …

This is equivalent to the following more complex code:

IF A >= B
 IF A >= C
 MOVE A TO TMP
 ELSE
 MOVE C TO TMP
ELSE
 IF B >= C
 MOVE B TO TMP
 ELSE
 MOVE C TO TMP.
IF TMP > 100 ...

3. The following example shows generic subscripting with reference modification:

05 TABLE1 PIC X(7) OCCURS 3 TIMES.
 .
 .

420

Intrinsic Functions

 .
MOVE "XAAAAAQ" TO TABLE1(1).
MOVE "XBBBBBQ" TO TABLE1(2).
MOVE "XCCCCCQ" TO TABLE1(3).
MOVE FUNCTION MAX(TABLE1(ALL)(2:5)) TO RSULT.

The value "CCCCC" is returned and stored in RSULT, an alphanumeric data item. The reference modifier,
(2:5), applies to each element implicitly specified by the ALL subscript. Thus,

 FUNCTION MAX(TABLE1(ALL)(2:5))

is equivalent to

FUNCTION MAX(TABLE1(1)(2:5),
 TABLE1(2)(2:5),
 TABLE1(3)(2:5))

MEAN
MEAN

Description
The MEAN function returns a numeric value that is the arithmetic mean (average) of its arguments.

General Format
FUNCTION MEAN ({arg} …)

[arg]

is a numeric argument.

Rules
1. The type of this function is numeric.

2. The return value is the arithmetic mean of the arguments in the argument list; that is, it is the sum of the
arguments divided by the number of arguments.

Examples
1. COMPUTE AVERAGE-VALUE = FUNCTION MEAN (9, 2, 6, 7, 1).

The value returned and stored in AVERAGE-VALUE (a numeric data item) is 5 (the sum of the arguments
divided by the number of arguments).

2. COMPUTE MEAN-ANSWER = FUNCTION MEAN(A, B, C).

MEAN-ANSWER, A, B, and C are numeric data items. This code is equivalent to

COMPUTE MEAN-ANSWER = (A + B + C) / 3.

MEDIAN
MEDIAN

421

Intrinsic Functions

Description
The MEDIAN function returns the median value of a list of numbers, represented by the arguments. This value
is such that at least half of the values are greater than or equal to the returned value, and at least half are less
than or equal.

General Format
FUNCTION MEDIAN ({num}…)

[num]

is a numeric argument.

Rules
1. The type of this function is numeric.

2. If the number of arguments is odd, the returned value is the middle occurrence in the sorted list.

3. If the number of arguments is even, the returned value is the arithmetic mean of the values referenced by the
two middle occurrences in the sorted list.

4. The comparisons used to arrange the argument values in sorted order are made according to the rules for simple
conditions. (See Chapter 6, Procedure Division.)

Examples
1. COMPUTE RSULT = FUNCTION MEDIAN (1, 1, 9, 2, 1).

The value returned and stored in RSULT (a numeric data item) is 1.

2. COMPUTE RSULT = FUNCTION MEDIAN (1, 1, 9, 2).

The value returned and stored in RSULT is 1.5.

MIDRANGE
MIDRANGE

Description
The MIDRANGE (middle range) function returns a numeric value that is the arithmetic mean (average) of the
values of the minimum argument and the maximum argument.

General Format
FUNCTION MIDRANGE ({num}…)

[num]

is a numeric argument.

Rules
1. The type of this function is numeric.

422

Intrinsic Functions

2. The returned value is the arithmetic mean of the greatest argument value and the least argument value. The
comparisons used to determine the greatest and least values are made according to the rules for simple
conditions. (See Chapter 6, Procedure Division.)

3. The values of the arguments that are neither the greatest nor the least in value do not affect the value returned.

Example
COMPUTE RSULT = FUNCTION MIDRANGE (1, 2, 50, 4, 3).

The value returned and stored in RSULT (a numeric data item) is 25.5, which is the arithmetic mean of the greatest
and least arguments; that is, the sum of 50 and 1 divided by 2.

MIN
MIN

Description
The MIN function returns the content of the argument that contains the minimum value.

General Format
FUNCTION MIN ({argument}…)

[argument]

is an alphabetic, alphanumeric, integer, or numeric argument.

Rules
1. The arguments must be all alphabetic, all alphanumeric, all integer, or all numeric, except that integer and

numeric arguments can be mixed and alphabetic and alphanumeric arguments can be mixed.

2. The type of the function depends on the arguments, as follows:

Arguments Function Type

Alphabetic and/or alphanumeric Alphanumeric
Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

3. The returned value consists of the contents of the argument having the least value, as determined by comparisons
made according to the rules for simple conditions. (See Chapter 6, Procedure Division.)

4. If more than one argument has the same value, and that value is the minimum, the returned value consists of
the contents of the leftmost of these arguments.

5. If there is only one argument, the returned value consists of the contents of that argument.

6. If the type of the function is alphanumeric, the size of the returned value is the same as the size of the argument
selected as the minimum.

Example
COMPUTE ITEMC = (ITEMA + FUNCTION MIN (ITEMB, 10)).

423

Intrinsic Functions

If ITEMA and ITEMB both contain the value 1, this statement results in ITEMC having the value 2.

MOD
MOD

Description
The MOD function returns the value of argument-1 modulo argument-2.

General Format
FUNCTION MOD (argument-1 argument-2)

[argument-1]

is an integer argument.

[argument-2]

is an integer argument whose value cannot be 0.

Rules
1. The type of this function is integer.

2. The returned value is an integer value and is defined as the following:

argument-1 – (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

(The INTEGER function returns the greatest integer value that is less than or equal to the argument. See
INTEGER for more information.)

Example
COMPUTE RSULT = FUNCTION MOD (ARGUMENT-1, ARGUMENT-2).

ARGUMENT-1 and ARGUMENT-2 are numeric integer data items. Following are the expected results for some
values of ARGUMENT-1 and ARGUMENT-2:

ARGUMENT-1 ARGUMENT-2 RETURN

#11 #5 #1
-11 #5 #4
#11 -5 -4
-11 -5 -1

NUMVAL
NUMVAL

Description
The NUMVAL function returns the numeric value represented by the character string specified by the argument.
Leading and trailing spaces are ignored.

424

Intrinsic Functions

General Format
FUNCTION NUMVAL (arg)

[arg]

is an alphanumeric argument whose content has one of the following two formats:

Format 1
[space] { + | - } [space] { digit [. [digit]] | . digit } [space]

Format 2
[space] { digit [. [digit]] | . digit } [space] { + | - | CR | DB } [space]

where space is a string of 0 or more spaces, and digit is a string of 1 to 18 digits.

Rules
1. The type of this function is numeric.

2. The total number of digits in the argument must not exceed 18.

3. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, a comma must
be used in the argument rather than a decimal point.

4. The returned value is the numeric value represented by the argument.

5. The number of digits returned is 18.

Examples
1. COMPUTE RSULT = FUNCTION NUMVAL ("4540").

The value returned and stored in RSULT (a numeric data item) is 4540.

2. MOVE "-123.49" TO OLD-ID.
COMPUTE NEW-ID = 2 + FUNCTION NUMVAL (OLD-ID).

OLD-ID is an alphanumeric data item, and NEW-ID is a numeric data item. The value returned by the function
is the numeric value -123.49, which is added to 2, giving the sum -121.49, which is stored in NEW-ID.

NUMVAL-C
NUMVAL-C

Description
The NUMVAL-C function returns the numeric value represented by the character string specified by the first
argument. Any currency sign found in the character string and any commas preceding the decimal point are ignored
in determining the result.

General Format
FUNCTION NUMVAL-C (arg-1 [arg-2])

425

Intrinsic Functions

[arg-1]

is an alphanumeric argument whose content has one of the following two formats:

Format 1
[space] + - [space] [cs] [space] digit [, [digit] …[. [digit]] . digit
 [space]

Format 2
[space] [cs] [space] digit [, [digit] …[. [digit]] . digit [space] + - CR
 DB [space]

where space is a string of 0 or more spaces, cs is a string of 1 or more characters specified by arg-2, and digit
is a string of 1 or more digits.

[arg-2]

(if specified) is an alphanumeric argument.

Rules
1. The type of this function is numeric.

2. The total number of digits in the first argument must not exceed 18.

3. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-NAMES paragraph, the functions
of the comma and decimal point in the first argument are reversed.

4. If the optional second argument is not specified, the character used for cs is the currency symbol specified for
the program.

5. The returned value is the numeric value represented by the first argument.

6. The number of digits returned is 18.

Example
COMPUTE RSULT = FUNCTION NUMVAL-C ("#1,000.00", "#").

The numeric value returned and stored in RSULT (a numeric data item) is 1000.

ORD
ORD

Description
The ORD function returns an integer value that is the ordinal position of the argument in the collating sequence
for the program. The lowest ordinal position is 1.

General Format
FUNCTION ORD (arg)

[arg]

426

Intrinsic Functions

is an alphabetic or alphanumeric argument one character in length.

Rules
1. The type of this function is integer.

2. The value returned is the ordinal position of the specified character in the program collating sequence. (See the
information on the ALPHABET clause in Chapter 4, Environment Division.)

Example
COMPUTE POSITION = FUNCTION ORD (SINGLE-CHAR).

If SINGLE-CHAR (an alphabetic or alphanumeric data item) has the value "A", the integer representing the ordinal
position of "A" in the program collating sequence (66 for native) is the value returned and stored in POSITION
(a numeric integer data item). (The numeric representation of a character is not the same as its ordinal position.
Numeric representation starts at 0, whereas ordinals start at 1. Thus, the ordinal value of a character is always 1
greater than its numeric value.)

ORD-MAX
ORD-MAX

Description
The ORD-MAX function returns a value that is the ordinal number of the argument that contains the maximum
value.

General Format
FUNCTION ORD-MAX ({arg}…)

[arg]

is an alphabetic, alphanumeric, integer, or numeric argument.

Rules
1. The type of this function is integer.

2. The arguments must be all alphabetic, all alphanumeric, all integer, or all numeric, except that integer and
numeric arguments can be mixed and alphabetic and alphanumeric arguments can be mixed.

3. The returned value is the ordinal number that corresponds to the position of the argument having the greatest
value in the argument series.

4. The comparisons used to determine the greatest value are made according to the rules for simple conditions.
(See Chapter 6, Procedure Division.)

5. If more than one argument has the same greatest value, the number returned corresponds to the position of the
leftmost argument having that value.

6. If there is only one argument, the value returned is 1.

Example
COMPUTE RSULT = FUNCTION ORD-MAX (A, B, C).

427

Intrinsic Functions

A, B, and C are alphanumeric data items one character in length. If the value "A" is in A, "B" is in B, and "C"
is in C, the value returned and stored in RSULT (a numeric data item) is 3, because the third argument, C, has
the greatest value.

ORD-MIN
ORD-MIN

Description
The ORD-MIN function returns a value that is the ordinal number of the argument that contains the minimum
value.

General Format
FUNCTION ORD-MIN ({arg}…)

[arg]

is an alphabetic, alphanumeric, integer, or numeric argument.

Rules
1. The type of this function is integer.

2. The arguments must be all alphabetic, all alphanumeric, all integer, or all numeric, except that integer and
numeric arguments can be mixed and alphabetic and alphanumeric arguments can be mixed.

3. The returned value is the ordinal number that corresponds to the position of the argument having the least value
in the argument series.

4. The comparisons used to determine the least value are made according to the rules for simple conditions. (See
Chapter 6, Procedure Division.)

5. If more than one argument has the same least value, the number returned corresponds to the position of the
leftmost argument having that value.

6. If there is only one argument, the value returned is 1.

Example
COMPUTE RSULT = FUNCTION ORD-MIN (A, B, C).

A, B, and C are alphanumeric data items one character in length. If the value "A" is in A, "B" is in B, and "C"
is in C, the value returned and stored in RSULT (a numeric data item) is 1, because the first argument, A, has
the least value.

PRESENT-VALUE
PRESENT-VALUE

Description
The PRESENT-VALUE function returns a value that approximates the present value of a series of future period-
end amounts at a discount rate. The discount rate is specified by the first argument, and the future period-end
amount(s) by one or more subsequent arguments.

428

Intrinsic Functions

FUNCTION PRESENT-VALUE (rate {amt}…)

[rate]

is a numeric argument greater than -1 representing the discount rate.

[amt]

is a numeric argument representing a future period-end amount.

Rules
1. The type of this function is numeric.

2. The period-end amounts specified must be for periods of equal duration, and the discount rate must be the rate
per period (for example, if each period is a year, then use the annual discount rate).

3. The returned value is an approximation of the summation of a series of calculations with each term in the
following form:

amt / (1 + rate) ** n

There is one term for each occurrence of amt. The exponent, n, is incremented from 1 by 1 for each term in the
series. If there are four arguments (rate, amt-1, amt-2, amt-3), the calculation is as follows:

present-value = amt-1 / (1 + rate) ** 1 + amt-2 / (1 + rate) ** 2 +
 amt-3 / (1 + rate) ** 3

Example
COMPUTE RSULT = FUNCTION PRESENT-VALUE (DISCOUNT-RATE, 2000).

DISCOUNT-RATE and RSULT are numeric data items. If DISCOUNT-RATE has the value 0.08, the value
returned and stored in RSULT is approximately 1851.85.

RANDOM
RANDOM

Description
The RANDOM function returns a numeric value that is a pseudo-random number from a rectangular distribution.

General Format
FUNCTION RANDOM [(seed)]

[seed]

is an optional integer argument with the value of 0 or a positive integer, used as the seed value to generate a
sequence of pseudo-random numbers. The range of seed values that results in unique sequences of pseudo-random
numbers is 0 through 2147483647.

Rules
1. The type of this function is numeric.

429

Intrinsic Functions

2. If the optional seed argument is not specified by the first reference to this function in the run unit, the seed
value is 0.

3. If any subsequent reference to this function in the run unit does not specify the seed argument, the value returned
is the next number in the current sequence of pseudo-random numbers.

4. If a subsequent reference to this function in the run unit does specify the seed argument, a new sequence of
pseudo-random numbers is started.

5. The returned value is greater than or equal to 0 and less than 1.

6. For a given seed value, the sequence of pseudo-random numbers is always the same.

Example
COMPUTE RSULT-1 = FUNCTION RANDOM (12345).
 .
 .
 .
COMPUTE RSULT-2 = FUNCTION RANDOM.
 .
 .
 .
COMPUTE RSULT-3 = FUNCTION RANDOM (12345).

RSULT-1, RSULT-2, and RSULT-3 are numeric data items. Assuming the three sentences in the example are in
the same run unit, the values returned and stored in RSULT-1 and RSULT-3 are the same. RSULT-2 has a different
value consisting of the next number in the sequence that was started by the first reference to the function.

RANGE
RANGE

Description
The RANGE function returns a value that is equal to the value of the maximum argument minus the value of the
minimum argument.

General Format
FUNCTION RANGE({num}…)

[num]

is a numeric or integer argument.

Rules
1. The type of this function depends upon the argument types, as follows:

Arguments Function Type

Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

2. The returned value is equal to the greatest value in the series of arguments minus the least value in the series.

430

Intrinsic Functions

3. The comparisons used to determine the greatest and least values are made according to the rules for simple
conditions. (See Chapter 6, Procedure Division.)

4. If only one argument is specified, the value returned is 0.

Example
COMPUTE RSULT = FUNCTION RANGE (4, 8, 10).

The value returned and stored in RSULT (a numeric integer data item) is 6.

REM
REM

Description
The REM function returns a numeric value that is the remainder of the first argument divided by the second
argument.

General Format
FUNCTION REM (arg-1 arg-2)

[arg-1]

is a numeric or integer argument.

[arg-2]

is a numeric or integer argument whose value cannot be 0.

Rules
1. The type of this function is numeric.

2. The returned value is the remainder of the first argument divided by the second argument, and is defined as
the following expression:

arg-1 – (arg-2 * FUNCTION INTEGER-PART (arg-1 / arg-2))

(The INTEGER-PART function returns an integer that is the integer portion of its argument. See INTEGER-
PART.)

Examples
1. COMPUTE RSULT = FUNCTION REM (3, 2).

The value returned and stored in RSULT (a numeric data item) is 1.

2. COMPUTE RSULT = FUNCTION REM (4, 2).

The value returned and stored in RSULT is 0.

REVERSE
REVERSE

431

Intrinsic Functions

Description
The REVERSE function returns a character string of exactly the same length as the argument and whose characters
are exactly the same as those of the argument, except that they are in reverse order.

General Format
FUNCTION REVERSE (arg)

[arg]

is an alphabetic or alphanumeric argument at least one character in length.

Rules
1. The type of this function is alphanumeric.

2. If the argument is a character string of length n, the returned value is a character string of length n.

3. When 1 is less than or equal to j and j is less than or equal to n, the character in position j of the returned value
is the character from position (n–j)+1 of the argument.

Example
MOVE FUNCTION REVERSE (STR) TO RSULT.

STR and RSULT are alphanumeric data items four characters in length. If STR contains the value "ABCD" then
"DCBA" is the value returned and stored in RSULT.

If the value "AB" is moved to the four-character data item STR, then STR will actually contain "AB##" with two
trailing spaces. Then the REVERSE function returns the value "##BA" with two leading spaces.

SIN
SIN

Description
The SIN function returns a numeric value that approximates the sine of an angle or arc, expressed in radians, that
is specified by the argument.

General Format
FUNCTION SIN (angle)

[angle]

is a numeric argument having the value of the measurement in radians of an angle or arc.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the sine of angle, and is greater than or equal to -1 and less than
or equal to +1.

432

Intrinsic Functions

Example
COMPUTE SIN-RSLT = FUNCTION SIN (X).

If the value of X is 3, the approximate sine of an angle of 3 radians is moved to SIN-RSLT (a numeric data item).

SQRT
SQRT

Description
The SQRT function returns a numeric value that approximates the square root of the argument.

General Format
FUNCTION SQRT (num)

[num]

is a numeric or integer argument whose value must be 0 or positive.

Rules
1. The type of this function is numeric.

2. The returned value is the absolute value of the approximation of the square root of the argument.

Example
COMPUTE RSULT = FUNCTION SQRT (NUM).

NUM and RSULT are numeric data items. If NUM has the value 4, the value returned and stored in RSULT is 2.

STANDARD-DEVIATION
STANDARD-DEVIATION

Description
The STANDARD-DEVIATION function returns a numeric value that approximates the standard deviation of its
arguments.

General Format
FUNCTION STANDARD-DEVIATION ({arg}…)

[arg]

is a numeric or integer argument.

Rules
1. The type of this function is numeric.

433

Intrinsic Functions

2. The returned value is the approximation of the standard deviation of the argument series.

3. The returned value is calculated as follows:

a. The difference between each argument's value and the arithmetic mean (average) of the argument series is
calculated and squared.

b. The values obtained are then added together. This sum is divided by the number of values in the argument
series.

c. The square root of the quotient obtained is then calculated. The returned value is the absolute value of this
square root.

4. If the argument series consists of only one value, the returned value is 0.

Example
COMPUTE RSULT = FUNCTION STANDARD-DEVIATION (A, B, C).

A, B, C, and RSULT are numeric data items. If A has the value 1, B has 2, and C has 12, the standard deviation
of these values (approximately 4.96655) is returned and stored in RSULT.

SUM
SUM

Description
The SUM function returns a value that is the sum of the arguments.

General Format
FUNCTION SUM ({arg}…)

[arg]

is an integer or numeric argument.

Rules
1. The type of this function depends on the argument types, as follows:

Arguments Function Type

Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

2. The returned value is the sum of the arguments.

Examples
1. COMPUTE RSULT = FUNCTION SUM (A, B, C).

A, B, C, and RSULT are numeric or numeric integer data items. If A has the value +4, B -2, and C +1, the sum
of +3 is the value returned and stored in RSULT.

2. COMPUTE TOTAL-OUT =
 FUNCTION SUM(FUNCTION SQRT(X),

434

Intrinsic Functions

 FUNCTION MOD(Y, Z),
 A * B,
 FUNCTION ACOS(1)).

This example shows functions used as arguments to another function. The data items are all numeric or numeric
integer. The value returned and stored in TOTAL-OUT is the approximate value of the result of adding the
values returned by the functions SQRT, MOD, and ACOS to another arithmetic expression, A * B.

3. The following example shows two arguments that are tables, with generic (ALL) subscripting, and a third
argument that is a literal:

FUNCTION SUM(A(ALL), B(ALL, 2), 4)

The number of subscripts shows that A is a one-dimensional table and B is a two-dimensional table. If A
has three occurrences, then A(ALL) is a set consisting of the elements A(1), A(2), and A(3). If B has two
occurrences in its outer dimension, then B(ALL, 2) is a set consisting of the elements in B(1, 2) and B(2, 2).

If A has three elements altogether with the values 2 in A(1), 3 in A(2), and 3 in A(3), and if B has the values
9 in B(1, 2) and 3 in B(2, 2), then the value returned is 24—the sum of 2, 3, 3 (from table A), 9, 3 (from table
B), and 4 (the third argument).

TAN
TAN

Description
The TAN function returns a numeric value that approximates the tangent of an angle or arc, expressed in radians,
that is specified by the argument.

General Format
FUNCTION TAN (arg)

[arg]

is a numeric or integer argument.

Rules
1. The type of this function is numeric.

2. The returned value is the approximate tangent of the angle specified.

Example
COMPUTE TAN-RSLT = FUNCTION TAN (X).

X and TAN-RSULT are numeric data items. If the value of X is 3, the approximate tangent of an angle of 3 radians
is moved to TAN-RSLT.

TEST-DATE-YYYYMMDD
TEST-DATE-YYYYMMDD

Description

435

Intrinsic Functions

The TEST-DATE-YYYYMMDD function tests whether a standard date in the form YYYYMMDD is a valid date
in the Gregorian calendar.

General Format
FUNCTION TEST-DATE-YYYYMMDD (arg)

[arg]

is an integer.

Rules
1. The type of this function is integer.

2. If the year is not within the range 1601 through 9999, the function returns a 1.

Otherwise, if the month is not within the range 1 through 12, the function returns a 2.

Otherwise, if the number of days is invalid for the given month, the function returns a 3.

Otherwise, the function returns a 0 to indicate the date is a valid date in the form YYYYMMDD.

Example
IF FUNCTION TEST-DATE-YYYYMMDD (123456789) = 1
 DISPLAY "correct - invalid year (12345)".
IF FUNCTION TEST-DATE-YYYYMMDD (19952020) = 2
 DISPLAY "correct - invalid mm (20)".
IF FUNCTION TEST-DATE-YYYYMMDD (19950229) = 3
 DISPLAY "correct - invalid dd (29)".
IF FUNCTION TEST-DATE-YYYYMMDD (20040229) = 0
 DISPLAY "correct - valid YYYYMMDD".

TEST-DAY-YYYYDDD
TEST-DAY-YYYYDDD

Description
The TEST-DAY-YYYYDDD function tests whether a Julian date in the form YYYYDDD is a valid date in the
Gregorian calendar.

General Format
FUNCTION TEST-DAY-YYYYDDD (arg)

[arg]

is an integer.

Rules
1. The type of this function is integer.

2. If the year is not within the range 1601 through 9999, the function returns a 1.

436

Intrinsic Functions

Otherwise, if the number of days is invalid for the given year, the function returns a 2.

Otherwise, the function returns a 0 to indicate the date is a valid date in the form YYYYDDD.

Example
IF FUNCTION TEST-DAY-YYYYDDD (12345678) = 1
 DISPLAY "correct - invalid year (12345)".
IF FUNCTION TEST-DAY-YYYYDDD (1995366) = 2
 DISPLAY "correct - invalid ddd (366)".
IF FUNCTION TEST-DAY-YYYYDDD (2004366) = 0
 DISPLAY "correct - valid YYYYDDD".

UPPER-CASE
UPPER-CASE

Description
The UPPER-CASE function returns a character string that is the same length as the argument with each lowercase
letter in the argument replaced by the corresponding uppercase letter.

General Format
FUNCTION UPPER-CASE (string)

[string]

is an alphabetic or alphanumeric argument at least one character in length.

Rules
1. The type of this function is alphanumeric.

2. The returned value is the same character string as the argument, except that each lowercase letter in the argument
is replaced by the corresponding uppercase letter.

Examples
1. MOVE FUNCTION UPPER-CASE (STR) TO UC-STR.

If STR (an alphanumeric data item six characters in length) contains the value "Autumn" the value returned and
stored in UC-STR (also an alphanumeric data item six characters in length) is "AUTUMN"; if STR contains
"FALL98" the value returned is unchanged ("FALL98").

2. ACCEPT NAME-FIELD.
WRITE RECORD-OUT
 FROM FUNCTION UPPER-CASE(NAME-FIELD).

The value in NAME-FIELD is made all-uppercase, unless it was already all-uppercase, in which case it is
unchanged. Any nonalphabetic characters remain unchanged.

VARIANCE
VARIANCE

437

Intrinsic Functions

Description
The VARIANCE function returns a numeric value that approximates the variance of its arguments.

General Format
FUNCTION VARIANCE ({arg}…)

[arg]

is an integer or numeric argument.

Rules
1. The type of this function is numeric.

2. The returned value is the approximation of the variance of the argument series, and is defined as the square
of the standard deviation of the argument series. (For a definition of standard deviation, see the description of
the STANDARD-DEVIATION function.)

3. If the argument series consists of only one value, the returned value is 0.

Examples
1. COMPUTE RSULT = FUNCTION VARIANCE (A).

The value returned and stored in RSULT is 0, because there is only one argument.

2. COMPUTE RSULT = FUNCTION VARIANCE (A, B, C).

If A has the value 1, B has 2, and C has 12, the value returned and stored in RSULT is approximately 24.667.
This represents the variance, which is the square of the standard deviation of these arguments; the calculation
is described in the description of the STANDARD-DEVIATION function. In the above examples, A, B, C, and
RSULT are numeric data items.

WHEN-COMPILED
WHEN-COMPILED

Description
The WHEN-COMPILED function returns the date and time the program was compiled.

General Format
FUNCTION WHEN-COMPILED

Rules
1. The type of this function is alphanumeric.

2. The returned value is the date and time of compilation of the source program that contains this function. If
the program is a contained program, the returned value is the compilation date and time associated with the
separately compiled program in which it is contained.

438

Intrinsic Functions

3. The returned value denotes the same time as the compilation date and time provided in the listing of the source
program and in the generated object code for the source program. The representation differs, and the precision
can differ, as shown in the second example.

4. The contents of the character positions returned, numbered from left to right, are as follows:

Character Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.
5-6 Two numeric digits of the month of the year, in the range 01 through 12.
7-8 Two numeric digits of the day of the month, in the range 01 through 31.
9-10 Two numeric digits of the hours past midnight, in the range 00 through

23.
11-12 Two numeric digits of the minutes past the hour, in the range 00 through

59.
13-14 Two numeric digits of the seconds past the minute, in the range 00

through 59.
15-16 Two numeric digits of the hundredths of a second past the second, in the

range 00 through 99.
17-21 The value 00000. (Reserved for future use.)

Examples
MOVE FUNCTION WHEN-COMPILED TO VERSION-STAMP.

The value returned and stored in VERSION-STAMP (an alphanumeric data item) is the date and time of the
program's compilation.

199701101652313200000

This is a sample value returned by the WHEN-COMPILED function. Reading from left to right, it shows:

• The year, 1997

• The month, January

• The day of the month, the 10th

• The time of day, 16:52 (4:52 P.M.)

• The seconds, 31, and the hundredths of seconds, 32, after 16:52:31

This compilation date and time as shown on the compiler listing (which does not show hundredths of seconds)
is as follows:

10-Jan-1997 16:52:31

YEAR-TO-YYYY
YEAR-TO-YYYY

Description
The YEAR-TO-YYYY function converts a two-digit year to a four-digit year. An optional second argument, when
added to the current year (at the time the program executes), defines the ending year of a 100-year interval. This
interval determines to what century the two-digit year belongs.

439

Intrinsic Functions

General Format
FUNCTION YEAR-TO-YYYY (arg-1 [arg-2])

[arg-1]

is a nonnegative integer between 0 and 99.

[arg-2]

is an integer. Its value, when added to the current year, must be between 1700 and 9999. If it is omitted, the default
value is 50.

Rules
1. The type of this function is integer.

2. The returned value is an integer representing a four-digit year calculated as follows:

 max-year = current-yyyy + arg-2
 if mod(max-year, 100) >= arg-1
 return (arg-1 + 100 * int(max-year / 100))
 else
 return (arg-1 + 100 * int(max-year / 100) - 1)

Example
 IF FUNCTION YEAR-TO-YYYY (80, 50) = 1980
 DISPLAY "correct".
 IF FUNCTION YEAR-TO-YYYY (80, 100) = 2080
 DISPLAY "correct".
 IF FUNCTION YEAR-TO-YYYY (80, -100) = 1880
 DISPLAY "correct".

YEAR-TO-YYYY implements a sliding window algorithm. To use it for a fixed window, you can specify arg-2
as follows:

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then for 1999 arg-2 has the value 101. If arg-1 is 50, the returned-value is 2050. If
arg-1 is 99, the returned-value is 2099.

440

Source Text Manipulation

Chapter 8. Source Text Manipulation
Source programs can copy frequently used COBOL text from a Tru64 UNIX directory containing library files, an
OpenVMS Librarian file, a COBOL library file, or (for OpenVMS) Oracle CDD/Repository. The COPY statement
can include text without change, or it can change the text as it is copied into the source program.

The COPY statement REPLACING phrase changes text in the copying process. It matches arguments against the
text to determine which text to replace. The matching procedure operates on text-words.

The REPLACE statement changes text in the source program. It matches source text to the pseudo-text specified
in the REPLACE statement and changes the specified text when a match is detected.

8.1. Text-Word Definition Rules
A text-word is a character or sequence of characters in a COBOL library, source program, pseudo-text, or
repository. It can be any of the following:

1. A literal, including the opening and closing quotation marks for nonnumeric literals

2. A hexadecimal literal, including the opening and closing delimiters

3. A separator other than:

A space
A pseudo-text delimiter
The opening and closing quotation marks of a nonnumeric literal

4. Any other sequence of contiguous characters, bounded by separators, except:

Comment lines
Separators

Examples
These examples show how the compiler interprets COBOL text in terms of text-words. The rule letters refer to
the text-word definition rules.

Text Interpretation

MOVE One text-word (Rule 4).
MOVE ITEMA TO ITEMB Four text-words.
MOVE ITEMA TO ITEMB. Five text-words. The separator period is a text-word

(Rule 3).
PIC S9(4)V9(6) Nine text-words. Each parenthesis is a separator, and

therefore a text-word. The nine text-words are PIC, S9,
(, 4,), V9, (, 6, and).

“PIC S9(4)V9(6)” One text-word (Rule 1).
X “4865784C6974” One text-word (Rule 2).
ITEMA. Two text-words. ITEMA and the separator period are

text words.
==ITEMA. #== Two text-words. The pseudo-text delimiters are not

text-words (Rule 3). However, the separator period is a
text-word.

==ITEMA.== One text-word. The pseudo-text delimiters are not
text-words. The punctuation character period is part

441

Source Text Manipulation

Text Interpretation
of the character-string "ITEMA."; the period is not a
separator because a space does not follow it.

COPY
COPY

Function
The COPY statement includes text in a COBOL program.

General Formats

[text-name]

is the name of a COBOL library file available during compilation; or, if library-name is specified, is the name of
a text record within the library file. (See Technical Notes.)

[library-name]

is the directory that contains library files on the Tru64 UNIX system; or, on OpenVMS, is the name of the
OpenVMS Librarian library file that contains text-name. (See Technical Notes.)

[pseudo-text-1]

are text-matching arguments that the compiler compares against text-words in the library text.

[pseudo-text-2]

are replacement items that the compiler inserts into the source program.

[record-name (OpenVMS)]

is a partial or complete Oracle CDD/Repository pathname. It specifies the Oracle CDD/Repository record
description to be copied into the source program. (See Technical Notes.)

Syntax Rules
1. A Format 1 COPY statement can be used anywhere that a character-string or separator (other than a closing

quotation mark) can be used in a program.

2. On OpenVMS, a Format 2 COPY statement can appear only in the File, Working-Storage, or Linkage Sections.

3. A space must precede the word COPY.

4. The COPY statement must be terminated by the separator period.

5. pseudo-text-1 must contain at least one text-word.

6. pseudo-text-2 can contain zero, one, or more text-words.

7. word-1 or word-2 can be any COBOL word.

8. pseudo-text-1 must not consist entirely of a separator comma or a separator semicolon.

442

Source Text Manipulation

General Rules

Format 1
1. On Tru64 UNIX, when both text-name and library-name are specified, library-name refers to the directory

containing library files; text-name identifies a specific file within the directory.

2. On OpenVMS, when both text-name and library-name are specified, library-name refers to an OpenVMS
Librarian library file; text-name identifies a text record within the library file.

3. When only text-name is used, it identifies a file that contains library text.

4. Library text must follow the source reference format rules. Library text and source program text formats must
be the same; that is, both must be ANSI format, or both must be terminal format.

5. On Tru64 UNIX, the COPY statement references source text from a directory containing library files or from
a COBOL library file.

Format 2 (OpenVMS)
6. record-name refers to a record description stored in Oracle CDD/Repository.

7. The compiler translates the record description associated with record-name to COBOL source text. If the source
program containing the COPY statement is in terminal format, the translated record description is in terminal
format; otherwise, the record description is translated to ANSI format.

Both Formats
8. On OpenVMS, the COPY statement references source text from an OpenVMS Librarian file, a COBOL library

file, or the Oracle CDD/Repository.

9. The compiler evaluates the COBOL source program after processing all COPY statements.

10.The COPY statement does not change the original source program text file.

11.The COPY statement causes the compiler to copy the source text associated with text-name into the program.
The source text logically replaces the COPY statement, beginning with the word COPY and ending with the
punctuation character period (inclusive).

12.If there is no REPLACING phrase, the compiler copies the source text without modification.

13.If there is a REPLACING phrase, the compiler changes the source text as it copies it. The compiler replaces
each successfully matched occurrence of a text-matching argument in the source text by the corresponding
replacement item.

14.For the purposes of matching, the compiler treats each text-matching argument as pseudo-text that contains
identifier-1, word-1, or literal-1.

15.The comparison operation starts with the leftmost source text text-word and the first text-matching argument.
The compiler compares the entire text-matching argument to an equivalent number of consecutive source text
text-words.

16.A text-matching argument matches the source text only if the ordered sequence of text-words that forms the
text-matching argument is equal, character for character, to the ordered sequence of source text text-words.

In the matching operation, the compiler treats each occurrence or combination of the following items in source
text as a single space:

• Separator comma

• Separator semicolon

443

Source Text Manipulation

• A sequence of one or more separator spaces

• A blank line

• A comment line

17.If no match occurs, the compiler repeats the comparison with each successive text-matching argument in the
REPLACING phrase until either:

• A match occurs.

• There are no more text-matching arguments.

18.If no match occurs after the compiler compares all text-matching arguments, the compiler copies the leftmost
source text text-word into the source program. The next source text text-word then becomes the leftmost
text-word for the next cycle. The comparison cycle resumes with the first text-matching argument in the
REPLACING phrase.

19.If a match occurs between a text-matching argument and the source text, the compiler inserts the replacement
item into the source program. The source text-word immediately after the rightmost replaced text-word then
becomes the leftmost text-word for the next cycle. The comparison cycle resumes with the first text-matching
argument in the REPLACING phrase.

20.The comparison cycle continues until the rightmost text-word in the source text has been either:

• Matched and replaced

• Used as the leftmost library text-word in a comparison cycle

21.The rules for Reference Format determine the sequence of text-words in the source text and the text-matching
arguments.

22.When the compiler inserts pseudo-text-2 into the source program, any comment lines or blank lines within
pseudo-text-2 are inserted without modification. (See Example 5.)

23.The compiler copies any comment lines and blank lines in the source text into the source program unchanged
(see Example 1). However, the compiler does not copy a comment line or blank line from the source text if it
is in the sequence of text-words that matches the text-matching argument.

24.The resultant source program cannot contain a COPY statement after the compiler processes a COPY statement.

• Text copied from a source text cannot contain a COPY statement unless the replacement operation changes
the word COPY in the resultant source text.

• The replacement item in the REPLACING phrase must not insert a COPY statement into the source text.

25.The compiler cannot determine the syntactic correctness of source text, or the source program, until all COPY
statements are processed.

26.When the compiler copies a text-word from the source text, it places it in the source program beginning in the
same area as in the source text. That is, a text-word that begins in Area A in the source text begins in Area A
of the source program after the copy operation. Similarly, a text-word that begins in Area B in the source text
begins somewhere in Area B of the source program.

27.When the compiler inserts a text-word from pseudo-text-2, it places it in the source program beginning in the
same area as in pseudo-text-2.

28.When the compiler inserts text from identifier-2, literal-2, or word-2, it places the first text-word in the source
program beginning in the same area as the leftmost library text-word that matches the argument. It places all
other replacement text-words in the source program beginning in the same area as they appear in the COPY
statement.

444

Source Text Manipulation

29.Pseudo-text insertion can change parts of a single character-string. An unmatched text-word and a replaced text-
word can combine to form a character-string. For example, the COPY statement can replace part of a PICTURE
character-string. (See Example 3.)

30.Conditional compilation lines are permitted within the library text and pseudo-text. Text-words within a
conditional compilation line participate in the matching process as if the indicator area character of the line on
which they began was not present. A conditional compilation line is specified within pseudo-text if it begins
in the source program after the opening pseudo-text delimiter, but before the matching closing pseudo-text
delimiter.

31.The resultant text can occur on conditional compilation lines according to the following precedence rules:

• If a COPY statement begins on a conditional compilation line, each line of the resulting text appears on the
same kind of line.

• If a library text-word that is not involved in a match begins on a conditional compilation line, it appears in
resulting text on the same kind of line.

• If the first library text-word that is involved in a match begins on a conditional compilation line, the
identifier-2, literal-2, word-2, or pseudo-text-2 that replaces the first library text-word appears on the same
kind of line.

• If text-words within pseudo-text-2 begin on a conditional compilation line, resulting text appears on the same
kind of line.

Technical Notes

Format 1
1. If there is a library-name phrase, text-name is tr-name.

On OpenVMS systems, tr-name is defined as a user-defined name or nonnumeric literal that matches the name
of a text record in library-name.

2.

3. On Alpha and I64 systems, the COBOL command-line qualifier /INCLUDE (or -include) can be used at
compile time to set up a search list for the COPY command. Assume that the following conditions are all true:

• library-name is not used.

• text-name does not include a directory specification.

• /INCLUDE is specified.
Then the compiler searches for the text-name file in the following order:

a. The current working directory when the compiler is invoked

b. The directory specified after /INCLUDE (or -include)

If more than one directory is specified, they are searched in left to right order.

On Alpha and I64 systems, if library-name is used, and library-name does not include a directory specification,
the /INCLUDE qualifier causes a search for a .TLB file, in the same search order.

The first file encountered that matches the text-name terminates the search.

On Tru64 UNIX, /INCLUDE (or -include) can be used to set up a search list for a text-name without a
directory specification only if library-name is not specified.

If the default, /NOINCLUDE, is in effect, a file without a directory specification is searched for only in the
current default directory at compile time.

445

Source Text Manipulation

The pathname(s) specified with /INCLUDE can be relative or absolute directory specifications, logical names
on OpenVMS Alpha or I64, or environment variables on Tru64 UNIX.

4. If f-name or tr-name is not a literal, the compiler translates hyphens in the word to underscore characters and
treats it as if it were enclosed in quotation marks.

5. When the COPY statement executes, the I/O system:

• Removes leading and trailing spaces and tab characters from f-name and from tr-name

• Translates lowercase letters to uppercase in f-name and in tr-name

6. The default file type for text-name, when text-name is f-name, is LIB. For example, COPY CUSTFILE becomes
COPY CUSTFILE.LIB.

7. On OpenVMS, the default file type for library-name is TLB. For example, COPY "ACCOUNTS" OF CUSTLIB
becomes COPY "ACCOUNTS" OF CUSTLIB.TLB.

8. On all platforms, file names must conform to the rules of the operating system where compilation occurs. For
example:

• On Tru64 UNIX systems:

COPY "/usr/proj/empl/empl_file".

COPY "empl_file" IN "/usr/proj/empl".

• On OpenVMS systems:

COPY "COPYDIR:EMPL_FILE.LIB".

COPY "EMPL_FILE" IN "EMPLLIB.TLB".

Format 2 (OpenVMS)
11.record-name can be a nonnumeric literal or COBOL word formed according to the rules for user-defined names.

It represents a complete or partial Oracle CDD/Repository pathname specifying the Oracle CDD/Repository
record description to be copied into the source program. If record-name is not a literal, the compiler translates
hyphens in the COBOL word to underline characters.

The resultant pathname must conform to all rules for forming Oracle CDD/Repository pathnames.

12.Table 8.1, “Oracle CDD/Repository Data Types and VSI COBOL Equivalents (OpenVMS)” shows the
representation of Oracle CDD/Repository data types in the VSI COBOL compiler. It lists the data types that
can be specified using CDO with the corresponding COBOL data item picture. Note that COBOL does not
have an equivalent specification for some data types.

Table 8.1. Oracle CDD/Repository Data Types and VSI COBOL Equivalents (OpenVMS)

Oracle CDD/Repository Data Type
VSI COBOL Equivalent

BIT l No equivalent 1

SIGNED BYTE l s No equivalent 1

UNSIGNED BYTE l s No equivalent 1

D_FLOATING s COMP-2 (with /FLOAT=D_FLOAT)
D_FLOATING COMPLEX s No equivalent 1

l The total number of digits in the item.
s The decimal offset to l.

446

Source Text Manipulation

Oracle CDD/Repository Data Type
VSI COBOL Equivalent

DATE No exact equivalent 2

F_FLOATING s COMP-1 (with /FLOAT=D_FLOAT or /
FLOAT=G_FLOAT)

F_FLOATING COMPLEX s No equivalent 1

G_FLOATING s COMP-2 (with /FLOAT=G_FLOAT) on Alpha, I64;
no equivalent on VAX

G_FLOATING COMPLEX s No equivalent 1

H_FLOATING s No equivalent 1

H_FLOATING COMPLEX s No equivalent 1

IEEE S_FLOATING COMP-1 (with /FLOAT=IEEE_FLOAT) on Alpha,
I64; no equivalent on VAX

IEEE T_FLOATING COMP-2 (with /FLOAT=IEEE_FLOAT) on Alpha,
I64; no equivalent on VAX

SIGNED LONGWORD l s S9 (9) COMP
UNSIGNED LONGWORD l s No exact equivalent 3

UNSIGNED NUMERIC l s 9 (m)V9 (n)
SIGNED NUMERIC LEFT SEPARATE l s S9 (m)V9 (n) LEADING SEPARATE
SIGNED NUMERIC LEFT OVERPUNCHED l s S9 (m)V9 (n) LEADING
SIGNED NUMERIC RIGHT SEPARATE l s S9 (m)V9 (n) TRAILING SEPARATE
SIGNED NUMERIC RIGHT OVERPUNCHED l s S9 (m)V9 (n) TRAILING
SIGNED OCTAWORD l s S9 (31) COMP on Alpha, I64; no equivalent on VAX
UNSIGNED OCTAWORD l s No exact equivalent 3

PACKED NUMERIC l s S9 (m)V9 (n) COMP-3
SIGNED QUADWORD l s S9(18) COMP
UNSIGNED QUADWORD l s No exact equivalent 3

TEXT m CHARACTERS X (m)
UNSPECIFIED m BYTES X (m)
VARYING STRING m CHARACTERS No equivalent 1

VIRTUAL FIELD Ignored 4

SIGNED WORD l s S9 (4) COMP
UNSIGNED WORD l s No exact equivalent 3

POINTER POINTER
SEGMENTED STRING No equivalent 1

ZONED No equivalent 1

l The total number of digits in the item.
s The decimal offset to l.

1COBOL has no equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a record description entry.
The compiler will treat that item as if it had been specified as an alphanumeric data item that occupies that same number of bytes.
2COBOL has no exact equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a record description
entry. The compiler will treat that item as if it had been specified as PIC S9(11)V9(7) COMP. (This gives the item units of seconds.)
3COBOL has no exact equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a record description
entry. The compiler will treat that item as if it had been specified as the corresponding unsigned COMP data type.
4The VSI COBOL compiler ignores this data item and all its phrases.

447

Source Text Manipulation

The method for describing the assumed decimal point is different in the two products. In a COBOL picture, the
decimal position is directly indicated by the symbol V or implied by the symbol P. In CDO, scaled numbers
are specified by two integers: (1) the first integer represents the total number of decimal digits that the item
represents, and (2) the second integer represents the decimal offset to the first integer. These are indicated
in Table 8.1, “Oracle CDD/Repository Data Types and VSI COBOL Equivalents (OpenVMS)” by l and s,
respectively.

For example, the COBOL data item described by PIC 9(4)V99 is equivalent to the CDO entry UNSIGNED
NUMERIC 6 DIGITS SCALE -2. Similarly, the CDO entry SIGNED NUMERIC LEFT SEPARATE
NUMERIC 6 DIGITS SCALE 2 is equivalent to the COBOL description PIC S9(6)PP SIGN IS LEADING
SEPARATE. You can also represent digits to the right of the decimal point in CDO with the FRACTIONS
phrase. For example, instead of UNSIGNED NUMERIC 6 DIGITS SCALE -2, you can also use UNSIGNED
NUMERIC 6 DIGITS 2 FRACTIONS.

13.One of the primary goals of Oracle CDD/Repository is to describe data in such a way that data definitions
can be shared among many different processors. Many languages have different semantic interpretations for
the same physical data. Record descriptions in Oracle CDD/Repository must be able to describe the physical
characteristics of data unambiguously. In other words, the logical view of the data must be separated from the
physical description if different processors are to access the same record description.

VSI COBOL expects numeric literals and PICTURE character-strings to be obtained from Oracle CDD/
Repository in standard representation. Whether or not a particular COBOL source program uses the DECIMAL-
POINT IS COMMA clause or the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph, the record
description that was stored in Oracle CDD/Repository must have used the period (.) to represent the decimal
point in numeric literals and PICTURE character-strings, the comma (,) to represent the comma in PICTURE
character-strings, and the currency symbol ($) to represent the currency symbol in PICTURE character-strings.

When the COBOL source program contains the DECIMAL-POINT IS COMMA clause, the VSI COBOL
compiler substitutes commas for decimal points in numeric literals and PICTURE character-strings obtained
from Oracle CDD/Repository. It substitutes decimal points for commas in PICTURE character-strings obtained
from Oracle CDD/Repository.

When the COBOL source program contains the CURRENCY SIGN clause, the VSI COBOL compiler
substitutes the currency symbol for the currency sign in PICTURE character-strings obtained from Oracle CDD/
Repository.

Additional References
• Section 1.3: Source Reference Format

• Oracle CDD/Repository documentation set

Examples Using Format 1
The examples that follow copy library text from two library files:

• Contents of CUSTFILE.LIB:

01[Tab]CUSTOMER-REC.
[Tab]03 CUST-REC-KEY[Tab]PIC X(03) VALUE "KEY".
[Tab]03 CUST-NAME[Tab]PIC X(25).
[Tab]03 CUST-ADDRESS.
[Tab] 05 CUST-CUST-STREET[Tab]PIC X(20).
[Tab] 05 CUST-CITY[Tab]PIC X(20).
[Tab] 05 CUST-STATE[Tab]PIC XX.
[Tab] 05 CUST-ZIP[Tab]PIC 9(5).
* THE COMPILER IGNORES COMMENT LINES AND BLANK LINES

* FOR MATCHING PURPOSES

448

Source Text Manipulation

[Tab]03 CUST-ORDERS OCCURS XYZ TIMES.
[Tab] 05 CUST-ORDER[Tab]PIC 9(6).
[Tab] 05 CUST-ORDER-DATE[Tab]PIC 9(6).
[Tab] 05 CUST-ORDER-AMT[Tab]PIC 9(R)V99.

• Contents of CPROC01.LIB:

[Tab]ADD CUST-ORDER-AMT (X) TO TOTAL-ORDERS.
[Tab]COMPUTE AVERAGE-ORDER = (TOTAL-ORDERS - CANCELED-ORDERS)
[Tab] / NUMBER-ORDERS.
[Tab]MOVE CUST-REC-KEY
[Tab] OF CUSTOMER-REC TO CUST-ID (X).
[Tab]MOVE CUST-REC-KEY
[Tab] OF KEY-HOLD TO NEW-KEY.

In the following examples, the original source program text is shown in lowercase text. The text that is copied is
shown in uppercase. (The messages in these examples are in OpenVMS Alpha and I64 format.)

Example 8.1, “COPY with No REPLACING Phrase” shows the results of a COPY statement with no REPLACING
phrase. The compiler copies the library text without change. In this example, syntax errors result from invalid
library text.

Example 8.1. COPY with No REPLACING Phrase

 1 identification division.
 2 program-id. cust01.
 3 data division.
 4 working-storage section.
 5 copy custfile.
L 6 01 CUSTOMER-REC.
L 7 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 8 03 CUST-NAME PIC X(25).
L 9 03 CUST-ADDRESS.
L 10 05 CUST-CUST-STREET PIC X(20).
L 11 05 CUST-CITY PIC X(20).
L 12 05 CUST-STATE PIC XX.
L 13 05 CUST-ZIP PIC 9(5).
L 14 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 15
L 16 * FOR MATCHING PURPOSES
L 17 03 CUST-ORDERS OCCURS XYZ TIMES.
 1 2
%COBOL-F-SYN5 121, (1) Invalid OCCURS clause
%COBOL-W-RESTART 297, (2) Processing of source program resumes at this
 point
L 18 05 CUST-ORDER PIC 9(6).
L 19 05 CUST-ORDER-DATE PIC 9(6).
L 20 05 CUST-ORDER-AMT PIC 9(R)V99.
 1
%COBOL-F-ERROR 178, (1) Invalid repetition factor

Example 8.2, “Replacing a Word with a Literal” shows the results of replacing a word (“xyz”) by a literal (6).

Example 8.2. Replacing a Word with a Literal

 22 copy custfile replacing xyz by 6.
L 23 01 CUSTOMER-REC.
L 24 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 25 03 CUST-NAME PIC X(25).
L 26 03 CUST-ADDRESS.

449

Source Text Manipulation

L 27 05 CUST-CUST-STREET PIC X(20).
L 28 05 CUST-CITY PIC X(20).
L 29 05 CUST-STATE PIC XX.
L 30 05 CUST-ZIP PIC 9(5).
L 31 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 32
L 33 * FOR MATCHING PURPOSES
LR 34 03 CUST-ORDERS OCCURS 6 TIMES.
L 35 05 CUST-ORDER PIC 9(6).
L 36 05 CUST-ORDER-DATE PIC 9(6).
L 37 05 CUST-ORDER-AMT PIC 9(R)V99.
 1
%COBOL-F-PICREPEAT 178, (1) Invalid repetition factor

Example 8.3, “Replacing a Word by a Literal and Pseudo-Text by Pseudo-Text” shows the results of replacing a
word (“xyz”) by a literal (6), and pseudo-text by pseudo-text. The compiler recognizes R as a text-word because
parentheses enclose it. The other R characters are not text-words; they are part of other text-words.

Example 8.3. Replacing a Word by a Literal and Pseudo-Text by Pseudo-Text

 39 copy custfile replacing xyz by 6, ==r== by ==4==.
L 40 01 CUSTOMER-REC.
L 41 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 42 03 CUST-NAME PIC X(25).
L 43 03 CUST-ADDRESS.
L 44 05 CUST-CUST-STREET PIC X(20).
L 45 05 CUST-CITY PIC X(20).
L 46 05 CUST-STATE PIC XX.
L 47 05 CUST-ZIP PIC 9(5).
L 48 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 49
L 50 * FOR MATCHING PURPOSES
LR 51 03 CUST-ORDERS OCCURS 6 TIMES.
L 52 05 CUST-ORDER PIC 9(6).
L 53 05 CUST-ORDER-DATE PIC 9(6).
LR 54 05 CUST-ORDER-AMT PIC 9(4)V99.

Example 8.4, “Matching a Nonnumeric Literal” shows the results of matching a nonnumeric literal. The opening
and closing quotation marks are part of the text-word.

Example 8.4. Matching a Nonnumeric Literal

 129 copy custfile replacing xyz by 6, ==r== by ==4==
 130 "KEY" by "abc".
L 131 01 CUSTOMER-REC.
LR 132 03 CUST-REC-KEY PIC X(03) VALUE "abc" .
L 133 03 CUST-NAME PIC X(25).
L 134 03 CUST-ADDRESS.
L 135 05 CUST-CUST-STREET PIC X(20).
L 136 05 CUST-CITY PIC X(20).
L 137 05 CUST-STATE PIC XX.
L 138 05 CUST-ZIP PIC 9(5).
L 139 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 140
L 141 * FOR MATCHING PURPOSES
LR 142 03 CUST-ORDERS OCCURS 6 TIMES.
L 143 05 CUST-ORDER PIC 9(6).
L 144 05 CUST-ORDER-DATE PIC 9(6).
LR 145 05 CUST-ORDER-AMT PIC 9(4)V99.

450

Source Text Manipulation

Example 8.5, “Multiple-Line Pseudo-Text Replacement Item” shows the results of a multiple-line pseudo-text
replacement item. The replacement item starts after the pseudo-text delimiter on line 167 and ends before the
delimiter on line 169. The continuation area on the new line (172) contains the same characters as line 168 in the
pseudo-text replacement item. This example is not a recommended use of the COPY statement. It only shows the
mechanics of the statement.

Example 8.5. Multiple-Line Pseudo-Text Replacement Item

 166 copy custfile replacing xyz by 6, ==r== by ==4==
 167 "KEY" by =="abc".
 168 * cust-number is a new field
 169 03 cust-number pic 9(8)==.
L 170 01 CUSTOMER-REC.
LR 171 03 CUST-REC-KEY PIC X(03) VALUE "abc".
LR 172 * cust-number is a new field
LR 173 03 cust-number pic 9(8).
L 174 03 CUST-NAME PIC X(25).
L 175 03 CUST-ADDRESS.
L 176 05 CUST-CUST-STREET PIC X(20).
L 177 05 CUST-CITY PIC X(20).
L 178 05 CUST-STATE PIC XX.
L 179 05 CUST-ZIP PIC 9(5).
L 180 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 181
L 182 * FOR MATCHING PURPOSES
LR 183 03 CUST-ORDERS OCCURS 6 TIMES.
L 184 05 CUST-ORDER PIC 9(6).
L 185 05 CUST-ORDER-DATE PIC 9(6).
LR 186 05 CUST-ORDER-AMT PIC 9(4)V99.

Example 8.6, “Matching Pseudo-Text That Includes Separators” shows the results of matching pseudo-text that
includes separators.

The replacement phrase in line 210 fails to match the library text in line 212. The text-matching argument contains
one text-word: the 13 characters beginning with c and ending with a period (.). The period is not a separator period,
because it is not followed by a space. This argument fails to match the two text-words on line 212. The two text-
words are: (1) CUSTOMER-REC and (2) the separator period.

The replacement phrase in line 211 replaces library text on line 215. The text-matching argument contains the
same two text-words that are in the library text: (1) CUST-ADDRESS and (2) the separator period.

Example 8.6. Matching Pseudo-Text That Includes Separators

 209 copy custfile replacing xyz by 6, ==r== by ==4==
 210 ==customer-rec.== by ==record-a.==
 211 ==cust-address. == by ==customer-address.==.
L 212 01 CUSTOMER-REC.
L 213 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 214 03 CUST-NAME PIC X(25).
LR 215 03 customer-address.
L 216 05 CUST-CUST-STREET PIC X(20).
L 217 05 CUST-CITY PIC X(20).
L 218 05 CUST-STATE PIC XX.
L 219 05 CUST-ZIP PIC 9(5).
L 220 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 221
L 222 * FOR MATCHING PURPOSES
LR 223 03 CUST-ORDERS OCCURS 6 TIMES.
L 224 05 CUST-ORDER PIC 9(6).

451

Source Text Manipulation

L 225 05 CUST-ORDER-DATE PIC 9(6).
LR 226 05 CUST-ORDER-AMT PIC 9(4)V99.
 227

Examples Using Format 2 (OpenVMS)
Figure 8.1, “Hierarchical Repository Structure (OpenVMS)” represents a hierarchical repository structure for
Examples 8.7, 8.8, and 8.9. It contains one repository directory and two repository objects.

Figure 8.1. Hierarchical Repository Structure (OpenVMS)

In Figure 8.1, “Hierarchical Repository Structure (OpenVMS)”, the repository is named SALES (USA and
GERMANY are not used). ANCHOR is the starting directory for the full repository pathname. Repository
directories are analogous to OpenVMS Alpha and I64 subdirectories. They catalog other repository directories or
repository objects, and they are labeled by the paths through the hierarchy that lead to them.

The repository objects are named PAYROLL and INVENTORY. These objects are the named record descriptions
stored in Oracle CDD/Repository, and they form the end-points of the repository hierarchy branches. The examples
that follow copy these record descriptions.

The full repository pathname provides a unique designation for every directory and object in Oracle CDD/
Repository hierarchy. It traces the paths from ANCHOR to the directory or object.

For information on how to create and maintain a hierarchical structure in Oracle CDD/Repository, refer to the
Oracle CDD/Repository documentation set.

Note
Not all Oracle CDD/Repository data types are valid VSI COBOL data types. See the Technical Notes.

Example 8.7, “Command File That Creates Oracle CDD/Repository Directories and Objects in Figure 8-1
(OpenVMS) ” shows how to use a command file to create the repository directories and objects shown in Figure 8.1,
“Hierarchical Repository Structure (OpenVMS)” using CDO.

Example 8.7. Command File That Creates Oracle CDD/Repository Directories and
Objects in Figure 8-1 (OpenVMS)

define field name
 datatype is text
 size 30.
define field address
 datatype is text
 size is 40.
define field salesman_id
 datatypes is text
 size is 5.
define record salesman.
 name.
 address.
 salesman_id.
end record.
define field ytd_sales
 datatype is right overpunched numeric
 size is 11 digits
 scale -2.
define field ytd_commission
 datatype is right overpunched numeric

452

Source Text Manipulation

 size is 11 digits
 scale -2.
define field curr_month_sales
 datatype is right overpunched numeric
 size is 11 digits
 scale -2.
define field curr_month_commission
 datatype is right overpunched numeric
 size is 11 digits
 scale -2.
define field curr_week_sales
 datatype is right overpunched numeric
 size is 11 digits
 scale -2.
define field curr_week_commission
 datatype is right overpunched numeric
 size is 11 digits
 scale -2.
define record payroll_record.
 salesman.
 ytd_sales.
 ytd_commission.
 curr_month_sales.
 curr_month_commission.
 curr_week_sales.
 curr_week_commission.
end record.
define field part_number
 datatype is right overpunched numeric
 size is 6 digits.
define field quantity_on_hand
 datatype is right overpunched numeric
 size is 9 digits.
define field quantity_on_order
 datatype is right overpunched numeric
 size is 9 digits.
define field retail_price
 datatype is right overpunched numeric
 size is 8 digits
 scale -2.
define field wholesale_price
 datatype is right overpunched numeric
 size is 8 digits
 scale -2.
define field supplier
 datatype is text
 size is 5 characters.
define record inventory_record.
 part_number.
 quantity_on_hand.
 quantity_on_order.
 retail_price.
 wholesale_price.
 supplier.
end record.

Example 8.8, “Using a Logical Name in a COPY Statement (OpenVMS) ” shows the results of copying
the repository object PAYROLL in Figure 8.1, “Hierarchical Repository Structure (OpenVMS)”. The program

453

Source Text Manipulation

defines the logical name payroll to be equivalent to the full Oracle CDD/Repository pathname DEVICE:
[DIRECTORY.ANCHOR]. Line 27 of the program shows the DCL command used to define the logical name and
line 30 contains the COPY FROM DICTIONARY statement.

On OpenVMS Alpha and I64 systems, the COPY statement produces lines 31 to 44 in your program listing if you
include the /COPY_LIST compiler option. Line 32 is the resulting full Oracle CDD/Repository pathname used by
the compiler. Lines 31 and 33 are separator comment lines. Lines 34 to 44 are the COBOL compiler-translated
record description entries taken from the PAYROLL repository object in Oracle CDD/Repository.

Example 8.8. Using a Logical Name in a COPY Statement (OpenVMS)

 1 IDENTIFICATION DIVISION.
 2 PROGRAM-ID. TEST-CDD.
 3 *
 4 * Copy from CDD/Repository
 5 * FILE SECTION
 6 * Records: PERSONNEL
 7 * INVENTORY
 8 * PAYROLL
 9 *
 10 * WORKING-STORAGE SECTION
 11 * Records: SYDNEY
 12 * MAPLE
 13 * FRENCH
 14 *
 15 ENVIRONMENT DIVISION.
 16 INPUT-OUTPUT SECTION.
 17 FILE-CONTROL.
 18 SELECT SALES-CDD-FILE
 19 ASSIGN TO "CDD.TMP".
 20 DATA DIVISION.
 21 FILE SECTION.
 22 FD SALES-CDD-FILE.
 23 *
 24 * To create a logical name entry for the repository
 object
 25 * PAYROLL, use this command:
 26 *
 27 * $ DEFINE PAYROLL_RECORD "DEVICE:
[DIRECTORY.ANCHOR]SALES.PAYROLL"
 28 *
 29 *
 30 COPY PAYROLL FROM DICTIONARY.
L 31 *
L 32 * _DEVICE:[DIRECTORY.ANCHOR]PAYROLL_RECORD
L 33 *
L 34 01 PAYROLL_RECORD.
L 35 02 SALESMAN.
L 36 03 NAME PIC X(30).
L 37 03 ADDRESS PIC X(40).
L 38 03 SALESMAN_ID PIC X(5).
L 39 02 YTD_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 40 02 YTD_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.
L 41 02 CURR_MONTH_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 42 02 CURR_MONTH_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.
L 43 02 CURR_WEEK_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 44 02 CURR_WEEK_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.
 45

454

Source Text Manipulation

 46 COPY "DEVICE:[DIRECTORY.ANCHOR]INVENTORY_RECORD" FROM
 DICTIONARY.
L 47 *
L 48 * _DEVICE:[DIRECTORY.ANCHOR]INVENTORY_RECORD
L 49 *
L 50 01 INVENTORY_RECORD.
L 51 02 PART_NUMBER PIC S9(6) SIGN TRAILING.
L 52 02 QUANTITY_ON_HAND PIC S9(9) SIGN TRAILING.
L 53 02 QUANTITY_ON_ORDER PIC S9(9) SIGN TRAILING.
L 54 02 RETAIL_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 55 02 WHOLESALE_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 56 02 SUPPLIER PIC X(5).
 57
 58
 ...

Example 8.9, “Using a Full Pathname in a COPY Statement (OpenVMS) ” shows the results of copying a repository
object INVENTORY by specifying its full Oracle CDD/Repository pathname.

In Example 8.9, “Using a Full Pathname in a COPY Statement (OpenVMS) ”, line 44 contains the COPY FROM
DICTIONARY statement. On OpenVMS Alpha and I64 systems, this COPY statement produces lines 45 to 54
in your program listing if you include the /COPY_LIST compiler option. Line 46 is the resulting full Oracle
CDD/Repository pathname used by the compiler. Lines 45 and 47 are separator comment lines. Lines 48 to 54
are the compiler-translated record description entries taken from the inventory repository object in Oracle CDD/
Repository.

Example 8.9. Using a Full Pathname in a COPY Statement (OpenVMS)

 44 COPY "DEVICE:[DIRECTORY.ANCHOR]SALES.INVENTORY" FROM
 DICTIONARY.
L 45 *
L 46 * DEVICE:[DIRECTORY.ANCHOR]SALES.INVENTORY
L 47 *
L 48 01 INVENTORY_RECORD.
L 49 02 PART_NUMBER PIC 9(6).
L 50 02 QUANTITY_ON_HAND PIC S9(9) SIGN TRAILING.
L 51 02 QUANTITY_ON_ORDER PIC S9(9) SIGN TRAILING.
L 52 02 RETAIL_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 53 02 WHOLESALE_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 54 02 SUPPLIER PIC X(5).

Figure 8.2, “Nonhierarchical Repository Structure (OpenVMS)” shows a nonhierarchical repository structure. In
this example, fields NAME and ADDRESS are used by both the EMPLOYEE-RECORD and the CUSTOMER-
RECORD. As such, they are defined in a separate directory (COMMON_FIELD_DEFINITIONS). The fields
PART and PART_NUMBER are used exclusively by the INVENTORY_RECORD. As such, they are defined in
the INVENTORY directory. This functionality is only available in CDO formatted repositories.

Figure 8.2. Nonhierarchical Repository Structure (OpenVMS)

Example 8.10, “Command File That Creates Oracle CDD/Repository Directories and Objects in Figure 8-2
(OpenVMS) ” shows how to use a CDO command file to create the directories and objects shown in Figure 8.2,
“Nonhierarchical Repository Structure (OpenVMS)” using CDO. The CDO file is executed from within CDO
using the following command:

$ REPOSITORY
CDO>@FILENAME.CDO

455

Source Text Manipulation

Example 8.10. Command File That Creates Oracle CDD/Repository Directories and
Objects in Figure 8-2 (OpenVMS)

DEFINE DICTIONARY DEVICE:[DIRECTORY.ANCHOR].
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]
DEFINE DIRECTORY EMPLOYEE.
DEFINE DIRECTORY CUSTOMER.
DEFINE DIRECTORY INVENTORY.
DEFINE DIRECTORY COMMON_FIELD_DEFINITIONS.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS
DEFINE FIELD NAME DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD ADDRESS DATATYPE IS TEXT SIZE IS 47 CHARACTERS.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]EMPLOYEE
DEFINE FIELD DATE_OF_HIRE DATATYPE IS UNSIGNED NUMERIC SIZE IS 8 DIGITS.
DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1 CHARACTER.
DEFINE FIELD DEPENDENTS DATATYPE IS UNSIGNED NUMERIC SIZE IS 2 DIGITS.
DEFINE RECORD EMPLOYEE_RECORD.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.NAME.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.ADDRESS.
DATE_OF_HIRE.
SEX.
DEPENDENTS.
END RECORD.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]CUSTOMER
DEFINE FIELD BUSINESS_TYPE DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD CONTACT_PERSON DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE RECORD CUSTOMER_RECORD.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.NAME.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.ADDRESS.
BUSINESS_TYPE.
CONTACT_PERSON.
END RECORD.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]INVENTORY
DEFINE FIELD PART DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD PART_NUMBER DATATYPE IS TEXT SIZE IS 10 CHARACTERS.
DEFINE RECORD INVENTORY_RECORD.
PART.
PART_NUMBER.
END RECORD.

REPLACE
REPLACE

Function
The REPLACE statement is used to replace source program text.

[pseudo-text-1]

is a text-matching argument that the compiler compares against text-words in the source text.

[pseudo-text-2]

is a replacement item that the compiler inserts into the source program.

456

Source Text Manipulation

Syntax Rules
1. A REPLACE statement can be inserted anywhere that a character-string can be used. This statement must be

preceded by a separator period unless it is the first statement in a separately compiled program.

2. A REPLACE statement must be terminated by the separator period.

3. pseudo-text-1 must contain at least one text-word.

4. pseudo-text-2 can contain zero, one, or more text-words.

5. Character-strings within pseudo-text-1 and pseudo-text-2 can be continued.

6. pseudo-text-1 must not consist entirely of a separator comma or a separator semicolon.

7. The word REPLACE is considered part of a comment-entry if it appears in the comment-entry or in the place
where a comment-entry can appear.

General Rules

Format 1
1. Each matched occurrence of pseudo-text-1 in the source program is replaced by the corresponding pseudo-

text-2.

Format 2
2. Any text replacement currently in effect is discontinued.

Both Formats
3. A REPLACE statement remains in effect until the next occurrence of a REPLACE statement or until the end

of a separately compiled program has been reached.

4. Any occurrence of a REPLACE statement in a source program is processed after all COPY statements in the
source program have been processed.

5. pseudo-text-2 must not contain a REPLACE statement.

6. The comparison operation starts with the leftmost source text word and the first text-matching argument. The
compiler compares the entire text-matching argument to an equivalent number of consecutive source text-
words.

7. A text-matching argument matches the source text only if the ordered sequence of text-words that forms the
text-matching argument is equal, character for character, to the ordered sequence of source text-words.

In the matching operation, the compiler treats each occurrence or combination of the following items in source
text as a single space:

• Separator comma

• Separator semicolon

• A sequence of one or more separator spaces

8. If no match occurs, the compiler repeats the comparison operation with each successive text-matching argument
until a match is found or there are no more text-matching arguments.

457

Source Text Manipulation

9. If no match occurs after the compiler has compared all of the text-matching arguments, the next successive
source text-word becomes the leftmost text-word, and the comparison resumes with the first occurrence of
pseudo-text-1.

10.If a match occurs between a text-matching argument and the source program text, the compiler inserts the
replacement text into the source program. The source text-word immediately following the rightmost replaced
text-word becomes the leftmost text-word for the next cycle. The comparison cycle resumes with the first
occurrence of pseudo-text-1.

11.The comparison cycles continue until the rightmost text-word in the source text that is within the scope of the
REPLACE statement has been either:

• Matched and replaced

• Used as the leftmost source text-word in a comparison cycle

12.The rules for Reference Format determine the sequence of text-words in the source text and the text-matching
arguments.

13.The compiler ignores comment lines and blank lines in the source program and in pseudo-text-1 for matching.

14.When the compiler inserts pseudo-text-2 in the source program, it inserts comment lines and blank lines in
pseudo-text-2 without modification.

15.Debugging lines are permitted in pseudo-text-1 and pseudo-text-2. The compiler treats the comparison of
debugging lines as if the conditional compilation character does not appear in the indicator area.

16.The compiler cannot determine the syntactic correctness of source text or the source program until all COPY
and REPLACE statements have been processed.

17.Text words that are inserted as a result of a processed REPLACE statement are placed in the source program
according to the rules for Reference Format.

18.When the compiler inserts text words of pseudo-text-2 into the source program, additional spaces may be
introduced between text words where spaces already exist (including the assumed space between source lines).

19.If additional lines are added to the source program as a result of a REPLACE operation, the indicator area of
the added lines contains the same character as the line on which the text being replaced begins (unless that line
contains a hyphen, in which case the introduced line contains a space).

If a literal within pseudo-text-2 cannot be contained on a single line without a continuation to another line in
the resultant program and the literal is not being placed on a debugging line, additional continuation lines are
introduced that contain the remainder of the literal. If replacement requires the continued literal to be continued
on a debugging line, the program is in error.

Additional Reference
See Section 1.3: Source Reference Format.

Examples
In the following examples, uppercase words represent text-words that have been replaced.

1. REPLACE statement with multiple replacement items:

 8 working-storage section.
 9 replace ==alpha== by ==NUM-1==
 10 ==num== by ==ALPHA-1==.
 R 11 01 NUM-1 pic 9(10).
 R 12 01 ALPHA-1

458

Source Text Manipulation

 13 pic x(10).
 14 procedure division.

2. Multiple REPLACE statements:

A given occurrence of the REPLACE statement is in effect from the point at which it is specified until the
next occurrence of the REPLACE statement. The new REPLACE statement supersedes the text-matching
established by the previous REPLACE statement.

 7 working-storage section.
 8 01 total pic 9(4)v99.
 9 replace ==class== by ==CLASS1==
 10 ==total== by ==ORDER-AMT==.
 11 01 customer-rec.
 R 12 03 CLASS1 pic x(02).
 13 03 name pic x(25).
 14 03 address.
 15 05 street pic x(20).
 16 05 city pic x(20).
 17 05 state pic xx.
 18 05 zip pic 9(5).
 19 03 orders occurs 6 times.
 20 05 order-numb pic 9(6).
 21 05 order-date pic 9(6).
 R 22 05 ORDER-AMT pic 9(4)v99.
 23 procedure division.
 24 replace ==class== by ==CLASS1==.
 25 p0. add order-amt of orders(3) to total.

In the previous example, the word total on line 25 is not replaced because the REPLACE statement on line 24
reestablished the text-matching arguments.

3. REPLACE OFF:

Any text-matching currently in effect is turned off.

 11 working-storage section.
 12 replace ==add== by ==PIC 9(18)==.
 R 13 01 a1 PIC 9(18).
 R 14 01 a2 PIC 9(18).
 15 procedure division.
 16 replace off.
 17 p0. add a1 to a2.

In the previous example, the word add on line 17 is not replaced because the REPLACE statement on line 16
turned off all text-matching arguments.

4. COPY interaction:

In the following example, library text is copied from the library file DATAFILE.LIB:

Contents of "DATAFILE.LIB":
01 customer-rec.
 03 class pic x(02).
 03 name pic x(25).
 03 address.
 05 street pic x(20).
 05 city pic x(20).
 05 state pic xx.
 05 zip pic 9(5).

459

Source Text Manipulation

 03 orders occurs 6 times.
 05 order-number pic 9(6).
 05 order-date pic 9(6).
 05 order-amt pic 9(4)v99.

The text-matching specified by an active REPLACE statement occurs after COPY (and COPY REPLACING)
processing is complete.

 7 working-storage section.
 8 replace ==class== by ==CLASS1==.
 9 copy datafile.
L 10 01 customer-rec.
L 11 03 CLASS1 pic x(02).
L 12 03 name pic x(25).
L 13 03 address.
L 14 05 street pic x(20).
L 15 05 city pic x(20).
L 16 05 state pic xx.
L 17 05 zip pic 9(5).
L 18 03 orders occurs 6 times.
L 19 05 order-number pic 9(6).
L 20 05 order-date pic 9(6).
L 21 05 order-amt pic 9(4)v99.
 22 procedure division.

460

Appendix A. VSI COBOL
Reserved Words

Appendix A. VSI COBOL Reserved
Words

DIGITAL COBOL Reserved Words

ACCEPT ACCESS ADD ADVANCING
AFTER ALL ALLOWING ALPHABET
ALPHABETIC ALPHABETIC–LOWER ALPHABETIC–UPPER ALPHANUMERIC
ALPHANUMERIC–
EDITED

ALSO ALTER ALTERNATE

AND ANY APPLY ARE
AREA AREAS ASCENDING ASSIGN
AT AUTHOR AUTO AUTOMATIC
AUTOTERMINATE

BACKGROUND-COLOR BATCH BEFORE BEGINNING
BELL BINARY BIT BITS
BLANK BLINK BLINKING BLOCK
BOLD BOOLEAN BOTTOM BY

CALL CANCEL CD CF
CH CHARACTER CHARACTERS CLASS
CLOCK-UNITS CLOSE COBOL CODE
CODE-SET COLLATING COLUMN COMMA
COMMIT COMMON COMMUNICATION COMP
COMP-1 COMP-2 COMP-3 COMP-4
COMP-5 COMP-6 COMP-X COMPUTATIONAL
COMPUTATIONAL-1 COMPUTATIONAL-2 COMPUTATIONAL-3 COMPUTATIONAL-4
COMPUTATIONAL-5 COMPUTATIONAL-6 COMPUTATIONAL-X COMPUTE
CONCURRENT CONFIGURATION CONNECT CONTAIN
CONTAINS CONTENT CONTINUE CONTROL
CONTROLS CONVERSION CONVERTING COPY
CORR CORRESPONDING COUNT CRT
CURRENCY CURRENT CURSOR

DATA DATE DATE-COMPILED DATE-WRITTEN
DAY DAY-OF-WEEK DB DB-ACCESS-

CONTROL-KEY
DB-CONDITION DB-CURRENT-

RECORD-ID
DB-CURRENT-
RECORD-NAME

DB-EXCEPTION

DBKEY DB-KEY DB-RECORD-NAME DB-SET-NAME
DB-STATUS DB-UWA DE DEBUG-CONTENTS
DEBUG-ITEM DEBUG-LENGTH DEBUG-LINE DEBUG-NAME

461

Appendix A. VSI COBOL
Reserved Words

DIGITAL COBOL Reserved Words

DEBUG-NUMERIC-
CONTENTS

DEBUG-SIZE DEBUG-START DEBUG-SUB

DEBUG-SUB-1 DEBUG-SUB-2 DEBUG-SUB-3 DEBUG-SUB-ITEM
DEBUG-SUB-N DEBUG-SUB-NUM DEBUGGING DECIMAL-POINT
DECLARATIVES DEFAULT DELETE DELIMITED
DELIMITER DEPENDENCY DEPENDING DESCENDING
DESCRIPTOR DESTINATION DETAIL DICTIONARY
DISABLE DISCONNECT DISPLAY DISPLAY-6
DISPLAY-7 DISPLAY-9 DIVIDE DIVISION
DOES DOWN DUPLICATE(S) DYNAMIC

ECHO EDITING EGI ELSE
EMI EMPTY ENABLE END
END-ACCEPT END-ADD END-CALL END-COMMIT
END-COMPUTE END-CONNECT END-DELETE END-DISCONNECT
END-DIVIDE END-ERASE END-EVALUATE END-FETCH
END-FIND END-FINISH END-FREE END-GET
END-IF END-KEEP END-MODIFY END-MULTIPLY
END-OF-PAGE END-PERFORM END-READ END-READY
END-RECEIVE END-RECONNECT END-RETURN END-REWRITE
END-ROLLBACK END-SEARCH END-START END-STORE
END-STRING END-SUBTRACT END-UNSTRING END-WRITE
ENDING ENTER ENVIRONMENT EOL
EOP EOS EQUAL EQUALS
ERASE ERROR ESI EVALUATE
EVERY EXCEEDS EXCEPTION EXCLUSIVE
EXIT EXOR EXTEND EXTERNAL

FAILURE FALSE FD FETCH
FILE FILE-CONTROL FILLER FINAL
FIND FINISH FIRST FOOTING
FOR FOREGROUND-COLOR FREE FROM
FULL FUNCTION

GENERATE GET GIVING GLOBAL
GO GREATER GROUP

HEADING HIGHLIGHT HIGH-VALUE(S)

IDENT IDENTIFICATION IF IN
INCLUDING INDEX INDEXED INDICATE

462

Appendix A. VSI COBOL
Reserved Words

DIGITAL COBOL Reserved Words

INITIAL INITIALIZE INITIATE INPUT
INPUT-OUTPUT INSPECT INSTALLATION INTO
INVALID I-O I-O-CONTROL IS

JUST JUSTIFIED

KEEP KEY

LABEL LAST LD LEADING
LEFT LENGTH LESS LIMIT
LIMITS LINAGE LINAGE-COUNTER LINE
LINE-COUNTER LINES LINKAGE LOCALLY
LOCK LOCK-HOLDING LOWLIGHT LOW-VALUE(S)

MANUAL MATCH MATCHES MEMBER
MEMBERSHIP MEMORY MERGE MESSAGE
MODE MODIFY MODULES MOVE
MULTIPLE MULTIPLY

NATIVE NEGATIVE NEXT NO
NON-NULL NOT NULL NUMBER
NUMERIC NUMERIC-EDITED

OBJECT-COMPUTER OCCURS OF OFF
OFFSET OMITTED ON ONLY
OPEN OPTIONAL OR ORDER
ORGANIZATION OTHER OTHERS OUTPUT
OVERFLOW OWNER

PACKED-DECIMAL PADDING PAGE PAGE-COUNTER
PERFORM PF PH PIC
PICTURE PLUS POINTER POSITION
POSITIVE PRINTING PRIOR PROCEDURE
PROCEDURES PROCEED PROGRAM PROGRAM-ID
PROTECTED PURGE PREVIOUS

QUEUE QUOTE(S)

RANDOM RD READ READERS
READY REALM REALMS RECEIVE
RECONNECT RECORD RECORD-NAME RECORDS

463

Appendix A. VSI COBOL
Reserved Words

DIGITAL COBOL Reserved Words

REDEFINES REEL REFERENCE REFERENCE-
MODIFIER

REFERENCES REGARDLESS RELATIVE RELEASE
REMAINDER REMOVAL RENAMES REPLACE
REPLACING REPORT REPORTING REPORTS
REQUIRED RERUN RESERVE RESET
RETAINING RETRIEVAL RETURN RETURN-CODE
REVERSED REVERSE-VIDEO REWIND REWRITE
RF RH RIGHT RMS-CURRENT-

FILENAME
RMS-CURRENT-STS RMS-CURRENT-STV RMS-FILENAME RMS-STS
RMS-STV ROLLBACK ROUNDED RUN

SAME SCREEN SD SEARCH
SECTION SECURE SECURITY SEGMENT
SEGMENT-LIMIT SELECT SEND SENTENCE
SEPARATE SEQUENCE SEQUENCE-NUMBER SEQUENTIAL
SET SETS SIGN SIZE
SORT SORT-MERGE SOURCE SOURCE-COMPUTER
SPACE SPACES SPECIAL-NAMES STANDARD
STANDARD-1 STANDARD-2 START STATUS
STOP STORE STRING SUB-QUEUE-1
SUB-QUEUE-2 SUB-QUEUE-3 SUB-SCHEMA SUBTRACT
SUCCESS SUM SUPPRESS SYMBOLIC
SYNC SYNCHRONIZED STREAM

TABLE TALLYING TAPE TENANT
TERMINAL TERMINATE TEST TEXT
THAN THEN THROUGH THRU
TIME TIMES TO TOP
TRAILING TRUE TYPE

UNDERLINE UNDERLINED UNEQUAL UNIT
UNLOCK UNSTRING UNTIL UP
UPDATE UPDATERS UPON USAGE
USAGE-MODE USE USING

VALUE VALUES VARYING VFU-CHANNEL

WAIT WHEN WHERE WITH
WITHIN WORDS WORKING-STORAGE WRITE

464

Appendix A. VSI COBOL
Reserved Words

DIGITAL COBOL Reserved Words

WRITERS

ZERO ZEROES ZEROS

+ - * /
** > < =
> = < =

The reserved words listed in this appendix are both the default reserved words and the words that
on Alpha and I64 systems are reserved only if activated by the COBOL command-line qualifier /
RESERVED_WORDS=FOREIGN_EXTENSIONS or /RESERVED_WORDS=200X.

The XOPEN reserved words, which on Alpha and I64 systems are reserved by default, can be deactivated by the /
RESERVED_WORDS=NOXOPEN qualifier.

These three categories of Alpha- and I64-only reserved words, which are activated or deactivated by command-
line qualifiers, are marked in this appendix as follows:

[FOREIGN] Reserved only if activated by /
RESERVED_WORDS=FOREIGN_EXTENSIONS

[200X] Reserved only if activated by /
RESERVED_WORDS=200X

[XOPEN] Reserved by default, but not reserved if deactivated
by /RESERVED_WORDS=NOXOPEN

Reserved Words
ACCEPT
ACCESS
ADD
ADDRESS [FOREIGN] (Alpha, I64)
ADVANCING
AFTER
ALL
ALLOWING
ALPHABET
ALPHABETIC
ALPHABETIC–LOWER
ALPHABETIC–UPPER
ALPHANUMERIC
ALPHANUMERIC–EDITED
ALSO
ALTER
ALTERNATE
AND
ANY
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT

465

Appendix A. VSI COBOL
Reserved Words

AUTHOR
AUTO [XOPEN] (Alpha, I64)
AUTOMATIC
AUTOTERMINATE
BACKGROUND-COLOR [XOPEN] (Alpha, I64)
BATCH
BEFORE
BEGINNING
BELL [XOPEN] (Alpha, I64)
BINARY
BINARY-CHAR [200X] (Alpha, I64)
BINARY-DOUBLE [200X] (Alpha, I64)
BINARY-LONG [200X] (Alpha, I64)
BINARY-SHORT [200X] (Alpha, I64)
BIT
BITS
BLANK
BLINK [XOPEN] (Alpha, I64)
BLINKING
BLOCK
BOLD
BOOLEAN
BOTTOM
BY
CALL
CANCEL
CD
CF
CH
CHANGED [FOREIGN] (Alpha, I64)
CHARACTER
CHARACTERS
CLASS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COL [200X] (Alpha, I64)
COLLATING
COLUMN
COMMA
COMMIT
COMMON
COMMUNICATION
COMP
COMP-1
COMP-2
COMP-3
COMP-4
COMP-5
COMP-6
COMP-X
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTATIONAL-4

466

Appendix A. VSI COBOL
Reserved Words

COMPUTATIONAL-5
COMPUTATIONAL-6
COMPUTATIONAL-X
COMPUTE
CONCURRENT
CONFIGURATION
CONNECT
CONTAIN
CONTAINS
CONTENT
CONTINUE
CONTROL
CONTROLS
CONVERSION
CONVERTING
COPY
CORE-INDEX [FOREIGN] (Alpha, I64)
CORR
CORRESPONDING
COUNT
CRT
CURRENCY
CURRENT
CURSOR
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
DB
DB-ACCESS-CONTROL-KEY
DB-CONDITION
DB-CURRENT-RECORD-ID
DB-CURRENT-RECORD-NAME
DB-EXCEPTION
DB-KEY
DB-RECORD-NAME
DB-SET-NAME
DB-STATUS
DB-UWA
DBCS [FOREIGN] (Alpha, I64)
DBKEY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LENGTH
DEBUG-LINE
DEBUG-NAME
DEBUG-NUMERIC-CONTENTS
DEBUG-SIZE
DEBUG-START
DEBUG-SUB
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUG-SUB-ITEM
DEBUG-SUB-N

467

Appendix A. VSI COBOL
Reserved Words

DEBUG-SUB-NUM
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT
DELETE
DELIMITED
DELIMITER
DEPENDENCY
DEPENDING
DESCENDING
DESCRIPTOR
DESTINATION
DETAIL
DICTIONARY
DISABLE
DISCONNECT
DISP [FOREIGN] (Alpha, I64)
DISPLAY
DISPLAY-1 [FOREIGN] (Alpha, I64)
DISPLAY-6
DISPLAY-7
DISPLAY-9
DIVIDE
DIVISION
DOES
DOWN
DUPLICATE
DUPLICATES
ECHO
EDITING
EGI
EJECT [FOREIGN] (Alpha, I64)
ELSE
EMI
EMPTY
ENABLE
END
END-ACCEPT
END-ADD
END-CALL
END-COMMIT
END-COMPUTE
END-CONNECT
END-DELETE
END-DISCONNECT
END-DIVIDE
END-ERASE
END-EVALUATE
END-FETCH
END-FIND
END-FINISH
END-FREE
END-GET
END-IF
END-KEEP
END-MODIFY
END-MULTIPLY

468

Appendix A. VSI COBOL
Reserved Words

END-OF-PAGE
END-PERFORM
END-READ
END-READY
END-RECEIVE
END-RECONNECT
END-RETURN
END-REWRITE
END-ROLLBACK
END-SEARCH
END-START
END-STORE
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENDING
ENTER
ENTRY [FOREIGN] (Alpha, I64)
ENVIRONMENT
EOL [XOPEN] (Alpha, I64)
EOP
EOS [XOPEN] (Alpha, I64)
EQUAL
EQUALS
ERASE [XOPEN] (Alpha, I64)
ERROR
ESI
EVALUATE
EVERY
EXAMINE [FOREIGN] (Alpha, I64)
EXCEEDS
EXCEPTION
EXCLUSIVE
EXHIBIT [FOREIGN] (Alpha, I64)
EXIT
EXOR
EXTEND
EXTERNAL
FAILURE
FALSE
FD
FETCH
FILE
FILE-CONTROL
FILLER
FINAL
FIND
FINISH
FIRST
FLOAT-EXTENDED [200X] (Alpha, I64)
FLOAT-LONG [200X] (Alpha, I64)
FLOAT-SHORT [200X] (Alpha, I64)
FOOTING
FOR
FOREGROUND-COLOR [XOPEN] (Alpha, I64)
FREE
FROM

469

Appendix A. VSI COBOL
Reserved Words

FULL [XOPEN] (Alpha, I64)
FUNCTION
GENERATE
GET
GIVING
GLOBAL
GO
GOBACK [FOREIGN] (Alpha, I64)
GREATER
GROUP
HEADING
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT [XOPEN] (Alpha, I64)
I-O
I-O-CONTROL
ID [FOREIGN] (Alpha, I64)
IDENT
IDENTIFICATION
IF
IN
INCLUDING
INDEX
INDEXED
INDICATE
INITIAL
INITIALIZE
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
JUST
JUSTIFIED
KANJI [FOREIGN] (Alpha, I64)
KEEP
KEY
LABEL
LAST
LD
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCALLY
LOCK
LOCK-HOLDING

470

Appendix A. VSI COBOL
Reserved Words

LOW-VALUE
LOW-VALUES
LOWLIGHT [XOPEN] (Alpha, I64)
MANUAL
MATCH
MATCHES
MEMBER
MEMBERSHIP
MEMORY
MERGE
MESSAGE
MODE
MODIFY
MODULES
MOVE
MULTIPLE
MULTIPLY
NAMED [FOREIGN] (Alpha, I64)
NATIVE
NEGATIVE
NEXT
NO
NON-NULL
NOT
NOTE [FOREIGN] (Alpha, I64)
NULL
NUMBER
NUMERIC
NUMERIC-EDITED
OBJECT-COMPUTER
OCCURS
OF
OFF
OFFSET
OMITTED
ON
ONLY
OPEN
OPTIONAL
OPTIONS [200X] (Alpha, I64)
OR
ORDER
OTHERWISE [FOREIGN] (Alpha, I64)
PACKED-DECIMAL
PADDING
PAGE
PAGE-COUNTER
PASSWORD [FOREIGN] (Alpha, I64)
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIONING [FOREIGN] (Alpha, I64)
POSITIVE

471

Appendix A. VSI COBOL
Reserved Words

PREVIOUS
PRINTING
PRIOR
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROTECTED
PURGE
QUEUE
QUOTE
QUOTES
RANDOM
RD
READ
READERS
READY
REALM
REALMS
RECEIVE
RECONNECT
RECORD
RECORD-NAME
RECORD-OVERFLOW [FOREIGN] (Alpha, I64)
RECORDING [FOREIGN] (Alpha, I64)
RECORDS
REDEFINES
REEL
REFERENCE
REFERENCE-MODIFIER
REFERENCES
REGARDLESS
RELATIVE
RELEASE
RELOAD [FOREIGN] (Alpha, I64)
REMAINDER
REMARKS [FOREIGN] (Alpha, I64)
REMOVAL
RENAMES
REORG-CRITERIA [FOREIGN] (Alpha, I64)
REPLACE
REPLACING
REPORT
REPORTING
REPORTS
REQUIRED [XOPEN] (Alpha, I64)
RERUN
RESERVE
RESET
RETAINING
RETRIEVAL
RETURN
RETURN-CODE [XOPEN] (Alpha, I64)
RETURNING [FOREIGN] (Alpha, I64)
REVERSE-VIDEO [XOPEN] (Alpha, I64)
REVERSED
REWIND

472

Appendix A. VSI COBOL
Reserved Words

REWRITE
RF
RH
RIGHT
RMS-CURRENT-FILENAME
RMS-CURRENT-STS
RMS-CURRENT-STV
RMS-FILENAME
RMS-STS
RMS-STV
ROLLBACK
ROUNDED
RUN
SAME
SCREEN [XOPEN] (Alpha, I64)
SD
SEARCH
SECTION
SECURE [XOPEN] (Alpha, I64)
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENCE-NUMBER
SEQUENTIAL
SERVICE [FOREIGN] (Alpha, I64)
SET
SETS
SIGN
SIGNED [200X] (Alpha, I64)
SIZE
SKIP1 [FOREIGN] (Alpha, I64)
SKIP2 [FOREIGN] (Alpha, I64)
SKIP3 [FOREIGN] (Alpha, I64)
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
STANDARD-2
START
STATUS
STOP
STORE
STREAM
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUB-SCHEMA

473

Appendix A. VSI COBOL
Reserved Words

SUBTRACT
SUCCESS
SUM
SUPPRESS
SYMBOL [200X] (Alpha, I64)
SYMBOLIC
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TENANT
TERMINAL
TERMINATE
TEST
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIMES
TO
TOP
TRACE [FOREIGN] (Alpha, I64)
TRAILING
TRANSFORM [FOREIGN] (Alpha, I64)
TRUE
TYPE
UNDERLINE [XOPEN] (Alpha, I64)
UNDERLINED
UNEQUAL
UNIT
UNLOCK
UNSIGNED [200X] (Alpha, I64)
UNSTRING
UNTIL
UP
UPDATE
UPDATERS
UPON
USAGE
USAGE-MODE
USE
USING
VALUE
VALUES
VARYING
VFU-CHANNEL
WAIT
WHEN
WHERE
WITH
WITHIN
WORDS
WORKING-STORAGE
WRITE
WRITERS

474

Appendix A. VSI COBOL
Reserved Words

ZERO
ZEROES
ZEROS
+
-
*
/
**
>
< =
> =
< =

475

Appendix A. VSI COBOL
Reserved Words

476

Appendix B. Character Sets

Appendix B. Character Sets
ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

001 NUL 000 00 000 00 000 00
002 SOH 001 01 001 01 001 01
003 STX 002 02 002 02 002 02
004 ETX 003 03 003 03 003 03
005 EOT 004 04 055 37 004 04
006 ENQ 005 05 045 2D 005 05
007 ACK 006 06 046 2E 006 06
008 BEL 007 07 047 2F 007 07

009 BS 008 08 022 16 008 08
010 HT 009 09 005 05 009 09
011 LF 010 0A 037 25 010 0A
012 VT 011 0B 011 0B 011 0B
013 FF 012 0C 012 0C 012 0C
014 CR 013 0D 013 0D 013 0D
015 SO 014 0E 014 0E 014 0E
016 SI 015 0F 015 0F 015 0F

017 DLE 016 10 016 10 016 10
018 DC1 017 11 017 11 017 11
019 DC2 018 12 018 12 018 12
020 DC3 019 13 019 13 019 13
021 DC4 020 14 060 3C 020 14
022 NAK 021 15 061 3D 021 15
023 SYN 022 16 050 32 022 16
024 ETB 023 17 038 26 023 17

025 CAN 024 18 024 18 024 18
026 EM 025 19 025 19 025 19
027 SUB 026 1A 063 3F 026 1A
028 ESC 027 1B 039 27 027 1B
029 FS 028 1C 028 1C 028 1C
030 GS 029 1D 029 1D 029 1D
031 RS 030 1E 030 1E 030 1E
032 US 031 1F 031 1F 031 1F

033 space 032 20 064 40 032 20
034 ! 033 21 090 5A 033 21

477

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

035 " 034 22 127 7F 034 22
036 # 035 23 123 7B 035 23
037 $ 036 24 091 5B 036 24
038 % 037 25 108 6C 037 25
039 & 038 26 080 50 038 26
040 ' 039 27 125 7D 039 27

041 (040 28 077 4D 040 28
042) 041 29 093 5D 041 29
043 * 042 2A 092 5C 042 2A
044 + 043 2B 078 4E 043 2B
045 , 044 2C 107 6B 044 2C
046 - 045 2D 096 60 045 2D
047 . 046 2E 075 4B 046 2E
048 / 047 2F 097 61 047 2F

049 0 048 30 240 F0 048 30
050 1 049 31 241 F1 049 31
051 2 050 32 242 F2 050 32
052 3 051 33 243 F3 051 33
053 4 052 34 244 F4 052 34
054 5 053 35 245 F5 053 35
055 6 054 36 246 F6 054 36
056 7 055 37 247 F7 055 37

057 8 056 38 248 F8 056 38
058 9 057 39 249 F9 057 39
059 : 058 3A 122 7A 058 3A
060 ; 059 3B 094 5E 059 3B
061 < 060 3C 076 4C 060 3C
062 = 061 3D 126 7E 061 3D
063 > 062 3E 110 6E 062 3E
064 ? 063 3F 111 6F 063 3F

065 @ 064 40 124 7C 064 40
066 A 065 41 193 C1 065 41
067 B 066 42 194 C2 066 42
068 C 067 43 195 C3 067 43
069 D 068 44 196 C4 068 44
070 E 069 45 197 C5 069 45

478

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

071 F 070 46 198 C6 070 46
072 G 071 47 199 C7 071 47

073 H 072 48 200 C8 072 48
074 I 073 49 201 C9 073 49
075 J 074 4A 209 D1 074 4A
076 K 075 4B 210 D2 075 4B
077 L 076 4C 211 D3 076 4C
078 M 077 4D 212 D4 077 4D
079 N 078 4E 213 D5 078 4E
080 O 079 4F 214 D6 079 4F

081 P 080 50 215 D7 080 50
082 Q 081 51 216 D8 081 51
083 R 082 52 217 D9 082 52
084 S 083 53 226 E2 083 53
085 T 084 54 227 E3 084 54
086 U 085 55 228 E4 085 55
087 V 086 56 229 E5 086 56
088 W 087 57 230 E6 087 57

089 X 088 58 231 E7 088 58
090 Y 089 59 232 E8 089 59
091 Z 090 5A 233 E9 090 5A
092 [091 5B 091 5B
093 \ 092 5C 224 E0 092 5C
094] 093 5D 093 5D
095 ^ 094 5E 095 5F 094 5E
096 _ 095 5F 109 6D 095 5F

097 096 60 121 79 096 60
098 a 097 61 129 81 097 61
099 b 098 62 130 82 098 62
100 c 099 63 131 83 099 63
101 d 100 64 132 84 100 64
102 e 101 65 133 85 101 65
103 f 102 66 134 86 102 66
104 g 103 67 135 87 103 67

105 h 104 68 136 88 104 68

479

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

106 i 105 69 137 89 105 69
107 j 106 6A 145 91 106 6A
108 k 107 6B 146 92 107 6B
109 l 108 6C 147 93 108 6C
110 m 109 6D 148 94 109 6D
111 n 110 6E 149 95 110 6E
112 o 111 6F 150 96 111 6F

113 p 112 70 151 97 112 70
114 q 113 71 152 98 113 71
115 r 114 72 153 99 114 72
116 s 115 73 162 A2 115 73
117 t 116 74 163 A3 116 74
118 u 117 75 164 A4 117 75
119 v 118 76 165 A5 118 76
120 w 119 77 166 A6 119 77

121 x 120 78 167 A7 120 78
122 y 121 79 168 A8 121 79
123 z 122 7A 169 A9 122 7A
124 { 123 7B 192 C0 123 7B
125 | 124 7C 106 6A 124 7C
126 } 125 7D 208 D0 125 7D
127 ~ 126 7E 161 A1 126 7E
128 DEL 127 7F 007 07 127 7F

129 128 80
130 129 81
131 130 82
132 131 83
133 132 84
134 133 85
135 134 86
136 135 87

137 136 88
138 137 89
139 138 8A
140 139 8B
141 140 8C

480

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

142 141 8D
143 142 8E
144 143 8F

145 144 90
146 145 91
147 146 92
148 147 93
149 148 94
150 149 95
151 150 96
152 151 97

153 152 98
154 153 99
155 154 9A
156 155 9B
157 156 9C
158 157 9D
159 158 9E
160 159 9F

161 160 A0
162 161 A1
163 162 A2
164 163 A3
165 164 A4
166 165 A5
167 166 A6
168 167 A7

169 168 A8
170 169 A9
171 170 AA
172 171 AB
173 172 AC
174 173 AD
175 174 AE
176 175 AF

481

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

177 176 B0
178 177 B1
179 178 B2
180 179 B3
181 180 B4
182 181 B5
183 182 B6
184 183 B7

185 184 B8
186 185 B9
187 186 BA
188 187 BB
189 188 BC
190 189 BD
191 190 BE
192 191 BF

193 192 C0
194 193 C1
195 194 C2
196 195 C3
197 196 C4
198 197 C5
199 198 C6
200 199 C7

201 200 C8
202 201 C9
203 202 CA
204 203 CB
205 204 CC
206 205 CD
207 206 CE
208 207 CF

209 208 D0
210 209 D1
211 210 D2
212 211 D3

482

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

213 212 D4
214 213 D5
215 214 D6
216 215 D7

217 216 D8
218 217 D9
219 218 DA
220 219 DB
221 220 DC
222 221 DD
223 222 DE
224 223 DF

225 224 E0
226 225 E1
227 226 E2
228 227 E3
229 228 E4
230 229 E5
231 230 E6
232 231 E7

233 232 E8
234 233 E9
235 234 EA
236 235 EB
237 236 EC
238 237 ED
239 238 EE
240 239 EF

241 240 F0
242 241 F1
243 242 F2
244 243 F3
245 244 F4
246 245 F5
247 246 F6
248 247 F7

483

Appendix B. Character Sets

ASCII EBCDIC NATIVE
Position Character Dec Hex Dec Hex Dec Hex

249 248 F8
250 249 F9
251 250 FA
252 251 FB
253 252 FC
254 253 FD
255 254 FE
256 255 FF

484

Appendix C. File Status Values

Appendix C. File Status Values
This appendix summarizes the values that can appear in FILE STATUS data items. The entry for each statement
describes specific causes for each condition.

You may receive different file status values depending upon whether you use the standard compiler option with
the v3 or 85 setting. Table C.1, “I-O File Status Values for the Default -std 85 Flag or /STANDARD=85 Qualifier
Option” lists all file status values in numeric order for the default 85 setting. Table C.2, “I-O File Status Values
for the V3 and 85 Options” lists the corresponding file status values for the v3 and 85 settings.

For more information about the standard compiler option, on a Tru64 UNIX system, refer to the COBOL man
page. On an OpenVMS system, invoke the online help for COBOL.

Table C.1. I-O File Status Values for the Default -std 85 Flag or /STANDARD=85 Qualifier
Option

File Status
Input/Output
Statements

File Organization Access Mode Meaning

00 All All All Successful
02 REWRITE

WRITE

Ind All Created duplicate
alternate key

02 READ Ind All Detected alternate
duplicate key

04 READ All All Record not size of
user's buffer

05 OPEN All All Optional file not
present

07 CLOSE

OPEN

All All Invalid file
organization or
device

10 READ All Seq No next logical
record or option file
not present (at end)

14 READ Rel All Relative record
number too large

21 REWRITE Ind Seq Primary key changed
after READ

21 WRITE Ind Seq Attempted
nonascending key
value (invalid key)

22 REWRITE Ind All Duplicate alternate
key (invalid key)

22 WRITE Ind, Rel Ran Duplicate key
(invalid key)

23 DELETE

READ

REWRITE

START

Ind, Rel Ran Record not in file;
optional file not
present (invalid key)

485

Appendix C. File Status Values

File Status
Input/Output
Statements

File Organization Access Mode Meaning

24 WRITE Ind, Rel All Boundary violation
or relative record
number too large
(invalid key)

30 All All All All other permanent
errors

34 WRITE Seq Seq Boundary violation
35 OPEN All All File not found
37 OPEN All All Inappropriate device

type
38 OPEN All All File previously

closed with lock
39 OPEN All All Conflict of file

attributes
41 OPEN All All File already opened
42 CLOSE All All File not opened
43 DELETE

REWRITE

All Seq No previous READ
or START

44 REWRITE

WRITE

All All Invalid record size

46 READ All Seq No valid next record
(at end)

47 READ

START

All All File not open, or
incompatible open
mode

48 WRITE All All File not open, or
incompatible open
mode

49 DELETE

REWRITE

All All File not open, or
incompatible open
mode

90 All All All Record locked by
another user (record
available)

91 OPEN All All Open is
unsuccessful; file
locked by another
access stream

92 DELETE

READ

REWRITE

START

WRITE

All All Record locked by
another user (record
not available)

486

Appendix C. File Status Values

File Status
Input/Output
Statements

File Organization Access Mode Meaning

93 UNLOCK All All No current record
94 UNLOCK All All File not open, or

incompatible open
mode

95 OPEN All All No file space on
device

Table C.2. I-O File Status Values for the V3 and 85 Options

I-O Error Condition
Status Value

V3 85

READ successful – record shorter
than fixed file attribute.

00 04

CLOSE reel/unit attempted on
nonreel/unit device.

00 07

READ fails – relative key digits
exceed relative key.

00 14

WRITE fails – relative key digits
exceed relative key.

00 24

OPEN I-O on file that is not mass
storage.

00 37

WRITE fails – attempt to write a
record of a different size than in the
file description.

00 44

READ fails – no next logical record
(EOF detected).

13 10

READ fails – no next logical record
(EOF on OPTIONAL file).

15 10

READ fails – no valid next record
(already at EOF).

16 10

READ NEXT or sequential READ
– no valid next record pointer.

16 1 46 1

READ or START fails – optional
input file not present.

25 23

READ successful – record longer
than fixed file attribute.

30 04

OPEN on relative or indexed file
that is not mass storage.

30 37

REWRITE fails – attempt to rewrite
record of different size.

30 44

CLOSE fails – file not currently
open.

94 42

DELETE or REWRITE fails –
previous I-O not successful READ.

93 43

OPEN fails – file previously closed
with LOCK.

94 38

487

Appendix C. File Status Values

I-O Error Condition
Status Value

V3 85

OPEN fails – file created with
different organization.

94 39

OPEN fails – file created with
different prime record key.

94 39

OPEN fails – file created with
different alternate record keys.

94 39

OPEN fails – file currently open. 94 41
READ or START fails – file not
opened INPUT or I-O.

94 47

WRITE fails – file not opened
OUTPUT, EXTEND, or I-O.

94 48

DELETE or REWRITE fails – file
not opened I-O.

94 49

OPEN INPUT on a nonoptional file
– file not found.

97 35

1Refer to the description of the /STANDARD qualifier in the COBOL online help file, or the VSI COBOL User Manual for the description
of the -std flag, for information about the No Valid Next Record Condition.

488

Appendix D. Report Writer
Presentation Rules and Tables

Appendix D. Report Writer
Presentation Rules and Tables
The tables and rules in this appendix specify the following:

• The permissible combinations of LINE NUMBER and NEXT GROUP clauses for each type of report group

• The requirements for the use of these clauses

• The interpretation that the Report Writer Control System (RWCS) gives to these clauses

D.1. Organization
There is an individual presentation rules table for each of the following types of report groups: REPORT
HEADING, PAGE HEADING, PAGE FOOTING, and REPORT FOOTING. In addition, DETAIL report groups,
CONTROL HEADING report groups, and CONTROL FOOTING report groups are treated jointly in the Body
Group Presentation Rules Table.

Columns 1 and 2 of a presentation rules table list all of the permissible combinations of LINE NUMBER and
NEXT GROUP clauses for the designated report group type. Consequently, to identify the set of presentation rules
that applies to a particular combination of LINE NUMBER and NEXT GROUP clauses, read a presentation rules
table from left to right along the selected row.

The applicable rules columns of a presentation rules table are divided into two parts. The first part specifies the
rules that apply if the report description contains a PAGE clause, and the second part specifies the rules that apply
if the PAGE clause is omitted. The explanation of the rules named in the applicable rules columns follows:

• Upper-limit rules and lower-limit rules:

These rules specify the vertical subdivisions of the page within which the RWCS may present the specified
report group when the PAGE clause is used.

• Fit test rules:

The fit test rules are applicable only to body groups when the PAGE clause is included in the Report Description
entry. Therefore, fit test rules are specified only within the Body Group Presentation Rules Table. The RWCS
applies the fit test rules to determine whether the designated body group can be presented on the page on which
the report is currently positioned.

• First print line position rules:

The first print line position rules specify where on the page the RWCS presents the first print line of the given
report group.

The presentation rules tables do not specify where on the page the RWCS presents the second and subsequent
print lines (if any) of a report group; this is determined by the general rules of the LINE NUMBER clause.

• Next group rules:

The next group rules relate to the proper use of the NEXT GROUP clause.

• Final LINE-COUNTER setting rules:

These rules specify the values that the RWCS places in LINE-COUNTER after presenting report groups.

D.2. LINE NUMBER Clause Notation

489

Appendix D. Report Writer
Presentation Rules and Tables

Column 1 of the presentation rules table uses a shorthand notation to describe the sequence of LINE NUMBER
clauses that may appear in the description of a report group. The meaning of the abbreviations used in column
1 is as follows:

1. The letter A represents one or more absolute LINE NUMBER clauses that appear in consecutive order within
the sequence of LINE NUMBER clauses in the Report Group Description entry. None of the absolute LINE
NUMBER clauses may have a NEXT PAGE phrase.

2. The letter R represents one or more relative LINE NUMBER clauses that appear in consecutive order within
the sequence of LINE NUMBER clauses in the Report Group Description entry.

3. The letters NP represent one or more absolute LINE NUMBER clauses that appear in consecutive order within
the sequence of LINE NUMBER clauses within the NEXT PAGE phrase appearing in the first, and only the
first, LINE NUMBER clause.

4. When two abbreviations appear together, they refer to a sequence of LINE NUMBER clauses that consist of
the two specified consecutive sequences. For example, A R refers to a Report Group Description entry within
which the A sequence (defined in rule 1) is immediately followed by the R sequence (defined in rule 2).

5. A blank entry indicates that the clause is absent from the Report Group Description entry.

D.3. LINE NUMBER Clause Sequence
Substitutions
Where A R is a permissible sequence in the presentation rules table, A is also permissible, and the same presentation
rules apply.

Where NP R is a permissible sequence in the presentation rules table, NP is also permissible, and the same
presentation rules apply.

D.4. Saved-Next-Group-Integer Description
Saved-next-group-integer is a data item that is addressable only by the RWCS. When an absolute NEXT GROUP
clause specifies a vertical positioning value that cannot be accommodated on the current page, the RWCS stores
that value in saved-next-group-integer. After page-advance processing, the RWCS positions the next body group
using the value stored in saved-next-group-integer.

D.5. REPORT HEADING Group Presentation
Rules
Figure D.1, “REPORT HEADING Group Presentation Rules” points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT HEADING report group.

Figure D.1. REPORT HEADING Group Presentation Rules

REPORT HEADING Group Presentation Rules
1. Upper-limit rule:

The first line number on which the REPORT HEADING report group can be presented is the line number
specified by the HEADING phrase of the PAGE clause.

490

Appendix D. Report Writer
Presentation Rules and Tables

2. Lower-limit rules:

a. The last line number on which the REPORT HEADING report group can be presented is the line number that
is obtained by subtracting 1 from the first-detail-line value of the FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the REPORT HEADING report group can be presented is the line number
specified by page-size of the PAGE clause.

3. First print line position rules:

a. The first print line of the REPORT HEADING report group is presented on the line number specified by
the integer of its LINE NUMBER clause.

b. The first print line of the REPORT HEADING report group is presented on the line number obtained by
adding the integer of the first LINE NUMBER clause and the value obtained by subtracting 1 from the
heading-line value of the HEADING phrase of the PAGE clause.

c. The REPORT HEADING report group is not presented.

d. The first print line of the REPORT HEADING report group is presented on the line number obtained by
adding the contents of its LINE-COUNTER (in this case, zero) to the integer of the first LINE NUMBER
clause.

4. Next group rules:

a. The NEXT GROUP integer must be greater than the line number on which the final print line of the REPORT
HEADING report group is presented. In addition, the NEXT GROUP integer must be less than the line
number specified by first-detail-line of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the final print line of the REPORT
HEADING report group is presented must be less than the value of first-detail-line of the FIRST DETAIL
phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report group will appear by itself on
the first page of the report. The RWCS processes no other report group while positioned at the first page
of the report.

5. Final LINE-COUNTER setting rules:

a. After the REPORT HEADING report group is presented, the RWCS places the NEXT GROUP integer into
LINE-COUNTER as the final LINE-COUNTER setting.

b. After the REPORT HEADING report group is presented, the RWCS places the sum of these two items into
LINE-COUNTER as the final LINE-COUNTER setting:

• The NEXT GROUP integer

• The line number on which the final print line of the REPORT HEADING report group was presented

c. After the REPORT HEADING report group is presented, the RWCS places zero into LINE-COUNTER as
the final LINE-COUNTER setting.

d. After the REPORT HEADING report group is presented, the final LINE-COUNTER setting is the line
number on which the final print line of the REPORT HEADING report group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

D.6. PAGE HEADING Group Presentation
Rules

491

Appendix D. Report Writer
Presentation Rules and Tables

Figure D.2, “PAGE HEADING Group Presentation Rules Table” shows the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE HEADING report group.

Figure D.2. PAGE HEADING Group Presentation Rules Table

PAGE HEADING Group Presentation Rules
1. Upper-limit rule:

If a REPORT HEADING report group has been presented on the page on which the PAGE HEADING report
group is to be presented, then the first line number on which the PAGE HEADING report group can be presented
is one greater than the final LINE-COUNTER setting established by the REPORT HEADING.

Otherwise, the first line number on which the PAGE HEADING report group can be presented is the line number
specified by the HEADING phrase of the PAGE clause.

2. Lower-limit rule:

The last line number on which the PAGE HEADING report group can be presented is the line number obtained
by subtracting 1 from the first-detail-line value of the FIRST DETAIL phrase of the PAGE clause.

3. First print line position rules:

a. The first print line of the PAGE HEADING report group is presented on the line number specified by the
integer of its LINE NUMBER clause.

b. If a REPORT HEADING report group has been presented on the page on which the PAGE HEADING report
group is to be presented, then the sum of the following two items defines the line number on which the first
print line of the PAGE HEADING report group is presented:

• The final LINE-COUNTER setting established by the REPORT HEADING report group

• The integer of the first LINE NUMBER clause of the PAGE HEADING report group

Otherwise, the sum of the following two items defines the line number on which the first print line of the
PAGE HEADING report group is presented:

• The integer of the first LINE NUMBER clause of the PAGE HEADING report group

• The value obtained by subtracting 1 from the heading-line value of the HEADING phrase of the PAGE
clause

c. The PAGE HEADING report group is not presented.

4. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the final print line of the PAGE HEADING
report group was presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

D.7. Body Group Presentation Rules
Figure D.3, “Body Group Presentation Rules” points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL HEADING, DETAIL, and
CONTROL FOOTING report groups.

Figure D.3. Body Group Presentation Rules

492

Appendix D. Report Writer
Presentation Rules and Tables

Body Group Presentation Rules
1. Upper-limit rule:

The first line number on which a body group can be presented is the first-detail-line value in the FIRST DETAIL
phrase of the PAGE clause.

2. Lower-limit rules:

The last line number on which a CONTROL HEADING report group or DETAIL report group can be presented
is the last-detail-line value in the LAST DETAIL phrase of the PAGE clause.

The last line number on which a CONTROL FOOTING report group can be presented is the line number
specified by the footing-line value in the FOOTING phrase of the PAGE clause.

3. Fit test rules:

a. If the value in LINE-COUNTER is less than the integer of the first absolute LINE NUMBER clause, then
the body group will appear on the page on which the report is currently positioned.

Otherwise, the RWCS executes page-advance processing. After the PAGE HEADING report group (if
defined) has been processed, the RWCS determines whether the saved-next-group-integer location was set
when the final body group was presented on the preceding page. (See final LINE-COUNTER setting rule
6a.) If saved-next-group-integer was not so set, the body group will be presented on the page on which the
report is currently positioned. If saved-next-group-integer was so set, the RWCS:

• Moves the saved-next-group-integer into LINE-COUNTER

• Resets saved-next-group-integer to zero

• Reapplies fit test rule 3a

b. If a body group has been presented on the page on which the report is positioned, the RWCS computes a
trial sum in a work location. The trial sum is computed by adding:

• The contents of LINE-COUNTER

• The integers of all LINE NUMBER clauses of the report group

If the trial sum is not greater than the body group's lower-limit integer, then the report group is presented on
the current page. If the trial sum exceeds the body group's lower-limit integer, then the RWCS executes page-
advance processing. After the PAGE HEADING report group (if defined) has been processed, the RWCS
reapplies fit test rule 3b.

If no body group has yet been presented on the page on which the report is currently positioned, the RWCS
determines whether the saved-next-group-integer location was set when the final body group was presented
on the preceding page. (See final LINE-COUNTER setting rule 6a.)

If saved-next-group-integer was not set, the body group appears on the page on which the report is currently
positioned.

If saved-next-group-integer was set, the RWCS:

• Moves the saved-next-group-integer into LINE-COUNTER

• Resets saved-next-group-integer to zero

• Computes a trial sum in a work location

The trial sum is computed by adding: 493

Appendix D. Report Writer
Presentation Rules and Tables

• The contents of LINE-COUNTER

• The integer 1

• The integers of all but the first LINE NUMBER clause of the body group

If the trial sum is not greater than the body group's lower-limit integer, then the body group is presented on
the current page. If the trial sum exceeds the body group's lower-limit integer, then the RWCS executes page-
advance processing. After the PAGE HEADING report group (if defined) has been processed, the RWCS
presents the body group on that page.

c. If a body group has been presented on the page on which the report is currently positioned, the RWCS
executes page-advance processing. After the PAGE HEADING report group (if defined) has been processed,
the RWCS reapplies Fit Test rule 3c.

If no body group has yet been presented on the page on which the report is currently positioned, the RWCS
determines whether the saved-next-group-integer location was set when the final body group was presented
on the preceding page. (See final LINE-COUNTER setting rule 6a). If saved-next-group-integer was not
set, the body group will be presented on the page on which the report is currently positioned. If saved-next-
group-integer was set, the RWCS moves saved-next-group-integer into LINE-COUNTER and resets saved-
next-group-integer to zero.

If the value in LINE-COUNTER is less than the integer of the first absolute LINE NUMBER clause, the
RWCS presents the body group on the page on which the report is currently positioned. Otherwise, the
RWCS executes page-advance processing. After the PAGE HEADING report group (if defined) has been
processed, the RWCS presents the body group on that page.

4. First print line position rules:

a. The first print line of the body group appears on the line number specified by the integer of its LINE
NUMBER clause.

b. The RWCS presents the first print line of the current body group on the line immediately following the line
indicated by the value contained in LINE-COUNTER if these two conditions are true:

• The value in LINE-COUNTER is equal to or greater than the line number specified by the first-detail-
line value in the FIRST DETAIL phrase of the PAGE clause.

• No body group has previously been presented on the page on which the report is currently positioned.

The RWCS presents the first print line of the current body group on the line that is obtained by adding the
contents of LINE-COUNTER and the integer of the first LINE NUMBER clause of the current body group
if these two conditions are true:

• The value in LINE-COUNTER is equal to or greater than the line number specified by the first-detail-
line value in the FIRST DETAIL phrase of the PAGE clause.

• A body group has previously been presented on the page to which the report is currently positioned.

If the value in LINE-COUNTER is less than the line number specified by the first-detail-line value in the
FIRST DETAIL phrase of the PAGE clause, then the RWCS presents the first print line of the body group
on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

d. The line number on which the RWCS presents the first print line is the sum of the contents of:

• LINE-COUNTER

• The integer of the first LINE NUMBER clause
494

Appendix D. Report Writer
Presentation Rules and Tables

5. Next group rule:

The integer of the absolute NEXT GROUP clause (next-group-line-num) must specify a line number that is:
(a) not less than that specified in the FIRST DETAIL phrase of the PAGE clause, and (b) not greater than that
specified in the FOOTING phrase of the PAGE clause.

6. Final LINE-COUNTER setting rules:

a. If the body group that has just been presented is a CONTROL FOOTING report group and if the CONTROL
FOOTING report group is not associated with the highest level at which the RWCS detected a control break,
then the final LINE-COUNTER setting is the line number on which the final print line of the CONTROL
FOOTING report group was presented.

If the line number on which the final print line of the body group was presented is less than the integer of the
NEXT GROUP clause, then the RWCS places the NEXT GROUP integer into LINE-COUNTER as the final
LINE-COUNTER setting. If the line number on which the final print line of the body group was presented
is equal to or greater than the integer of the NEXT GROUP clause, then the RWCS places the line number
specified by the FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE-COUNTER
setting. In addition, the RWCS places the NEXT GROUP integer into the saved-next-group-integer location.

b. If the body group that has just been presented is a CONTROL FOOTING report group, and if the CONTROL
FOOTING report group is not associated with the highest level at which the RWCS detected a control break,
then the final LINE-COUNTER setting is the line number on which the final print line of the CONTROL
FOOTING report group was presented.

For all other cases the RWCS computes a trial sum in a work location. The trial sum is computed by adding:

• The integer of the NEXT GROUP clause

• The line number on which the final print line of the body group was presented

If the sum is less than the line number specified by the footing-line value in the FOOTING phrase of the
PAGE clause, then the RWCS places that sum into LINE-COUNTER as the final LINE-COUNTER setting.

If the sum is equal to or greater than the line number specified by the footing-line value in the FOOTING
phrase of the PAGE clause, then the RWCS places that line number into LINE-COUNTER as the final LINE-
COUNTER setting.

c. The final LINE-COUNTER setting is the line number on which the final print line of the CONTROL
FOOTING report group was presented if:

• The body group that has just been presented is a CONTROL FOOTING report group.

• The CONTROL FOOTING report group is not associated with the highest level at which the RWCS
detected a control break.

For all other cases the RWCS places the line number specified by the footing-line value in the FOOTING
phrase of the PAGE clause into LINE-COUNTER as the final LINE-COUNTER setting.

d. The final LINE-COUNTER setting is the line number on which the final print line of the body group was
presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable body group.

f. The final LINE-COUNTER setting is the line number on which the RWCS presents the final print line of
the CONTROL FOOTING report group if:

• The body group that has just been presented is a CONTROL FOOTING report group.

• The CONTROL FOOTING report group is not associated with the highest level at which the RWCS
detected a control break. 495

Appendix D. Report Writer
Presentation Rules and Tables

For all other cases the RWCS uses the sum of these two items as the final LINE-COUNTER setting:

• The line number on which the final print line was presented

• The NEXT GROUP integer

D.8. PAGE FOOTING Group Presentation
Rules
Figure D.4, “PAGE FOOTING Group Presentation Rules” shows the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE FOOTING report group.

Figure D.4. PAGE FOOTING Group Presentation Rules

The PAGE FOOTING Group Presentation Rules are:

1. Upper-limit rule:

The first line number on which the PAGE FOOTING report group can be presented is the line number obtained
by adding:

• The integer 1

• The value of footing-line in the FOOTING phrase of the PAGE clause

2. Lower-limit rule:

The last line number on which the PAGE FOOTING report group can be presented is the line number specified
by page-size of the PAGE clause.

3. First print line position rules:

a. The first print line of the PAGE FOOTING report group is presented on the line specified by the integer
of its LINE NUMBER clause.

b. The PAGE FOOTING report group is not presented.

4. Next group rules:

a. The NEXT GROUP integer must be greater than the line number on which the final print line of the PAGE
FOOTING report group is presented. In addition, the NEXT GROUP integer must not be greater than the
line number specified by the page-size value of the PAGE clause.

b. The sum of the following two items must not be greater than the line number specified by page-size of the
PAGE clause:

• The NEXT GROUP integer

• The line number on which the final print line of the PAGE FOOTING report group is presented

5. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting after the RWCS presents the PAGE FOOTING report group is the NEXT
GROUP integer.

b. The final LINE-COUNTER setting after the RWCS presents the PAGE FOOTING report group is the sum of:

• The NEXT GROUP integer

496

Appendix D. Report Writer
Presentation Rules and Tables

• The line number on which the final print line of the PAGE FOOTING report group was presented

c. After the PAGE FOOTING report group is presented, the final LINE-COUNTER setting is the line number
on which the final print line of the PAGE FOOTING report group was presented.

d. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

D.9. REPORT FOOTING Group Presentation
Rules
Figure D.5, “REPORT FOOTING Group Presentation Rules” points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT FOOTING report group.

Figure D.5. REPORT FOOTING Group Presentation Rules

REPORT FOOTING Group Presentation Rules
1. Upper-limit rules:

a. The first line number on which the REPORT FOOTING report group can be presented is one greater than
the final LINE-COUNTER setting established by the PAGE FOOTING report group if a PAGE FOOTING
report group has been presented on the page on which the report is positioned.

Otherwise, the first line number on which the REPORT FOOTING report group can be presented is the line
number obtained by adding 1 and the footing-line value of the PAGE clause.

b. The first line number on which the REPORT FOOTING report group can be presented is the line number
specified by the HEADING phrase of the PAGE clause.

2. Lower-limit rule:

The last line number on which the REPORT FOOTING report group can be presented is the line number
specified by the page-size value of the PAGE clause.

3. First print line position rules:

a. The first print line of the REPORT FOOTING report group is presented on the line specified by the integer
of its LINE NUMBER clause.

b. If the RWCS presents a PAGE FOOTING report group on the page to which the report is positioned, then
the sum of the following two items defines the line number on which the RWCS presents the first print line
of the REPORT FOOTING report group:

• The final LINE-COUNTER setting established by the PAGE FOOTING report group

• The integer of the first LINE NUMBER clause of the REPORT FOOTING report group

Otherwise, the sum of the following two items defines the line number on which the RWCS presents the
first print line of the REPORT FOOTING report group:

• The integer of the first LINE NUMBER clause of the REPORT FOOTING report group

• The line number specified by the footing-line value of the FOOTING phrase of the PAGE clause

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause directs the REPORT FOOTING report
group to appear on a page on which no other report group has been presented. The first print line of the

497

Appendix D. Report Writer
Presentation Rules and Tables

REPORT FOOTING report group is presented on the line number specified by the integer of its LINE
NUMBER clause.

d. The line number on which the RWCS presents the first print line is the sum of:

• The contents of LINE-COUNTER

• The integer of the first LINE NUMBER clause

e. The REPORT FOOTING report group is not presented.

4. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the RWCS presents the final print line of
the REPORT FOOTING report group.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report group.

498

Appendix E. RTL Routines
for Accessing the RAB and
FAB Structures (OpenVMS

Alpha and I64 Only)Appendix E. RTL Routines for
Accessing the RAB and FAB
Structures (OpenVMS Alpha and I64
Only)
In VSI COBOL for OpenVMS Alpha and OpenVMS I64, when a file is successfully opened, the file's RAB
pointer is placed in its RMS_STV field and its FAB pointer is placed in the FABPTR field of the RAB. The two
RTL routines documented here (DCOB$RMS_CURRENT_RAB and DCOB$RMS_CURRENT_FAB) enable
VSI COBOL programmers to access the RAB and FAB data structures on OpenVMS Alpha and I64. However,
the content and format of the RAB and FAB are not covered by any external standards (such as the ANSI standard
for COBOL) and are subject to change.

Description
DCOB$RMS_CURRENT_FAB returns the address of the RMS FAB structure for the most recently used COBOL
file connector. Some fields of the FAB are filled in by the RMS SYS$OPEN routine.

This routine can be used to obtain the address of the RMS FAB structure. The FAB is filled in by SYS$OPEN to
reflect the actual attributes of the file in the cases where the actual attributes differ from the attributes specified
by the COBOL file connector.

The FAB is a structure used internally by the VSI COBOL run-time system to implement COBOL semantics.
Modification of the FAB can result in abnormal program behavior, including unexpected program termination.

Example
See the example for DCOB$RMS_CURRENT_RAB.

Description
DCOB$RMS_CURRENT_RAB returns the address of the RMS RAB structure for the most recently used COBOL
file connector.

This routine can be used to obtain the address of the RMS RAB structure. The RAB describes attributes of the
connection to a file.

The RAB is a structure used internally by the VSI COBOL run-time system to implement COBOL semantics.
Modification of RAB fields can result in abnormal program behavior, including unexpected program termination.

Example
1. *+
* PROGRAM : RMSEXAMPLE
*
* PROGRAM DESCRIPTION:
*
* This program is an example of use of DCOB$RMS_CURRENT_FAB
* and DCOB$RMS_CURRENT_RAB.
*
*-
IDENTIFICATION DIVISION.
PROGRAM-ID. RMSEXAMPLE.

499

Appendix E. RTL Routines
for Accessing the RAB and
FAB Structures (OpenVMS

Alpha and I64 Only)ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT EMPLOYEE-FILE
 ASSIGN TO "employee.dat"
 ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE
 BLOCK CONTAINS 2048 CHARACTERS.
01 EMPLOYEE.
 03 NAME PIC X(30).
 03 OFFICE PIC X(10).
 03 PHONE PIC X(10).

WORKING-STORAGE SECTION.
01 EMPLOYEE-FAB USAGE IS POINTER.
01 EMPLOYEE-RAB USAGE IS POINTER.

PROCEDURE DIVISION.
P0.
*
* Open the file to establish EMPLOYEE-FILE as the current file.
*
 OPEN INPUT EMPLOYEE-FILE.

*
* Get the pointer to the RMS FAB structure for EMPLOYEE-FILE. Store
* the pointer in EMPLOYEE-FAB. Do the same for the RAB.
*
 CALL "DCOB$RMS_CURRENT_FAB" GIVING EMPLOYEE-FAB.
 CALL "DCOB$RMS_CURRENT_RAB" GIVING EMPLOYEE-RAB.

*
* Pass the address of the FAB to a subroutine that will use
* the contents.
*
 CALL "PRINT-FIELDS" USING BY VALUE EMPLOYEE-FAB EMPLOYEE-RAB.

*
* CLOSE the file before exiting.
*
 CLOSE EMPLOYEE-FILE.
 STOP RUN.
END PROGRAM RMSEXAMPLE.
IDENTIFICATION DIVISION.
PROGRAM-ID. PRINT-FIELDS.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TEMP-W.
 03 TEMP-WORD PIC S9(4) COMP.
01 TEMP-W1 REDEFINES TEMP-W.
 03 TEMP-B1 PIC X.
 03 TEMP-B2 PIC X.

500

Appendix E. RTL Routines
for Accessing the RAB and
FAB Structures (OpenVMS

Alpha and I64 Only)LINKAGE SECTION.
01 FAB.
 05 FAB_ID PIC S9(9) COMP VALUE 20483.
 05 FOP PIC S9(9) COMP.
 05 STS PIC S9(9) COMP.
 05 STV PIC S9(9) COMP.
 05 ALQ PIC S9(9) COMP.
 05 DEQ PIC S9(4) COMP.
 05 FAC PIC X.
 05 SHR PIC X.
 05 CTX PIC S9(9) COMP.
 05 RTV PIC X.
 05 ORG PIC X.
 05 RAT PIC X.
 05 RFM PIC X.
 05 JNL PIC S9(9) COMP.
 05 XAB-ADD USAGE IS POINTER.
 05 NAM-ADD USAGE IS POINTER.
 05 FNA USAGE IS POINTER.
 05 DNA USAGE IS POINTER.
 05 FNS PIC X.
 05 DNS PIC X.
 05 MRS PIC S9(4) COMP.
 05 MRN PIC S9(9) COMP.
 05 BLS PIC S9(4) COMP.
 05 FILLER PIC X(18).
01 RAB.
 05 RAB_ID PIC S9(9) COMP VALUE 17409.
 05 ROP PIC S9(9) COMP.
 05 STS PIC S9(9) COMP.
 05 STV PIC S9(9) COMP.
 05 RFA PIC S9(4) COMP OCCURS 3 TIMES.
 05 RESERVED PIC S9(4) COMP.
 05 CTX PIC S9(9) COMP.
 05 RAC PIC X.
 05 TMO PIC X.
 05 USZ PIC S9(4) COMP.
 05 RSZ PIC S9(4) COMP.
 05 UBF PIC S9(9) COMP.
 05 RBF PIC S9(9) COMP.
 05 RHB PIC S9(9) COMP.
 05 KBF PIC S9(9) COMP.
 05 KSZ PIC X.
 05 KRF PIC X.
 05 MBF PIC X.
 05 MBC PIC X.
 05 BKT PIC S9(9) COMP.
 05 FABPTR PIC S9(9) COMP.
 05 XAB PIC S9(9) COMP.

PROCEDURE DIVISION USING FAB RAB.
*
* Convert the MBF PIC X value to a PIC S9(5) COMP VALUE.
*
 MOVE 0 TO TEMP-WORD.
 MOVE MBF TO TEMP-B1.

*

501

Appendix E. RTL Routines
for Accessing the RAB and
FAB Structures (OpenVMS

Alpha and I64 Only)* Display the multibuffer count and file allocation.
*
 DISPLAY "Multibuffer count is "
 TEMP-WORD WITH CONVERSION " blocks".
 DISPLAY "File allocation is " ALQ WITH CONVERSION.

 EXIT PROGRAM.
END PROGRAM PRINT-FIELDS.

Output:

2. $
$ LINK RMSEXAMPLE
$ RUN RMSEXAMPLE
File allocation is 1206
$

502

Index

Index
Symbols
-nationality japan, 14
/ARITHMETIC=STANDARD qualifier , 222
/CHECK=BOUNDS qualifier, 208
/CHECK=DUPLICATE_KEYS qualifier, 115,
/INCLUDE qualifier , 445
/MATH_INTERMEDIATE=CIT3 qualifier , 224
/MATH_INTERMEDIATE=FLOAT qualifier , 223
/NATIONALITY=JAPAN, 14, 151
/RESERVED_WORDS=200X , 465
/RESERVED_WORDS=[NO]XOPEN , 465
/RESERVED_WORDS=FOREIGN_EXTENSIONS ,
465

A
Abbreviated combined relation conditions, 233-233

definition, 233
ACCEPT statement , 249-269

reference to devices, 47
ACOS intrinsic function, 406
ADD statement, 269-271
Additional reference

definition, 23
Alignment and padding, 93
Alignment, effect of SYNC clause, 175-176
ALL literal, 15
Alpha data alignment, 93
ALPHABET clause, 47
Alphabet-name

definition, 3
ALPHABETIC test, 227
alt-key, 114
ALTER statement, 271
ALTERNATE RECORD KEY clause

-relax_key_checking, 115
ANNUITY intrinsic function, 406
ANSI source reference format

definition, 18
APPLY clause, 79-80
ARGCOUNT intrinsic function, 407
Arithmetic

standard, 222
Arithmetic expressions, 220-224

composition of, 220
data items in, 221
definition, 220
evaluation of, 221
literals in, 221
operators in, 221
use of parentheses in,
use of sign in, 221

Arithmetic operations
multiple receiving fields, 235
restrictions for operands, 235

rounding off results, 235
storing partial results, 235

Arithmetic operators, 221
definition, 221

Arithmetic statements
definition, 235

Arithmetic, native and standard , 221, 223
ASCENDING clause, 115
ASCII character set, , 477
ASIN intrinsic function, 407
At end condition, 242

definition, 242
ATAN intrinsic function, 408
AUTHOR paragraph, 31-31
Automatic record locking, 330

B
BELL clause, 117
Binary search

of a table,
BINARY usage, 181
BLANK clause, 117
Blank lines, 20
BLANK WHEN ZERO clause, 118
BLANK WHEN ZEROES, 118
Blanks

in file specification, 68
BLINK clause, 119
Block

definition, 86
related to a record, 86

Body Group Presentation Rules, table
, 492

Boundary equivalence, 88-93
Bucket

definition, 86
related to physical record, 86

C
CALL statement, 272-276
Called programs

Linkage Section of, 96
Procedure Division header of, 96

CANCEL statement, 276
Categories of data items, 87
CHAR intrinsic function, 409
Character sets

and collating sequence, 48
ASCII, 47, , 477
COBOL, 1
computer, 1
EBCDIC, 477
in ALPHABET clause, 47
Native, 477

Character transfer
using the STRING statement, 374-378
using the UNSTRING statement, 385-390

503

Index

character-string
definition, 2

Class condition, 227-228
definition, 227

Class-name
definition, 3

CLOSE statement, 278-280
cobcall routine, 276
cobcancel routine,
cobfunc routine,
COBOL character set

definition, 1
COBOL language elements, 1
COBOL word

definition, 2
CODE clause, 119
Collating sequence

in ALPHABET clause, 47
specifying in a COBOL program, 41
when merging files, 317

Colon, 17
COLUMN NUMBER clause, 120
Combined condition

definition, 231
Combining files (see Merging files)
Comma, as a separator, 16, 401
Command line arguments , 249

syntax, 44
Comment lines, 20
COMP SYNC data items, 175-176
Comparing operands, 225

when alphabetic, 227
when nonnumeric, 226
when numeric, 226, 227

Compatibility
/CHECK=DUPLICATE, 115, 162
ASSIGN TO unquoted string, 67
case sensitivity, 68
descriptor, 275
parameter passing,
spaces in file specs, 68
tabs in file specs, 68
VALUE OF ID environment variable,
VALUE OF ID logical, 195

Compiler options
-nationality japan, 14
/NATIONALITY=JAPAN, 14

Compiler-directing sentence, 202
Compiler-directing statement, 202

definition, 197
Complex condition, 231

definition, 224
COMPUTATIONAL usage,
COMPUTATIONAL-1 usage,
COMPUTATIONAL-2 usage,
COMPUTATIONAL-3 usage,
COMPUTATIONAL-5 usage,
COMPUTATIONAL-x usage,

COMPUTE statement, 280-282
Condition-name

condition
definition, 228

Condition-name condition, 228-228
Condition-names

associating values with, 85, 189-195
definition, 3
in general formats and rules, 211
in SWITCH clause, 47
qualifying, 211

Conditional compilation lines, 19, 20
Conditional expressions, 224-229

class condition, 227-228
combining, 231
complex conditions, 231
condition-name, 228-228
definition, 224
evaluation of, 233
negating, 231
relation condition, 225-227
sign condition, 229
success/failure condition, 229
switch-status condition, 228-229

Conditional sentence, 202
Conditional statement, 202

definition, 197
Conditional variables

definition, 228
relation to condition-names, 3

Configuration Section
definition, 39

CONTINUE statement, 282
CONTROL clause, 122
COPY statement, 442
CORRESPONDING phrase

for arithmetic statements, 237
for the MOVE statement, 237

COS intrinsic function, 409
Counting characters in a data item, 311-316
CRT status

specifying CRT status, 51
CRT STATUS IS clause, 51
CURRENCY SIGN clause, 49
CURRENT-DATE intrinsic function, 410
Cursor

specifying cursor address, 50
CURSOR IS clause, 50

D
Data description entry

definition, 83
elements of, 83

Data Division , 94
entries, 29

Data items
assigning initial values to, 189-195
categories of, 87, 151

504

Index

characteristics of, 149-158
classes of, 87
contents and class incompatibility, 238
default initial values, 96
default USAGE of, 220
in arithmetic expressions, 221
index, 208
naming, 125-126
nonstandard data positioning in, 134
storage format for, 180-189

DATA RECORDS clause, 126
Data transfer

positioning rules for, 87
using the MOVE statement, 319-324

Data-handling operations
undefined results

from incompatible data, 238
from operand overlap, 238

Data-name
definition, 3
in an identifier, 210-211

Data-name clause, 125-126
DATE-COMPILED paragraph, 31
DATE-OF-INTEGER intrinsic function, 411
DATE-TO-YYYYMMDD intrinsic function, 411
DAY-OF-INTEGER intrinsic function, 412
DAY-TO-YYYYDDD intrinsic function, 413
Decimal point

specifying as comma, 50
DECIMAL-POINT IS COMMA clause, 50
Declarative procedures

referencing with the USE statement, 390-393
Declaratives

definition, 30
DEFERRED-WRITE, 78
DEFERRED-WRITE phrase of the APPLY clause, 79
DELETE statement, 282-284
Delimited-scope statement, 203

definition, 197
DESCENDING clause, 115
DISPLAY statement , 284-293

reference to devices, 47
usage,

DIVIDE statement, 294-296
Division by zero, 236
Division header

definition, 27
Divisions

definition, 1
Duplicate keys check, 115,
DUPLICATES phrase, 115

E
EBCDIC character set, 477
Editing rules

for PICTURE clause, 154
Editing symbols

in PICTURE clause, 151-154

Elementary data items
alternative groupings of, 165-167
definition, 83

Embedded spaces
in file specification, 68

END PROGRAM header, 399-400
ENVIRONMENT DIVISION

syntax and general rules, 39-39
Environment variables, 249
ERASE clause, 127
Error handling

with the USE statement, 390-393
EVALUATE statement, 297
Example

definition, 23
EXIT PROGRAM statement, 302
EXIT statement, 301
Exponentiation, 222

results when invalid, 236
EXTENSION phrase of the APPLY clause, 79
EXTERNAL clause, 127
External data

definition, 204

F
FAB (see File access block)
FACTORIAL intrinsic function, 414
FD entries, 95
Figurative constants , 14-15

definition, 14
HIGH-VALUE, 14
LOW-VALUE, 15
QUOTE, 15
SPACE, 14
symbolic-character, 15

File access, 326-333
File access block (FAB), 81-
File connector

definition, 3
File description

clauses of, 95
function of entry, 83
structure of, 95

File formats
Indexed, 393, 397
Line Sequential, 393, 395
Relative, 393, 396
Sequential, 393, 395

File mapping, 80
File Section of Data Division, 95
File specification

assigning to a file-name
using VALUE OF ID clause, 195

Spaces in, 68
Tabs in, 68

File status
/STANDARD=85 values, 485
/STANDARD=V3 values, 485

505

Index

data item, 238
values, 485-488

FILE STATUS clause, 129
File-name

definition, 3
Files

Indexed, 278
Line Sequential, 278
Relative, 278
Sequential, 278

Fill bytes, def, 88
FILL-SIZE phrase of the APPLY clause, 79
FILLER, 125-126
Fixed insertion editing, 155
Fixed segment

definition, 245
Fixed-length records, 159-161
Floating insertion editing, 155
Floating-point literal

definition, 11
FOREGROUND-COLOR clause, 130
Format

of print files, 136-138
record (RECORD clause), 159-161

FROM phrase, 244
FULL clause, 131
Function-identifier, 401
Function-name, 401
Function-names, 10
Functions

definition, 23
Functions, intrinsic (see Intrinsic functions)

G
G_FLOATING, 184
General format

definition, 23
function of, 23

General rule
definition, 23

GENERATE statement, 303
Generic term

definition, 23
GLOBAL clause, 131
Global data

definition, 204
GO TO statement, 304-305
Group data item, 83

definition, 83
GROUP INDICATE clause, 132
Group moves, 322

H
Hexadecimal literal

definition, 13
HIGH-VALUE figurative constant, 14, 48
HIGHLIGHT clause, 133

Horizontal tab, 17

I
I-O File status values, 485

/STANDARD=85 qualifier (tab.), 485
/STANDARD=85 values, 485
/STANDARD=V3 qualifier (tab.), 487
/STANDARD=V3 values, 485

I-O status (see Input-output)
I64 data alignment, 93
IDENT clause, 33
Identification Division

syntax and general rules for, 31
Identifier, defined, 210-211
IF statement, 306-308
Imperative sentence, 202
Imperative statement, 202

definition, 197
Indentation, relation to level-numbers, 84
Independent segment

definition, 245
Index data item , 208

comparing, 227
defining in program, 183

INDEX SYNC data items, 175-176
INDEX usage,
Index-names

comparing, 227
definition, 3
rules, 144
storing value of in a data item, 208

Indexed files , 278, 393
duplicate key, 115,
starting position in, 369-373

Indexes
setting values for, 352, 357-361

Indexing , 208-209
basis for, 143
in an identifier, 211

Initialization of data item values
in Linkage Section, 96
in Working-Storage Section, 96

INITIALIZE statement, 308
with group and elementary items, 309

INITIATE statement, 310
Input-output

of low-volume data, 249, 284
status, 238-242

values for, 239
INPUT-OUTPUT Section

definition, 55
INSPECT statement, 311-316
INTEGER intrinsic function, 414
INTEGER-OF-DATE intrinsic function, 415
INTEGER-OF-DAY intrinsic function , 416
INTEGER-PART intrinsic function , 416
Intermediate data item

definition, 235

506

Index

INTO phrase, of I-O statements, 244-245
Intrinsic functions, 401-440

ACOS, 406
ANNUITY, 406
ARGCOUNT, 407
ASIN, 407
ATAN, 408
CHAR, 409
COS, 409
CURRENT-DATE, 410
date manipulation, 401
DATE-OF-INTEGER, 411
DATE-TO-YYYYMMDD, 411
DAY-OF-INTEGER, 412
DAY-TO-YYYYDDD, 413
FACTORIAL, 414
function types

alphanumeric, 401
integer, 401
numeric, 401

INTEGER, 414
INTEGER-OF-DATE, 415
INTEGER-OF-DAY, 416
INTEGER-PART, 416
LENGTH, 417
LOG, 418
LOG10, 418
LOWER-CASE, 419
MAX, 419
MEAN, 421
MEDIAN, 422
MIDRANGE, 422
MIN, 423
MOD, 424
NUMVAL, 424
NUMVAL-C, 425
ORD, 426
ORD-MAX, 427
ORD-MIN, 428
other, 401
PRESENT-VALUE, 428
RANDOM, 429
RANGE, 430
relational, 401
REM, 431
REVERSE, 432
scientific/mathematical, 401
SIN, 432
SQRT, 433
STANDARD-DEVIATION, 433
statistical/accounting, 401
string manipulation, 401
SUM, 434
table, 403
TAN, 435
TEST-DATE-YYYYMMDD, 435
TEST-DAY-YYYYDDD, 436
UPPER-CASE, 437

VARIANCE, 438
WHEN-COMPILED, 438
YEAR-TO-YYYY , 439

Invalid key condition, 243

J
JUSTIFIED clause, 134

and Standard Alignment Rules, 88

K
Keyword

definition, 6

L
LABEL RECORDS clause, 135
LENGTH intrinsic function , 417
Level-numbers , 84, 135-136

01 to 49, 84
definition, 3
for records, 84

LIB$ESTABLISH routine, 275
LIB$REVERT routine,
Library text, copying into source program, 442
Library-name

definition, 3
LINAGE clause, 136-138
LINAGE-COUNTER, 137
Line continuation, 19
LINE NUMBER clause, 139

Report Writer, 489
sequence substitutions, 490

Line Sequential files, 278, 393
I-O mode, 349
REWRITE, 349

Linear search of a table, 353
Linkage Section, 96
Literals , 10-13

definition, 10
in arithmetic expressions, 221
numeric literals

scientific notation, 11
Location equivalence, 88-93
LOCK-HOLDING phrase of the APPLY clause, 79
Locked records, deleting, 283
Locking operations on files, 278-280
Locking records, 79
LOG intrinsic function , 418
LOG10 intrinsic function , 418
Logical data

characteristics, 83
LOW-VALUE

figurative constant, 15, 48
LOWER-CASE intrinsic function , 419
Lowercase letters, compiler treatment of, 2
LOWLIGHT clause, 141

507

Index

M
Magnetic tapes

REEL, 66
UNIT, 66

Major-minor equivalence technique
definition, 88

Major-minor storage allocation, 88-93
Manual record locking,
MASS-INSERT phrase of the APPLY clause, 80
MATH_INTERMEDIATE=CIT4 qualifier , 224
MAX intrinsic function , 419
MEAN intrinsic function , 421
MEDIAN intrinsic function , 422
MEMORY SIZE clause of OBJECT-COMPUTER
paragraph, 41
Memory size, documenting in a COBOL program,

MERGE statement, 316-319
Merging files, 316-319

record transfer using the RETURN statement, 347-
348

MIDRANGE intrinsic function , 422
Millennium date change

ACCEPT statement, 252
CURRENT-DATE function, 410

MIN intrinsic function , 423
MOD intrinsic function , 424
MOVE statement, 319-324
MULTIPLE FILE clause

I-O-CONTROL paragraph , 80
syntax rules for, 78

Multiple receiving fields
definition, 235

Multiple record definitions, 135
Multiple results (see Multiple receiving fields)
MULTIPLY statement, 324-325

N
Name scoping

definition, 204
Naming

a COBOL program, 31-31
files in a COBOL program, 61

National literals, 14
National literals (ex.), 14
Native character set, 477
Negated combined condition

definition, 232
Negated simple condition

definition, 231
Next executable statement

definition, 220
NEXT GROUP clause, 142
Nonnumeric data transfer, 319-324
Nonnumeric literal

definition, 12
NOT ON SIZE ERROR phrase

description of, 235
Numeric data item

maximum number of digit positions, 151
Numeric data transfer, 319-324
Numeric edited data item

maximum number of digit positions, 151
Numeric literals

definition, 10
scientific notation, 11

NUMERIC test, 227
NUMVAL intrinsic function , 424
NUMVAL-C intrinsic function , 425

O
OBJECT-COMPUTER paragraph, 14
OCCURS clause, 143-146

related to subscripting, 207
ON EXCEPTION phrase

for ACCEPT statement, 237
for CALL statement, 237

ON SIZE ERROR phrase
description of, 235

OPEN statement , 326-333
effect on LINAGE values, 137-

Optional word
definition, 6

Oracle CDD/Repository Data Types and VSI COBOL
Equivalents , 446
ORD intrinsic function , 426
ORD-MAX intrinsic function , 427
ORD-MIN intrinsic function , 428
Overlapping operands, 238

P
PACKED-DECIMAL usage, 181
Padding

for Alpha alignment, 93
for I64 alignment, 93

PAGE clause, 146
PAGE FOOTING Group Presentation Rules, table

, 496
PAGE HEADING Group Presentation Rules, table, 491
PAGE-COUNTER option

definition, 7
Paragraph, 29

definition, 29
Paragraph header

definition, 29
Paragraph-name, 29
Parentheses, 16

in arithmetic expressions, 221, 221
PERFORM statement, 333-340
Period

as separator, 16
Physical data

characteristics, 83
PICTURE character-strings, 15

508

Index

PICTURE clause, 15, 149-158
currency symbol, 49
editing methods, 154-157
symbol precedence rules, 157

POINTER SYNC data items, 175-176
POINTER usage,
POINTER-64 , 189
Preallocation of disk blocks, 80
PREALLOCATION phrase of the APPLY clause,

PRESENT-VALUE intrinsic function , 428
PRINT command

/NOFEED qualifier,
for LINAGE files, 138

Print file
format, 80, 136-138

PRINT-CONTROL phrase of the APPLY clause,

Procedure Division
transfer of control within, 219-220
USING phrase, 246

Program execution
terminating with STOP statement, 373

PROGRAM-ID paragraph, 31-31
Pseudo-text , 20

delimiter, 17

Q
Qualification, 204-206

definition, 204
in an identifier, 211

Qualifiers
/INCLUDE,
definition, 204

Quotation marks, 17
QUOTE figurative constant, 15

R
RAB (see Record access block)
RANDOM intrinsic function , 429
RANGE intrinsic function , 430
RD entries, 96
READ statement, 340-345
Record

as a logical concept, 83
as a physical concept, 83
defining length of, 159-161
deleting from files, 282-284

when manually locked, 283
unit of transfer for, 86

Record access
using the READ statement, 340-345
using the RELEASE statement, 346-347
using the RETURN statement, 347-348
using the START statement, 369-373

Record access block (RAB), -
Record allocation, 88-93

RECORD clause, 159-161
Record description

function of entry, 83
hierarchical structure, 84
level-numbers, 84

RECORD KEY clause, 161
Record locking

automatic,
manual,

RECORD statement, 345-346
Record transfer

using the WRITE statement, 393-399
REDEFINES clause, 162-165
Reference modification, 209
Relation condition, 225-227

definition, 225
Relational operators

definitions, 225
Relative files, 278, 393

starting position in, 369-373
Release notes

where to find, viii
RELEASE statement, 346-347
REM intrinsic function , 431
Removal operations for file media, 278-280
RENAMES clause, 165-167
REPLACE statement, 456-460
Replacing characters in a data item, 311-316
Replacing records (with REWRITE statement), 348-
351
REPORT clause, 167
Report description entry, 168
REPORT FOOTING Group Presentation Rules, table

, 497
REPORT HEADING Group Presentation Rules, table,
490
Report Section of Data Division, 96
Report Writer

organization, 489
Report Writer presentation rules, tables, 489
REQUIRED clause, 168
Required words , 6-6

definition, 6
RERUN clause of the I-O-CONTROL paragraph

general rules for, 80
syntax rules for, 78

Reserved words , 6-10
definition, 6
list of, 461

Resultant identifiers
definition, 235
function of, 235

RETURN key, to shorten source lines, 20
RETURN statement, 347-348
RETURN-CODE special register, 248, 275
REVERSE intrinsic function , 432
REVERSE-VIDEO clause, 169
Rewind operations for file media, 278-280

509

Index

REWRITE statement, 348-351
RMS

file extension, 79
Rounding off arithmetic results, 235

S
SAME AREA clause

I-O-CONTROL paragraph
general rules for, 80
syntax rules for, 78

SAME RECORD AREA clause of the I-O-CONTROL
paragraph, 80
SAME SORT AREA clause of the I-O-CONTROL
paragraph, 80
Saved-Next-Group-Integer

Report Writer, 490
Scope of names

definition, 204
Scope of statements, 203
Screen Section of Data Division, 97
SD entries, 95
SEARCH statement, 352-357
Section header

definition, 28
SECURE clause, 169
seg-key, 114
Segmentation, 245-246
Segmented key, defined, 3
SELECT optional in FILE-CONTROL paragraph, 61
Semicolon, as a separator, 16
Sentences, COBOL, 197

compiler-directing, 202
conditional, 202
definition, 197
imperative, 202

Separately compiled program
definition, 1

Separators , 16-17
definition, 16

Sequential files, 278, 393
Sequential search of a table, 353
Serial search of a table, 353
SET statement, 357-361
Sign

default for unsigned operands, 226
in arithmetic expressions, 221
specifying position of, 170-171
specifying representation of, 170-171

SIGN clause, 170-171
Sign condition, 229

definition, 229
Sign control symbols, 155

in fixed insertion editing, 155
in floating insertion editing, 156

Simple condition
definition, 224

Simple insertion editing, 155
SIN intrinsic function , 432

Size error condition
description of, 235
evaluation of exponentiation, 222

SORT statement, 362-368
with table, 362

Sort-merge file description entries
clauses of, 95
structure of, 95

Sorting records, 362-368
using the RELEASE statement, 346-347
using the RETURN statement, 347-348

SOURCE clause, 171
Source program

definition, 25
Source program reference format, 17
SPACE figurative constant, 14
Spaces, 16

as delimiters
arithmetic operators, 221
of relational operators, 225

as zero replacements, 118
in file specification, 68

Special character word
definition, 6

Special insertion editing, 155
Special registers, 3, 5, 5, 6, 6-10, 10

definition, 6
SPECIAL-NAMES paragraph, 14
Special-purpose word

definition, 6
SQRT intrinsic function , 433
Standard Alignment Rules, 87
STANDARD-DEVIATION intrinsic function , 433
START statement, 369-373
Statements, COBOL, 197

compiler-directing, 202
conditional, 202
definition, 197
delimited-scope, 203
delimiting, 203
imperative, 202
options of, 234-238

Status Key 1, 239
Status Key 2, 240
STOP statement, 373
Storage allocation, 88-93

for COMP SYNC items, 86-93
for group items, 83-93
major-minor technique, 88-93
when multiple entries describe the same area, 162-
165

Storage format of a data item, 181-189
STRING statement, 374-378
Subscripting , 206-208

basis for, 143
in an identifier, 211

SUBTRACT statement, 378-380
Success/failure condition

510

Index

definition, 229
SUM clause, 172
SUM intrinsic function , 434
SUPPRESS statement, 380
SWITCH clause, 47
Switch-status condition, 228-229

definition, 228
Switches

specifying in SPECIAL-NAMES paragraph, 47
Symbolic-character, 15
SYNCHRONIZED clause, 175-176
Syntax rules

definition, 23
purpose, 23

System logicals, 249
System-names , 5-6

definition, 5

T
Tab character, 17
TAB key, use of in source file, 20
Table handling

binary search for a table element, 354
searching for a table element, 352-357
sequential search for a table element, 353

Table sort, 362
Tables

defining (OCCURS clause), 143-146
rules for indexing, 208-209
rules for subscripting, 207-208

Tabs
in file specification, 68

TAN intrinsic function , 435
Technical note

definition, 23
Terminal format

definition, 22
TERMINATE statement, 381
TEST-DATE-YYYYMMDD intrinsic function , 435
TEST-DAY-YYYYDDD intrinsic function , 436
Testing

for the sign of a value, 229
Text-word

definition, 441
Transferring control in the Procedure Division, 219-220

with CALL statement, 272-276
with EXIT PROGRAM statement, 302
with GO TO statement, 304-305
with IF statement, 306-308
with MERGE statement, 316-319
with PERFORM statement, 333-340
with READ statement, 340-345

Truth value
definition, 202
of conditional expressions, 224

TYPE clause, 176

U
Undefined results in a data-handling operation, 238
UNDERLINE clause, 180
Uniqueness of reference, 3, 204
UNLOCK statement, 382
UNSTRING statement, 385-390
UPPER-CASE intrinsic function , 437
USAGE clause, 181-189
USAGE IS BINARY-CHAR clause , 181
USAGE IS BINARY-DOUBLE clause ,
USAGE IS BINARY-LONG clause ,
USAGE IS BINARY-SHORT clause ,
USAGE IS FLOAT-EXTENDED clause ,
USAGE IS FLOAT-LONG clause ,
USAGE IS FLOAT-SHORT clause ,
USAGE IS POINTER-64 ,
USE AFTER EXCEPTION procedure

and invalid key condition, 244
USE statement, 390-393
User-defined words , 3-3

definition, 3
uniqueness of, 204

USING phrase , 247
of CALL statement, 273-275
of Procedure Division header, 96, 273-

V
VALUE IS clause , 189-195

use in Linkage Section, 96
use in Working-Storage Section, 96

VALUE OF ID clause, 195
length limitation, 195

Variable-length records, 158-161
VARIANCE intrinsic function , 438
Verbs, COBOL, 197

definition, 197
Version 2.8 – what's new since V2.5

/DISPLAY_FORMATTED, 286, 287
arithmetic, native and standard, 221, 223
Arithmetic, standard, 222
DISPLAY and [NOT] ON EXCEPTION, 284
DISPLAY and END-DISPLAY, 284
DISPLAY in an EXCEPTION for an ACCEPT, 255,
292
DISPLAY, terminating (within ACCEPT ON
EXCEPTION), 255
OPEN and APPLY PREALLOCATION to detect
"device full", 332
OpenVMS I64 support, viii
status, passing to operating system (RETURN-
CODE and PROCEDURE DIVISION GIVING),
248
table sort, 362
WRITE and SYS$FLUSH to detect "device full",
398

511

Index

W
WHEN-COMPILED intrinsic function , 438
WINDOW phrase of the APPLY clause,
WITH IDENT clause , 33

example, 31
Working-Storage Section of Data Division, 95
WRITE statement , 393-399

effect on LINAGE values, -137

Y
Year 2000

ACCEPT statement, 252
CURRENT-DATE function, 410

YEAR-TO-YYYY intrinsic function , 439

Z
Zero suppression editing, 156

512

	VSI COBOL Reference Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Structure of This Document
	4. Associated Documents
	5. Related Documents
	6. Conventions
	7. References
	8. How to Order Additional Documentation
	9. VSI Encourages Your Comments

	Chapter 1. Overview of the COBOL Language
	1.1. The COBOL Character Set
	1.2. Character Strings
	1.2.1. COBOL Words
	1.2.1.1. User-Defined Words
	1.2.1.2. System-Names
	1.2.1.3. Reserved Words
	1.2.1.4. Function-Names

	1.2.2. Literals
	1.2.2.1. Numeric Literals
	1.2.2.2. Nonnumeric Literals

	1.2.3. Figurative Constants
	1.2.4. PICTURE Character-Strings
	1.2.5. Separators

	1.3. Source Reference Format
	1.3.1. ANSI Format
	1.3.2. Terminal Format

	1.4. Sample Entry Format

	Chapter 2. Organization of a COBOL Program
	Chapter 3. Identification Division
	PROGRAM-ID
	AUTHOR
	DATE-COMPILED
	OPTIONS

	Chapter 4. Environment Division
	SOURCE-COMPUTER
	OBJECT-COMPUTER
	SPECIAL-NAMES
	FILE-CONTROL
	ASSIGN
	BLOCK CONTAINS
	CODE-SET
	LOCK MODE (Alpha, I64)
	ORGANIZATION
	PADDING CHARACTER
	RECORD DELIMITER (OpenVMS)
	RESERVE
	I-O-CONTROL

	Chapter 5. Data Division
	5.1. Logical Concepts of Data Storage
	5.1.1. Record Description Entries
	5.1.2. Level-Numbers
	5.1.3. Multiple Record Description Entries for the Same Data

	5.2. Physical Concepts of Data Storage
	5.2.1. Categories and Classes of Data
	5.2.2. COBOL Standard Alignment Rules
	5.2.3. Additional Alignment Rules for Record Allocation
	5.2.4. Alpha and I64 Alignment and Padding

	5.3. DATA DIVISION General Format and Rules
	FD (File Description)
	SD (Sort-Merge File Description)
	RD (Report Description)
	Data Description
	Report Group Description
	Screen Description (Alpha, I64)
	ACCESS MODE
	ALTERNATE RECORD KEY
	AUTO
	BACKGROUND-COLOR (Alpha, I64)
	BELL
	BLANK
	BLANK WHEN ZERO
	BLINK (Alpha, I64)
	CODE
	COLUMN NUMBER
	CONTROL
	Data-Name
	DATA RECORDS
	ERASE (Alpha, I64)
	EXTERNAL
	FILE STATUS
	FOREGROUND-COLOR (Alpha, I64)
	FULL (Alpha, I64)
	GLOBAL
	GROUP INDICATE
	HIGHLIGHT (Alpha, I64)
	JUSTIFIED
	LABEL RECORDS
	Level-Number
	LINAGE
	LINE NUMBER (Alpha, I64)
	LOWLIGHT (Alpha, I64)
	NEXT GROUP
	OCCURS
	PAGE
	PICTURE
	RECORD
	RECORD KEY
	REDEFINES
	RENAMES
	REPORT
	REQUIRED (Alpha, I64)
	REVERSE-VIDEO (Alpha, I64)
	SECURE (Alpha, I64)
	SIGN
	SOURCE
	SUM
	SYNCHRONIZED
	TYPE
	UNDERLINE
	USAGE
	VALUE IS
	VALUE OF ID

	Chapter 6. Procedure Division
	6.1. Verbs, Statements, and Sentences
	6.1.1. Compiler-Directing Statements and Sentences
	6.1.2. Imperative Statements and Sentences
	6.1.3. Conditional Statements and Sentences
	6.1.4. Scope of Statements

	6.2. Uniqueness of Reference
	6.2.1. Qualification
	6.2.2. Subscripts and Indexes
	6.2.3. Reference Modification
	6.2.4. Identifiers
	6.2.5. Ensuring Unique Condition-Names
	6.2.6. Scope of Names
	6.2.6.1. Conventions for Resolving Program-Name References
	6.2.6.2. Conventions for Resolving Other References

	6.2.7. External and Internal Data

	6.3. Explicit and Implicit Specifications
	6.3.1. Explicit and Implicit Procedure Division References
	6.3.2. Explicit and Implicit Control Transfers
	6.3.3. Explicit and Implicit Attributes
	6.3.4. Explicit and Implicit Scope Terminators

	6.4. Arithmetic Expressions
	6.4.1. Arithmetic Operators
	6.4.2. Formation and Evaluation of Arithmetic Expressions
	6.4.3. Standard Arithmetic (Alpha, I64)
	6.4.4. Native Arithmetic (Alpha, I64)
	6.4.4.1. FLOAT Arithmetic (Alpha, I64)
	6.4.4.2. CIT3 Arithmetic (Alpha, I64)
	6.4.4.3. CIT4 Arithmetic (Alpha, I64)

	6.5. Conditional Expressions
	6.5.1. Relation Conditions
	6.5.1.1. Comparison of Numeric Operands
	6.5.1.2. Comparison of Nonnumeric Operands

	6.5.2. Class Condition
	6.5.3. Condition-Name Condition
	6.5.4. Switch-Status Condition
	6.5.5. Sign Condition
	6.5.6. Success/Failure Condition
	6.5.7. Complex Conditions
	6.5.8. Abbreviated Combined Relation Conditions
	6.5.9. Condition Evaluation Rules

	6.6. Common Rules and Options for Data Handling
	6.6.1. Arithmetic Operations
	6.6.2. Multiple Receiving Fields in Arithmetic Statements
	6.6.3. ROUNDED Phrase
	6.6.4. ON SIZE ERROR Phrase
	6.6.5. CORRESPONDING Phrase
	6.6.6. ON EXCEPTION Phrase
	6.6.7. Overlapping Operands and Incompatible Data
	6.6.8. I-O Status
	6.6.9. AT END Phrase
	6.6.10. INVALID KEY Phrase
	6.6.11. FROM Phrase
	6.6.12. INTO Phrase

	6.7. Segmentation
	6.8. General Formats and Rules for Statements
	ACCEPT

	6.9.
	ADD
	ALTER
	CALL
	CANCEL
	CLOSE
	COMPUTE
	CONTINUE
	DELETE
	DISPLAY
	DIVIDE
	EVALUATE
	EXIT
	EXIT PROGRAM
	GENERATE
	GO TO
	IF
	INITIALIZE
	INITIATE
	INSPECT
	MERGE
	MOVE
	MULTIPLY
	OPEN
	PERFORM
	READ
	RECORD (OpenVMS Only)
	RELEASE
	RETURN
	REWRITE
	SEARCH
	SET
	SORT
	START
	STOP
	STRING
	SUBTRACT
	SUPPRESS
	TERMINATE
	UNLOCK
	UNSTRING
	USE
	WRITE
	END PROGRAM

	Chapter 7. Intrinsic Functions
	Intrinsic Function
	ACOS
	ANNUITY
	ARGCOUNT (OpenVMS Only)
	ASIN
	ATAN
	CHAR
	COS
	CURRENT-DATE
	DATE-OF-INTEGER
	DATE-TO-YYYYMMDD
	DAY-OF-INTEGER
	DAY-TO-YYYYDDD
	FACTORIAL
	INTEGER
	INTEGER-OF-DATE
	INTEGER-OF-DAY
	INTEGER-PART
	LENGTH
	LOG
	LOG10
	LOWER-CASE
	MAX
	MEAN
	MEDIAN
	MIDRANGE
	MIN
	MOD
	NUMVAL
	NUMVAL-C
	ORD
	ORD-MAX
	ORD-MIN
	PRESENT-VALUE
	RANDOM
	RANGE
	REM
	REVERSE
	SIN
	SQRT
	STANDARD-DEVIATION
	SUM
	TAN
	TEST-DATE-YYYYMMDD
	TEST-DAY-YYYYDDD
	UPPER-CASE
	VARIANCE
	WHEN-COMPILED
	YEAR-TO-YYYY

	Chapter 8. Source Text Manipulation
	8.1. Text-Word Definition Rules
	COPY
	REPLACE

	Appendix A. VSI COBOL Reserved Words
	Appendix B. Character Sets
	Appendix C. File Status Values
	Appendix D. Report Writer Presentation Rules and Tables
	D.1. Organization
	D.2. LINE NUMBER Clause Notation
	D.3. LINE NUMBER Clause Sequence Substitutions
	D.4. Saved-Next-Group-Integer Description
	D.5. REPORT HEADING Group Presentation Rules
	D.6. PAGE HEADING Group Presentation Rules
	D.7. Body Group Presentation Rules
	D.8. PAGE FOOTING Group Presentation Rules
	D.9. REPORT FOOTING Group Presentation Rules

	Appendix E. RTL Routines for Accessing the RAB and FAB Structures (OpenVMS Alpha and I64 Only)
	Index

