uma Software

VSI OpenVMS
VSI COBOL Reference Guide

Document Number: XX-XXXXXX-XXX

Publication Date: month year

This manual provides reference information and syntax for the VSI COBOL
programming language on its platforms: OpenVMS Alpha, OpenVMS Industry
Standard 64, and Tru64 UNIX Alpha.

Revision Update Information: This is a new manual.

Operating system and Version: VS| OpenVMS Version X.X
Software Version: VS| COBOL Version X.X

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS VSI COBOL Reference Guide:

nma Software

Copyright © 2018 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VS| required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSl shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiariesin the United States and other countries.
Oracleisaregistered trademark of Oracle and/or its affiliates.

The VS| OpenVMS documentation set is available on DVD.

ii

VS| COBOL Reference Guide

g) TR vii
Lo ADOUL VST oot e e et ettt ettt a e aans vii

2. Intended AUIENCEccuuniiiiiiit e et vii

3. Structure of ThisS DOCUMENLuiiiiieiii ittt et et e e e e eeie e vii

4. ASSOCIAtEd DOCUIMEIILSeitueiiieiii ettt et ettt e et et e et e et e e e e eeanas viii

5. Related DOCUMENLSiutniiii ettt ettt e e e et e et e e e e e e eeanes iX

6. COMVENTIONS ..utttnetit ettt e ettt ettt et et e et e et e ettt e et et et e e eb e e et e e et e eaaeeannaas iX

T RETETEIICES ...ttt ettt et e e et e e xi

8. How to Order Additional DOCUMENTAtIONoivuiiiniiineii e e e et e e ei e e e e eaeeeaneeans xi

9. VSI Encourages YOUT COMIMENLScuuiunirnieetniteieteieteieteteteteseteseteseneesaenarsnenaenenns xi
Chapter 1. Overview of the COBOL LaNGUAGEcccovvuerrerirrnrecsssnssecssssssscsssssssssssssssssans 1
1.1. The COBOL CRATACIET Stceuuiitneiiieiii et ettt ettt et e e e e e e et e e e e e e eean s 1

R O T ¢ Tot o) g 0 10T PPN 2
1.2.1. COBOL WOTAS ...etueiiieeiie ettt ettt e e e e e e e eeaes 2

| B (1< v | PP PP 10

1.2.3. Figurative CONSLANESeivuiieneieiiieiineiieei et eete et eetneeteateeteeseeetneerneenneeneenaernaenns 14

1.2.4. PICTURE Character-StriN@Sviuuiiineiineiieiieeiieeiietineetetteetneesnerrneareenesnaeseaesnns 15

LB T T ¢ 1101 PPN 16

1.3. Source Reference FOrmatcoouiiiiiiiiii e 17

13010 ANST FOIMAL ..ooniniiti e 18

1.3.2. Terminal FOIMALcouuiiiiniiii et 22

1.4. Sample Entry FOIMALoiiuiiiiiiie ettt e e e e e e e e e et e e e e e e eanaes 23
Chapter 2. Organization of a COBOL Programceeeiccicssnnecssssnnrecssssssecsssssssssnns 25
Chapter 3. Identification DiVISIONccccceeerveiciisercsssnncssnicssnicssnnisssssesssssesssssssssssssssssssnsses 31
PROGRAMEID ...ttt ettt e e e e e e 31
AUTHOR .o e ettt et 33
DATE-COMPILED ...ttt ettt et e et e et e et e e e e e et e e eaa e e st e e st aeaaa e essnaesenaesen 34

(0 1 (0)N 1 T PSPPSR 35
Chapter 4. Environment DiViSIONccccccceveicisnicisnisssnisssnncssssncssssnssssssssssssssssssssssssssssssses 39
SOURCE-COMPUTER ...ttt e e e e e e e et e e e et e e et e e aan e e eaa e eateeaanaes 40
OBJECT-COMPUTERuiiiiiiiieiiiii ettt e s 40
SPECIAL-NAMES ...ttt ettt e e et e e e et e et e e ea e e st e e st e e ssn e eraeeaenns 43
FILE-CONTROL ...ttt et ettt e et e et e e e et eeeeaia e 56

A SIGN Lot ettt e e ettt e e ta e ta ettt eat e thn e aaaaaras 63
BLOCK CONTAINS ..ottt et e et e e e et e et e e et e e st eeaaa e e aaa e esteeatnaeatneessnaesenaeses 69
(6105) 2] 1 KT 70
LOCK MODE (AIPha, I64)uiiiiniiiiei et e e e e e e e e et e e eaeeeaa e eeaaeaaanees 71
ORGANIZATION ...ttt ettt ettt ettt e et e et ea e et eaieeeeenen 73
PADDING CHARACGTER .. .ouniiiiiiiiie et e e e e e e e e e e e e e e et e e aan e eeaeneaaanees 73
RECORD DELIMITER (OPnVIMS) ...ttt 74
RESERVE ...ttt ettt e et e e e e e et e e e e e e s e e et e et e e et e e e b e e anaeaaaeres 75
TmO-CONTROL ...t ettt ettt et e e eai e 76
Chapter 5. Data Division 83
5.1. Logical Concepts of Data StOTAZEc..ueeuuniiiiniiiiiiii e 83
5.1.1. Record Description ENtIiescouuiiiuniiiiniiiiiiiii e 83

S5.1.2. LeVEI-NUIMDETSeeuniiieiiieii et e et e et et e e e e et et e e e e e e e e e eaneenneennnas 84

5.1.3. Multiple Record Description Entries for the Same Datac.c.cooviiiiiiiiiinn 85

5.2. Physical Concepts of Data StOrageviuniiuieiniiiiei e e e et e e e ean e 86
5.2.1. Categories and Classes of Datacccovieuiiiiiiiiiiiiiiiii e 86

5.2.2. COBOL Standard Alignment RUlesc.cocooiiiiiiiiiiiiniiiiiii e, 87

5.2.3. Additional Alignment Rules for Record Allocationc...ccooveiiiiiiiiiniiiiniiineennnene. 88

5.2.4. Alpha and 164 Alignment and Paddingccoooiiiiiiiiiiiiiniiin e 93

5.3. DATA DIVISION General Format and Rulescooiiiiiiiiiiiiiiie e 94

iii

VS| COBOL Reference Guide

Chapter 6. Procedure DIVISIONcccicveiiccicsniccssssnnicssssnsecss 197
6.1. Verbs, Statements, and SENTEIICESviniriinieiii ettt 197
6.1.1. Compiler-Directing Statements and SENtENCEScceviiveiiniiineiieiiieiieieeiieaieainnas 202
6.1.2. Imperative Statements and SENTENCESvivuiiiniiineiieiieeiieeietie e e reeeneeaneaannns 202
6.1.3. Conditional Statements and SENtENCESuvivniiiiiiriiiiiieiie e e eeeie e eieeanaes 202
6.1.4. SCOPE Of StAtCIMENLS ...ovvuiiniiniii it e et et et et e e et et eean e e s e et e et e et eaeaaanaaannas 203

6.2. Uniqueness 0f REferenceovvniiiiiiiiiiiiie e e 204
6.2.1. QUAIITICALION ...ovtititiit i 204
6.2.2. Subscripts and INAEXESviuiiiiiiiiiiei et 206
6.2.3. Reference ModifiCationovuuiiiniiineiie et et e e e e e e e e eaens 209
L B U 15311 5§) S PTPPUPRN 210
6.2.5. Ensuring Unique Condition-NamESoceuiiuiiiniiiniiineiieiieiieiieeiieeineeineenneennees 211
6.2.6. SCOPE OF INAIMES ..uivvniieiiieiieiie et ie et et et e et e eeette e et eaeeera e et e et eeaaeenaesneaanaasneees 211
6.2.7. External and Internal Datacocouiiiiiiiiiiiiii e 218

6.3. Explicit and Implicit SPeCIfICAtIONSuviiniiieiiieiiie e e e e e 218
6.3.1. Explicit and Implicit Procedure Division Referencesccocvviiiiiiiiiiniiniiinninnnnn. 219
6.3.2. Explicit and Implicit Control Transfersccoeuvviiiiiiiiiiiiieie e 219
6.3.3. Explicit and Implicit AHIIDULESouiivniiieiiiiie e e e e aaeaas 220
6.3.4. Explicit and Implicit ScoOpe Terminatorscceuviiuiiinriineiineeieiieerieeiieererierinaannns 220

6.4, ATIthmetiC EXPIESSIONSuiiuuiiiiiiieii et e et e e e e e et et et e e e et e et e et e et e an e aneeanaaanees 220
6.4.1. ATTthMELIC OPEIALOTS ...vvuiiineiiiiietii ettt et et et et et et e et e et e et e et e et eaneeaneeaneraneenns 221
6.4.2. Formation and Evaluation of Arithmetic EXPressionsoecuviiniiineiineinieinneinnninnns 221
6.4.3. Standard Arithmetic (Alpha, I64)couiiiniiiii e 222
6.4.4. Native Arithmetic (Alpha, 164)iirniiiiii e 223

6.5. ConditioNal EXPIESSIONSuuivniineiineiieeiieeieti et et et et eeaneeteetesteseaeseetsnetrneeneenaesnaeens 224
6.5.1. Relation CONAItIONSiivuiieiiieiieii et et et e e e et et e tieea e et eer e et eeneanaarnaannns 225
6.5.2. Class CONAILIONivuiiniiineii ettt et et et e et e et e et e et e et e et e st aaeaasaersneaaneaanns 227
6.5.3. Condition-Name CONditioneiineiiniiieiieeiieiietie e eeee e eaeereeererieaiaaenns 228
6.5.4. SWitch-Status CONAItIONueiieiiieiieeie ittt e e e et e et e e e e e aeeeaeeeaneeans 228
6.5.5. SigN CONAITION ..uuiivniieiiieii e et et e e e e et e et et e et e e e e s e e s e ean e et eeaeseeaens 229
6.5.6. Success/Failure COoNditioncccueeiuniiiiiiiiiesie ittt e e e e e e e et e e e e eaaeaens 229
6.5.7. Complex CONAILIONSvvueieniieiieiii et e et e et e e et et e et e e e e eaeeean e et e et eeaeseeenns 231
6.5.8. Abbreviated Combined Relation Conditionscccveiuiiiniiiniiiniiieiieiineiineiinaaenns 233
6.5.9. Condition Evaluation RUIEScccuiiiiiiiiiiiiiiiii et 233

6.6. Common Rules and Options for Data Handlingccooiviiiiiiiiniiin i 234
6.6.1. Arithmetic OPEIAtiONSivueiieiiineiin et eitee e et eeie et e et et et eaneerneesneraeeeeenaasenaes 235
6.6.2. Multiple Receiving Fields in Arithmetic Statementscoeevveiveiiiiiiiieiieineiennns 235
6.6.3. ROUNDED PRIASEuuiiiiiniiiniiieiee et e et e e e e et e e e e e e e et e et e aaaaenns 235
6.6.4. ON SIZE ERROR PRIASEuoivniiiniiiiiiiiie et e e e e e eaes 235
6.6.5. CORRESPONDING PRISEcevuuieiiiiineeiiiii ettt ee et e e e e et e e e e eeeaieeeaees 237
6.6.6. ON EXCEPTION PRIASEucvuiiniiiniiieiiieieiie et e e ie e e e e e e e e e e e eaneeanaaanas 237
6.6.7. Overlapping Operands and Incompatible Dataccoceveiiiiiiiiieiiniieieeecn, 238
6.0.8. T-O STALUS ©.vuueiiiiineeeiii e ettt e et e e et e ettt e ettt e e et a e e e e e e e e e et e e e e 238
6.6.9. AT END PRIASEuvvniiiiiiiiieiieie e e e e et e e e e e e ea e ea e et e aneaenaes 242
6.6.10. INVALID KEY PRIASEuuiiviiiiiiieii et e e e e e e e e e e eaneaanes 243
6.6.11. FROM PRIASE ...ivuiiniiieiiieiie et ettt e e e e e e e e e e e e e et e e b e e s e et e aaeaenns 244
6.6.12. IINTO PRIASE ..ouuiveiiiiiiieiiie et e e et et et e e e e e e e e e et e et e et e et e et eaneeanaeans 244
YT TS 11714 (o) s NPT 245
6.8. General Formats and Rules for Statementscoeeveiiiiiiiieiiiei e, 246
0.0 e e e ettt ettt e e et aaaa s 269
Chapter 7. Intrinsic Functions 401
INtrNSIC FUNCLION L.ivuiiiniii it et e et e e e et e et e et et e et e e e e ean e et e eaeeens 401
ACO S e ettt e e e 406
ANNUITY oottt e e et e e e e e e ettt e e e et e e e et e e e et e e e et eeeenannnns 406
ARGCOUNT (OPENVMS ONLY) tottnetiiiineetiiii e et e e et e e et e e et eeeeat e e e eati e eaeaaanaeeees 407
A TN ettt ettt e e ettt e et a e et eeeaan s 407
F N N A PSPPSR 408

VS| COBOL Reference Guide

CHAR e e et 408
1000 1 TSP SSPPPPRURTN 409
CURRENT-DATE ...t 410
DATE-OF-INTEGER ...ttt e 411
DATE-TO-YYYYMMDD ... e 411
DAY-OF-INTEGER ...ttt e ettt 412
DAY -TO-YYYYDDD ...ttt et e et e ettt e eeeet e eees 413
FACTORIAL ..ottt et ettt ettt et e e e ens 414
INTEGER ..ottt ettt e e et 414
INTEGER-OF-DATE ...ttt ettt e e e 415
INTEGER-OF-DAY ...ouuitiiiiietiiii ettt et e e et e e et e e e et e e e eeti e 416
INTEGER-PART ... et e e et e e e 416
LENGTH ..ottt ettt ettt e e et e e e et eeeat e ees 417
LOG ittt 418
500 1 1 PSPPSR 418
LOWER-CASE .ottt et e e e e e eaaanes 419
L N G USRS 419
M E AN e 421
IME DL AN Lot as 421
MIDRANGE ..o e et 422
VDN e e 423
IMIOD et e s 424
NUMVAL et ettt ettt e et e e 424
NUMVAL-C ettt ettt e e e 425
O R D e 426
ORD-MAX et 427
O R DM L e ettt 428
PRESENT-VALUE ..ottt et ettt e et eeanen 428
RANDOM e e 429
RANGE oot 430
REM e et 431
REVERSE .ottt 431
N0 1 OSSP 432
N0) 3 S SSSURRPPRRIN 433
STANDARD-DEVIATION ...ttt ettt e 433
SUM ettt ettt et eeaaans 434
N PSP SPPPRTRNt 435
TEST-DATE-YYYYMMDD ...ttt e e e e e 435
TEST-DAY-YYYYDDD ...ttt ettt e 436
UPPER-C ASE .ot e 437
VARIANCE oottt et ettt et et ettt eaas 437
WHEN-COMPILEDcooiiiiiiiiiiie ittt ettt e e et eeeeaans 438
Y E A R T -y Y Y Y et e aaas 439
Chapter 8. Source Text Manipulationcceeceivercccsencsssencsssencsssnesssssssssssssssssssssssssssess 441
8.1. Text-Word Definition RULEScouiiiniiiiiii e eees 441
Appendix A. VSI COBOL Reserved Wordscccccceecceeicssancsssnncsssnnssssssssssssssssssssssssses 461
Appendix B. Character SetSiiinniinisncninnncssssncssnncssssicsssssssssssssssssssssssssssssssssscscss 477
Appendix C. File Status Values 485
Appendix D. Report Writer Presentation Rules and Tablescc.ccceeeerircercscercrcnnrenns 489
LD I I O 4o ¥ 2210 1 LN 489
D.2. LINE NUMBER Clause NOtAtIONccuueiuneineiieiieeieiieiieeieeeneeaneeineeieeneanneanaeenaennns 489
D.3. LINE NUMBER Clause Sequence SUDSItULIONSuvvunreeneiniineiieeieiieiineiieeineeineeineeenaenns 490
D.4. Saved-Next-Group-Integer DEeSCIIPLIONveuiiniii it iie et e e e et e e e e e eaneennnas 490
D.5. REPORT HEADING Group Presentation RUIESccceuviiiiiiiiiiiiiiiiiiiie e, 490
D.6. PAGE HEADING Group Presentation RUIESccouiviiiiiiiiiiiiiiin e 491

VS| COBOL Reference Guide

D.7. Body Group Presentation RUIESoiiniiiiiiiiiiiie e 492
D.8. PAGE FOOTING Group Presentation RuUlesccooooviiiiiiiiiiiiiiiiieieeeeeee e 496
D.9. REPORT FOOTING Group Presentation Rulescccooeeiiiiiiiiiiiiiiiniiinne e, 497

Appendix E. RTL Routines for Accessing the RAB and FAB Structures (OpenVMS
Alpha and 164 Only)

INAEX aereererrennnnnecieeeeerereensessssssesseessssssssssscssnsssssssssssssanseee D03

vi

Preface

Preface

uma Software

This book describes the constructs and rules of the VSI COBOL programming language, which is a VSI
Company implementation of COBOL (COmmon Business-Oriented Language) for the OpenVMS and Tru64
UNIX platforms. It includes information about language syntax and semantics, as well as information about
adherence and extensions to various COBOL standards.

This documentation set also includes the VSI COBOL User Manual and, optionally, the HPE COBOL DBMS
Database Programming.

VSI COBOL is the new name for what has formerly been known as HP COBOL, Compaq COBOL, DEC COBOL,
DIGITAL COBOL. VSI COBOL, unmodified, refers to the following products:

VSI COBOL for OpenVMS Industry Standard 64
VSI COBOL for OpenVMS Alpha
VSI COBOL for Tru64 UNIX

Any references to the former names in product documentation or other components should be construed as
references to the VSI COBOL names.

1. About VSI

VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard Enterprise to develop
and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so closely
associated with the OpenVMS operating system and its original author, Digital Equipment Corporation.

2. Intended Audience

This manual is intended for experienced applications programmers who have a thorough understanding of the
COBOL language and some familiarity with their operating system. This is not a tutorial manual.

If you are a new COBOL user, you may need to read introductory COBOL textbooks or take COBOL courses.

3. Structure of This Document

This manual is organized as follows:

* Chapter 1, Overview of the COBOL Language presents the elements of the COBOL language, describes two
format options for a COBOL program, and explains how the remaining chapters organize and present the
COBOL general formats.

* Chapter 2, Organization of a COBOL Program describes the organization of a COBOL program. It presents the
general format for the four COBOL divisions and introduces the concept of contained programs. This chapter
shows the relationship between a program name and a source file name.

» Chapter 3, Identification Division describes the general format and contents of the Identification Division. It
explains how to identify a COBOL program and its source listing.

» Chapter 4, Environment Division describes the general format and contents of the Environment Division. It
explains how to describe the program's physical environment.

» Chapter 5, Data Division describes the general format and contents of the Data Division. It explains how to
describe data the program receives, creates, manipulates, and produces as output.

vii

Preface

 Chapter 6, Procedure Division describes the general format and contents of the Procedure Division. It describes
COBOL verbs, which process the files and data in the Environment and Data Divisions.

» Chapter 7, Intrinsic Functions describes the general format and use of the intrinsic functions.
 Chapter 8, Source Text Manipulation describes the general format of the COPY and REPLACE statements.

* Appendix A, VSI COBOL Reserved Words lists the VST COBOL reserved words, which are words that cannot
be used as system names or user-defined names.

* Appendix B, Character Sets lists the ASCII, EBCDIC, and NATIVE character sets.
» Appendix C, File Status Values lists the exception condition values that can appear in File Status data items.

* Appendix D, Report Writer Presentation Rules and Tables contains individual presentation rules and tables for
each type of report group.

» Appendix E, RTL Routines for Accessing the RAB and FAB Structures (OpenVMS Alpha and 164 Only) describes
RTL routines for accessing the RAB and FAB structures on OpenVMS systems.

* The Index indexes and references terms and concepts in this manual.

4. Associated Documents

The following documents contain additional information directly related to various topics covered in this manual:

VSI COBOL User Manual

This manual describes how to use features of the VSI COBOL language to develop programs on the Tru64 UNIX
or the OpenVMS operating systems on Alpha, 164, and VAX.

Release Notes

Consult the VSI COBOL release notes for your installed version for late corrections and new features.
On the OpenVMS Alpha, 164 operating system, the release notes are in:

SYSSHELP:COBOL nnn.RELEASE NOTES (ASCII text)
SYSSHELP:COBOL nnn_RELEASE NOTES.PS

Where nnn is the version and release number.
On the Tru64 UNIX, the release notes are in:

/usr/lib/cmplrs/cobol/relnotes

DEC COBOL Installation Guide for VSI UNIX Systems

This manual provides instructions for installing VSI COBOL on the Tru64 UNIX.

DEC COBOL Installation Guide for OpenVMS Alpha
Systems

This manual provides instructions for installing VST COBOL on the OpenVMS Alpha and OpenVMS 164 operating
systems.

HPE COBOL DBMS Database Programming

This manual provides information on using VSI COBOL for database programming with Oracle CODASYL
DBMS on the OpenVMS Alpha, the OpenVMS 164, or OpenVMS VAX operating systems.

viii

Preface

The OpenVMS Calling Standard and other manuals in
the OpenVMS Documentation Set

This set contains information about using the features of the OpenVMS 164, OpenVMS Alpha operating systems
and their tools.

The Tru64 UNIX Documentation Set

This set contains introductory and detailed information about using the features of the Tru64 UNIX operating
system and its tools.

The Alpha Architecture Reference Manual

This manual is available from Digital Press.

5. Related Documents

For additional information about VSI OpenVMS products and services, visit:

https://www.vmssoftware.com

6. Conventions

The following product names may appear in this manual:
* VSI OpenVMS for Integrity servers

* OpenVMS 164

« 164

All three names — the longer form and the two abbreviated forms — refer to the version of the OpenVMS operating
system that runs on the Intel ® Itanium ® architecture.

The following typographic conventions may be used in this manual:

Convention Meaning

RECORD KEY IS Underlined uppercase words are required when used in
a general format. Uppercase words not underlined are
optional.

sortfile Lowercase words used in a general format are generic

terms that indicate entries you must provide.

{1} Braces used in a general format enclose lists from
which you must choose only one item. For example:

{ SEQUENTIAL | RANDOM | DYNAMIC }

{1} Brackets used in a general format enclose optional
items from which you can choose none or one. For
example:

{ RECORD | ALL RECORDS }

{{Il}} Choice indicators, vertical lines inside a set of braces,
used in a general format enclose lists from which
you must choose one or more items, using each item
chosen only once. For example:

Preface

Convention Meaning

{ { COMMON | INITIAL } }

A horizontal ellipsis indicates that the item preceding
the ellipsis can be repeated. For example:

{ switch-name ... }

A vertical ellipsis indicates that not all of the
statements are shown.

Format Program examples are shown in terminal format,
rather than in ANSI standard format.

special-character words The following symbols, when used in a general format,
constitute required special-character words:

Plus sign (+)

Minus sign (-)

Single (=) and double (==) equal signs

Less than (<) or greater than (>) symbols

Less than or equal to (<=) and greater than or equal to
(>=) symbols

Period ()

Colon (%)

Single (*) and double (**) asterisks

Slash (/)

Left parenthesis (bol d or right parenthesis (bold))

quotation mark The term quotation mark is used to refer to the double
quotation mark character (").

apostrophe The term apostrophe is used to refer to the single
quotation mark character (’).

user i nput In examples, user input (what you enter) is shown as
nmonospaced text.

light blue color Light blue color indicates the language extensions to
the Fortran 95 Standard.

report file Bold type indicates a new term.

full-file-name This syntax term refers to the name of a file and the
device and directory, or path, in which it is located. For
example:

DI SK2$: [HOVE. PUBLI C] FI LENAME. TXT;
(OpenVMs file specification)

/ di sk2/ home/ public/fil enane. t xt
(True4 UNIX file specification)

compiler option This term refers to command-line qualifiers
(OpenVMS Alpha and 164 systems) or flags (Tru64
UNIX systems). For example:

/LI ST (OpenVMs qualifier
speci fication)
-li st (True4 UNI X fl ag

speci fication)

COBOL This term refers to language information common to
ANSI-85 COBOL, VSI COBOL, and VSI COBOL.

Preface

Convention Meaning

Enter A boxed symbol indicates that you must press a key
on the terminal; for example, Enter indicates that you
press the Enter key.

Tab This symbol indicates a nonprinting tab character.

Ctrl/x The symbol Ctrl/x indicates that you hold down the
key labeled CTRL while you press another key, for
example, Ctrl C or Ctrl O.

$ The dollar sign ($) represents the OpenVMS system
prompt.
% The percent sign (%) represents the Tru64 UNIX

system prompt.

7. References

The following table shows certain references and their respective meanings in this manual:

Reference Meaning

Alpha OpenVMS Alpha or Tru64 UNIX Alpha operating
system

OpenVMS OpenVMS Alpha or OpenVMS 164 operating system

Tru64 UNIX Tru64 UNIX Alpha operating system

Tru64 UNIX was formerly known as DEC OSF/1 or as DIGITAL UNIX. VSI COBOL was formerly known as
HP COBOL, Compaq COBOL, DIGITAL COBOL, or DEC COBOL.

8. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information account:
<i nfo@nssof t war e. con. We will be posting links to documentation on our corporate website soon.

9. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending electronic
mail to the following Internet address: <doci nf o@nssof t war e. con. Users who have OpenVMS support
contracts through VSI can contact <suppor t @nssof t war e. con® for help with this product. Users who
have OpenVMS support contracts through HPE should contact their HPE Support channel for assistance.

Xi

Preface

xii

Overview of the COBOL Language

Chapter 1. Overview of the COBOL
Language

This chapter provides information about the structure and language of COBOL source programs. It describes the
elements of the COBOL language, reference formats, and language organization.

The COBOL language consists of the following components:

* Programs

 Divisions

» Sections

 Paragraphs

» Sentences

+ Statements

* Clauses

* Entries

* Words

¢ Characters

A separately compiled COBOL program is a program that, together with its contained programs (if present), is
compiled separately from all other programs. Each COBOL program is divided into four parts, called divisions:
the Identification Division, Environment Division, Data Division, and Procedure Division. Divisions can contain
sections, which in turn can contain paragraphs. Paragraphs can contain sentences, clauses, statements, or entries.

The building blocks of these language components include the COBOL character set, character-strings, separators,
punctuation, and literals.

A COBOL program is a string of characters that is syntactically correct according to the COBOL language rules.

1.1. The COBOL Character Set

The COBOL character set, shown in Table 1.1, “The COBOL Character Set”, is used to form character-strings
and separators.

The only components of a COBOL program that can contain characters outside this set are nonnumeric literals,
comment-entries, and comment lines. Appendix B, Character Sets specifies the more inclusive computer character
sets these elements can use.

Table 1.1. The COBOL Character Set

Meaning
Character
0,1,...,9 digit
AB, ... Z letter
a,b,...z lowercase letter (equivalent to letter)
+ plus sign
- minus sign (hyphen)

Overview of the COBOL Language

Meaning
Character
* asterisk
/ slash (stroke, virgule)
\ backslash
= equal sign
$ currency sign
> greater than symbol
< less than symbol
colon
_ underline (underscore)
space
Tab horizontal tab
(left parenthesis
) right parenthesis
, comma (decimal point)
; semicolon
period (decimal point, full stop)
" quotation mark (double quotation mark)
’ apostrophe (single quotation mark)
{ left brace
} right brace
[left bracket
] right bracket
<< double left-angle brackets
>> double right-angle brackets

Except in nonnumeric literals, the compiler treats lowercase letters as if they were uppercase. Therefore, a program
can contain COBOL words without regard to case. For example, the compiler recognizes the COBOL words in
each of the following pairs as identical:

WORKI NG- STORAGE Wor ki ng- St or age
| nput i nput file-a FI LE- A
| NSPECT I nSpect

1.2. Character Strings

A character-string is a character or a sequence of contiguous characters that form a COBOL word, a literal,
a PICTURE character-string, or a comment-entry. Separators delimit character-strings. The following sections
describe these topics in detail.

1.2.1. COBOL Words

A COBOL word is a character-string of not more than 31 characters that forms one of the following:
* A user-defined word

* A system-name

Overview of the COBOL Language

¢ A reserved word
¢ A function-name

A user-defined word or system-name cannot be a reserved word. However, a program can use the same COBOL
word as both a user-defined word and a system-name. The compiler determines the word's class from its context.

1.2.1.1. User-Defined Words

A user-defined word is a COBOL word that you must supply to satisfy the format of a clause or statement. This
word consists of characters selected from the set A to Z, 0 to 9, the currency sign ($), underline (), and hyphen
(-). Throughout this manual, and except where specific rules apply, the hyphen (-) and the underline () are treated
as the same character in a user-defined word. The underline (), however, can begin or end a user-defined word,
and the hyphen (-) cannot. By convention, names containing a currency sign ($) are reserved for VSI.

Table 1.2, “ COBOL User-Defined Words” provides brief descriptions of the COBOL user-defined words.

Table 1.2. COBOL User-Defined Words

Purpose
User-Defined Word

Alphabet-Name Assigns a name to a character set, collating sequence,
or both. Alphabet-names must be defined in the
SPECIAL-NAMES paragraph. (See SPECIAL-
NAMES in Chapter 4: Environment Division.)

Class-Name Relates a name to a specified set of characters listed
in that clause. (See SPECIAL-NAMES in Chapter 4:
Environment Division.)

Condition-Name Assigns a name to a value, set of values, or range of
values in the complete set of values that a data item
can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names
assigned in the SPECIAL-NAMES paragraph to the
"on" or "off" status of switches are also condition-
names.

Data-Name Names a data item described in a data description
entry. When specified in a general format, data-name
cannot be reference modified, subscripted, indexed, or
qualified unless specifically allowed by the rules for
that format.

File-Name Names a file connector. A file connector is a storage
area that contains information about a file and is the
link between:

+ A file-name and a physical file
* A file-name and its associated storage area

File description entries and sort-merge file description
entries describe file connectors.

Index-Name Names an index associated with a specific table.

Level-Number Is a one- or two-digit number that describes a data
item's special properties or its position in the structure
of a record. (See Sections 5.1.1 and 5.1.2.)

Overview of the COBOL Language

User-Defined Word

Purpose

Library-Name

Names a COBOL library used in a source program
compilation. (See the COPY statement in Chapter 8,
Source Text Manipulation.)

Mnemonic-Name

Associates a name with a system-name, such as
CONSOLE, SYSERR, ARGUMENT-NUMBER,
ENVIRONMENT-NAME, C01, OR SWITCH-S.
(See SPECIAL-NAMES in Chapter 4, Environment
Division.)

Paragraph-Name

Names a Procedure Division paragraph. (See the
section called “Paragraph, Paragraph Header,
Paragraph-Name”.) Paragraph-names are equivalent
only if they are identical; that is, if they are composed
of the same sequence and number of digits and/or
characters.

For example:

START-UP START-UP Equivalent
START-UP STARTUP Different
Start-up START-UP Equivalent
001-START-UP |01-START-UP |Different
017 017 Equivalent
017 17 Different

Program-Name

Identifies a COBOL source program. (See the
PROGRAM-ID paragraph in Chapter 3, Identification
Division, and the section on CALL in Chapter 6,
Procedure Division, for a description of case-
sensitivity on the Tru64 UNIX. Also refer to the VSI
COBOL User Manual for a description of the - nanmes
| ower case, - names upper case, and - nanes
as_i s flags.)

Record-Name

Names a data item described with level-number 01 or
77.

Report-Name

Names a report produced by the Report Writer
Control System (RWCS). (See the REPORT clause in
Chapter 5, Data Division.)

Screen-Name (Alpha, 164)

Names a screen item defined in the SCREEN
SECTION of a program. (See the Screen Description
(Alpha, 164) section of Chapter 5, Data Division.)

Section-Name

Names a Procedure Division section. Section-names
are equivalent only if they are identical; that is, when
they are composed of the same sequence and number
of digits and/or characters. (See the section called
“Section Header”.)

Segmented-Key-Name

Identifies a segmented key, which is a concatenation of
one or more (up to eight) data items (segments) within
a record associated with an indexed file. A segmented
key is a form of primary or alternate key. It offers

flexibility in defining record description entries for

Overview of the COBOL Language

Purpose
User-Defined Word

indexed files. (Refer to the section on segmented keys
in the VSI COBOL User Manual.)

Segment-Number Is a 1- or 2-digit number that classifies a Procedure
Division section for segmentation. In VST COBOL
programs, segment-numbers specify independent and
fixed segments. (See Section 6.7, “Segmentation”.)

Symbolic-Character Identifies a user-defined figurative constant.

Text-Name Identifies library text in a COBOL library. (See
the COPY statement in Chapter 8, Source Text
Manipulation.)

Within a given program, but excluding any contained program, the user-defined words are grouped into the
following disjoint sets:

alphabet-names
class-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
screen-names
section-names
segmented-key-names
symbolic-characters
text-names

All user-defined words in a program, except segment-numbers and level-numbers, can belong to only one of these
sets. User-defined words in each set must be unique, except as described in the rules for uniqueness of reference.
(See Section 6.2, “Uniqueness of Reference”).

Except for section-names, paragraph-names, segment numbers, and level-numbers, all user-defined words must
contain at least one alphabetic character. Segment-numbers and level-numbers need not be unique. Any segment-
number or level-number can be the same as any other segment-number or level-number.

1.2.1.2. System-Names

System-names are COBOL words that refer to the program's operating environment. The same COBOL word can
be used in a program as both a user-defined word and a system-name. The compiler determines the word's class
from its context.

The system-names are as follows:

ALPHA

ASCII

CARD-READER
CONSOLE

CONTIGUOUS
CONTIGUOUS-BEST-TRY
Co1

Overview of the COBOL Language

DEFERRED-WRITE
EBCDIC

EXTENSION
FILL-SIZE

164

LINE-PRINTER
LOCK-HOLDING
MASS-INSERT
OPERATOR
PAPER-TAPE-PUNCH
PAPER-TAPE-READER
PREALLOCATION
PRINT-CONTROL
SWITCH

WINDOW

1.2.1.3. Reserved Words

A reserved word can be used only as specified in the general formats. It cannot be a user-defined word. (See
Appendix A, VSI COBOL Reserved Words for a list of reserved words.)

The three types of reserved words follow:

» Required words

* Optional words

* Special-purpose words

Required Word

A required word must be used when its format is used in a program.

The two types of required words are keywords and special character words. In general formats, keywords are
uppercase and underlined. Arithmetic operators and relation characters are special character words; they are not
underlined in the general format.

In the following sample format, the keywords are COMPUTE, ROUNDED, SIZE, ERROR, NOT, and END-
COMPUTE. The equal sign (=) is a special-character word.

COMPUTE { rsult | ROUNDED]} . . . = arithmetic-expression

| ON SIZE ERROR stment
| NOT ON SIZE ERROR stment2
| END-COMPUTE

Optional Words

In general formats, uppercase words that are not underlined are optional words. They can make a program more
human-readable, but have no semantic effect. In the previous sample format, ON is an optional word.

Special-Purpose Words

The two types of special-purpose words are figurative constants and special registers. Figurative constants name
and refer to specific constant values and are described in detail in Section 1.2.3, “Figurative Constants”. Special
registers name and refer to special storage areas that the compiler provides.

The VSI COBOL special registers are primarily used to store information related to or produced by specific VSI
COBOL features. Table 1.3, “Special Registers” shows the special registers, their usage, and their descriptions.

Overview of the COBOL Language

Table 1.3. Special Registers

Special Register

Usage—Description

RETURN-CODE (Alpha, 164)

X/OPEN—Names an VSI COBOL special register that
may be used to set a return value for a calling program
or to retrieve the value returned from a called program.
It is represented by PIC S9(9) USAGE IS COMP. It is
implicitly defined with GLOBAL scope.

The RETURN-CODE register is initialized with the
platform-specific success code. On OpenVMS Alpha
and OpenVMS 164, it is initialized to one. On Tru64
UNIX it is initialized to zero.

The RETURN-CODE special register can be set by

a called program, prior to the execution of a STOP
RUN or EXIT PROGRAM statement, to pass a value
to the calling program or the execution environment.
For a calling program, it can be read, subsequent to the
CALL, to obtain the value of the RETURN-CODE set
by the called program.

On Tru64 UNIX the main program sets the shell
variable st at us to the value of the RETURN-CODE.
On OpenVMS Alpha and OpenVMS 164 the main
program sets the symbol $STATUS to the value of the
RETURN-CODE.

If you use the GIVING phrase on the CALL statement
or on the Procedure Division header, specifying a

data item as its argument, this data item (instead of
RETURN-CODE) receives the return value. Note that
you can specify the special register RETURN-CODE
as the argument to GIVING, in which case RETURN-
CODE receives the return value. For more information
on the relationship between the GIVING phrase and
the RETURN-CODE special register, see Table 6.7,
“Relation of GIVING Phrase to RETURN-CODE
Special Register (Alpha, 164)” in Chapter 6, Procedure
Division.

Because the reserved word RETURN-CODE is one
of the X/Open reserved words, you cannot use the
noxopen keyword in the r eser ved_wor ds
compiler option if you want to use the RETURN-
CODE special register.

For related information, see Section 6.8, “General
Formats and Rules for Statements” for the syntax and
description of the GIVING phrase of the Procedure
Divison header; and the CALL statement for the
syntax and description of CALL GIVING.

LINAGE-COUNTER

LINAGE files—A line counter that the compiler
provides when a file description entry contains a
LINAGE clause. Its value is the number of the current
record within the page body. (See the LINAGE

clause in Chapter 5, Data Division.) The implicit

Overview of the COBOL Language

Usage—Description
Special Register

size of LINAGE-COUNTER is nine decimal digits
represented by PIC S9(9) COMP. You can qualify
LINAGE-COUNTER with a file-name. Procedure
Division statements and the SOURCE clause of the
Report Section can access the value of LINAGE-
COUNTER but cannot change its value. LINAGE-
COUNTER is global if file-name is global and
external if file-name is external.

PAGE-COUNTER REPORT WRITER—A page counter that the compiler
provides for each report in the Report Section of the
Data Division. You can qualify PAGE-COUNTER
with a report-name. Its value is the number of the
current page within a report. The implicit size of
PAGE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer
Control System (RWCS) maintains the value of
PAGE-COUNTER and uses this value to number the
pages of a report. The SOURCE clause of the Report
Section can reference PAGE-COUNTER. The values
in PAGE-COUNTER range from 1 to 999999 and can
be altered by Procedure Division statements.

LINE-COUNTER REPORT WRITER—A line counter that the compiler
generates for each report in the Report Section of

the Data Division. It may be qualified by a report-
name. Its value is the number of the current line within
a page. (See PAGE-COUNTER.) The implicit size

of LINE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer
Control System (RWCS) maintains the value of LINE-
COUNTER and uses this value to determine the
vertical positioning of a report. The SOURCE clause
of the Report Section can reference LINE-COUNTER.
The values in LINE-COUNTER range from 0 to
999999. Procedure Division statements can access the
values in LINE-COUNTER; however, only the RWCS
can change its value.

RMS—STSI(OpenVMS) RMS—Contains the primary RMS status value of

an I/O operation. (RMS-STV contains the secondary
value.) RMS-STS provides additional information

on COBOL File Status values resulting from I/O
operations.zlt is represented by PIC S9(9) USAGE IS
COMP. You must qualify RMS-STS with a file-name.
If the file-name is global, RMS-STS is also global. If
the file-name is external, RMS-STS is also external.

Before the program opens the file for the first time, the
value of RMS-STS is undefined. After your program
executes an OPEN or CLOSE statement, RMS-STS

is set to the value of the STS field in the associated
file access block (FAB). After executing a READ,
WRITE, REWRITE, DELETE, START, or UNLOCK
statement, RMS-STS is set to the value of the STS
field in the associated record access block (RAB).

Overview of the COBOL Language

Special Register

Usage—Description

RMS-STV !(OpenVMS)
p

RMS—Contains the secondary (RMS-STS is

primary) RMS status value of an I/O operation. The
interpretation of this value is dependent on the value in
RMS-STS. It is represented by PIC S9(9) USAGE IS
COMP. You must qualify RMS-STV with a file-name.
If the file-name is global, RMS-STV is also global. If
the file-name is external, RMS-STV is also external.

The value in RMS-STV is undefined prior to the initial
OPEN of the file. After your program executes an
OPEN or CLOSE statement, RMS-STV is set to the
value of the STV field in the associated FAB. After
executing a READ, WRITE, REWRITE, DELETE, or
START statement, RMS-STV is set to the value of the
STV field in the associated RAB.

RMS-FILENAME !(OpenVMS)

RMS—Names the complete RMS filename. It consists
of 255 alphanumeric characters represented by PIC
X(255) USAGE IS DISPLAY. You must qualify it
with a file-name. If the file-name is global, RMS-
FILENAME is also global. If the file-name is external,
RMS-FILENAME is also external.

Before the program opens the file for the first time,
the value of RMS-FILENAME is undefined. For each
COBOL OPEN statement, RMS-FILENAME is set
to the complete RMS file specification string of file-
name: for example, DBB1:[COBOL]MASTER.DAT.

RMS-CURRENT-STS !(OpenVMS)

RMS—Names an VSI COBOL exception condition
register. It contains the primary RMS status value of
the most recent RMS I/O operation, regardless of the
file operated on. (RMS-CURRENT-STV contains
the secondary value.) It is represented by PIC S9(9)
USAGE IS COMP. Since this register can contain the
primary RMS status value for any file, you must not
qualify it with a file-name.

After your program executes any RMS 1/0 operation,
it sets RMS-CURRENT-STS to the value contained in
RMS-STS for that file.

RMS-CURRENT-STV !(OpenVMS)

RMS—Names an VSI COBOL exception condition
register. It contains the secondary RMS status value
of the most recent RMS 1/O operation, regardless of
the file operated on. (RMS-CURRENT-STS contains
the primary value.) It is represented by PIC S9(9)
USAGE IS COMP. Since this register can contain
the secondary RMS status value for any file, you
must not qualify it with a file-name. After your
program executes any RMS 1/0 operation, it sets
RMS-CURRENT-STV to the value contained in RMS-
STV for that file.

RMS-CURRENT-FILENAME !(OpenVMS)

RMS—Names an VSI COBOL exception
condition register. It contains the complete RMS
file specification string of the file most recently
operated on by an I/O statement. It consists of 255

Overview of the COBOL Language

Usage—Description
Special Register

alphanumeric characters represented by PIC X(255)
USAGE IS DISPLAY. Since this register can contain
the file-name for any file, you must not qualify it with
a file-name.

After your program executes any I/O operation, it sets
RMS-CURRENT-FILENAME to the string contained
in RMS-FILENAME for that file.

'Procedure Division statements can the values or strings stored in the RMS special registers; however, only the RMS facility can the contents
of the registers. Refer to the VSI COBOL User Manual for programming examples. For an explanation and a listing of RMS STS and STV
values, refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived manual available on the OpenVMS
Documentation CD-ROM, or the online OpenVMS Help Message utility. Refer to the OpenVMS Record Management Services Reference
Manual for information on RMS. (RMS is on OpenVMS systems only.)

The FILE STATUS data item (see Section 6.6.8: I-O Status) provides the primary source of status information for the file I-O verbs, and
RMS-STS and RMS-STV provide supplementary information.

1.2.1.4. Function-Names

A function-name is the name of a function as shown in Table 7.1: Intrinsic Functions. Note that function-names are
not reserved words and may appear in a different context in a program as a user-defined word or a system-name.

1.2.2. Literals

A literal is a character-string whose value is specified by: (1) the ordered set of characters it contains, or (2) a
reserved word that is a figurative constant.

VSI COBOL provides two types of literals: numeric and nonnumeric. Numeric literals include floating-point
literals and nonnumeric literals include hexadecimal and national literals. Floating-point, hexadecimal, and
national literals are VSI extensions. The following two sections describe literals in detail.

1.2.2.1. Numeric Literals

A numeric literal is a character string of 1 to 33 characters on Alpha and 164 selected from the digits 0 to 9, the
plus sign (+), the minus sign (-), and the decimal point (.).

The value of a numeric literal is the algebraic quantity represented by the characters in the literal.
Syntax Rules
1. A numeric literal must contain at least 1 digit and not more than 31 digits on Alpha and 164.

2. A numeric literal must not contain more than one sign character, which must be the leftmost character. If the
literal is unsigned, its value is positive.

3. A numeric literal must not contain more than one decimal point. The decimal point is treated as an assumed
decimal point. It can be used anywhere in the literal except as the rightmost character.

If a numeric literal contains no decimal point, it is an integer.
4. The compiler treats a numeric literal enclosed in quotation marks as a nonnumeric literal.

Table 1.4, “Numeric Literals” provides examples of numeric literals.

Table 1.4. Numeric Literals

Literal Value
12 12

10

Overview of the COBOL Language

Literal Value

0.12000 0.12
-123456789012345678 -123456789012345678
000000003 3

-34.455445555 -34.455445555

0 0

+0.000000000001 +0.000000000001
+0000000000001 +1

Floating-Point Literals

A floating-point literal, a VSI extension to numeric literals, is a character-string whose value is specified by 4 to
37 characters on Alpha and 164, selected from the digits 0 to 9, the plus sign (+), the minus sign (-), the decimal
point (.), and the letter E (uppercase or lowercase).

You can use floating-point literals to achieve a wider range of numeric literal values.
Syntax Rules

1. A floating-point literal must be between 4 and 37 (Alpha, 164) characters in length.

[\

. A floating-point literal must contain the following characters:
» Atleast | digit to the left of the E
* A decimal point to the left of the E
* An E (uppercase or lowercase)
» Atleast 1 digit to the right of the E
3. The maximum number of characters to the left of the E is 33 (Alpha, 164) of which no more than 31 can be digits.
4. The maximum number of characters to the right of the E is 4 (Alpha, 164) of which no more than 3 can be digits.
5. A floating-point literal must not contain more than two sign characters as follows:
* The first character of the literal
 The first character following the E
6. If the first character of the literal is not a sign character, the literal is positive.

7. If the first character following the E is not a sign character, the value of the numeric component following the
E is positive.

8. A floating-point literal must contain only one decimal point that can appear only to the left of the E.
9. A comma must be used in place of the decimal point, if the DECIMAL POINT IS COMMA clause is specified.

The value of a floating-point literal is the algebraic quantity represented by the characters in the literal that precede
the E multiplied by ten raised to the power of the algebraic quantity represented by the characters in the literal
following the E.

Table 1.5, “Floating-Point Literals” provides a few examples of floating-point literals.

Table 1.5. Floating-Point Literals

Literal Value
1.6e5 160000.0

Overview of the COBOL Language

Literal Value
3.2E-3 0.0032
-l.ed -10000.0
0.002e+6 2000.0
-.8E-2 -0.008

1.2.2.2. Nonnumeric Literals

A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited on both ends by quotation marks (")
or apostrophes (’). A nonnumeric literal delimited by apostrophes is treated in the same manner as a nonnumeric
literal delimited by quotation marks.

The value of a nonnumeric literal is the value of the characters in the character-string. It does not include
the quotation marks (or apostrophes) that delimit the character-string. All other punctuation characters in the
nonnumeric literal are part of its value.

The compiler truncates nonnumeric literals to a maximum of 256 characters.

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately precede the opening quotation mark
(or apostrophe).

2. The closing quotation mark (or apostrophe) must be immediately followed by one of the following:

» Space

* Comma

* Semicolon

* Period

* Right parenthesis

¢ Pseudo-text delimiter

3. If a nonnumeric literal is delimited by quotation marks ("), two consecutive quotation mark characters in the

literal represent one quotation mark character.

4. If a nonnumeric literal is delimited by apostrophes (’), two consecutive apostrophes in the literal represent

one apostrophe (*).

Table 1.6, “Nonnumeric Literals” provides examples of nonnumeric literals. In these examples, s represents a

space character.

Table 1.6. Nonnumeric Literals

Literal Value
"ABC" ABC
"o1r" 01

"s01 " s01
"D""E""F" D"E"F
"ab" a.b
"GHI’ GHI

12

Overview of the COBOL Language

Literal Value

’02° 02

’s02° s02

cd”’ cd

JUUKY J""K
RUR (G J""K

I K J°K
"JPOK" J7’K
LM’ °N”° L’M°N
"L°"M’N" L’M°N
’O"P"Q° O"P"Q
"o""p""Q" O"P"Q
R""S""T” R""S""T
"RmTrrng R""S""T
U’ vew? Uu’’v’>’w
"Uurvowe" Uu’’v’>’w

Hexadecimal Literals

A hexadecimal literal (a VSI extension to nonnumeric literals) is a character string of 2 to 256 hexadecimal digits.
On the left it is delimited by the separator X (or x) immediately followed by a quotation mark (") or apostrophe
("); on the right it is delimited by a matching quotation mark or apostrophe. For example:

03 HEX_VAL PI C X VALUE X"'00".

The character string consists only of pairs of hexadecimal digits representing a byte value ranging from 00 to FF;
hence, only the characters 0 to 9, A to F, and a to f are valid.

The value of a hexadecimal literal is the composite value of the paired hexadecimal representations. The compiler
truncates hexadecimal literals to a maximum of 128 hexadecimal representations (pairs of hexadecimal digits).

A hexadecimal literal can be used interchangeably wherever a nonnumeric literal can appear in VSI COBOL
syntax. (Thus, hexadecimal literals cannot be used as operands in arithmetic statements.)

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately precede the opening character X (or

X).

2. The closing quotation mark or apostrophe must be immediately followed by one of the following:
* Space
* Comma

* Semicolon

Overview of the COBOL Language

¢ Period
* Right parenthesis
¢ Pseudo-text delimiter

Table 1.7, “Hexadecimal Literals” provides examples of hexadecimal literals.

Table 1.7. Hexadecimal Literals

Literal Value
X"0o" NUL
x"0D" CR

x "2424 " $$

X ’7b7a’ {z

National Literals

National literals can be from 0 to 128 2-byte characters (hence 256 bytes). The syntax is:

VALUE N'".

National literals are made available when /NATIONALITY=JAPAN or - nati onal ity j apan is specified.

1.2.3. Figurative Constants

Figurative constants name and refer to specific constant values generated by the compiler. The singular and
plural forms of figurative constants are equivalent and interchangeable. Table 1.8, “Figurative Constants” lists the
figurative constants.

Table 1.8. Figurative Constants

Figurative Constant Value

ZERO, ZEROS, ZEROES Represent the value zero, or one or more occurrences
of the character 0 from the computer character set,
depending on context. In the following example, the
first use of the word ZERO represents a zero value; the
second represents six 0 characters:

03 ABC PIC 9(5) VALUE ZERO
03 DEF PIC X(6) VALUE ZERO

SPACE, SPACES Represent one or more space characters from the
computer character set.
HIGH-VALUE, HIGH-VALUES Represent one or more occurrences of the character

with the highest ordinal position in the program
collating sequence. For example, HIGH-VALUE for
the native collating sequence is hexadecimal FF.

The value of HIGH-VALUE depends on the collating
sequence specified by clauses in the OBJECT-
COMPUTER and SPECIAL-NAMES paragraphs. For
example, if the program collating sequence is ASCII,

14

Overview of the COBOL Language

Figurative Constant Value

HIGH-VALUE is hexadecimal 7F (hexadecimal FF
for EBCDIC). For more information, see OBJECT-
COMPUTER and SPECIAL-NAMES sections in
Chapter 4: Environment Division.

LOW-VALUE, LOW-VALUES Represent one or more occurrences of the character
with the lowest ordinal position in the program
collating sequence (hexadecimal 00 for the native
collating sequence).

The value of LOW-VALUE depends on the program
collating sequence specified by clauses in the
OBJECT-COMPUTER and SPECIAL-NAMES
paragraphs. For more information, see the OBJECT-
COMPUTER and SPECIAL-NAMES sections in
Chapter 4: Environment Division.

QUOTE, QUOTES Represent one or more occurrences of the quotation
mark character. QUOTE or QUOTES cannot be used
in place of a quotation mark to bound a nonnumeric
literal. The following examples are not equivalent:

QUOTE abcd QUOTE
"abcd"

ALL Literal Represents one or more occurrences of the string
of characters making up the literal. The literal must
be either nonnumeric, a symbolic-character, or a
figurative constant other than ALL literal. For a
figurative constant, the word ALL is redundant and
serves only to enhance readability.1

Symbolic-character Represents one or more occurrences of the character
specified as the value of symbolic-character. (See
SPECIAL-NAMES in Chapter 4: Environment
Division.)

'The reserved word ALL, not followed by a literal, can be a subscript of an identifier that is a function argument. (The function must allow a
variable number of arguments in this argument position; see Chapter 7, Intrinsic Functions.)

When a figurative constant represents a string of one or more characters, the string's length depends on its context:

* The string's length can vary for a figurative constant in a VALUE IS clause, or for one associated with
another data item (for example, when the figurative constant is moved to or compared with another data item).
Proceeding from left to right, the compiler repeats the string of characters that represents the figurative constant.
It repeats them, character by character, until the size of the resultant string equals that of the associated data item.
This is done before and independent of the application of any JUSTIFIED clause specified for the data item.

* When a figurative constant is not associated with another data item (for example, when it is in a DISPLAY,
STRING, STOP, or UNSTRING statement), the length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid wherever the word literal (or its abbreviation, "lit") appears in a general format or
its associated rules. However, ZERO (ZEROS or ZEROES, plural) is the only valid figurative constant for literals
restricted to numeric characters.

The actual characters associated with HIGH-VALUE, HIGH-VALUES, LOW-VALUE, and LOW-VALUES
depend on the program collating sequence. For more information, see OBJECT-COMPUTER and SPECIAL-
NAMES in Chapter 4: Environment Division.

1.2.4. PICTURE Character-Strings

Overview of the COBOL Language

A PICTURE character-string defines the size and category of an elementary data item. It can consist of the currency
symbol ($) and certain combinations of characters in the COBOL character set. (See PICTURE.)

A punctuation character that is part of a PICTURE character-string is not considered to be a punctuation character.
Instead, the compiler treats it as a symbol within the PICTURE character-string.

1.2.5. Separators

A separator delimits character-strings. It can be one character or two contiguous characters formed according to
the rules in Table 1.9, “Separators”.

Table 1.9. Separators

Separator Usage Rules

Space The space can be a separator or part of a separator.

» Where a space is used as a separator or part of a
separator, more than one space can be used.

+ A space can immediately precede any separator
except:

» As specified by the rules for reference formats
(see Section 1.3, “Source Reference Format™)

* The closing quotation mark of a nonnumeric
literal; the space is then considered part of the
nonnumeric literal rather than a separator

* A space can immediately follow any separator
except the opening quotation mark of a nonnumeric
literal. After an opening quotation mark, the space is
considered part of the nonnumeric literal rather than
a separator.

Comma and Semicolon

The comma and semicolon are separators when they
immediately precede a space. In this case, the comma
and semicolon are interchangeable with each other and
with the separator space. They can be used anywhere
in a source program that a separator space can be used.

Period

The period is a separator when it immediately precedes
a space or a return character. It can be used only where
allowed by:

+ Statement and sentence structure definitions (see
Section 6.1, “Verbs, Statements, and Sentences”)

» Reference format rules (see Section 1.3, “Source
Reference Format™)

Parentheses

Parentheses can be used only in balanced pairs of left
and right parentheses to delimit:

* Subscripts

16

Overview of the COBOL Language

Separator Usage Rules

* Indexes

* Arithmetic expressions
* Conditions

* Reference modification
* Boolean expressions

* Intrinsic function argument lists

Quotation Marks Apostrophes

An opening quotation mark or apostrophe must be
immediately preceded by a separator space or a

left parenthesis. A closing quotation mark (") or
apostrophe (') must be immediately followed by one
of the separators: space, comma, semicolon, period, or
right parenthesis.

Horizontal Tab

The horizontal tab aligns statements or clauses on
successive columns of the source program listing. It
is interchangeable with the separator space. When

the compiler detects a tab character (other than in a
nonnumeric literal), it generates one or more space
characters consistent with the tab character position in
the source line. (See Section 1.3, “Source Reference
Format™.)

Pseudo-Text Delimiter

The pseudo-text delimiter is two contiguous equal
signs (=), both of which must be on the same source
line. A space must immediately precede an opening
pseudo-text delimiter. One of the following separators
must immediately follow a closing pseudo-text
delimiter: spaces, commas, semicolons, or periods.

Pseudo-text delimiters can be used only in balanced
pairs. They delimit pseudo-text. (See Chapter 8,
Source Text Manipulation.)

Colon

The separator colon delimits operands in reference
modification. It is required when shown in a general
format. (See Section 6.2.3, “Reference Modification”.)

1.3. Source Reference Format

The VSI COBOL compiler recognizes two source program formats: ANSI and terminal.
* ANSI format conforms to the American National Standard COBOL reference format.
» Terminal format is a concise VSI specified format. It shortens source program lines by allowing horizontal

tab characters and carriage returns. In terminal format, you do not use the ANSI format sequence numbers or
identification area.

Overview of the COBOL Language

By default, the compiler expects terminal-format source lines. The compiler expects ANSI format only when the
command line includes the ansi compiler option.

The reference format rules for spacing take precedence over all other spacing rules.

1.3.1. ANSI Format

The ANSI source reference format describes COBOL programs in terms of character positions on an input line. A
source program line has 80 character positions as shown in Figure 1.1, “Source Program Line”.

Figure 1.1. Source Program Line

Margin Margin Margin Margin Margin
L C A B R

| ! !

[1]2]3[4]s]6[7]8]o ro]r1]r2[18[14] .. [r2]73]ra[rs]r6 77]78] 70]80]
= ——— >~ —

- ~ — ~ -
Sequence Number Indicator Area A Area B Identification Area

Area Area
VM-0581A-Al

Margin L

Immediately to the left of the leftmost character position.
Margin C

Between character positions 6 and 7.
Margin A

Between character positions 7 and 8.
Margin B

Between character positions 11 and 12.
Margin R

Between character positions 72 and 73.
Sequence Number Area

The six character positions between Margin L and Margin C. The contents can be any characters from the computer
character set.

The compiler does not check the uniqueness of the contents. However, the compiler does check for the ascending
sequence of the contents if the compiler command line includes the Sequence compiler option.

Indicator Area

The seventh character position. The character in this position directs the compiler to interpret the source line in
one of the following ways:

Character Source Line Interpretation

space () Default. The compiler processes the line as normal
COBOL text.

hyphen (-) Continuation line. The compiler processes the line as a
continuation of the previous source line.

18

Overview of the COBOL Language

Character Source Line Interpretation

asterisk (*) Comment line. The compiler ignores the contents
of the line. However, the source line appears on the
program listing.

slash (/) New listing page. The compiler treats the line as a
comment line. However, it advances the program
listing to the top of the next page before printing the
line.

A-Z, a-z

Conditional compilation lines. The compiler processes
the line as normal COBOL text if you specify the
DEBUGGING MODE clause in the SOURCE-
COMPUTER paragraph, or if you specify the

condi ti onal s compiler option in the command
line. If you do not specify either, the compiler
processes this line as a comment line.

Area A

The four character positions between Margin A and Margin B. Area A contains division headers, section headers,
paragraph headers, paragraph-names, level indicators, and certain level-numbers.

Area B

The 61 character positions between Margin B and Margin R. Area B contains all other COBOL text.

Identification Area

The eight character positions immediately following Margin R. The compiler ignores the contents of the
identification area. However, the contents appear on the source program listing.

Line Continuation

Sentences, entries, phrases, and clauses that continue in Area B of subsequent lines are called continuation lines.
The line being continued is called the continued line.

A hyphen in a line's indicator area causes its first nonblank character in Area B to be the immediate successor
of the last nonblank character of the preceding line. This continuation excludes intervening comment lines and
blank lines.

However, if the continued line ends with a nonnumeric literal without a closing quotation mark, the first nonblank
character in Area B of the continuation line must be a quotation mark. The continuation starts with the character
immediately after the quotation mark. All spaces at the end of the continued line are part of the literal. Area A
of the continuation line must be blank.

If the indicator area is blank:

» The compiler treats the first nonblank character on the line as if it followed a space.

» The compiler treats the last nonblank character on the preceding line as if it preceded a space.

ANSI Format Example

001010 01 NUMERI C- CONTI NUATI ON.
001020 03 NUMERI C-LI TERAL PI C 9(16) VALUE | S 123

Overview of the COBOL Language

001030- 4567890123456.

001040 01 NONNUMERI C- CONTI NUATI ON.

001050 03 NONNUMERI C- LI TERAL PIC X(40) VALUE IS "AB
001060- " CDEFCHI JKLMNOPQRSTUWWKYZabcdef ghi j kl m™.
001070 PROCEDURE DI VI SI ON.

001080 SENTENCE- CONTI NUATI ON.

001090 I F NUMERI G- LI TERAL NOT = SPACES

001100 DI SPLAY " NUMERI C- LI TERAL NOT = SPACES"
001110 ELSE

001120 DI SPLAY NUMERI C- LI TERAL.

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050 and 001060 continue a nonnumeric
literal. A sentence that spans four lines begins on line 001090.

Blank Lines

A blank line contains no characters other than spaces between Margin C and Margin R. Blank lines can be anywhere
in a source program or library text.

Comment Lines

A comment line is any source line with an asterisk (*) or slash (/) in its indicator area. Area A and Area B can
contain any characters from the computer character set. Comment lines can be anywhere in a source program or
library text.

Conditional Compilation Lines

A conditional compilation line is any source line after the OBJECT COMPUTER paragraph that includes one of
these uppercase or lowercase alphabetic characters in its indicator area: A to Z, a to z. The compiler processes
the line as normal COBOL text if you specify the DEBUGGING MODE clause in the SOURCE COMPUTER
paragraph.

The compiler processes the line as normal COBOL text if you include the appropriate condi ti onal s compiler
option in the command line.

If you specify neither, the compiler processes this line as a comment line.
Lines conditioned by one letter can be compiled or treated as comments independently of other conditional
compilation lines. On OpenVMS systems, for instance, if you compile with /CONDITIONALS=(A,B), lines

conditioned with A and B compile while those conditioned by other letters are treated as comments.

See Chapter 8, Source Text Manipulation for additional information on the interaction between conditional
compilation lines and the COPY statement.

Pseudo-Text

Pseudo-text character-strings and separators can start in either Area A or Area B. However, if there is a hyphen in
the indicator area of a line that follows the opening pseudo-text delimiter, Area A of the line must be blank.

The normal rules for line continuation apply to the formation of text-words.

Pseudo-text is described in Chapter 8, Source Text Manipulation.

Short Lines and Tab Characters

If the source program input medium is not punched cards, carriage return and horizontal tab characters can shorten
source lines.

20

Overview of the COBOL Language

The compiler recognizes the end of the input line as Margin R. Tab characters, other than those in nonnumeric
literals, cause the compiler to generate enough space characters to position the next character at the next tab stop.
The compiler's tab stops are at character positions 8, 12, 20, 28, 36, 44, 52, 60, 68, and 76.

The following example shows how the compiler interprets carriage return and horizontal tab characters in a source
program:

Shortened ANSI Format Source Line

000100*The foll owi ng record description shows the source |ine fornmat
Ret urn

000110 01 Tab RECORD-A. Return

000120 Tab Tab03 GROUP-A. Return

000130 Tab Tab Tab05 I TEM A Tab PIC X(10). Return

000140* Tab The tab character in the nonnunmeric literal Return
000150* Tab on the next line is stored as one character Return
000160 Tab Tab Tab05

ITEMB Tab PIC X VALUE IS " Tab". Return

000170 Tab Tab03 ITEMC Tab Tab PIC X(10). Return

000180D01 Tab RECB REDEFI NES RECORD- A Tab PIC X(21). Return

Source Line as Interpreted by the Compiler

000100*The followi ng record description shows the source |ine format
000110 01 RECORD- A.

000120 03 GROUP- A.

000130 05 ITEM A PIC X(10).

000140* The tab character in the nonnuneric literal

000150* on the next line is stored as one character

000160 05 ITEMB PIC X VALUE | S " Tab".

000170 03 ITEM C PIC X(10).

000180D01 RECB REDEFI NES RECORD- A PIC X(21).

Use more tab characters only when necessary. Compiler error diagnostics result if you use tab characters beyond the
permissible character positions for a COBOL statement or entry. The following example shows how the compiler
treats source program lines 000004 and 000005. Line 000004: contains one too many tab characters, which places
paragraph-name PO out of Area A.

Shortened ANSI Format Source Line

000001 Tabl DENTI FI CATI ON DI VI SI ON.
000002 TabPROGRAM | D. ANSI - TEST.
000003 TabPROCEDURE DI VI S| ON.
000004 Tab TabPO.

000005 Tab TabSTOP RUN.

Listing File Result on OpenVMS Alpha, 164

000001 | DENTI FI CATI ON DI VI SI ON.

000002 PROGRAM I D. ANSI - TEST.

000003 PROCEDURE DI VI SI ON.

000004 PO.

%COBOL- F- UNDEFSYM Undefi ned nane

at line nunber 4 in file D SK: [DI RECTORY] ANSI . COB; 1
000005 STOP RUN.

%COBOL- W SYNG, M ssing par agraph header

21

Overview of the COBOL Language

at line nunber 5 in file D SK [DI RECTORY] ANSI. COB; 1

Listing File Result on Tru64 UNIX

000001 | DENTI FI CATI ON DI VI SI ON.

000002 PROGRAM | D. ANSI - TEST.

000003 PROCEDURE DI VI SI ON.

cobol : Severe: dwork/t.cob, line 4: Undefined name

000004 PO.

cobol : Warning: dwork/t.cob, line 5. M ssing paragraph header
000005 STOP RUN.

Note

The previous error messages have no additional online explanations. If a diagnostic message has a further
explanation, an asterisk (*) is displayed (to the left of the error message). On OpenVMS Alpha and 164 systems,
the VSI COBOL online help file lists and describes error messages that have further explanations.

1.3.2. Terminal Format

The VSI COBOL ferminal format shortens program preparation time and reduces storage space for source
programs. This format eliminates the sequence number and identification areas. It also combines the indicator area
with Area A. Except for the differences described in this section, the rules for ANSI format also apply to terminal-
format source programs.

In terminal format, the compiler recognizes the following valid indicator area characters in the first character
position:

(-) hyphen

(*) asterisk

(/) slash

The compiler also recognizes the following conditional compilation line characters as valid indicator area
characters in the first and second character positions:

(\x) backslash and x
where x can be any uppercase or lowercase alphabetic character.
Area A then begins in character position 2 (or 3 if using \x). Otherwise, Area A begins in the first character position.

Area B begins four character positions to the right of the beginning of Area A. It ends when the compiler detects
a carriage return, or at Margin R.

The maximum length of a terminal-format source line is 256 characters. The compiler's tab stops are immediately
to the right of Margin B, and every eight character positions to the right, until the end of the line.

Note

The maximum length of the source line on the program listing is 125 characters, including the sequence field.
The compiler processes the complete source line but displays only the first 125 characters on the listing. It also
replaces all nonprintable ASCII characters with periods (or other symbols depending on the device) in the listing
file. (Refer to the VSI COBOL User Manual.)

The following example shows source lines in terminal format. It is equivalent to the ANSI-format source line
examples in the previous section.

22

Overview of the COBOL Language

*The follow ng record description shows the source line format Return
01 Tab RECORD-A. Return

Tab03 GROUP-A. Return

Tab Tab05 | TEM A Tab PIC X(10). Return

* Tab The tab character in the nonnuneric literal Return

* Tab on the next line is stored as one character Return

Tab Tab05 ITEMB Tab PIC X VALUE IS " Tab". Return

Tab03 | TEM C Tab Tab PIC X(10). Return

\ D01 Tab RECB REDEFI NES RECORD- A Tab PIC X(21). Return

1.4. Sample Entry Format

The following format is used to describe most entries in this manual. Each COBOL division or major topic begins
a new chapter and each entry begins on a new page. The entries are in functional or alphabetical order.

Entry-Name

Function

The function paragraph describes the function or the effect of the entry.

General Format

A general format shows the specific arrangement of elements in the entry. If there is more than one arrangement,
the formats are numbered. All clauses (mandatory and optional) must be used in the sequence shown in the format.
However, the syntax rules sometimes allow exceptions.

generic-term

Following the general format are definitions of its generic terms. These terms appear in the rules in italic type.

Syntax Rules

Syntax rules define or clarify the arrangement of words or elements. They can also impose further restrictions or
relax restrictions implied by the general format.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an element or set of elements. They
also define the semantics of an entry, describing its effects on program compilation or execution.

Technical Notes

Technical notes describe, in system-specific terms, any system-specific behavior, and any other VSI COBOL
behavior of note not described in the rules. They define relationships between the COBOL program and the
operating system and its components.

Additional References

Additional references point to other relevant information in this manual, the VST COBOL User Manual, and other
VSI documentation sets.

Examples

Examples show the use of a statement, clause, or other entry. The VSI COBOL User Manual contains other
examples in application contexts.

The following example shows a general format:

23

Overview of the COBOL Language

General Format

Additional References

 Chapter 3: Identification Division
* Chapter 4: Environment Division
 Chapter 5: Data Division

 Chapter 6: Procedure Division

24

Organization of a COBOL Program

Chapter 2. Organization of a COBOL
Program

A COBOL source program is a syntactically correct set of COBOL statements that:

* Mark the beginning of the program

 Describe its physical environment

» Describe the data the program creates, receives as input, manipulates, and produces as output

* Specify the processing of the program's files and data

General Format

[identification-division]

represents a COBOL Identification Division.
[environment-division]

represents a COBOL Environment Division.
[data-division]

represents a COBOL Data Division.

[procedure-division]

25

Organization of a COBOL Program

represents a COBOL Procedure Division.
[source-program]

represents a contained (nested) COBOL source program. A COBOL source program may be nested; more than
one source program may be present in a single source file.

[end-program-header]

represents a COBOL END PROGRAM header.

Syntax Rule

The end-program-header must be present if either:
1. The COBOL source program contains one or more other COBOL source programs.
2. The COBOL source program is contained within another COBOL source program.

3. The COBOL source program precedes another separately compiled program.

General Rules

1. The appropriate division header indicates the beginning of a division.
2. The following indicates the end of a division:
a. Another division header
b. An Identification Division header that indicates the start of another source program
c. The end-program-header
d. The physical position at which no further source lines occur
3. A COBOL source program may contain other COBOL source programs.

4. A COBOL source program that is directly or indirectly contained within another program is called a contained
or nested program. It may reference certain resources in the containing program.

5. A separately compiled program has a nesting level number of 1. If this program contains other source-programs,
it is the outermost containing program.

6. A contained program has a nesting level number greater than 1.

Additional References

¢ Identification Division
e Environment Division
¢ Data Division

* Procedure Division

« END PROGRAM Header

Program Structure

Figure 2.1, “Structure of a COBOL Program” shows the basic structure of a COBOL program, which is organized
in divisions, sections, paragraphs, sentences, and entries.

26

Organization of a COBOL Program

Figure 2.1. Structure of a COBOL Program

| DENTI FI CATI ON DI VI SI ON
PROGRAM- | D. program nane.
AUTHOR.
| NSTALLATI ON
DATE- WRI TTEN
DATE- COWPI LED.
SECURI TY.
OPTI ONS
ENVI RONMVENT DI VI SI ON
CONFI GURATI ON SECTI ON
SOURCE- COMPUTER
OBJECT- COVPUTER
SPECI AL- NAMES.
I NPUT- QUTPUT SECTI ON
FI LE- CONTROL.
| - O CONTROL.
DATA DI VI SI ON
SUBSCHEMA SECTI ON
subschema entries and keeplist entries
FI LE SECTI ON
file and record description entries
report file description entries
sort-merge file and record description entries
WORKI NG- STORAGE SECTI ON
record description entries
LI NKAGE SECTI ON
record description entries
REPORT SECTI ON
report and report group description entries.
SCREEN SECTI ON. (Al pha, 164)
screen description entries (Al pha, 164)
PROCEDURE DI VI SI ON
DECLARATI VES.
sections
par agr aphs
sent ences
END DECLARATI VES.

sections
par agr aphs
sent ences

END PROGRAM header

Division Header

A division header identifies and marks the beginning of a division. It is a specific combination of reserved words
followed by a separator period. Division headers start in Area A.

Except for the COPY and REPLACE statements, and the END PROGRAM header (see END PROGRAM in
Chapter 6, Procedure Division), the statements, entries, paragraphs, and sections of a COBOL source program are
grouped into four divisions in this order:

27

Organization of a COBOL Program

1. IDENTIFICATION DIVISION.
2. ENVIRONMENT DIVISION.
3. DATA DIVISION.

4. PROCEDURE DIVISION.

The end of a COBOL source program is indicated either by the END PROGRAM header (END PROGRAM) or
by the end of that program's Procedure Division.

Only these items can immediately follow a division header:

* Another division header

* A section header

* A paragraph header or paragraph-name

* A comment line

* A blank line

* A DECLARATIVES header for the USE procedure sections (after the PROCEDURE DIVISION header only)
* A PROGRAM-ID paragraph (after the IDENTIFICATION DIVISION header only)

Only this item can immediately follow a DECLARATIVES header:

* A section header for a USE procedure

Note

The PROCEDURE DIVISION header can contain a USING and GIVING phrase. (See Section 6.8, “General
Formats and Rules for Statements™.)

Section Header

A section header identifies and marks the beginning of a section in the Environment, Data, and Procedure
Divisions. In the Environment and Data Divisions, a section header is a specific combination of reserved words
followed by a separator period. In the Procedure Division, a section header is a user-defined word followed by the
word SECTION (and an optional segment-number). A separator period always follows a section header. Section
headers start in Area A.

The valid section headers follow for each division.
In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

SCREEN SECTION. (Alpha, 164)

In the Procedure Division:

28

Organization of a COBOL Program

user-name SECTION [segment-number].

Only these items can immediately follow a section header:

A division header

* Another section header

* A paragraph header or paragraph-name

* A comment line

* A USE statement (in the DECLARATIVES part of the Procedure Division only)
* A blank line

* A DATA DIVISION entry (in the Data Division)

Paragraph, Paragraph Header, Paragraph-Name

A paragraph consists of a paragraph header or paragraph-name (depending on the division) followed by zero,
one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period. Paragraph headers identify paragraphs in
the Identification and Environment Divisions.

The paragraph headers are as follows:

Identification Division Environment Division
PROGRAM-ID. SOURCE-COMPUTER.
AUTHOR. OBJECT-COMPUTER.
INSTALLATION. SPECIAL-NAMES.
DATE-WRITTEN. FILE-CONTROL.
DATE-COMPILED. I-O-CONTROL.
SECURITY.

OPTIONS.

A paragraph-name is a user-defined word followed by a separator period. Paragraph-names identify paragraphs
in the Procedure Division.

Paragraph headers and paragraph-names start in Area A of any line after the first line of a division or section.
The first entry or sentence of a paragraph begins either:

* On the same line as the paragraph header or paragraph-name

* In Area B of the next nonblank line that is not a comment line

Successive sentences or entries begin in Area B of either:

* The same line as the preceding entry or sentence

¢ The next nonblank line that is not a comment line

Data Division Entries

A Data Division entry begins with a level indicator or level-number and is followed, in order, by:

29

Organization of a COBOL Program

1. A space

2. The name of a data item, file connector, or screen item
3. A sequence of independent descriptive clauses

4. A separator period

The level indicators are as follows:

» FD (for file description entries)

» SD (for sort-merge file description entries)

* RD (for report file description entries)

Level indicators can begin anywhere to the right of Area A.

Entries that begin with level-numbers are called either data description or screen description entries, depending
on their context. The level-number values are 01 to 49, 66, 77, and 88 for data description items and 01 to 49 for
screen description entries. Level-numbers 01 to 09 can be represented as one- or two-digit numbers.

All data description entries and screen description entries can begin anywhere to the right of Margin A. However,
indentation has no effect on level-number magnitude; it merely enhances readability.

Declaratives

Declaratives specify USE procedures to be executed only when certain conditions occur. You must write USE
procedures at the beginning of the Procedure Division in consecutive sections. The key word DECLARATIVES
begins the DECLARATIVES part of the Procedure Division; the pair of key words END DECLARATIVES ends
it. Each of these reserved word phrases must be on a line by itself, starting in Area A; and be followed by a
separator period. For example:

PROCEDURE DI VI SI ON.
DECLARATI VES.

| OERROR SECTI ON.
USE AFTER ...

PAR- 1.

END DECLARATI VES.

When you specify USE procedures, you must divide the remainder of the Procedure Division into sections.

30

Identification Division

Chapter 3. Identification Division

Function

The Identification Division marks the beginning of a COBOL program. It also identifies a program and its source
listing.

General Format

* These paragraphs are not described in individual entries; they follow the same format as the AUTHOR paragraph
and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the IDENTIFICATION DIVISION header. The header consists of
the reserved words IDENTIFICATION DIVISION followed by a separator period.

3. The PROGRAM-ID paragraph must immediately follow the IDENTIFICATION DIVISION header.

PROGRAM-ID

PROGRAM-ID — The PROGRAM-ID paragraph identifies a program and assigns selected program attributes.

31

Identification Division

General Format

[program-name]

is a user-defined word that names the program.

Syntax Rules

1. The PROGRAM-ID paragraph must be present in every program.

2. program-name must contain 1 to 31 characters and follow the rules for user-defined words.

3. Programs contained within a separately compiled program must have a unique program-name.

4. The optional COMMON clause may be used only if the program is contained within another program.
5. ident-string must be a nonnumeric literal 1 to 31 characters in length.

6. The optional IDENT clause cannot be used in a contained program.

General Rules

1. program-name is a user-defined word that identifies a COBOL program and its source listing. It appears as the
first word in the first line of every page in the compiler source listing.

2. program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program, each separately compiled program
must have a unique program-name.

32

Identification Division

4. The COMMON clause specifies a common program. A common program is contained within another program
but may be called from programs other than that directly containing it.

5. Files associated with a called program's internal file connectors are not in the open mode:
a. The first time the program is called
b. The first time the program is called after execution of a CANCEL statement referring to the program
c. Every time the program is called, if it has the INITIAL attribute

On all other entries, the status and positioning of files in a called program are the same as when the program
last exited.

6. The INITIAL clause specifies an initial program. Whenever the program is called, it and any programs contained
within it are placed in their initial state, and the internal data in each program is initialized.

7. On OpenVMS, the IDENT clause specifies a literal string that is used for identification purposes. This string
is written to the object file as the "module version."

When the /ANALYSIS DATA qualifier is included on the COBOL command, the string is written to the
analysis data file as the module ident.

8. On Tru64 UNIX systems, program-name is case-sensitive. By default, program-name is converted to lowercase
for all separately compiled program units. Any calls from other programs (VSI COBOL as well as other
languages) must specify the routine to be called in lowercase.

However, if the names option is set to upper case on the command line, calls from other programs mu