uma Software

VSI OpenVMS
VAX MACRO and Instruction Set
Reference Manual

Document Number: AA-PS6GD-TE

Publication Date: month 2018

This document describes the features of the VAX MACRO instruction set and
assembiler. It includes a detailed description of MACRO directives and instructions,
as well as information about MACRO source program syntax.

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS VAX MACRO and Instruction Set Reference Manual:

nma Software

Copyright © 2018 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VS| required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSl shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel, Itanium and | A64 are trademarks or registered trademarks of Intel Corporation or its subsidiariesin the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Kerberosis atrademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is aregistered trademark of The Open Group

UNIX isaregistered trademark of The Open Group.

The VS| OpenVMS documentation set is available on DVD.

ii VSI Confidential, NDA Required

VAX MACRO and Instruction
Set Reference Manual

PIrEfacCe ..cveeiiiiiiiiiinnnnnneniiiicisinnsssnsessiiccsssssssssssssssscsssssssssssssssessansas ix
L. ADOUL VST o e e e ix
2. Intended AUGIENCEvviniitii e ix
3. DOCUMENT STIUCTUIE ...uivtititit ittt ettt et et e e e et e e e e e e e et e e e e e aeraeraeees ix
4. Related DOCUIMENTS ...u.iuininitei ettt et e et e e e et e et e e e et e e e e e e e e ereeaeeans X
5. Typographical CONVENTIONSuiiuneiineieeieetit et et et et etteetie et e et eetn e et eenernaeanaesneenesnaeenaes X
VAN B N O 4 0 111} oo) AP PP xi
7. VSI Encourages YOUr COMIMENTSoiuniineiineiineiieineeineetneetneenesnesneernesinesneseaseeersnaerneesns xii
8. How to Order Additional DoCUMENAtiONciuiiniiniiiiiiiiie e xii

Part I. VAX MACRO Language

Chapter 1. INtroducCtionccoeeienveiinssencnssnncsssnncsssisssssssssasses 3
Chapter 2. VAX MACRO Source Statement FOrmatcoueeeeveennensecseesnensncsncsnensneess 5
2.1 Label FIEIA ..eoeniiiii i e 6

2.2, 0perator FIldooiiiiii e 6

2.3, 0perand Field ... e 7

2.4, Comment FIeldcoooiiiiiii e 7
Chapter 3. Components of MACRO Source Statementscoceveeesecsensnessensaeesnessacseees 9
3.1, CRATACIET SO ...uuiiiiiiit ettt ettt ettt et e e e 9

3.2 NNUITIDEIS ..eiiine ettt et et ettt et e e et e e e et e e et eeaa e eaas 10
T B 1311705 ¢ PPN 10

3.2.2. Floating-Point NUMDETSc.uiiuiiiieiie ittt et e e e 11

3.2.3. Packed Decimal SISoeunieniin it 12

TG TR % 14 Lo o) PPN 12
3.3.1. Permanent SYMDOLSoouiinii e 12

3.3.2. User-Defined Symbols and Macro NamMeSsc.oeeuiiiuieiniiiiiiiiiieiie e e 13

3.3.3. Determining Symbol ValUesc.oooiiiiiiiiiiiiii e 13

3.4, L0Cal LADCIS ..coviniiiiiii e 14

3.5. Terms and EXPIeSSIONSc.uiuuiuntittii ettt et e e e e e e e e e e e e e enaes 16

3.6. UNATY OPCIALOLSuitnttieite ittt ettt et e et e e e et et ettt e e e et et et e ea e eneeen e et e et e et eeneannas 17
3.6.1. Radix Control OPETratorsSceueiueunii ittt e e e et e eeeeeanns 18

3.6.2. TeXtUAl OPETALOLSuiiniei ittt et e e e e e et e e eanas 19

3.6.3. Numeric Control OPETratorsSoiuutiuueiueiie ittt e e e eenns 20

3.7. BINAry OPETALOTSceuiiiiin ettt ettt ettt et et et e et e e et e et et ea e e e e e eas 21
3.7.1. Arithmetic Shift OPeratorcoouiiiiiii e 22

3.7.2. Logical AND OPEIAtOLiuuieneiieite ittt et et e e e e e e e e eenns 22

3.7.3. Logical Inclusive OR OPEratorceuiiiuiiuniiieiiie ettt eae e 22

3.7.4. Logical EXclusive OR OPEratorccouuiiuiiuiiiiiii et 22

3.8. Direct AssigNMENnt StAtEMEIIS euuteneiteite ittt et e e et et e e et e e e e e e e e e eeaaas 23

3.9. Current Location COUNTETuiiiuiiiiiiiiii ettt et e e 23

Chapter 4. Macro Arguments and String OPeratorsc.eeceecnsnecssensssesssecsssecsencss 25

4.1, ArgUMENLS 1N IMACTOS ...cuuitneiteii ettt ettt ettt et et e e e e et e e e e e e an e 25
4.2. Default VAIUESoiiiiiiiiiiii et 26
4.3, KeYWOTrd ATZUIMENESeuueiteiieii ettt ettt et et e et e e et e et e e e et e e e et e en e enaeanees 26
4.4, SHING ATZUIMCIIES ... euuitneit ittt ettt e et et e et e e e e et et e et e ea e en e ean e eaneenneees 27
4.5. Argument CONCATENATIONuiuuitn ittt ettt et et e e e et et et et e e e e e e eaeeneens 29
4.6. Passing Numeric Values of SYMDbOIScouiiiiiiiii e 29
4.7. Created Local Labelscoouiiiiiiiiii e 30
4.8. MAacCTO StrINE OPETALOTSeuuiinien ettt ettt et et e et et e et et e ea e e an e e e e et e et e e eenaas 30

4.8.1. YoLENGTH OPETALOLucivuneiiiiiiiineiiiie et ettt et e et eeaaes 31

4.8.2. YoLOCATE OPETAtOr ... cevuuiiiiniiiiieiii ettt et ettt et e eeaaes 31

4.8.3. YoOEXTRACT OPEIALOL ...cvvuniiiineiiineiiii ettt et et ettt e ea et et eeaa s 33

Chapter 5. VAX MACRO Addressing MOdesccceeeeeeecssnnncssanecssneecsssnecssssessssscsssscsssses 39

VSI Confidential, NDA Required iii

VAX MACRO and Instruction
Set Reference Manual

5.1. General RegiSter MOAESuoiuniiieiiie et et e e e e e e e e e e anns 35
R B R 2T 4 £ £ 1Y (o o [39
5.1.2. Register Deferred Modecoouuiiiiiiiiiiiiie e 40
5.1.3. Autoincrement MOAEovniiiiiiiie e 40
5.1.4. Autoincrement Deferred MOdeooiniiiiniiii e 41
5.1.5. Autodecrement MOAEoiuiiniiiiiiiiii e 41
5.1.6. Displacement MOdEcouuuiiiiiiiiiiiii e 42
5.1.7. Displacement Deferred Modecouuiiiiiiiiiiiiiiiiniin e 43
I T 5 1 ¢ 1 Y (o (T PP 44

5.2. Program Counter MOAEScouuiiiiniiiiiiii ettt 46
5.2.1. RelatiVe IMOAE ...vuiniiniiiii ettt e e e et e e aaas 46
5.2.2. Relative Deferred MOdEoeovninieii e 47
5.2.3. ADSOIULE MO ...ouiieiiiii e 47
5.2.4. IMMEdiate MOAEovuiiniiiiiii e aaas 48
5.2.5. General MOouiniiiiiiii e 49

5.3, INAEX MO ..oniiniiiii e 49

54, Branch MOEcooiiniiiiiii e 52

Chapter 6. VAX MACRO Assembler Directivesccccceeevercssnrcssnnrcssnnicsssnscssanssssasssssanes 53

ADDRESS ..o 56

A LGN oottt aa s 56

A S T X e 58

A S I o e 58

A S D .o 59

A S I oot et ettt e et et et e e aeaeaans 60

A S CIZ oo e 60

|21 5 S TP PPNt 61

BY T oo et aaas 63

ORI S S e e 64

DEBUG ..ouiiiiiiii et e 65

5] 21 372N 0 B PP TP PP 65

B 2 510 7N I 1 P 66

DISABLE .o et 67

EINABLE oo et 67

BN D oot 70

EIN D C oottt aaaaas 70

I 21\ D)LY U PP PSP U TP PRNS 70

EIN D R .ot 71

EIN T R Y oottt ettt 71

ERRO R oo e 72

BV BN oo e 73

EXTERNAL oottt et et e e e e e e e e e e e et et e e e e ans 73

B 2 510 7. N I PN 74

B 0 510 70 I 1\ T 75

G OB AL oo e 76

= 2 0 72N I 0 76

|10 2\ OO OO TP PPN 77

TE o e ettt aaraa 77

1 2 PR 79

B 1§ T OO PO PRPRPRNt 82

TR P e 83

IR P C e e e 84

L B R A R Y oo 85

| 5] 0\ TP PP 86

| 5] 5 P U PP P PP TPUPRRt 88

LON G ot e e e e 88

IMAC RO oo et 89

I A S K oo e e e et 91

VSI Confidential, NDA Required

VAX MACRO and Instruction
Set Reference Manual

MOALL oo e 91
MDELETE ..ot 92
MEXIT .o e 93
NARG oo 94
NCHR 94
N LS T e e 95
NOCROSS e 96
NOSHOW Lo 96
N Y P 97
O T A 98
ODD L. 99
OPDEF ... 99
PACKED ... 100
PAGE . o 101
PRINT e 101
PSECT Lo 102
QUAD e 105
REFD oo 106
REPEAT .o e 107
RESTORE _PSECT ..ot 108
SAVE PSECT ..o e 109
SHOW, NOSHOW Lo e 110
SIGNED _BYTE oo 112
SIGNED_WORD .o 113
SUBTITLE oo 114
TITLE oo e 114
TRANSEER ... 115
WARN 117
WEAK L 118
WORD Lo 118

Part Il. VAX Data Types and Instruction Set

Chapter 7. Terminology and CONVENTIONScccceeeevveressnrcssnicssnnecssnsecssssesssssessssssssssesesss 123

8 TR 11 T3 o PP 123
7.2. UNPREDICTABLE and UNDEFINEDcccouuiiiiiiiiiiiiiiiiieiiii e 123
7.3. Ranges and EXEENLScc.uiiuiiiii i e 123
TA MBZ oo e 123
T.5. RAZ oo 123
Ti0. SBZ oo 123
T.T. RESEIVEA ittt ettt 124
7.8. Figure Drawing CONVENTIONSceuueiuueitiin ittt e e e e e et et et e e e e e e e eenneees 124

8.1. Basic ATCRITECTUIEiiuuniiiiiiiie ettt e e 125
8.2, VAX AQAIESSING ...eeneeteiieii ettt ettt e 125
TR T B T o 1< PSPt 126
B3 Byt ettt e 126
8.3.2. WOTA ...t 126
8.3.30 LONEWOTA ...t e 126
8.3.4. QUAAWOIA ...ceeiiiiiiiii e e 126
8.3.5. OCLAWOIM ...eiiiiieiiieeii ettt 127
8.3.6. F fl0AtING ...enniiiie e 127
8.3.7. D _HlOAHNE ...t e 128
8.3.8. G _HlOAtINE ...oeeneee e e 128
8.3.9. H_Hl0AtINEeenieeie e e 128
8.3.10. Variable-Length Bit Fieldccooiiiiiii e 129

VSI Confidential, NDA Required v

VAX MACRO and Instruction
Set Reference Manual

8.3.11. CRAracter STIINEceeuuiiiiieiii ittt ettt e et e e eeaas 130
8.3.12. Trailing NUMETIC STIIMNE ...vvuirneiineiieiie et et et et et e et e et e e e e e e e eaneeaneeaneenns 131
8.3.13. Leading Separate NUMEIIC SrINGoeeuniiuiiiniiieiieiieireieeae e e eie e eeneeanenns 133
8.3.14. Packed Decimal Stringoiuuiiiniiieiieiie et e e e e 134

8.4. Processor Status Longword (PSL)ooiiiiiiii e 135
o T O - 3| PP 136
B2, WV Bt it 136
B3 Z Bt oot 136
B4 IN Bt ittt 136
T 3 O N 53 PO OPPTP 136
T AV 2 31 APPSR 136
BT, FU Bt ettt ettt et e 137
LT D VA 2 3 AP 137

8.5. Permanent Exception Enablesooeiiiiiiiiiiiii e 137
8.5.1. DIVIAE DY ZETO ... oeeviiiiieiii e ettt e 137
8.5.2. Floating OVETTIOWiiuuniiiiiiii et 137

8.6. Instruction and Addressing Mode FOrmatsccoeuviiniiiiiiniiiiiiei e 137
8.6.1. Opcode FOIMALSuiieiiiiiiiii ettt et e e e e e e e e e ean e 137
8.6.2. Operand SPECITIETSuuiuuiiieii ettt ettt e e e e e e et e e e e e et eans 138

8.7. General Addressing Mode FOrmatso.ooiiiiiiiiiiie e 138
8.7. 1. REGISLET MOAEeeviiiiieiii e e 139
8.7.2. Register Deferred MOdecouiiiiiiiiiiei et 139
8.7.3. Autoincrement MOoouniiiniiiiiieie et 140
8.7.4. Autoincrement Deferred Modeoooviiiiiiiiiii e 140
8.7.5. Autodecrement MOAEoouuiiniiiieii et 141
8.7.6. Displacement MOAEoiuuiiniiieiie ettt 141
8.7.7. Displacement Deferred Modeooouviiniiiiiiiiiiiie e 142
IR T 1< 1 1 [T [142
8.7.9. INAEX MOMEuiiiiiiie e 145

8.8. Summary of General Mode AddresSingcouvviuiiiniiieii et ean e 145
8.8.1. General Register AddIeSSINGuevuniieeiieiieiie e e e e e e e e e eens 146
8.8.2. Program Counter AdAIreSSINgGoveuiiuiiniiii e e e e e e e e e e e eaneeanees 147

8.9. Branch Mode Addressing FOrmatsoooiiiiiiiiiiiii et 148
Chapter 9. VAX INStruction Setcccceeevvienssercssnicssnnsssnnesssssssssssesssssssssssssssssssssssssasssns 149
9.1. Introduction to the VAX INStruction Setccviiriiiiiiniiieine e aens 149
9.2. InStruction DESCIIPLIONSueitneiieiiei et et et e et e e et e et e et e e et e e e e et e et e eaeeneeaneeaneenns 149
9.2.1. Integer Arithmetic and Logical InStructionsceveuviiniiineiineiineiieiieiieiieeeneens 152

9.3, Address INSLIUCTIONSueiiiniiiniii ettt et ettt et e e e eeaaee 171
9.4. Variable-Length Bit Field INStructionscc.viiiiiiiiiiiiiiiiiiin e 173
9.5. Control INSIIUCIONSiunieneieeie ettt et e e et e e e e e e e e e e e e e et e et e et e eneaaneeaneeaneenns 178
9.6. Procedure Call INSUCHONSeiuuiiniiieiii it e et et e e e e e e e et e e e e eaneeaneenns 193
9.7. Miscellaneous INSIUCTIONScvuueieneiieii ettt et et et et e e e e e e e e e e e e e e e eaneeaeenneees 198
0.8. QUEUE INSTIUCTIONS L.ovuitnitiieit ittt ettt et e e e e e e e e et e e e et et ea et e e s et e s et eaaaaaanns 205
0.8.1. ADSOIULE QUEUESovuiieiiiiiiei e e e e e e et e e et e e eaeans 205
0.8.2. SElf-Relative QUEUESivniiniieiinii ettt e e et e e et et e e e e e e e e eaaeaesaeaaeanaanns 207
9.8.3. INStruction DESCIIPHIONS ...euueienrintineiieiee et e e et et e et et e ean e ean e e e eaeenaeanaeanaennnas 210

9.9. Floating-Point INSIUCHIONSevuuiieneiieii ettt et e e e e e e e e e e e e e e e e eeeeneees 219
0.9.1. INtOAUCLION ..e.tieneiie it ettt et e e e e e e e e e e e e e e e ane e e e enneees 219
9.9.2. Overview of the INStruction Setcevuniiiiiiieiiii e 220
0.9.3. ACCULACY ...enittin ettt et e ans 221
9.9.4. INStruction DESCIIPHIONS ...vuueieneintin et ette et et et et e et e e eeneean e eaneeaeanaennaeanaennnes 222

9.10. Character String INSIUCHIONSuiiuiiniieii e e e et e e e e e e e e e e e e e eeneannas 236
9.11. Cyclic Redundancy Check INStrUCHIONcc..viiiiiiiiiiiiiiiiiin e 247
9.12. Decimal String INStIUCIONSuuieniii i iie ettt et et et et e e e e et e e e et e e e e e eaneeaneenns 250
9.12.1. Decimal OVEITIOWuiiuiiiiiieiie e e e et e e e e e e e e e e e e e e eaneaaneees 251
9.12.2. Z&10 NUIMDETS ... eeitiiiiieiii ettt ettt et e e e e e 251
9.12.3. Reserved Operand EXCEPtionveuuiiiniiiieiieie et e e e e 251

vi

VSI Confidential, NDA Required

VAX MACRO and Instruction
Set Reference Manual

9.12.4. UNPREDICTABLE RESUILS ...ovuuiiiiieiiiieiiieeiiee et et e e et e e e e e e eeaanns 251
9.12.5. Packed Decimal OPErationseuueiuneiineiueineeinetinetieeneenaerneeaneeneenerneeneenns 251
9.12.6. Zero-Length Decimal Stringsc..veeuiiiiiiiiiiiiine e 251
9.12.7. Instruction DESCIIPLIONSvuuieneiieii ettt et et e et et et et e e e e e e e e enaannas 252

9.13. The EDITPC Instruction and Its Pattern Operatorsc..oveeuuneeiineeiiniiiiineiineiiineeiineennn. 267
9.14. Other VAX INSTIUCHIONS ..euuiitiiniineiieiietie et e et et e et e e e e e e ea e en e an e ean e eaneenneeneeneenns 277
Chapter 10. VAX Vector ArchiteCtureccceceeccvercsssercsssnrcssencsssscssssssssssssssasssssassssns 287
10.1. Introduction to VAX Vector Archit@Cturevvuuiieniiieiiieiieeie e e e e ean e 287
10.2. VAX Vector Architecture REGISTErSovuuiieiiiniiieiie et 287
10.2.1. VECtOr REGISTETS ...uvuneiiieiieiieeie et et et et e et e e e e e e e et e et e aae e e e e e e e aneeaneenns 287
10.2.2. Vector Control REZISLEISiuuiineiieieeiee et e e e e e e ees 288
10.2.3. Internal Processor REGISIEISvuuiiiniiiiiiitieii et e e e eens 288

10.3. Vector Instruction FOIMALScouniiiniiieiiii et e e e e ean e 295
10.3.1. MaSked OPEIatiONScceuueeiuniiitieiiieeii ettt ettt ettt e e e e et e e eeaieees 296
10.3.2. Exception Enable Bitcoouiiiiiiiiiiiiie e 296
10.3.3. Modify Intent Bitcoouiiiiiiiiii e 296
10.3.4. Register Specifier FIeldsccoviiiiiiiiiiiiiiiiii e 297
10.3.5. Vector Control Word FOrmatscc.oiiiuuiiiiiniiiiniiiiieiie e 297
10.3.6. Restrictions on Operand Specifier USAgecc.viineiiiiiniiiiiieiieie e ee e eann, 299
10.3.7. VAX Condition COUESuvvuniiniiiieiiieiieiie e e e e et et et et e e et e e e eae e e enaannas 299
10.3.8. Tllegal Vector OPCOUESceuuneiiiniiiiieiie ettt et 299

10.4. ASSEMDBIET NOLALIONuiieniiiii et e e e e e et et et e et e e e e e e e e e e e e s e et e eaneenneeenns 299
10.5. EXECUtION MOcoviiiiiiiiii i 300
10.5.1. Access Mode RESIIICIONSucevuuiiitniiiiiiiieeii ettt ettt e e e e e 301
10.5.2. Scalar Context SWItCHINGvvuuiieiiiieii ettt e e e e e e eaeeens 301
10.5.3. Overlapped Instruction EX@CUtIONoviuiiiniiiniii et 302
10.5.4. MemoOry INStIUCLIONSivnieneiieii ettt et et e e e e e e e e e et e e e e e e e e e eaneeaneeenns 304
10.5.5. Dependencies Among Vector Resultscoooviiiiiiiiiiiiiiiiiiiee e 304

10.6. Vector Processor EXCEPHIONSoiuuiuneiieiieiieeie et e e e e e e e e e et e e e eaeeaneeaneaaneees 309
10.6.1. Vector Memory Management Exception Handlingc.o.coiiiiiiiniiiniiinin, 309
10.6.2. Vector Arithmetic EXCEPLIONSuvivniiniiieiieiie et e e 311
10.6.3. Vector Processor Disabledc..oviiiiiiiiiiiiiiiii e 311
10.6.4. Handling Disabled Faults and Vector Context Switchingc...cccoveeiineiiinieenneen. 312
10.6.5. MFVP Exception Reporting EXamplesccoooviiiiiniiiiiiiiiiii e, 314

10.7. SYNCATONIZALIONuniiiiiiiii et e ettt e e e e e e e et et e e e e e e e e s e eaean e eeneannees 316
10.7.1. Scalar/Vector Instruction Synchronization (SYNC)ccoviviiiiiiiiiieiineiieeieeieeennens 316
10.7.2. Scalar/Vector Memory Synchronizationc..veeuineeiineiiiieeineeineeiineeeineenn. 317
10.7.3. Other Synchronization Between the Scalar and Vector Processorscoceuvvenee.n. 318
10.7.4. Memory Synchronization Within the Vector Processor (VSYNC)cccooviiiiiiinnennnne. 319
10.7.5. Required Use of Memory Synchronization Instructionsc...ccoveeiiniiiiineennnennnn. 319

10.8. MemoOry MAanaQ@EIMENLc.uiuuiuitintittin ittt ettt et et ettt e et et et e e e et e e e aae e ans 322
10.9. HardWare EITOTSccuuiiuiiiiei ittt et e e e e e e et e e et e e e e e aneeaneeens 323
10.10. Vector Memory Access INStIUCLIONSiuniiiniieiieiie et e e et e e e e e e e e e e e eeenas 324
10.10.1. Alignment ConsSidErationsueeeneiuneinneeieeieeietieeieeneeaneeaeraernernaernaannnes 324
10.10.2. Stride CoNnSIAETAtIONSevuueieneiieii ettt et et e e ee e e e e e e e e e e e eaneeanaeanaannns 324
10.10.3. Context of Address SPECITIErSovvuiiuniiieiieie e 324
10.10.4. ACCESS MOTE ...cevniiiieiiie et et 324
10.11. Vector Integer INStIUCLIONSuiieniiieiieiie e e e e e e e et et et e e e e e e e e e eenaeannes 328
10.12. Vector Logical and Shift INStrUCIONScuiiniiniiieiie e 332
10.13. Vector Floating-Point INStrUCIONSc.uiviniiiniiieiie et et e e e e ee e 334
10.13.1. Vector Floating-Point Exception Conditionscceeueeieieinneinniiniieiieiieennenn, 334
10.13.2. Floating-Point INStUCHONSceuueiineiieiieiieeie e et et et e e e e e e e e e eieaeaaenas 336
10.14. Vector Edit INStIUCLIONSvunieiiieii it et e et et et et e e et e e e e e e eee e e e eaneenneees 344
10.15. Miscellaneous INSIUCHONSeieueieeiieii ettt et et et e e e e e e e e e e e e e e e e eeeeneenns 346
Appendix A. ASCII Character Set 351
Appendix B. Hexadecimal/Decimal Conversion 353

VSI Confidential, NDA Required vii

VAX MACRO and Instruction
Set Reference Manual

B.1. Hexadecimal to DeCimalc..uiiiuiiiiiiiiiiiiiii i 353
B.2. Decimal to Hexadecimaloiiuiiiiiiiiiiiii e 353
B.3. Powers Of 2 and 16coouniiiiiiiiii e 354
Appendix C. VAX MACRO Assembler Directives and Language Summary 355
C.1. ASSEMDIET DITECHIVES ..e.uuiiiiniiiin ettt ettt e e e e e e e 355
(O 1T -1 B O 1 2T 1<) ¢ R 358
.3, OPIALOTS ..ttt ettt ettt e e e et et et et et et et et e et ettt et e e e aaas 359
C.3.1. UNAry OPEIALOLS ..o.utiiniineiin ettt ettt et ettt e e et e e et e eeaes 359

(O T 2 10 F: o A 0 1S 1 o) ¢ R 360
C.3.3. Macro String OPETALOISvuueieneeneieeti ettt eeie et eat et eaneeaneeanetaeaneanaernaaanaeanes 360

C.4. AdAreSsing MOAESc.uieneiineiie et ettt et e e e e e e e e e e e e e e e e e et e e e e eneenns 361
Appendix D. Permanent Symbol Table Defined for Use with VAX MACRO 365
Appendix E. Exceptions That May Occur During Instruction Execution 383
E.1. Arithmetic Traps and Faultsooooiiiii e 383
E.1.1. Integer OVerflow TTapcc.uiiuiiiii et 383
E.1.2. Integer Divide-by-Zero TIapoceuiiiniiiniiieie ettt 384
E.1.3. Floating OVerflow TIapcouiiuiiiiiei e e 384
E.1.4. Divide-DY-ZET0 TIAPeuuiiniiieii ettt et 384
E.1.5. Floating Underflow Trapc.eouiiniiniii et 384
E.1.6. Decimal String OVerflow Trapc..veuuiiiiiieiet e 384
E.1.7. Subscript-Range TIapc.ueeuuiiieiieiie et 384
E.1.8. Floating Overflow Fault ... e 384
E.1.9. Divide-by-Zero Floating Faultcooiiiiiiii e 385
E.1.10. Floating Underflow Faultcoooiiiiiiii e 385

E.2. Memory Management EXCEPHIONSccuuiiuiiiiieiiie ettt 385
E.2.1. Access Control Violation Faultcccoiiiiiiiiiiiiiiiii e 385
E.2.2. Translation Not Valid Faultccooooiiiiiiiiii e 385

E.3. Exceptions Detected During Operand Referencecoooeiiiiiiiiiiiiiniiniiieecec, 385
E.3.1. Reserved Addressing Mode Faultoooiiiiiiiii e 385
E.3.2. Reserved Operand EXCEPHIONccuuiiuneiiiiiiiiiii e 385

E.4. Exceptions Occurring as the Consequence of an Instructioncocoiiiiiiiiiiiiiininnn. 386
E.4.1. Reserved or Privileged Instruction Fault ..., 386
E.4.2. Operand Reserved to Customers Faultcoooiiiiiiiiii e 387
E.4.3. Instruction Emulation EXCEPLIONSc.uiuuiiiiiiiiiiiiii et 387
E.4.4. Compatibility Mode EXCEPLIONcouuiiuiiiiiiiii it 387
E.4.5. Change Mode TIaPoeuiiiiiiii et e e 388
E.4.6. Breakpoint Fault ... 388

E.5. Trace Faultcooooiiiiiii e 388
E.5.1. Trace Operation When Entering a Change Mode Instructioncooooieiiiienniann.e. 389
E.5.2. Trace Operation Upon Return From Interruptcooooiiiiiiiiiiiiiiiie 389
E.5.3. Trace Operation After a BISPSW INnstructioncooeeiiiiiiiiiiiiiieiniieeceen 389
E.5.4. Trace Operation After a CALLS or CALLG InStructioncccceeeeieiieiiiiniinnnennne. 389

E.6. Serious System Failuresoooiiiiiiii e 389
E.6.1. Kernel Stack Not Valid AbOTtc...iiiiiiiiiiiiiiiii e 390
E.6.2. Interrupt Stack Not Valid Halt ... 390
E.6.3. Machine Check EXCEPHIONc.uiiuuiitiiiiiieiie et 390

INAEX aeueierrreennnncieeeeereeeesseessssscesesssanns 391

viii VSI Confidential, NDA Required

Preface

Preface

uma Software

1. About VSI

VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard Enterprise to develop
and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so closely
associated with the OpenVMS operating system and its original author, Digital Equipment Corporation.

2. Intended Audience

This manual is intended for all programmers writing VAX MACRO programs. You should be familiar with
assembly language programming, the VAX instruction set, and the OpenVMS operating system before reading
this manual.

3. Document Structure

This manual is divided into two parts, each of which is subdivided into several chapters.
Part I, “ VAX MACRO Language” describes the VAX MACRO language.
» Chapter 1, Introduction introduces the features of the VAX MACRO language.

* Chapter 2, VAX MACRO Source Statement Format describes the format used in VAX MACRO source
statements.

* Chapter 3, Components of MACRO Source Statements describes the following components of VAX MACRO
source statements:

* Character set

* Numbers

* Symbols

* Local labels

* Terms and expressions

* Unary and binary operators
 Direct assignment statements
+ Current location counter

* Chapter 4, Macro Arguments and String Operators describes the arguments and string operators used with
macros.

e Chapter 5, VAX MACRO Addressing Modes summarizes and gives examples of using the VAX MACRO
addressing modes.

* Chapter 6, VAX MACRO Assembler Directives describes the VAX MACRO general assembler directives and
the directives used in defining and expanding macros.

Part I, “VAX Data Types and Instruction Set” describes the VAX data types, the instruction and addressing mode
formats, and the instruction set.

VSI Confidential, NDA Required ix

Preface

Chapter 7, Terminology and Conventions summarizes the terminology and conventions used in the descriptions
in Part I1, “VAX Data Types and Instruction Set”.

Chapter 8, Basic Architecture describes the basic VAX architecture,including the following:
* Address space

» Data types

* Processor status longword

* Permanent exception enables

* Instruction and addressing mode formats

Chapter 9, VAX Instruction Set describes the native-mode instruction set. The instructions are divided into groups
according to their function and are listed alphabetically within each group.

Chapter 10, VAX Vector Architecture describes the extension to the VAX architecture for integrated vector
processing.

This manual also contains the following five appendixes:

3

Appendix A, ASCII Character Set lists the ASCII character set used in VAX MACRO programs.
Appendix B, Hexadecimal/Decimal Conversion gives rules for hexadecimal/decimal conversion.

Appendix C, VAX MACRO Assembler Directives and Language Summary summarizes the general assembler
and macro directives (in alphabetical order), special characters, unary operators, binary operators, macro string
operators, and addressing modes.

Appendix D, Permanent Symbol Table Defined for Use with VAX MACRO lists the permanent
symbols(instruction set) defined for use with VAX MACRO.

Appendix E, Exceptions That May Occur During Instruction Execution describes the exceptions (traps and
faults) that may occur during instruction execution.

4. Related Documents

The following documents are relevant to VAX MACRO programming:

VAX Architecture Reference Manual

VSI OpenVMS DCL Dictionary

The descriptions of the VMS Linker and Symbolic Debugger in:
» VSI OpenVMS Linker Utility Manual

* VSI OpenVMS Debugger Manual

VSI OpenVMS Programming Concepts Manual

5. Typographical Conventions

The following conventions are used in this manual:

Convention Meaning

CtrI/X A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl while

you press another key or a pointing device button.

VSI Confidential, NDA Required

Preface

Convention

Meaning

PF1 X

Enter

O

[]

{}

bold type

italic type

UPPERCASE TYPE

Exanpl e

numbers

A sequence such as PF1 Xindicates that you must first press and release the key labeled
PF1 and then press and release another key (X) or a pointing device button.

In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:-
Additional optional arguments in a statement have been omitted.- The preceding item
or items can be repeated one or more times.- Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from a code example or command
format; the items are omitted because they are not important to the topic being
discussed.

In command format descriptions, parentheses indicate that you must enclose choices
in parentheses if you specify more than one. In installation or upgrade examples,
parentheses indicate the possible answers to a prompt, such as:

Is this correct? (Y/N [Y]

In command format descriptions, brackets indicate optional choices. You can choose
one or more items or no items. Do not type the brackets on the command line. However,
you must include the brackets in the syntax for directory specifications and for a
substring specification in an assignment statement. In installation or upgrade examples,
brackets indicate the default answer to a prompt if you press Enter without entering
a value, as in:

Is this correct? (Y/IN) [Y]

In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command line.

In command format descriptions, braces indicate required choices; you must choose at
least one of the items listed. Do not type the braces on the command line.

Bold type represents the name of an argument, an attribute, or a reason. In
command and script examples, bold indicates user input. Bold type also represents the
introduction of a new term.

Italic type indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command parameters in text (where dd
represents the predefined code for the device type).

Bold uppercase type indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive screen
displays. In text, this type also identifies website addresses, UNIX command
and pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes-binary, octal, or hexadecimal-are explicitly indicated.

6. VSI TCP/IP Support

VSI supports VSI TCP/IP running on VSI OpenVMS Integrity Version 8.4-2L1 (or higher) only. Please contact
your support channel for help with this product.

VSI Confidential, NDA Required Xi

Preface

7. VS| Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending electronic mail
to the following Internet address: <doci nf o@nssof t war e. conp.

8. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information account:
<i nf o@nssof t war e. conk. We will be posting links to documentation on our corporate website soon.

xii VSI Confidential, NDA Required

Partl. VAX MACRO Language

Part I provides an overview of the features of the VAX MACRO language. It includes an introduction to the
structure and components of VAX MACRO source statements. Part I also contains a detailed discussion of the
VAX MACRO addressing modes, general assembler directives, and macro directives.

VSI Confidential, NDA Required 1

VSI Confidential, NDA Required

Introduction

Chapter 1. Introduction

VAX MACRO is an assembly language for programming VAX computers using the OpenVMS operating system.
Source programs written in VAX MACRO are translated into object (or binary) code by the VAX MACRO
assembler, which produces an object module and, optionally, a listing file. The features of the language are
introduced in this chapter.

VAX MACRO source programs consist of a sequence of source statements. These source statements may be any
of the following:

¢ VAX native-mode instructions
* Direct assignment statements
¢ Assembler directives

Instructions manipulate data. They perform such functions as addition, data conversion, and transfer of control.
Instructions are usually followed in the source statement by operands, which can be any kind of data needed for
the operation of the instruction. The VAX instruction set is summarized in Appendix D, Permanent Symbol Table
Defined for Use with VAX MACRO of this volume and is described in detail in Chapter 9, VAX Instruction Set.
Direct assignment statements equate symbols to values. Assembler directives guide the assembly process and
provide tools for using the instructions. There are two classes of assembler directives:general assembler directives
and macro directives.

General assembler directives can be used to perform the following operations:

* Store data or reserve memory for data storage

» Control the alignment of parts of the program in memory

» Specify the methods of accessing the sections of memory in which the program will be stored
 Specify the entry point of the program or a part of the program

* Specify the way in which symbols will be referenced

* Specify that a part of the program is to be assembled only under certain conditions

* Control the format and content of the listing file

» Display informational messages

+ Control the assembler options that are used to interpret the source program

* Define new opcodes

Macro directives are used to define macros and repeat blocks. They allow you to perform the following operations:

* Repeat identical or similar sequences of source statements throughout a program without rewriting those
sequences

» Use string operators to manipulate and test the contents of source statements

Use of macros and repeat blocks helps minimize programmer errors and speeds the debugging process.

VSI Confidential, NDA Required 3

Introduction

VSI Confidential, NDA Required

VAX MACRO Source
Statement Format

Chapter 2. VAX MACRO Source
Statement Format

A source program consists of a sequence of source statements that the assembler interprets and processes, one at a
time, generating object code or performing a specific assembly-time process. A source statement can occupy one
source line or can extend onto several source lines. Each source line can be up to 132 characters long; however, to
ensure that the source line fits (with its binary expansion) on one line in the listing file, no line should exceed80
characters.

VAX MACRO statements can consist of up to four fields, as follows:
» Label field — symbolically defines a location in a program.

» Operator field — specifies the action to be performed by the statement;can be an instruction, an assembler
directive, or a macro call.

* Operand field — contains the instruction operands, the assembler directive arguments, or the macro arguments.

* Comment field — contains a comment that explains the meaning of the statement; does not affect program
execution.

The label field and the comment field are optional. The label field ends with a colon (:) and the comment field
begins with a semicolon (;). The operand field must conform to the format of the instruction, directive, or macro
specified in the operator field.

Although statement fields can be separated by either a space or a tab (see Table 3.2, “Separating Characters in
VAX MACRO Statements”), formatting statements with the tab character is recommended for consistency and
clarity and is a VSI convention.

Field Begins in Column Tab Characters to Reach Column
Label 1 0
Operator 9 1
Operand 17 2
Comment 41 5

For example:

. TITLE ROUT1

. ENTRY START, "Mc> ; Begi nning of routine
CLRL RO ; Clear register
LABT: SUBL3 #10,4(AP),R2 ; Subtract 10
LAB2: BRB CONT ; Branch to another routine

Continue a single statement on several lines by using a hyphen (-)as the last nonblank character before the comment
field, or at the end of a line(when there is no comment). For example:

LABL: MOVAL WBOCBAL_VECTOR, - ; Save boot driver
RPBS$L_| OVEC(R7)

VAX MACRO treats the preceding statement as equivalent to the following statement:

LABl: MOAL W BOOBAL_VECTOR RPB$L_| OVEC(R7) ; Save boot dri ver

VSI Confidential, NDA Required 5

VAX MACRO Source
Statement Format

A statement can be continued at any point. Do not continue permanent and user-defined symbol names on two
lines. If a symbol name is continued and the first character on the second line is a tab or a blank, the symbol name
is terminated at that character. Section 3.3, “Symbols” describes symbols in detail.

Note that when a statement occurs in a macro definition (see Chapter 4, Macro Arguments and String Operators
and Chapter 6, VAX MACRO Assembler Directives), the statement cannot contain more than 1000 characters.

Blank lines are legal, but they have no significance in the source program except that they terminate a continued
line.

The following sections describe each of the statement fields in detail.

2.1. Label Field

A label is a user-defined symbol that identifies a location in the program. The symbol is assigned a value equal
to the location counter where the label occurs. The user-defined symbol name can be up to 31 characters long
and can contain any alphanumeric character and the underscore (_), dollar sign ($), and period (.) characters. See
Section 3.3.2, “User-Defined Symbols and Macro Names” for a description of the rules for forming user-defined
symbol names in more detail.

If a statement contains a label, the label must be in the first field on the line.

A label is terminated by a colon (:) or a double colon (::). A single colon indicates that the label is defined only
for the current module (an internal symbol). A double colon indicates that the label is globally defined; that is, the
label can be referenced by other object modules.

Once a label is defined, it cannot be redefined during the source program. If a label is defined more than once,
VAX MACRO displays an error message when the label is defined and again when it is referenced.

If a label extends past column 7, place it on a line by itself so that the following operator field can start in column
9 of the next line.

The following example illustrates some of the ways you can define labels:

EXP: . BLKL 50 ; Tabl e stores expected val ues
DATA:: .BLKW 25 ; Data table accessed by store
; routi ne in another nodul e
EVAL: CLRL RO ; Routine eval uates expressions
ERROR | N_ARG: ; The arg-list contains an error
I NCL RO ; i ncrenent error count

TEST:: MOVO EXP,R1 ; This tests routine
y referenced externally
TEST1: BRW EXIT : Go to exit routine

The label field is also used for the symbol in a direct assignment statement(see Section 3.8, “Direct Assignment
Statements”).

2.2. Operator Field

The operator field specifies the action to be performed by the statement. This field can contain an instruction, an
assembler directive, or a macro call.

When the operator is an instruction, VAX MACRO generates the binary code for that instruction in the object
module. The binary codes are listed in Appendix D, Permanent Symbol Table Defined for Use with VAX
MACRO; the instruction set is described in Chapter 9, VAX Instruction Set. When the operator is a directive,
VAXMACRO performs certain control actions or processing operations during source program assembly. The
assembler directives are described in Chapter 6, VAX MACRO Assembler Directives. When the operator is a macro
call, VAXMACRO expands the macro. Macro calls are described in Chapter 4, Macro Arguments and String
Operators and in Chapter 6, VAX MACRO Assembler Directives (MACRO directive).

6 VSI Confidential, NDA Required

VAX MACRO Source
Statement Format

Use either a space or a tab character to terminate the operator field;however, the tab is the recommended termination
character.

2.3. Operand Field

The operand field can contain operands for instructions or arguments for either assembler directives or macro calls.

Operands for instructions identify the memory locations or the registers that are used by the machine operation.
These operands specify the addressing mode for the instruction, as described in Chapter 5, VAX MACRO
Addressing Modes. The operand field for a specific instruction must contain the number of operands required by
that instruction. See Chapter 9, VAX Instruction Set for descriptions of the instructions and their operands.

Arguments for a directive must meet the format requirements of that directive. Chapter 6, VAX MACRO Assembler
Directives describes the directives and the format of their arguments.

Operands for a macro must meet the requirements specified in the macro definition. See the description of
the MACRO directive in Chapter 6, VAX MACRO Assembler Directives.

If two or more operands are specified, they must be separated by commas (,). VAX MACRO also allows a space
or tab to be used as a separator for arguments to any directive that does not accept expressions (see Section 3.5,
“Terms and Expressions” for a discussion of expressions). However, a comma is required to separate operands for
instructions and for directives that accept expressions as arguments.

The semicolon that starts the comment field terminates the operand field. If aline does not have a comment field,
the operand field is terminated by the end of the line.

2.4. Comment Field

The comment field contains text that explains the function of the statement. Every line of code should have
a comment. Comments do not affect assembly processing or program execution. You can cause user-written
messages to be displayed during assembly by the .ERROR, .PRINT, and .WARN directives (see descriptions in
Chapter 6, VAX MACRO Assembler Directives).

The comment field must be preceded by a semicolon; it is terminated by the end of the line. The comment field
can contain any printable ASCII character (see Appendix A, ASCII Character Set).

To continue a lengthy comment to the next line, write the comment on the next line and precede it with another
semicolon. If a comment does not fit on one line, it can be continued on the next, but the continuation must be
preceded by another semicolon. A comment can appear on a line by itself.

Write the text of a comment to convey the meaning rather than the action of the statement. The instruction MOVAL
BUF_PTR 1,R7, for example, should have a comment such as “Get pointer to first buffer,” not “Move address
of BUF PTR 1 to R7.”

For example:

MOVAL STRING DES 1, R0 ; Get address of string

; descri ptor
MOVZW. (RO),R1 ; CGet length of string
MOVL 4(RO), RO ; CGet address of string

VSI Confidential, NDA Required 7

VAX MACRO Source
Statement Format

VSI Confidential, NDA Required

Components of MACRO
Source Statements

Chapter 3. Components of MACRO
Source Statements

This chapter describes the following components of VAX MACRO source statements:

* Character set

* Numbers

* Symbols

* Local labels

* Terms and expressions

* Unary and binary operators

* Direct assignment statements

¢ Current location counter

3.1. Character Set

The following characters can be used in VAX MACRO source statements:

» The letters of the alphabet, A to Z, uppercase and lowercase. Note that the assembler considers lowercase letters
equivalent to uppercase letters except when they appear in ASCII strings.

* The digits 0 to 9.

» The special characters listed in Table 3.1, “Special Characters Used in VAX MACRO Statements”.

Table 3.1. Special Characters Used in VAX MACRO Statements

Character Character Name Function
_ Underscore Character in symbol names
$ Dollar sign Character in symbol names
Period Character in symbol names, current
location counter, and decimal point
Colon Label terminator
= Equal sign Direct assignment operator
and macro keyword argument
terminator
Tab Field terminator
Space Field terminator
Number sign Immediate addressing mode
indicator
@ At sign Deferred addressing mode indicator
and arithmetic shift operator
s Comma Field, operand, and item separator
; Semicolon Comment field indicator

VSI Confidential, NDA Required

Components of MACRO
Source Statements

Character Character Name Function

+ Plus sign Autoincrement addressing mode
indicator, unary plus operator, and
arithmetic addition operator

- Minus sign or hyphen Autodecrement addressing mode
indicator, unary minus operator,
arithmetic subtraction operator, and
line continuation indicator

* Asterisk Arithmetic multiplication operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation point Logical inclusive OR operator point

\ Backslash Logical exclusive OR and numeric
conversion indicator in macro
arguments

" Circumflex Unary operators and macro
argument delimiter

[] Square brackets Index addressing mode and repeat
count indicators

O Parentheses Register deferred addressing mode
indicators

< Angle brackets Argument or expression grouping
delimiters

? Question mark Created local label indicator in
macro arguments

' Apostrophe Macro argument concatenation
indicator

% Percent sign Macro string operators

Table 3.2, “Separating Characters in VAX MACRO Statements” defines the separating characters used in VAX

MACRO.

Table 3.2. Separating Characters in VAX MACRO Statements

Character Character Name Usage

(space) Space or tab Separator between statement fields.
Spaces within expressions are

(tab) ignored.

>

Comma

Separator between symbolic

arguments within the operand field.
Multiple expressions in the operand
field must be separated by commas.

3.2. Numbers

Numbers can be integers, floating-point numbers, or packed decimal strings.

3.2.1. Integers

Integers can be used in any expression including expressions in operands and in direct assignment statements (
Section 3.5, “Terms and Expressions” describes expressions).

10 VSI Confidential, NDA Required

Components of MACRO
Source Statements

Format

snn

S

An optional sign: plus sign (+) for positive numbers(the default) or minus sign (-) for negative numbers.
nn

A string of numeric characters that is legal for the current radix.

VAX MACRO interprets all integers in the source program as decimal unless the number is preceded by a radix
control operator (see Section 3.6.1, “Radix Control Operators”).

Integers must be in the range of -2,147,483,648 to +2,147,483,647 for signed data or in the range of 0 to
4,294,967,295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX MACRO translates such numbers into two's
complement form. In positive numbers, the plus sign is optional.

3.2.2. Floating-Point Numbers

A floating-point number can be wused in the .F FLOATING(FLOAT), .D FLOATING
(.DOUBLE), .G_FLOATING, and .H FLOATING directives (described in Chapter 6, VAX MACRO Assembler
Directives) or as an operand in a floating-point instruction. A floating-point number cannot be used in an expression
or with a unary or binary operator except the unary plus, unary minus, and unary floating-point operator, “F
(F_FLOATING). Section 3.6, “Unary Operators” and Section 3.7, “Binary Operators” describe unary and binary
operators.

A floating-point number can be specified with or without an exponent.

Formats

Floating-point number without exponent:

snn
snn. nn
snn.

Floating-point number with exponent:

snnEsnn
snn. nnEsnn
snn. Esnn

S

An optional sign.

nn

A string of decimal digits in the range of 0 to 9.

The decimal point can appear anywhere to the right of the first digit. Note that a floating-point number cannot start
with a decimal point because VAXMACRO will treat the number as a user-defined symbol (see Section 3.3.2,
“User-Defined Symbols and Macro Names”).

Floating-point numbers can be single-precision (32-bit), double-precision(64-bit), or extended-precision (128-bit)
quantities. The degree of precision is 7 digits for single-precision numbers, 16 digits for double-precision numbers,
and 33 digits for extended-precision numbers.

VSI Confidential, NDA Required 11

Components of MACRO
Source Statements

The magnitude of a nonzero floating-point number cannot be smaller than approximately 0.29E-38 or greater than
approximately 1.7E38.

Single-precision floating-point numbers can be rounded (by default) or truncated. The .ENABLE and .DISABLE
directives (described in Chapter 6, VAX MACRO Assembler Directives) control whether single-precision floating-
point numbers are rounded or truncated. Double-precision and extended-precision floating-point numbers are
always rounded.

Section 8.3.6, “F floating”, Section 8.3.7, “D_floating”, Section 8.3.8, “G_floating”, and Section 8.3.9,
“H_floating”describe the internal format of floating-point numbers.

3.2.3. Packed Decimal Strings

A packed decimal string can be used only in the .PACKED directive (describedin Chapter 6, VAX MACRO
Assembler Directives).

Format

snn

S

An optional sign.

nn

A string containing up to 31 decimal digits in the range of 0 to 9.

A packed decimal string cannot have a decimal point or an exponent.

Section 8.3.14, “Packed Decimal String” describes the internal format of packed decimal strings.

3.3. Symbols

Three types of symbols can be used in VAX MACRO source programs: permanent symbols, user-defined symbols,
and macro names.

3.3.1. Permanent Symbols

Permanent symbols consist of instruction mnemonics (see Appendix D, Permanent Symbol Table Defined for Use
with VAX MACRO), VAX MACRO directives (see Chapter 6, VAX MACRO Assembler Directives), and register
names. You need not define instruction mnemonics and directives before you use them in the operator field of a
VAX MACRO source statement. Also, you need not define register names before using them in the addressing
modes (see Chapter 5, VAX MACRO Addressing Modes).

Register names cannot be redefined; that is, a symbol that you define cannot be one of the register names contained
in the following list. You can express the 16 general registers of the VAX processor in a source program only
as follows:

Register Name Processor Register
RO General register 0
R1 General register 1
R2 General register 2

12 VSI Confidential, NDA Required

Components of MACRO
Source Statements

Register Name Processor Register
R11 General register 11
R12 or AP General register 12 or argument pointer. If you

use R12 as an argument pointer, the name AP is
recommended; if you use R12 as a general register, the
name R12 is recommended.

FP Frame pointer
Sp Stack pointer
PC Program counter

Note that the symbols IV and DV are also permanent symbols and cannot be redefined. These symbols are
used in the register mask to set the integer overflow trap (IV) and the decimal string overflow trap (DV). See
Section 3.6.2.2, “Register Mask Operator” for an explanation of their uses.

3.3.2. User-Defined Symbols and Macro Names

You can use symbols that you define as labels or you can equate them to a specific value by a direct assignment
statement (see Section 3.8, “Direct Assignment Statements”).These symbols can also be used in any expression
(see Section 3.5, “Terms and Expressions”).

The following rules govern the creation of user-defined symbols:

* User-defined symbols can be composed of alphanumeric characters,underscores (), dollar signs ($), and periods
(). Any other character terminates the symbol.

* The first character of a symbol must not be a number.
* The symbol must be no more than 31 characters long and must be unique.
In addition, by VSI convention:

» The dollar sign ($) is reserved for names defined by VSI. This convention ensures that a user-defined name
(which does not have a dollar sign) will not conflict with a VSI-defined name (which does have a dollar sign).

* Do not use the period (.) in any global symbol name (see Section 3.3.3, “Determining Symbol Values”) because
languages, such as FORTRAN, do not allowperiods in symbol names.

Macro names follow the same rules and conventions as user-defined symbols.(See the description of the MACRO
directive in Chapter 6, VAX MACRO Assembler Directives for more information on macro names.)User-defined
symbols and macro names do not conflict; that is, the same name can be used for a user-defined symbol and a
macro. To avoid confusion, give the symbols and macros that you define different names.

3.3.3. Determining Symbol Values

The value of a symbol depends on its use in the program. VAX MACRO uses a different method to determine the
values of symbols in the operator field than it uses to determine the values of symbols in the operand field.

A symbol in the operator field can be either a permanent symbol or a macro name. VAX MACRO searches for
a symbol definition in the following order:

1. Previously defined macro names
2. User-defined opcode (see the .OPDEF description in Chapter 6, VAX MACRO Assembler Directives)

3. Permanent symbols (instructions and directives)

VSI Confidential, NDA Required 13

Components of MACRO
Source Statements

4. Macro libraries

This search order allows permanent symbols to be redefined as macro names. If a symbol in the operator field is
not defined as a macro or a permanent symbol, the assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or a register name.

User-defined symbols can be either local (internal) symbols or global(external) symbols. Whether symbols are
local or global depends on their use in the source program.

A local symbol can be referenced only in the module in which it is defined. If local symbols with the same names are
defined in different modules, the symbols are completely independent. The definition of a global symbol,however,
can be referenced from any module in the program.

VAX MACRO treats all symbols that you define as local unless you explicitly declared them to be global by doing
any one of the following:

» Use the double colon (::) in defining a label (see Section 2.1, “Label Field”).

* Use the double equal sign (==) in a direct assignment statement (see Section 3.8, “Direct Assignment
Statements™).

» Use the .GLOBAL, .ENTRY, or WEAK directive (see Chapter 6, VAX MACRO Assembler Directives).

When your code references a symbol within the module in which it is defined, VAX MACRO considers the
reference internal. When your code references a symbol within a module in which it is not defined, VAX MACRO
considers the reference external (that is, the symbol is defined externally in another module). You can use
the .DISABLE directive to make references to symbols not defined in the current module illegal. In this case, you
must use the .EXTERNAL directive to specify that the reference is an external reference. See Chapter 6, VAX
MACRO Assembler Directives for descriptions of the .DISABLE and .EXTERNAL directives.

3.4. Local Labels

Use local labels to identify addresses within a block of source code.

Format

nn$

nn

A decimal integer in the range of 1 to 65535.

Use local labels in the same way as you use the symbol labels that you define,with the following differences:

» Local labels cannot be referenced outside the block of source code in which they appear.

* Local labels can be reused in another block of source code.

» Local labels do not appear in the symbol tables and thus cannot be accessed by the VAX Symbolic Debugger.
* Local labels cannot be used in the .END directive (see Chapter 6, VAX MACRO Assembler Directives).

By convention, local labels are positioned like statement labels:left-justified in the source text. Although local
labels can appear in the program in any order, by convention, the local labels in any block of source code should
be in numeric order.

Local labels are useful as branch addresses when you use the address only within the block. You can use local
labels to distinguish between addresses that are referenced only in a small block of code and addresses that are
referenced elsewhere in the module. A disadvantage of local labels is that their numeric names cannot provide any

14 VSI Confidential, NDA Required

Components of MACRO
Source Statements

indication of their purpose. Consequently, you should not use local labels to label sequences of statements that are
logically unrelated; user-defined symbols should be used instead.

VSI recommends that users create local labels only in the range of 1$ t029999$ because the assembler
automatically creates local labels in the range of 300008 to 65535$ for use in macros (see Section 4.7, “Created
Local Labels”).

The local label block in which a local label is valid is delimited by thefollowing statements:
* A user-defined label
* A PSECT directive (see Chapter 6, VAX MACRO Assembler Directives)

» The .ENABLE and .DISABLE directives (see Chapter 6, VAX MACRO Assembler Directives), which can extend
a local label block beyond user-defined labels and .PSECT directives

A local label block is usually delimited by two user-defined labels. However,the .ENABLE LOCAL BLOCK
directive starts a local block that is terminated only by one of the following:

* Asecond ENABLE LOCAL BLOCK directive
» A DISABLE LOCAL BLOCK directive followed by a user-defined label or a .PSECT directive

Although local label blocks can extend from one program section to another,VSI recommends that local labels
in one program section not be referenced from another program section. User-defined symbols should be used
instead.

Local labels can be preserved for future reference with the context of the program section in which they are defined;
see the descriptions of the .SAVE PSECT [LOCAL BLOCK] directive and the . RESTORE PSECT directive in
Chapter 6, VAX MACRO Assembler Directives.

An example showing the use of local labels follows:

RPSUB: MOVL AMOUNT, RO ; Start |ocal |abel block
108%: SUBL2 DELTA, RO ; Define local |abel 10%
BGTR 10% ; Conditional branch to |ocal |abel
ADDL2 DELTA, RO ; Executed when RO not > 0O
COwVP; MOVL MAX, R1 End previous |ocal |abel
CLRL R2 bl ock and start new one
10%: CMVPL RO, R1 Defi ne new | ocal |abel 10$
BGTR 203 Condi tional branch to |ocal | abel
SUBL I NCR, RO Execut ed when RO not > R1
I NCL R2 .o
BRB 10% Uncondi ti onal branch to |ocal | abel
20%: MOVL R2, COUNT Define | ocal |abel
BRW TEST Uncondi ti onal branch to user-defined
| abel
. ENABLE LOCAL_BLOCK Start local |abel block that
ENTR1: POPR #"M<RO, R1, R2> will not be term nated
ADDL3 RO, R1, R3 by a user-defined | abel
BRB 10% Branch to |l ocal |abel that appears
after a user-defined | abel
ENTR2: SUBL2 R2, R3 Does not start a new | ocal |abel block
10%: SUBL2 R2, R3 Define | ocal |abel
BGTR 203 Condi tional branch to |ocal | abel
I NCL RO Executed when R2 not > R3
BRB NEXT Uncondi ti onal branch to user-defined
| abel
20%: DECL RO Define | ocal | abel

VSI Confidential, NDA Required

Components of MACRO
Source Statements

. DI SABLE LOCAL_BLOCK ; Directive followed by user-defined
NEXT: CLRL R4 ; | abel term nates | ocal |abel bl ock

3.5. Terms and Expressions

A term can be any of the following:

* A number

* A symbol

* The current location counter (see Section 3.9, “Current Location Counter”)

A textual operator followed by text (see Section 3.6.2, “Textual Operators™)

* Any of the previously noted items preceded by a unary operator (see Section 3.6, “Unary Operators”)

VAX MACRO evaluates terms as longword (4-byte) values. If you use an undefined symbol as a term, the linker
determines the value of the term. The current location counter (.) has the value of the location counter at the start
of the current operand.

Expressions are combinations of terms joined by binary operators (see Section 3.7, “Binary Operators”) and
evaluated as longword (4-byte) values. VAX MACRO evaluates expressions from left to right with no operator
precedence rules. However, angle brackets (<>) can be used to change the order of evaluation. Any part of an
expression that is enclosed in angle brackets is first evaluated to a single value, which is then used in evaluating
the complete expression. For example, the expressions A*B+C and A* are different. In the first case, A and B are
multiplied and then C added to the product. In the second case, B and C are added and the sum is multiplied by A.
Angle brackets can also be used to apply a unary operator to an entire expression, such as - .

If an arithmetic expression is continued on another line, the listing file will not show the continued line. For
example:

. WORD
<DATAL' $" XFF@B+- 89>

You must use /LIST/SHOW=EXPANSION to show the continuation line.

VAX MACRO considers unary operators part of a term and thus, performs the action indicated by a unary operator
before it performs the action indicated by any binary operator.

Expressions fall into three categories: relocatable, absolute, and external(global), as follows:

* An expression is relocatable if its value is fixed relative to the start of the program section in which it appears.
The current location counter is relocatable in a relocatable program section.

* An expression is absolute if its value is an assembly-time constant. An expression whose terms are all numbers
is absolute. An expression that consists of a relocatable term minus another relocatable term from the same
program section is absolute, since such an expression reduces to an assembly-time constant.

» An expression is external if it contains one or more symbols that are not defined in the current module.

Any type of expression can be used in most MACRO statements, but restrictions are placed on expressions used
in the following:

* .ALIGN alignment directives
* .BLK x storage allocation directives
» _IF and .IIF conditional assembly block directives

* .REPEAT repeat block directives

16 VSI Confidential, NDA Required

Components of MACRO
Source Statements

» .OPDEEF opcode definition directives

.ENTRY entry point directives

.BYTE, .LONG, .WORD, .SIGNED_BYTE, and .SIGNED_WORD directive repetition factors

 Direct assignment statements (see Section 3.8, “Direct Assignment Statements”)

See Chapter 6, VAX MACRO Assembler Directives for descriptions of the directives listed in the preceding list.
Expressions used in these directives and in direct assignment statements can contain only symbols that have been
previously defined in the current module. They cannot contain either external symbols or symbols defined later
in the current module. In addition, the expressions in these directives must be absolute. Expressions in direct

assignment statements can be relocatable.

An example showing the use of expressions follows.

A = 2*100 ; 2*100 is an absol ute expression
.BLKB A+50 ; A+50 is an absol ute expression and
; contai ns no undefined synbol s
LAB: . BLKW A ; LAB is relocatable
HALF = LAB+<A/ 2> ; LAB+<A/ 2> is a relocatable

; expression and contains no

; undefi ned synbol s
LAB2: .BLKB LAB2-LAB ; LAB2-LAB is an absol ute expression

; and contains no undefined synbol s

; but contains the synbol LAB3

; that is defined later in this nodule
LAB3: .WORD TST+LAB+2 ; TST+LAB+2 is an external expression

; because TST is an external synbo

3.6. Unary Operators

A unary operator modifies a term or an expression and indicates an action to be performed on that term or
expression. Expressions modified by unary operators must be enclosed in angle brackets. You can use unary
operators to indicate whether a term or expression is positive or negative. If unary plus or minus is not
specified, the default value is assumed to be plus. In addition, unary operators perform radix conversion, textual
conversion(including ASCII conversion), and numeric control operations, as described in the following sections.
Table 3.3, “Unary Operators” summarizes the unary operators.

Table 3.3. Unary Operators

Unary Operator Operator Name Example Operation

+ Plus sign +A Results in the positive
value of A

- Minus sign -A Results in the negative
(two's complement) value
of A

B Binary ~B11000111 Specifies that 11000111 is
a binary number

"D Decimal D127 Specifies that 127 is a
decimal number

~O Octal ~034 Specifies that 34 is an
octal number

VSI Confidential, NDA Required 17

Components of MACRO
Source Statements

Unary Operator Operator Name Example Operation

"X Hexadecimal ~"XFCF9 Specifies that FCF9 is a
hexadecimal number

A ASCII ~A/ABC/ Produces an ASCII string;

the characters between

the matching delimiters
are converted to ASCII
representation

M Register mask #"M Specifies the registersR3,
R4, and RS in the register
mask

"F Floating-point ~F3.0 Specifies that 3.0 is a
floating-point number

~C Complement ~C24 Produces the one's
complement value 0f24
(decimal)

More than one unary operator can be applied to a single term or to an expression enclosed in angle brackets. For
example:

-+-A

This construct is equivalent to:

<+
<- A>>

3.6.1. Radix Control Operators

VAX MACRO accepts terms or expressions in four different radixes: binary,decimal, octal, and hexadecimal. The
default radix is decimal. Expressions modified by radix control operators must be enclosed in angle brackets.

Formats
Bnn

Dnn

~Onn

AXnn

nn

A string of characters that is legal in the specified radix. The following are the legal characters for each radix:

Format Radix Name Legal Characters
“Bnn Binary Oand 1

“Dnn Decimal 0to9

~Onn Octal 0to7

AXnn Hexadecimal Oto9and Ato F

Radix control operators can be included in the source program anywhere a numeric value is legal. A radix control
operator affects only the term or expression immediately following it, causing that term or expression to be
evaluated in the specified radix.

For example:

18 VSI Confidential, NDA Required

Components of MACRO
Source Statements

.WORD ~B00001101 ; Binary radix

.WORD "D123 ; Decimal radix (default)
.WORD 47 ; Octal radix

.VWORD <A+"(QO13> ; 13 is in octal radix
.LONG "X<F1C3+FFFFF- 20> ; Al nunbers in expression

; are i n hexadeci nal radix

The circumflex (%) cannot be separated from the B, D, O, or X that follows it,but the entire radix control operator
can be separated by spaces and tabs from the term or expression that is to be evaluated in that radix.

The default decimal operator is needed only within an expression that has another radix control operator. In the
following example, “16” is interpreted as a decimal number because it is preceded by the decimal operator"D even
though the “16” is in an expression prefixed by the octal radix control operator.

. LONG ~O
<10000 + 100 + ~D16>

3.6.2. Textual Operators

The textual operators are the ASCII operator (“A) and the register mask operator (“M).

3.6.2.1. ASCII Operator

The ASCII operator converts a string of printable characters to their
8-bit

ASCII values and stores them 1 character to a byte. The string of characters must be enclosed in a pair of matching
delimiters.

The delimiters can be any printable character except the space, tab, or semicolon. Use nonalphanumeric characters
to avoid confusion.

Format

NAstring

string

A delimited ASCII string from 1 to 16 characters long.

The delimited ASCII string must not be larger than the data type of the operand. For example, if the “A operator
occurs in an operand in a Move Word(MOV W) instruction (the data type is a word), the delimited string cannot
be more than 2 characters.

For example:

.QUAD "MA%234/678% ; Cenerates 8 bytes of ASCI| data
MOVL #"A ABCD , RO ; Moves characters ABCD
; into RO right justified with
; "A" in |ow order byte and "D
; i n high-order byte
CvPW #7NA XY/, RO ; Compares X and Y as ASCl |
; characters with contents of | ow
; order 2 bytes of RO
MOVL #"A AB/, RO ; Moves ASCII characters AB into
; RO; "A" in |loworder byte; "B" in
; next; and zero the 2 high-order bytes

3.6.2.2. Register Mask Operator

VSI Confidential, NDA Required 19

Components of MACRO
Source Statements

The register mask operator converts a register name or a list of register names enclosed in angle brackets into
a 1- or 2-byte register mask. The register mask is used by the Push Registers (PUSHR) and Pop Registers
(POPR)instructions and the .ENTRY and .MASK directives (see Chapter 6, VAX MACRO Assembler Directives).
Formats

M eg- nane
AMKr eg- name- 1 i st>

r eg- nane

One of the register names or the DV or IV arithmetic trap-enable specifiers.

reg- name-|i st

A list of register names and the DV and IV arithmetic trap-enable specifiers, separated by commas.

The register mask operator sets a bit in the register mask for every register name or arithmetic trap enable specified
in the list. The bits corresponding to each register name and arithmetic trap-enable specifier follow.

Register Name Arithmetic Trap Enable Bits

RO to R11 0to 11

R12 or AP 12

FP 13

SP v 14
DV 15

When the POPR or PUSHR instruction uses the register mask operator, RO toR11, R12 or AP, FP, and SP can be
specified. You cannot specify the PC register name and the IV and DV arithmetic trap-enable specifiers.

When the .ENTRY or .MASK directive uses the register mask operator, you can specify R2 to R11 and the IV
and DV arithmetic trap-enable specifiers. However, you cannot specify R0, R1, FP, SP, and PC. IV sets the integer
overflow trap, and DV sets the decimal string overflow trap.

The arithmetic trap-enable specifiers are described in Chapter 8, Basic Architecture.
For example:

. ENTRY RT1, "M<R3, R4, R5, R6, | V> ; Save registers R3, R4,
; R5, and R6 and set the
; i nteger overflow trap

PUSHR #"M<RO, R1, R2, R3> ; Save registers RO, Ri1,

; R2, and R3
POPR #"MKRO, R1, R2, R3> ; Restore registers RO, Ri1,
; R2, and R3

3.6.3. Numeric Control Operators

The numeric control operators are the floating-point operator (“F)and the complement operator (*C). The use
of the numeric control operators is explained in Section 3.6.3.1, “Floating-Point Operator” and Section 3.6.3.2,
“Complement Operator”.

3.6.3.1. Floating-Point Operator

20 VSI Confidential, NDA Required

Components of MACRO
Source Statements

The floating-point operator accepts a floating-point number and converts it to its internal representation (a 4-
byte value). This value can be used in any expression. VAX MACRO does not perform floating-point expression
evaluation.

Format

AFliteral

literal

A floating-point number (see Section 3.2.2, “Floating-Point Numbers”).

The floating-point operator is useful because it allows a floating-point number in an instruction that accepts
integers.

For example:

MOVL #"F3.7, RO ; NOTE: the recommended instruction
; to nove this floating-point
MOVF #3.7, RO ; nunber is the MOVF instruction

3.6.3.2. Complement Operator

The complement operator produces the one's complement of the specified value.

Format

ACterm

term

Any term or expression. If an expression is specified, it must be enclosed in angle brackets.
VAX MACRO evaluates the term or expression as a 4-byte value before complementing it.

For example:

. LONG ANCMXFF ; Produces FFFFFFOO (hex)
. LONG NC25 ; Produces conpl enent of
; 25 (dec) which is
; FFFFFFE6 (hex)

3.7. Binary Operators

In contrast to unary operators, binary operators specify actions to be performed on two terms or expressions.
Expressions must be enclosed in angle brackets. Table 3.4, “Binary Operators” summarizes the binary operators.

Table 3.4. Binary Operators

Binary Operator Operator Name Example Operation

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A*B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic shift

& Ampersand A &B Logical AND

! Exclamation point A!B Logical inclusive OR

VSI Confidential, NDA Required

21

Components of MACRO
Source Statements

Binary Operator Operator Name Example Operation
\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be grouped for evaluation by enclosing them in
angle brackets. The enclosed terms and expressions are evaluated first, and remaining operations are performed
from left to right. For example:

. LONG 1+2*3 ; Equal s 9. LONG 1+
<2* 3> ; Equals 7

Note that a 4-byte result is returned from all binary operations. If you use al-byte or 2-byte operand, the result is
the low-order bytes of the 4-byteresult. VAX MACRO displays an error message if the truncation causes a loss
of significance.

The following sections describe the arithmetic shift, logical AND, logical inclusive OR, and logical exclusive OR
operators.

3.7.1. Arithmetic Shift Operator

You use the arithmetic shift operator (@) to perform left and right arithmetic shifts of arithmetic quantities. The
first argument is shifted left or right by the number of bit positions that you specify in the second argument. If the
second argument is positive, the first argument is shifted left; if the second argument is negative, the first argument
is shifted right. When the first argument is shifted left, the low-order bits are set to zero. When the first argument
is shifted right, the high-order bits are set to the value of the original high-order bit (the sign bit).

For example:

.LONG "Bl01@ ; Yields 1010000 (binary)

.LONG 1@ ; Yields 100 (binary)
A=14

.LONG 1@ ; Yields 10000 (binary)

.LONG ~X1234@A ; Yields 123(hex)

MOVL #<~B1100000@ 5>, RO ; Yields 11 (binary)

3.7.2. Logical AND Operator

The logical AND operator (&) takes the logical AND of two operands.

For example:

A = ~B1010
B = ~B1100
.LONG A&B ; Yields 1000 (binary)

3.7.3. Logical Inclusive OR Operator

The logical inclusive OR operator (!) takes the logical inclusive OR of two operands.

For example:

A = "B1010
B = ~B1100
.LONG A'B ; Yields 1110 (binary)

3.7.4. Logical Exclusive OR Operator

The logical exclusive OR operator (\) takes the logical exclusive OR of two arguments.

22 VSI Confidential, NDA Required

Components of MACRO
Source Statements

For example:

A = ~B1010
B = ~B1100
.LONG AB ; Yields 0110 (binary)

3.8. Direct Assignment Statements

A direct assignment statement equates a symbol to a specific value. Unlike a symbol that you use as a label, you
can redefine a symbol defined with a direct assignment statement as many times as you want.

Formats

symbol =expr essi on
synbol = =expressi on
synbol

A user-defined symbol.
expr essi on
An expression that does not contain any undefined symbols (see Section 3.5, “Terms and Expressions™).

The format with a single equal sign (=) defines a local symbol and the format with a double equal sign (==) defines
a global symbol. See Section 3.3.3, “Determining Symbol Values” for more information about local and global
symbols.

The following three syntactic rules apply to direct assignment statements:

* An equal sign (=) or double equal sign (==) must separate the symbol from the expression which defines its
value. Spaces preceding or following the direct assignment operators have no significance in the resulting value.

* Only one symbol can be defined in a single direct assignment statement.
* A direct assignment statement can be followed only by a comment field.
By VSI convention, the symbol in a direct assignment statement is placed in the label field.

For example:

A == ; The synbol '"A is globally
; equated to the value 1

B = A® ; The synbol 'B' is equated
; to 1@ or 20(hex)

C = 127*10 ; The synbol 'C is equated
; to 1270(dec)

D = ~X100/~X10 ; The synbol 'D is equated
; to 10(hex)

3.9. Current Location Counter

The symbol for the current location counter, the period (.),always has the value of the address of the current byte.
VAX MACRO sets the current location counter to zero at the beginning of the assembly and at the beginning of
each new program section.

VSI Confidential, NDA Required 23

Components of MACRO
Source Statements

Every VAX MACRO source statement that allocates memory in the object module increments the value of the
current location counter by the number of bytes allocated. For example, the directive .LONG 0 increments the
current location counter by 4. However, with the exception of the special form described below,a direct assignment
statement does not increase the current location counter because no memory is allocated.

The current location counter can be explicitly set by a special form of the direct assignment statement. The location
counter can be either incremented or decremented. This method of setting the location counter is often useful when
defining data structures. Data storage areas should not be reserved by explicitly setting the location counter; use
the .BLK x directives(see Chapter 6, VAX MACRO Assembler Directives).

Format

. =expressi on

expr essi on

An expression that does not contain any undefined symbols (see Section 3.5, “Terms and Expressions”).

In a relocatable program section, the expression must be relocatable; that is,the expression must be relative to an
address in the current program section. It may be relative to the current location counter.

For example:
= .+440 ; Moves | ocation counter forward

When a program section that you defined in the current module is continued,the current location counter is set to
the last value of the current location counter in that program section.

When you use the current location counter in the operand field of an instruction, the current location counter has
the value of the address of that operand; it does not have the value of the address of the beginning of the instruction.
For this reason, you would not normally use the current location counter as a part of the operand specifier.

24 VSI Confidential, NDA Required

Macro Arguments
and String Operators

Chapter 4. Macro Arguments and
String Operators

By using macros, you can use a single line to insert a sequence of source lines into a program.

A macro definition contains the source lines of the macro. The macro definition can optionally have formal
arguments. These formal arguments can be used throughout the sequence of source lines. Later, the formal
arguments are replaced by the actual arguments in the macro call.

The macro call consists of the macro name optionally followed by actual arguments. The assembler replaces the
line containing the macro call with the source lines in the macro definition. It replaces any occurrences of formal
arguments in the macro definition with the actual arguments specified in the macro call. This process is called
the macro expansion.

The macro directives (described in Chapter 6, VAX MACRO Assembler Directives) provide facilities for performing
eight categories of functions. Table 6.2, “Summary of Macro Directives” lists these categories and the directives
that fall under them.

By default, macro expansions are not printed in the assembly listing. They are printed only when the .SHOW
directive (see description in Chapter 6, VAX MACRO Assembler Directives) or the /SHOW qualifier (described in
the VSI OpenVMS DCL Dictionary) specifies the EXPANSIONS argument. In the examples in this chapter, the
macro expansions are listed as they would appear if . SHOW EXPANSIONS was specified in the source file or /
SHOW=EXPANSIONS was specified in the MACRO command string.

The remainder of this chapter describes macro arguments, created local labels,and the macro string operators.

4.1. Arguments in Macros

Macros have two types of arguments: actual and formal. Actual arguments are the strings given in the macro call
after the name of the macro. Formal arguments are specified by name in the macro definition; that is, after the
macro name in the . MACRO directive. Actual arguments in macro calls and formal arguments in macro definitions
can be separated by commas (,),tabs, or spaces.

The number of actual arguments in the macro call can be less than or equal to the number of formal arguments
in the macro definition. If the number of actual arguments is greater than the number of formal arguments, the
assembler displays an error message.

Formal and actual arguments normally maintain a strict positional relationship. That is, the first actual argument
in a macro call replaces all occurrences of the first formal argument in the macro definition. This strict positional
relationship can be overridden by the use of keyword arguments (see Section 4.3, “Keyword Arguments”).

An example of a macro definition using formal arguments follows:

. MACRO STORE ARGL, AR&, ARG3

.LONG ARGL ; ARGL is first argunent
.VWORD ARG3 ; ARG is third argunent
.BYTE ARR2 ; AR®& is second argunent

.ENDM STORE

The following two examples show possible calls and expansions of the macro defined previously:

STORE 3,2,1 ; Macro call
.LONG 3 ; 3 is first argunent
MORD 1 ; 1 is third argunent
.BYTE 2 ; 2 is second argunent
STORE X, X-VY,Z ; Macro call

VSI Confidential, NDA Required 25

Macro Arguments
and String Operators

#. LONG X ; X is first argunent
WRD Z ; Zis third argunent
BYTE XY ; X-Y is second argunent

4.2. Default Values

Default values are values that are defined in the macro definition. They are used when no value for a formal
argument is specified in the macro call.

Default values are specified in the . MACRO directive as follows:
formal - argunent - nanme = def aul t-val ue
An example of a macro definition specifying default values follows:

. MACRO STORE ARGl=12, AR&Z=0, ARG3=1000

.LONG ARGL
.VWORD ARG3
.BYTE AR&
.ENDM STORE

The following three examples show possible calls and expansions of the macrodefined previously:

STORE ; No arguments supplied
.LONG 12

.WORD 1000

.BYTE O

STORE ,5,X ; Last two argunents supplied
.LONG 12

.WORD X

.BYTE 5

STORE 1 ; First argunent supplied
.LONG 1

.WORD 1000

.BYTE O

4.3. Keyword Arguments

Keyword arguments allow a macro call to specify the arguments in any order. The macro call must specify the
same formal argument names that appear in the macro definition. Keyword arguments are useful when a macro
definition has more formal arguments than need to be specified in the call.

In any one macro call, the arguments should be either all positional arguments or all keyword arguments. When
positional and keyword arguments are combined in a macro, only the positional arguments correspond by position
to the formal arguments; the keyword arguments are not used. If a formal argument corresponds to both a positional
argument and a keyword argument, the argument that appears last in the macro call overrides any other argument
definition for the same argument.

For example, the following macro definition specifies three arguments:

. MACRO STORE ARGl ARR, ARG3

.LONG ARGL
.VWORD ARG3
.BYTE AR

.ENDM STORE

The following macro call specifies keyword arguments:

26 VSI Confidential, NDA Required

Macro Arguments
and String Operators

STORE ARG3=27+5/ 4, AR&R2=5, ARGL=SYMBL

.LONG SYMBL
.WORD 2745/ 4
.BYTE 5

Because the keywords are specified in the macro call, the arguments in themacro call need not be given in the
order they were listed in the macro definition.

4.4. String Arguments

If an actual argument is a string containing characters that the assembler interprets as separators (such as a tab,
space, or comma), the string must been closed by delimiters. String delimiters are usually paired angle brackets
(<).

The assembler also interprets any character after an initial circumflex (") as a delimiter. To pass an angle bracket
as part of a string,you can use the circumflex form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLI ES RUN OQUT?>
<LAST NAME, FIRST NAME>

<LAB: CLRL RA>NYARGUMENT | S
<LAST, FI RST> FOR CALL% ?EXPRESSI ON | S
<5+3>*

<4+2>7?

In the last two examples, the initial circumflex indicates that the percent sign (%) and question mark (?) are the
delimiters. Note that only the left-hand delimiter is preceded by a circumflex.

The assembler interprets a string argument enclosed by delimiters as one actual argument and associates it with
one formal argument. If a string argument that contains separator characters is not enclosed by delimiters, the
assembler interprets it as successive actual arguments and associates it with successive formal arguments.

For example, the following macro call has one formal argument:

. MACRO REPEAT STRNG
.ASClI I/ STRNG

.ASClI I/ STRNG

. ENDM REPEAT

The following two macro calls demonstrate actual arguments with and withoutdelimiters:

REPEAT <A B CD E>
.ASCll /ABCDHWH
.ASCll /ABCDHWH

REPEAT A B CDE
%VACRO E- TOOMNYARGS, Too nany arguments in nacro call

Note that the assembler interpreted the second macro call as having five actual arguments instead of one actual
argument with spaces.

When a macro is called, the assembler removes any delimiters around a string before associating it with the formal
arguments.

If a string contains a semicolon (;), the string must be enclosed by delimiters, or the semicolon will mark the start
of the comment field.

Strings enclosed by delimiters cannot be continued on a new line.

VSI Confidential, NDA Required 27

Macro Arguments
and String Operators

To pass a number containing a radix or unary operator (for example, “XF19),the entire argument must be enclosed
by delimiters, or the assembler will interpret the radix operator as a delimiter.

The following are macro arguments that are enclosed in delimiters because they contain radix operators:

<A XF19>
<~B01100011>
<"F1. 5>

Macros can be nested; that is, a macro definition can contain a call to another macro. If, within a macro definition,
another macro is called and is passed a string argument, you must delimit the argument so that the entire string
is passed to the second macro as one argument.

The following macro definition contains a call to the REPEAT macro defined in an earlier example:

. MACRO CNTRPT LAB1, LAB2, STR_ARG
LAB1: . BYTE LAB2- LABL-1 ; Length of 2*string
REPEAT <STR_ARG> ; Call REPEAT macro
LAB2:
. ENDM CNTRPT

Note that the argument in the call to REPEAT is enclosed in angle brackets even though it does not contain any
separator characters. The argument is thus delimited because it is a formal argument in the definition of the macro
CNTRPT and will be replaced with an actual argument that may contain separator characters.

The following example calls the macro CNTRPT, which in turn calls the macro REPEAT:

CNTRPT ST, FI N, <LEARN YOUR ABC S>

ST: .BYTE FIN-ST-1 ; Length of 2*string
REPEAT <LEARN YOUR ABC S> ; Call REPEAT nmmcro
.ASCI| /LEARN YOUR ABC S/
.ASCI| /LEARN YOUR ABC S/

FI'N:

An alternative method to pass string arguments in nested macros is to enclose the macro argument in nested
delimiters. Do not use delimiters around the macro calls in the macro definitions. Each time you use the delimited
argument in a macro call, the assembler removes the outermost pair of delimiters before associating it with the
formal argument. This method is not recommended because it requires that you know how deeply a macro is nested.

The following macro definition also contains a call to the REPEAT macro:

. MACRO CNTRPT2 LAB1, LAB2, STR_ARG
LAB1: .BYTE LAB2-LABl-1 ; Length of 2*string
REPEAT STR_ARG ; Call REPEAT nmcro
LAB2:
.ENDM CNTRPT2

Note that the argument in the call to REPEAT is not enclosed in angle brackets.
The following example calls the macro CNTRPT2:

CNTRPT2 BEG, TERM <<M ND YOUR P'S AND Q S>>

BEG .BYTE TERM BEG 1 ; Length of 2*string
REPEAT <M ND YOUR P'S AND Q S> ; Call REPEAT macro
.ASCIl /M ND YOUR P'S AND Q S/
.ASCIl /M ND YOUR P'S AND Q S/

TERM

Note that even though the call to REPEAT in the macro definition is not enclosed in delimiters, the call in the
expansion is enclosed because the call to CNTRPT2 contains nested delimiters around the string argument.

28 VSI Confidential, NDA Required

Macro Arguments
and String Operators

4.5. Argument Concatenation

The argument concatenation operator, the apostrophe ('),concatenates a macro argument with some constant text.
Apostrophes can either precede or follow a formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the apostrophe is concatenated with the actual
argument when the macro is expanded. For example,if ARGI is a formal argument associated with the actual
argument TEST,ABCDE *ARG] is expanded to ABCDETEST.

If an apostrophe follows the formal argument name, the actual argument is concatenated with the text that follows
the apostrophe when the macro is expanded. For example, if ARG?2 is a formal argument associated with the actual
argument MOV, ARG2 °L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro expansion.

To concatenate two arguments, separate the two formal arguments with two successive apostrophes. Two
apostrophes are needed because each concatenation operation discards an apostrophe from the expansion.

An example of a macro definition that uses concatenation follows:

. MACRO CONCAT I NST, SI ZE, NUM
TEST' NUM :

I NST' ' SI ZE RO, R NUM
TEST' NUM X:

. ENDM CONCAT

Note that two successive apostrophes are used when concatenating the two formal arguments INST and SIZE.

An example of a macro call and expansion follows:

CONCAT MOV, L, 5
TESTS:

MOVL RO, R5
TEST5X:

4.6. Passing Numeric Values of Symbols

When a symbol is specified as an actual argument, the name of the symbol, not the numeric value of the symbol,
is passed to the macro. The value of the symbol can be passed by inserting a backslash (\) before the symbol in
the macro call. The assembler passes the characters representing the decimal value of the symbol to the macro.
For example, if the symbol COUNT has a value of 2 and the actual argument specified is \COUNT, the assembler
passes the string “2” to the macro; it does not pass the name of the symbol, “COUNT”.

Passing numeric values of symbols is especially useful with the apostrophe (') concatenation operator for creating
new symbols.

An example of a macro definition for passing numeric values of symbols follows:

. MACRO TESTDEF, TESTNO, ENTRYMASK="?"Mc>?
. ENTRY TEST' TESTNO, ENTRYMASK ; Uses arg concatenation
. ENDM TESTDEF

The following example shows a possible call and expansion of the macro defined previously:

COUNT = 2

TESTDEF \ COUNT

. ENTRY TEST2, "Mc> ; Uses arg concatenation
COUNT = COUNT + 1

TESTDEF \ COUNT, A?"MkR3, R4>?

VSI Confidential, NDA Required 29

Macro Arguments
and String Operators

. ENTRY TEST3, "MkR3, R4> ; Uses arg concatenation

4.7. Created Local Labels

Local labels are often very useful in macros. Although you can create a macro definition that specifies local labels
within it, these local labels might be duplicated elsewhere in the local label block possibly causing errors. However,
the assembler can create local labels in the macro expansion that will not conflict with other local labels. These
labels are called created local labels.

Created local labels range from 300008 to 65535$. Each time the assembler creates a new local label, it increments
the numeric part of the label name byl. Consequently, no user-defined local labels should be in the range of
300008to 655358.

A created local label is specified by a question mark (?) in front of the formal argument name. When the
macro is expanded, the assembler creates a new local label if the corresponding actual argument is blank. If the
corresponding actual argument is specified, the assembler substitutes the actual argument for the formal argument.
Created local symbols can be used only in the first 31 formal arguments specified in the MACRO directive.

Created local labels can be associated only with positional actual arguments;created local labels cannot be
associated with keyword actual arguments.

The following example is a macro definition specifying a created local label:

. MACRO POSI Tl VE ARGL, ?L1
TSTL ARGl
BGEQ L1
MEGL ARGL, ARGL

L1: .ENDM POSI Tl VE

The following three calls and expansions of the macro defined previously show both created local labels and a
user-defined local label:

POSI TIVE RO

TSTL RO

BGEQ 30000%

VNEGL RO, RO
30000%:

POSI TI VE COUNT

TSTL CCOUNT

BGEQ 30001%

VNEGL CQUNT, COUNT
30001%:

PCSI TI VE VALUE, 10$

TSTL VALUE

BGEQ 108

MNEGL VALUE, VALUE
108%:

4.8. Macro String Operators

Following are the three macro string operators:
* %LENGTH
* %LOCATE

* %EXTRACT

30 VSI Confidential, NDA Required

Macro Arguments
and String Operators

These operators perform string manipulations on macro arguments and ASCII strings. They can be used only in
macros and repeat blocks. The following sections describe these operators and give their formats and examples
of their use.

4.8.1. %LENGTH Operator

Format
% ENGTH(st ri ng)
string

A macro argument or a delimited string. The string can be delimited by angle brackets or a character preceded by
a circumflex (see Section 4.4, “String Arguments”).

Description

The %LENGTH operator returns the length of a string. For example, the value of%LENGTH(<ABCDE>) is 5.

Examples

The macro definition is as follows:

1. . MACRO CHK_SI ZE ARGL ; Macro checks if ARGL
. | F GREATER_EQUAL %_ENGTH(ARG1) - 3 ; is between 3 and
. I F LESS_THAN 6- Y% ENGTH(ARG1) ; 6 characters | ong

.ERROR ; Argument ARGl is greater than 6 characters

. ENDC ; If nore than 6

.| F_FALSE ; If less than 3
.ERROR ; Argument ARGL is less than 3 characters

. ENDC ; Otherwi se do not hi ng

.ENDM CHK_SI ZE
The macro calls and expansions of the macro defined previously are as follows:

2. CHK _SI ZE A ; Macro checks if A
. | F GREATER_EQUAL 1-3 ; is between 3 and
.| F LESS THAN 6-1 ; 6 characters |ong.
; Shoul d be too

short.
.ERROR ; Argument A is greater than 6 characters
. ENDC ; If nmore than 6
.| F_FALSE ; If less than 3

YWACRO E- GENERR, Generated ERROR. Argunent A is less than 3 characters

. ENDC ; Otherwi se do not hing
3. CHK_SI ZE ABC ; Macro checks if ABC

. | F GREATER_EQUAL 3-3 ; is between 3 and

.1 F LESS _THAN 6-3 ; 6 characters |ong.

; Shoul d be ok.

.ERROR ; Argument ABC is greater than 6 characters

. ENDC ; If nore than 6

. I F_FALSE ; If less than 3

.ERROR ; Argunment ABC is less than 3 characters

. ENDC ; Ot herwi se do nothing

4.8.2. %LOCATE Operator

VSI Confidential, NDA Required 31

Macro Arguments
and String Operators

Format
9% OCATE(stringl,string2 [,synbol])
stringl

A substring. The substring can be written either as a macro argument or as a delimited string. The delimiters can
be either angle brackets or a character preceded by a circumflex.

string2

The string to be searched for the substring. The string can be written either as a macro argument or as a delimited
string. The delimiters can be either angle brackets or a character preceded by a circumflex.

synbol

An optional symbol or decimal number that specifies the position in string2 at which the assembler should start the
search. If this argument is omitted, the assembler starts the search at position zero (the beginning of the string). The
symbol must be an absolute symbol that has been previously defined; the number must be an unsigned decimal
number. Expressions and radix operators are not allowed.

Description

The %LOCATE operator locates a substring within a string. If % LOCATE finds a match of the substring, it returns
the character position of the first character of the match in the string. For example, the value of % LOCATE(<D>,

<ABCDEF>) is 3. Note that the first character position of a string is zero. If %LOCATE does not find a match, it
returns a value equal to the length of the string. For example, the value of%LOCATE(<Z>, <ABCDEF>)is 6.

The %LOCATE operator returns a numeric value that can be used in any expression.

Examples
The macro definition is as follows:

1. . MACRO BIT_NAME ARGL ; Checks if ARGL is in |ist
.1 F EQUAL % OCATE(ARGL, <DELDFWDLTDMOESC>) - 15
; If it is not, print error
.ERROR ; ARGL is an invalid bit name
. ENDC ; If it is, do nothing
. ENDM BI T_NAMVE

The macro calls and expansions of the macro defined previously are as follows:

2. BI T_NAME ESC ; s ESCin list
I F EQUAL 12-15 ; If it is not, print error
.ERROR ; ESCis an invalid bit name
. ENDC ; If it is, do nothing
BI T_NAME FOO ; Not in |ist

.IF EQUAL 15-15
; If it is not, print error
9VACRO E- GENERR, Generated ERROR: FOOis an invalid bit nane

. ENDC ; If it is, do nothing

Note

If the optional symbol is specified, the search begins at the character position of string2 specified by the symbol.
For example, the value of % LOCATE(<ACE>, <SPACE_HOLDER>,5) is 12 because there is no match after
the fifth character position.

32 VSI Confidential, NDA Required

Macro Arguments
and String Operators

4.8.3. %EXTRACT Operator

Format

YEXTRACT(synbol 1, synbol 2, string)
symbol 1

A symbol or decimal number that specifies the starting position of the substring to be extracted. The symbol
must be an absolute symbol that has been previously defined; the number must be an unsigned decimal number.
Expressions and radix operators are not allowed.

symbol 2

A symbol or decimal number that specifies the length of the substring to be extracted. The symbol must be an
absolute symbol that has been previously defined; the number must be an unsigned decimal number. Expressions
and radix operators are not allowed.

string

A macro argument or a delimited string. The string can be delimited by angle brackets or a character preceded
by a circumflex.

Description

The %EXTRACT operator extracts a substring from a string. It returns the substring that begins at the specified
position and is of the specified length. For example, the value of %EXTRACT(2,3, <ABCDEF>) is CDE. Note
that the first character in a string is in position zero.

Examples
The macro definition is as follows:

1. . MACRO RESERVE ARGL
XX = % OCATE(<=>, ARGl)
I F EQUAL XX- %.ENGTH(ARGL)
. WARN ; Incorrect format for nacro call - ARGL
.MEXIT
. ENDC

YEXTRACT(0, XX, ARGL) : :

XX = XX+1
. BLKB YEXTRACT(XX, 3, ARGL)
. ENDM RESERVE

The macro calls and expansions of the macro defined previously are as follows:
2. RESERVE FOOBAR
XX = 6
.IF EQUAL XX-6

WVACRO W GENVRN, GCenerated WARNING I ncorrect format for macro call -
FOOBAR

CMEXIT

3. RESERVE LOCATI ON=12

I F EQUAL XX-11
. WARN ; Incorrect format for macro call - LOCATI ON=12

VSI Confidential, NDA Required 33

Macro Arguments
and String Operators

CNVEXIT
. ENDC
LOCATI ON: :
XX = XX+1
.BLKB 12
Note

If the starting position specified is equal to or greater than the length of the string, or if the length specified is zero,
%EXTRACT returns a null string (a string of zero characters).

34 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

Chapter 5. VAX MACRO Addressing
Modes

This section summarizes the VAX addressing modes and contains examples of VAXMACRO statements that
use these addressing modes. Table 5.1, “Addressing Modes” summarizes the addressing modes.(Chapter 8, Basic
Architecture describes the addressing mode formats in detail.)

The following are the four types of addressing modes:
* General register

* Program counter (PC)

* Index

* Branch

Although index mode is a general register mode, it is considered separate because it can be used only in
combination with another type of mode.

5.1. General Register Modes

The general register modes use registers RO to R12, AP (the same as R12), FP,and SP.
The following are the eight general register modes:

* Register

* Register deferred

* Autoincrement

* Autoincrement deferred

* Autodecrement

* Displacement

* Displacement deferred

e Literal

Table 5.1. Addressing Modes

Type Addressing Format Hex Value Description Can Be
Mode Indexed?
General register |Register Rn 5 Register contains | No
the operand.

Key:

Rn—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3, “Index
Mode”).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

VSI Confidential, NDA Required 35

VAX MACRO Addressing Modes

Type Addressing Format Hex Value Description Can Be
Mode Indexed?
Register deferred | (Rn) 6 Register contains | Yes
the address of the
operand.
Autoincrement | (Rn)+ 8 Register contains | Yes

the address of
the operand,;

the processor
increments the
register contents

by the size of

the operand data

type.
Autoincrement |@(Rn)+ 9 Register contains | Yes
deferred the address of the

operand address;
the processor
increments the
register contents
by 4.

Autodecrement |-(Rn) 7 The processor Yes
decrements the
register contents
by the size of
the operand data
type;the register
then contains the
address of the
operand.

Displacement dis(Rn) The sum of the | Yes
A contents of the
B~dis(Rn) register and the
displacement
is the address
of the operand;
B”, WA, and
L" respectively
indicate byte,
word,and
longword
displacement.

WAdis(Rn)

L~dis(Rn)

Displacement @dis(Rn) The sum of the | Yes
deferred B contents of the
@B"dis(Rn) register and the

D displacement is

Key:

Rn—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3, “Index
Mode”).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

36 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

Type

Addressing
Mode

Format

Hex Value

Description

Can Be
Indexed?

@Wdis(Rn)

@L"dis(Rn)

F

the address of the
operand address;
B*, W”, and

L* respectively
indicate, byte,
word, and
longword
displacement.

Literal

#literal

S”#literal

0-3

The literal
specified is the
operand; the
literal is stored as
a short literal.

No

Program counter

Relative

address

B~ address

W"address

L address

The address
specified is the
address of the
operand; the
address is stored
as a displacement
from the PC;
B*, WA, and

L" respectively
indicate
byte,word,

and longword
displacement.

Yes

Relative deferred

(@address
(@B"address
@W"address

@L"address

The address
specified is
the address of
the operand
address; the
address specified
is stored as a
displacement
from the PC;
B*, W*, and
L* indicate
byte, word,
and longword
displacement
respectively.

Yes

Absolute

(@#address

The address
specified is the
address of the
operand; the

Yes

Key:

Rn—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3, “Index

Mode”).

dis—An expression specifying a displacement.
address—An expression specifying an address.
literal—An expression, an integer constant, or a floating-point constant.

VSI Confidential, NDA Required

37

VAX MACRO Addressing Modes

Type Addressing Format Hex Value Description Can Be
Mode Indexed?

address specified
is stored as an
absolute virtual
address, not as a

displacement.
Immediate #literal The literal No
8 specified is the
1Mliteral Operand; the

literal is stored
as a byte, word,
longword, or
quadword.

General G”address — The address Yes
specified is

the address of
the operand;

if the address

is defined as
relocatable, the
linker stores
the address as

a displacement
from the PC; if
the address is
defined as an
absolute virtual
address, the
linker stores the
address as an
absolute value.

Index Index base-mode[Rx] |4 The base-mode |No
specifies the base
address and the
register specifies
the index; the
sum of the base
address and the
product of the
contents of Rx
and the size

of the operand
data type is the
address of the
operand; base
mode can be any

Key:

Rn—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3, “Index
Mode”).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

38 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

Type Addressing Format Hex Value Description Can Be
Mode Indexed?

addressing mode
except register,
immediate,
literal, index, or
branch.

Branch Branch address — The address No
specified is the
operand;this
address is stored
as a displacement
from the PC;
branch mode

can only be used
with the branch
instructions.

Key:

Rn—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rn.
Rx—Any general register R0 to R12. Note that the AP,FP, or SP register can be used in place of Rx. Rx
cannot be the same as the Rn specified in the base-mode for certain base modes (see Section 5.3, “Index
Mode”).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

5.1.1. Register Mode

In register mode, the operand is the contents of the specified register,except in the following cases:

* For quadword, D_floating, G_floating, or variable-bit field operands, the operand is the contents of register n
concatenated with the contents of register n+1.

» For octaword and H_floating operands, the operand is the contents of register n concatenated with the contents
of registers n+1, n+2, and n+3.

In each of these cases, the least significant bytes of the operand are in register n and the most significant bytes
are in the highest register used,either n+1 or n+3.

The results of the operation are unpredictable if you use the PC in register mode or if you use a large data type
that extends the operand into the PC.

Formats
Rn

AP

FP

SP

n

A number in the range 0 to 12.

Example

CLRB RO ; Clear |lowest byte of RO

VSI Confidential, NDA Required 39

VAX MACRO Addressing Modes

CLRQ R1 ; Clear RL and R2
TSTW R10 ;. Test |ower word of RI10
| NCL R4 : Add 1 to R4

5.1.2. Register Deferred Mode

In register deferred mode, the register contains the address of the operand. Register deferred mode can be used
with index mode (see Section 5.3, “Index Mode™).

Formats
(Rn)

(AP)

(FP)

(SP)

n

A number in the range 0 to 12.

Example
MOVAL LDATA, R3 ; Move address of LDATA to R3
CvPL (R3), RO ; Conpare value at LDATA to RO
BEQL 10% ; If they are the same, ignore
CLRL (R3) ; Clear |ongword at LDATA

10$: MOVL (SP), R1 ; Copy top itemof stack into Rl
MOVZBL (AP), R4 ; Get nunber of arguments in call

5.1.3. Autoincrement Mode

In autoincrement mode, the register contains the address of the operand. After evaluating the operand address
contained in the register, the process or increments that address by the size of the operand data type. The process
or increments the contents of the register by 1, 2, 4, 8, or 16 for a byte, word,longword, quadword, or octaword
operand, respectively.

Autoincrement mode can be used with index mode (see Section 5.3, “Index Mode”), but the index register cannot
be the same as the register specified in autoincrement mode.

Formats

(Rn) +
(AP) +
(FP) +
(SP) +

n

A number in the range 0 to 12.

Example

MOVAL TABLE, R1L ; Get address of TABLE.

CLRQ (R1) + ; Clear first and second | ongwords
CLRL (R1) + ; and third | ongword i n TABLE;

; | eave Rl pointing to TABLE+12.

40 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

MOVAB BYTARR, R2 ; Get address of BYTARR

| NCB (R2) + ; Increment first byte of BYTARR
| NCB (R2) + ; and second.

XORL3 (R3)+, (R4) +, (R5) + ; Excl usive-OR the 2 | ongwords

; whose addresses are stored in
; R3 and R4 and store result in
; address contained in R5; then
; add 4 to R3, R4, and R5.

5.1.4. Autoincrement Deferred Mode

In autoincrement deferred mode, the register contains an address that is the address of the operand address (a
pointer to the operand). After evaluating the operand address, the processor increments the contents of the register
by4 (the size in bytes of an address).

Autoincrement deferred mode can be used with index mode (see Section 5.3, “Index Mode”), but the index register
cannot be the same as the register specified in autoincrement deferred mode.

Formats

@Rn) +
@ AP) +

@FP) +
@ SP) +
n

A number in the range 0 to 12.

Example

MOVAL PNTLI S, R2 ; Get address of pointer I|ist.

CLRQ @ R2) + ; Clear quadword pointed to by
; first absolute address in PNTLIS;
; then add 4 to R2.

CLRB @ R2) + ; Clear byte pointed to by second
; absol ute address in PNTLIS
; then add 4 to R2.

MOVL R10, @ RO) + ; Move R10 to | ocation whose address
; is pointed to by RO; then add 4
; to RO.

5.1.5. Autodecrement Mode

In autodecrement mode, the processor decrements the contents of the register by the size of the operand data type;
the register contains the address of the operand. The processor decrements the register by 1, 2, 4, 8, or 16 for
byte,word, longword, quadword, or octaword operands, respectively.

Autodecrement mode can be used with index mode (see Section 5.3, “Index Mode”), but the index register cannot
be the same as the register specified in autodecrement mode.

Formats

-(Rn)

VSI Confidential, NDA Required 41

VAX MACRO Addressing Modes

- (AP)
- (FP)
-(SP)
n

A number in the range 0 to 12.

Example
CLRO -(R1) ; Subtract 8 fromRl and zero
; t he oct aword whose address
; is in RL
MOVZBL R3, - (SP) ; Push the zero-extended | ow byte
; of R3 onto the stack as a
; | ongwor d.
CcvPB R1, - (RO) ; Subtract 1 from RO and conpare

; low byte of RL with byte whose
; address is now in RO.

5.1.6. Displacement Mode

In displacement mode, the contents of the register plus the displacement(sign-extended to a longword) produce
the address of the operand.

Displacement mode can be used with index mode (see Section 5.3, “Index Mode”). If used in displacement mode,
the index register can be the same as the base register.

Formats

di s(Rn)

di s(AP)

di s(FP)

di s(SP)

n

A number in the range 0 to 12.
di s

An expression specifying a displacement; the expression can be preceded by one of the following displacement
length specifiers, which indicate the number of bytes needed to store the displacement:

Displacement Length Specifier Meaning

B” Displacement requires 1 byte.

w”n Displacement requires one word (2 bytes).

L Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the expression, and the value of the expression is known, the assembler
chooses the smallest number of bytes(1, 2, or 4) needed to store the displacement. If no length specifier precedes
the expression, and the value of the expression is unknown, the assembler reserves one word (2 bytes) for the
displacement. Note that if the displacement is either relocatable or defined later in the source program, the
assembler considers it unknown. If the actual displacement does not fit in the memory reserved, the linker displays
an error message.

42 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

Example

MOVAB KEYWORDS, R3 ; Get address of KEYWORDS.

MOVB B QR3), R4 ; CGet byte whose address is 1O
; pl us address of KEYWORDS
; t he di spl acenent is stored
; as a byte.

MOVB BMACCOUNT(R3) , R5 ; CGet byte whose address is
; ACCOUNT pl us address of
; KEYWORDS; the di spl acenent
; is stored as a byte.

CLRW LASTA(RL) ; Clear word whose address
; is STA plus contents of R1;
; t he di spl acenent is stored
; as a | ongword.

MOVL RO, - 2(R2) ; Move RO to address that is -2
; plus the contents of R2; the
; di spl acenent is stored as a
; byt e.

TSTB EXTRN(R3) ; Test the byte whose address
; is EXTRN plus the address
; of KEYWORDS; the displace-
; ment is stored as a word,
; since EXTRN i s undefi ned.

MOVAB 2(R5), RO ; Move <contents of R5> + 2
; to RO.

Note

If the value of the displacement is zero, and no displacement length is specified, the assembler uses register deferred
mode rather than displacement mode.

5.1.7. Displacement Deferred Mode

In displacement deferred mode, the contents of the register plus the displacement (sign-extended to a longword)
produce the address of the operand address (a pointer to the operand).

Displacement deferred mode can be used with index mode (see Section 5.3, “Index Mode™). If used in displacement
deferred mode, the index register can be the same as the base register.

Formats

@i s(Rn)
@i s(AP)
@i s(FP)
@i s(SP)

n
A number in the range 0 to 12.

dis

VSI Confidential, NDA Required 43

VAX MACRO Addressing Modes

An expression specifying a displacement; the expression can be preceded by one of the following displacement
length specifiers, which indicate the number of bytes needed to store the displacement:

Displacement Length Specifier Meaning

B» Displacement requires 1 byte.

W Displacement requires one word (2 bytes).

| A Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the expression, and the value of the expression is known, the assembler
chooses the smallest number of bytes(1, 2, or 4) needed to store the displacement. If no length specifier precedes
the expression, and the value of the expression is unknown, the assembler reserves one word (2 bytes) for the
displacement. Note that if the displacement is either relocatable or defined later in the source program, the
assembler considers it unknown. If the actual displacement does not fit in the memory the assembler has reserved,
the linker displays an error message.

Example
MOVAL ARRPO NT, R6 ; CGet address of array of pointers.
CLRL @6(R6) ; Clear |longword pointed to by

; | ongword whose address is
; <16 + address of ARRPO NT>; the
; di spl acenment is stored as a byte.

MOVL @"OFFS(R6) , @RSOFF(R6) ; Move the longword pointed to
; by | ongword whose address is
; <CFFS + address of ARRPO NT>
; to the address pointed to by
; | ongword whose address is
1 <RSCOFFS + address of ARRPO NT>;
; the first displacenment is
; stored as a byte; the second
; di spl acement is stored as a word.

CLRW @B4(R2) ; Clear word pointed to by
; <l ongword at 84 + contents of R2>;
; t he assenbl er uses byte
; di spl acenent aut omati cally.

5.1.8. Literal Mode

In literal mode, the value of the literal is stored in the addressing mode byte.

Formats

#literal
Srliteral

literal

An expression, an integer constant, or a floating-point constant. The literal must fit in the short literal form. Thatis,
integers must be in the range 0 to 63 and floating-point constants must be one of the 64 values listed in Table 5.2,
“Floating-Point Literals Expressed as Decimal Numbers” and Table 5.3, “Floating-Point Literals Expressed as
Rational Numbers”. Floating-point short literals are stored with a 3-bit exponent and a 3-bit fraction. Table 5.2,
“Floating-Point Literals Expressed as Decimal Numbers” and Table 5.3, “Floating-Point Literals Expressed as
Rational Numbers” also show the value of the exponent and the fraction for each literal. See Section 8.7.8, “Literal
Mode” for information on the format of short literals.

44 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

Table 5.2. Floating-Point Literals Expressed as Decimal Numbers
Exponent |0 1 2 3 4 5 6 7
0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375
1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875
2 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75
3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
4 #8.0 #9.0 10.0 11.0 12.0 13.0 14.0 15.0
5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0
6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0
7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0
Table 5.3. Floating-Point Literals Expressed as Rational Numbers
Exponent |0 1 2 3 4 5 6 7
0 12 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8
2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4
3 4-1/2 5 5-172 6 6-1/2 7 7-1/72
4 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120
Example
MOVL #1, RO ; ROis set to 1; the 1 is stored

; in the instruction as a short

; literal.
MOVB SM#CR R1 ; The low byte of Rl is set

; to the value CR

; CRis stored in the instruction

; as a short literal.

; If CRis not in range 0-63,

; the Iinker produces a

; truncation error.
MOVF #0. 625, R6 ; R6 is set to the floating-point

; value 0.625; it is stored

; in the floating-point short

; l[iteral form
Notes

1. When you use the #literal format, the assembler chooses whether to use literal mode or immediate mode (see
Section 5.2.4, “Immediate Mode”). The assembler uses immediate mode if any of the following conditions is

satisfied:

¢ The value of the literal does not fit in the short literal form.

 The literal is a relocatable or external expression (see Section 3.5, “Terms and Expressions”).

VSI Confidential, NDA Required

45

VAX MACRO Addressing Modes

* The literal is an expression that contains undefined symbols.

The difference between immediate mode and literal mode is the amount ofstorage that it takes to store the literal
in the instruction.

2. The S*literal format forces the assembler to use literal mode.

5.2. Program Counter Modes

The program counter (PC) modes use the PC for a general register. Following are the five program counter modes:

« Relative

Relative deferred
» Absolute

* Immediate

* General

In Section 8.8, “Summary of General Mode Addressing”, Table 8.6, “Program Counter Addressing”is a summary
of PC addressing.

5.2.1. Relative Mode

In relative mode, the address specified is the address of the operand. The assembler stores the address as a
displacement from the PC.

Relative mode can be used with index mode (see Section 5.3, “Index Mode”).

Format
addr ess
addr ess

An expression specifying an address; the expression can be preceded by one of the following displacement length
specifiers, which indicate the number of bytes needed to store the displacement.

Displacement Length Specifier Meaning

B" Displacement requires 1 byte.

w~n Displacement requires one word (2 bytes).

LA Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the address expression, and the value of the expression is known,
the assembler chooses the smallest number of bytes (1, 2, or 4) needed to store the displacement. If no length
specifier precedes the address expression, and the value of the expression is unknown,the assembler uses the
default displacement length (see the description of .DEFAULT in Chapter 6, VAX MACRO Assembler Directives).
If the address expression is either defined later in the program or defined in another program section, the assembler
considers the value unknown.

Example

MOVL LABEL, R1 ; CGet longword at LABEL; the
; assembl er uses defaul t
; di spl acenment unl ess LABEL was

46 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

; previously defined in this
; section

CVPL W <DATA+4>, R10 ; Conpare R10 with | ongword at
; address DATA+4; CMPL
; uses a word di spl acenent

5.2.2. Relative Deferred Mode

In relative deferred mode, the address specified is the address of the operand address (a pointer to the operand).
The assembler stores the address specified as a displacement from the PC.

Relative deferred mode can be used with index mode (see Section 5.3, “Index Mode™).

Format
@ddr ess
addr ess

An expression specifying an address; the expression can be preceded by one of the following displacement length
specifiers, which indicate the number of bytes needed to store the displacement:

Displacement Length Specifier Meaning

B” Displacement requires 1 byte.

W~ Displacement requires one word (2 bytes).

| A Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the address expression, and the value of the expression is known,
the assembler chooses the smallest number of bytes (1, 2, or 4) needed to store the displacement. If no length
specifier precedes the address expression, and the value of the expression is unknown,the assembler uses the
default displacement length (see the description of . DEFAULT in Chapter 6, VAX MACRO Assembler Directives).
If the address expression is either defined later in the program or defined in another program section, the assembler
considers the value unknown

Example

CLRL @Y PNTR ; Clear |longword pointed to by
; | ongword at PNTR, the assenbl er
i uses a word di spl acenent

| NCB @Q"NCOUNTS+4 ; Increment byte pointed to by

; | ongword at COUNTS+4; assenbl er
; uses a | ongword di spl acenment

5.2.3. Absolute Mode

In absolute mode, the address specified is the address of the operand. The address is stored as an absolute virtual
address (compare relative mode, where the address is stored as a displacement from the PC).

Absolute mode can be used with index mode (see Section 5.3, “Index Mode”).
Format

@taddr ess

addr ess

VSI Confidential, NDA Required 47

VAX MACRO Addressing Modes

An expression specifying an address.

Example
CLRL @ X1100 ; Clear the contents of location 1100(hex)
CLRB @ACCOUNT ; Clear the contents of |ocation

; ACCOUNT; the address is stored

; absol utely, not as a displacenent
CALLS #3, @tSYS$FAO ; Call the procedure SYS$FAO with

; three argunents on the stack

5.2.4. Immediate Mode

In immediate mode, the literal specified is the operand.

Formats

#literal
| "#literal

literal

An expression, an integer constant, or a floating-point constant.

Example
MOVL #1000, RO ; RO is set to 1000; the operand 1000
; is stored in a | ongword
MOVB #BAR, R1 ; The low byte of RL is set
; to the value of BAR
MOVF #0. 1, R6 ; R6 is set to the floating-point
; value 0.1; it is stored
; as a 4-byte floating-point
; value (it cannot be
; represented as a short literal)
ADDL2 | "#5, RO ; The 5 is stored in a | ongword
; because the I~ forces the
; assenbl er to use i medi ate node
MOVG #0. 2, R6 ; The value 0.2 is converted
; to its G FLOATING representation
MOVG #Pl , R6 ; The value contained in Pl is
; noved to R6; no conversion is
; per f or med
Notes

1. When you use the #literal format, the assembler chooses whether to use literal mode (Section 5.1.8, “Literal
Mode”) or immediate mode. If the literal is an integer from 0 to 63 or a floating-point constant that fits in the
short literal form, the assembler uses literal mode. If the literal is an expression, the assembler uses literal mode
if all the following conditions are met:

48 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

* The expression is absolute.

* The expression contains no undefined symbols.

* The value of the expression fits in the short literal form.
In all other cases, the assembler uses immediate mode.

The difference between immediate mode and literal mode is the amount of storage required to store the literal
in the instruction. The assembler stores an immediate mode literal in a byte, word, or longword depending on
the operand data type.

2. The I"#literal format forces the assembler to use immediate mode.

3. You can specify floating-point numbers two ways: as a numeric value or as a symbol name. The assembler
handles these values in different ways, as follows:

» Numeric values are converted to the appropriate internal floating-point representation.

* Symbols are not converted. The assembler assumes that the values have already been converted to internal
floating-point representation.

Once the assembler obtains the value, it tries to convert the internal representation of the value to a short floating

literal. If conversion fails,the assembler uses immediate mode; if conversion succeeds, the assembler uses short

floating literal mode.

5.2.5. General Mode

In general mode, the address you specify is the address of the operand. The linker converts the addressing mode
to either relative or absolute mode. If the address is relocatable, the linker converts general mode to relative mode.
If the address is absolute, the linker converts general mode to absolute mode. You should use general mode to
write position-independent code when you do not know whether the address is relocatable or absolute. A general
addressing mode operand requires 5 bytes of storage.

You can use general mode with index mode (see Section 5.3, “Index Mode”).

Format
Graddr ess
addr ess

An expression specifying an address.

Example

CLRL G'LABEL 1 ; Clears the longword at LABEL_1
; If LABEL 1 is defined as
; absol ute then general node is
; converted to absolute
; node; if it is defined as
; rel ocatabl e, then general node is
; converted to relative node

CALLS #5, G"SYS$SERVI CE ; Calls procedure SYS$SERVI CE
; with 5 argunents on stack

5.3. Index Mode

VSI Confidential, NDA Required 49

VAX MACRO Addressing Modes

Index mode is a general register mode that can be used only in combination with another mode (the base mode).
The base mode can be any addressing mode except register, immediate, literal, index, or branch. The assembler first
evaluates the base mode to get the base address. To get the operand address,the assembler multiplies the contents
of the index register by the number of bytes of the operand data type, then adds the result to the base address.

Combining index mode with the other addressing modes produces the following addressing modes:
* Register deferred index

* Autoincrement index

» Autoincrement deferred index
* Autodecrement index

* Displacement index

* Displacement deferred index
» Relative index

» Relative deferred index

* Absolute index

* General index

The process of first evaluating the base mode and then adding the index register is the same for each of these modes.

Formats

base- node[Rx]
base- node[AP]
base- node[FP]
base- node[SP]

base- node

Any addressing mode except register,immediate, literal, index, or branch, specifying the base address.
X

A number in the range 0 to 12, specifying the index register.

Table 5.4, “Index Mode Addressing” lists the formats of index mode addressing.

Example

; Regi ster deferred i ndex node

OFFS=20 ; Define OFFS

MOVAB BLI ST, R9 ; Get address of BLIST

MOVL #OFFS, R1 ; Set up index register

CLRB (R9O) [R1] ; Clear byte whose address
; is the address of BLIST
; plus 20*1

CLRQ (R9O) [R1] ; Clear quadword whose

; address is the address

50 VSI Confidential, NDA Required

VAX MACRO Addressing Modes

CLRO (R9)[R1]

; Aut oi ncrenent i ndex npde

CLRW (R9)+[Ri]

of BLIST plus 20*8

Cl ear octaword whose
address is the address
of BLI ST plus 20*16

Cl ear word whose address
i s address of BLIST plus
20*2; R9 now contai ns
address of BLI ST+2

; Autoi ncrenent deferred i ndex node

MOVAL PO NT, R8
MOVL #30, R2
CLRW @ R8) +[R2]

; Displacenment deferred index node

MOVAL ADDARR, R9
MOVL #100, R1
TSTF @0(R9) [R1]

CGet address of PO NT

Set up index register

Cl ear word whose address
is 30*2 plus the address
stored in PO NT; R8 now
contains 4 plus address of
PO NT

Cet address of address array

Set up index register

Test floating-point val ue
whose address is 100*4 pl us
the address stored at

; (ADDARR+40)
Table 5.4. Index Mode Addressing
Mode Format
Register Deferred Index 12 (Rn)[Rx]
Autoincrement Index (Rn)+[Rx]
Autoincrement Deferred Index 2 @(Rn)+[Rx]
Autodecrement Index 2 -(Rn)[Rx]
Displacement Index 3 dis(Rn)[Rx]
Displacement Deferred Index D 4 @dis(Rn)[Rx]
Relative Index 2 address[Rx]
Relative Deferred Index 2 @address[Rx]
Absolute Index > (@#address[Rx]
General Index 2 G”address[Rx]

1Rn—Any general register RO to R12 or the AP, FP, or SP register.

2Rx—Any general register RO to R12 or the AP, FP, or SP register. Rx cannot be the same register as Rn in the autoincrement

index,autoincrement deferred index, and decrement index addressing modes.

3dis—An expression specifying a displacement.

Notes

1. If the base mode alters the contents of its register (autoincrement,autoincrement deferred, and autodecrement),

the index mode cannot specify the same register.

VSI Confidential, NDA Required

51

VAX MACRO Addressing Modes

2. The index register is added to the address after the base mode is completely evaluated. For example, in
autoincrement deferred index mode, the base register contains the address of the operand address. The index
register(times the length of the operand data type) is added to the operand address rather than to the address
stored in the base register.

5.4. Branch Mode

In branch mode, the address is stored as an implied displacement from the PC. This mode can be used only in
branch instructions. The displacement for conditional branch instructions and the BRB instruction is stored in a
byte. The displacement for the BRW instruction is stored in a word (2 bytes). A byte displacement allows a range
of 127 bytes forward and 128 bytes backward. A word displacement allows a range of 32,767 bytes forward and
32,768 bytes backward. The displacement is relative to the updated PC, the byte past the byte or word where the
displacement is stored. See Chapter 9, VAX Instruction Set for more information on the branch instructions.

Format
addr ess
addr ess

An expression that represents an address.

Example

ADDL3 (R1) +, RO, TOTAL ; Total values and set condition
; codes

BLEQ LABEL1 ; Branch to LABEL1 if result is
; | ess than or equal to O

BRW LABEL ; Branch unconditionally to LABEL

52 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Chapter 6. VAX MACRO Assembler
Directives

The general assembler directives provide facilities for performing 11 types of functions. Table 6.1, “Summary of
General Assembler Directives” lists these types of functions and their directives.

The macro directives provide facilities for performing eight categories of functions. Table 6.2, “Summary of Macro
Directives” lists these categories and their associated directives. Chapter 4, Macro Arguments and String Operators
describes macro arguments and string operators.

The remainder of this chapter describes both the general assembler directives and the macro directives, showing
their formats and giving examples of their use. For ease of reference, the directives are presented in alphabetical
order. Appendix C, VAX MACRO Assembler Directives and Language Summary contains a summary of all
assembler directives.

Table 6.1. Summary of General Assembler Directives

Category Directives |
Listing control directives .SHOW (.LIST)

NOSHOW(.NLIST)
TITLE
SUBTITLE (.SBTTL)
IDENT

.PAGE
Message display directives .PRINT

.WARN

.ERROR
Assembler option directives .ENABLE (.ENABL)

DISABLE(.DSABL)

.DEFAULT
Data storage directives .BYTE

.WORD
LONG
.ADDRESS
.QUAD
OCTA
PACKED
ASCII
ASCIC

.ASCID

VSI Confidential, NDA Required 53

VAX MACRO Assembler Directives

Category

Directives |

ASCIZ

F_FLOATING (.FLOAT)
.D_FLOATING (.DOUBLE)
.G_FLOATING
H_FLOATING

SIGNED BYTE

.SIGNED_WORD

Location control directives

ALIGN
EVEN
.ODD
BLKA
BLKB
BLKD
BLKF
BLKG
BLKH
BLKL
BLKO
BLKQ
BLKW

.END

Program sectioning directives

PSECT
.SAVE_PSECT(.SAVE)

RESTORE_PSECT (.RESTORE)

Symbol control directives

.GLOBAL (.GLOBL)
EXTERNAL(.EXTRN)
DEBUG

.WEAK

Routine entry point definition directives

.ENTRY

.TRANSFER

.MASK

Conditional and subconditional assembly block
directives

IF

54 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Category

Directives |

ENDC

IF_FALSE (.IFF)
IF_TRUE (.IFT)
IF_TRUE_FALSE (IFTF)

JIF

Cross-reference directives

.CROSS

.NOCROSS

Instruction generation directives

.OPDEF

.REF1

.REF2

.REF4

.REF8

.REF16

Linker option record directive

.LINK

'The alternate form, if any, is given in parentheses.

Table 6.2. Summary of Macro Directives

Category Directives '
Macro definition directives .MACRO
.ENDM
Macro library directives .LIBRARY
.MCALL
Macro deletion directive .MDELETE
Macro exit directive MEXIT
Argument attribute directives NARG
NCHR
NTYPE
Indefinite repeat block directives IRP
IRPC
Repeat block directives .REPEAT (.REPT)
End range directive .ENDR

!The alternate form, if any, is given in parentheses.

Note

The alternate form of .SUBTITLE is .SBTTL.

VSI Confidential, NDA Required

55

VAX MACRO Assembler Directives

Examples

1. . SUBTI TLE CONDI Tl ONAL ASSEMBLY
This directive causes the assembler to print the following text as the subtitle of the assembly listing:
CONDI TI ONAL ASSEMBLY

It also causes the text to be printed out in the listing's table of contents,along with the source page number
and the line sequence number of the source statement where .SUBTITLE was specified. The table of contents
would have the following format:

2. TABLE OF CONTENTS

1) 5000 ASSEMBLER DIRECTIVES
) 300 MACRO DEFINITIONS

) 2300 DATA TABLES AND INITIALIZATION
(3) 4800 MAIN ROUTINES

4) 2800 CALCULATIONS

“4) 5000 /0 ROUTINES

(5) 1300 CONDITIONAL ASSEMBLY

.ADDRESS

.ADDRESS — Address storage directive

Format

. ADDRESS addr ess- | i st

Parameter

address-1|i st

A list of symbols or expressions, separated by commas (,), which VAX MACRO interprets as addresses. Repetition
factors are not allowed.

Description

.ADDRESS stores successive longwords containing addresses in the object module. VSI recommends that you
use .ADDRESS rather than .LONG for storing address data to provide additional information to the linker. In
shareable images, addresses that you specify with . ADDRESS produce position-independent code.

Example

TABLE: .ADDRESS LAB 4, LAB 3, ROUTTERM ; Reference table

.ALIGN

.ALIGN — Location counter alignment directive

56 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Format

. ALl GNi nt eger [, expr essi on]

. ALl GNkeywor d[, expr essi on]

Parameters
i nt eger

An integer in the range 0 to 9. The location counter is aligned at an address that is the value of 2 raised to the
power of the integer.

keywor d

One of five keywords that specify the alignment boundary. The location counter is aligned to an address that is
the next multiple of the following values:

Keyword Size (in Bytes)
BYTE 270=1
WORD 271 =2
LONG 2M2 =4
QUAD 273 =8

PAGE 279 =512

expr essi on

Specifies the fill value to be stored in each byte. The expression must not contain any undefined symbols and must
be an absolute expression (see Section 3.5, “Terms and Expressions™).

Description

.ALIGN aligns the location counter to the boundary specified by either an integer or a keyword.

Notes

1. The alignment that you specify in .ALIGN cannot exceed the alignment of the program section in which the
alignment is attempted (see the description of .PSECT). For example, if you are using the default program
section alignment (BYTE) and you specify .ALIGN with a word or larger alignment, the assembler displays
an error message. fills the bytes skipped by the location counter (if any) with the value of that expression.
Otherwise, the assembler fills the bytes with zeros.

2. Although most instructions can use byte alignment of data, execution speed is improved by the following

alignments:
Data Length Alignment
Word Word
Longword Longword
Quadword Quadword
Example
.ALIGN BYTE, O ; Byte alignnent--fill with null

.ALIGN WORD

; Word al i gnment

VSI Confidential, NDA Required

57

VAX MACRO Assembler Directives

.ALIGN 3,"A ; Quad alignment--fill with bl anks
.ALI GN PAGE ; Page al i gnnment

ASCI x

.ASCI x — ASCII character storage directives

Description

VAX MACRO has the following four ASCII character storage directives:

Directive Function

ASCIC Counted ASCII string storage

ASCID String-descriptor ASCII string storage
ASCII ASCII string storage

ASCIZ Zero-terminated ASCII string storage

Each directive is followed by a string of characters enclosed in a pair of matching delimiters. The delimiters can
be any printable character except the space or tab character, equal sign (=), semicolon (;),or left angle bracket (<).
The character that you use as the delimiter cannot appear in the string itself. Although you can use alphanumeric
characters as delimiters, use nonalphanumeric characters to avoid confusion.

Any character except the null, carriage-return, and form-feed characters can appear within the string. The assembler
does not convert lowercase alphabetic characters to uppercase.

ASCII character storage directives convert the characters to their 8-bit ASCII value (see Appendix A, ASCII
Character Set) and store them one character to a byte.

Any character, including the null, carriage-return, and form-feed characters,can be represented by an expression
enclosed in angle brackets (<>) outside of the delimiters. You must define the ASCII values of null, carriage-
return, and form-feed with a direct assignment statement. The ASCII character storage directives store the 8-bit
binary value specified by the expression.

ASCII strings can be continued over several lines. Use the hyphen (-) as the line continuation character and delimit
the string on each line at both ends. Note that you can use a different pair of delimiters for each line. For example:

CR=13
LF=10
. AsSCl | / ABC DEFE
. ASCl Z @\ny character can be a delimter@
. ASCl C ? lowercase is not converted to UPPER?
. AsSCl | ? this is a test!?<CR><KEY>(LR\TEXT)!Isn't it?!
. ASCl | \ Angl e Brackets <are part <of> this> string \
. ASCl | / This string is continued / -
\ on the next line \
. ASCl | <CR><KEY>(LF\ TEXT)! this string includes an expression!

<128+CR>? whose value is a 13 plus 1287

.ASCIC

.ASCIC — Counted ASCII string storage directive

58 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Format

.ASCI Cstring

Parameter
string

A delimited ASCII string.

Description

.ASCIC performs the same function as .ASCII, except that . ASCIC inserts a count byte before the string data. The
count byte contains the length of the string in bytes. The length given includes any bytes of nonprintable characters
outside the delimited string but excludes the count byte.

.ASCIC is useful in copying text because the count indicates the length of the text to be copied.

Example
CR=13 ; Direct assignment statenent
; defines CR
. ASCl C #HELLO#<CR> ; This counted ASCI| string
; is equivalent to the
. BYTE 6 ; count followed by
. ASCl | #HELLO#<CR> ; the ASCI| string

.ASCID

.ASCID — String-descriptor ASCII string storage directive

Format

. ASClI Dstring

Parameter

string

A delimited ASCII string.

Description

.ASCID performs the same function as ASCII, except that .ASCID inserts a string descriptor before the string
data. The string descriptor has the following format:

31 M

Infermation Length

Paointser

ZK-0370-GE

VSI Confidential, NDA Required 59

VAX MACRO Assembler Directives

Parameters

| ength

The length of the string (2 bytes).

i nformation

Descriptor information (2 bytes) is always set to 010E.
poi nt er

Position-independent pointer to the string (4 bytes).

String descriptors are used in calling procedures (see the OpenVMS RTL String Manipulation (STR$) Manual).

Example
DESCR1: .ASCID /ARGUMENT FOR CALL/ ; String descriptor
DESCR2: .ASCID /SECOND ARGUMENT/ ; Anot her string
; descri ptor
PUSHAL DESCR1 ; Put address of descriptors
PUSHAL DESCR2 ; on the stack
CALLS #2, STRNG PRCC ; Call procedure

.ASCII

.ASCII — ASCII string storage directive

Format

.ASCI | string

Parameter
string

A delimited ASCII string.
Description

.ASCII stores the ASCII value of each character in the ASCII string or the value of each byte expression in the
next available byte.

Example
CR=13 ; Assignnent statenents
LF=10 ; define CR and LF

. ASCl | "DATE: 17- NOV-1988" ; Delimter is "

. ASCl | | EOF/ <CR><LF> ; Delimter is /

60 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.ASCIZ

.ASCIZ — Zero-terminated ASCII string storage directive

Format

.ASCl Zstring

Parameter

string

A delimited ASCII string.

Description

.ASCIZ performs the same function as .ASCII, except that . ASCIZ appends a null byte as the final character of
the string. When a list or text string is created with an .ASCIZ directive, you need only perform a search for the

null character in the last byte to determine the end of the string.

Example
FF=12
. ASCl Z
. ASCl Z

.BLK x

| N <FF>/ B/

;. Define FF

; 6 characters in string,
; 7 bytes of data
; 3 characters in strings

.BLK x — Block storage allocation directives

Format

. BLKA expr essi
. BLKB expr essi
. BLKD expr essi
. BLKF expr essi
. BLKGexpr essi
. BLKHexpr essi
. BLKL expr essi
. BLKOexpr essi
. BLKQexpr essi

. BLKWexpr essi

on

on

on

on

on

on

on

on

on

on

VSI Confidential, NDA Required

61

VAX MACRO Assembler Directives

Parameter

expr essi on

An expression specifying the amount of storage to be allocated. All the symbols in the expression must be defined
and the expression must be an absolute expression (see Section 3.5, “Terms and Expressions”). If the expression
is omitted, a default value of 1 is assumed.

Description

VAX MACRO has the following 10 block storage directives.

Directive Function

.BLKA Reserves storage for addresses (longwords).

.BLKB Reserves storage for byte data.

.BLKD Reserves storage for double-precision floating-point
data(quadwords).

.BLKF Reserves storage for single-precision floating-point
data(longwords).

.BLKG Reserves storage for G_floating data (quadwords).

.BLKH Reserves storage for H_floating data (octawords).

.BLKL Reserves storage for longword data.

.BLKO Reserves storage for octaword data.

.BLKQ Reserves storage for quadword data.

.BLKW Reserves storage for word data.

Each directive reserves storage for a different data type. The value of the expression determines the number of
data items for which VAX MACRO reserves storage. For example, .BLKL 4 reserves storage for 4 longwords of
data and .BLKB 2 reserves storage for 2 bytes of data.

The total number of bytes reserved is equal to the length of the data type times the value of the expression as
follows:

Directive Number of Bytes Allocated
.BLKB Value of expression
.BLKW 2 value of expression
.BLKA "

.BLKF 4 value of expression
.BLKL "

.BLKD 8 value of expression
.BLKG "

.BLKQ "

.BLKH 16 value of expression
.BLKO "

Example

.BLKB 15 ; Space for 15 bhytes

.BLKO 3 ; Space for 3 octawords (48 bhytes)
. BLKL 1 ; Space for 1 |longword (4 bytes)

62 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

. BLKF <3*4> ; Space for 12 single-precision
; fl oating-point val ues (48 bytes)

.BYTE

.BYTE — Byte storage directive

Format

. BYTE expression-1i st

Parameter

expression-1list

One or more expressions separated by commas (,). Each expression is first evaluated as a longword expression;
then the value of the expression is truncated to 1 byte. The value of each expression should be in the range 0 to
255 for unsigned data or in the range -128 to +127 for signed data.

Optionally, each expression can be followed by a repetition factor delimited by square brackets ([]). An expression
followed by a repetition factor has the following format:

expressi onl[expressi on2]
expressionl

An expression that specifies the value to be stored.
[expressi on2]

An expression that specifies the number of times the value will be repeated. The expression must not contain any
undefined symbols and it must be absolute (see Section 3.5, “Terms and Expressions”). The square brackets are
required.

Description

.BYTE generates successive bytes of binary data in the object module.

Notes

1. The assembler displays an error message if the high-order 3 bytes of the longword expression have a value
other than 0 or “XFFFFFF.

2. At link time, a relocatable expression can result in a value that exceeds1 byte in length. In this case, the linker
issues a truncation diagnostic message for the object module in question. For example:

A .BYTE A ; Relocatable value "A'" wll
; cause linker truncation
; di agnostic if the statenent
; has a virtual address of 256
; or above

3. The .SIGNED_BYTE directive is the same as .BYTE except that the assembler displays a diagnostic message
if a value in the range 128 to 255 is specified. See the description of .SIGNED BYTE for more information.

Example

. BYTE <1024-1000>*2 : Stores a val ue of 48

VSI Confidential, NDA Required 63

VAX MACRO Assembler Directives

.BYTE "XA FIF, 10, 65-<21*3> ; Stores 4 bytes of data
.BYTE O ; Stores 1 byte of data
.BYTE X X+3[5*4],Z ; Stores 22 bytes of data

.CROSS

.CROSS, NOCROSS — Cross-reference directives

Format
. CRCSS|[synbol -1i st]

. NOCROSS [synbol -1 st

Parameter
synbol -1 i st

A list of legal symbol names separated by commas (,).

Description

When you specify the /CROSS_REFERENCE qualifier in the MACRO command, VAXMACRO produces a
cross-reference listing. The .CROSS and .NOCROSS directives control which symbols are included in the cross-
reference listing. The .CROSS and .NOCROSS directives have an effect only if /CROSS REFERENCE was
specified in the MACRO command (see the VSI OpenVMS DCL Dictionary).

By default, the cross-reference listing includes the definition and all the references to every symbol in the module.

You can disable the cross-reference listing for all symbols or for a specified list of symbols by using NOCROSS.
Using .NOCROSS without a symbol list disables the cross-reference listing of all symbols. Any symbol definition
or reference that appears in the code after NOCROSS used without a symbol list and before the next .CROSS
used without a symbol list is excluded from the cross-reference listing. You reenable the cross-reference listing
by using .CROSS without a symbol list.

.NOCROSS with a symbol list disables the cross-reference listing for the listed symbols only. .CROSS with a
symbol list enables or reenables the cross-reference listing of the listed symbols.

Notes

1. The .CROSS directive without a symbol list will not reenable the cross-reference listing of a symbol specified
in .NOCROSS with a symbol list.

2. If the cross-reference listing of all symbols is disabled, .CROSS with a symbol list will have no effect until the
cross-reference listing is reenabled by .CROSS without a symbol list.

Examples
1. . NOCRGSS ; Stop cross-reference
LAB1: MOVL LOC1, LOC2 ; Copy data
. CRCSS ; Reenabl e cross-reference

In this example, the definition of LAB1 and the references to LOC1 and LOC2are not included in the cross-
reference listing.

64 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

2. . NOCRGSS LOC1 ; Do not cross-reference LCC1
LAB2: MOVL LOC1, LOC2 ; Copy data
. CRCSS LOC1 ; Reenabl e cross-reference
; of LCC1

In this example, the definition of LAB2 and the reference to LOC2 are included in the cross-reference, but the
reference to LOC1 is not included in the cross-reference.

.DEBUG

.DEBUG — Debug symbol attribute directive

Format

. DEBUGsynbol - 1i st

Parameter
symbol -1i st

A list of legal symbols separated by commas ().

Description

.DEBUG specifies that the symbols in the list are made known to the VAX Symbolic Debugger. During an
interactive debugging session, you can use these symbols to refer to memory locations or to examine the values
assigned to the symbols.

Note

The assembler adds the symbols in the symbol list to the symbol table in the object module. You need not specify
global symbols in the .DEBUG directive because global symbols are automatically put in the object module's
symbol table. (See the description of .ENABLE for a discussion of how to make information about local symbols
available to the debugger.)

Example
. DEBUG | NPUT, QUTPUT, - ; Make these synmbol s known
LAB 30, LAB 40 ; to the debugger

.DEFAULT

.DEFAULT — Default control directive

Format

. DEFAULT DI SPLACEMENT, keyword

Parameter

keywor d

VSI Confidential, NDA Required 65

VAX MACRO Assembler Directives

One of three keywords—BYTE, WORD, or LONG—indicating the default displacement length.

Description

.DEFAULT determines the default displacement length for the relative and relative deferred addressing modes
(see Section 5.2.1, “Relative Mode” and Section 5.2.2, “Relative Deferred Mode”).

Notes

1. The .DEFAULT directive has no effect on the default displacement for displacement and displacement deferred
addressing modes (see Section 5.1.6, “Displacement Mode” and Section 5.1.7, “Displacement Deferred
Mode”).

2. If there is no .DEFAULT in a source module, the default displacement length for the relative and relative
deferred addressing modes is a longword.

Example
. DEFAULT DI SPLACEMENT, WORD ; WORD is default
MOVL LABEL, R1 ;. Assenbl er uses word
; di spl acenment unl ess
; | abel has been defi ned
. DEFAULT DI SPLACEMENT, LONG ; LONG is default
| NCB @COUNTS+4 ; Assenbl er uses | ongword

; di spl acenment unl ess
; COUNTS has been defi ned

.D_FLOATING

.D_FLOATING, .DOUBLE — Floating-point storage directive

Format

.D FLOATINGIliteral-1ist

.DOUBLE!literal -1ist

Parameter

literal-1ist

A list of floating-point constants (see Section 3.2.2, “Floating-Point Numbers”).The constants cannot contain any
unary or binary operators except unary plus or unary minus.

Description

.D_ FLOATING evaluates the specified floating-point constants and stores the results in the object
module. .D_FLOATING generates 64-bit, double-precision,floating-point data (1 bit of sign, 8 bits of exponent,
and

55 bits

of fraction). See the description of .F FLOATING for information on storing single-precision floating-point
numbers and the descriptions of .G FLOATING and .H FLOATING for descriptions of other floating-point
numbers.

66 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Notes

1. Double-precision floating-point numbers are always rounded. They are not affected by .ENABLE
TRUNCATION.

2. The floating-point constants in the literal list must not be preceded by the floating-point operator (*F).

Example
. D_FLOATI NG 1000, 1. OE3, 1. 0000000E-9 ; Const ant
. DOUBLE 3.1415928, 1.107153423828 ; Li st

.D_FLOATING 5, 10, 15, 0, 0.5

.DISABLE

.DISABLE — Function control directive

Format

. DI SABLE ar gunent - | i st

Parameter

argunent - | i st

One or more of the symbolic arguments listed in Table 6.3, “.ENABLE and .DISABLE Symbolic Arguments”
in the description of . ENABLE. You can use either the long or the short form of the symbolic arguments. If you
specify multiple arguments, separate them by commas (,), spaces, or tabs.

Description

.DISABLE disables the specified assembler functions. See the description of .ENABLE for more information.

Note

The alternate form of .DISABLE is .DSABL.

.ENABLE

.ENABLE — Function control directive

Format

. ENABLE ar gunent - | i st

Parameter

argunent - | i st

One or more of the symbolic arguments listed in Table 6.3, “.ENABLE and .DISABLE Symbolic Arguments”.
You can use either the long form or the short form of the symbolic arguments.

VSI Confidential, NDA Required 67

VAX MACRO Assembler Directives

If you specify multiple arguments, separate them with commas (,),spaces, or tabs.

Table 6.3. ENABLE and .DISABLE Symbolic Arguments

Long Form

Short Form

Default Condition

Function

ABSOLUTE

AMA

Disabled

When ABSOLUTE is
enabled, all the PC relative
addressing modes are
assembled as absolute
addressing modes.

DEBUG

DBG

Disabled

When DEBUG is enabled,
all local symbols are
included in the object
module's symbol table for
use by the debugger.

GLOBAL

GBL

Enabled

When GLOBAL is
enabled, all undefined
symbols are considered
external symbols. When
GLOBAL is disabled,
any undefined symbol
that is not listed in

an .EXTERNAL directive
causes an assembly error.

LOCAL BLOCK

LSB

Disabled

When LOCAL BLOCK
is enabled, the current
local label block is ended
and a new one is started.
When LOCAL BLOCK
is disabled, the current
local label block is ended.
See Section 3.4, “Local
Labels” for a complete
description of local label
blocks.

SUPPRESSION

SUP

Disabled

When SUPPRESSION

is enabled, all symbols
that are defined but not
referred to are not listed
in the symbol table.
When SUPPRESSION is
disabled, all symbols that
are defined are listed in
the symbol table.

TRACEBACK

TBK

Enabled

When TRACEBACK

is enabled, the program
section names and lengths,
module names, and routine
names are included in

the object module for

use by the debugger.
When TRACEBACK is
disabled, VAX MACRO
excludes this information
and, in addition, does not

68

VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Short Form
Long Form

Default Condition

Function

make any local symbol
information available to
the debugger.

TRUNCATION FPT

Disabled

When TRUNCATION
is enabled,single-
precision, floating-point
numbers are truncated.
When TRUNCATION
is disabled, single-
precision floating-point
numbers are rounded.

D floating,G_floating,
and H_floating
numbers are not
affected by .ENABLE
TRUNCATION;they are
always rounded.

VECTOR

Disabled

When VECTOR is
enabled, the assembler
accepts and correctly
handles vector code. If
vector assembly is not
enabled, vector code
produces assembly errors.

Description

.ENABLE enables the specified assembly function. .ENABLE and its negative form, .DISABLE, control the

following assembler functions:

* Creating local label blocks

» Making all local symbols available to the debugger and enabling the traceback feature

* Specifying that undefined symbol references are external references

* Truncating or rounding single-precision floating-point numbers

» Suppressing the listing of symbols that are defined but not referenced

» Specifying that all the PC references are absolute, not relative

Note

The alternate form of . ENABLE is .ENABL.

Example

. ENABLE ABSOLUTE, GLOBAL

. DI SABLE TRUNCATI ON, TRACEBACK ;

Assenbl e rel ati ve address npde

as absol ute address node,

and consi der

undefined references as gl oba

Round fl oati ng- poi nt

numnbers,

and

om t debugging information from

t he object nodul e

VSI Confidential, NDA Required

69

VAX MACRO Assembler Directives

.END

.END — Assembly termination directive

Format

. END[synbol]

Parameter

synbol

The address (called the transfer address) at which program execution is to begin.

Description

.END terminates the source program. No additional text should occur beyond this point in the current source file
or in any additional source files specified in the command line for this assembly. If any additional text does occur,
the assembler ignores it. The additional text does not appear in either the listing file or the object file.

Notes
1. The transfer address must be in a program section that has the EXE attribute(see the description of .PSECT).

2. When an executable image consisting of several object modules is linked,only one object module should be
terminated by an .END directive that specifies a transfer address. All other object modules should be terminated
by .END directives that do not specify a transfer address. If an executable image contains either no transfer
address or more than one transfer address, the linker displays an error message.

3. If the source program contains an unterminated conditional code block when the .END directive is specified,
the assembler displays an error message.

Example
. ENTRY START, O ; Entry mask

; Main program
.END START ; Transfer address

.ENDC

.ENDC — End conditional directive

Format

. ENDC

Description

.ENDC terminates the conditional range started by the .IF directive. See the description of .IF for more information
and examples.

70 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.ENDM

.ENDM — End definition directive

Format

. ENDM[macr o- nane]

Parameter

macr o- name

The name of the macro whose definition is to be terminated. The macro name is optional; if specified, it must match
the name defined in the matching .MACRO directive. The macro name should be specified so that the assembler
can detect any improperly nested macro definitions.

Description

.ENDM terminates the macro definition. See the description of .MACRO for an example of the use of .ENDM.

Note

If .ENDM is encountered outside a macro definition, the assembler displays an error message.

.ENDR

.ENDR — End range directive

Format

. ENDR

Description
.ENDR indicates the end of a repeat range. It must be the final statement of every indefinite repeat block directive

(.IRP and .IRPC) and every repeat block directive (REPEAT). See the description of these directives for examples
of the use of .ENDR.

.ENTRY

.ENTRY — Entry directive

Format

. ENTRY synbol , expr essi on

Parameters

synbol
The symbolic name for the entry point.

expr essi on

VSI Confidential, NDA Required 71

VAX MACRO Assembler Directives

The register save mask for the entry point. The expression must be an absolute expression and must not contain
any undefined symbols.

Description

.ENTRY defines a symbolic name for an entry point and stores a register save mask (2 bytes) at that location.
The symbol is defined as a global symbol with a value equal to the value of the location counter at the .ENTRY
directive. You can use the entry point as the transfer address of the program. Use the register save mask to determine
which registers are saved before the procedure is called. These saved registers are automatically restored when the
procedure returns control to the calling program. See the description of the procedure call instructions in Chapter 9,
VAX Instruction Set.

Notes

1.

The register mask operator (*M) is convenient to use for setting the bits in the register save mask (see
Section 3.6.2.2, “Register Mask Operator™).

. An assembly error occurs if the expression has bits 0, 1, 12, or 13set. These bits correspond to the registers RO,

R1, AP, and FP and are reserved for the CALL interface.

. VSI recommends that you use .ENTRY to define all callable entry points including the transfer address of the

program. Although the following construct also defines an entry point, VSI discourages its use:
synbol :: .WORD expression

Although your program can call a procedure starting with this construct, the entry mask is not checked for any
illegal registers, and the symbol cannot be used in a .MASK directive.

. You should use .ENTRY only for procedures that are called by the CALLS or CALLG instruction. A routine

that is entered by the BSB or JSB instruction should not use .ENTRY because these instructions do not expect
a register save mask. Begin these routines using the following format:

synbol :: first instruction

The first instruction of the routine immediately follows the symbol.

Example

. ENTRY CALC, "MkR2, R3, R7> ;. Procedure starts here.

; Registers R2, R3, and R7
; are preserved by CALL
; and RET instructions

.ERROR

.ERROR — Error directive

Format

. ERROR[expr essi on] ; conment

Parameters

expr essi on

An expression whose value is displayed when .ERROR is encountered during assembly.

72

VSI Confidential, NDA Required

VAX MACRO Assembler Directives

; comment

A comment that is displayed when .ERROR is encountered during assembly. The comment must be preceded by
a semicolon ().

Description

.ERROR causes the assembler to display an error message on the terminal or batch log file and in the listing file
(if there is one).

Notes

1. .ERROR, .WARN, and .PRINT are message display directives. Use them to display information indicating that
a macro call contains an error or an illegal set of conditions.

2. When the assembly is finished, the assembler displays the total number of errors, warnings, information
messages, and the sequence numbers of the lines causing the errors or warnings.

3. If ERROR is included in a macro library, end the comment with a semicolon (;). Otherwise, the librarian will
strip the comment from the directive and it will not be displayed when the macro is called.

4. The line containing the .ERROR directive is not included in the listing file.

5. If the expression has a value of zero, it is not displayed in the error message.

Example

1. . I F DEFI NED LONG_MESS
. | F GREATER 1000- WORK_AREA
. ERROR 25
. ENDC
. ENDC

; Need | arger WORK_AREA;

In this example, if the symbol LONG MESS is defined and if the symbol WORK AREA has a value of 1000
or less, the following error message is displayed:

2. %ACRO E- GENERR, Generated ERROR 25 Need | arger WORK_AREA

.EVEN

.EVEN — Even location counter alignment directive

Format

. EVEN

Description

.EVEN ensures that the current value of the location counter is even by addingl if the current value is odd. If the
current value is already even, no action is taken.

.EXTERNAL

.EXTERNAL — External symbol attribute directive

VSI Confidential, NDA Required 73

VAX MACRO Assembler Directives

Synopsis

. EXTERNAL synbol -1 i st

Parameter

synbol -1 i st

A list of legal symbols, separated by commas (,).

Description

.EXTERNAL indicates that the specified symbols are external; that is, the symbols are defined in another object
module and cannot be defined until link time (see Section 3.3.3, “Determining Symbol Values” for a discussion
of external references).

Notes

1.

If the GLOBAL argument is enabled (see Table 6.3, “. ENABLE and .DISABLE Symbolic Arguments”),
all unresolved references will be marked as global and external. If GLOBAL is enabled, you need not
specify .EXTERNAL. If GLOBAL is disabled, you must explicitly specify .EXTERNAL to declare any
symbols that are defined externally but are referred to in the current module.

. If GLOBAL is disabled and the assembler finds symbols that are neither defined in the current module nor

listed in a .EXTERNAL directive, the assembler displays an error message.

. Note that if your program does not reference, in a relocatable program section, symbols that are declared in the

absolute program section (ABS), the unreferenced symbols are filtered out by the assembler and will not be
included in the object file. This filtering out will occur even if the symbols are declared global or external.

If you want to be sure that a symbol will be included even if it is not referenced, declare it in a relocatable
program section. If you want to make sure that a symbol you define in an absolute program section is
included,reference it in a relocatable program section.

4. The alternate form of .EXTERNAL is .EXTRN.

Example

. EXTERNAL SI'N, TAN, COS ; These synbols are defined in

. EXTERNAL SI NH, COSH, TANH ; external |y assenbl ed nodul es

F_FLOATING

.F_ FLOATING, .FLOAT — Floating-point storage directive

Format

.F FLOATINGIliteral-1list

.FLOATliteral -1i st

Parameter

literal -1i st

74

VSI Confidential, NDA Required

VAX MACRO Assembler Directives

A list of floating-point constants (see Section 3.2.2, “Floating-Point Numbers”).The constants cannot contain any
unary or binary operators except unary plus and unary minus.

Description

.F_ FLOATING evaluates the specified floating-point constants and stores the results in the object
module. .F_ FLOATING generates 32-bit, single-precision,floating-point data (1 bit of sign, 8 bits of exponent,
and 23 bits of fractional significance). See the description of .D _FLOATING for information on storing double-
precision floating-point numbers and the descriptions of .G_FLOATING and .H_FLOATING for descriptions of
other floating-point numbers.

Notes

1. See the description of .ENABLE for information on specifying floating-point rounding or truncation.

2. The floating-point constants in the literal list must not be preceded by the floating-point unary operator (*F).

Example

. F_FLOATI NG 134.5782, 74218. 34E20 ; Constant Iist

.F_FLOATI NG 134.2,0.1342E3,1342E-1 ; These all generate 134.2
.F_FLOATING -0.75,1E38,-1.0E-37 ; Constant Iist

. FLOAT 0, 25,50

.G_FLOATING

.G_FLOATING — G_floating-point storage directive

Format

.G FLOATINGIliteral-1ist

Parameters

literal -1ist

A list of floating-point constants (see Section 3.2.2, “Floating-Point Numbers”).The constants cannot contain any
unary or binary operators except unary plus or unary minus.

Description

.G_FLOATING evaluates the specified floating-point constants and stores the results in the object
module. .G FLOATING generates 64-bit data (1 bit of sign, 11 bits of exponent, and 52 bits of fraction).

Notes

1. G_floating-point numbers are always rounded. They are not affected by the .ENABLE TRUNCATION
directive.

2. The floating-point constants in the literal list must not be preceded by the floating-point operator (*F).

Example

. G_FLOATING 1000, 1.0E3, 1.0000000E-9 ; Constant Iist

VSI Confidential, NDA Required 75

VAX MACRO Assembler Directives

.GLOBAL

.GLOBAL — Global symbol attribute directive

Format

. GLOBAL synbol -1 i st

Parameter
synbol -1i st

A list of legal symbol names, separated by commas ().

Description

.GLOBAL indicates that specified symbol names are either globally defined in the current module or externally
defined in another module (see Section 3.3.3, “Determining Symbol Values™).

Notes

1. .GLOBAL is provided for MACRO-11 compatibility only. VSI recommends that global definitions be specified
by a double colon (::) or double equal sign (==) (see Section 2.1, “Label Field” and Section 3.8, “Direct
Assignment Statements”) and that external references be specified by .EXTERNAL when necessary.

2. The alternate form of . GLOBAL is .GLOBL.

Example

. GLOBAL LAB 40, LAB_30 ; Make these synbol nanmes
; gl obal Il y known

. GLOBAL UKN 13 ; to all |inked nodul es

H_FLOATING

.H FLOATING — H_floating-point storage directive

Format

.H FLOATINGI iteral -1list

Parameter

literal-1ist

A list of floating-point constants (see Section 3.2.2, “Floating-Point Numbers”).The constants cannot contain any
unary or binary operators except unary plus or unary minus.

Description

.H FLOATING evaluates the specified floating-point constants and stores the results in the object
module. .H FLOATING generates 128-bit data (1bit of sign, 15 bits of exponent, and 112 bits of fraction).

76 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Notes

1. H floating-point numbers are always rounded. They are not affected by the .ENABLE TRUNCATION
directive.

2. The floating-point constants in the literal list must not be preceded by the floating-point operator (“F).

Example

.H_FLOATING 36912, 15.0E18, 1.0000000E-9 ; Constant |i st

IDENT

JDENT — Identification directive

Format

. I DENT stri ng

Parameter

string
A 1- to 31-character string that identifies the module, such as a string that specifies a version number. The string

must be delimited. The delimiters can be any paired printing characters other than the left angle bracket (<) or the
semicolon (;), as long as the delimiting character is not contained within the text string.

Description

IDENT provides a means of identifying the object module. This identification is in addition to the name assigned
to the object module with .TITLE. A character string can be specified in .IDENT to label the object module. This
string is printed in the header of the listing file and also appears in the object module.

Notes

1. If a source module contains more than one .IDENT, the last directive given establishes the character string that
forms part of the object module identification.

2. If the delimiting characters do not match, or if you use an illegal delimiting character, the assembler displays
an error message.

Example

.| DENT [/ 3-47/ : Version and edit nunbers

The character string “3-47” is included in the object module.

AF

IF — Conditional assembly block directives

Format

.1 F condition argunent(s)

VSI Confidential, NDA Required 77

VAX MACRO Assembler Directives

range

. ENDC

Parameters

condi tion

A specified condition that must be met if the block is to be included in the assembly. The condition must be
separated from the argument by a comma (,), space, or tab. Table 6.4, “Condition Tests for Conditional Assembly
Directives” lists the conditions that can be tested by the conditional assembly directives.

argunent (s)

One or more symbolic arguments or expressions of the specified conditional test. If the argument is an expression,
it cannot contain any undefined symbols and must be an absolute expression (see Section 3.5, “Terms and
Expressions”).

range

The block of source code that is conditionally included in the assembly.

Table 6.4. Condition Tests for Conditional Assembly Directives

Condition Test Complement Argument |Number | Condition that
Condition Test Type of Assembles Block
Argume
nts
Long Form Short |Long Form Short
Form Form

EQUAL EQ NOT_EQUAL NE Expression |1 Expression is equal to
0/not equal to 0.

GREATER GT LESS EQUAL LE Expression |1 Expression is greater
than(/less than or
equal to 0.

LESS THAN LT GREATER EQUAL |GE Expression |1 Expression is less
than(/greater than or
equal to 0.

DEFINED DF NOT_DEFINED NDF Symbolic 1 Symbol is defined /
not defined.

BLANK ! B NOT BLANK ! NB Macro 1 Argument is blank/
nonblank.

IDENTICAL ! IDN DIFFERENT ! DIF Macro 2 Arguments are
identical/different.

The BLANK, NOT BLANK, IDENTICAL, and DIFFERENT conditions are only useful in macro definitions.

Description

A conditional assembly block is a series of source statements that is assembled only if a certain condition is met. .IF
starts the conditional block and .ENDC ends the conditional block; each .IF must have a corresponding .ENDC.
The .IF directive contains a condition test and one or two arguments. The condition test specified is applied to the
arguments. If the test is met,all VAX MACRO statements between .IF and .ENDC are assembled. If the test is not

78 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

met, the statements are not assembled. An exception to this rule occurs when you use subconditional directives
(see the description of the .IF xdirective).

Conditional blocks can be nested; that is, a conditional block can be inside another conditional block. In this case,
the statements in the inner conditional block are assembled only if the condition is met for both the outer and
inner block.

Notes

1. If .ENDC occurs outside a conditional assembly block, the assembler displays an error message.

2. VAX MACRO permits a nesting depth of 31 conditional assembly levels. If a statement attempts to exceed this
nesting level depth, the assembler displays an error message.

3. Lowercase string arguments are converted to uppercase before being compared, unless the string is surrounded
by delimiters. For information on string arguments and delimiters, see Chapter 4, Macro Arguments and String
Operators.

4. The assembler displays an error message if .IF specifies any of the following: a condition test other than those
in Table 6.4, “Condition Tests for Conditional Assembly Directives”,an illegal argument, or a null argument
specified in an .IF directive.

5. The .SHOW and .NOSHOW directives control whether condition blocks that are not assembled are included
in the listing file.

Examples

1. An exanple of a conditional assenbly directive is:

.1 F EQUAL ALPHA+1 ; Assenbl e block if ALPHA+1=0. Do
; not assenble if ALPHA+1 not =0

. ENDC
2. Nested conditional directives take the form

A F condi tion, argunent (s)
A F condi tion, ar gunent (s)

. ENDC
. ENDC

3. The follow ng conditional directives can govern whether assenbly
is to occur:

. I F DEFI NED SYML
.| F DEFI NED SYM2

. ENDC
. ENDC
In this example, if the outermost condition is not satisfied, no deeper level of evaluation of nested conditional

statements within the program occurs. Therefore, both SYM1 and SYM2 must be defined for the code to be
assembled.

VSI Confidential, NDA Required 79

VAX MACRO Assembler Directives

AF_Xx

JF_x — Subconditional assembly block directives

Format
.| F_FALSE
.1 F_TRUE

.| F_TRUE_FALSE

Description

VAX MACRO has the following three subconditional assembly block directives:

Directive Function

IF_FALSE If the condition of the assembly block tests false,

the program includes the source code following
the .IF_FALSE directive and continuing up to the
next subconditional directive or to the end of the
conditional assembly block.

IF TRUE If the condition of the assembly block tests true,
the program includes the source code following

the .IF_ TRUE directive and continuing up to the
next subconditional directive or to the end of the
conditional assembly block.

IF TRUE FALSE Regardless of whether the condition of the assembly
block tests true or false, the source code following
the .IF TRUE FALSE directive (and continuing up to
the next subconditional directive or to the end of the
assembly block) is always included.

The implied argument of a subconditional directive is the condition test specified when the conditional assembly
block was entered. A conditional or subconditional directive in a nested conditional assembly block is not evaluated
if the preceding (or outer) condition in the block is not satisfied(see Examples 3 and 4).

A conditional block with a subconditional directive is different from a nested conditional block. If the condition

in the .IF is not met, the inner conditional blocks are not assembled, but a subconditional directive can cause a
block to be assembled.

Notes

1. If a subconditional directive appears outside a conditional assembly block, the assembler displays an error
message.

2. The alternate forms of .IF_FALSE, .IF_TRUE, and .IF_ TRUE FALSE are .IFF,.IFT, and .IFTF.

Examples
1. Assune that synbol SYMis defined:

.IF DEFINED SYM ; Tests TRUE since SYMis defined.
; Assenbl es the foll owi ng code.

80 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.1 F_FALSE ; Tests FALSE since previous
; .IF was TRUE. Does not
; assenbl e the foll ow ng code.

. I F_TRUE ; Tests TRUE since SYMis defined.
; Assenmbl es the foll owi ng code.

.| F_TRUE_FALSE ; Assenbl es the foll ow ng code
. ; uncondi tional | y.

. I F_TRUE ; Tests TRUE since SYMis defined.
; Assenbl es remai nder of
; condi tional assembly bl ock

. ENDC

2. Assune that synbol X is defined and that synmbol Y is not defined:

.| F DEFINED X ; Tests TRUE since X is defined.
.IF DEFINED Y : Tests FALSE since Y is not defined.
.| F_FALSE ; Tests TRUE since Y is not defined.

; Assenbl es the foll ow ng code.

. I F_TRUE ; Tests FALSE since Y is not defined.

; Does not assenble the foll ow ng
; code.

. ENDC

. ENDC

3. Assunme that synbol A is defined and that synmbol B is not defined:

.IF DEFINED A ; Tests TRUE since A is defined.
; Assenbl es the foll owi ng code.

. I F_FALSE ; Tests FALSE since A is defined.
; Does not assenble the follow ng
; code.

. I F NOT_DEFI NED B ; Nested conditional directive
. ; is not eval uated.

. ENDC
. ENDC

4. Assune that synbol X is not defined but synmbol Y is defined:

.| F DEFI NED X : Tests FALSE since X is not defined.
; Does not assenble the follow ng
; code.

.| F DEFINED Y : Nested conditional directive

; i s not eval uated.

VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.| F_FALSE ; Nested subconditiona
; directive is not eval uated.

. I F_TRUE ; Nested subconditiona
; directive is not eval uated.

. ENDC
. ENDC

AIF

JIF — Immediate conditional assembly block directive

Format

.IIFcondition [,]argument(s), statenent

Parameters

condi tion

One of the legal condition tests defined for conditional assembly blocks in Table 6.4, “Condition Tests for
Conditional Assembly Directives” (see the description of .IF). The condition must be separated from the arguments
by a comma (,),space, or tab. If the first argument can be a blank, the condition must be separated from the
arguments with a comma.

argunent (s)

An expression or symbolic argument (described in Table 6.4, “Condition Tests for Conditional Assembly
Directives”) associated with the immediate conditional assembly block directive. If the argument is an expression,
it cannot contain any undefined symbols and must be an absolute expression (see Section 3.5, “Terms and
Expressions™). The arguments must be separated from the statement by a comma.

st at enent

The statement to be assembled if the condition is satisfied.

Description

IF provides a means of writing a one-line conditional assembly block. The condition to be tested and
the conditional assembly block are expressed completely within the line containing the .IIF directive. No
terminating .ENDC statement is required.

Note

The assembler displays an error message if .IIF specifies a condition test other than those listed in Table 6.4,
“Condition Tests for Conditional Assembly Directives”, an illegal argument,or a null argument.

Example

.1 I'F DEFI NED EXAM BEQL ALPHA

This directive generates the following code if the symbol EXAM is defined within the source program:

82 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

BEQL ALPHA

IRP

IRP — Indefinite repeat argument directive

Format

. I RP synbol , <argunent list>
range

. ENDR

Parameters

synbol

A formal argument that is successively replaced with the specified actual arguments enclosed in angle brackets
(<>). If no formal argument is specified, the assembler displays an error message.

<argunent |ist>

A list of actual arguments enclosed in angle brackets and used in expanding the indefinite repeat range. An
actual argument can consist of one or more characters. Multiple arguments must be separated by a legal separator
(comma,space, or tab). If no actual arguments are specified, no action is taken.

range

The block of source text to be repeated once for each occurrence of an actual argument in the list. The range can
contain macro definitions and repeat ranges. .MEXIT is legal within the range.

Description

IRP replaces a formal argument with successive actual arguments specified in an argument list. This replacement
process occurs during the expansion of the indefinite repeat block range. The .ENDR directive specifies the end
of the range.

IRP is analogous to a macro definition with only one formal argument. At each expansion of the repeat block,
this formal argument is replaced with successive elements from the argument list. The directive and its range are
coded in line within the source program. This type of macro definition and its range do not require calling the
macro by name, as do other macros described in this section.

IRP can appear either inside or outside another macro definition, indefinite repeat block, or repeat block (see the
description of .REPEAT). The rules for specifying .IRP arguments are the same as those for specifying macro
arguments.

Example

The macro definition is as follows:

1. . MACRO CALL_SUB SUBR, Al, A2, A3, A4, A5, A6, A7, A8, A9, A10
. NARG COUNT

VSI Confidential, NDA Required 83

VAX MACRO Assembler Directives

. I RP ARG, <Al10, A9, A8, A7, A6, A5, Ad, A3, A2, Al1>

JdLF NOT_BLANK , ARG, PUSHL ARG
. ENDR
CALLS #<COUNT- 1>, SUBR ; Note SUBR is counted

.ENDM CALL_SUB

The macro call and expansion of the macro defined previously is as follows:

2. CALL_SuUB TEST, | NRES, | NTES, UNLI S, QUTCON, #205
. NARG COUNT
I RP ARG, <, ,,,, #205, QUTCON, UNLI S, | NTES, | NRES>
dLFE NOT_BLANK ARG, PUSHL ARG
. ENDR
dLFE NOT_BLANK , PUSHL
dLFE NOT_BLANK , PUSHL
dLFE NOT_BLANK , PUSHL
dLFE NOT_BLANK , PUSHL
dLFE NOT_BLANK , PUSHL
dLFE NOT_BLANK #205, PUSHL #205
dLFE NOT_BLANK QUTCOQN, PUSHL QUTCON
dLFE NOT_BLANK UNLI S, PUSHL UNLI S
dLFE NOT_BLANK | NTES, PUSHL | NTES
dLFE NOT_BLANK I NRES, PUSHL | NRES
CALLS #<COUNT- 1>, TEST ; Note TEST is counted

This example uses the .NARG directive to count the arguments and the .IIFNOT_BLANK directive (see
descriptions of .IF and .IIF in this section) to determine whether the actual argument is blank. If the argument
is blank, no binary code is generated.

IRPC

IRPC — Indefinite repeat character directive

Format

. I RPC synbol , <STRI NG
range

. ENDR

Parameters

synbol

A formal argument that is successively replaced with the specified characters enclosed in angle brackets (<>). If
no formal argument is specified, the assembler displays an error message.

<STRI N&

A sequence of characters enclosed in angle brackets and used in the expansion of the indefinite repeat range.
Although the angle brackets are required only when the string contains separating characters, their use is
recommended for legibility.

84 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

range

The block of source text to be repeated once for each occurrence ofa character in the list. The range can contain
macro definitions and repeat ranges. .MEXIT is legal within the range.

Description

IRPC is similar to .IRP except that .IRPC permits single-character substitution rather than argument substitution.
On each iteration of the indefinite repeat range, the formal argument is replaced with each successive character in
the specified string. The .ENDR directive specifies the end of the range.

IRPC is analogous to a macro definition with only one formal argument. At each expansion of the repeat block,
this formal argument is replaced with successive characters from the actual argument string. The directive and its
range are coded in line within the source program and do not require calling the macro by name.

IRPC can appear either inside or outside another macro definition, indefinite repeat block, or repeat block (see
description of .REPEAT).

Example

The macro definition is as follows:

1. . MACRO HASH SYM SYMBOL
.NCHR RV, <SYMBOL>
.IRPC CHR, <SYMBCL>
HV = HV+"A?CHR?
. ENDR
.ENDM HASH SYM

The macro call and expansion of the macro defined previously is as follows:

2. HASH_SYM <MOVC5>
_NCHR HV, <MOVC5>
.IRPC CHR, <MOVC5>

= HV+AA?CHR?

. ENDR

= HV+AAZMR

= HV+AA?2O?

= HVHAA2V?

= HV+AA2C?

= HV+AA?5?

2%z 2

This example uses the NCHR directive to count the number of characters in an actual argument.

.LIBRARY

.LIBRARY — Macro library directive
Format

. LI BRARY rmacr o- | i br ary- name

Parameter

nmacr o-1i brary-nane

A delimited string that is the file specification of a macro library.

VSI Confidential, NDA Required 85

VAX MACRO Assembler Directives

Description

.LIBRARY adds a name to the macro library list that is searched whenever a . MCALL or an undefined opcode is
encountered. The libraries are searched in the reverse order in which they were specified to the assembler.

If you omit any information from the macro-library-name argument, default values are assumed. The device
defaults to your current default disk; the directory defaults to your current default directory; the file type defaults
to MLB.

VSI recommends that libraries be specified in the MACRO command line with the /LIBRARY qualifier rather
than with the .LIBRARY directive. The .LIBRARY directive makes moving files cumbersome.

Example

. LI BRARY / DI SK: [TEST] USERM ; DI SK: [TEST] USERM M_B

. LI BRARY ?DI SK: SYSDEF. M_B? ;DI SK: SYSDEF. MLB

. LI BRARY \ CURRENT. MLB\ ; Uses default disk and directory

.LINK

.LINK — Linker option record directive

Format

.LINK"file-spec" [/qualifier[=(nodule-nane[,...])],...]

Parameters

file-spec[,...]

A delimited string that specifies one or more input files. The delimiters can be any matching pair of printable
characters except the space, tab, equal sign (=), semicolon (;), or left angle bracket (<). The character that you
use as the delimiter cannot appear in the string itself . Although you can use alphanumeric characters as delimiters,
use nonalphanumeric characters to avoid confusion.

The input files can be object modules to be linked, or shareable images to be included in the output image. Input
files can also be libraries containing external references or specific modules for inclusion in the output image.
The linker will search the libraries for the external references. If you specify multiple input files, separate the file
specifications with commas ().

If you do not specify a file type in an input file specification, the linker supplies default file types, based on the
nature of the file. All object modules are assumed to have file types of OBJ.

Note that the input file specifications must be correct at /inktime. Make your references explicit, so that if the
object module created by VAX MACRO is linked in a directory other than the one in which it was created,the
linker will still be able to find the files referenced in the .LINK directive.

No wildcard characters are allowed in the file specification.

File Qualifiers

/ 1 NCLUDE=(nodul e- name[,...])

Indicates that the associated input file is an object library or shareable image library, and that only the module
names specified are to be unconditionally included as input to the linker.

86 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

At least one module name must be specified. If you specify more than one module name, separate the names with
commas (,) and enclose the list in parentheses.

No wildcard characters are allowed in the module name specifications. Module names may not be longer than 31
characters, the maximum length of a VAX MACRO symbol.

/ LI BRARY

Indicates that the associated input file is a library to be searched for modules to resolve any undefined symbols
in the input files.

If the associated input file specification does not include a file type, the linker assumes the default file type of
OLB. You can use both /INCLUDE and/LIBRARY to qualify a file specification. If you specify both /INCLUDE
and/LIBRARY, the library is subsequently searched for unresolved references. In this case, the explicit inclusion
of modules occurs first; then the linker searches the library for unresolved references.

/ SELECTI VE_SEARCH

Directs the linker to add to its symbol table only those global symbols that are defined in the specified file and
are currently unresolved. IffSELECTIVE_SEARCH is not specified, the linker includes all symbols from that file
in its global symbol table.

| SHAREABLE
Requests that the linker include a shareable image file. No wildcard characters are allowed in the file specification.

The following table contains the abbreviations of the qualifiers for the .LINK directive. Note that to ensure
readability, as well as compatibility with future releases, it is recommended that you use the full names of the
qualifiers.

Abbreviation Qualifier

n /INCLUDE

/L /LIBRARY

/SE /SELECTIVE_SEARCH
/SH /SHAREABLE
Description

The .LINK directive allows you to include linker option records in an object module produced by VAX MACRO.
The qualifiers for the .LINK directive perform functions similar to the functions performed by the same qualifiers
for the DCL command LINK.

You should use the .LINK directive for references that are not linker defaults, but that you always want to include
in a particular image. Using the .LINK directive enables you to avoid having to explicitly name these references
in the DCL command LINK.

For detailed information on the qualifiers to the DCL command LINK, see the VST OpenVMS DCL Dictionary.
For a complete discussion of the operation of the linker itself, see the VSI OpenVMS Linker Utility Manual.

Examples

I. . LINK "SYS$LI BRARY: MYLI B" /1 NCLUDE=(MOD1, MOD2, MOD6)

This statement, when included in the file MYPROG.MAR, causes the assembler to request that MYPROG.OBJ
be linked with modules MOD1, MOD2, and MODS® in the library SYSSLIBRARY:MYLIB.OLB (where SYS
SLIBRARY is a logical name for the disk and directory in which MYLIB.OLB is listed). The library is not
searched for other unresolved references. The statement is equivalent to linking the file with the DCL command:

VSI Confidential, NDA Required 87

VAX MACRO Assembler Directives

2. $ LINK MYPROG, SYS$LI BRARY: MYLI B /1 NCLUDE=(MOD1, MOD2, MOD6)

3. . LI NK \ SYS$LI BRARY: MYOBJ\ ; Link with object
nodul e
; SYS
$LI1 BRARY: MYOBJ. OBJ
. LI NK ' SYS$LI BRARY: YOURLI B' /LI BRARY ; Search object library
; SYS

$L1 BRARY: YOURLI B. QLB
; for unresol ved

ref erences

. LI NK *SYS$LI BRARY: MYSTB. STB* / SELECTI VE_SEARCH ; Search synbol table
; SYS

$LI BRARY: MYSTB. STB
; for unresol ved

ref erences
. LI NK " SYS$LI BRARY: MYSHR. EXE" / SHAREABLE : Link with shareabl e
i mage
: SYSS$LI BRARY: MYSHR. EXE

To increase efficiency and performance, include several related input files in a single .LINK directive. The
following example shows how the five options illustrated previously can be included in one statement:

4. .LINK ' SYS$LI BRARY: MYOBJ' , -
' SYS$LI BRARY: YOURLI B' /LI BRARY, -
' SYS$LI BRARY: MYLI B' /| NCLUDE=(MOD1, MOD2, MOD6), -
' SYS$LI BRARY: MYSTB. STB' / SELECTI VE_SEARCH, -
' SYS$LI BRARY: MYSHR. EXE' / SHAREABLE

LIST

.LIST — Listing directive

Format

.LIST[argunent-Iist]

Parameter

argunent - | i st

One or more of the symbolic arguments defined in Table 6.8, “.SHOW and .NOSHOW Symbolic Arguments”.
You can use either the long form or the short form of the arguments. If multiple arguments are specified, separate
them with commas (,), spaces, or tabs.

Description

.LIST is equivalent to .SHOW. See the description of .SHOW for more information.

.LONG

.LONG — Longword storage directive

88 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Format

. LONGexpression-1ist

Parameter

expression-1list

One or more expressions separated by commas (,). You have the option of following each expression with a

repetition factor delimited by square brackets ([]).

An expression followed by a repetition factor has the format:
expr essi onl[expressi on2]

expressionl

An expression that specifies the value to be stored.

[expressi on2]

An expression that specifies the number of times the value is repeated. The expression must not contain any
undefined symbols and must be an absolute expression (see Section 3.5, “Terms and Expressions”). The square

brackets are required.

Description

.LONG generates successive longwords (4 bytes) of data in the object module.

Example

LAB 3: .LONG LAB 3, "X7FFFFFFF, "A' ABCD ; 3 |ongwords of data
.LONG ~"XF&t ; 1 longword of data
.LONG 0] 22] ; 22 longwords of data

Note

Each expression in the list must have a value that can be represented in 32bits.

.MACRO

.MACRO — Macro definition directive

Format

. MACRO macro-nane [fornmal -argunent-1ist]
range

. ENDM [macr o nane]

Parameters

macr o- namnme

VSI Confidential, NDA Required

89

VAX MACRO Assembler Directives

The name of the macro to be defined; this name can be any legal symbol up to 31 characters long.
. MACRO macro-nane [formal -argunent-1ist]

The name of the macro to be defined; this name can be any legal symbol up to 31 characters long.
formal -argument -1 i st

The symbols, separated by commas (,), to be replaced by the actual arguments in the macro call.
range

The source text to be included in the macro expansion.

Description

.MACRO begins the definition of a macro. It gives the macro name and a list of formal arguments (see Chapter 4,
Macro Arguments and String Operators). If the name specified is the same as the name of a previously defined
macro, the previous definition is deleted and replaced with the new one. The .MACRO directive is followed by
the source text to be included in the macro expansion. The .ENDM directive specifies the end of the range.

Macro names do not conflict with user-defined symbols. Both a macro and a user-defined symbol can have the
same name.

When the assembler encounters a . MACRO directive, it adds the macro name to its macro name table and stores
the source text of the macro (up to the matching .ENDM directive). No other processing occurs until the macro
is expanded.

The symbols in the formal argument list are associated with the macro name and are limited to the scope of
the definition of that macro. For this reason,the symbols that appear in the formal argument list can also appear
elsewhere in the program.

Notes

1. If a macro has the same name as a VAX opcode, the macro is used instead of the instruction. This feature allows
you to temporarily redefine an opcode.

2. If a macro has the same name as a VAX opcode and is in a macro library,you must use the MCALL directive
to define the macro. Otherwise, because the symbol is already defined (as the opcode), the assembler will not
search the macro libraries.

3. You can redefine a macro with new source text during assembly by specifying a second .MACRO directive
with the same name. Including a second .MACRO directive within the original macro definition causes the
first macro call to redefine the macro. This feature is useful when a macro performs initialization or defines
symbols, when an operation is performed only once. The macro redefinition can eliminate unneeded source text
in a macro or it can delete the entire macro. The MDELETE directive provides another way to delete macros.

Example

The macro definition is as follows:

1. . MACRO USERDEF
. PSECT DEFI ES, ABS
MYSYM= 5
H VAL= ~XFFF123
LOWAL= 0O
. PSECT RWDATA, NCEXE, LONG
TABLE: . BLKL 100
LI ST: .BLKB 10

90 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

. MACRO USERDEF ; Redefine it to nul
. ENDM USERDEF
. ENDM USERDEF

The macro calls and expansions of the macro defined previously are as follows:

2. USERDEF ; Shoul d expand data
. PSECT DEFI ES, ABS
MYSYM= 5
H VAL= ~XFFF123
LOWAL= 0

. PSECT RWDATA, NOEXE, LONG

TABLE: . BLKL 100

LI ST: . BLKB 10
. MACRO USERDEF ;. Redefine it to nul
. ENDM USERDEF

USERDEF ; Shoul d expand not hi ng

In this example, when the macro is called the first time, it defines some symbols and data storage areas and
then redefines itself. When the macro is called a second time, the macro expansion contains no source text.

.MASK

.MASK — Mask directive

Format

. MASK synbol [, expr essi on]

Parameters

synbol

A symbol defined in an .ENTRY directive.
expr essi on

A register save mask.

Description

.MASK reserves a word for a register save mask for a transfer vector. See the description of TRANSFER for more
information and for an example of .MASK.

Notes

1. If .MASK does not contain an expression, the assembler directs the linker to copy the register save mask
specified in .ENTRY to the word reserved by .MASK.

2. If MASK contains an expression, the assembler directs the linker to combine this expression with the register
save mask specified in .ENTRY and store the result in the word reserved by .MASK. The linker performs an
inclusive OR operation to combine the mask in the entry point and the value of the expression. Consequently,
a register specified in either .ENTRY or .MASK will be included in the combined mask. See the description
of .ENTRY for more information on entry masks.

VSI Confidential, NDA Required 91

VAX MACRO Assembler Directives

.MCALL

.MCALL — Macro call directive

Format

. MCALL macr o- nane-| i st

Parameter

macr o- nane- | i st

A list of macros to be defined for this assembly. Separate the macro names with commas (,).

Description

.MCALL specifies the names of the system and user-defined macros that are required to assemble the source
program but are not defined in the source file.

If any named macro is not found upon completion of the search (that is, if the macro is not defined in any of the
macro libraries), the assembler displays an error message.

Note

.MCALL is provided for compatibility with MACRO-11; with one exception, VSI recommends that you not use it.
When VAX MACRO finds an unknown symbol in the opcode field, it automatically searches all macro libraries.
If it finds the symbol in a library, it uses the macro definition and expands the macro reference. If VAX MACRO
does not find the symbol in the library, it displays an error message.

You must use .MCALL when a macro has the same name as an opcode (see description of . MACRO).

Example

. MCALL | NSQUE ; Substitute macro in
; library for | NSQUE
; i nstruction

.MDELETE

.MDELETE — Macro deletion directive

Format

. MDELETE nmacr o- name- | i st

Parameter

macr o- name- | i st

A list of macros whose definitions are to be deleted. Separate the names with commas (,).

92 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Description

.MDELETE deletes the definitions of specified macros. The number of macros actually deleted is printed in the
assembly listing on the same line as the MDELETE directive.

.MDELETE completely deletes the macro, freeing memory as necessary. Macro redefinition with .MACRO merely
redefines the macro.

Example

. MDELETE USERDEF, $SSDEF, ALTR

MEXIT

MEXIT — Macro exit directive

Format

.MEXIT

Description

MEXIT terminates a macro expansion before the end of the macro. Termination is the same as if . ENDM were
encountered. You can use the directive within repeat blocks. .MEXIT is useful in conditional expansion of macros
because it bypasses the complexities of nested conditional directives and alternate assembly paths.

Notes

1. When .MEXIT occurs in a repeat block, the assembler terminates the current repetition of the range and
suppresses further expansion of the repeat range.

2. When macros or repeat blocks are nested, MEXIT exits to the next higher level of expansion.

3. If MEXIT occurs outside a macro definition or a repeat block, the assembler displays an error message.

Example

. MACRO POLO N, A B

.IF EQ N ; Start conditional assenbly bl ock
MEXIT ; Term nate macro expansion

. ENDC ; End conditional assenmbly bl ock
.ENDM POLO ; Normal end of nacro

In this example, if the actual argument for the formal argument N equals zero,the conditional block is assembled,
and the macro expansion is terminated by .MEXIT.

VSI Confidential, NDA Required 93

VAX MACRO Assembler Directives

.NARG

.NARG — Number of arguments directive

Format

. NARGsynbol

Parameter

synbol

A symbol that is assigned a value equal to the number of arguments in the macro call.

Description

.NARG determines the number of arguments in the current macro call.

.NARG counts all the positional arguments specified in the macro call,including null arguments (specified by
adjacent commas (,)). The value assigned to the specified symbol does not include either any keyword arguments
or any formal arguments that have default values.

Note

If NARG appears outside a macro, the assembler displays an error message.

Example

The macro definition is as follows:

1. . MACRO CNT_ARG Al, A2, A3, A4, A5, A6, A7, A8, A9=DEF9, A10=DEF10
. NARG COUNTER ; COUNTER is set to no. of ARGS
. WORD COUNTER ; Store val ue of COUNTER
.ENDM CNT_ARG

The macro calls and expansions of the macro defined previously are as follows:

2. CNT_ARG TEST, FI ND, ANS : COUNTER will = 3
. NARG COUNTER ; COUNTER is set to no. of ARGS
. WORD COUNTER : Store val ue of COUNTER
CNT_ARG : COUNTER will =0
. NARG COUNTER ; COUNTER is set to no. of ARGS
. WORD COUNTER : Store val ue of COUNTER
CNT_ARG TEST, A2=SYMB2, A3=SY3 : COUNTER will =1
. NARG COUNTER ; COUNTER is set to no. of ARGS
. WORD COUNTER : Store val ue of COUNTER

; Keyword argunents are not counted

CNT_ARG , SYMBL, , : COUNTER will = 3
. NARG COUNTER ; COUNTER is set to no. of ARGS
. WORD COUNTER : Store val ue of COUNTER

; Null argunents are counted

94 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.NCHR

NCHR — Number of characters directive

Format

. NCHR . NCHR synbol , <string>

Parameters

symnbol
A symbol that is assigned a value equal to the number of characters in the specified character string.
<string>

A sequence of printable characters. Delimit the character string with angle brackets (<>) (or a character preceded
by a circumflex (")) only if the specified character string contains a legal separator (comma (,), space, and/or tab)
or a semicolon (;).

Description

.NCHR determines the number of characters in a specified character string. It can appear anywhere in a VAX
MACRO program and is useful in calculating the length of macro arguments.

Example
The macro definition is as follows:
1. .MACRO CHAR MESS ;. Define MACRO
. NCHR CHRCNT, <MESS> ; Assign val ue to CHRCNT
. WORD CHRCNT ; Store val ue
. ASCl | / NESS/ ; Store characters
. ENDM CHAR : Finish

The macro calls and expansions of the macro defined previously are as follows:

2. CHAR <HELLG> ; CHRCNT will =5
. NCHR CHRCNT, <HELLO> ; Assign value to CHRCNT
. WORD CHRCNT ; Store val ue
. ASCI | / HELLO ; Store characters
CHAR <14, 75.39 4> ; CHRCNT will = 12(dec)
. NCHR CHRCNT, <14, 75.39 4> ; Assign value to CHRCNT
. WORD CHRCNT ; Store val ue
. ASCI | /14, 75.39 4/ ; Store characters

.NLIST

NLIST — Listing directive

Format

.NLI ST[argunent-1ist]

VSI Confidential, NDA Required 95

VAX MACRO Assembler Directives

Parameter

argunent - | i st

One or more of the symbolic arguments listed in Table 6.8, “.SHOW and .NOSHOW Symbolic Arguments”. Use
either the long form or the short form of the arguments. If you specify multiple arguments, separate them with
commas (,), spaces, or tabs.

Description

NLIST is equivalent to NOSHOW. See the description of .SHOW for more information.

.NOCROSS

.NOCROSS — Cross-reference directive

Format

. NOCROSS [synbol - 1i st]

Parameter
synmbol -1i st

A list of legal symbol names separated by commas (,).

Description

VAX MACRO produces a cross-reference listing when the
/CROSS_REFERENCE

qualifier is specified in the MACRO command. The .CROSS and .NOCROSS directives control which symbols are
included in the cross-reference listing. The description of NOCROSS is included with the description of .CROSS.

.NOSHOW

.NOSHOW — Listing directive

Format

. NOSHOW[ar gunent - | i st]

Parameter

argumnent - | i st

One or more of the symbolic arguments listed in Table 6.8, “.SHOW and .NOSHOW Symbolic Arguments” in
the description of .SHOW. Use either the long form or the short form of the arguments. If you specify multiple
arguments,separate them with commas (,), spaces, or tabs.

Description

.NOSHOW specifies listing control options. See the description of .SHOW for more information.

96 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.NTYPE

NTYPE — Operand type directive

Format

. NTYPE synbol , oper and

Parameters

symnbol

Any legal VAX MACRO symbol. This symbol is assigned a value equal tothe 8- or 16-bit addressing mode of
the operand argument that follows.

oper and

Any legal address expression, as you use it with an opcode. If no argument is specified, zero is assumed.

Description

NTYPE determines the addressing mode of the specified operand.

The value of the symbol is set to the specified addressing mode. In most cases, an 8-bit (1-byte) value is returned.
Bits 0 to 3 specify the register associated with the mode, and bits 4 to 7 specify the addressing mode. To provide
concise addressing information, the mode bits 4 to 7 are not exactly the same as the numeric value of the addressing
mode described in Table C.6, “Summary of Addressing Modes”. Literal mode is indicated by a zero in bits 4to 7,
instead of the values 0 to 3. Mode 1 indicates an immediate mode operand, mode 2 indicates an absolute mode
operand, and mode 3 indicates a general mode operand.

For indexed addressing mode, a 16-bit (2-byte) value is returned. The high-order byte contains the addressing
mode of the base operand specifier and the low-order byte contains the addressing mode of the primary operand
(the index register).

See Chapter 5, VAX MACRO Addressing Modes of this volume for more information on addressing modes.

Example
1.; The following macro is used to push an address on the stack. It
checks

; the operand type (by using .NTYPE) to deternine if the operand is an
; address and, if not, the macro sinply pushes the argunent on the stack
; and generates a warni ng nessage.

. MACRO PUSHADR #ADDR

.NTYPE A, ADDR ; Assign operand type to 'A

A = A@ 48" XF ; | solate addressi ng nobde
.| F 1 DENTI CAL 0, <ADDR> ; I's argunment exactly 07
PUSHL #0 ; Stack zero
.MEXI T ; Exit from nmacro
. ENDC

ERR = 0 ; ERRtells if node is address

; ERR =0 if address, 1 if not
.11 F LESS EQUAL A-1, ERR=1 ; I's node not literal or
i medi at e?

.11 F EQUAL A-5, ERR=1 ; |'s node not register?

VSI Confidential, NDA Required 97

VAX MACRO Assembler Directives

.IF EQUAL ERR ; |I's nmode address?

PUSHAL ADDR ; Yes, stack address

.| FF ; No

PUSHL ADDR ; Then stack operand & warn
. WVARN ; ADDR is not an address;

. ENDC

. ENDM PUSHADR

The macro calls and expansions of the macro defined previously are as follows:

2. PUSHADR (RO) ; Valid argument
PUSHAL (RO) ; Yes, stack address
PUSHADR (R1)[R4] ; Valid argument
PUSHAL (R1)[R4] ; Yes, stack address
PUSHADR 0O ; Is zero
PUSHL #0 ; Stack zero
PUSHADR #1 ; Not an address
PUSHL #1 ; Then stack operand & warn
YWACRO W GENVIRN, Generated WARNING #1 is not an address
PUSHADR RO ; Not an address
PUSHL RO ; Then stack operand & warn

VACRO W GENVRN, Generated WARNING RO is not an address

Note that to save space, this example is listed as it would appear if .SHOWBINARY, not .SHOW
EXPANSIONS, were specified in the source program.

.OCTA

.OCTA — Octaword storage directive

Format

.CCTAliteral

. OCTAsynbol

Parameters

literal

Any constant value. This value can be preceded by O, "B, "X, or *D to specify the radix as octal, binary,
hexadecimal, or decimal, respectively;or it can be preceded by A to specify ASCII text. Decimal is the default
radix.

synbol

A symbol defined elsewhere in the program. This symbol results in a sign-extended, 32-bit value being stored
in an octaword.

Description

.OCTA generates 128 bits (16 bytes) of binary data.

98 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Note

.OCTA is like .QUAD and unlike other data storage directives (BYTE, .WORD,and .LONG), in that it does not
evaluate expressions and that it accepts only one value. It does not accept a list.

Example
. OCTA "A"'FEDCBA987654321" ; Each ASCI| character
; is stored in a byte
.OCTA 0 ; OCTA O
. OCTA "X01234ABCD5678F9 ; OCTA hex val ue specified
. OCTA VI NTERVAL ;. VINTERVAL has 32-bit val ue,

; si gn- ext ended

.ODD

.ODD — Odd location counter alignment directive

Format

. ODD

Description

.ODD ensures that the current value of the location counter is odd by adding 1if the current value is even. If the
current value is already odd, no action is taken.

.OPDEF

.OPDEF — Opcode definition directive

Format

. OPDEF opcode val ue, oper and-descriptor-1Iist

Parameters

opcode

An ASCII string specifying the name of the opcode. The string can be up to 31characters long and can contain the
letters A to Z, the digits 0 to 9, and the special characters underscore (), dollar sign ($),and period (.). The string
should not start with a digit and should not be surrounded by delimiters.

val ue

An expression that specifies the value of the opcode. The expression must be absolute and must not contain any
undefined values (see Section 3.5, “Terms and Expressions”). The value of the expression must be in the range
0 to 65,535 1o (hexadecimal FFFF), but you cannot use the values 252 to 255 because the architecture specifies
these as the start of a2-byte opcode. The expression is represented as follows:

If 0 < expression < 251 Expression is a 1-byte opcode.

VSI Confidential, NDA Required 99

VAX MACRO Assembler Directives

If expression > 255

Expression bits 7:0 are the first byte of the opcode and

expression bits 15:8 are the second byte of the opcode.

oper and-descriptor-1li st

A list of operand descriptors that specifies the number of operands and the type of each. Up to 16 operand

descriptors are allowed in the list. Table 6.5, “Operand Descriptors” lists the operand descriptors.

Table 6.5. Operand Descriptors

Access Type |Data Type

Byte Word Longword|Floating |Double |G_ H_ Quadword Octaword

Word Point Floating |Floating |Floating

Point Point Point

Address AB AW AL AF AD AG AH AQ AO
Read-only |RB RW RL RF RD RG RH RQ RO
Modify MB MW ML MF MD MG MH MQ MO
Write-only |WB WwW WL WF WD WG WH wQ WO
Field VB VW VL VF VD VG VH vQ VO
Branch BB BW — — — — — — —
Description

.OPDEF defines an opcode, which is inserted into a user-defined opcode table. The assembler searches this table
before it searches the permanent symbol table. This directive can redefine an existing opcode name or create a

new one.

Notes

1. You can also use a macro to redefine an opcode (see the description of .MACRO in this section). Note that the
macro name table is searched before the user-defined opcode table.

2. .OPDEF is useful in creating “custom” instructions that execute user-written microcode. This directive is

supplied to allow you to execute your microcode in a MACRO program.

3. The operand descriptors are specified in a format similar to the operand specifier notation described in Chapter 8§,
Basic Architecture. The first character specifies the operand access type, and the second character specifies the
operand data type.

Example

. OPDEF MOVL3

. OPDEF DI VF2
. OPDEF MOVC5

. OPDEF CALL

AXASFF, RL, ML, WL

AX46, RF, MF
AX2C, RW AB, AB, RW AB

~X10, BB

.PACKED

.PACKED — Packed decimal string storage directive

Defi nes an instruction
MOVL3, which uses

t he reserved opcode FF

Redefines the D VF2 and
MOVCS5 i nstructions

Equi val ent to a BSBB

100

VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Format

. PACKEDdeci mal - string[, synbol]

Parameters

deci mal -string

A decimal number from 0 to 31 digits long with an optional sign. Digits can bein the range 0 to 9 (see Section 8.3.14,
“Packed Decimal String”).

synbol

An optional symbol that is assigned a value equivalent to the number of decimal digits in the string. The sign is
not counted as a digit.

Description

.PACKED generates packed decimal data, two digits per byte. Packed decimal data is useful in calculations
requiring exact accuracy. Packed decimal data is operated on by the decimal string instructions. See Section 8.3.14,
“Packed Decimal String” for more information on the format of packed decimal data.

Example

. PACKED - 12, PACK _SI ZE ; PACK_SI ZE gets val ue of 2
. PACKED +500

. PACKED 0

. PACKED -0, SUM SI ZE ; SUM SI ZE gets val ue of 1

.PAGE

.PAGE — Page ejection directive

Format

. PAGE

Description

.PAGE forces a new page in the listing. The directive itself is not printed in the listing.

VAX MACRO ignores .PAGE in a macro definition. The paging operation is performed only during macro
expansion.

.PRINT

.PRINT — Assembly message directive

Format

. PRI NT [expr essi on] ; conment

VSI Confidential, NDA Required 101

VAX MACRO Assembler Directives

Parameters

expr essi on
An expression whose value is displayed when .PRINT is encountered during assembly.
; conment

A comment that is displayed when .PRINT is encountered during assembly. The comment must be preceded by
a semicolon (;).

Description

.PRINT causes the assembler to display an informational message. The message consists of the value of the
expression and the comment specified in the .PRINT directive. The message is displayed on the terminal for
interactive jobs and in the log file for batch jobs. The message produced by .PRINT is not considered an error
or warning message.

Notes

1. .PRINT, .ERROR, and .WARN are called the message display directives. You can use these to display
information indicating that a macro call contains an error or an illegal set of conditions.

2. If .PRINT is included in a macro library, end the comment with an additional semicolon. If you omit the
semicolon, the comment will be stripped from the directive and will not be displayed when the macro is called.

3. If the expression has a value of zero, it is not displayed with the message.

Example

.PRINT 2 ; The sine routine has been changed

.PSECT

.PSECT — Program sectioning directive

Format

. PSECT [program secti on-nane[, argunent -l i st]]

Parameters

program secti on- name

The name of the program section. This name can be up to 31 characters long and can contain any alphanumeric
character and the special characters underscore (_), dollar sign ($), and period (.). The first character must not
be a digit.

argunent - | i st

A list containing the program section attributes and the program section alignment. Table 6.6, “Program Section
Attributes” lists the attributes and their functions. Table 6.7, “Default Program Section Attributes” lists the default
attributes and their opposites. Program sections are aligned when you specify an integer in the range 0 to 9 or one
of the five keywords listed in the following table. If you specify an integer,the program section is linked to begin
at the next virtual address, which is a multiple of 2 raised to the power of the integer. If you specify a keyword,the
program section is linked to begin at the next virtual address (a multiple of the values listed in the following table):

102 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Keyword

Size (in Bytes)

BYTE

220=1

WORD

2701 =2

LONG

22 =4

QUAD

2"3 =8

PAGE

279 =512

BYTE is the default.

Table 6.6. Program Section Attributes

Attribute

Function

ABS

Absolute—The linker assigns the program section an
absolute address. The contents of the program section
can be only symbol definitions(usually definitions of
symbolic offsets to data structures that are used by the
routines being assembled). No data allocations can

be made. An absolute program section contributes no
binary code to the image, so its byte allocation request
to the linker is zero. The size of the data structure
being defined is the size of the absolute program
section printed in the “program section synopsis” at
the end of the listing. Compare this attribute with its
opposite, REL.

CON

Concatenate—Program sections with the same name
and attributes (including CON) are merged into one
program section. Their contents are merged in the
order in which the linker acquires them. The allocated
virtual address space is the sum of the individual
requested allocations.

EXE

Executable—The program section contains
instructions. This attribute provides the capability
of separating instructions from read-only and read/
write data. The linker uses this attribute in gathering
program sections and in verifying that the transfer
address is in an executable program section.

GBL

Global—Program sections that have the same name
and attributes, including GBL and OVR, will have
the same relocatable address in memory even when
the program sections are in different clusters (see
the VSI OpenVMS Linker Utility Manual for more
information on clusters). This attribute is specified
for FORTRAN COMMON block program sections
(see the VAXFORTRAN User's Guide). Compare this
attribute with its opposite, LCL.

LCL

Local—The program section is restricted to its cluster.
Compare this attribute with its opposite, GBL.

LIB

Library Segment—Reserved for future use.

NOEXE

Not Executable—The program section contains data
only; it does not contain instructions.

NOPIC

Non-Position-Independent Content—The program
section is assigned to a fixed location in virtual
memory (when it is in a shareable image).

VSI Confidential, NDA Required 103

VAX MACRO Assembler Directives

Attribute Function
NORD Nonreadable—Reserved for future use.
NOSHR No Share—The program section is reserved for private

use at execution time by the initiating process.

NOWRT Nonwritable—The contents of the program section
cannot be altered (written into) at execution time.

OVR Overlay—Program sections with the same name and
attributes,including OVR, have the same relocatable
base address in memory. The allocated virtual
address space is the requested allocation of the largest
overlaying program section. Compare this attribute
with its opposite, CON.

PIC Position-Independent Content—The program section
can be relocated; that is, it can be assigned to any
memory area (when it is in a shareable image).

RD Readable—Reserved for future use.

REL Relocatable—The linker assigns the program section
are locatable base address. The contents of the
program section can be code or data. Compare this
attribute with its opposite, ABS.

SHR Share—The program section can be shared at
execution time by multiple processes. This attribute is
assigned to a program section that can be linked into a
shareable image.

USR User Segment—Reserved for future use.

VEC Vector-Containing—The program section contains a
change mode vector indicating a privileged shareable
image. You must use the SHR attribute with VEC.

WRT Write—The contents of the program section can be
altered(written into) at execution time.

Table 6.7. Default Program Section Attributes

Default Attribute Opposite Attribute
CON OVR
EXE NOEXE
LCL GBL
NOPIC PIC
NOSHR SHR

RD NORD
REL ABS
WRT NOWRT
NOVEC VEC
Description

.PSECT defines a program section and its attributes and refers to a program section once it is defined. Use program
sections to do the following:

* Develop modular programs.

104 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

 Separate instructions from data.

Allow different modules to access the same data.

* Protect read-only data and instructions from being modified.

* Identify sections of the object module to the debugger.

» Control the order in which program sections are stored in virtual memory.

The assembler automatically defines two program sections: the absolute program section and the unnamed (or
blank) program section. Any symbol definitions that appear before any instruction, data, or .PSECT directive are
placed in the absolute program section. Any instructions or data that appear before the first named program section
is defined are placed in the unnamed program section. Any .PSECT directive that does not include a program
section name specifies the unnamed program section.

A maximum of 254 user-defined, named program sections can be defined.

When the assembler encounters a .PSECT directive that specifies a new program section name, it creates a new
program section and stores the name,attributes, and alignment of the program section. The assembler includes all
data and instructions that follow the .PSECT directive in that program section until it encounters another .PSECT
directive. The assembler starts all program sections at a location counter of 0, which is relocatable.

If the assembler encounters a .PSECT directive that specifies the name of a previously defined program section,
it stores the new data or instructions after the last entry in the previously defined program section. The location
counter is set to the value of the location counter at the end of the previously defined program section. You need
not list the attributes when continuing a program section but any attributes that are listed must be the same as
those previously in effect for the program section. A continuation of a program section cannot contain attributes
conflicting with those specified in the original .PSECT directive.

The attributes listed in the .PSECT directive only describe the contents of the program section. The assembler does
not check to ensure that the contents of the program section actually include the attributes listed. However, the
assembler and the linker do check that all program sections with the same name have exactly the same attributes.
The assembler and linker display an error message if the program section attributes are not consistent.

Program section names are independent of local symbol, global symbol, and macro names. You can use the same
symbolic name for a program section and fora local symbol, global symbol, or macro name.

Notes

1. The .ALIGN directive cannot specify an alignment greater than that of the current program section;
consequently, .PSECT should specify the largest alignment needed in the program section. For efficiency of
execution, an alignment of longword or larger is recommended for all program sections that have longword data.

2. The attributes of the default absolute and the default unnamed program sections are listed in the following
table. Note that the program section names include the periods (.) and enclosed spaces.

Program Section Name Attributes and Alignment

.ABS. NOPIC,USR,CON,ABS,LCL,NOSHR,NOEXE,NORD

.BLANK . NOPIC,USR,CON,REL,LCL,NOSHR,EXE,
RD,WRT,NOVEC,BYTE

Example

. PSECT CODE, NOART, EXE, LONG ; Program section to contain

; execut abl e code

. PSECT RWDATA, WRT, NOEXE, QUAD
; Program section to contain
; nodi fi abl e dat a

VSI Confidential, NDA Required 105

NOWRT,NO

VAX MACRO Assembler Directives

.QUAD

.QUAD — Quadword storage directive

Format

.QUADI i teral

. QUADsynbol

Parameters

literal

Any constant value. This value can be preceded by O, "B, "X, or *D to specify the radix as octal, binary,
hexadecimal, or decimal, respectively; or it can be preceded by A to specify the ASCII text operator. Decimal
is the default radix.

symnbol

A symbol defined elsewhere in the program. This symbol results in a sign-extended, 32-bit value being stored
in a quadword.

Description
.QUAD generates 64 bits (8 bytes) of binary data.
Note

.QUAD is like .OCTA and different from other data storage directives (BYTE,.WORD, and .LONG) in that it
does not evaluate expressions and that it accepts only one value. It does not accept a list.

Example

.QUAD "NA' L ASK?. . ; Each ASCI| character is stored
; in a byte

.QUAD O ; QUAD 0

.QUAD "X0123456789ABCDEF ; QUAD hex val ue specified

.QUAD "B1111000111001101 ; QUAD binary val ue specified

. QUAD LABEL ; LABEL has a 32-bit,

; zer o- ext ended val ue.

.REFn

.REFn — Operand generation directives

Format

. REF1 oper and
. REF2 oper and
. REF4 oper and

. REF8 oper and

106 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

. REF16 oper and

Parameter

oper and

An operand of byte, word, longword, quadword, or octaword context,respectively.
Description

VAX MACRO has the following five operand generation directives that you can use in macros to define new
opcodes:

Directive Function

.REF1 Generates a byte operand
.REF2 Generates a word operand
.REF4 Generates a longword operand
.REF8 Generates a quadword operand
.REF16 Generates an octaword operand

The .REFn directives are provided for compatibility with VAX MACRO Version1.0. Because the .OPDEF directive
provides greater functionality and is easier to use than .REFn, you should use .OPDEF instead of .REFn.

Example

.MACRO MOVL3 A B, C
. BYTE ~XFF, "XA9

.REF4 A ; This operand has | ongword cont ext
. REF4 B ; This operand has | ongword cont ext
. REF4 C ; This operand has | ongword cont ext
.ENDM MOVL3

MOVL3 RO, @AB- 1, (R7) +[RLO]

This example uses .REF4 to create a new instruction, MOVL3, which uses the reserved opcode FF. See the example
in .OPDEF for a preferred method to create a new instruction.

.REPEAT

.REPEAT — Repeat block directive

Format

. REPEAT expr essi on
range

. ENDR

Parameters

expr essi on

An expression whose value controls the number of times the range is to be assembled within the program. When
the expression is less than or equal to zero, the repeat block is not assembled. The expression must be absolute
and must not contain any undefined symbols (see Section 3.5, “Terms and Expressions”).

VSI Confidential, NDA Required 107

VAX MACRO Assembler Directives

range

The source text to be repeated the number of times specified by the value of the expression. The repeat block can
contain macro definitions, indefinite repeat blocks, or other repeat blocks. .MEXIT is legal within the range.

Description

.REPEAT repeats a block of code a specified number of times, in line with other source code. The .ENDR directive
specifies the end of the range.

Note

The alternate form of .REPEAT is .REPT.

Example
The macro definition is as follows:
1. .MACRO COPIES STRI NG NuM
. REPEAT NUM
.ASClI | /STRI NG
. ENDR
. BYTE 0

. ENDM COPI ES
The macro calls and expansions of the macro defined previously are as follows:

2. COPI ES <ABCDEF>, 5

. REPEAT 5

.ASCI | / ABCDEF/

. ENDR

.ASClI | / ABCDEF/
.ASClI | / ABCDEF/
.ASClI | / ABCDEF/
.ASClI | / ABCDEF/
.ASClI | / ABCDEF/

. BYTE 0

VARB = 3
COPI ES <HOW MANY TI MES>, VARB
. REPEAT 3
.ASCI |/ HOW MANY TI MES/
. ENDR
.ASCI |/ HOW MANY TI MVES/
.ASCI |/ HOW MANY TI MVES/
.ASCI |/ HOW MANY TI MVES/
.BYTE O

.RESTORE_PSECT

.RESTORE PSECT — Restore previous program section context directive

Format

. RESTORE_PSECT

108 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Description

.RESTORE_PSECT retrieves the program section from the top of the program section context stack, an internal
stack in the assembler. If the stack is empty when .RESTORE_PSECT is issued, the assembler displays an error
message. When .RESTORE PSECT retrieves a program section, it restores the current location counter to the
value it had when the program section was saved. The local label block is also restored if it was saved when the
program section was saved. See the description of .SAVE PSECT for more information.

Note

The alternate form of .RESTORE PSECT is .RESTORE.

Example

1.

.RESTORE_ PSECT and .SAVE PSECT are especially useful in macros that define program sections. The
macro definition in the following example saves the current program section context and defines new program
sections. Then, it restores the saved program section. If the macro did not save and restore the program section
context each time the macro was invoked, the program section would change.

2. .MACRO INITD ; Initialize synbols
; and data areas
. SAVE_PSECT ; Save the current PSECT
. PSECT SYMBOLS, ABS ; Define new PSECT
HELP_LEV=2 ; Define synbol
MAXNUM=100 ; Define synbol
RATE1=16 ; Define synbol
RATE2=4 ; Define synbol
. PSECT DATA, NCEXE, LONG ; Define another PSECT
TABL: . BLKL 100 ; 100 | ongwords in TABL
TEMP: . BLKB 16 ; More storage
. RESTORE_PSECT ; Restore the PSECT

: in effect when
; MACRO i s i nvoked
. ENDM

SAVE_PSECT

.SAVE_PSECT — Save current program section context directive

Format

. SAVE_PSECT [LOCAL_BLOCK]

Parameter

LOCAL_BLOCK

An optional keyword that specifies that the current local label is to be saved with the program section context.
Description

.SAVE_PSECT stores the current program section context on the top of the program section context stack, an
internal assembler stack. It leaves the current program section context in effect. The program section context stack

VSI Confidential, NDA Required 109

VAX MACRO Assembler Directives

can hold 31 entries. Each entry includes the value of the current location counter and the maximum value assigned
to the location counter in the current program section. If the stack is full when .SAVE PSECT is encountered,

an error occurs.

.SAVE PSECT and .RESTORE PSECT are especially useful in macros that define program sections. See the
description of .RESTORE PSECT for another example using .SAVE PSECT.

Note

The alternate form of .SAVE PSECT is .SAVE.

Example

1. The macro definition is as foll ows:

. MACRO ERR_MESSAGE, TEXT

A1F NOT_DEFI NED
. SAVE_PSECT -
LOCAL_BLOCK
. PSECT MESSAGE TEXT
MESSACE: :
.ASCI C [/ TEXT/
. PSECT MESSAGE PO NTERS
. ADDRESS -
MESSAGE
. RESTORE_PSECT
PUSHL #MESSAGE | NDEX
CALLS #1, PRI NT_MESS
MESSAGE | NDEX=MESSAGE | NDEX+1
. ENDM ERR _MESSACGE

2. Macro call:
RESETS: CLRL R4
BLBC RO, 30%
ERR NMESSAGE

30%: RSB

<STRI NG TOO SHORT>

Set up lists of nmessages
and pointers

VESSAGE_| NDEX, MESSAGE | NDEX=0

Keep | ocal |abels
Li st of error nessages

Addr esses of error
nessages

Store one pointer

Cet back | ocal |abels

Print nessage

; Add " STRI NG TOO SHORT"
; to list of error
: nessages

By using .SAVE_PSECT LOCAL_ BLOCK, the local label 308 is defined in the same local label block as the
reference to 308. If a local label is not defined in the block in which it is referenced, the assembler produces

the following error message:

3. %VACRO E- UNDEFSYM Undef i ned Synbol

.SHOW, .NOSHOW

.SHOW , NOSHOW — Listing directives

Format
. SHOM ar gunent -1 i st
. NOSHOW[ar gunent - | i st]

110 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Parameter
argunent - | i st

One or more of the optional symbolic arguments defined in Table 6.8, “.SHOW and .NOSHOW Symbolic
Arguments”. You can use either the long form or the short form of the arguments. You can use each argument alone
or in combination with other arguments. If you specify multiple arguments, you must separate them by commas (,),
tabs, or spaces. If any argument is not specifically included in a listing control statement, the assembler assumes
its default value (SHOW or NOSHOW) throughout the source program.

Table 6.8. . SHOW and .NOSHOW Symbolic Arguments

Short Form Default Function
Long Form
BINARY MEB NOSHOW Lists macro and repeat
blockexpansions that
generate binary code.
BINARY is a subset of
EXPANSIONS.

CALLS MC SHOW Lists macro calls and
repeat block specifiers.

CONDITIONALS CND SHOW Lists unsatisfied
conditional code
associated with the
conditional assembly
directives.

DEFINITIONS MD SHOW Lists macro and repeat
range definitions that

appear in an input source
file.

EXPANSIONS ME NOSHOW Lists macro and repeat
range expansions.

Description

.SHOW and .NOSHOW specify listing control options in the source text of a program. You can use .SHOW
and .NOSHOW with or without an argument list.

When you use them with an argument list, .SHOW includes and NOSHOW excludes the lines specified in
Table 6.8, “.SHOW and .NOSHOW Symbolic Arguments”. .SHOW and .NOSHOW control the listing of the
source lines that are in conditional assembly blocks (see the description of .IF), macros, and repeat blocks.

When you use them without arguments, these directives alter the listing level count. The listing level count
is initialized to 0. Each time .SHOW appears in a program, the listing level count is incremented; each
time .NOSHOW appears in a program, the listing level count is decremented.

When the listing level count is negative, the listing is suppressed (unless the line contains an error). Conversely,
when the listing level count is positive, the listing is generated. When the count is 0, the line is either listed or
suppressed, depending on the value of the listing control symbolic arguments.

Notes

1. The listing level count allows macros to be listed selectively; a macro definition can specify NOSHOW at the
beginning to decrement the listing count and can specify .SHOW at the end to restore the listing count to its
original value.

VSI Confidential, NDA Required 111

VAX MACRO Assembler Directives

2. The alternate forms of .SHOW and .NOSHOW are .LIST and .NLIST.

Example
. MACRO XX
. SHOW ; List next line
X=.
. NOSHOW ; Do not |ist renainder
; of macro expansi on
. ENDM
. NOSHOW EXPANSI ONS ; Do not list macro
; expansi ons
XX
X=.

.SIGNED_BYTE

.SIGNED_ BYTE — Signed byte data directive

Format

. S| GNED_BYTE expr essi on-11i st

Parameters

expression-1li st

An expression or list of expressions separated by commas (,). You have the option of following each expression
with a repetition factor delimited by square brackets ([]).

An expression followed by a repetition factor has the format:

expr essi onl[expressi on2]

expressionl

An expression that specifies the value to be stored. The value must be in the range -128 to +127.

[expressi on2]

An expression that specifies the number of times the value will be repeated. The expression must not contain any

undefined symbols and must be an absolute expression (see Section 3.5, “Terms and Expressions”). The square
brackets are required.

Description

.SIGNED_BYTE is equivalent to .BYTE, except that VAX MACRO indicates that the data is signed in the object
module. The linker uses this information to test for overflow conditions.

112 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Note

Specifying .SIGNED_BYTE allows the linker to detect overflow conditions when the value of the expression is
in the range of 128 to 255. Values in this range can be stored as unsigned data but cannot be stored as signed
data in a byte.

Example
. SI GNED_BYTE LABEL1- LABEL2 ; Data nust fit
. SI GNED BYTE ALPHA[20] ; in byte

.SIGNED_WORD

.SIGNED_WORD — Signed word storage directive

Format

. SI GNED_WORD expr essi on-1i st

Parameter

expression-|ist

An expression or list of expressions separated by commas (,). You have the option of following each expression
with a repetition factor delimited by square brackets ([]).

An expression followed by a repetition factor has the format:

expressi onl[expressi on2]

expressionl

An expression that specifies the value to be stored. The value must be in the range -32,768 to +32,767.
[expressi on2]

An expression that specifies the number of times the value will be repeated. The expression must not contain any
undefined symbols and must be an absolute expression (see Section 3.5, “Terms and Expressions”). The square
brackets ([])are required.

Description

.SIGNED_WORD is equivalent to .WORD except that the assembler indicates that the data is signed in the object
module. The linker uses this information to test for overflow conditions. .SIGNED WORD is useful after the case
instruction to ensure that the displacement fits in a word.

Note

Specifying .SIGNED WORD allows the linker to detect overflow conditions when the value of the expression
is in the range of 32,768 to 65,535. Values in this range can be stored as unsigned data but cannot be stored as
signed data in a word.

Example

. MACRO CASE, SRC, DI SPLI ST, TYPE=W LI M T=#0, NMODE=S"#, ?BASE, ?MAX
: MACRO to use CASE instruction,

VSI Confidential, NDA Required 113

VAX MACRO Assembler Directives

; SRC i s sel ector, DI SPLIST

; is list of displacements, TYPE
; is B (byte) W(word) L (long),
; LIMT is base val ue of

sel ect or
CASE' TYPE SRC, LI M T, NMODE' <<MAX- BASE>/ 2>-1
; Case instruction
BASE: ; Local | abel specifying base
.IRP EP, <Dl SPLI ST> ; to set up offset I|ist
. SI GNED_WORD EP- BASE ; Ofset Iist
. ENDR ;
MAX: ; Local |abel used to count
.ENDM CASE ; args
CASE | VAR <ERR_PROC, SORT, REV_SORT> ; I f 1VAR=0, error

CASEW | VAR, #0, S"#<<30001%- 30000%>/ 2>-1

30000%: ; Local |abel specifying base
. SI GNED_WORD ERR_PROC-30000% ; Offset Iist
. SI GNED_WORD SORT- 30000% ; Ofset Iist
. SI GNED_WORD REV_SORT-30000% ; Offset Iist
30001%: ; Local |abel used to count args
; =1, forward sort; =2, backward
; sort

CASE TEST <TEST1, TEST2, TEST3>, L, #1
CASEL TEST, #1, S"#<<30003%- 30002%>/ 2>-1

30002%: ; Local | abel specifying base
. SI GNED_WORD TEST1- 30002% ; Ofset |ist
. SI GNED_WORD TEST2- 30002% ; Ofset |ist
. SI GNED_WORD TEST3-30002% ; Ofset Iist
30003%: ; Local |abel used to count args

;: Value of TEST can be 1, 2, or 3

In this example, the CASE macro uses .SIGNED WORD to create a CASEB, CASEW,or CASEL instruction.

.SUBTITLE

.SUBTITLE — Subtitle directive

Format

. SUBTI TLE comment - stri ng

Parameter

conment -string

An ASCII string from 1 to 40 characters long; excess characters are truncated.

Description

.SUBTITLE causes the assembler to print the line of text, represented by the comment-string, in the table of
contents (which the assembler produces immediately before the assembly listing). The assembler also prints the
line of text as the subtitle on the second line of each assembly listing page. This subtitle text is printed on each
page until altered by a subsequent .SUBTITLE directive in the program.

114 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

.TITLE

.TITLE — Title directive

Format

. TI TLE nodul e- name conment -string

Parameters

nodul e- nane
An identifier from 1 to 31 characters long.
coment -string

An ASCII string from 1 to 40 characters long; excess characters are truncated.

Description

.TITLE assigns a name to the object module. This name is the first 31 or fewer nonblank characters following
the directive.

Notes

1. The module name specified with .TITLE bears no relationship to the file specification of the object module, as
specified in the VAX MACRO command line. The object module name appears in the linker load map and is
also the module name that the debugger and librarian recognize.

2. If .-TITLE is not specified, VAX MACRO assigns the default name .MAIN to the object module. If more than
one .TITLE directive is specified in the source program, the last . TITLE directive encountered establishes the
name for the entire object module.

3. When evaluating the module name, VAX MACRO ignores all spaces, tabs, or both, up to the first nonspace/
nontab character after .TITLE.

Example

.TITLE EVAL Eval uat es Expressions

.TRANSFER

.TRANSFER — Transfer directive

Format

. TRANSFER synbol

Parameter

synbol

A global symbol that is an entry point in a procedure or routine.

VSI Confidential, NDA Required 115

VAX MACRO Assembler Directives

Description

.TRANSFER redefines a global symbol for use in a shareable image. The linker redefines the symbol as the value
of the location counter at the TRANSFER directive after a shareable image is linked.

To make program maintenance easier, programs should not need to be relinked when the shareable images to
which they are linked change. To avoid relinking entire programs when their linked shareable images change, keep
the entry points in the changed shareable image at their original addresses. To do this, create an object module
that contains a transfer vector for each entry point. Do not change the order of the transfer vectors. Link this
object module at the beginning of the shareable image. The addresses of the entry points remain fixed even if the
source code for a routine is changed. After each . TRANSFER directive, create a register save mask (for procedures
only)and a branch to the first instruction of the routine.

The .TRANSFER directive does not cause any memory to be allocated and does not generate any binary code. It
merely generates instructions to the linker to redefine the symbol when a shareable image is being created.

Use .TRANSFER with procedures entered by the CALLS or CALLG instruction. In this case, use . TRANSFER
with the .ENTRY and .MASK directives. The branch to the actual routine must be a branch to the entry point plus
2 to bypass the2-byte register save mask.

Figure 6.1, “Using Transfer Vectors™ illustrates the use of transfer vectors.

Figure 6.1. Using Transfer Vectors

Linked with Shareable Image Linked with Object Modules
: .
Program * Program :
Calling CALLS ROUTB Calling CALLS ROUTE
Procedure Procedure
-

TRANSFER ROUTA

MASK ROUTA
Transter BRW ROUTA+2
Vector TRANSFER ROUTB+
Module MASK ROUTB

BRAW ROUTB+2 —1

Shareable <
Image
Other .ENTRY ROUTE,0 Objsct .ENTRY ROUTB, 0
Object START OF ROUTINE# Modules (START OF ROUTINE
Modules b .
* -
RET RET
N~
ZK-0535-GE

. TRANSFER ROUTI NE_A

116 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

. MASK ROUTI NE_A, "MkR4, R5> ; Copy entry nask
; and add registers
; R4 and R5

BRW ROUTI NE_A+2 ; Branch to routine

; (past entry mask)

. ENTRY ROUTI NE_A, "MKR2, R3> ; ENTRY point, save
; registers R2 and R3

RET

In this example, .MASK copies the entry mask of a routine to the new entry address specified by . TRANSFER. If
the routine is placed in a shareable image and then called, registers R2, R3, R4, and RS will be saved.

WARN

.WARN — Warning directive

Format

. WARN[expr essi on] ; coment

Parameters

expr essi on
An expression whose value is displayed when .WARN is encountered during assembly.
; comment

A comment that is displayed when .WARN is encountered during assembly. The comment must be preceded by
a semicolon (;).

Description

.WARN causes the assembler to display a warning message on the terminal or in the batch log file, and in the
listing file (if there is one).

Notes

1. .WARN, .ERROR, and .PRINT are called the message display directives. Use them to display information
indicating that a macro call contains an error or an illegal set of conditions.

2. When the assembly is finished, the assembler displays on the terminal or in the batch log file, the total number
of errors, warnings, and information messages, and the page numbers and line numbers of the lines causing
the errors or warnings.

3. If .WARN is included in a macro library, end the comment with an additional semicolon. If you omit the
semicolon, the comment will be stripped from the directive and will not be displayed when the macro is called.

4. The line containing the .WARN directive is not included in the listing file.

5. If the expression has a value of zero, it is not displayed in the warning message.

VSI Confidential, NDA Required 117

VAX MACRO Assembler Directives

Example

1. .IF DEFINED FULL
.| F DEFINED DQOUBLE_ PREC
. WVARN ; This conbination not tested
. ENDC
. ENDC

If the symbols FULL and DOUBLE_ PREC are both defined, the following warning message is displayed:

2. WACRO- W GENVRN, Cenerated WARNI NG Thi s conbi nati on not tested

WEAK

.WEAK — Weak symbol attribute directive

Format

. WVEAK synbol - | i st

Parameter
symbol -1i st

A list of legal symbols separated by commas ().

Description

.WEAK specifies symbols that are either defined externally in another module or defined globally in the current
module. .WEAK suppresses any object library search for the symbol.

When .WEAK specifies a symbol that is not defined in the current module, the symbol is externally defined. If
the linker finds the symbol's definition in another module, it uses that definition. If the linker does not find an
external definition, the symbol has a value of zero and the linker does not report an error. The linker does not
search a library for the symbol, but if a module brought in from a library for another reason contains the symbol
definition, the linker uses it.

When .WEAK specifies a symbol that is defined in the current module, the symbol is considered to be globally
defined. However, if this module is inserted in an object library, this symbol is not inserted in the library's symbol
table. Consequently, searching the library at link time to resolve this symbol does not cause the module to be
included.

Example

.WEAK | OCAR LAB_3

.WORD

.WORD — Word storage directive

Format

. WORD expr essi on-1i st

118 VSI Confidential, NDA Required

VAX MACRO Assembler Directives

Parameters

expression-1i st

One or more expressions separated by commas (,). You have the option of following each expression by a repetition
factor delimited with square brackets ([]).

An expression followed by a repetition factor has the format:
expr essi onl[expressi on2]

expressionl

An expression that specifies the value to be stored.

[expressi on2]

An expression that specifies the number of times the value will be repeated. The expression must not contain any
undefined symbols and must be an absolute expression (see Section 3.5, “Terms and Expressions”). The square
brackets are required.

Description

.WORD generates successive words (2 bytes) of data in the object module.

Notes

1. The expression is first evaluated as a longword, then truncated to a word. The value of the expression should
be in the range of -32,768 to+32,767 for signed data or 0 to 65,535 for unsigned data. The assembler displays
an error if the high-order 2 bytes of the longword expression have a value other than zero or “XFFFF.

2. The .SIGNED WORD directive is the same as .WORD except that the assembler displays a diagnostic message
if a value is in the range from 32,768 t065,535.

Example

. VORD AX3F, FI VE[3], 32

VSI Confidential, NDA Required 119

VAX MACRO Assembler Directives

120 VSI Confidential, NDA Required

Part ll. VAX Data Types
and Instruction Set

Part II describes the VAX data types, addressing mode formats,instruction formats, and the instructions themselves.

VSI Confidential, NDA Required 121

122 VSI Confidential, NDA Required

Terminology and Conventions

Chapter 7. Terminology and
Conventions

The following sections describe terminology and conventions used in Part IT of this volume.

7.1. Numbering

All numbers, unless otherwise indicated, are decimal. Where there is ambiguity, numbers other than decimal are
indicated with the base in English following the number in parentheses. For example:

FF (hex)

7.2. UNPREDICTABLE and UNDEFINED

Results specified as UNPREDICTABLE may vary from moment to moment,implementation to implementation,
and instruction to instruction within implementations. Software can never depend on results specified as
UNPREDICTABLE. Operations specified as UNDEFINED may vary from moment to moment, implementation
to implementation, and instruction to instruction within implementations. The operation might vary from causing
no effect to stopping system operation. UNDEFINED operations must not cause the processor to hang—to reach an
unhalted state from which there is no transition to a normal state in which the machine executes instructions. Note
the distinction between result and operation. Nonprivileged software cannot invoke UNDEFINED operations.
When the operation of the VAX scalar processor becomes UNDEFINED, so does the operation of its associated
processor. The converse is not true;when the operation of the vector processor becomes UNDEFINED, the
operation of the scalar processor need not become UNDEFINED.

7.3. Ranges and Extents

Ranges are specified in English and are inclusive (for example, a range of integers 0 to 4 includes the integers 0,
1, 2, 3, and 4). Extents are specified by a pair of numbers separated by a colon and are inclusive (that is, bits 7:3
specifies an extent of bits including bits 7, 6, 5, 4, and 3).

7.4. MBZ

Fields specified as MBZ (must be zero) must never be filled by software with a nonzero value. If the processor
encounters a nonzero value in a field specified as MBZ, a reserved operand fault or abort occurs if that field is
accessible to nonprivileged software. MBZ fields that are accessible only to privileged software (kernel mode)
cannot be checked for nonzero value by some or all VAX implementations. Nonzero values in MBZ fields
accessible only to privileged software may produce UNDEFINED operation.

7.5. RAZ

Fields specified as RAZ (read as zero) return a zero when read.

7.6. SBZ

Fields specified as SBZ (should be zero) should be filled by software with a zero value. Non-zero values in SBZ
fields produce UNPREDICTABLE results and may produce extraneous instruction-issue delays.

VSI Confidential, NDA Required 123

Terminology and Conventions

7.7. Reserved

Unassigned values of fields are reserved for future use. In many cases, some values are indicated as reserved
to CSS and customers. Only these values should be used for nonstandard applications. The values indicated as
reserved to VSI and all MBZ (must be zero) fields are to be used only to extend future standard architecture.

7.8. Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing addresses extend from right to left
and from top to bottom.

124 VSI Confidential, NDA Required

Basic Architecture

Chapter 8. Basic Architecture

The following sections describe the basic VAX architecture, including the following:
* Address space

» Data types

* Processor status longword (PSL)

* Permanent exception enables

* Instruction and addressing mode formats

8.1. Basic Architecture

The VAX architecture represents a significant extension of the PDP-11family architecture. It shares byte addressing
with the PDP-11 family, similar I/O and interrupt structures, and identical data formats. Although the instruction
set is not strictly compatible with the PDP-11 system, it is related and can be mastered easily by a PDP-11
programmer. Likewise, the similarity allows straightforward manual conversion of existing PDP-11 programs to
the VAX system. Existing user-mode PDP-11 programs that do not need the extended features of a VAX system
can run unchanged in the PDP-11 compatibility mode provided in the VAX architecture.

As compared to the PDP-11 architecture, VAX architecture offers a greatly extended virtual address space,
additional instructions and data types, and new addressing modes. VAX architecture also provides a sophisticated
memory management and protection mechanism, and hardware-assisted process sharing and synchronization.

A number of specific goals are achieved in the VAX design. For example:

* VAX architecture has maximal compatibility with the PDP-11 architecture consistent with a significant
extension of the virtual address space and a significant functional enhancement.

» High bit efficiency is achieved by a wide range of data types and new addressing modes.

» The systematic, elegant instruction set with orthogonality of operators, data types, and addressing modes can
be exploited easily,particularly by high-level language processors.

» The VAX system is extensible. The instruction set is designed so that new data types and operators can be
included efficiently in a manner consistent with the currently defined operators and data types.

With the addition of vector processing, VAX architecture can beclassified into the following two parts:
* A vector part, which includes the instructions,registers, and execution model for vector processing.
* A scalar part, which includes the remainder of the architecture.

Where confusion may be possible, this manual uses the term scalar to describe objects belonging to the scalar part
of the architecture — as in scalar instructions and scalar processor. Similarily, the term vector is used to describe
parts belonging to the vector part of the architecture — as in vector registers, and vector instructions. With the
exception of Chapter 10, VAX Vector Architecture, instructions, exceptions, registers, and other objects described
in the rest of the this manual refer to the scalar part of the architecture unless otherwise stated.

8.2. VAX Addressing

The basic addressable unit in VAX MACRO is the 8-bit byte. Virtual addresses are 32 bits long. Therefore,
the virtual address space is 2 32 (approximately 4.3 billion) bytes. Virtual addresses as seen by the program are
translated into physical memory addresses by the memory management mechanism.

VSI Confidential, NDA Required 125

Basic Architecture

8.3. Data Types

The following sections describe the VAX data types.

8.3.1. Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are numbered from right to left 0 to 7.

tA

ZK-1119A-GE

A byte is specified by its address A. When interpreted arithmetically, a byte is a two's complement integer with
bits of increasing significance ranging from bit 0 to bit 6, with bit 7 the sign bit. The value of the integer is int
he range -128 to +127. For the purposes of addition, subtraction, and comparison, VAX instructions also provide
direct support for the interpretation of a byte as an unsigned integer with bits of increasing significance ranging
from bit 0 to bit 7. The value of the unsigned integer is in the range 0 to 255.

8.3.2. Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The 16bits are numbered from right to left
0to 15.

15 a

A

ZK-1120A-03E

A word is specified by its address, A, which is the address of the byte containing bit 0. When interpreted
arithmetically, a word is a two's complement integer with bits of increasing significance ranging from bit 0 to bit
14, with bit 15 the sign bit. The value of the integer is in the range-32,768 to +32,767. For the purposes of addition,
subtraction, and comparison, VAX instructions also provide direct support for the interpretation of a word as an
unsigned integer with bits of increasing significance ranging from bit 0 to bit 15. The value of the unsigned integer
is in the range 0 to 65,535.

8.3.3. Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The32 bits are numbered from right to
left 0 to 31.

31 1]
HY

ZR-1121A-GE

A longword is specified by its address, A, which is the address of the byte containing bit 0. When interpreted
arithmetically, a longword is a two's complement integer with bits of increasing significance ranging from bit
0 to bit 30, with bit 31 the sign bit. The value of the integer is in the range-2,147,483,648 to +2,147,483,647.
For the purposes of addition, subtraction,and comparison, VAX instructions also provide direct support for the
interpretation of a longword as an unsigned integer with bits of increasing significance ranging from bit 0 to bit
31. The value of the unsigned integer is in the range 0 to 4,294,967,295.

8.3.4. Quadword

126 VSI Confidential, NDA Required

Basic Architecture

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The64 bits are numbered from right to
left 0 to 63.

31 1]
HY

ZR-1121A-GE

A quadword is specified by its address, A, which is the address of the byte containing bit 0. When interpreted
arithmetically, a quadword is a two's complement integer with bits of increasing significance ranging from bit 0
to bit 62, with bit 63 the sign bit. The value of the integer is in the range-2**63 to +2**63-1. The quadword data
type is not fully supported by VAX instructions.

8.3.5. Octaword

An octaword is 16 contiguous bytes starting on an arbitrary byte boundary. Thel28 bits are numbered from right
to left 0 to 127.

3 0
tA
A+
tA+B
tA+12
127 86

ZKR-1123A-GE

An octaword is specified by its address, A, which is the address of the byte containing bit 0. When interpreted
arithmetically, an octaword is a two's complement integer with bits of increasing significance ranging from bit 0
to bit 126, with bit 127 the sign bit. The value of the integer is in the range-2**127 to +2**127-1. The octaword
data type is not fully supported by VAX instructions.

8.3.6. F_floating

An F _floating datum is 4 contiguous bytes starting on an arbitrary byte boundary. The 32 bits are labeled from
right to left 0 to 31.

15 14 7 8 0

LS exp fracticn tA

fraction AP

ZK-1124A-GE

An F_floating datum is specified by its address, A, which is the address of the byte containing bit 0. The form of
an F_floating datum is sign magnitude with bit 15 as the sign bit, bits 14:7 as an excess 128 binary exponent, and
bits 6:0 and 31:16 as a normalized 24-bit fraction with the redundant most-significant fraction bit not represented.
Within the fraction, bits of increasing significance range from bits 16 to 31 and 0 to 6. The 8-bitexponent field
encodes the values 0 to 255. An exponent value of zero,together with a sign bit of zero, is taken to indicate that
the F_floating datum has a value of zero. Exponent values of 1 to 255 indicate true binary exponents of -127 to
+127. An exponent value of zero, together with a sign bit of 1, is taken as reserved. Floating-point instructions
processing are served operand take a reserved operand fault (see Appendix E, Exceptions That May Occur During
Instruction Execution). The value of an F_floating datum is in the approximate range .29*10**-38 to 1.7*10**38.
The precision of an F_floating datum is approximately one part in 2**23; that is, typically 7 decimal digits.

VSI Confidential, NDA Required 127

Basic Architecture

8.3.7. D_floating

A D_floating datum is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are labeled from right
to left O to 63.

15 14 7 8 0

L3 8xXp fracticn tA
fraction tA+2
fraction tA+d
fraction :A+B

ZK-11256A-GE

A D floating datum is specified by its address, A, which is the address of the byte containing bit 0. The form
of a D_floating datum is identical to an F_floating datum except for additional 32 low-significance fraction bits.
Within the fraction, bits of increasing significance range from bits 48 to 63,32 to 47, 16 to 31, and 0 to 6. The
exponent conventions and the approximate range of values are the same for D_floating as they are for F_floating.
The precision of a D_floating datum is approximately one part in 2**55, typically, 16 decimal digits.

8.3.8. G_floating

A G_floating datum is 8 contiguous bytes starting on an arbitrary byte boundary. The bits are labeled from right
to left O to 63.

15 14 4 3 0

L3 exp fract tA
fracticn T A+2
fracticn tA+d
fracticn tA+6

ZK-1126A-GE

A G_floating datum is specified by its address, A, which is the address of the byte containing bit 0. The form of a
G_floating datum is sign magnitude, with bit 15 as the sign bit, bits 14:4 as an excess 1024 binary exponent, and
bits3:0 and 63:16 as a normalized 53-bit fraction with the redundant most-significant fraction bit not represented.
Within the fraction, bits of increasing significance range from bits 48 to 63,32 to 47, 16 to 31, and 0 to3. The 11-bit
exponent field encodes the values 0 to 2047. An exponent value of zero, together with a sign bit of zero, is taken to
indicate that the G_floating datum has a value of zero. Exponent values of 1 to 2047 indicate true binary exponents
of -1023 to +1023. An exponent value of zero, together with a sign bit of 1, is taken as reserved. Floating-point
instructions processing a reserved operand take a reserved operand fault (see Appendix E, Exceptions That May
Occur During Instruction Execution). The value of a G_floating datum is in the approximate range .56¥10**-308
to .9%10%*308. The precision of a G_floating datum is approximately one part in 2**52; that is, typically 15
decimal digits.

8.3.9. H_floating

An H_floating datum is 16 contiguous bytes starting on an arbitrary byte boundary. The 128 bits are labeled from
right to left O to 127.

128 VSI Confidential, NDA Required

Basic Architecture

15 14 a

L exponent tA
fraction T A2
fraction tA+d
fraction :A+B
fraction :A+B
fraction :A+10
fraction tA+12
fraction tA+14

ZK-1127A-GE

AnH_floating datum is specified by its address, A, which is the address of the byte containing bit 0. The form of an
H_floating datum is sign magnitude with bit 15 as the sign bit, bits 14:0 as an excess 16,384 binary exponent,and
bits 127:16 as anormalized 113-bit fraction with the redundant most-significant fraction bit not represented. Within
the fraction, bits of increasing significance range from bits 112 to 127, 96 to 111, 80 to 95, 64 t079, 48 to 63, 32
to 47, and 16 to 31. The 15-bit exponent field encodes the values 0 to 32,767. An exponent value of zero, together
with a sign bit of 0,is taken to indicate that the H_floating datum has a value of zero. Exponent values of 1 to
32,767 indicate true binary exponents of -16,383 to +16,383.An exponent value of zero, together with a sign bit of
1, is taken as reserved. Floating-point instructions processing a reserved operand take are served operand fault (see
Appendix E, Exceptions That May Occur During Instruction Execution). The value of an H_floating datum is in
the approximate range .84*10**-4932 to .59*10**4932. The precision of an H_floating datum is approximately
one part in2**112, typically, 33 decimal digits.

8.3.10. Variable-Length Bit Field

A variable-length bit field is 0 to 32 contiguous bits located arbitrarily with respect to byte boundaries. A variable-
length bit field is specified by three attributes:

* Address A of a byte
* Bit position P, which is the starting location of the field with respect to bit 0 of the byte at A
* Size S of the field

The specification of a bit field is indicated by the following figure, where the field is the shaded area.

P+8 P+8-1 P P-1 0

ZK-1128A-QGE

For bit strings in memory, the position is in the range -2**31 to 2**31-1 and is conveniently viewed as a signed
29-bit byte offset and a 3-bit,bit-within-byte field.

31 3 2 0

byta offsat bwhb

ZK-1128A-0E

VSI Confidential, NDA Required 129

Basic Architecture

The sign-extended, 29-bit byte offset is added to the address A; the resulting address specifies the byte in which
the field begins. The

3-bit,

bit-within-byte field encodes the starting position (0 to 7) of the field within that byte. The VAX field instructions
provide direct support for the interpretation of a field as a signed or unsigned integer. When interpreted as a signed
integer, it is two's complement with bits of increasing significance ranging from bits 0 to S-2; bit S-1 is the sign
bit. When interpreted as an unsigned integer, bits of increasing significance range from bits 0 to S-1. Afield of
size zero has a value identically equal to zero.

A variable-length bit field may be contained in 1 to 5 bytes. From a memory management point of view, only the
minimum number of aligned longwords necessary to contain the field may be actually referenced.

For bit fields in registers, the position is in the range 0 to 31. The position operand specifies the starting position

(0 to 31) of the field in the register. A variable-length bit field may be contained in two registers if the sum of
position and size exceeds 32.

31 F P-1)]

Rn

R [n+1]

P+5 P+5-1

ZR-1130A-GE

For further details on the specification of variable-length bit fields, seethe descriptions of the variable-length bit
field instructions in Section 9.4, “Variable-Length Bit Field Instructions”.

8.3.11. Character String

A character string is a contiguous sequence of bytes in memory. A character string is specified by two attributes:
the address A of the first byte of the string, and the length L of the string in bytes. Thus, the format of a character
string is represented as follows:

-

A+L-1

7 0

ZK-1131A-GE

The address of a string specifies the first character of a string. Thus “XYZ” is represented as follows:

130 VSI Confidential, NDA Required

Basic Architecture

lell :A
"o T A+
nZe T A+2

ZK-11325-GE
The length L of a string is in the range 0 to 65,535.

8.3.12. Trailing Numeric String

A trailing numeric string is a contiguous sequence of bytes in memory. The string is specified by two attributes:
the address A of the first byte(most-significant digit) of the string, and the length L of the string in bytes.

All bytes of a trailing numeric string, except the least-significant digit byte, must contain an ASCII decimal digit
character (0 to 9).

The representation for the high-order digits is as follows:

Digit Decimal Hex ASCII Character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The highest-addressed byte of a trailing numeric string represents an encoding of both the least-significant digit
and the sign of the numeric string. The VAX numeric string instructions support any encoding; however, VSI uses
three encodings. These are as follows:

» Unsigned numeric encoding, in which there is no sign and the east-significant digit contains an ASCII decimal
digit character

* Zoned numeric encoding
* Overpunched numeric encoding

Because compilers of many manufacturers over the years have used the overpunch format and various card
encodings, several variations in overpunch format have evolved. Typically, these alternate forms are accepted on
input; the normal form is generated as the output for all operations. The valid representations of the digit and
sign in each of the latter two formats is indicated in Table 8.1, “Representation of Least-Significant Digit and
Sign in Zoned Numeric Format” and Table 8.2, “Representation of Least-Significant Digit and Sign in Overpunch
Format”.

VSI Confidential, NDA Required 131

Basic Architecture

Table 8.1. Representation of Least-Significant Digit and Sign in Zoned Numeric Format

Digit Decimal Hex ASCII
Character

0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9
-0 112 70 p
-1 113 71 q
-2 114 72 r
-3 115 73 s
-4 116 74 t
-5 117 75 u
-6 118 76 v
-7 119 77 w
-8 120 78 X
-9 121 79 y

Table 8.2. Representation of Least-Significant Digit and Sign in Overpunch Format

ASCII Character
Digit Decimal Hex Norm AlLL
0 123 7B { or?
1 65 41 A 1
2 66 42 B 2
3 67 43 C 3
4 68 44 D 4
5 69 45 E 5
6 70 46 F 6
7 71 47 G 7
8 72 48 H 8
9 73 49 I 9
-0 125 7D } 1!
-1 74 4A J
-2 75 4B K
-3 76 4C L
-4 77 4D M
132 VSI Confidential, NDA Required

Basic Architecture

ASCII Character
Digit Decimal Hex Norm AL
-5 78 4E N
-6 79 4F o
-7 80 50 P
-8 81 51 Q
-9 82 52 R

The length L of a trailing numeric string must be in the range 0 to 31 (0 to 31 digits). The value of a zero-length
string is zero.

The address A of the string specifies the byte of the string containing the most-significant digit. Digits of decreasing
significance are assigned to increasing addresses. Thus “123” is represented as follows:

Zoned Format or Unsigned Overpunch Format

7 4 3 e 7 4 3 e
3 1 tA 3 1 tA
3 2 TA+H 3 2 TA+H
3 3 tA+2 4 3 tA+2

ZK-1133A-GE

The trailing numeric string with a value of “-123” is represented as follows:

Zoned Format Owerpunch Format

7 4 3 [+ 7 4 3 [+
3 1 T A 3 1 T A
3 ? D A+l 3 ? D A+l
7 3 T A+2 4 o T A+2

ZK-1134A-GE

8.3.13. Leading Separate Numeric String

A leading separate numeric string is a contiguous sequence of bytes in memory. A leading separate numeric string
is specified by two attributes: the address A of the first byte (containing the sign character), and a length L, which
is the length of the string in digits and not the length of the string in bytes. The number of bytes in a leading
separate numeric string is L+1.

The sign of a separate leading numeric string is stored in a separate byte. Valid sign bytes are indicated in the
following table:

Sign Decimal Hex ASCII character
+ 43 2B +

+ 32 20 {blank}

- 45 2D -

VSI Confidential, NDA Required

133

Basic Architecture

The preferred representation for “+” is ASCII “+”. All subsequent bytes contain an ASCII digit character, as
indicated in the following table:

Digit Decimal Hex ASCII character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

The length L of a leading separate numeric string must be in the range
0to 31
(0 to 31 digits). The value of a zero-length string is zero.

The address A of the string specifies the byte of the string containing the sign. Digits of decreasing significance
are assigned to bytes of increasing addresses. Thus “+123” is represented as follows:

7 4 3 0
2 B tA
3 1 T A+
L} B :A+2
3 3 T A+3

ZK-1135A-GE

The leading separate numeric string with a value of “-123” is represented as follows:

7 4 3 e
2 D tA
3 1 T A+
3 2 T A+2
3 3 D A+3

ZK-1136A-GE

8.3.14. Packed Decimal String

A packed decimal string is a contiguous sequence of bytes in memory. A packed decimal string is specified by
two attributes: the address A of the first byte of the string and a length L, which is the number of digits in the
string and not the length of the string in bytes. The bytes of a packed decimal string are divided into two, 4-bit

134 VSI Confidential, NDA Required

Basic Architecture

fields (nibbles). Each nibble except the low nibble (bits 3:0) of the last (highest-addressed) byte must contain a
decimal digit. The low nibble of the highest-addressed byte must contain a sign. The representation for the digits
and sign is indicated as follows:

Digit or Sign Decimal Hexadecimal
0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

+ 10,12,14, or 15 A,CE,or F
- 11or13 BorD

The preferred sign representation is 12 for “+” and 13 for “-”.The length L is the number of digits in the packed
decimal string (not counting the sign); L must be in the range 0 to 31. When the number of digits is odd, the digits
and the sign fit into a string of bytes whose length is defined by the following equation: L/2 (integer part only) +
1. When the number of digits is even, it is required that an extra “0” digit appear in the high nibble (bits 7:4) of
the first byte of the string. Again, the length in bytes of the string is L/2 + 1.

The address A of the string specifies the byte of the string containing the most-significant digit in its high nibble.
Digits of decreasing significance are assigned to increasing byte addresses and from high nibble to low nibble
within a byte. Thus, “+123” has a length of 3 and is represented as follows:

i 2 tA

3 i2 s A+

ZK-1137A-GE

The packed decimal number “-12” has a length of 2 and is represented as follows:

D i tA

2 12 T A+

ZK-1138A-GE

8.4. Processor Status Longword (PSL)

The processor status longword (PSL) consists of a set of processor state variables associated with each process.
Bits 31:16 of the PSL have privileged status. For information on this part of the PSL, refer to the VAX Architecture
Reference Manual. Bits 15:0 of the PSL are referred to separately as the processor status word (PSW).

The format of the PSL is as follows:

VSI Confidential, NDA Required 135

Basic Architecture

3130202827262524 2322 2120 1615 B7 68543210

CI|T F{I|CUR|PRV |M DIF|I

M|PIMBZ|P|S|MOD[MOD|B| IPL MBZ VIUIVITINIZ|V|C
D z

ZK-1139A-GE

The processor status word (PSW), bits 0 to 15 of the processor status longword, contains the following codes:
» The condition codes, which give information on the results produced by previous VAX scalar instructions.

» The exception enable codes, which control the processor action on certain VAX scalar exception conditions (see
Appendix E, Exceptions That May Occur During Instruction Execution).

The condition codes are UNPREDICTABLE when they are affected by UNPREDICTABLE results. The VAX
procedure call instructions conditionally set the IV and DV enable bits, clear the FU enable bit, and leave the
Tenable bit unchanged at procedure entry.

The PSL is saved automatically on the stack when an exception or interrupt occurs and is saved in the process
control block on a process context switch. The PSL can also be read by the MOVPSL instruction.

The vector processor does not use PSL(IV) and PSL(FU) to enable integer overflow and floating underflow
exception checking for vector instructions. Also, vector instruction exceptions do not affect the values of the PSL
condition codes bits.

8.4.1. C Bit

The C (carry) condition code bit, when set, indicates that the last instruction that affected C had a carry out of the
most-significant bit of the result, or a borrow into the most-significant bit. When C is clear, no carry or borrow
occurred.

8.4.2. V Bit

The V (overflow) condition code bit, when set, indicates that the last instruction that affected V produced a result
whose magnitude was too large to be properly represented in the operand that received the result, or that there was
a conversion error. When V is clear, no overflow or conversion error occurred.

8.4.3. Z Bit

The Z (zero) condition code, when set, indicates that the last instruction that affected Z produced a result that was
zero. When Z is clear, the result was nonzero.

8.4.4. N Bit

The N (negative) condition code bit, when set, indicates that the last instruction that affected N produced a negative
result. When N is clear, the result was positive (or zero).

8.4.5. T Bit

The T (trace) bit, when set at the beginning of an instruction, causes the TP bit in the Processor Status Longword to
be set. When TP is set at the end of an instruction, a trace fault is taken before the execution of the next instruction.
See Appendix E, Exceptions That May Occur During Instruction Execution for additional information on the TP
bit and the trace fault.

8.4.6. IV Bit

136 VSI Confidential, NDA Required

Basic Architecture

The IV (integer overflow) bit, when set, forces an integer overflow trap after execution of an instruction that
produced an integer result that overflowed or had a conversion error. When 1V is clear, no integer overflow trap
occurs.(However, the condition code V bit is still set.)

8.4.7. FU Bit

The FU (floating underflow) bit, when set, forces a floating underflow fault if the result of a floating-point
instruction is too small in magnitude to be represented in the result operand. When FU is clear, no underflow
fault occurs.

8.4.8. DV Bit

The DV (decimal overflow) bit, when set, forces a decimal overflow trap after execution of an instruction that
produced an overflowed decimal (numeric string, or packed decimal) result or had a conversion error. When DV
is clear,no trap occurs. (However, the condition code V bit is still set.)

8.5. Permanent Exception Enables

The processor action on certain exception conditions is not controlled by bits in the PSW. Traps or faults always
result from these exception conditions.

8.5.1. Divide by Zero

A divide-by-zero trap is forced after the execution of an integer or decimal division instruction that has a zero
divisor. A fault occurs on a floating-point division instruction that has a zero divisor.

8.5.2. Floating Overflow

A floating overflow fault is forced after the execution of a floating-point instruction that produced a result too
large to be represented in the result operand.

8.6. Instruction and Addressing Mode
Formats

The following sections describe the formats for instruction opcodes and for the operand specifiers used with the
various addressing modes.

8.6.1. Opcode Formats

An instruction is specified by the byte address A of its opcode.

opcode tA

ZK-1140A-GE

The opcode may extend over 2 bytes; the length depends on the contents of the byte at address A. If, and only if,
the value of the byte is FC (hex) to FF(hex), the opcode is 2 bytes long.

15 B 7 0
ocpcode FC - FF tA

ZK-1141A-GE

VSI Confidential, NDA Required 137

Basic Architecture

8.6.2. Operand Specifiers

Each instruction takes a specific sequence of operand specifier types. An operand specifier type conceptually has
two attributes: the access type and the data type.

The access types include the following:
1. Read—The specified operand is read only.
2. Write—The specified operand is written only.

3. Modify—The specified operand is read, potentially modified, and written. This operation is not performed
under a memory interlock.

4. Address—The address of the specified operand in the form of a longword is the actual instruction operand.
The specified operand is not accessed directly, although the instruction may subsequently use the address to
access that operand.

5. Variable bit field base address—This access type is a special variant of the address access type. Variable bit
field base address type is the same as address access type except for register mode. In register mode, the field
is contained in register n, designated by the operand specifier (or register n+1concatenated with register n).

6. Branch—No operand is accessed. The operand specifier itself is a branch displacement.

Access types 1 to 5 are general mode addressing. Type 6 is branch mode addressing.

The data types include the following:

* Byte

* Word

* Longword and F_floating (equivalent for addressing mode considerations)

* Quadword, D _floating, and G_floating (equivalent for addressing mode considerations)

* Octaword and H_floating (equivalent for addressing mode considerations)

For the address and branch access types, which do not directly reference operands, the data type indicates:

* Address—the operand size to be used in the address calculation in autoincrement, autodecrement, and index
modes

» Branch—the size of the branch displacement

8.7. General Addressing Mode Formats

The following sections describe the operand specifier formats for the general addressing modes. For descriptions
and examples of the use of the general addressing modes, see Chapter 5, VAX MACRO Addressing Modes.

In Section 8.8, “Summary of General Mode Addressing”, Table 8.5, “General Register Addressing” is a summary
of general register addressing and Table 8.6, “Program Counter Addressing” is a summary of program counter
addressing.

Notation for Describing Addressing Modes

The following notation describes the addressing modes:

+ Addition

- Subtraction

* Multiplication

138 VSI Confidential, NDA Required

Basic Architecture

<- Is replaced by

= Is defined as

’ Concatenation

Rn or R[n] The contents of register n

PC or SP The contents of register 15 or 14, respectively

x) The contents of a location in memory whose address is
X

{} Arithmetic parentheses that indicate precedence

SEXT(x) x is sign extended to size of operand needed

ZEXT(x) x is zero extended to size of operand needed

OA Operand address

! Comment delimiter

Note

In the formal descriptions of the addressing modes, the symbol for a register(for example, Rn or PC) always means
the contents of the register (for example, the contents of register n or the contents of register 15). However,in text,
when there is no ambiguity, the symbol for a register is often used as the name of a register (for example, Rn may
be used for the name of register n, and PC may be used for the name of register 15).

Each general mode addressing description includes the definition of the operand address and the specified operand.
For operand specifiers of address access type, the operand address is the actual instruction operand. For other
access types, the specified operand is the instruction operand. The branch mode addressing description includes
the definition of the branch address.

8.7.1. Register Mode

The operand specifier format is as follows:

5 Rn

ZH-1142A-GE

No specifier extension follows.

In register mode addressing, the operand is the contents of either register nor (for quadword, D_floating, and
certain field operands) register n+1concatenated with register n.

operand = Rn I If 1 register
or
R[n+1] 'Rn ! If two registers
or
R[n+3] 'R[n+2] ’'R[n+1] 'Rn |If four registers

The assembler notation for register mode is Rn.

8.7.2. Register Deferred Mode

The operand specifier format is as follows:

VSI Confidential, NDA Required 139

Basic Architecture

6 Rn

ZK-1143A-GE

No specifier extension follows.
In register deferred mode addressing, the address of the operand is the contents of register n.
OA = Rn operand = (OA)

The assembler notation for register deferred mode is (Rn).

8.7.3. Autoincrement Mode

The operand specifier format is as follows:

B Rn

ZK-1144A-GE

No specifier extension follows. If Rn denotes the PC, immediate data follows,and the mode is termed immediate
mode.

In autoincrement mode addressing, the address of the operand is the contents of register n. After the operand
address is determined, the size of theoperand in bytes (1 for byte; 2 for word; 4 for longword and F_floating; 8 for
quadword, G_floating, and D_floating; and 16 for octaword and H_floating) is added to the contents of register
n, and the contents of register n are replaced by the result.

OA = Rn Rn <- Rn + size operand = (OA)

The assembler notation for autoincrement mode is (Rn)+. For immediate mode,the notation is I"#constant, where
constant is the immediate data that follows.

8.7.4. Autoincrement Deferred Mode

The operand specifier format is as follows:

9 Rn

ZK-1145A-GE

No specifier extension follows. If Rn denotes the PC, a longword address follows and the mode is termed absolute
mode.

In autoincrement deferred mode addressing, the address of the operand is the contents of a longword whose address
is the contents of register n. After the operand address is determined, 4 (the size in bytes of a longword address)
is added to the contents of register n and the contents of register n are replaced by the result.

OA = (Rn) Rn <- Rn + 4 operand = (OA)

The assembler notation for autoincrement deferred mode is @(Rn)+. For absolute mode, the notation is @#address,
where address is the longword that follows.

140 VSI Confidential, NDA Required

Basic Architecture

8.7.5. Autodecrement Mode

The operand specifier format is as follows:

7 Rn

ZK-114BA-GE

No specifier extension follows.

In autodecrement mode addressing, the size of the operand in bytes (1 for byte; 2 for word; 4 for longword and
F floating; 8 for quadword, G floating,and D_floating; and 16 for octaword and H_floating) is subtracted from
the contents of register n, and the contents of register n are replaced by the result. The updated contents of register
n are the address of the operand.

Rn <- Rn - size OA = Rn operand = (OA)

The assembler notation for autodecrement mode is -(Rn).

8.7.6. Displacement Mode

There are three operand specifier formats.

10 Rn

ZK-1147A-GE

The specifier extension is a signed byte displacement that follows the operand specifier. This is the byte
displacement mode.

12 Rn

ZK-1148A-GE

The specifier extension is a signed word displacement that follows the operand specifier. This is the word
displacement mode.

14 Rn

ZK-1149A-GE

The specifier extension is a longword displacement that follows the operand specifier. This is the longword
displacement mode.

In displacement mode addressing, the displacement (after it is sign extended to 32 bits, if it is byte or word
displacement) is added to the contents of register n, and the result is the operand address.

QA = Rn + SEXT(displ) I'lf byte or word displacenent

or

VSI Confidential, NDA Required 141

Basic Architecture

Rn + di spl I I'f longword di spl acenment
operand = (QA)

If Rn denotes PC, the updated contents of the PC are used. The address in the PC (the updated contents) is the
address of the first byte beyond the specifier extension.

The assembler notation for byte, word, and long displacement mode is B*"D(Rn),W"D(Rn), and L*D(Rn),
respectively, where D = displacement.

8.7.7. Displacement Deferred Mode

There are three operand specifier formats.

11 Rn

ZK-1150A-GE

The specifier extension is a signed byte displacement that follows the operand specifier. This is the byte
displacement deferred mode.

13 Rn

ZK-1151A-GE

The specifier extension is a signed word displacement that follows the operand specifier. This is the word
displacement deferred mode.

15 Rn

ZK-1162A-GE

The specifier extension is a longword displacement that follows the operand specifier. This is the longword
displacement deferred mode.

In displacement deferred mode addressing, the displacement (after it is sign extended to 32 bits, if it is byte or word
displacement) is added to the contents of register n, and the result is the address of a longword whose contents
are the operand address.

QA = (Rn + SEXT(displ)) I If byte or word displ acenent
or
(Rn + displ) I If longword di spl acenment

operand = (QA)

If Rn denotes PC, the updated contents of the PC are used. The address in the PC (the updated contents) is the
address of the first byte beyond the specifier extension.

The assembler notation for byte, word, and longword displacement deferred mode is @B”~D(Rn), @W”D(Rn),
and @L"D(Rn), respectively, where D = displacement.

8.7.8. Literal Mode

142 VSI Confidential, NDA Required

Basic Architecture

The operand specifier format is as follows:

D lite ral

ZK-1163A-GE

No specifier extension follows.

For operands of data type byte, word, longword, quadword, and octaword, the operand is the zero extension of
the 6-bit literal field.

operand = ZEXT(literal)
Thus, for these data types, you may use literal mode for values in the range Oto 63.

For operands of data type F_floating, G_floating, D floating, and H floating, the 6-bit literal field is composed
of two, 3-bit fields. These fields are illustrated in the following diagram,where exp is exponent and fra is fraction:

Bxp fra

ZK-1154A-GE

You use the exponent and fraction fields to form an F_floating or D_floating operand as follows:

15 14 7 6 4 3 ¢

¥ 128 + exp fra ¥
H A+ 2
H A+ d
H A+ 6

ZK-1155A-GE

Note that bits 63:32 are not present in an F_floating operand.

You use the exponent and fraction fields to form a G_floating operand as follows:

15 14 4 3 1 ¢

0 1624 + sxp fra | O
H tA+2
H A+ 4
H A+ 8

ZK-1156A-GE

VSI Confidential, NDA Required 143

Basic Architecture

You use the exponent and fraction fields to form an H_floating operand as follows:

15 14 "
0 16,384 + sxp
fra ¥ A+ 2
0 A+ d
¥ A+ 6
¥ A+ 8
¥ A+ 10
¥ A+12
0 A 14

ZK-1157 A-GE

The range of values available is given in Table 8.3, “Floating-Point Literals Expressed as Decimal Numbers” and
Table 8.4, “Floating-Point Literals Expressed as Rational Numbers™ in both decimal and rational number notation.

Table 8.3. Floating-Point Literals Expressed as Decimal Numbers

Exponent |0 1 2 3 4 5 6 7

0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375
1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875
2 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75

3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Table 8.4. Floating-Point Literals Expressed as Rational Numbers

Exponent |0 1 2 3 4 5 6 7

0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8
2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-12 3-3/4
3 4 4-1/2 5 5-172 6 6-1/2 7 7-172
4 9 10 11 12 13 14 15

5 16 18 20 22 24 26 28 30

6 32 36 40 44 48 52 56 60

7 64 72 80 88 96 104 112 120

144 VSI Confidential, NDA Required

Basic Architecture

The assembler notation for literal mode is S*#literal.

8.7.9. Index Mode

The operand specifier format is as follows:

15 8 7 4 3 D

4 Rx

ZK-1168A-GE

Bits 15:8 contain a second operand specifier (termed the base operand specifier) for any of the addressing modes
except register, literal, or index. The specification of register, literal, or index addressing mode results in an illegal
addressing mode fault (see Appendix E, Exceptions That May Occur During Instruction Execution). If the base
operand specifier requires it, a specifier extension immediately follows. The base operand specifier is subject to
the same restrictions as would apply if it were used alone. If the use of some particular specifier is illegal (that is,
causes a fault or UNPREDICTABLE behavior) under some circumstances, then that specifier is similarly illegal
as a base operand specifier in index mode under the same circumstances.

The operand to be specified by index mode addressing is termed the primary operand. You normally use the base
operand specifier to determine an operand address. This address is termed the base operand address (BOA). The
address of the primary operand specified is determined by multiplying the contents of the index register x by
the size of the primary operand in bytes (1 for byte; 2for word; 4 for longword and F_floating; 8 for quadword,
D floating, and G_floating; and 16 for octaword and H_floating), adding BOA, and taking the result.

QA = BOA + {size * (Rx)}
operand = (QA)

If the base operand specifier is for autoincrement or autodecrement mode, theincrement or decrement size is the
size in bytes of the primary operand.

Certain restrictions are placed on the index register x. You cannot use the PCas an index register. If you use
it, a reserved addressing mode fault occurs(see Appendix E, Exceptions That May Occur During Instruction
Execution). If the base operand specifier is for an addressing mode that results in register modification (that is,
autoincrement mode, autodecrement mode, or autoincrement deferred mode), the same register cannot be the index
register. If it is, the primary operand address is UNPREDICTABLE.

The names of the addressing modes resulting from index mode addressing are formed by adding the suffix
“indexed” to the addressing mode of the base operand specifier. The following list gives the names and assembler
notation (the index register is designated Rx to distinguish it from the register Rn in the base operand specifier):

» Register deferred indexed— (Rn)[Rx]

* Autoincrement indexed— (Rn)+[Rx] or Immediate indexed— I"#constant[Rx](Immediate indexed is
recognized by the assembler, but is not generally useful. Note that the operand address is independent of the
value of the constant.)

* Autoincrement deferred indexed— @(Rn)+[Rx] or Absolute indexed— @#address[Rx]
* Autodecrement indexed— -(Rn)[Rx]
* Byte, word, or longword displacement indexed— B~D(Rn)[Rx],W"D(Rn)[Rx], or L"D(Rn)[Rx]

* Byte, word, or longword displacement deferred indexed—@B”D(Rn)[Rx],@W"D(Rn)[Rx], or @L"D(Rn)[Rx]

8.8. Summary of General Mode Addressing

This section provides summaries of general register and program counter(PC) addressing.

VSI Confidential, NDA Required 145

Basic Architecture

Table 8.5, “General Register Addressing” is a summary of general register addressing and Table 8.6, “Program

Counter Addressing” is a summary of PC addressing.

8.8.1. General Register Addressing

The general register addressing format is as follows:

mode reg

ZK-1159A-GE

Table 8.5. General Register Addressing

Dec Name Assembler r*mw*a*v PC SP AP
Hex
FP
0-3 0-3 Literal S #literal A i i i — — —
4 4 Indexed i[Rx] y*y*y*y*y f y y
5 5 Register Rn y¥y*y*fry u uq uo
6 6 Register deferred (Rn) yry*y*y*y u y Y
7 7 Autodecrement -(Rn) y*y*y*y*y u y y
g 8 Autoincrement (Rn)+ y*y*y*y*y y y
9 9 Autoincrement @(Rn)+ yEy*y*y*y y y
deferred
A 10 Byte displacement B~D(Rn) y*y*y*y*y Y
B 11 Byte displacement @B”D(Rn) yry*Fy*yty
deferred
C 12 Word displacement W2D(Rn) yry*y*y*y
D 13 Word displacement @W”"D(Rn) |y*y*y*y*y
deferred
E 14 Longword displacement | L"D(Rn) yry*y*y*y
F 15 Longword displacement|@L"D(Rn) y¥y*y*y*y
Key:

D—Displacement

i—Any indexable addressing mode

- —Logically impossible

f—Reserved addressing mode fault
p—Program Counter addressing

u—UNPREDICTABLE

uq—UNPREDICTABLE for quadword, octaword, D_floating, H_floating, and G_floating, (and field if position and size greate
uo—UNPREDICTABLE for octaword and H_floating

ux—UNPREDICTABLE for index register same as base register
y—VYes, always valid addressing mode

r—Read access
m—Modify access
w—Write access
a—Address access
v—TField access

146

VSI Confidential, NDA Required

Basic Architecture

Dec Name
Hex

Assembler

r*mw¥*a*v

PC SP

deferred

Key:

D—Displacement

i—Any indexable addressing mode
- —Logically impossible
f—Reserved addressing mode fault
p—Program Counter addressing
u—UNPREDICTABLE

uq—UNPREDICTABLE for quadword, octaword, D_floating, H_floating, and G_floating, (and field if position and si:

uo—UNPREDICTABLE for octaword and H_floating
ux—UNPREDICTABLE for index register same as base register

y—VYes, always valid addressing mode
r—Read access

m—Modify access

w—Write access

a—Address access

v—Field access

8.8.2. Program Counter Addressing

The program counter addressing format is as follows:

7 43 2 1 0
mede | 1]1|1]1

ZK-1326A-GE

Table 8.6. Program Counter Addressing

Dec Name Assembler r*mw*a*v Can Be

Hex Indexed?

8 8 Immediate ["#constant y*utu*y*y u

9 9 Absolute (@#address yry*y*y*y y

A 10 Byte relative B”address yry*y*y*y y

B 11 Byte relative (@B"address y¥y*y*y*y y
deferred

C 12 Word relative W7 address yry*y*y*ry

D 13 Word relative @W"address yry*y*y*y
deferred

E 14 Longword L*address yry*y*y*y y

Key:

u—UNPREDICTABLE

y—Yes, always valid addressing mode
r—Read access

m—Modify access

w—Write access

a—Address access

v—TField access

VSI Confidential, NDA Required

147

Basic Architecture

Dec Name Assembler r*mw*a*v Can Be
Hex Indexed?
relative
F 15 Longword (@L"address yry*y*y*ry y
relative deferred

Key:

u—UNPREDICTABLE

y—Yes, always valid addressing mode
r—Read access

m—Modify access

w—Write access

a—Address access

v—TField access

8.9. Branch Mode Addressing Formats

There are two operand specifier formats.

displ

ZK-11B0A-GE
The operand specifier is a signed byte displacement.

15 Q

displ

ZK-1161A-GE

The operand specifier is a signed word displacement.

In branch displacement addressing, the byte or word displacement is sign extended to 32 bits and added to the
updated address in the PC. The updated address in the PC is the location of the first byte beyond the operand
specifier. The result is the branch address A.

A = PC + SEXT(displ)

The assembler notation for byte and word branch displacement addressing is A, where A is the branch address.
Note that you must use the branch address, and not the displacement.

148 VSI Confidential, NDA Required

VAX Instruction Set

Chapter 9. VAX Instruction Set

The following sections describe the native-mode instruction set. The instructions are divided into groups according
to their function and are listed alphabetically within each group.

9.1. Introduction to the VAX Instruction Set

This section describes the instructions generally used by all software across all implementations of the VAX
architecture.

You can find a more complete description of the instruction set in the VAX Architecture Reference Manual. The
VAX Architecture Reference Manual also contains information on instructions that are generally used by privileged
software and are specific to specialized portions of the VAX architecture, such as memory management, interrupts
and exceptions, process dispatching, and processor registers.

A list of instructions and opcode assignments appears in Appendix D, Permanent Symbol Table Defined for Use
with VAX MACRO.

9.2. Instruction Descriptions

The instruction set is divided into the following 12 major sections:
* Integer arithmetic and logical

* Address

* Variable-length bit field

+ Control

* Procedure call

* Miscellaneous

* Queue

* Floating point

* Character string

* Cyclic redundancy check (CRC)
* Decimal string

« Edit

Within each major section, instructions that are closely related are combined into groups and described together.
The instruction group description is composed of the following:

* The group name.

» The format of each instruction in the group, including the name and type of each instruction operand specifier
and the order in which it appears in memory. Operand specifiers from left to right appear in increasing memory
addresses.

» The operation of the instruction. The operation is given as a sequence of pseudo code statements in an ALGOL-
like syntax. Each VAX processor may implement the instruction in different or more efficient ways, but each
processor gives results consistent with the pseudo code, English descriptions, and notes.

¢ The effect on condition codes.

VSI Confidential, NDA Required 149

VAX Instruction Set

» Exceptions specific to the instruction. Exceptions that are generally possible for all instructions (for example,
illegal or reserved addressing mode, T-bit, and memory management violations) are not listed.

» The opcodes, mnemonics, and names of each instruction in the group. The opcodes are given in hexadecimal.
A description, in English, of the instruction.

» Optional notes on the instruction and programming examples.

Operand Specifier Notation

Operand specifiers are described as follows:

name . access-type data-type

nane

A mnemonic name for the operand in the context of the instruction. The name is often abbreviated.
access-type

A letter denoting the operand specifier access type:

a Calculate the effective address of the specified
operand. Address is returned in a longword that is

the actual instruction operand. Context of address
calculation is given by dat a- t ype; that is,size to be
used in autoincrement, autodecrement, and indexing.

b No operand reference. Operand specifier is a branch
displacement. Size of branch displacement is given by
dat a- t ype.

m Operand is read, potentially modified, and written.

Note that this is not an indivisible memory operation.
Also note that if the operand is not actually modified,
it may not be written back. However, modify type
operands are always checked for both read and write

accessibility.
r Operand is read only.
v Calculate the effective address of the specified

operand. If the effective address is in memory, the
address is returned in a longword that is the actual
instruction operand. Context of address calculation is
given by dat a- t ype. If the effective address is Rn,
the operand is in Rn or R[n+1]'Rn.

w Operand is written only.

dat a-type

A letter denoting the data type of the operand:

Byte

D_floating

F floating

G _floating

H_floating

=l 5| || | C

Longword

150 VSI Confidential, NDA Required

VAX Instruction Set

0 Octaword

q Quadword

W Word

X First data type specified by instruction

y Second data type specified by instruction

Operation Description Notation

The operation of an instruction is given as a sequence of control and assignment statements in an ALGOL-like
syntax. No attempt is made to formally define the syntax; it is assumed to be familiar to the reader. The notation

used is an extension of the notation introduced in Section 8.7, “General Addressing Mode Formats”.

+ Addition

- Subtraction, unary minus
* Multiplication

/ Division (quotient only)
Hk Exponentiation

' Concatenation

<- Is replaced by

= Is defined as

Rn or R[n] Contents of register Rn

PC, SP, FP, or AP

The contents of register R15, R14, R13, or
R12,respectively

PSW The contents of the processor status word

PSL The contents of the processor status longword

x) Contents of memory location whose address is x

x)+ Contents of memory location whose address is X; x
incremented by the size of operand referenced
atx

-(x) x decremented by size of operand to be referenced at
x;contents of memory location whose address is x

<X:y> A modifier that delimits an extent from bit position x
to bit position y inclusive

<x1, x2,...,xn> A modifier that enumerates bitsx1,x2,...,xn

{} Arithmetic parentheses used to indicate precedence

AND Logical AND

OR Logical OR

XOR Logical XOR

NOT Logical (one's) complement

LSS Less than signed

LSSU Less than unsigned

LEQ Less than or equal signed

LEQU Less than or equal unsigned

EQL Equal signed

EQLU Equal unsigned

VSI Confidential, NDA Required

151

VAX Instruction Set

NEQ Not equal signed

NEQU Not equal unsigned

GEQ Greater than or equal signed

GEQU Greater than or equal unsigned

GTR Greater than signed

GTRU Greater than unsigned

SEXT(x) x is sign extended to size of operand needed

ZEXT(x) x is zero extended to size of operand needed

REM(x,y) Remainder of x divided by y, such that x/y and
REM(x,y) have the same sign

MINU(x,y) Minimum unsigned of x and y

MAXU(x,y) Maximum unsigned of x and y

Use the following conventions:

* Other than alterations caused by (x)+, or -(x), and the advancement of the program counter (PC), only operands
or portions of operands appearing on the left side of assignment statements are affected.

» No operator precedence is assumed, except that replacement (<-) has the lowest precedence. Precedence is
indicated explicitly by { }.

» All arithmetic, logical, and relational operators are defined in the context of their operands. For example, “+”
applied to floating operands means a floating add, while “+” applied to byte operands is an integer byte add.
Similarly, “LSS” is a floating comparison when applied to floating operands, while “LSS” is an integer byte
comparison when applied to byte operands.

* Instruction operands are evaluated according to the operand specifier conventions (see Chapter 8, Basic
Architecture). The order in which operands appear in the instruction description has no effect on the order of
evaluation.

» Condition codes generally indicate the effect of an operation on the value of actual stored results, not on “true”
results (which might be generated internally to greater precision). For example, two positive integers can be
added together and the sum stored as a negative value because of overflow. The condition codes indicate a
negative value even though the “true” result is clearly positive.

9.2.1. Integer Arithmetic and Logical Instructions

The following instructions are described in this section:

Description and Opcode Number of Instructions

1. Add Aligned Word 1

ADAWI add.rw, sum.mw

2. Add 2 Operand 3

ADD{B,W,L}2 add.rx, sum.mx

3. Add 3 Operand 3
ADD{B,W,L}3 addl.rx, add2.rx,
sum.wx

4. Add with Carry 1

ADWC add.rl, sum.ml

5. Arithmetic Shift 2

152 VSI Confidential, NDA Required

VAX Instruction Set

Description and Opcode

Number of Instructions

ASH{L,Q} cnt.rb, src.rx, dst.wx

Bit Clear 2 Operand

BIC{B,W,L}2 mask.rx, dst.mx

Bit Clear 3 Operand

BIC{B,W,L}3 mask.rx, src.rx,
dst.wx

Bit Set 2 Operand

BIS{B,W,L}2 mask.rx, dst.mx

Bit Set 3 Operand

BIS{B,W,L}3 mask.rx, src.rx,
dst.wx

10.

Bit Test

BIT{B,W,L} mask.rx, src.rx

11.

Clear

CLR{B,W,L,Q,0} dst.wx

12.

Compare

CMP{B,W,L} srcl.rx, src2.rx

13.

Convert

CVT{B,W,L}{B,W,L} src.rx,
dst.wy

All pairs except BB,WW,LL

14.

Decrement

DEC{B,W,L} dif.mx

15.

Divide 2 Operand

DIV{B,W,L}2 divr.rx, quo.mx

16.

Divide 3 Operand

DIV{B,W,L}3 divr.rx, divd.rx,
quo.wXx

17.

Extended Divide

EDIV divr.rl, divd.rq, quo.wl,
rem.wl

18.

Extended Multiply

EMUL mulr.rl, muld.rl,
add.rl,prod.wq

19.

Increment

INC{B,W,L} sum.mx

20.

Move Complemented

VSI Confidential, NDA Required

153

VAX Instruction Set

Description and Opcode

Number of Instructions

MCOM{B,W,L} src.rx, dst.wx

XOR{B,W,L}3 mask.rx,
sre.rx,dst.wx

21. Move Negated 3
MNEG{B,W,L} src.rx, dst.wx

22. Move 4
OV{B,W,L,Q} src.rx, dst.wx

23. Move Zero-Extended 3
MOVZ{BW,BL,WL} src.rx, dst.wy

24. Multiply 2 Operand 3
MUL{B,W,L}2 mulr.rx, prod.mx

25. Multiply 3 Operand 3
MUL{B,W,L}3 mulr.rx,
muld.rx,prod.wx

26. Push Long 1
PUSHL src.rl, {-(SP).wl}

27. Rotate Long 1
ROTL cnt.rb, src.rl, dst.wl

28. Subtract with Carry 1
SBWC sub.rl, dif. ml

29. Subtract 2 Operand 3
SUB{B,W,L}2 sub.rx, dif.mx

30. Subtract 3 Operand 3
SUB{B,W,L}3 sub.rx, min.rx,
dif.wx

31. Test 3
TST{B,W,L} src.rx

32. Exclusive OR 2 Operand 3
XOR{B,W,L}2 mask.rx, dst.mx

33. Exclusive OR 3 Operand 3

ADAWI

ADAWI — Add Aligned Word Interlocked
Format

opcode add.rw, sum nw

154 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

N <—sum LSS 0;

Z <—sum EQL 0;

A% <— {integer overflow};

C <—/{carry from most-significant bit};
Exceptions

reserved operand fault
integer overflow

Opcodes

58 ADAWI Add Aligned Word Interlocked

Description

The addend operand is added to the sum operand, and the sum operand is replaced by the result. If the sum operand
is contained in memory, then the operation is interlocked against interlocked operations to the same address from
other processors. The destination must be aligned on a word boundary; that is, bit 0 of the address of the sum
operand must be zero. If it is not, a reserved operand fault is taken.

Notes

1. Integer overflow occurs if the input operands to the add have the same sign, and the result has the opposite sign.
On overflow, the sum operand is replaced by the low-order bits of the true result.

2. If the addend and the sum operands overlap, the result and the condition codes are UNPREDICTABLE.

ADD

ADD — Add

Format

2operand: opcode add.rx, sum nx

3operand: opcode addl.rx, add2.rx, sum wx

Condition Codes

N <—sum LSS 0;

Z <—sum EQL 0;

A% <—{integer overflow};

C <—{carry from most-significant bit};
Exceptions

integer overflow

Opcodes

80 ADDB2 Add Byte 2 Operand

VSI Confidential, NDA Required 155

VAX Instruction Set

81 ADDB3 Add Byte 3 Operand

A0 ADDW2 Add Word 2 Operand
Al ADDW?3 Add Word 3 Operand
Cco ADDL2 Add Long 2 Operand
C1 ADDLS3 Add Long 3 Operand
Description

In 2 operand format, the addend operand is added to the sum operand and the sum operand is replaced by the
result. In 3 operand format, the addend 1operand is added to the addend 2 operand and the sum operand is replaced
by the result.

Note

Integer overflow occurs if the input operands to the add have the same sign and the result has the opposite sign.
On overflow, the sum operand is replaced by the low-order bits of the true result.

ADWC

ADWC — Add with Carry

Format

opcode add.rl, summ

Condition Codes

N <—sum LSS 0;

Z <—sum EQL 0;

v <—{integer overflow};

C <—/{carry from most-significant bit};

Exceptions
integer overflow

Opcodes

D8 ADWC Add with Carry

Description

The contents of the condition code C-bit and the addend operand are added to the sum operand and the sum operand
is replaced by the result.

Notes
1. On overflow, the sum operand is replaced by the low-order bits of the true result.

2. The two additions in the operation are performed simultaneously.

ASH

ASH — Arithmetic Shift

156 VSI Confidential, NDA Required

VAX Instruction Set

Format

opcode cnt.rb,

Condition Codes

dst. wx

<—dst LSS 0;

<— dst EQL 0;

<— {integer overflow};

Q| <|N| Z

<—0;

Exceptions

integer overflow

Opcodes

78

ASHL

Arithmetic Shift Long

79

ASHQ

Arithmetic Shift Quad

Description

The source operand is arithmetically shifted by the number of bits specified by the count operand and the
destination operand is replaced by the result. The source operand is unaffected. A positive count operand shifts
to the left, bringing zeros into the least significant bit. A negative count operand shifts to the right, bringing in
copies of the most significant (sign) bit into the most significant bit. A zero count operand replaces the destination
operand with the unshifted source operand.

Notes

1. Integer overflow occurs on a left shift if any bit shifted into the sign bit position differs from the sign bit of

the source operand.

2. Ifcnt GTR 32 (ASHL) or cnt GTR 64 (ASHQ), the destination operand is replaced by zero.

3. If cnt LEQ -31 (ASHL) or cnt LEQ -63 (ASHQ), all the bits of the destination operand are copies of the

sign bit of the source operand.

BIC

BIC — Bit Clear

Format

2oper and: opcode nask.rx,

3operand: opcode nask.rx,

Condition Codes

dst. nx

src.rx, dst.wx

N <—dst LSS 0;
4 <— dst EQL 0;
A\ <—0;
C <—C;

VSI Confidential, NDA Required

157

VAX Instruction Set

Exceptions

None.

Opcodes

8A BICB2 Bit Clear Byte
8B BICB3 Bit Clear Byte
AA BICW2 Bit Clear Word
AB BICW3 Bit Clear Word
CA BICL2 Bit Clear Long
CB BICL3 Bit Clear Long
Description

In 2 operand format, the result of the logical AND on the destination operand and the one's complement of the
mask operand replaces the destination operand. In 3 operand format, the result of the logical AND on the source
operand and the one's complement of the mask operand replaces the destination operand.

BIS

BIS — Bit Set

Format
2operand: opcode nask.rx, dst.nx

3operand: opcode nmask.rx, src.rx, dst.wx

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

\% <—0;

C <—C;

Exceptions

None.

Opcodes

88 BISB2 Bit Set Byte 2 Operand

89 BISB3 Bit Set Byte 3 Operand

A8 BISW2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
C8 BISL2 Bit Set Long 2 Operand
C9 BISL3 Bit Set Long 3 Operand
Description

In 2 operand format, the result of the logical OR on the mask operand and the destination operand replaces the
destination operand. In 3 operand format, the result of the logical OR on the mask operand and the source operand
replaces the destination operand.

158 VSI Confidential, NDA Required

VAX Instruction Set

BIT

BIT — Bit Test

Format

opcode nask.rx, src.rx

Condition Codes

<—tmp LSS 0;

<— tmp EQL 0;

<—0;

b}

Q| <|N| Z

<—C;

Exceptions

None.

Opcodes

93

BITB

Bit Test Byte

B3

BITW

Bit Test Word

D3

BITL

Bit Test Long

Description

The logical AND is performed on the mask operand and the source operand. Both operands are unaffected. The
only action is to modify condition codes.

CLR

CLR — Clear
Format
opcode dst.wx

Condition Codes

N <—0;

Z <—1;

A% <—0;

C <—C;

Exceptions

None.

Opcodes

94 CLRB Clear Byte
B4 CLRW Clear Word

VSI Confidential, NDA Required

159

VAX Instruction Set

D4 CLRL Clear Long
7C CLRQ Clear Quad
7CFD CLRO Clear Octa
Description

The destination operand is replaced by zero.
Note

CLR x dst is equivalent to MOV x S"#0, dst , but is 1 byte shorter.

CMP

CMP — Compare

Format

opcode srcl.rx, src2.rx

Condition Codes

N <—srcl LSS sre2;

Z <—srcl EQL src2;

\Y4 <—0;

C <—srcl LSSU src2;
Exceptions

None.

Opcodes

91 CMPB Compare Byte
B1 CMPW Compare Word
D1 CMPL Compare Long
Description

The source 1 operand is compared with the source 2 operand. The only action is to modify the condition codes.

CVT

CVT — Convert

Format
opcode src.rx, dst.w

Condition Codes

N <—dst LSS 0;
Z <—dst EQL 0;
v <— {integer overflow};

160 VSI Confidential, NDA Required

VAX Instruction Set

C <—0;

Exceptions

integer overflow

Opcodes

99 CVTBW Convert Byte to Word
98 CVTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
Fé6 CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word
Description

The source operand is converted to the data type of the destination operand and the destination operand is replaced
by the result. Conversion of a shorter data type to a longer one is done by sign extension; conversion of longer
data type to a shorter one is done by truncation of the higher-numbered (most significant) bits.

Note

Integer overflow occurs if any truncated bits of the source operand are not equal to the sign bit of the destination
operand.

DEC

DEC — Decrement
Format
opcode dif. nmx

Condition Codes

N <—dif LSS 0;

4 <—dif EQL 0;

v <— {integer overflow};

C <— {borrow into most significant bit};
Exceptions

integer overflow

Opcodes

97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long
Description

One is subtracted from the difference operand, and the difference operand is replaced by the result.

VSI Confidential, NDA Required 161

VAX Instruction Set

Notes

1. Integer overflow occurs if the largest negative integer is decremented. On overflow, the difference operand is
replaced by the largest positive integer.

2. DEC x di f is equivalent to SUB x S"#1, di f, but is 1 byte shorter.

DIV

DIV — Divide

Synopsis

2operand: opcode divr.rx, quo.nx
3operand: opcode divr.rx, divd.rx, quo.wx

Condition Codes

N <—quo LSS 0;

z <— quo EQL 0;

v <— {integer overflow} OR {divr EQL 0};
C <—0;

Exceptions

integer overflow

divide by zero

Opcodes

86 DIVB2 Divide Byte 2 Operand
87 DIVB3 Divide Byte 3 Operand
A6 DIVW2 Divide Word 2 Operand
A7 DIVW3 Divide Word 3 Operand
C6 DIVL2 Divide Long 2 Operand
C7 DIVL3 Divide Long 3 Operand
Description

In 2 operand format, the quotient operand is divided by the divisor operand,and the quotient operand is replaced by
the result. In 3 operand format, the dividend operand is divided by the divisor operand, and the quotient operand
is replaced by the result.

Notes

1. Division is performed so that the remainder has the same sign as the dividend; that is, the result is truncated
toward zero. (Note that a remainder of zero is not saved.)

2. Integer overflow occurs only if the largest negative integer is divided by-1. On overflow, operands are affected
as in note 3 following.

3. Ifthe divisor operand is zero, then in 2 operand format the quotient operand is not affected; in 3 operand format
the quotient operand is replaced by the dividend operand.

162 VSI Confidential, NDA Required

VAX Instruction Set

EDIV

EDIV — Extended Divide

Format

opcode divr.rl, divd.rq, quo.w, remw

Condition Codes

N <— quo LSS 0;

Z <— quo EQL 0;

v <— {integer overflow} OR {divr EQL 0};
C <—0;

Exceptions

integer overflow

divide by zero

Opcodes

7B EDIV Extended Divide
Description

The dividend operand is divided by the divisor operand, the quotient operand is replaced by the quotient, and the
remainder operand is replaced by the remainder.

Notes

1. The division is performed such that the remainder operand (unless it is zero) has the same sign as the dividend
operand.

2. On overflow, the operands are affected as in note 3, following.

3. If the divisor operand is zero, then the quotient operand is replaced by bits 31:0 of the dividend operand, and
the remainder operand is replaced by zero.

EMUL

EMUL — Extended Multiply
Synopsis
opcode nmulr.rl, muld.rl, add.rl, prod.wg

Condition Codes

N <— prod LSS 0;
z <— prod EQL 0;
A\ <—0;
C <—0;

VSI Confidential, NDA Required 163

VAX Instruction Set

Exceptions

None.

Opcodes

7A EMUL Extended Multiply

Description
The multiplicand operand is multiplied by the multiplier operand, giving a double-length result. The addend

operand is sign extended to double length and added to the result. The product operand is replaced by the final
result.

INC

INC — Increment
Format
opcode sum nx

Condition Codes

N <— sum LSS 0;

V4 <— sum EQL 0;

A% <— {integer overflow};

C <— {carry from most significant bit};

Exceptions

integer overflow

Opcodes

96 INCB Increment Byte
B6 INCW Increment Word
D6 INCL Increment Long
Description

One is added to the sum operand and the sum operand is replaced by the result.
Notes

1. Arithmetic overflow occurs if the largest positive integer is incremented. On overflow, the sum operand is
replaced by the largest negative integer.

2. INC x sumis equivalent to ADD x S”#1, sum but is 1 byte shorter.

MCOM

MCOM — Move Complemented

Format

opcode src.rx, dst.wx

164 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

N <—dst LSS 0;
Z <—dst EQL 0;
A\ <—0;
C <—C;

Exceptions

None.

Opcodes

92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 MCOML Move Complemented Long

Description

The destination operand is replaced by the one's complement of the source operand.

MNEG

MNEG — Move Negated

Format

opcode src.rx, dst.wx

Condition Codes

N <—dst LSS 0;

zZ <—dst EQL 0;

A% <— {integer overflow};
C <— dst NEQ 0;
Exceptions

integer overflow

Opcodes

8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long
Description

The destination operand is replaced by the negative of the source operand.
Note

Integer overflow occurs if the source operand is the largest negative integer(which has no positive counterpart).
On overflow, the destination operand is replaced by the source operand.

VSI Confidential, NDA Required 165

VAX Instruction Set

MOV

MOV — Move

Format

opcode src.rx, dst.wx

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

A\ <—0;

C <—C;

Exceptions
None.

Opcodes

90 MOVB Move Byte
BO MOVW Move Word
DO MOVL Move Long
7D MOVQ Move Quad
7DFD MOVO Move Octa
Description

The destination operand is replaced by the source operand.

MOVZ

MOVZ — Move Zero-Extended

Format

opcode src.rx, dst.w

Condition Codes

N <—0;

zZ <—dst EQL 0;

Vv <—20;

C <—C;

Exceptions

None.

Opcodes

9B MOVZBW Move Zero-Extended Byte to Word

166 VSI Confidential, NDA Required

VAX Instruction Set

9A MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long
Description

For MOVZBW, bits 7:0 of the destination operand are replaced by the source operand; bits 15:8 are replaced by
zero. For MOVZBL, bits 7:0 of the destination operand are replaced by the source operand; bits 31:8 are replaced
by zero. For MOVZWL, bits 15:0 of the destination operand are replaced by the source operand; bits 31:16 are
replaced by zero.

MUL
MUL — Multiply
Format

2operand: opcode nulr.rx, prod.nx

3operand: opcode nmulr.rx, muld.rx, prod.wx

Condition Codes

N <— prod LSS 0;
z <— prod EQL 0;
A% <— {integer overflow};
C <—0;
Exceptions
integer overflow
Opcodes
84 MULB2 Multiply Byte 2 Operand
85 MULB3 Multiply Byte 3 Operand
A4 MULW2 Multiply Word 2 Operand
A5 MULW3 Multiply Word 3 Operand
C4 MULL2 Multiply Long 2 Operand
C5 MULL3 Multiply Long 3 Operand
Description

In 2 operand format, the product operand is multiplied by the multiplier operand, and the product operand is
replaced by the low half of the double-length result. In 3 operand format, the multiplicand operand is multiplied
by the multiplier operand, and the product operand is replaced by the low half of the double-length result.

Note

Integer overflow occurs if the high half of the double-length result is not equal to the sign extension of the low
half of the double-length result.

PUSHL

PUSHL — Push Long

VSI Confidential, NDA Required 167

VAX Instruction Set

Format

opcode src.rl

Condition Codes

N <—src LSS 0;

Z <—ssrc EQL 0;

A\ <—0;

C <—C;

Exceptions

None.

Opcodes

DD PUSHL Push Long
Description

The longword source operand is pushed on the stack.

Notes

1. PUSHL is equivalent to MOVL sr c, -(SP), but is 1 byte shorter.

2. POPL is not a VAX instruction. However, the assembler recognizes the inclusion of
POPL destination
in a program, for which it generates the code for

MOVL (SP) +, destinati on

ROTL

ROTL — Rotate Long

Format

opcode cnt.rb, src.rl, dst.w

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

A\ <—0;

C <—C;

Exceptions

None.

Opcodes

9C ROTL Rotate Long

168 VSI Confidential, NDA Required

VAX Instruction Set

Description
The source operand is rotated logically by the number of bits specified by the count operand, and the destination
operand is replaced by the result. The source operand is unaffected. A positive count operand rotates to the left.

A negative count operand rotates to the right. A zero count operand replaces the destination operand with the
source operand.

SBWC

SBWC — Subtract with Carry

Format

opcode sub.rl, dif.m

Condition Codes

N <—dif LSS 0;

Z <—dif EQL 0;

v <— {integer overflow};

C <— {borrow into most significant bit};

Exceptions

integer overflow

Opcodes

‘D9 SBWC Subtract with carry

Description

The subtrahend operand and the contents of the condition code C-bit are subtracted from the difference operand,
and the difference operand is replaced by the result.

Notes
1. On overflow, the difference operand is replaced by the low-order bits of the true result.

2. The two subtractions in the operation are performed simultaneously.

SUB

SUB — Subtract

Format

2operand: opcode sub.rx, dif.nx

3operand: opcode sub.rx, mn.rx, dif.wx

Condition Codes

N <— dif LSS 0;
zZ <— dif EQL 0;
A% <— {integer overflow};

VSI Confidential, NDA Required 169

VAX Instruction Set

C

<— {borrow into most significant bit};

Exceptions

integer overflow

Opcodes

82 SUBB2 Subtract Byte 2 Operand
83 SUBB3 Subtract Byte 3 Operand
A2 SUBW2 Subtract Word 2 Operand
A3 SUBW3 Subtract Word 3 Operand
C2 SUBL2 Subtract Long 2 Operand
C3 SUBL3 Subtract Long 3 Operand
Description

In 2 operand format, the subtrahend operand is subtracted from the difference operand, and the difference operand
is replaced by the result. In 3 operand format, the subtrahend operand is subtracted from the minuend operand,

and the difference operand is replaced by the result.

Note

Integer overflow occurs if the input operands to the subtract are of different signs and the sign of the result is the
sign of the subtrahend. On overflow,the difference operand is replaced by the low-order bits of the true result.

TST

TST — Test

Format

opcode src.rx

Condition Codes

N <—src LSS 0;

Z <—src EQL 0;

A% <—0;

C <—0;

Exceptions

None.

Opcodes

95 TSTB Test Byte

BS5 TSTW Test Word
D5 TSTL Test Long
Description

The condition codes are modified according to the value of the source operand.

170

VSI Confidential, NDA Required

VAX Instruction Set

Note

The operand Sr C is equivalent to CMP x sr ¢,S"#0, but is 1 byte shorter.

XOR

XOR — Exclusive OR

Format

2oper and: opcode nask. rx,

3operand: opcode nask.rx,

Condition Codes

dst. nx

src.rx, dst.wx

N <—dst LSS 0;

4 <—dst EQL 0;

A\ <—0;

C <—C;

Exceptions

None.

Opcodes

8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR Byte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORW3 Exclusive OR Word 3 Operand
CC XORL2 Exclusive OR Long 2 Operand
CD XORL3 Exclusive OR Long 3 Operand
Description

In 2 operand format, the result of the logical XOR on the mask operand and the destination operand replaces
the destination operand. In 3 operand format, the result of the logical XOR on the mask operand and the source
operand replaces the destination operand.

9.3. Address Instructions

The following instructions are described in this section.

Description and Opcode

Number of Instructions

PUSHA {B,W,L=F,Q=D=G,0=H}
src.ax, {-(SP).wl}

1. Move Address 5
MOVA {B,W,L=F,Q=D=G,0=H}
src.ax, dst.wl

2. Push Address 5

VSI Confidential, NDA Required

171

VAX Instruction Set

MOVA

MOVA — Move Address

Format

opcode src.ax, dst.w

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

A\ <—0;

C <—C;

Exceptions

None.

Opcodes

9E MOVAB Move Address Byte

3E MOVAW Move Address Word

DE MOVAL Move Address Long
MOVAF Move Address F_floating

7E MOVAQ Move Address Quad
MOVAD Move Address D_floating
MOVAG Move Address G_floating

7EFD MOVAH Move Address H_floating
MOVAO Move Address Octa

Description

The destination operand is replaced by the source operand. The context in which the source operand is evaluated
is given by the data type of the instruction. The operand whose address replaces the destination operand is not

referenced.

Note

The access type of the source operand is address, which causes the address of the specified operand to be moved.

PUSHA

PUSHA — Push Address

Format

opcode src. ax

Condition Codes

‘ N

<—src LSS 0;

172

VSI Confidential, NDA Required

VAX Instruction Set

Z <—src EQL 0;
A% <—0;

C <—G;
Exceptions

None.

Opcodes

9F PUSHAB Push Address Byte

3F PUSHAW Push Address Word

DF PUSHAL Push Address Long,
PUSHAF Push Address F_floating

7F PUSHAQ Push Address Quad,
PUSHAD Push Address D _floating,
PUSHAG Push Address G_floating

7FFD PUSHAH Push Address H_floating
PUSHAO Push Address Octa

Description

The source operand is pushed on the stack. The context in which the source operand is evaluated is given by the
data type of the instruction. The operand whose address is pushed is not referenced.

Notes

1. PUSHA x sr c is equivalent to MOVA x sr C, -(SP), but is one byte shorter.

2. The source operand is of address access type, which causes the address of the specified operand to be pushed.

9.4. Variable-Length Bit Field Instructions

A variable-length bit field is specified by the following three operands:

1. A longword position operand.

2. A byte field size operand in the range 0 to 32; if out of this range, are served operand fault occurs.

3. A base address. Use the position operand to locate the bit field relative to this base address. The address
is obtained from an operand of address access type. However, unlike other instances of operand specifiers
of address access type, register mode can be designated in the operand specifier. In this case, the field is
contained in the register n designated by the operand specifier (or register n+1 concatenated with register n).
(See Chapter 8, Basic Architecture.) If the field is contained in a register and the size operand is not zero, the
position operand must have a value in the range 0 to 31, or a reserved operand fault occurs.

Zero bytes are referenced if the field size is zero.

The following instructions are described in this section.

Description and Opcode

Number of Instructions

Compare Field

1

VSI Confidential, NDA Required

173

VAX Instruction Set

Description and Opcode Number of Instructions

CMPYV pos.1l, size.rb, base.vb,
{field.rv},

src.rl

2. Compare Zero-Extended Field 1

CMPZV pos.1l, size.rb,base.vb,
{field.rv},

src.rl

3. Extract Field 1

EXTV pos.1l, size.rb, base.vb,
{field.rv},

dst.wl

4. Extract Zero-Extended Field 1

EXTZV pos.1l, size.rb,base.vb,
{field.rv},

dst.wl

5. Find First 2

FF{S,C} startpos.rl, size.rb,
base.vb,

{field.rv}, findpos.wl

6. Insert Field 1
INSV src.1l, pos.rl, size.rb, base.vb,

{field.wv}

The following variable-length bit field instructions are described in Section 9.5, “Control Instructions”:

Description and Opcode Number of Instructions

1. Branch on Bit 2
BB{S,C} pos.rl, base.vb, displ.bb,

(field.rv}

2. Branch on Bit (and modify without |4
interlock)

BB{S,C}{S,C} pos.rl, base.vb,
displ.bb,

{field.mv}

3. Branch on Bit (and modify) 2
Interlocked

BB{SS,CC}I pos.1l, base.vb,
displ.bb,

{field.mv}

174 VSI Confidential, NDA Required

VAX Instruction Set

CMP

CMP — Compare Field
Format
opcode pos.rl, size.rb, base.vb, src.rl

Condition Codes

N <— tmp LSS src;
Z <— tmp EQL src;
A\ <—0;

C <— tmp LSSU src;

Exceptions

reserved operand

Opcodes

EC CMPV Compare Field

ED CMPZV Compare Zero-Extended Field
Description

The field specified by the position, size, and base operands is compared with the source operand. For CMPYV, the
source operand is compared with the sign-extended field. For CMPZV, the source operand is compared with the
zero-extended field. The only action is to affect the condition codes.
Notes
1. A reserved operand fault occurs if:

* size GTRU 32

* pos GTRU 31, si ze NEQ 0, and the field is contained in the registers

2. On areserved operand fault, the condition codes are UNPREDICTABLE.

EXT

EXT — Extract Field

Format

opcode pos.rl, size.rb, base.vb, dst.w

Condition Codes

N <—dst LSS 0;
Z <—dst EQL 0;
A\ <—0;
C <—C;

VSI Confidential, NDA Required 175

VAX Instruction Set

Exceptions

reserved operand

Opcodes

EE EXTV Extract Field
EF EXTZV Extract Zero-Extended Field
Description

For EXTYV, the destination operand is replaced by the sign-extended field specified by the position, size, and base
operands. For EXTZYV, the destination operand is replaced by the zero-extended field specified by the position,
size, and base operands. If the size operand is zero, the only action is to replace the destination operand with zero
and to modify the condition codes.

Notes
1. A reserved operand fault occurs if:
+ si ze GTRU 32
» pos GTRU 31, si ze NEQ 0, and the field is contained in the registers

2. On a reserved operand fault, the destination operand is unaffected, and the condition codes are
UNPREDICTABLE.

FF

FF — Find First
Format
opcode startpos.rl, size.rb, base.vb, findpos.w

Condition Codes

N <—0;

Z <— {bit not found};
\Y% <—0;

C <—0;
Exceptions

reserved operand

Opcodes

EB FFC Find First Clear
EA FFS Find First Set
Description

A field specified by the start position, size, and base operands is extracted. Starting at bit 0 and extending to the
highest bit in the field, the field is tested for a bit in the state indicated by the instruction. If a bit in the indicated

176 VSI Confidential, NDA Required

VAX Instruction Set

state is found, the find position operand is replaced by the position of the bit, and the Z condition code bit is cleared.
If no bit in the indicated state is found, the find position operand is replaced by the position (relative to the base)
of a bit one position to the left of the specified field, and the Z condition code bit is set. If the size operand is zero,
the find position operand is replaced by the start position operand, and the Z condition code bit is set.
Notes
1. A reserved operand fault occurs if:

* size GTRU 32

» startpos GTRU 31, si ze NEQ 0, and the field is contained in the registers

2. On a reserved operand fault, the find position operand is unaffected, and the condition codes are
UNPREDICTABLE.

INSV

INSV — Insert Field

Format

opcode src.rl, pos.rl, size.rb, base.vb

Condition Codes

N < N
Z <—7Z

\% < V;

C <—GC;

Exceptions

reserved operand

Opcodes

‘FO INSV Insert Field

Description

The field specified by the position, size, and base operands is replaced by bits size-1:0 of the source operand. If
the size operand is zero, the instruction has no effect.

Notes

1. When executing INSV, a processor may read in the entire aligned longword or longwords that contains the field,
replace the field portion of the aligned longword with the source operand, and write back the entire aligned
longword. Because of this, data written to the nonfield portion of the aligned longword in memory by another

processor or I/O device during the execution of INSV may be written over when the INSV is completed.

2. A reserved operand fault occurs if:

* size GTRU 32

VSI Confidential, NDA Required 177

VAX Instruction Set

» pos GTRU 31, si ze NEQ 0, and the field is contained in the registers

3. On a reserved operand fault, the field is unaffected, and the condition codes are UNPREDICTABLE.

9.5. Control Instructions

In most implementations of the VAX architecture, improved execution speed will result if the target of a control
instruction is on an aligned longword boundary.

The following instructions are described in this section.

Description and Opcode

Number of Instructions

1. Add Compare and Branch 7
ACB{B,W,L,ED,G,H} limit.rx, add.rx,
index.mx, displ.bw
Compare is LE on positive add, GE on
negative add.
2. Add One and Branch Less Than or Equal 1
AOBLEQ limit.rl, index.ml, displ.bb
3. Add One and Branch Less Than 1
AOBLSS limit.rl, index.ml, displ.bb
4, Conditional Branch 12
Condition Name
LSS Less Than
LEQ Less Than or Equal
EQL, EQLU 2-4
NEQ, NEQU Not Equal, Not Equal
Unsigned
GEQ Greater Than or Equal
GTR Greater Than
LSSU, CS Less Than Unsigned,
Carry Set
LEQU Less Than or Equal
Unsigned
GEQU, CC Greater Than or Equal
Unsigned,
Carry Clear
GTRU Greater Than Unsigned
VS Overflow Set
VvC Overflow Clear
5. Branch on Bit 2
BB{S,C} pos.1l, base.vb, displ.bb,
{field.rv}
178 VSI Confidential, NDA Required

VAX Instruction Set

Description and Opcode

Number of Instructions

Branch on Bit
(and modify without interlock)
BB{S,C}{S,C} pos.rl, base.vb, displ.bb,

{field.mv}

4

Branch on Bit (and modify) Interlocked
BB{SS,CC}I pos.rl, base.vb, displ.bb,

{field.mv}

Branch on Low Bit

BLB({S,C} src.1l, displ.bb

Branch with {Byte, Word} Displacement

BR{B,W} displ.bx

10.

Branch to Subroutine with {Byte, Word}

Displacement BSB{B,W} displ.bx, {-(SP).wl}

11.

Case
CASE{B,W,L} selector.rx, base.rx,

limit.rx, displ.bw-list

12.

Jump

JMP dst.ab

13.

Jump to Subroutine

JSB dst.ab, {-(SP).wl}

14.

Return from Subroutine

RSB {(SP)+.rl}

15.

Subtract One and Branch Greater Than

or Equal SOBGEQ index.ml, displ.bb

16.

Subtract One and Branch Greater Than

SOBGTR index.ml, displ.bb

ACB

ACB — Add Compare and Branch

Format

opcode limt.rx,

Condition Codes

add. rx, index.nx, displ.bw

‘ N

<—index LSS 0;

VSI Confidential, NDA Required

179

VAX Instruction Set

4 <— index EQL 0;
v <— {integer overflow};
C <—C;
Exceptions
integer overflow
floating overflow
floating underflow
reserved operand
Opcodes
9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1 ACBL Add Compare and Branch Long
4F ACBF Add Compare and Branch
F floating
4FFD ACBG Add Compare and Branch
G floating
6F ACBD Add Compare and Branch
D floating
6FFD ACBH Add Compare and Branch
H_floating
Description

The addend operand is added to the index operand and the index operand is replaced by the result. The index
operand is compared with the limit operand. If the addend operand is positive (or zero) and the comparison is less
than or equal to zero, or if the addend is negative and the comparison is greater than or equal to zero, the sign-
extended branch displacement is added to the program counter (PC), and the PC is replaced by the result.

Notes

1.

ACB efficiently implements the general FOR or DO loops in high-levellanguages, since the sense of the
comparison between i ndex and | i m t is dependent on the sign of the addend.

. On integer overflow, the index operand is replaced by the low-order bits of the true result. Comparison and

branch determination proceed normally on the updated index operand.

. On floating underflow, if FU is clear, the index operand is replaced by zero, and comparison and branch

determination proceed normally. A fault occurs if FU is set, and the index operand is unaffected.

. On floating overflow, the instruction takes a floating overflow fault, and the index operand is unaffected.
. On areserved operand fault, the index operand is unaffected, and condition codes are UNPREDICTABLE.

. Except for the circumstance described in note 5, the C-bit is unaffected.

AOBLEQ

AOBLEQ — Add One and Branch Less Than or Equal

180 VSI Confidential, NDA Required

VAX Instruction Set

Format

opcode limt.rl, index.m, displ.bb

Condition Codes

N <— index LSS 0;

Z <— index EQL 0;

A% <— {integer overflow};

C <—C;

Exceptions

integer overflow

Opcodes

F3 AOBLEQ Add One and Branch Less Than or
Equal

Description

One is added to the index operand, and the index operand is replaced by the result. The index operand is compared
with the limit operand. If the comparison is less than or equal to zero, the sign-extended branch displacement is
added to the program counter (PC), and the PC is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before addition is the largest positive integer. On overflow, the
index operand is replaced by the largest negative integer, and the branch is taken.

2. The C-bit is unaffected.

AOBLSS

AOBLSS — Add One and Branch Less Than

Format

opcode Iimt.rl, index.m, displ.bb

Condition Codes

N <—index LSS 0;

7 <—index EQL 0;

v <— {integer overflow};
C <—C;
Exceptions

integer overflow

VSI Confidential, NDA Required 181

VAX Instruction Set

Opcodes

‘FZ AOBLSS Add One and Branch Less Than

Description

One is added to the index operand and the index operand is replaced by the result. The index operand is compared
with the limit operand. If the comparison result is less than zero, the sign-extended branch displacement is added
to the program counter (PC), and the PC is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before addition is the largest positive integer. On overflow, the

index operand is replaced by the largest negative integer, and thus (unless the limit operand is the largest negative
integer), the branch is taken.

2. The C-bit is unaffected.

B

B — Branch on (condition)

Format

opcode di spl. bb

Condition Codes

N <—N;
Z <—7Z
\Y4 <—V;
C <—G;
Exceptions
None.
Opcodes
14 {NORZ} EQLO BGTR Branch on Greater Than
(signed)
15 {NORZ} EQL 1 BLEQ Branch on Less Than or
Equal (signed)
12 ZEQLO BNEQ, Branch on Not Equal
(signed)
BNEQU Branch on Not Equal
Unsigned
13 Z EQL 1 BEQL, Branch on Equal (signed)
BEQLU Branch on Equal Unsigned
18 NEQLO BGEQ Branch on Greater Than or
Equal (signed)

182 VSI Confidential, NDA Required

VAX Instruction Set

19 N EQL 1 BLSS Branch on Less Than
(signed)
1A {CORZ} EQLO BGTRU Branch on Greater Than
Unsigned
1B {CORZ}EQL1 BLEQU Branch Less Than or
Equal Unsigned
1C VEQLO BVC Branch on Overflow Clear
1D VEQL 1 BVS Branch on Overflow Set
1E CEQLO BGEQU, Branch on Greater Than or
Equal Unsigned
BCC Branch on Carry Clear
1F CEQL 1 BLSSU, Branch on Less Than
Unsigned
BCS Branch on Carry Set
Description

The condition codes are tested. If the condition indicated by the instruction is met, the sign-extended branch
displacement is added to the program counter(PC), and the PC is replaced by the result.

Notes

The VAX conditional branch instructions permit considerable flexibility in branching but require care in choosing
the correct branch instruction. The conditional branch instructions are best seen as three overlapping groups:

1. Overflow and Carry Group

BVS VEQL 1
BVC VEQL 0
BCS CEQL I
BCC CEQL 0

Typically, you would use these instructions to check for overflow (when overflow traps are not enabled), for
multiprecision arithmetic, and for other special purposes.

2. Unsigned Group

BLSSU CEQL 1
BLEQU {COR Z} EQL 1
BEQLU ZEQL 1
BNEQU ZEQLO
BGEQU CEQLO0
BGTRU {COR Z} EQL 0

These instructions typically follow integer and field instructions where the operands are treated as unsigned
integers, address instructions, and character string instructions.

3. Signed Group

BLSS NEQL 1
BLEQ {(NOR Z} EQL 1

VSI Confidential, NDA Required 183

VAX Instruction Set

BEQL ZEQL 1
BNEQ ZEQLO
BGEQ NEQL 0
BGTR {NOR Z} EQL 0

These instructions typically follow floating-point instructions, decimal string instructions, and integer and field
instructions where the operands are being treated as signed integers.

BB

BB — Branch on Bit

Format

opcode pos.rl, base.vb, displ.bb

Condition Codes

N <N
Z <—7Z;

A\ <—V;

C <—C;

Exceptions

reserved operand

Opcodes

EO BBS Branch on Bit Set
El BBC Branch on Bit Clear
Description

The single bit field specified by the position and base operands is tested. If it is in the test state indicated by the
instruction, the sign-extended branch displacement is added to the program counter (PC), and the PC is replaced
by the result.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the bit specified is contained in a register.

2. On areserved operand fault, the condition codes are UNPREDICTABLE.

BB

BB — Branch on Bit (and modify without interlock)

Format

opcode pos.rl, base.vb, displ.bb

184 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

N <—N;
Z <—7Z
C <—GC;
Exceptions

reserved operand

Opcodes

E2 BBSS Branch on Bit Set and Set

E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
E5 BBCC Branch on Bit Clear and Clear
Description

The single bit field specified by the position and base operands is tested. If it is in the test state indicated by the
instruction, the sign-extended branch displacement is added to the program counter (PC), and the PC is replaced
by the result. Regardless of whether the branch is taken or not, the tested bit is put in the new state as indicated

by the instruction.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the bit is contained in a register.

2. On areserved operand fault, the field is unaffected, and the condition codes are UNPREDICTABLE.

3. The modification of the bit is not an interlocked operation. See BBSSI and BBCCI for interlocking instructions.

BB

BB — Branch on Bit Interlocked

Format

opcode pos.rl, base.vb, displ.bb

Condition Codes

Z <—7Z
A% <—V;
C <—C;
Exceptions

reserved operand

VSI Confidential, NDA Required

185

VAX Instruction Set

Opcodes

E6 BBSSI Branch on Bit Set and Set
Interlocked

E7 BBCCI Branch on Bit Clear and Clear
Interlocked

Description

The single bit field specified by the position and base operands is tested. If it is in the test state indicated by the
instruction, the sign-extended branch displacement is added to the program counter (PC), and the PC is replaced
by the result. Regardless of whether the branch is taken, the tested bit is put in the new state as indicated by the
instruction. If the bit is contained in memory, the reading of the state of the bit and the setting of the bit to the
new state is an interlocked operation. No other processor or I/O device can do an interlocked access on this bit

during the interlocked operation.

Notes

1. A reserved operand fault occurs if pos GTRU 31 and the specified bit is contained in a register.

2. On areserved operand fault, the field is unaffected, and the condition codes are UNPREDICTABLE.

3. Except for memory interlocking, BBSSI is equivalent to BBSS, and BBCCI is equivalent to BBCC.

4. This instruction is designed to modify interlocks with other processors or devices. For example, to implement

“busy waiting”:

1$: BBSSI

BLB

BLB — Branch on Low Bit

Format

opcode src.rl

Condition Codes

bi t, base, 1$

N <—N;
z < 7
\% < V:
C <—G;
Exceptions

None.

Opcodes

E8 BLBS Branch on Low Bit Set
E9 BLBC Branch on Low Bit Clear
186 VSI Confidential, NDA Required

VAX Instruction Set

Description

The low bit (bit 0) of the source operand is tested. If it is equal to the test state indicated by the instruction, the
sign-extended branch displacement is added to the program counter (PC), and the PC is replaced by the result.

BR

BR — Branch

Format

opcode di spl . bx

Condition Codes

N <—N;
4 <—7Z;
\% < V:
C <—C;
Exceptions
None.
Opcodes
11 BRB Branch with Byte Displacement
31 BRW Branch with Word Displacement
Description

The sign-extended branch displacement is added to the program counter (PC),and the PC is replaced by the result.

BSB

BSB — Branch to Subroutine

Format

opcode di spl . bx

Condition Codes

N <—N;
Z <7
\% < V;
C <—G;
Exceptions

None.

VSI Confidential, NDA Required

187

VAX Instruction Set

Opcodes

10 BSBB Branch to Subroutine with Byte
Displacement

30 BSBW Branch to Subroutine with Word
Displacement

Description

The program counter (PC) is pushed on the stack as a longword. The sign-extended branch displacement is added
to the PC, and the PC is replaced by the result.

CASE

CASE — Case

Format
opcode sel ector.rx, base.rx, limt.rx,
di spl [0] . bw,

ey

displ[limt].bw

Condition Codes

N <— tmp LSS limit;
Z <— tmp EQL limit;
A\ <—0;

C <— tmp LSSU limit;
Exceptions

None.

Opcodes

8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long
Description

The base operand is subtracted from the selector operand, and the result replaces a temporary operand. The
temporary operand is compared with the limit operand; if it is less than or equal unsigned, a branch displacement
selected by the temporary value is added to the program counter (PC), and the PC is replaced by the result.
Otherwise, twice the sum of the limit operand and 1 is added to the PC, and the PC is replaced by the result. This
operation causes the PC to be moved past the array of branch displacements. Regardless of the branch taken, the
condition codes are modified as a result of the comparison of the temporary operand with the limit operand.

188 VSI Confidential, NDA Required

VAX Instruction Set

Notes

1. After operand evaluation, the PC points at di spl [0], not to the next instruction. The branch displacements
are relative to the address of di spl [0].

2. The selector and base operands can both be considered as either signed or unsigned integers.

In the following example, the CASEB instruction selects one of eight displacements immediately following the
instruction. The example is for illustration only. An actual instruction would use run-time variables instead of
the assembly-time static values shown. Also, in an actual instruction, the displacements selected by the CASEB
instruction would be branches to various routines.

. PSECT CCODE, PIC, SHR, WRT, EXE, LONG
TABI ND: . WORD 4
. ENTRY START, "M>

CLRW R4
CLRW R5
MOVW #0, R4
MOVW #7, R5
CASEB TABI ND, R4, R5
TAB: . WORD 1$- TAB
. WORD 2$- TAB
. WORD 3$- TAB
. WORD 4$- TAB
. WORD 5$- TAB
. WORD 6$- TAB
. WORD 7$- TAB
BRB 9%
1$: . ASCI | /AT 1/
2$: . ASCI | /| AT 2/
3$: . ASCI | / AT 3/
43: . ASCI | | AT 4/
5%: . ASCI | | AT 5/
6$: . ASCI | / AT 6/
7$: . ASCI | | AT 7/
8$: . ASCI | | AT 8/
9$: $EXIT_S
. END START

The objective of the CASE instruction is to transfer control to one of many possible locations depending on the
value of “selector,” or TABIND, as shown in the example. These locations are labeled in the example from 18$:
to83$:.

In the example, the table contains eight branch displacements. In all cases,the limit operand (here shown as RS,
which contains a 7) is one less than the number of displacements (8) in the table. The base operand (here shown
as R4,which contains a zero) is the lowest permissible value for TABIND.

The CASE instruction subtracts base (contents of R4, a zero) from the value of TABIND to produce a zero-origin
index into the table. The limit (contents ofR5, a 7) is compared with this index to ensure that the table limit is
not exceeded.

After operand evaluation, the program counter (PC) points to TAB:. The locations to which branching occurs are
represented in the table as displacements. The displacement in the table selected by TABIND is added to the PC
to form a destination address. The destination selected in the example is at location 5$:. In practical usage, this
location would contain a branch to a specific routine.

JMP

JMP — Jump

VSI Confidential, NDA Required 189

VAX Instruction Set

Format

opcode dst. ab

Condition Codes

N < N
zZ <—17

A\ <—V;

C <—C;
Exceptions

None.

Opcodes

‘ 17 IMP Jump
Description

The program counter (PC) is replaced by the destination operand.

JSB

JSB — Jump to Subroutine

Format

opcode dst. ab

Condition Codes

N <—N;

z < 7.

\Y <V

C <—G;

Exceptions

None.

Opcodes

‘ 16 JSB Jump to Subroutine
Description

The program counter (PC) is pushed onto the stack as a longword. The PC is replaced by the destination operand.

Note

Because the operand specifier conventions cause the evaluation of the destination operand before saving the PC,
you can use JSB for coroutine calls with the stack used for linkage. The form of this call is:

190 VSI Confidential, NDA Required

VAX Instruction Set

JSB @SP) +

RSB

RSB — Return from Subroutine
Synopsis
opcode

Condition Codes

N <—N;

Z <—1Z

v <—V;

C <—C;

Exceptions

None.

Opcodes

‘05 RSB Return from Subroutine
Description

The program counter (PC) is replaced by a longword popped from the stack.
Notes

1. Use RSB to return from subroutines called by the BSBB, BSBW, and JSB instructions.

2. RSB is equivalent to JMP @(SP)+, but is 1 byte shorter.

SOBGEQ — Subtract One and Branch Greater Than or Equal
Format
opcode index.m , displ.bb

Condition Codes

<—index LSS 0;

<— index EQL 0;

<— {integer overflow};

Ol <|N| Z

<—C;

VSI Confidential, NDA Required

191

VAX Instruction Set

Exceptions

integer overflow

Opcodes

F4 SOBGEQ Subtract One and Branch Greater
Than or Equal

Description
One is subtracted from the index operand, and the index operand is replaced by the result. If the index operand is
greater than or equal to zero, the sign-extended branch displacement is added to the program counter (PC), and

the PC is replaced by the result.

Notes

1. Integer overflow occurs if the index operand before subtraction is the largest negative integer. On overflow, the
index operand is replaced by the largest positive integer; therefore, the branch is taken.

2. The C-bit is unaffected.

SOBGTR

SOBGTR — Subtract One and Branch Greater Than

Format

opcode index.m, displ.bb

Condition Codes

N <—index LSS 0;

Z <— index EQL 0;

A% <— {integer overflow};

C <—C;

Exceptions

integer overflow

Opcodes

F5 SOBGTR Subtract One and Branch Greater

Than

Description

One is subtracted from the index operand, and the index operand is replaced by the result. If the index operand
is greater than zero, the sign-extended branch displacement is added to the program counter (PC), and the PC is
replaced by the result.

192 VSI Confidential, NDA Required

VAX Instruction Set

Notes

1. Integer overflow occurs if the index operand before subtraction is the largest negative integer. On overflow, the
index operand is replaced by the largest positive integer, and thus, the branch is taken.

2. The C-bit is unaffected.

9.6. Procedure Call Instructions

The following three instructions implement a standard procedure calling interface:
+ CALLG

* CALLS

* RET

CALLG and CALLS call the procedure. The RETURN instruction returns from the procedure. Refer to the VSI
OpenVMS Programming Concepts Manual for the procedure calling standard.

The CALLG instruction calls a procedure with the argument list in an arbitrary location.

The CALLS instruction calls a procedure with the argument list on the stack. Upon return after a CALLS
instruction, this list is automatically removed from the stack. Both call instructions specify the address of the entry
point of the procedure being called. The entry point is assumed to consist of a word called the entry mask followed
by the procedure's instructions. The procedure terminates by executing a RET instruction.

The entry mask specifies the register use and overflow enables of the subprocedure.

15 14 1312 11 0
D|I |[MBZ Registers
V|V

ZK-1162 A-GE

At the occurrence of one of the call instructions, the stack is aligned to along word boundary, and the trap enables in
the processor status longword (PSW)are set to a known state to ensure consistent behavior of the called procedure.
Integer overflow enable and decimal overflow enable are affected according to bits 14 and 15 of the entry mask,
respectively. Floating underflow enable is cleared. Registers R11 to RO, specified by bits 11 to 0,respectively, are
saved on the stack and are restored by the RET instruction. In addition, the program counter (PC), stack pointer
(SP), frame pointer (FP),and argument pointer (AP) are always preserved by the CALL instructions and restored
by the RET instruction.

All external procedure calls generated by standard HPE language processors and all intermodule calls to major
VAX software subsystems comply with the procedure calling software standard (see the VAX Procedure Calling
and Condition Handling Standard in the VSI OpenVMS Programming Concepts Manual). The procedure calling
standard requires that all registers in the range R2 to R11used in the procedure must appear in the mask. R0 and
R1 are not preserved by any called procedure that complies with the procedure calling standard.

To preserve the state, the CALL instructions form a structure on the stack termed a call frame or stack frame.

The call frame contains the saved registers, the saved PSW, the register save mask, and several control bits. The
frame also includes a longword that the CALL instructions clear. The system uses this longword to implement the
OpenVMS condition handling facility (see the VAX Procedure Calling and Condition Handling Standard in the
OpenVMS Programming Interfaces:Calling a System Routine). At the end of execution of the CALL instruction,the
frame pointer (FP) contains the address of the stack frame. The RET instruction uses the contents of FP to find the
stack frame and the restore state. The condition handling facility assumes that FP always points to the stack frame.

The stack frame has the following format:

VSI Confidential, NDA Required 193

VAX Instruction Set

! (FP}

Condition Handlar {Initially D)
SPA| s| n| Mask<11:0> Savod PSW<15:5> 0
Saved AP
Savod FP
Saved PG
Savad RD ...}

Saved R11 {...)

{0 to 3 bytas spocified by SPA, Stack Polntar Allghmant)

S =got FCALLS; clear If CALLG.

ZK-1163A-GE

Note that the saved condition codes and the saved trace enable(PSW <T>) are cleared.

The contents of the frame PSW <3:0> at the time RET is executed will become the condition codes resulting from
the execution of the procedure. Similarly, the content of the frame PSW <4> at the time the RET is executed will

become the PSW <T> bit.

The following instructions are described in this section.

Description and Opcode

Number of Instructions

1. Call Procedure with General
Argument List

CALLG arglist.ab, dst.ab, {-
(SP).w*}

1

2. Call Procedure with Stack
Argument List

CALLS numarg.rl, dst.ab, {-
(SP).w*}

3. Return from Procedure

RET {(SP)+.r*}

CALLG

CALLG — Call Procedure with General Argument List

Format

opcode arglist.ab, dst.ab

Condition Codes

‘N <—0;

194 VSI Confidential, NDA Required

VAX Instruction Set

Z <—0;
A\ <—0;
C <—20;
Exceptions

reserved operand

Opcodes

FA CALLG Call Procedure with General
Argument List

Description

The stack pointer (SP) is saved in a temporary register. Bits 1:0 are replaced by zero, so that the stack is longword
aligned. The procedure entry mask is scanned from bit 11 to bit 0, and the contents of registers whose numbers
correspond to set bits in the mask are pushed on the stack as longwords. The program counter (PC), frame pointer
(FP), and argument pointer(AP) are pushed on the stack as longwords. The condition codes are cleared. A longword
containing the saved low 2 bits of the SP in bits 31:30, a zero in bits 29 and 28, the low 12 bits of the procedure
entry mask in bits 27:16, and the processor status word (PSW) in bits 15:0 with T cleared are pushed on the stack.
A longword zero is pushed on the stack. The FP is replaced by the SP. The AP is replaced by the ar gl i st
operand. The trap enables in the PSW are set to a known state. Integer overflow and decimal overflow are affected
according to bits 14 and 15 of the entry mask, respectively; floating underflow is cleared. The T-bit is unaffected.
The PC is replaced by the sum of destination operand plus 2, which transfers control to the called procedure at
the byte beyond the entry mask.

P[P}
Stack : [FP)

Frama

{0 10 3 bytos spocifiad by SFA)
ZK-11E4A-GE

Notes
1. If bits 13:12 of the entry mask are not zero, a reserved operand fault occurs.
2. On areserved operand fault, condition codes are UNPREDICTABLE.

3. The procedure calling standard and the condition handling facility require the following register saving
conventions:

* RO and R1 are always available for function return values and are never saved in the entry mask.
» All registers R2 to R11 that are modified in the called procedure must be preserved in the mask.

Refer to the VAX Procedure Calling and Condition Handling Standard in the VSI OpenVMS Programming
Concepts Manual.

CALLS

CALLS — Call Procedure with Stack Argument List

VSI Confidential, NDA Required 195

VAX Instruction Set

Format

opcode numarg.rl, dst.ab

Condition Codes

N <—0;

V4 <—0;

v <—0;

C <—0;

Exceptions

reserved operand

Opcodes

FB CALLS Call Procedure with Stack

Argument List

Description

The numar g operand is pushed on the stack as a longword (byte 0 contains the number of arguments; VSI uses the
high-order 24bits). The stack pointer (SP) is saved in a temporary register, and then bits1:0 of the SP are replaced
by zero so that the stack is longword aligned. The procedure entry mask is scanned from bit 11 to bit 0, and the
contents of registers whose numbers correspond to set bits in the mask are pushed on the stack. The program
counter (PC), frame pointer (FP), and argument pointer (AP)are pushed on the stack as longwords. The condition
codes are cleared. A longword containing the saved low 2 bits of the SP in bits 31:30, a 1 in bit29, a zero in bit 28,
the low 12 bits of the procedure entry mask in bits27:16, and the processor status word (PSW) in bits 15:0 with
T cleared is pushed on the stack. A longword zero is pushed on the stack. The FP is replaced by the SP. The AP
is set to the value of the stack pointer after the numar g operand was pushed on the stack. The trap enables in the
PSW are set to a known state. Integer overflow and decimal overflow are affected according to bits 14 and 15 of
the entry mask, respectively. Floating underflow is cleared. The T-Bit is unaffected.

The PC is replaced by the sum of destination operand plus 2, which transfers control to the called procedure at the
byte beyond the entry mask. The appearance of the stack after CALLS is executed is:

1 [BF)
Stack : [FP)
Frama
{D 1o 3 bytas spaclfied by SPA)
N : [AF)
. N longwords of argumant llst .

ZK-11E65A-GE

Notes

1. If bits 13:12 of the entry mask are not zero, a reserved operand fault occurs.

196 VSI Confidential, NDA Required

VAX Instruction Set

2. On areserved operand fault, the condition codes are UNPREDICTABLE.

3. Normal use isto pushthear gl i st onto the stack in reverse order prior to the CALLS. Onreturn, the ar gl i st
is removed from the stack automatically.

4. The procedure calling standard and the condition handling facility require the following register saving
conventions:

* RO and R1 are always available for function return values and are never saved in the entry mask.

» Allregisters R2 to R11 that are modified in the called procedure must be preserved in the entry mask. Refer to
the VAX Procedure Calling and Condition Handling Standard in the VSI OpenVMS Programming Concepts
Manual.

RET

RET — Return from Procedure

Format

opcode

Condition Codes

N <—tmpl <3>;
z <—tmpl <2>;
\% <—tmpl <1>;
C <— tmpl <0>;
Exceptions

reserved operand

Opcodes

‘ 04 RET Return from Procedure

Description

The stack pointer (SP) is replaced by the frame pointer (FP) plus 4. A longword containing stack alignment bits
in bits 31:30, a CALLS/CALLG flag in bit 29, the low 12 bits of the procedure entry mask in bits 27:16, and a
saved processor status word (PSW) in bits 15:0 is popped from the stack and saved in a temporary. The program
counter (PC), frame pointer (FP), and argument pointer (AP) are replaced by longwords popped from the stack.
A register restore mask is formed from bits 27:16 of the temporary. Scanning from bit Oto bit 11 of the restore
mask, the contents of registers whose numbers are indicated by set bits in the mask are replaced by longwords
popped from the stack. The SP is incremented by 31:30 of the temporary. The PSW is replaced by bits 15:0 of
the temporary. If bit 29 in the temporary is 1 (indicating that the procedure was called by CALLS), a longword
containing the number of arguments is popped from the stack. Four times the unsigned value of the low byte of
this longword is added to the SP, and the SP is replaced by the result.

Notes

1. A reserved operand fault occurs if t npl <15:8> NEQ 0.

VSI Confidential, NDA Required 197

VAX Instruction Set

2. On areserved operand fault, the condition codes are UNPREDICTABLE.
3. The value of t np1 <28> is ignored.
4. The procedure calling standard and condition handling facility assume that procedures which return a function

value or a status code do so in RO, or ROand R1. Refer to the VAX Procedure Calling and Condition Handling
Standard in the VSI OpenVMS Programming Concepts Manual.

9.7. Miscellaneous Instructions

The following instructions are described in this section.

Description and Opcode Number of Instructions
1. Bit Clear PSW 1

BICPSW mask.rw
2. Bit Set PSW 1

BISPSW mask.rw
3. Breakpoint Fault 1

BPT {-(KSP).w*}
4. Halt 1

HALT {-(KSP).w*}
5. Index 1

INDEX subscript.rl, low.rl, high.rl,

size.rl, indexin.rl, indexout.wl

6. Move from PSL 1
MOVPSL dst.wl

7. No Operation 1
NOP

8. Pop Registers 1

POPR mask.rw, {(SP)+.r*}
9. Push Registers 1

PUSHR mask.rw, {-(SP).w*}
10. Extended Function Call 1

XFC {unspecified operands}

BICPSW

BICPSW — Bit Clear PSW

Format

opcode mask.rw

198 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

N <— N AND {NOT mask <3>};
zZ <— Z AND {NOT mask <2>};
A% <— V AND {NOT mask <1>};
C <— C AND {NOT mask <0>};
Exceptions

reserved operand

Opcodes

‘B9 BICPSW Bit Clear PSW

Description

The result of the logical AND on processor status word (PSW) and the one's complement of the mask operand
replaces PSW.

Note

A reserved operand fault occurs if mask <15:8> is not zero. On a reserved operand fault, the PSW is not affected.

BISPSW

BISPSW — Bit Set PSW

Format

opcode mask.rw

Condition Codes

N <— N OR mask <3>;
Z <— Z OR mask <2>;
A\ <— V OR mask <1>;
C <— C OR mask <0>;
Exceptions

reserved operand

Opcodes

‘BS BISPSW Bit Set PSW

Description

The result of the logical OR on processor status word (PSW) and the mask operand replaces PSW.

VSI Confidential, NDA Required 199

VAX Instruction Set

Note

A reserved operand fault occurs if mask <15:8> is not zero. On a reserved operand fault, the PSW is not affected.

BPT

BPT — Breakpoint Fault

Format

opcode

Condition Codes

N <— 0; ! Condition codes cleared after BPT fault
Z <—0;

A% <—0;

C <—0;

Exceptions

None.

Opcodes

‘ 03 BPT Breakpoint Fault
Description

To understand the operation of this instruction, refer to Appendix E, Exceptions That May Occur During Instruction
Execution. This instruction, together with the T-bit, is used to implement debugging facilities.

HALT

HALT — Halt

Format

opcode

Condition Codes

N <— 0; ! If privileged instruction fault,

Z <— 0; ! condition codes are cleared after

\% <— 0; ! the fault. PSL saved on stack

C <— 0; ! contains condition codes prior to HALT.
N <— N; ! If processor halt

Z <—Z

A\ <—V;

C <—C;

200 VSI Confidential, NDA Required

VAX Instruction Set

Exceptions

privileged instruction

Opcodes

\ 00 HALT Halt

Description

If the process is running in kernel mode, the processor is halted. Otherwise,a privileged instruction fault occurs.
For information about privileged instruction faults, refer to Appendix E, Exceptions That May Occur During
Instruction Execution.

Note

This opcode is zero to trap many branches to data.

INDEX

INDEX — Compute Index

Format

opcode subscript.rl, lowrl, high.rl, size.rl, indexin.rl,

i ndexout . W

Condition Codes

N <— indexout LSS 0;

Z <— indexout EQL 0;

v <—0;

C <—0;
Exceptions

subscript range

Opcodes

0A INDEX index

Description

The i ndexi n operand is added to the subscri pt operand and the sum multiplied by the Si ze operand. The
i ndexout operand is replaced by the result. If the subscri pt operand is less than the | owoperand or greater
than the hi gh operand, a subscript range trap is taken.

Notes

1.

No arithmetic exception other than subscript range can result from this instruction. Therefore, no indication is
given if overflow occurs in either the add or the multiply steps. If overflow occurs on the add step, the sum
is the low-order 32 bits of the true result. If overflow occurs on the multiply step, the i ndexout operand is
replaced by the low-order 32 bits of the true product of the sum and the subscri pt operand. In the normal
use of this instruction, overflow cannot occur without a subscript range trap occurring.

VSI Confidential, NDA Required 201

VAX Instruction Set

2. The index instruction is useful in index calculations for arrays of the fixed-length data types (integer and
floating) and for index calculations for arrays of bit fields, character strings, and decimal strings. The i ndexi n
operand permits cascading INDEX instructions for multidimensional arrays. For one-dimensional bit field
arrays, it also permits introduction of the constant portion of an index calculation that is not readily absorbed
by address arithmetic. The following notes show some of the uses of INDEX.

3. The following example shows a sequence of COBOL statements and the VAXMACRO code their compilation
might generate:

coBOL:

01 A- ARRAY.
02 A PIC X(10) OCCURS 15 TI MES.

01 B PIC X(10).
MOVE A(1) TO B.

MACRO,
I NDEX |, #1, #15, #10, #0, RO

MOVC3 #10, A-10[R0], B.

4. The following example shows a sequence of PL/I statements and the VAXMACRO code their compilation
might generate:

PL/ I :

DCL A(-3:10) BIT (5);
A1) = 1;

MACRO
I NDEX |, #-3, #10, #5, #3, RO
INSV #1, RO, #5, A ; Assunes A is byte aligned

5. The following example shows a sequence of FORTRAN statements and the VAXMACRO code their
compilation might generate:

FORTRAN:

I NTEGER*4 A(L1:U1, L2:W2), I, J
Al,J) =1

MACRO
I NDEX J, #L2, #U2, #ML, #0, RO, ML=ULl-L1+1

INDEX |, #L1, #Ul, #1, RO, RO;
MOVL #1, A-a[RO]; a = {{L2*ML} + L1} *4

MOVPSL

MOVPSL — Move from PSL

Format

opcode dst.w

202 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

Z <—7Z;

\% <—V;

C <—C;

Exceptions

None.

Opcodes

IDC MOVPSL Move from PSL
Description

The destination operand is replaced by processor status longword (PSL).

NOP

NOP — No Operation

Synopsis
opcode

Condition Codes

N < N
Z <—7;

A\ <—V;

C <—C;

Exceptions

None.

Opcodes

‘01 NOP No Operation
Description

No operation is performed. Because the time delay caused by a NOP instruction is dependent on processor type,
VSI recommends that you do not use NOP as a means of delaying program execution. When you must have a
program wait for a specified period, you should use a macro, such as the TIMEDWAIT macro, or code sequence
that is not dependent on the processor's internal speed.

POPR

POPR — Pop Registers

VSI Confidential, NDA Required 203

VAX Instruction Set

Format

opcode nmask.rw

Condition Codes

V4 <—7;

\Y% <V

C <—C;

Exceptions

None.

Opcodes

‘BA POPR Pop Registers
Description

The contents of registers whose numbers correspond to set bits in the mask operand are replaced by longwords
popped from the stack. R[n] is replaced if mask <n> is set. The mask is scanned from bit 0 to bit14.

Bit 15

is ignored.

PUSHR

PUSHR — Push Registers
Format
opcode mask.rw

Condition Codes

N <—N;

z < 7

v <V

C <—C;

Exceptions

None.

Opcodes

‘BB PUSHR Push Registers
Description

The contents of registers whose numbers correspond to set bits in the mask operand are pushed on the stack as
longwords. R[n] is pushed if mask <n> is set. The mask is scanned from bit 14 to bit0. Bit 15 is ignored.

204 VSI Confidential, NDA Required

VAX Instruction Set

Note

The order of pushing is specified so that the contents of higher-numbered registers are stored at higher memory
addresses. An example of a result of this would be a double-floating datum stored in adjacent registers being stored
by PUSHR in memory in the correct order.

XFC

XFC — Extended Function Call

Format

opcode

Condition Codes

N <—0;
Z <—0;
Vv <—0;
C <—0;
Exceptions

None.

Opcodes

‘FC XFC Extended Function Call

Description

To understand the operation of this instruction, refer to Appendix E, Exceptions That May Occur During Instruction
Execution and the VAX Architecture Reference Manual. This instruction provides for customer-defined extensions
to the instruction set.

9.8. Queue Instructions

A queue is a circular, doubly linked list. A queue entry is specified by its address. Each queue entry is linked to the
next by a pair of longwords. The first longword is the forward link; it specifies the location of the succeeding entry.
The second longword is the backward link; it specifies the location of the preceding entry. Because a queue contains
redundant links, it is possible to create ill-formed queues. The VAX instructions produce UNPREDICTABLE
results when used on ill-formed queues.

A queue is classified by the type of link that it uses. The VAX supports two distinct types of links: absolute and
self-relative.

9.8.1. Absolute Queues

Absolute queues use absolute addresses as links. Queue entries are linked by a pair of longwords. The first (lowest-
addressed) longword is the forward link;it is the address of the succeeding queue entry. The second(highest-
addressed) longword is the backward link; it is the address of the preceding queue entry.

A queue is specified by a queue header, which is identical to a pair of queue linkage longwords. The forward link
of the header is the address of the entry called the Zead of the queue. The backward link of the header is the address
of the entry termed the fail of the queue. The forward link of the tail points to the header.

VSI Confidential, NDA Required 205

VAX Instruction Set

Two general operations can be performed on queues: insertion of entries and removal of entries. Generally, entries
can be inserted or removed only at the head or tail of a queue. (Under certain restrictions they can be inserted or
removed elsewhere; this is discussed later.)

The following text contains examples of queue operations. An empty queue is specified by its header at address H.

31 1]

H ‘H+4
31)]

ZKR-116EA-GE

If an entry at address B is inserted into an empty queue (at either the head or the tail), the queue appears as follows:

3 D
B *H
B *H+4
31 D
31 D
H B
H 'B+4
31 D

ZKR-1167A-GE

If an entry at address A is inserted at the head of the queue,the queue appears as follows:

| 0
A tH
R *H+4
| 0
| 0
B tA
H tA+d
| 0
| 0
H B
A 'B+4
| 0

ZR-1168A-GE

Finally, if an entry at address C is inserted at the tail, the queue appears as follows:

206 VSI Confidential, NDA Required

VAX Instruction Set

31 D
A H
tH+4
31 D
3 D
B tA
H tA+d
31 D
31 D
‘B
A 'B+4
31 D
31 D
H HH
B .
3 D

ZR-1168A-GE

Following the preceding steps in reverse order gives the effect of removal at the tail and removal at the head.

If more than one process can perform operations on a queue simultaneously,insertions and removals should only
be done at the head or tail of the queue. If only one process (or one process at a time) can perform operations on a
queue, insertions and removals can be made at other than the head or tail of the queue. In the preceding example
with the queue containing entries A, B,and C, the entry at address B can be removed, giving the following:

31)]

31 1]

ZR-1166A-GE

The reason for this restriction is that operations at the head or tail are always valid because the queue header
is always present. Operations elsewhere in the queue depend on specific entries being present and may become
invalid if another process is simultaneously performing operations on the queue.

Two instructions are provided for manipulating absolute queues: INSQUE and REMQUE. INSQUE inserts an
entry specified by an entry operand into the queue following the entry specified by the predecessor operand.
REMQUE removes the entry specified by the entry operand. Queue entries can be on arbitrary byte boundaries.
Both INSQUE and REMQUE are implemented as noninterruptible instructions.

9.8.2. Self-Relative Queues

VSI Confidential, NDA Required 207

VAX Instruction Set

Self-relative queues use displacements from queue entries as links. Queue entries are linked by a pair of longwords.
The first (lowest addressed)longword is the forward link; it is the displacement of the succeeding queue entry
from the present entry. The second (highest-addressed) longword is the backward link; it is the displacement of
the preceding queue entry from the present entry.

A queue is specified by a queue header, which also consists of two longword links. The forward link of the header
is the address of the entry called the ead of the queue. The backward link of the header is the address of the entry
called the fail of the queue. The forward link of the tail points to the header.

The following text contains examples of queue operations. An empty queue is specified by its header at address
H. Because the queue is empty, the self-relative links must be zero, as shown.

3 D

)] *H+4

3 D

ZR-1171A-GE

If an entry at address B is inserted into an empty queue (at either the head or tail), the queue appears as follows:

3 D
B-H *H
B-H *H+4

31 D

31 D
H-RB ‘B
H-B 'B+4

3 D

ZR-1172A-GE

If an entry at address A is inserted at the head of the queue, the queue appears as follows:

208 VSI Confidential, NDA Required

VAX Instruction Set

N | 0
A -H 'H
B-H 'H+4
N | 0
ol | 1]
B - YA
H- A T
N | 0
N | 0
H-BR 'R
A-B 'R+4
N | 0

ZR-1173A-GE

Finally, if an entry at address C is inserted at the tail, the queue appears as follows:

31 D
A-H 'H
C-H H+4

31 D

31 D
R tA
H-A ' A+

31 D

31 D
C-B 'B
A-B 'R+4

31 D

31 D
H-G 'G
B-GC Ca+d

31 D

ZR-1174A-GE

Following the previous steps in reverse order gives the effect of removal at the tail and at the head.

The following four instructions manipulate self-relative queues:

VSI Confidential, NDA Required 209

VAX Instruction Set

1. INSQHI—Insert entry into queue at head, interlocked.

2. INSQTI—Insert entry into queue at tail, interlocked.

3. REMQHI—Remove entry from queue at head, interlocked.
4. REMQTI—Remove entry from queue at tail, interlocked.

These operations are interlocked to allow cooperating processes in a multiprocessor system to access a shared list
without additional synchronization. Queue entries must be quadword aligned. A hardware-supported interlocked
memory access mechanism is used to read the queue header. Bit O of the queue header is used as a secondary
interlock; it is set when the queue is being accessed.

If an interlocked queue instruction encounters the secondary interlock set,then, if no exception conditions exist, it
terminates after setting the condition codes to indicate failure to gain access to the queue. If the secondary interlock
bit is not set, then the interlocked queue instruction sets the secondary interlock bit during instruction execution
and clears the secondary interlock bit at instruction completion. In this way, other interlocked queue instructions
are prevented from operating on the same queue.

If an interlocked queue instruction encounters both the secondary interlock set and an exception condition

resulting from instruction execution, then it is UNPREDICTABLE whether the exception occurs or the instruction
terminates after setting the condition codes.

9.8.3. Instruction Descriptions

The following instructions are described in this section:

Description and Opcode Number of Instructions

1. Insert Entry into Queue at Head, 1
Interlocked
INSQHI entry.ab, header.aq

2. Insert Entry into Queue at Tail,
Interlocked

—_

INSQTI entry.ab, header.aq
3. Insert Entry in Queue 1

INSQUE entry.ab, pred.ab

4. Remove Entry from Queue at Head,
Interlocked

—_—

REMQHI header.aq, addr.wl

5. Remove Entry from Queue at Tail,
Interlocked

[

REMQTT header.aq, addr.wl

6. Remove Entry from Queue 1

REMQUE entry.ab, addr.wl

INSQHI

INSQHI — Insert Entry into Queue at Head, Interlocked

210 VSI Confidential, NDA Required

VAX Instruction Set

Format

opcode entry. ab, header. aq

Condition Codes

if {insertion succeeded} then

begin

N <—0;
Z <— (entry) EQL (entry+4); #! First entry in queue
V <—0;
C <—0;
end;

else

begin

N <—0;
Z <—0;
V <—0;

C <—1;! Secondary interlock failed

end;

Exceptions

reserved operand

Opcodes

5C INSQHI Insert Entry into Queue at Head,
Interlocked

Description

The entry specified by the entry operand is inserted into the queue following the header. If the entry inserted was
the first one in the queue, the condition code Z-bit is set; otherwise it is cleared. The insertion is a noninterruptible
operation. The insertion is interlocked to prevent concurrent interlocked insertions or removals at the head or tail
of the same queue by another process even in a multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be completed. This method ensures that if a memory
management exception occurs (see Appendix E, Exceptions That May Occur During Instruction Execution), the
queue is left in a consistent state. If the instruction fails to acquire the secondary interlock, then, if no exception
conditions exist, the instruction sets condition codes and terminates.

Notes

1. Because the insertion is noninterruptible, processes running in kernel mode can share queues with interrupt

service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTT instructions are implemented such that cooperating software
processes in a multiprocessor may access a shared list without additional synchronization.

3. To set a software interlock realized with a queue, you can use the following:

| NSERT:

VSI Confidential, NDA Required

211

VAX Instruction Set

I NSQHI s
BEQL 1% ; Yes
BCS | NSERT ;
CALL VAIT(...) : No,
1$:
4

though the queue insertion is not started.

. A reserved operand fault occurs if ent r y or header

In this case, the queue is not altered.

queue enpty?

Try inserting again

wai t

. During access validation, any access that cannot be completed results in a memory management exception even

is an address that is not quadword aligned (that is, <2:0>
NEQU 0) or if header <2:1> is not zero. A reserved operand fault also occurs if header equals entry.

. If an interlocked queue instruction encounters both the secondary interlock set and an exception condition
resulting from instruction execution, then it is UNPREDICTABLE whether the exception occurs or the

instruction terminates after setting the condition codes.

INSQTI
INSQTI — Insert Entry into Queue at Tail, Interlocked
Format

opcode entry. ab, header. aq

Condition Codes

if {insertion succeeded} then

begin

N <—0;

Z <— (entry) EQL (entry+4); ! First entry in queue

V <—0;

C <—0;

end;

else

begin

N <—0;

Z <—0;

V <—0;

C <—1;! Secondary interlock failed

end;

Exceptions

reserved operand

Opcodes

5D INSQTI Insert Entry into Queue at Tail,
Interlocked

212 VSI Confidential, NDA Required

VAX Instruction Set

Description

The entry specified by the entry operand is inserted into the queue preceding the header. If the entry inserted was
the first one in the queue, the condition code Z-bit is set; otherwise, it is cleared. The insertion is a noninterruptible
operation. The insertion is interlocked to prevent concurrent interlocked insertions or removals at the head or tail
of the same queue by another process even in a multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be completed. This method ensures that if a memory
management exception occurs (see Appendix E, Exceptions That May Occur During Instruction Execution), queue
is left in a consistent state. If the instruction fails to acquire the secondary interlock, then, if no exception conditions
exist, the instruction sets condition codes and terminates.

Notes

1.

Because the insertion is noninterruptible, processes running in kernel mode can share queues with interrupt
service routines.

. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented such that cooperating software

processes in a multiprocessor may access a shared list without additional synchronization.

. To set a software interlock realized with a queue, you can use the following:

| NSERT:
I NSCH ... ; WAs queue enpty?
BEQL 1% i Yes
BCS | NSERT ; Try inserting again
CALL VAIT(...) ; No, wait

1$:

. During access validation, any access that cannot be completed results in amemory management exception even

though the queue insertion is not started.

. Areserved operand fault occurs ifent r y, header ,or (header +4) is an address that is not quadword aligned

(that is, <2:0> NEQU 0) or if header <2:1> is not zero. A reserved operand fault also occurs if header
equals ent r y. In this case, the queue is not altered.

. If the instruction encounters both the secondary interlock set and an exception condition resulting from

instruction execution, then it is UNPREDICTABLE whether the exception occurs or the instruction terminates
after setting the condition codes.

INSQUE

INSQUE — Insert Entry in Queue

Format

opcode entry.ab, pred.ab

Condition Codes

N <— (entry) LSS (entry+4);

Z <— (entry) EQL (entry+4); ! First entry in queue
A\ <—0;

C <— (entry) LSSU (entry+4);

Exceptions

None.

VSI Confidential, NDA Required 213

VAX Instruction Set

Opcodes

OE INSQUE Insert Entry in Queue

Description

The entry specified by the entry operand is inserted into the queue following the entry specified by the predecessor
operand. If the entry inserted was the first one in the queue, the condition code Z-bit is set; otherwise it is cleared.
The insertion is a noninterruptible operation. Before performing any part of the operation, the processor validates
that the entire operation can be completed. This method ensures that if a memory management exception occurs
(see Appendix E, Exceptions That May Occur During Instruction Execution), the queue is left in a consistent state.

Notes
1. The following three types of insertion can be performed by appropriatechoice of the predecessor operand:
* Insert at head:
I NSQUE entry, h ; h is queue head
* Insert at tail:

I NSQUE entry, @+4 ; h is queue head
(Note "@ in this case only)

* Insert after arbitrary predecessor:
I NSQUE entry,p ; p is predecessor

2. Because the insertion is noninterruptible, processes running in kernel mode can share queues with interrupt
service routines.

3. The INSQUE and REMQUIE instructions are implemented such that cooperating software processes in a single
processor may access a shared list without additional synchronization, if the insertions and removals are only
at the head or tail of the queue.

4. To set a software interlock realized with a queue, you can use the following:

I NSQUE ... ; WAs queue enpty?
BEQL 13$; Yes
CALL WAL T(...) ; No, wait

1%:

5. During access validation, any access that cannot be completed results in a memory management exception,
even though the queue insertion is not started.

REMQHI

REMQHI — Remove Entry from Queue at Head, Interlocked
Format

opcode header.aq, addr.w

Condition Codes

if {removal succeeded} then

214 VSI Confidential, NDA Required

VAX Instruction Set

begin
N <—0;
Z <— (header) EQL 0; ! Queue empty after removal

V <— {queue empty before this instruction};

C <—0
end;

else
begin

N <—0;
Z <—0;

V <—1; ! Did not remove anything

C <—1;! Secondary interlock failed

end;
Exceptions
reserved operand
Opcodes
5E REMQHI Remove Entry from Queue at Head,
Interlocked
Description

If the secondary interlock is clear, the queue entry following the header is removed from the queue and the address
operand is replaced by the address of the entry removed. If the queue was empty prior to this instruction, or ifthe
secondary interlock failed, the condition code V-bit is set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this instruction, the condition code Z-bit is set;
otherwise, it is cleared. The removal is interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process even in a multiprocessor environment. The removal is a
noninterruptible operation. Before performing any part of the operation, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception occurs (see Appendix E,
Exceptions That May Occur During Instruction Execution), the queue is left in a consistent state. If the instruction
fails to acquire the secondary interlock, then, if no exception conditions exist, the instruction sets condition codes
and terminates.

Notes

1. Because the removal is noninterruptible, processes running in kernel mode can share queues with interrupt
service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented so that cooperating software
processes in a multiprocessor may access a shared list without additional synchronization.

3. To release a software interlock realized with a queue, you can use the following:

1$: REMH ... ; Renoved | ast?
BEQL 2% ; Yes
BCS 1% ; Try renoving again
CALL ACTI VATE(. . .) ; Activate other waiters
2%:

VSI Confidential, NDA Required 215

VAX Instruction Set

4. To remove entries until the queue is empty, you can use the following:

1$: REMH ... ; Anything renoved?
BVS 2% ; No

process renoved entry

BR 1% ;
2% BCS 1% ; Try renoving again
queue enpty

5. During access validation, any access that cannot be completed results in a memory management exception,
even though the queue removal is not started.

6. A reserved operand fault occurs if header or(header + (header)) is an address that is not quadword
aligned (that is, <2:0> NEQU 0) or if (header) <2:1> is not zero. A reserved operand fault also occurs if the
header address operand equals the address of the addr operand. In this case, the queue is not altered.

7. If the instruction encounters both the secondary interlock set and an exception condition resulting from
instruction execution, then it is UNPREDICTABLE whether the exception occurs or the instruction terminates
after setting the condition codes.

REMQTI

REMQTI — Remove Entry from Queue at Tail, Interlocked
Synopsis

opcode header.aq, addr.w

Condition Codes

if {removal succeeded} then

begin

N <—0;

Z <— (header +4) EQL 0; ! Queue empty after
removal

V <— {queue empty before this instruction};

C <—0
end;

else
begin

N <—0;
Z <—0;

V <—1; ! Did not remove anything

C <—1;! Secondary interlock failed

end;

Exceptions

reserved operand

216 VSI Confidential, NDA Required

VAX Instruction Set

Opcodes

5F REMQTI Remove Entry from Queue at Tail,
Interlocked

Description

If the secondary interlock is clear, the queue entry preceding the header is removed from the queue and the address
operand is replaced by the address of the entry removed. If the queue was empty prior to this instruction, or if the
secondary interlock failed, the condition code V-bit is set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this instruction, the condition code Z-bit is set;
otherwise it is cleared. The removal is interlocked to prevent concurrent interlocked insertions or removals at
the head or tail of the same queue by another process, even in a multiprocessor environment. The removal is a
noninterruptible operation. Before performing any part of the operation, the processor validates that the entire
operation can be completed. This ensures that if a memory management exception occurs (see Appendix E,
Exceptions That May Occur During Instruction Execution), the queue is left in a consistent state. If the instruction
fails to acquire the secondary interlock, then, if no exception conditions exist, the instruction sets condition codes
and terminates.

Notes

1. Because the removal is noninterruptible, processes running in kernel mode can share queues with interrupt
service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are implemented to allow cooperating software
processes in a multiprocessor system to access as hared list without additional synchronization.

3. To release a software interlock realized with a queue, you can use the following:

1$: REMOTI . .. : Renoved | ast?
BEQL 2% ;o Yes
BCS 1% ; Try renoving again
CALL ACTI VATE(. . .) ; Activate other waiters
2%:

4. To remove entries until the queue is empty, you can use the following:

1$: REMJTI ... ; Anyt hing renoved?
BVS 2% 7 No

process renoved entry

BR 1% ;

2%: BCS 1% ; Try renoving again
queue enpty

5. During access validation, any access that cannot be completed results ina memory management exception, even
though the queue removal is not started.

6. A reserved operand fault occurs if header , (header +4), or (header + (header + 4)+4) is an address
that is not quadword aligned (that is, <2:0> NEQU 0), or if(header) <2:1> is not zero. A reserved operand
fault also occurs if the header address operand equals the address of the addr operand. In this case, the queue
is not altered.

7. If the instruction encounters both the secondary interlock set and an exception condition resulting from
instruction execution, then it is UNPREDICTABLE whether the exception occurs or the instruction terminates
after setting the condition codes.

VSI Confidential, NDA Required 217

VAX Instruction Set

REMQUE

REMQUE — Remove Entry from Queue

Format

opcode entry. ab, addr. w

Condition Codes

N <— (entry) LSS (entry+4);

V4 <— (entry) EQL (entry+4); ! Queue empty

v <— (entry) EQL (entry+4); ! No entry to remove
C <— (entry) LSSU (entry+4);

Exceptions

None.

Opcodes

OF REMQUE Remove Entry from Queue
Description

The queue entry specified by the entry operand is removed from the queue. The address operand is replaced by
the address of the entry removed. If there was no entry in the queue to be removed, the condition code V-bit
is set;otherwise it is cleared. If the queue is empty at the end of this instruction,the condition code Z-bit is set;
otherwise it is cleared. The removal is a noninterruptible operation. Before performing any part of the operation,
the processor validates that the entire operation can be completed. This ensures that if a memory management
exception occurs (see Appendix E, Exceptions That May Occur During Instruction Execution),the queue is left
in a consistent state.

Notes

1.

The following three types of removal can be performed by suitable choice of entry operand:
* Remove at head:
REMQUE @, addr ; h is queue header
* Remove at tail:
REMQUE @n+4, addr ; h is queue header
* Remove arbitrary entry:

REMQUE entry, addr

. Because the removal is noninterruptible, processes running in kernel mode can share queues with interrupt

service routines.

. The INSQUE and REMQUE instructions are implemented so that cooperating software processes in a single

processor may access a shared list without additional synchronization, if the insertions and removals are only
at the head or tail of the queue.

. To release a software interlock realized with a queue, you can use the following:

218 VSI Confidential, NDA Required

VAX Instruction Set

REMQUE ... ; Queue enpty?
BEQL 1% ; Yes
CALL ACTI VATE(. . .) ; Activate other waiters

1%:

5. To remove entries until the queue is empty, you can use the following:

1$: REMQUE ... ; Anyt hi ng renoved?
BVS EMPTY ; No
BR 1%

6. During access validation, any access that cannot be completed results in a memory management exception,
even though the queue removal is not started.

9.9. Floating-Point Instructions

Floating-point instructions operate on the following four data types:

* F_floating, standard on all VAX processors

* D floating, standard on all VAX processors

* G_floating, optional on the VAX-11/780 and the VAX-11/750, and standard on the VAX-11/730
* H floating, optional on the VAX-11/780 and the VAX-11/750, and standard on the VAX-11/730

To be consistent with the floating-point instruction set, which faults on reserved operands (see Chapter 8, Basic
Architecture), software-implemented floating-point functions (for example, the absolute function) should verify
that no input operands are reserved. An easy way to do this is a floating move or test of the input operands.

To make high-speed, floating-point operations easier, restrictions are placed on the addressing mode combinations
usable within a single floating-point instruction. These combinations involve the logically inconsistent
simultaneous use of a value as both a floating-point operand and an address.

If, within the same instruction, you use the contents of register Rn as both apart of a floating-point input
operand (an .rf, .rd, .rg, .rh, .mf, .md, .mg,or .mh operand) and as an address in an addressing mode that
modifies Rn(autoincrement, autodecrement, or autoincrement deferred), the value of the floating-point operand
is UNPREDICTABLE.

9.9.1. Introduction

Mathematically, a floating-point number may be defined as having the following form:
(+or—) (2 **K) *f

where Kis an integer and f is a nonnegative fraction. For a nonvanishing number, Kand f are uniquely determined
by imposing the following condition:

1/2 LEQ f LSS 1.

The fractional factor, f , of the number is then said to be binary normalized. For the number 0, f must be assigned
the value zero, and the value of K is indeterminate.

VAX derives these floating-point data formats from this mathematical representation for floating-point numbers.
Four types of floating-point data are provided: the two standard PDP-11 formats (F_floatingand

VSI Confidential, NDA Required 219

VAX Instruction Set

D floating

), and two extended-range formats(G_floating and H_floating). Single-precision, or floating, data is 32 bits long.
Double-precision, or

D floating,
data is 64bits long. Extended-range double-precision, or
G _floating,

data is 64 bits long. Extended-range quadruple-precision, or H floating, data is 128 bits long. Use sign magnitude
notation as follows:

1. Nonzero floating-point numbers:
The most significant bit of the floating-point data is the sign bit: 0 for positive and 1 for negative.

The fractional factor f is assumed normalized, so that its most significant bit must be 1. This 1 is the “hidden”
bit: it is not stored in the data word, but the hardware restores it before carrying out arithmetic operations.
The F_floating and D_floating data types use 23 and 55bits, respectively, for f , which, with the hidden bit,
imply effective significance of 24 bits and 56 bits for arithmetic operations. The extended-range (G_floating
and H_floating) data types use 52 and 112 bits,respectively, for f , which, with the hidden bit, imply effective
significance of 53 and 113 bits for arithmetic operations.

In the F_floating and D_floating data types, 8 bits are reserved for the storage of the exponent K in excess 128
notation. Thus, exponents from -128 to +127 could be represented, in biased form, by 0 to 255. For reasons
given later, a biased exponent of zero (the true exponent of -128) is reserved for floating-point zero. Thus, for
F floating and D _floating data types, exponents are restricted to the range -127 to +127 inclusive or, in excess
128 notation, 1 to 255.

In the G_floating data type, 11 bits are reserved for the storage of the exponent in excess 1024 notation. In
the H_floating data type, 15 bits are reserved for the storage of the exponent in excess 16,384 notation. A
biased exponent of zero is reserved for floating-point zero. Thus, exponents are restricted to -1023 to +1023
inclusive (in excess notation, 1 to 2047), and-16,383 to +16,383 inclusive (in excess notation, 1 to 32,767) for
G_floatingand H_floating data types, respectively.

2. Floating-point 0:

Because of the hidden bit, the fractional factor is not available to distinguish between zero and nonzero numbers
whose fractional factor is exactly 1/2. Therefore, the VAX reserves a sign-exponent field of zero for this purpose.
Any positive floating-point number with a biased exponent of zero is treated as if it were an exact zero by the
floating-point instruction set. In particular, a floating-point operand whose bits are all zeros is treated as zero,
and this is the format generated by all floating-point instructions for which the result is zero.

3. The reserved operands:

A reserved operand is defined to be any bit pattern with a sign bit of 1 and a biased exponent of zero. On the
VAX, all floating-point instructions generate a fault if a reserved operand is encountered. A reserved operand
is never generated as a result of a floating-point instruction. Scalar floating-point instructions never generate a
reserved operand. However, vector floating-point instructions can generate reserved operands.

9.9.2. Overview of the Instruction Set

The VAX has the standard arithmetic operations ADD, SUB, MUL, and DIV implemented for all four floating-
point data types. The results of these operations are always rounded, as described in Section 9.9.3, “Accuracy”. In
addition, VAX has two composite operations, EMOD and POLY, also implemented for all four floating-point data
types. EMOD generates a product of two operands and then separates the product into its integer and fractional
terms. POLY evaluates a polynomial, given the degree, the argument, and a pointer to a table of coefficients. Details
on the operation of EMOD and POLY are given in their respective descriptions. All of these instructions are subject

220 VSI Confidential, NDA Required

VAX Instruction Set

to the rounding errors associated with floating-point operations, as well as to exponent overflow and underflow.
Accuracy is discussed in Section 9.9.3, “Accuracy”. Exceptions are discussed in Appendix E, Exceptions That
May Occur During Instruction Execution.

The VAX architecture also has a complete set of instructions for conversion from integer arithmetic types (byte,
word, longword) to all floating types(F_floating, D_floating, G_floating, H floating), and vice versa. The VAX
architecture also has a set of instructions for conversion between all of the floating types except between D_floating
and G_floating. Many of these instructions are exact, in the sense defined in Section 9.9.3, “Accuracy”. However,
a few may generate rounding error, floating overflow, or floating underflow, or induce integer overflow. Details
are given in the description of the CVT instructions.

The following move-type instructions are always exact: MOV, NEG, CLR, CMP, and TST. The ACB (Add
Compare and Branch) instruction is subject to rounding errors, overflow, and underflow.

All of the floating-point instructions on the VAX architecture fault if they encounter a reserved operand. Floating-

point instructions also fault on the occurrence of floating overflow or divide by zero, and the condition codes are
UNPREDICTABLE. The FU bit in the processor status word (PSW) is available to enable or disable an exception
on underflow. If the FU bit is clear, no exception occurs on underflow and zero is returned as the result. If the FU
bit is set, a fault occurs on underflow. Further details on the actions taken if any of these exceptions occurs are
included in the descriptions of the instructions and discussed in Appendix E, Exceptions That May Occur During
Instruction Execution.

9.9.3. Accuracy

This section discusses general comments on the accuracy of the VAX floating-point instruction set. The
descriptions of the individual instructions may include additional details on their accuracy.

An instruction is defined to be exact if its result, extended on the right by an infinite sequence of zeros, is identical to
that of an infinite precision calculation involving the same operands. The prior accuracy of the operands is ignored.
For all arithmetic operations except DIV, a zero operand implies that the instruction is exact. The instruction
is exact for DIV if the Ooperand is the dividend. If the O operand is the divisor, division is undefined and the
instruction faults.

For nonzero floating-point operands, the fractional factor is binary normalized with 24 or 56 bits for single-
precision (F_floating) or double-precision (D_floating), respectively; and 53 or 113 bits for extended-range double-
precision (G_floating), and extended-range quadruple-precision (H_floating), respectively. The ADD, SUB, MUL,
and DIV instructions require an overflow bit (on the left) and two guard bits (on the right) to guarantee the return
of a rounded result identical to the corresponding infinite precision operation rounded to the specified word length.
With these two guard bits, a rounded result has an error bound of 1/2LSB (least significant bit).

Note that an arithmetic result is exact if no nonzero bits are lost in chopping the infinite precision result to the
data length to be stored. Chopping is defined to mean that the 24 (F_floating), 56 (D_floating), 53(G_floating),
or 113 (H_floating) high-order bits of the normalized fractional factor of a result are stored; the rest of the bits
are discarded. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded result is
related to the chopped result as follows:

* Ifthe rounding bit is 1, the rounded result is the chopped result incremented by an LSB (least significant bit).
* If the rounding bit is zero, the rounded and chopped results are identical.

All VAX processors implement rounding to produce results identical to the results produced by the following
algorithm: add a 1 to the rounding bit and propagate the carry, if it occurs. Note that a renormalization may be
required after rounding takes place. If this occurs, the new rounding bit will be O;therefore, it can occur only once.
The following statements summarize the relations among chopped, rounded, and true (infinite precision) results:

 Ifa stored result is exact:
+ rounded value = chopped value = true value

¢ If a stored result is not exact:

VSI Confidential, NDA Required 221

VAX Instruction Set

+ Its magnitude is always less than that of the true result for chopping.

+ Its magnitude is always less than that of the true result for rounding if the rounding bit is zero.

+ Its magnitude is greater than that of the true result for rounding if the rounding bit is 1.

9.9.4. Instruction Descriptions

The following instructions are described in this section:

Description and Opcode

Number of Instructions

Add 2 Operand

ADD{F,D,G,H}2 add.rx, sum.mx

4

Add 3 Operand

ADD{F,D,G,H}3 addl.rx, add2.rx,
sum.wx

Clear

CLR {L=F,Q=D=G,0=H} dst.wx

Compare

CMP{F,D,G,H} srcl.rx, src2.rx

Convert

CVT{F,D,G,H} {B,W,L,F,D,G,H}
src.rx, dst.wy

CVT{B,W,L}{F,D,G,H} src.rx,
dst.wy

All pairs except
FF,DD,GG,HH,DG, and GD

34

Convert Rounded

CVTRY{F,D,G,H}L src.rx, dst.wl

Divide 2 Operand

DIV{F,D,G,H}2 divr.rx, quo.mx

Divide 3 Operand

DIV{F,D,G,H}3 divr.rx, divd.rx,
quo.wx

Extended Modulus

EMOD{F,D} mulr.rx, mulrx.rb,
muld.rx,

int.wl, fract.wx

EMOD{G,H} mulr.rx, mulrx.rw,
muld.rx,

int.wl, fract.wx

10.

Move Negated

222

VSI Confidential, NDA Required

VAX Instruction Set

Description and Opcode

Number of Instructions

MNEG{F,D,G,H} src.rx, dst.wx

11.

Move

MOV {F,D,G,H} src.rx, dst.wx

12.

Multiply 2 Operand

MUL{F,D,G,H}2 mulr.rx, prod.mx

13.

Multiply 3 Operand

MUL{F,D,G,H}3 mulr.rx, muld.rx,
prod.wx

14.

Polynomial Evaluation F_floating

POLYF arg.rf, degree.rw,
tbladdr.ab,

(RO-3.wl}

15.

Polynomial Evaluation D_floating

POLYD arg.rd, degree.rw,
tbladdr.ab,

(RO-5.wl}

16.

Polynomial Evaluation G _floating

POLYG arg.rg, degree.rw,
tbladdr.ab,

{RO-5.wl}

17.

Polynomial Evaluation H floating

POLYH arg.rh, degree.rw,
tbladdr.ab,

{RO-5.wl,-16(SP):-1(SP).wb}

18.

Subtract 2 Operand

SUB{F,D,G,H}2 sub.rx, dif. mx

19.

Subtract 3 Operand

SUB{F,D,G,H}3 sub.rx, min.rx,
dif. wx

20.

Test

TST{F,D,G,H} src.rx

The following floating-point instructions are described in Section 9.5, “Control Instructions”.

Description and Opcode

Number of Instructions

Add Compare and Branch

ACB{F,D,G,H} limit.rx, add.rx,
index.mx,

displ.bw

4

VSI Confidential, NDA Required

223

VAX Instruction Set

Description and Opcode

Number of Instructions

Compare is LE on positive add, GE
on

negative add.

ADD

ADD — Add

Format

2operand: opcode add.rx, sum nmx

3operand: opcode addl.rx, add2.rx, sum wx
Condition Codes

N <— sum LSS 0;
Z <— sum EQL 0;
A\ <—0;

C <—0;
Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

40 ADDEF2 Add F_floating 2 Operand
41 ADDF3 Add F_floating 3 Operand
60 ADDD2 Add D _floating 2 Operand
61 ADDD3 Add D_floating 3 Operand
40FD ADDG2 Add G_floating 2 Operand
41FD ADDG3 Add G_floating 3 Operand
60FD ADDH2 Add H_floating 2 Operand
61FD ADDH3 Add H_floating 3 Operand
Description

In 2 operand format, the addend operand is added to the sum operand, and the sum operand is replaced by the
rounded result. In 3 operand format, the addend1 operand is added to the addend 2 operand, and the sum operand

is replaced by the rounded result.

Notes

1. On areserved operand fault, the sum operand is unaffected, and the condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. Zero is stored as the result of floating underflow only if FU is
clear. On a floating underflow fault, the sum operand is unaffected. If FU is clear, the sum operand is replaced

by zero, and no exception occurs.

224 VSI Confidential, NDA Required

VAX Instruction Set

3. On floating overflow, the instruction faults, the sum operand is unaffected, and the condition codes are
UNPREDICTABLE.

CLR
CLR — Clear
Format

opcode dst . wx

Condition Codes

N <—0;

Z <—1;

\Y% <—0;

C <—C;

Exceptions

None.

Opcodes

D4 CLRF Clear F_floating

7C CLRD Clear D_floating,
CLRG Clear G_floating

7CFD CLRH Clear H_floating

Description

The destination operand is replaced by zero.
Note

CLR x dst is equivalent to MOV x S"#0, dst, butis 1 byte shorter.

CMP

CMP — Compare

Format

opcode srcl.rx, src2.rx

Condition Codes

N <—srcl LSS src2;
Z <—srcl EQL src2;
A\ <—0;
C <—0;

VSI Confidential, NDA Required 225

VAX Instruction Set

Exceptions

reserved operand

Opcodes

51 CMPF Compare F_floating
71 CMPD Compare D_floating
S51FD CMPG Compare G_floating
71FD CMPH Compare H_floating
Description

The source 1 operand is compared with the source 2 operand. The only actionis to affect the condition codes.

CVT

CVT — Convert

Format

opcode src.rx, dst.w

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

v <— {integer overflow};

C <—0;

Exceptions

integer overflow

floating overflow

floating underflow
reserved operand
Opcodes

4C CVTBF Convert Byte to F_floating
6C CVTBD Convert Byte to D_floating
4CFD CVTBG Convert Byte to G_floating
6CFD CVTBH Convert Byte to H_floating
4D CVTWF Convert Word to F_floating
6D CVTWD Convert Word to D_floating
4DFD CVTWG Convert Word to G_floating
6DFD CVTWH Convert Word to H_floating
4E CVTLF Convert Long to F_floating
6E CVTLD Convert Long to D_floating
4EFD CVTLG Convert Long to G_floating

226 VSI Confidential, NDA Required

VAX Instruction Set

6EFD CVTLH Convert Long to H_floating

48 CVTFB Convert F_floating to Byte

68 CVTDB Convert D_floating to Byte

48FD CVTGB Convert G_floating to Byte

68FD CVTHB Convert H_floating to Byte

49 CVTFW Convert F_floating to Word

69 CVTDW Convert D_floating to Word

49FD CVTGW Convert G_floating to Word

69FD CVTHW Convert H_floating to Word

4A CVTFL Convert F_floating to Long

4B CVTRFL Convert Rounded F_floating to
Long

6A CVTDL Convert D _floating to Long

6B CVTRDL Convert Rounded D _floating to
Long

4AFD CVTGL Convert G_floating to Long

4BFD CVTRGL Convert Rounded G_floating to
Long

6AFD CVTHL Convert H_floating to Long

6BFD CVTRHL Convert Rounded H_floating to
Long

56 CVTFED Convert F_floating to D_floating

99FD CVTFG Convert F_floating to G_floating

98FD CVTFH Convert F_floating to H floating

76 CVTDF Convert D floating to F_floating

32FD CVTDH Convert D floating to H_floating

33FD CVTGF Convert G_floating to F_floating

56FD CVTGH Convert G_floating to H_floating

F6FD CVTHF Convert H floating to F_floating

F7FD CVTHD Convert H floating to D_floating

76FD CVTHG Convert H_floating to G_floating

Description

The source operand is converted to the data type of the destination operand,and the destination operand is replaced
by the result. The form of the conversion is as follows:

Form Instructions

Exact CVTBF, CVTBD, CVTBG, CVTBH, CVTWEF,
CVTWD, CVTWG, CVTWH,CVTLD, CVTLG,
CVTLH, CVTFD, CVTFG, CVTFH, CVTDH,
CVTGH

Truncated CVTFB, CVTDB, CVTGB, CVTHB, CVTFW,
CVTDW, CVTGW, CVTHW, CVTFL, CVTDL,
CVTGL, CVTHL

Rounded CVTLF, CVTRFL, CVTRDL, CVTRGL, CVTRHL,
CVTDF, CVTGF,CVTHF, CVTHD, CVTHG

VSI Confidential, NDA Required 227

VAX Instruction Set

Notes

1. Only CVTDF, CVTGF, CVTHF, CVTHD, and CVTHG can result in a floating overflow fault; the destination
operand is unaffected, and the condition codes are UNPREDICTABLE.

2. Only converts with a floating-point source operand can result in are served operand fault. On a reserved operand
fault, the destination operand is unaffected, and the condition codes are UNPREDICTABLE.

3. Only converts with an integer destination operand can result in integer overflow. On integer overflow, the
destination operand is replaced by the low-order bits of the true result.

4. Only CVTGF, CVTHF, CVTHD, and CVTHG can result in floating underflow. If FU is set, a fault occurs.
On a floating underflow fault, the destination operand is unaffected. If FU is clear, the destination operand is
replaced by ero, and no exception occurs.

DIV
DIV — Divide
Format

2operand: opcode divr.rx, quo.nx

3operand: opcode divr.rx, divd.rx, quo.wx

Condition Codes

N <—quo LSS 0;
zZ <— quo EQL 0;
A\ <—0;

C <—0;
Exceptions

floating overflow
floating underflow
divide by zero
reserved operand

Opcodes

46 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F_floating 3 Operand
66 DIVD2 Divide D_floating 2 Operand
67 DIVD3 Divide D_floating 3 Operand
46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G_floating 3 Operand
66FD DIVH2 Divide H_floating 2 Operand
67FD DIVH3 Divide H_floating 3 Operand
Description

In 2 operand format, the quotient operand is divided by the divisor operand and the quotient operand is replaced by
the rounded result. In 3 operand format, the dividend operand is divided by the divisor operand, and the quotient
operand is replaced by the rounded result.

228 VSI Confidential, NDA Required

VAX Instruction Set

Notes

1. On a reserved operand fault, the quotient operand is unaffected, and the condition codes are
UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow fault, the quotient operand is
unaffected. If FU is clear, the quotient operand is replaced by zero, and no exception occurs.

3. On floating overflow, the instruction faults, the quotient operand is unaffected, and the condition codes are
UNPREDICTABLE.

4. On divide by zero, the quotient operand and condition codes are affected,as in note 3.

EMOD

EMOD — Extended Multiply and Integerize

Format

EMODF and EMODD:

opcode nulr.rx, mulrx.rb, muld.rx, int.w, fract.wx
EMODG and EMODH:

opcode nulr.rx, mulrx.rw, muld.rx, int.w, fract.wx

Condition Codes

N <— fract LSS 0;

Z <— fract EQL 0;

v <— {integer overflow};

C <—0;

Exceptions

integer overflow

floating underflow

reserved operand

Opcodes

54 EMODF Extended Multiply and Integerize
F floating

74 EMODD Extended Multiply and Integerize
D floating

54FD EMODG Extended Multiply and Integerize
G_floating

74FD EMODH Extended Multiply and Integerize
H_floating

Description

The multiplier extension operand is concatenated with the multiplier operand to gain 8 (EMODD and EMODF),
11 (EMODG), or 15 (EMODH) additional low-order fraction bits. The low-order 5 or 1 bits of the 16-bit multiplier

VSI Confidential, NDA Required 229

VAX Instruction Set

extension operand are ignored by the EMODG and EMODH instructions, respectively. The multiplicand operand is
multiplied by the extended multiplier operand. The multiplication result is equivalent to the exact product truncated
(before normalization) to a fraction field of 32 bits in F_floating, 64 bits in D_floating and G _floating, and 128 bits
in H floating. The result is regarded as the sum of an integer and fraction of the same sign. The integer operand
is replaced by the integer part of the result, and the fraction operand is replaced by the rounded fractional part

of the result.

Notes

1. On areserved operand fault, the integer operand, and the fraction operand are unaffected. The condition codes

are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow fault, the integer and fraction parts
are unaffected. If FU is clear, the integer and fraction parts are replaced by zero, and no exception occurs.

3. On integer overflow, the integer operand is replaced by the low-order bits of the true result.

4. Floating overflow is indicated by integer overflow; however, integer overflow is possible in the absence of

floating overflow.

5. The signs of the integer and fraction are the same unless integer overflow results.

6. Because the fraction part is rounded after separation of the integer part,it is possible that the value of the fraction

operand is 1.

MNEG

MNEG — Move Negated
Format

opcode src.rx, dst.wx

Condition Codes

N <— dst LSS 0;
Z <—dst EQL 0;
A% <—0;

C <—0;
Exceptions

reserved operand

Opcodes

52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D_floating
52FD MNEGG Move Negated G_floating
72FD MNEGH Move Negated H floating
Description

The destination operand is replaced by the negative of the source operand.

230 VSI Confidential, NDA Required

VAX Instruction Set

MOV

MOV — Move

Format

opcode src.rx, dst.wx

Condition Codes

<—dst LSS 0;
<—dst EQL 0;
<—0;

<—C;

Ol <|N| zZ

Exceptions

reserved operand

Opcodes

50 MOVF Move F_floating
70 MOVD Move D_floating
50FD MOVG Move G_floating
70FD MOVH Move H_floating

Description
The destination operand is replaced by the source operand.
Note

On areserved operand fault, the destination operand is unaffected, and the condition codes are UNPREDICTABLE.

MUL

MUL — Multiply

Format

2operand: opcode nulr.rx, prod.nx
3operand: opcode nmulr.rx, muld.rx, prod.wx

Condition Codes

N <— prod LSS 0;
z <— prod EQL 0;
A% <—0;
C <—0;

VSI Confidential, NDA Required 231

VAX Instruction Set

Exceptions

floating overflow
floating underflow
reserved operand

Opcodes

44 MULF2 Multiply F_floating 2 Operand
45 MULF3 Multiply F_floating 3 Operand
64 MULD2 Multiply D_floating 2 Operand
65 MULD3 Multiply D_floating 3 Operand
44FD MULG2 Multiply G_floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand
64FD MULH2 Multiply H_floating 2 Operand
65FD MULH3 Multiply H_floating 3 Operand
Description

In 2 operand format, the product operand is multiplied by the multiplier operand, and the product operand is
replaced by the rounded result. In 3operand format, the multiplicand operand is multiplied by the multiplier
operand, and the product operand is replaced by the rounded result.

Notes

1. Onareserved operand fault, the product operand is unaffected, and the condition codes are UNPREDICTABLE.

2. On floating underflow, if FU is set, a fault occurs. On a floating underflow fault, the product operand is
unaffected. If FU is clear, the product operand is replaced by zero, and no exception occurs.

3. On floating overflow, the instruction faults, the product operand is unaffected, and the condition codes are
UNPREDICTABLE.

POLY

POLY — Polynomial Evaluation

Format

opcode arg.rx, degree.rw, tbladdr.ab

Condition Codes

N <—ROLSSO;
z <— RO EQL 0;
A\ <—0;

C <—0;
Exceptions

floating overflow
floating underflow
reserved operand

232 VSI Confidential, NDA Required

VAX Instruction Set

Opcodes

55 POLYF Polynomial Evaluation F_floating
75 POLYD Polynomial Evaluation D_floating
55FD POLYG Polynomial Evaluation G_floating
75FD POLYH Polynomial Evaluation H_floating
Description

The table address operand points to a table of polynomial coefficients. The coefficient of the highest-order term
of the polynomial is pointed to by the table address operand. The table is specified with lower-order coefficients
stored at increasing addresses. The data type of the coefficients is the same as the data type of the argument operand.
The evaluation is carried out by Horner's method, and the contents of RO (R1 RO for POLYD and POLYG, R3
’R2 °R1 ’RO for POLYH) are replaced by the result. The result computed is:

if d = degree
and x = arg
result = O] +x**0 + x*(C 1] + x*(C2] + ... x*Cd]))

The unsigned word degree operand specifies the highest-numbered coefficient to participate in the evaluation.
POLYH requires four longwords on the stack to store ar g in case the instruction is interrupted.

Notes

1. After execution:

POLYF:
RO = result
R1=0
R2=0

R3 = table address + degree*4 + 4
POLYD and POLYG:

RO = high-order part of result

R1 = low-order part of result

R2=0

R3 = table address + degree*8 + 8
R4=0

R5=0

POLYH:

RO = highest-order part of result

R1 = second-highest-order part of result
R2 = second-lowest-order part of result
R3 = lowest-order part of result

R4=0

RS = table address + degree*16 + 16

2. On a floating fault:
* IfPSL <FPD> =0, the instruction faults, and all relevantside effects are restored to their original state.

* IfPSL <FPD> = 1, the instruction is suspended, and the stateis saved in the general registers as follows:

POLYF:

RO = tmp3 ! Partial result after iteration
! prior to the one causing the
! overfl ow underfl ow

Rl = arg

R2<7: 0> = tnpl ! Nunber of iterations remaining

R2<31:8> = inplenentation specific

VSI Confidential, NDA Required 233

VAX Instruction Set

R3 = tmp2 ! Points to table entry causing
! exception

POLYD and PCOLYG

R1' RO = tnmp3 ! Partial result after iteration
! prior to the one causing the
! overfl ow underf| ow

R2<7: 0> = tmpl ! Nunber of iterations remaining

R2<31: 8> = inpl enentati on specific

R3 = tmp2 ! Points to table entry causing
! exception

R5'R4 = arg

POLYH:

I Partial result after iteration
! prior to the one causing the
! over f| ow under f| ow

R3'R2' R1' RO = tnp3

R4<7: 0> = tmpl ! Nunber of iterations remaining

R4<31: 8> = inpl enentati on specific

R5 = tmp2 ! Points to table entry causing
! exception

ar g is saved on the stack in use during the faulting instruction.

Implementation-specific information is saved to allow the instruction to continue after possible scaling of
the coefficients and partial result by the fault handler.

3. If the unsigned word degree operand is zero and the argument is not are served operand, the result is C[0].
4. If the unsigned word degree operand is greater than 31, a reserved operand fault occurs.
5. On a reserved operand fault:

« If PSL <FPD> = 0, the reserved operand is either the degree operand (greater than 31), or the argument
operand, or some coefficient.

« IfPSL <FPD> =1, the reserved operand is a coefficient, and R3(except for POLYH) or R5 (for POLYH)
is pointing at the value that caused the exception.

» The state of the saved condition codes and the other registers is UNPREDICTABLE. If the reserved operand
is changed and the contents of the condition codes and all registers are preserved, the fault can be continued.

6. On floating underflow after the rounding operation at any iteration of the computation loop, a fault occurs if
FU is set. If FU is clear, the temporary result (t np3) is replaced by zero and the operation continues. In this
case, the final result may be nonzero if underflow occurred before the last iteration.

7. On floating overflow after the rounding operation at any iteration of the computation loop, the instruction
terminates with a fault.

8. If the argument is zero and one of the coefficients in the table is the reserved operand, whether a reserved
operand fault occurs is UNPREDICTABLE.

9. For POLYH, some implementations may not save ar g on the stack until after an interrupt or fault occurs.

However, ar g will always be on the stack if an interrupt or floating fault occurs after FPD is set. If the four
longwords on the stack overlap any of the source operands, the results are UNPREDICTABLE.

Example

; To compute P(x) = C0 + Cl*x + C2*x**2

234 VSI Confidential, NDA Required

VAX Instruction Set

; where @ =1.0, Cl =.5, and C = .25

POLYF X #2, PTABLE
PTABLE: .FLOAT 0.25 ; C2

.FLOAT 0.5 ; Gl

.FLOAT 1.0 ; CO
SuUB
SUB — Subtract
Format
2oper and: opcode sub.rx, dif.nx
3operand: opcode sub.rx, nmn.rx, dif.wx
Condition Codes
N <—dif LSS 0;
4 <—dif EQL 0;
A\ <—0;
C <—0;
Exceptions
floating overflow
floating underflow
reserved operand
Opcodes
42 SUBF2 Subtract F_floating 2 Operand
43 SUBF3 Subtract F_floating 3 Operand
62 SUBD2 Subtract D floating 2 Operand
63 SUBD3 Subtract D_floating 3 Operand
42FD SUBG2 Subtract G_floating 2 Operand
43FD SUBG3 Subtract G_floating 3 Operand
62FD SUBH2 Subtract H_floating 2 Operand
63FD SUBH3 Subtract H_floating 3 Operand
Description

In 2 operand format, the subtrahend operand is subtracted from the difference operand, and the difference is
replaced by the rounded result. In 3 operand format, the subtrahend operand is subtracted from the minuend

operand, and the difference operand is replaced by the rounded result.

Notes

1. On a reserved operand fault, the difference operand is unaffected, and the condition codes are
UNPREDICTABLE.

VSI Confidential, NDA Required

VAX Instruction Set

2. On floating underflow, if FU is set, a fault occurs. Zero is stored as the result of floating underflow only if FU is
clear. On a floating underflow fault, the difference operand is unaffected. If FU is clear, the difference operand
is replaced by zero, and no exception occurs.

3. On floating overflow, the instruction faults, the difference operand is unaffected, and the condition codes are
UNPREDICTABLE.

TST

TST — Test

Format

opcode src.rx

Condition Codes

<—src LSS 0;
<—src EQL 0;

<—0;

Q| <|N|Z

<—0;

Exceptions

reserved operand

Opcodes

53 TSTF Test F_floating
73 TSTD Test D_floating
53FD TSTG Test G_floating
73FD TSTH Test H_floating

Description
The condition codes are affected according to the value of the source operand.
Notes

1. TST x src is equivalent to CMP x src, #0, butis 5 (F_floating) or 9 (D_floating or G_floating) or 17
(H_floating) bytes shorter.

2. On areserved operand fault, the condition codes are UNPREDICTABLE.

9.10. Character String Instructions

A character string is specified by the following two operands:
1. An unsigned word operand that specifies the length of the character string in bytes.

2. The address of the lowest-addressed byte of the character string. This is specified by a byte operand of address
access type.

Each of the character string instructions uses general registers RO to R1, ROto R3, or RO to R5 to contain a
control block that maintains updated addresses and state during the execution of the instruction. At completion,

236 VSI Confidential, NDA Required

VAX Instruction Set

these registers are available to software to use as string specification operands for a subsequent instruction on a
contiguous character string. During the execution of the instructions, pending interrupt conditions are tested. If any
conditions are found, the control block is updated, a first-part-done bit is set in the processor status longword (PSL),
and the instruction is interrupted (refer to Appendix E, Exceptions That May Occur During Instruction Execution).
After the interruption, the instruction resumes transparently. The format of the control block is as follows:

LENGTH 1 :RO
ADDRESE 1 :R1
LENGTH 2 :R2
ADDRESE 2 :R3
LENGTH 3 : R4
ADDRESE 3 :R5

ZK-1176A-QE

The fields LENGTH 1, LENGTH 2 (if required), and LENGTH 3 (if required)contain the number of bytes
remaining to be processed in the first, second,and third string operands, respectively. The fields ADDRESS 1,
ADDRESS 2 (if required), and ADDRESS 3 (if required) contain the address of the next byte to be processed in
the first, second, and third string operands, respectively.

Memory access faults do not occur when a zero-length string is specified because no memory reference occurs.

The following instructions are described in this section.

Description and Opcode Number of Instructions
1. Compare Characters 3 Operand 1

CMPC3 len.rw, srcladdr.ab,

src2addr.ab,

{RO-3.wl}
2. Compare Characters 5 Operand 1

CMPCS5 srcllen.rw, srcladdr.ab,
fill.rb,

src2len.rw, src2addr.ab, {R0-3.wl}
3. Locate Character 1

LOCC char.rb, len.rw, addr.ab,
{RO-1.wl}

4. Match Characters 1

MATCHC lenl.rw, addrl.ab,
len2.rw, addr2.ab,

{RO-3.wl}
5. Move Character 3 Operand 1

MOVC3 len.rw, srcaddr.ab,
dstaddr.ab,

{RO-5.wl}

VSI Confidential, NDA Required 237

VAX Instruction Set

Description and Opcode Number of Instructions

6. Move Character 5 Operand 1

MOVCS srclen.rw, srcaddr.ab,
fill.rb,

dstlen.rw, dstaddr.ab, {R0-5.wl}

7. Move Translated Characters 1

MOVTC srclen.rw, srcaddr.ab,
fill.rb,

tbladdr.ab, dstlen.rw, dstaddr.ab,
{RO-5.wl}

8. Move Translated Until Character 1

MOVTUC srclen.rw, srcaddr.ab,
esc.rb,

tbladdr.ab, dstlen.rw, dstaddr.ab,
{RO-5.wl}

9. Scan Characters 1

SCANC len.rw, addr.ab, tbladdr.ab,
mask.rb,

{RO-3.wl}

10. Skip Character 1

SKPC char.rb, len.rw, addr.ab,
{RO-1.wl}

I1. Span Characters 1

SPANC len.rw, addr.ab, tbladdr.ab,

mask.rb, {R0-3.wl}

CMPC

CMPC — Compare Characters

Format

3operand: opcode |l en.rw, srcladdr. ab,
src2addr.ab 5operand: opcode srcllen.rw, srcladdr.ab, fill.rb,

src2len.rw, src2addr. ab

Condition Codes

N <— {first byte} LSS {second byte};
Z <— {first byte} EQL {second byte};
A\ <—0;

238 VSI Confidential, NDA Required

VAX Instruction Set

‘C <— {first byte} LSSU {second byte};

Exceptions

None.

Opcodes

29 CMPC3 Compare Characters 3 Operand
2D CMPCS5 Compare Characters 5 Operand
Description

In 3 operand format, the bytes of string1 specified by the length and address1operands are compared with the bytes
of string2 specified by the length andaddress2 operands. Comparison proceeds until inequality is detected or all
the bytes of the strings have been examined. Condition codes are affected by the result of the last byte comparison.
In 5 operand format, the bytes of thestring1 operand specified by the length1 and address1 operands are compared
with the bytes of the string2 operand specified by the length2 and address2operands. If one string is longer than
the other, the shorter string is conceptually extended to the length of the longer by appending (at higher addresses)
bytes equal to the fill operand. Comparison proceeds until inequality is detected or all the bytes of the strings
have been examined. Condition codes are affected by the result of the last byte comparison. For either CMPC3 or
CMPCS, two zero-length strings compare equal (that is, Z is set and N, V, and C are cleared).

Notes

1. After execution of CMPC3:

RO = Number of bytes remaining in string1(including byte
that terminated comparison); RO is zero only if strings
are equal

R1= Address of the byte in string] that terminated
comparison; if strings are equal, address of 1 byte
beyond string1

R2= RO

R3= Address of the byte in string2 that terminated

comparison; if strings are equal, address of 1 byte
beyond string2

2. After execution of CMPCS5:

RO = Number of bytes remaining in stringl (including byte
that terminated comparison); RO is zero only if string1
and string?2 are of equal length and equal or string1
was exhausted before comparison terminated

Rl = Address of the byte in stringl that terminated
comparison; if comparison did not terminate before
string] exhausted, address of 1 byte beyond string1

R2= Number of bytes remaining in string2 (including
byte that terminated comparison); R2 is zero only if
string2 and string1 are of equal length or string2 was
exhausted before comparison terminated

R3 = Address of the byte in string? that terminated
comparison; if comparison did not terminate before
string? was exhausted, address of 1 byte beyond
string2

VSI Confidential, NDA Required 239

VAX Instruction Set

3. If both strings have zero length, condition code Z is set and N, V, and Care cleared just as in the case of two
equal strings.

LOCC

LOCC — Locate Character

Format

opcode char.rb, len.rw, addr.ab

Condition Codes

N <—0;

z < RO EQL 0;

Vv <—0;

C <—0;

Exceptions

None.

Opcodes

‘3A LOCC Locate Character

Description
The character operand is compared with the bytes of the string specified by the length and address operands.
Comparison continues until equality is detected or all bytes of the string have been compared. If equality is detected,

the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

RO= Number of bytes remaining in the string (including
locate done) if byte located; otherwise, zero

R1= Address of the byte located if byte located;
otherwise,address of 1 byte beyond the string

2. If the string has zero length, condition code Z is set just as though each byte of the entire string were unequal
to character.

MATCHC

MATCHC — Match Characters

Format

opcode objlen.rw, objaddr.ab, srclen.rw, srcaddr.ab

240 VSI Confidential, NDA Required

VAX Instruction Set

Condition Codes

N <—0;

Z <— RO EQL 0; !match found

A\ <—0;

C <—0;

Exceptions

None.

Opcodes

‘ 39 MATCHC Match Characters

Description
The source string specified by the source length and source address operands is searched for a substring that
matches the object string specified by the object length and object address operands. If the substring is found, the

condition code Z-bit is set; otherwise, it is cleared.

Notes

1. After execution:

RO = If a match occurred, zero; otherwise, the number of
bytes in the object string

Rl = If a match occurred, the address of 1 byte beyond
the object string; that is, obj addr + obj | en;
otherwise,the address of the object string

R2= If a match occurred, the number of bytes remaining in
the source string; otherwise, zero

R3 = If a match occurred, the address of 1 byte beyond the
last byte matched; otherwise, the address of 1 byte
beyond the source string; that is, sr caddr +srcl en

For zero-length source and object strings, R3 and R1 contain the source and object addresses, respectively.

2. If both strings have zero length, or if the object string has zero length,condition code Z is set, and registers RO
to R3 are left just as though the substring were found.

3. If the source string has zero length and the object string has nonzero length, condition code Z is cleared, and
registers RO to R3 are left just as though the substring were not found.

MOVC

MOVC — Move Character

Format
3operand: opcode |len.rw, srcaddr.ab, dstaddr.ab

5operand: opcode srclen.rw, srcaddr.ab, fill.rb,

VSI Confidential, NDA Required 241

VAX Instruction Set

dstl en.rw, dstaddr.ab

Condition Codes

N <—0; IMOVC3

V4 <—1;

A\ <—0;

C <—0;

N <— srclen LSS dstlen; 'MOVCS5
Z <— srclen EQL dstlen;

A\ <—0;

C <— srclen LSSU dstlen;
Exceptions

None.

Opcodes

28 MOVC3 Move Character 3 Operand
2C MOVC5 Move Character 5 Operand
Description

In 3 operand format, the destination string specified by the length and destination address operands is replaced by
the source string specified by the length and source address operands. In 5 operand format, the destination string
specified by the destination length and destination address operands is replaced by the source string specified by
the source length and source address operands. If the destination string is longer than the source string,the highest-
addressed bytes of the destination are replaced by the fill operand. If the destination string is shorter than the source
string, the highest-addressed bytes of the source string are not moved. The operation of the instruction is such that
overlap of the source and destination strings does not affect the result.

Notes

1. After execution of MOVC3:

RO = 0

R1= Address of 1 byte beyond the source string

R2 = 0

R3 = Address of 1 byte beyond the destination string
R4 = 0

R5= 0

2. After execution of MOVCS:

RO = Number of unmoved bytes remaining in source string.
RO is nonzero only if source string is longer than
destination string

R1= Address of 1 byte beyond last byte in source that was
moved
R2= 0

242 VSI Confidential, NDA Required

VAX Instruction Set

R3= Address of 1 byte beyond the destination string
R4 = 0
R5= 0

3. MOVC3 is the preferred way to copy one block of memory to another.

4. MOVCS with a zero source length operand is the preferred way to fill ablock of memory with the fill character.

MOVTC

MOVTC — Move Translated Characters

Format
opcode srclen.rw, srcaddr.ab, fill.rb, tbladdr. ab,

dstl en.rw, dstaddr.ab

Condition Codes

N <— srclen LSS dstlen;
Z <— srclen EQL dstlen;
A% <—0;

C <— srclen LSSU dstlen;
Exceptions

None.

Opcodes

‘2E MOVTC Move Translated Characters

Description

The source string specified by the source length and source address operands is translated. It replaces the
destination string specified by the destination length and destination address operands. Translation is accomplished
by using each byte of the source string as an index into a256-byte table whose first entry (entry number 0) address
is specified by the table address operand. The byte selected replaces the byte of the destination string. If the
destination string is longer than the source string, the highest-addressed bytes of the destination string are replaced
by the fill operand. If the destination string is shorter than the source string, the highest-addressed bytes of the
source string are not translated and moved. The operation of the instruction is such that overlap of the source and
destination strings does not affect the result.

If the destination string overlaps the translation table, the destination string is UNPREDICTABLE.

Notes

1. After execution:

RO = Number of untranslated bytes remaining in source
string; ROis nonzero only if source string is longer than
destination string

VSI Confidential, NDA Required 243

VAX Instruction Set

R1= Address of 1 byte beyond the last byte in source string
that was translated

R2= 0

R3 = Address of the translation table

R4 = 0

R5= Address of 1 byte beyond the destination string

MOVTUC

MOVTUC — Move Translated Until Character

Format

opcode srclen.rw, srcaddr.ab, esc.rb, tbladdr.ab,

dstlen.rw, dstaddr.ab

Condition Codes

N <— srclen LSS dstlen;

Z <— srclen EQL dstlen;

A% <— {terminated by escape};
C <— srclen LSSU dstlen;
Exceptions

None.

Opcodes

‘ZF MOVTUC Move Translated Until Character

Description

The source string specified by the source length and source address operands is translated. It replaces the
destination string specified by the destination length and destination address operands. Translation is accomplished
by using each byte of the source string as an index into a256-byte table whose first entry address (entry number 0)
is specified by the table address operand. The byte selected replaces the byte of the destination string. Translation
continues until a translated byte is equal to the escape byte, or until the source string or destination string is
exhausted. If translation is terminated because of escape, the condition code V-bit is set;otherwise, it is cleared.

If the destination string overlaps the table, the destination string and registers R0 to R5 are UNPREDICTABLE. If
the source and destination strings overlap and their addresses are not identical, the destination string and registers
RO to R5 are UNPREDICTABLE. If the source and destination string addresses are identical, the translation is
performed correctly.

Notes

1. After execution:

RO = Number of bytes remaining in source string (including
the byte that caused the escape); RO is zero only if the
244 VSI Confidential, NDA Required

VAX Instruction Set

entire source string was translated and moved without
escape

Rl = Address of the byte that resulted in destination string
exhaustion or escape; or if no exhaustion or escape,
address of 1 byte beyond the source string

R2= 0

R3 = Address of the table

R4 = Number of bytes remaining in the destination string
R5 = Address of the byte in the destination string that would

have received the translated byte that caused the
escape or would have received a translated byte if the
source string were not exhausted; or if no exhaustion
or escape, the address of 1 byte beyond the destination
string

SCANC

SCANC — Scan Characters

Format

opcode len.rw, addr.ab, tbladdr.ab, mask.rb

Condition Codes

N <—0;

z <— ROEQL 0;
A% <—0;

C <—0;
Exceptions

None.

Opcodes

‘ZA SCANC Scan Characters

Description

The assembler successively uses the bytes of the string specified by the length and address operands to index into
a 256-byte table whose first entry(entry number 0) address is specified by the table address operand. The logical
AND is performed on the byte selected from the table and the mask operand. The operation continues until the
result of the AND is nonzero, or until all the bytes of the string have been exhausted. If a nonzero AND result is
detected, the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

RO = Number of bytes remaining in the string (including
the byte that produced the nonzero AND result); RO is
zero only if there was no nonzero AND result

VSI Confidential, NDA Required 245

VAX Instruction Set

R1= Address of the byte that produced the nonzero AND
result; if no nonzero result, address of 1 byte beyond
the string

R2= 0

R3 = Address of the table

2. If the string has zero length, condition code Z is set just as though the entire string were scanned.

SKPC

SKPC — Skip Character

Format

opcode char.rb, len.rw, addr.ab

Condition Codes

N <—0;

V4 <— RO EQL 0;
v <—0;

C <—0;
Exceptions

None.

Opcodes

‘3B SKPC Skip Character

Description

The character operand is compared with the bytes of the string specified by the length and address operands.
Comparison continues until inequality is detected or all bytes of the string have been compared. If inequality is
detected, the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

RO = Number of bytes remaining in the string (including the
unequal one) if unequal byte located; otherwise, zero

R1= Address of the byte located if byte located,;
otherwise,address of 1 byte beyond the string

2. If the string has zero length, condition code Z is set just as though each byte of the entire string were equal
to the character.

SPANC

SPANC — Span Characters

246 VSI Confidential, NDA Required

VAX Instruction Set

Format

opcode |l en.rw, addr.ab, tbladdr.ab, mask.rb

Condition Codes

N <—0;

Z <— RO EQL 0;
A\ <—0;

C <—0;
Exceptions

None.

Opcodes

‘ 2B SPANC Span Characters

Description

The assembler successively uses the bytes of the string specified by the length and address operands to index into
a 256-byte table whose first entry(entry number 0) address is specified by the table address operand. The logical
AND is performed on the byte selected from the table and the mask operand. The operation continues until the
result of the AND is zero, or until all the bytes of the string have been exhausted. If a zero AND result is detected,
the condition code Z-bit is cleared; otherwise, the Z-bit is set.

Notes

1. After execution:

RO = Number of bytes remaining in the string (including the
byte that produced the zero AND result); RO is zero
only if there was no zero AND result

R1= Address of the byte that produced a zero AND result;
if no nonzero result, address of 1 byte beyond the
string

R2= 0

R3= Address of the table

2. If the string has zero length, the condition code Z-bit is set just as though the entire string were spanned.

9.11. Cyclic Redundancy Check Instruction

This instruction implements the calculation of a cyclic redundancy check (CRC)string for any CRC polynomial
up to 32 bits. Cyclic redundancy checking is an error detection method involving a division of the data stream
by a CRC polynomial. The data stream is represented as a standard VAX string in memory. Error detection is
accomplished by computing the CRC at the source and again at the destination, comparing the CRC computed at
each end. The choice of the polynomial minimizes the number of undetected block errors of specific lengths. The
choice of a CRC polynomial is not given here.

The operands of the CRC instruction are a string descriptor, a 16-longwordtable, and an initial CRC. The string
descriptor is a standard VAX operand pair of the length of the string in bytes (up to 65,535) and the starting address
of the string. The contents of the table are a function of the CRC polynomial to be used. It can be calculated from
the polynomial by the algorithm in the notes. Several common CRC polynomials are also included in the notes.

VSI Confidential, NDA Required 247

VAX Instruction Set

The system uses the initial CRC to start the polynomial correctly. Typically, the CRC has the value zero or -1. If
the data stream is represented by a sequence of noncontiguous strings, the value would vary from0 to -1.

The CRC instruction scans the string and includes each byte of the data stream in the CRC being calculated.
The instruction includes the byte of the data stream by performing a logical exclusive OR (XOR) with it and the
rightmost 8bits of the CRC. Then the instruction shifts the CRC right 1 bit and inserts a zero on the left. The
instruction uses the rightmost bit of the CRC (lost by the shift) to control the logical XOR operation of the CRC
polynomial with the resultant CRC. If the bit is a 1, the instruction performs a logical XOR with the polynomial
and the CRC. The instruction again shifts the CRC to the right and performs a conditional logical XOR on the
polynomial with the result, fora total of eight times. The actual algorithm used can shift by 1, 2, or 4 bits at a time
using the appropriate entries in a specially constructed table. The instruction produces a 32-bit CRC. For shorter
polynomials, the result must be extracted from the 32-bit field. The data stream must be either a multiple of 8 bits
in length or right-adjusted in the string with leading zero bits.

CRC

CRC — Calculate Cyclic Redundancy Check

Format

opcode thbl.ab, inicrc.rl, strlen.rw, stream ab

Condition Codes

N <—ROLSS 0;
Z <— RO EQL 0;
v <—0;

C <—0;

Exceptions

None.

Opcodes

0B CRC Calculate Cyclic Redundancy

Check

Description

The CRC of the data stream described by the string descriptor is calculated. The initial CRC is given by i ni cr c;
it is normally zero or -1,unless the CRC is calculated in several steps. The result is left in RO. If the polynomial is
less than order 32, the result must be extracted from the low-order bits of RO. The CRC polynomial is expressed
by the contents of thel 6-longword table. See the notes for the calculation of the table.

Notes

1. After execution:

RO = Result of CRC

Rl = 0

R2= 0

R3= Address 1 byte beyond the end of the source string

2. If the data stream is not a multiple of 8 bits, it must be right-adjusted with leading zero fill.

248

VSI Confidential, NDA Required

VAX Instruction Set

3. If the CRC polynomial is less than order 32, the result must be extracted from the low-order bits of RO.
4. Use the following algorithm to calculate the CRC table given a polynomial expressed:
pol yn<n> <- {coefficient of x**{order -1-n}}

The following routine is system library routine LIBSCRC_TABLE (poly.r1, table.ab). The table is the location
of the 64-byte (16-longword) table into which the result will be written.

SUBROUTI NE LI B$CRC_TABLE (POLY, TABLE)

| NTEGER*4 POLY, TABLE(O0:15), TMP, X

DO 190 INDEX = 0, 15

TMP = | NDEX

DO150 I =1, 4

X = TWP . AND. 1

TMP = | SHFT(TMP, - 1) I'l ogical shift right one bit

IF (X .EQ 1) TMP = TMP .XOR PCLY
150 CONTI NUE

TABLE(| NDEX) = TMWP

190 CONTI NUE
RETURN
END

5. The following are descriptions of some commonly used CRC polynomials:

CRC-16 (used in DDCMP and Bi sync)

pol ynomi al : x"16 + x"15 + x72 + 1

pol y: 120001 (octal)

initialize: 0

result: RO<15: 0>
CCTT (used in ADCCP, HDLC, SDLC)

pol ynomi al : x"16 + x"12 + x75 + 1

pol y: 102010 (octal)

initialize: -1<15: 0>

result: one's conpl enent of RO<15: 0>
AUTCDI N- I 1

pol ynomi al : XN32+4XN26+XN23+XN22+XN16+XN12

XA LLHXNL0+XAB+HX N T+HXN5+X N 4+X M 2+x+1

pol y: EDB88320 (hex)

initialize: -1<31: 0>

result: one's conpl enent of RO0<31: 0>

6. The CRC instruction produces an UNPREDICTABLE result unless the table is well-formed, like the one
produced in note 3. Note that for any well-formed table, ent r y[0] is always zero and ent r y[8] is always
the polynomial expressed as in note 3. The operation can be implemented using shifts of 1, 2, or 4 bits at a
time, as follows:

Shift (s) Steps per Byte Table Index Table Index Use Table Entries
(limit) Multiplier (i)
1 8 tmp3 <0> 8 [0]=0,[8]
VSI Confidential, NDA Required 249

VAX Instruction Set

Shift (s) Steps per Byte Table Index Table Index Use Table Entries
(limit) Multiplier (i)
4 tmp3 <1:0> 4 [0]=0,[4],[8],[12]
4 2 tmp3 <3:0> 1 all

7. If the stream has zero length, RO receives the initial CRC.

9.12. Decimal String Instructions

Decimal string instructions operate on packed decimal strings.

The decimal string instructions in this section operate on the following data types:

» Packed decimal string

* Trailing numeric string (overpunched and zoned)

* Leading separate numeric string

Where the phrase “decimal string” is used, it means any of the three data types. Conversion instructions are

provided between the data types. Where necessary, a specific data type is identified.

A decimal string is specified by two operands:

1. For all decimal strings, the length is the number of digits in the string. The number of bytes in the string is a

function of the length and the type of decimal string referenced (see Chapter 8, Basic Architecture).

2. The address of the lowest-addressed byte of the string. This byte contains the most significant digit for trailing
numeric and packed decimal strings, as well as a sign for leading separate numeric strings. The address is

specified by a byte operand of address access type.

Each of the decimal string instructions uses general registers RO to R3 or ROto R5 to hold a control block
that maintains updated addresses and state during the execution of the instruction. At completion, the registers
containing addresses are available to the software for use as string specification operands for a subsequent
instruction on the same decimal strings.

During the execution of the instructions, pending interrupt conditions are tested; if any is found, the control block
is updated. The first part done is set in the processor status longword (PSL), and the instruction is interrupted(refer
to Appendix E, Exceptions That May Occur During Instruction Execution). After the interruption, the instruction

resumes transparently. The format of the control block at completion is as follows:

31 0

0 :RO

ADDRESE& 1 :R1

0 :R2

ADDRESs 2 :R3

0 :R4

ADDRESS 3 :R5

ZK-1176A-QE

The fields ADDRESS 1, ADDRESS 2, and ADDRESS 3 (if required) contain the address of the byte containing

the most significant digit of the first,second, and third (if required) string operands, respectively.

250

VSI Confidential, NDA Required

VAX Instruction Set

The decimal string instructions treat decimal strings as integers with the decimal point assumed immediately
beyond the least significant digit of the string. If a string in which a result is to be stored is longer than the result,
its most significant digits are filled with zeros.

9.12.1. Decimal Overflow

Decimal overflow occurs if the destination string is too short to contain all of the digits (excluding leading zeros)
of the result. On overflow, the destination string is replaced by the correctly signed least significant digits of the
true result (even if the stored result is -0). Note that neither the high nibble of an even-length packed decimal string
nor the sign byte of a leading separate numeric string is used to store result digits.

9.12.2. Zero Numbers

A zero result has a positive sign for all operations that complete without decimal overflow, except for CVTPT,
which does not change a -0 to a +0.However, when digits are lost because of overflow, a zero result receives the
sign (positive or negative) of the correct result.

A decimal string with value -0 is treated as identical to a decimal string with value +0. Thus, for example, +0
compares as equal to -0. When condition codes are affected on a -0 result, they are affected as if the result were
+0; that is, N is cleared and Z is set.

9.12.3. Reserved Operand Exception

A reserved operand abort occurs if the length of a decimal string operand is outside the range 0 to 31, or if an
invalid sign or digit is encountered in CVTSP or CVTTP. The program counter (PC) points to the opcode of the
instruction causing the exception.

9.12.4. UNPREDICTABLE Results

The result of any operation is UNPREDICTABLE if any source decimal string operand contains invalid data.
Except for CVTSP and CVTTP, the decimal string instructions do not verify the validity of source operand data.

If the destination operands overlap any source operands, the result of an operation will be UNPREDICTABLE.
The destination strings, registers used by the instruction, and condition codes will be UNPREDICTABLE when
a reserved operand abort occurs.

9.12.5. Packed Decimal Operations

Packed decimal strings generated by the decimal string instructions always have the preferred sign representation:
12 for “+” and 13 for “-”. An even-length packed decimal string is always generated with a “0” digit in the high
nibble of the first byte of the string.

A packed decimal string contains an invalid nibble if:
A digit occurs in the sign position
* A sign occurs in a digit position

* A nonzero nibble occurs in the high-order nibble of the lowest-addressed byte in an even length string

9.12.6. Zero-Length Decimal Strings

The length of a packed decimal string can be zero. In this case, the value is zero (plus or minus) and 1 byte of
storage is occupied. This byte must contain a “0” digit in the high nibble and the sign in the low nibble.

The length of a trailing numeric string can be zero. In this case, no storage is occupied by the string. If a destination
operand is a zero-length trailing numeric string, the sign of the operation is lost. Memory access faults do not
occur when a zero-length trailing numeric operand is specified because nomemory reference occurs. The value of
a zero-length trailing numeric string is identically zero.

VSI Confidential, NDA Required 251

VAX Instruction Set

The length of a leading separate numeric string can be zero. In this case, 1byte of storage is occupied by the sign.
Memory is accessed when a zero-length operand is specified, and a reserved operand abort will occur if an invalid
sign is detected. The value of a zero-length leading separate numeric string is zero.

9.12.7. Instruction Descriptions

The following instructions are described in this section:

Description and Opcode Number of Instructions
1. Add Packed 4 Operand 1

ADDP4 addlen.rw, addaddr.ab,
sumlen.rw,

sumaddr.ab, {R0-3.wl}
2. Add Packed 6 Operand 1

ADDP6 addllen.rw, addladdr.ab,
add2len.rw,

add2addr.ab, sumlen.rw,
sumaddr.ab,

{RO-5.wl}
3. Arithmetic Shift and Round Packed |1

ASHP cnt.rb, srclen.rw, srcaddr.ab,
round.rb, dstlen.rw, dstaddr.ab,

{RO-3.wl}
4. Compare Packed 3 Operand 1

CMPP3 len.rw, srcladdr.ab,
src2addr.ab,

{RO-3.wl}
5. Compare Packed 4 Operand 1

CMPP4 srcllen.rw, srcladdr.ab,
src2len.rw,

src2addr.ab, {R0-3.wl}
6. Convert Long to Packed 1

CVTLP src.rl, dstlen.rw, dstaddr.ab,

{RO-3.wl}
7. Convert Packed to Long 1

CVTPL srclen.rw, srcaddr.ab,
{RO-3.wl},

dst.wl

[

8. Convert Packed to Leading Separate

CVTPS srclen.rw, srcaddr.ab,
dstlen.rw,

252 VSI Confidential, NDA Required

VAX Instruction Set

Description and Opcode

Number of Instructions

dstaddr.ab, {R0-3.wl}

Convert Packed to Trailing

CVTPT srclen.rw, srcaddr.ab,
tbladdr.ab,

dstlen.rw, dstaddr.ab, {R0-3.wl}

10.

Convert Leading Separate to Packed

CVTSP srclen.rw, srcaddr.ab,
dstlen.rw,

dstaddr.ab, {R0-3.wl}

11.

Convert Trailing to Packed

CVTTP srclen.rw, srcaddr.ab,
tbladdr.ab,

dstlen.rw, dstaddr.ab, {R0-3.wl}

12.

Divide Packed

DIVP divrlen.rw, divraddr.ab,
divdlen.rw,

divdaddr.ab, quolen.rw, quoaddr.ab,

{RO-5.wl, -16(SP):-1(SP).wb}

13.

Move Packed

MOVP len.rw, srcaddr.ab,
dstaddr.ab,

{RO-3.wl}

14.

Multiply Packed

MULP mulrlen.rw, mulraddr.ab,
muldlen.rw,

muldaddr.ab, prodlen.rw,
prodaddr.ab,

{RO-5.wl}

15.

Subtract Packed 4 Operand

SUBP4 sublen.rw, subaddr.ab,
diflen.rw,

difaddr.ab, {R0-3.wl}

16.

Subtract Packed 6 Operand

SUBP6 sublen.rw, subaddr.ab,
minlen.rw,

minaddr.ab, diflen.rw, difaddr.ab,

{RO-5.wl}

VSI Confidential, NDA Required

253

VAX Instruction Set

ADDP

ADDP — Add Packed

Format

opcode addl en.rw, addaddr.ab, sum en.rw,

sumaddr . ab opcode addll en.rw, addladdr.ab, add2len.rw,

add2addr . ab, sum en.rw, sunaddr.ab

Condition Codes

N <— {sum string} LSS 0;

z <— {sum string} EQL 0;

v <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

20 ADDP4 Add Packed 4 Operand
21 ADDP6 Add Packed 6 Operand
Description

In 4 operand format, the addend string specified by the addend length and addend address operands is added to
the sum string specified by the sum length and sum address operands, and the sum string is replaced by the result.

In 6 operand format, the addend] string specified by the addend1 length andaddendl address operands is added
to the addend? string specified by theaddend2 length and addend2 address operands. The sum string specified by
the sum length and sum address operands is replaced by the result.

Notes

1. After execution of ADDP4:

RO = 0

R1= Address of the byte containing the most significant
digit of the addend string

R2= 0

R3 = Address of the byte containing the most significant
digit of the sum string

RO = 0

R1= Address of the byte containing the most significant
digit of the addend]1 string

254 VSI Confidential, NDA Required

VAX Instruction Set

R2 = 0

R3 = Address of the byte containing the most significant
digit of the addend? string

R4 = 0

R5 = Address of the byte containing the most significant
digit of the sum string

3. The sum string, RO to R3 (or RO to R5 for ADDP6) and the condition codes are UNPREDICTABLE if: the
sum string overlaps the addend, addend1, or addend2strings; the addend, addend1, addend2, or sum (4 operand
only) strings contain an invalid nibble; or a reserved operand abort occurs.

ASHP

ASHP — Arithmetic Shift and Round Packed
Format
opcode cnt.rb, srclen.rw, srcaddr.ab,

dstlen.rw, dstaddr. ab

Condition Codes

round. rb,

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
v <— {decimal overflow};
C <—0;

Exceptions

reserved operand
decimal overflow

Opcodes

F8 ASHP

Arithmetic Shift and Round Packed

Description

The source string specified by the source length and source address operands is scaled by a power of 10 specified
by the count operand. The destination string specified by the destination length and destination address operands

is replaced by the result.

A positive count operand effectively multiplies, a negative count effectively divides, and a zero count just moves
and affects condition codes. When a negative count is specified, the result is rounded using the round operand.

Notes

1. After execution:

RO = 0

R1= Address of the byte containing the most significant
digit of the source string

R2= 0

VSI Confidential, NDA Required

255

VAX Instruction Set

R3= Address of the byte containing the most significant
digit of the destination string

2. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if the destination string
overlaps the source string, the source string contains an invalid nibble, or a reserved operand abort occurs.

3. When the count operand is negative, the result is rounded by decimally adding bits 3:0 of the round operand
to the most significant low-order digit discarded and propagating the carry, if any, to higher-order digits. Both
the source operand and the round operand are considered to be quantities of the same sign for the purpose of
this addition.

4. If bits 7:4 of the round operand are nonzero, or if bits 3:0 of the round operand contain an invalid packed
decimal digit, the result is UNPREDICTABLE.

5. When the count operand is zero or positive, the round operand has no effect on the result except as specified
in note 4.

6. The round operand is normally 5. Truncation can be accomplished by using a zero round operand.

CMPP

CMPP — Compare Packed

Format

3operand: opcode |en.rw, srcladdr. ab,

src2addr. ab 4operand: opcode srcllen.rw, srcladdr. ab,
src2l en.rw, src2addr.ab

Condition Codes

N <— {srcl string} LSS {src2 string};

Z <— {srcl string} EQL {src2 string};

A\ <—0;

C <—0;

Exceptions

reserved operand

Opcodes

35 CMPP3 Compare Packed 3 Operand
37 CMPP4 Compare Packed 4 Operand
Description

In 3 operand format, the source 1 string specified by the length and source 1 address operands is compared to the
source 2 string specified by the length and source 2 address operands. The only action is to affect the condition
codes.

In 4 operand format, the source 1 string specified by the source 1 length and source 1 address operands is compared
to the source 2 string specified by the source 2 length and source 2 address operands. The only action is to affect
the condition codes.

256 VSI Confidential, NDA Required

VAX Instruction Set

Notes

1. After execution of CMPP3 or CMPP4:

RO = 0

Rl = Address of the byte containing the most significant
digit of string1

R2= 0

R3 = Address of the byte containing the most significant
digit of string2

2. RO to R3 and the condition codes are UNPREDICTABLE if the source strings overlap, if either string contains
an invalid nibble, or if a reserved operand abort occurs.

CVTLP

CVTLP — Convert Long to Packed

Format

opcode src.rl, dstlen.rw, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;

z <— {dst string} EQL 0;

v <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

F9 CVTLP Convert Long to Packed
Description

The source operand is converted to a packed decimal string. The destination string operand specified by the
destination length and destination address operands is replaced by the result.

Notes

1. After execution:

RO = 0

Rl = 0

R2= 0

R3 = Address of the byte containing the most significant
digit of the destination string

VSI Confidential, NDA Required 257

VAX Instruction Set

2. The destination string, R0 to R3, and the condition codes are UNPREDICTABLE on a reserved operand abort.

3. Overlapping operands produce correct results.

CVTPL

CVTPL — Convert Packed to Long

Format

opcode srclen.rw, srcaddr.ab, dst.w

Condition Codes

N <—dst LSS 0;

Z <—dst EQL 0;

v <— {integer overflow};

C <—0;

Exceptions

reserved operand

integer overflow

Opcodes

‘36 CVTPL Convert Packed to Long
Description

The source string specified by the source length and source address operands is converted to a longword, and the
destination operand is replaced by the result.

Notes

1. After execution:

RO = 0

Rl = Address of the byte containing the most significant
digit of the source string

R2 = 0

R3 = 0

2. The destination operand, RO to R3, and the condition codes are UNPREDICTABLE on a reserved operand
abort, or if the string contains an invalid nibble.

3. The destination operand is stored after the registers are updated as specified in note 1. You may use RO to R3
as the destination operand.

4. Ifthe source string has a value outside the range -2,147,483,648 to+2,147,483,647, integer overflow occurs and
the destination operand is replaced by the low-order 32 bits of the correctly signed infinite precision conversion.

On overflow, the sign of the destination may be different from the sign of the source.

5. Overlapping operands produce correct results.

258 VSI Confidential, NDA Required

VAX Instruction Set

CVTPS

CVTPS — Convert Packed to Leading Separate Numeric

Format

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Condition Codes

N <— {src string} LSS 0;

z <— {src string} EQL 0;

v <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

08 CVTPS Convert Packed to Leading Separate
Numeric

Description

The source packed decimal string specified by the source length and source address operands is converted to a
leading separate numeric string. The destination string specified by the destination length and destination address
operands is replaced by the result.

Conversion is effected by replacing the lowest-addressed byte of the destination string with the ASCII character
“+” or “-”,determined by the sign of the source string. The remaining bytes of the destination string are replaced
by the ASCII representations of the values of the corresponding packed decimal digits of the source string.

Notes

1. After execution:

RO= 0

Rl = Address of the byte containing the most significant
digit of the source string

R2= 0

R3= Address of the sign byte of the destination string

2. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if the destination string
overlaps the source string, the source string contains an invalid nibble, or a reserved operand abort occurs.

3. This instruction produces an ASCII “+” or “-” in the sign byte of the destination string.

4. If decimal overflow occurs, the value stored in the destination might be different from the value indicated by
the condition codes (Z and N bits).

5. If the conversion produces a -0 without overflow, the destination leading separate numeric string is changed
to a +0 representation.

VSI Confidential, NDA Required 259

VAX Instruction Set

CVTPT

CVTPT — Convert Packed to Trailing Numeric

Synopsis

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dst addr . ab

Condition Codes

N <— {src string} LSS 0;

zZ <— {src string} EQL 0;

A% <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

24 CVTPT Convert Packed to Trailing Numeric
Description

The source packed decimal string specified by the source length and source address operands is converted to a
trailing numeric string. The destination string specified by the destination length and destination address operands
is replaced by the result. The condition code N and Z bits are affected by the value of the source packed decimal
string.

Conversion is effected by using the highest-addressed byte of the source string (the byte containing the sign and
the least significant digit), even if the source string value is -0. The assembler uses this byte as an unsigned index
into a 256-byte table whose first entry (entry number 0) address is specified by the table address operand. The
byte read from the table replaces the least significant byte of the destination string. The remaining bytes of the
destination string are replaced by the ASCII representations of the values of the corresponding packed decimal
digits of the source string.

Notes

1. After execution:

RO= 0

R1= Address of the byte containing the most significant
digit of the source string

R2= 0

R3 = Address of the most significant digit of the destination
string

2. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if the destination string
overlaps the source string or the table; if the source string or the table contains an invalid nibble; or if are served
operand abort occurs.

260 VSI Confidential, NDA Required

VAX Instruction Set

3. The condition codes are computed on the value of the source string even if overflow results. In particular,
condition code N is set only if the source is nonzero and contains a minus sign (-).

4. By appropriate specification of the table, you can convert any form of trailing numeric string. See Chapter 8,
Basic Architecture for the preferred form of trailing overpunch, zoned and unsigned data. In addition, the table
can be set up for absolute value, negative absolute value, or negated conversions. The translation table may be
referenced even if the length of the destination string is zero.

5. Decimal overflow occurs if the destination string is too short to contain the converted result of a nonzero packed
decimal source string (not including leading zeros). Conversion of a source string with zero value never results
in overflow; conversion of a nonzero source string to a zero-length destination string results in overflow.

6. If decimal overflow occurs, the value stored in the destination may be different from the value indicated by
the condition codes (Z and N bits).

CVTSP

CVTSP — Convert Leading Separate Numeric to Packed

Format

opcode srclen.rw, srcaddr.ab, dstlen.rw, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
v <— {decimal overflow};
C <—0;

Exceptions

reserved operand
decimal overflow

Opcodes

09 CVTSP Convert Leading Separate Numeric
to Packed

Description

The source numeric string specified by the source length and source address operands is converted to a packed
decimal string, and the destination string specified by the destination address and destination length operands is
replaced by the result.

Notes

1. A reserved operand abort occurs if:
» The length of the source leading separate numeric string is outside the range 0 to 31
* The length of the destination packed decimal string is outside the range Oto 31

» The source string contains an invalid byte. An invalid byte is any character other than an ASCII “0” to “9”
in a digit byte or an ASCII “+”, “ <space>", or “-” in the sign byte

2. After execution:

VSI Confidential, NDA Required 261

VAX Instruction Set

RO = 0
Rl = Address of the sign byte of the source string
= 0
R3 = Address of the byte containing the most significant
digit of the destination string

3. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if the destination string
overlaps the source string, or if are served operand abort occurs.

4. srcl en is the length of the passed string minus the sign byte.

CVTTP

CVTTP — Convert Trailing Numeric to Packed

Synopsis

opcode srclen.rw, srcaddr.ab, tbladdr.ab, dstlen.rw,
dst addr . ab

Condition Codes

N <— {dst string} LSS 0;

Z <— {dst string} EQL 0;

v <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

26 CVTTP Convert Trailing Numeric to Packed
Description

The source trailing numeric string specified by the source length and source address operands is converted to
a packed decimal string, and the destination packed decimal string specified by the destination address and
destination length operands is replaced by the result.

Conversion is effected by using the highest-addressed (trailing) byte of the source string as an unsigned index into
a 256-byte table whose first entry(entry number 0) is specified by the table address operand. The byte read from
the table replaces the highest-addressed byte of the destination string(the byte containing the sign and the least
significant digit). The remaining packed digits of the destination string are replaced by the low-order 4 bits of the
corresponding bytes in the source string.

Notes
1. A reserved operand abort occurs if:

» The length of the source trailing numeric string is outside the range 0 to31

262 VSI Confidential, NDA Required

VAX Instruction Set

* The length of the destination packed decimal string is outside the range Oto 31

» The source string contains an invalid byte. An invalid byte is any value other than ASCII “0” to “9” in any
high-order byte (that is, any byte except the least significant byte)

» The translation of the least significant digit produces an invalid packed decimal digit or sign nibble

2. After execution:

RO = 0

R1= Address of the most significant digit of the source
string

R2= 0

R3 = Address of the byte containing the most significant
digit of the destination string

3. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if the destination string
overlaps the source string or the table, or if a reserved operand abort occurs.

4. If the convert instruction produces a -0 without overflow, the destination packed decimal string is changed to
a +0 representation, condition code N is cleared, and Z is set.

5. If the length of the source string is zero, the destination packed decimal string is set equal to zero, and the
translation table is not referenced.

6. By appropriate specification of the table, you can convert any form of trailing numeric string. See Chapter 8§,
Basic Architecture for the preferred form of trailing overpunch, zoned and unsigned data. In addition, the table

can be set up for absolute value, negative absolute value, or negated conversions.

7. If the table translation produces a sign nibble containing any valid sign,the preferred sign representation is
stored in the destination packed decimal string.

DIVP

DIVP — Divide Packed

Format

opcode divrlen.rw, divraddr.ab, divdlen.rw,

di vdaddr. ab, quol en.rw, quoaddr. ab

Condition Codes

N <— {quo string} LSS 0;
Z <— {quo string} EQL 0;
v <— {decimal overflow};
C <—0;

Exceptions

reserved operand
decimal overflow
divide by zero

VSI Confidential, NDA Required 263

VAX Instruction Set

Opcodes

27 DIVP Divide Packed

Description

The dividend string specified by the dividend length and dividend address operands is divided by the divisor string
specified by the divisor length and divisor address operands. The quotient string specified by the quotient length
and quotient address operands is replaced by the result.

Notes

1. This instruction allocates a 16-byte workspace on the stack. After execution, the stack pointer (SP) is restored
to its original contents, and the contents of {(SP)-16}:{(SP)-1} are UNPREDICTABLE.

2. The division is performed, resulting in the following conditions:
* The absolute value of the remainder (which is lost) is less than the absolute value of the divisor

» The product of the absolute value of the quotient times the absolute value of the divisor is less than or equal
to the absolute value of the dividend

» The sign of the quotient is determined by the rules of algebra from the signs of the dividend and the divisor;
if the value of the quotient is zero,the sign is always positive

3. After execution:

RO = 0

Rl = Address of the byte containing the most significant
digit of the divisor string

R2= 0

R3= Address of the byte containing the most significant
digit of the dividend string

R4 = 0

R5= Address of the byte containing the most significant
digit of the quotient string

4. The quotient string, RO to R5, and the condition codes are UNPREDICTABLE if: the quotient string overlaps
the divisor or dividend strings; the divisor or dividend string contains an invalid nibble; the divisor is zero; or
are served operand abort occurs.

MOVP

MOVP — Move Packed
Format
opcode |l en.rw, srcaddr.ab, dstaddr.ab

Condition Codes

N <— {dst string} LSS 0;
Z <— {dst string} EQL 0;
A\ <—0;
C <—C;

264 VSI Confidential, NDA Required

VAX Instruction Set

Exceptions
reserved operand

Opcodes

34 MOVP Move Packed

Description

The destination string specified by the length and destination address operands is replaced by the source string
specified by the length and source address operands.

Notes

1. After execution:

RO = 0

R1= Address of the byte containing the most significant
digit of the source string

R2= 0

R3 = Address of the byte containing the most significant
digit of the destination string

2. The destination string, RO to R3, and the condition codes are UNPREDICTABLE if: the destination string
overlaps the source string; the source string contains an invalid nibble; or a reserved operand abort occurs.

3. If the source is -0, the result is +0, N is cleared, and Z is set.

MULP

MULP — Multiply Packed

Format

opcode nulrlen.rw, rmulraddr.ab, muldlen.rw,

nmul daddr . ab, prodl en.rw, prodaddr.ab

Condition Codes

N <— {prod string} LSS 0;

Z <— {prod string} EQL 0;

A% <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

25 MULP Multiply Packed

VSI Confidential, NDA Required 265

VAX Instruction Set

Description

The multiplicand string specified by the multiplicand length and multiplicand address operands is multiplied by the
multiplier string specified by the multiplier length and multiplier address operands. The product string specified
by the product length and product address operands is replaced by the result.

Notes

1. After execution:

RO = 0

R1= Address of the byte containing the most significant
digit of the multiplier string

R2= 0

R3 = Address of the byte containing the most significant
digit of the multiplicand string

R4 = 0

RS = Address of the byte containing the most significant
digit of the product string

2. The product string, RO to RS, and the condition codes are UNPREDICTABLE if: the product string overlaps the
multiplier or multiplicand strings; the multiplier or multiplicand strings contain an invalid nibble; or a reserved
operand abort occurs.

SUBP

SUBP — Subtract Packed

Format

4oper and: opcode subl en.rw, subaddr. ab,

diflen.rw, difaddr.ab 6operand: opcode sublen.rw, subaddr. ab,
m nl en.rw, m naddr. ab,

diflen.rw, difaddr.ab

Condition Codes

N <— {dif string} LSS 0;

Z <— {dif string} EQL 0;

v <— {decimal overflow};

C <—0;

Exceptions

reserved operand

decimal overflow

Opcodes

22 SUBP4 Subtract Packed 4 Operand
23 SUBP6 Subtract Packed 6 Operand

266 VSI Confidential, NDA Required

VAX Instruction Set

Description

In 4 operand format, the subtrahend string specified by the subtrahend length and subtrahend address operands is
subtracted from the difference string specified by the difference length and difference address operands, and the
difference string is replaced by the result.

In 6 operand format, the subtrahend string specified by the subtrahend length and subtrahend address operands is
subtracted from the minuend string specified by the minuend length and minuend address operands. The difference
string specified by the difference length and difference address operands is replaced by the result.

Notes

1. After execution of SUBP4:

RO = 0

Rl = Address of the byte containing the most significant
digit of the subtrahend string

R2 = 0

R3 = Address of the byte containing the most significant
digit of the difference string

RO= 0

R1= Address of the byte containing the most significant
digit of the subtrahend string

R2= 0

R3 = Address of the byte containing the most significant
digit of the minuend string

R4 = 0

RS = Address of the byte containing the most significant
digit of the difference string

3. The difference string, RO to R3 (RO to RS for SUBP6), and the condition codes are UNPREDICTABLE if: the
difference string overlaps the subtrahend or minuend strings; the subtrahend, minuend, or difference (4 operand
only)strings contain an invalid nibble; or a reserved operand abort occurs.

9.13. The EDITPC Instruction and Its Pattern
Operators

The EDITPC instruction implements the common editing functions that occur when handling fixed-format output.
The operation consists of converting an input packed decimal number to an output character string and generating
characters for the output. When converting digits, options include filling in leading zeros, protecting leading zeros,
insertion of floating sign, insertion of floating currency symbol, insertion of special sign representations, and
blanking an entire field when it is zero. An example of this operation is a MOVE to a numeric edited (PICTURE)
item in COBOL or PL/I. Many other applications are possible.

The operands to the EDITPC instruction are as follows:

1. A packed decimal string descriptor (as input). This is a standard VAX operand pair consisting of the length of
the decimal string in digits (up to 31) and the starting address of the string.

2. A pattern specification, consisting of the starting address of a pattern operation editing sequence. VAX MACRO
interprets a pattern specification in the same way as it interprets normal instructions.

VSI Confidential, NDA Required 267

VAX Instruction Set

3. The starting address of the output string. The output string is described by its starting address only, because
the pattern defines the length unambiguously.

The EDITPC instruction manipulates two character registers and the four condition codes:

The fill register (R2 <7:0>) contains the fill character. This is normally an ASCII blank but could be changed to
an asterisk (*), for instance, for check protection.

The sign register (R2 <15:8>) contains the sign character. Initially this register contains either an ASCII blank or
a minus sign (-), depending upon the sign of the input. You can change the contents of this register to allow other
sign representations such as plus/minus or plus/blank. You can also manipulate it to output special notations such
as CR or DB. To implement a floating currency sign, you can change the sign register to the currency sign.

After execution, the condition codes describe the following:

The sign of the input

The presence of a zero source

An overflow condition

Ol <|N|Z

The presence of significant digits

Condition code N is determined at the start of the instruction and remains unchanged (except for correcting a -0
input). The processor computes and updates the other condition codes as the instruction proceeds.

When the EDITPC instruction completes processing, registers RO to R5 contain the values they would normally
have after a decimal instruction.

EDITPC

EDITPC — Edit Packed to Character String
Synopsis
opcode srclen.rw, srcaddr.ab, pattern.ab, dstaddr.ab

Condition Codes

N <— {src string} LSS 0; IN <- 0 if src is -0

Z <— {src string} EQL 0;

A% <— {decimal overflow}; !nonzero digits lost
C <— {significance};

Exceptions

reserved operand
decimal overflow

Opcodes

‘38 EDITPC Edit Packed to Character String

Description

The destination string specified by the pattern and destination address operands is replaced by the edited version of
the source string specified by the source length and source address operands. The editing is performed according

268 VSI Confidential, NDA Required

VAX Instruction Set

to the pattern string, starting at the address of the pattern operand and extending until a pattern end pattern operator
(EOSEND) is encountered.

The pattern string consists of 1-byte pattern operators. Some pattern operators take no operands. Some take a
repeat count that is contained in the rightmost nibble of the pattern operator itself. The rest take a 1-byteoperand
that immediately follows the pattern operator. This operand is either an unsigned integer length or a byte character.

Table 9.1, “Summary of EDITPC Pattern Operators” lists the pattern operators that can be used with the EDITPC
instruction to form a pattern. Subsequent pages define each pattern operator in a format similar to that of the normal
instruction descriptions. In each case, if there is an operand, it is either a repeat count (r) from Ito 15, an unsigned
byte length (len), or a character byte (ch). The encoding of the pattern operators is represented graphically in
Table 9.2, “EDITPC Pattern Operator Encoding”.

See Appendix E, Exceptions That May Occur During Instruction Execution for information about exceptions that
affect the EDITPC instruction.

Notes
1. A reserved operand abort occurs if sr ¢l en GTRU 31.
2. The destination string is UNPREDICTABLE if any of the following is true:
* The source string contains an invalid nibble.
* The EO$ADJUST INPUT operand is outside the range 1 to 31.
» The source and destination strings overlap.
* The pattern and destination strings overlap.

3. After execution, the following general registers have contents as specified:

RO = Length of source string

R1= Address of the byte containing the most significant
digit of the source string

R2= 0

R3 = Address of the byte containing the EOSEND pattern
operator

R4 = 0

R5= Address of 1 byte beyond the last byte of the
destination string

If the destination string is UNPREDICTABLE, RO to RS and the condition codes are UNPREDICTABLE.

4. If V is set at the end and DV is enabled, a numeric overflow trap occurs unless the conditions in note 9 are
satisfied.

5. The destination length is specified exactly by the pattern operators in the pattern string. If the pattern is
incorrectly formed or if it is modified during the execution of the instruction, the length of the destination string
is UNPREDICTABLE.

6. If the source is -0, the result may be -0 unless a fixup pattern operator is included (EOSBLANK ZERO or EO
$REPLACE SIGN).

7. The contents of the destination string and the memory preceding it are UNPREDICTABLE if the length covered
by EO$BLANK ZERO or EOSREPLACE SIGN is zero, or if it is outside the destination string.

8. If more input digits are requested by the pattern than are specified, are served operand abort is taken with R0
= -1 and R3 = location of the pattern operator that requested the extra digit. The condition codes and other
registers are as specified in note 11. This abort cannot be continued.

VSI Confidential, NDA Required 269

VAX Instruction Set

9. If fewer input digits are requested by the pattern than are specified, are served operand abort is taken with R3
= location of EO$END pattern operator. The condition codes and other registers are as specified in note 11.
This abort cannot be continued.

10.0n an unimplemented or reserved pattern operator, a reserved operand fault is taken with R3 = location of the
faulting pattern operator. The condition codes and other registers are as specified in note 11. This fault can be
continued as long as the defined register state is manipulated according tot he pattern operator description and
the state specified as “implementation dependent” is preserved.

11.0n a reserved operand exception, as specified in notes 8 to 10, FPD is set and the condition codes and registers

are as follows:

= { sr c has minus sign}

= All source digits zero so far
V= Nonzero digits lost
C= Significance
RO <31:16>= -(count of source zeros to supply)
RO <15:0>= Remaining sr cl en
Rl = Current source location
R2 <31:16>= Implementation dependent
R2<15:8>= Current contents of sign register
R2 <7:0>= Current contents of fill register
R3 = Location of edit pattern operator causing exception
R4 = Implementation dependent
R5 = Location of next destination byte

Table 9.1. Summary of EDITPC Pattern Operators

Name Operand

Summary

Insert operators

EOSINSERT ch Insert character, fill if insignificant
EO$STORE_SIGN — Insert sign
EOSFILL T Insert fill

Move operators

ch—One character
r—Repeat count in the range 1 to 15
len—Length in the range 1 to 255

EO$MOVE r Move digits, fill if insignificant
EOS$FLOAT r Move digits, floating sign
EO$END FLOAT — End floating sign

Fixup operators

EO$BLANK ZERO len Fill backward when 0
EOSREPLACE_SIGN len Replace with fill if -0

Load operators

EOSLOAD_FILL ch Load fill character
EOSLOAD_SIGN ch Load sign character

Key:

270 VSI Confidential, NDA Required

VAX Instruction Set

Name Operand Summary

EOSLOAD_PLUS ch Load sign character if positive
EO$SLOAD MINUS ch Load sign character if negative
Control operators

EOS$SET_SIGNIF — Set significance flag
EOS$CLEAR_SIGNIF — Clear significance flag
EO$ADJUST INPUT len Adjust source length

EOS$SEND — End edit

Key:

ch—One character

r—Repeat count in the range 1 to 15

len—Length in the range 1 to 255

Table 9.2. EDITPC Pattern Operator Encoding

Hex Symbol Notes

00 EO$END —

01 EO$END FLOAT —

02 EO$CLEAR_SIGNIF —

03 EO$SET SIGNIF —

04 EO$STORE_SIGN —

05 ...1F — Reserved to VSI

20 ...3F — Reserved for all time

40 EOS$LOAD FILL Character is in next byte

41 EOS$LOAD_SIGN Character is in next byte

42 EO$LOAD PLUS Character is in next byte

43 EO$SLOAD_ MINUS Character is in next byte

44 EOS$INSERT Character is in next byte

45 EO$BLANK ZERO Unsigned length is in next byte
46 EOSREPLACE_SIGN Unsigned length is in next byte
47 EO$ADJUST INPUT Unsigned length is in next byte
48 ...5F — Reserved to VSI

60 ...7F — Reserved to CSS and customers
80,90,A0 — Reserved to VSI

81 ...8F EOS$FILL —

91 ...9F EO$MOVE Repeat count is <3:0>

Al ...AF EOS$FLOAT —

BO ...FE — Reserved to VSI

FF — Reserved for all time

EO$ADJUST_INPUT

EO$SADJUST INPUT — Adjust Input Length

VSI Confidential, NDA Required

271

VAX Instruction Set

Format

opcode pattern |en

Pattern Operators

‘47 EO$ADJUST INPUT Adjust Input Length

Description

The EOSADJUST INPUT pattern operator is followed by an unsigned byte integer length in the range 1 to 31. If
the source string has more digits than this length, the excess leading digits are re