
AA–JL07D–TE

VAX Rdb/VMS
RDML Reference Manual

December 1990

This manual describes the components of the Relational Data Manipulation Language
(RDML).

Revision/Update Information: This manual is a revision and supersedes previous
versions.

Operating System: VMS
VAXELN

Software Version: VAX Rdb/VMS Version 4.0

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1987, 1988, 1989, 1990.

All rights reserved.
Printed in U.S.A.

The Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, CDD/Plus,
DEC, DEC/CMS, DECdecision, DECdtm, DECforms, DECintact, DEC/MMS, DECnet,
DECtp, DECtrace, DECwindows, MicroVAX, ULTRIX, UNIBUS, VAX, VAX ACMS, VAX
Ada, VAX BASIC, VAX C, VAX CDD, VAXcluster, VAX COBOL, VAX DATATRIEVE,
VAX DBMS, VAXELN, VAX FMS, VAX FORTRAN, VAX Pascal, VAX RALLY, VAX
Rdb/ELN, VAX Rdb/VMS, VAX RMS, VAX SPM, VAXstation, VAX TEAMDATA, VIDA,
VMS, VT, and the DIGITAL Logo.

This document is available in printed and online versions.

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface . vii

Technical Changes and New Features xiii

1 Introduction
1.1 RDML Language . 1–1
1.1.1 RDML Language Elements . 1–1
1.1.1.1 Value Expressions . 1–1
1.1.1.2 Conditional Expressions . 1–2
1.1.1.3 Record Selection Expressions . 1–2
1.1.1.4 Statistical Functions . 1–2
1.1.1.5 Clauses and Statements . 1–2
1.1.2 RDML in the Rdb/VMS and Rdb/ELN Environments 1–2
1.1.3 Data Definition and RDML . 1–3
1.1.4 RDML Keywords and Naming Conventions 1–3
1.1.5 Multinational Characters in Rdb/VMS Metadata Names 1–5
1.1.6 Conversion of Date and Time Literals in RDML Queries 1–5
1.1.7 Copying Date and Time Literals Within RDML Host Language

Programs . 1–6
1.1.8 Date and Time Support for Headers in RDML Program

Listings . 1–6
1.2 RDML Preprocessor . 1–7

iii

2 RDML Value Expressions
2.1 Arithmetic Value Expression . 2–4
2.2 Database Field Value Expression . 2–9
2.3 FIRST FROM Value Expression . 2–13
2.4 Host Language Variable Value Expression 2–20
2.5 RDB$DB_KEY Value Expression . 2–26
2.6 RDB$MISSING Value Expression . 2–29

3 RDML Conditional Expressions
3.1 ANY Conditional Expression . 3–9
3.2 BETWEEN Conditional Expression . 3–13
3.3 CONTAINING Conditional Expression . 3–16
3.4 MATCHING Conditional Expression . 3–21
3.5 MISSING Conditional Expression . 3–27
3.6 Relational Operators . 3–31
3.7 STARTING WITH Conditional Expression 3–33
3.8 UNIQUE Conditional Expression . 3–38

4 RDML Record Selection Expressions
4.1 Context Variable . 4–8
4.2 CROSS Clause . 4–13
4.3 FIRST Clause . 4–23
4.4 REDUCED TO Clause . 4–30
4.5 Relation Clause . 4–36
4.6 SORTED BY Clause . 4–44
4.7 WITH Clause . 4–50

5 RDML Statistical Functions
5.1 AVERAGE Statistical Function . 5–4
5.2 COUNT Statistical Function . 5–8
5.3 MAX Statistical Function . 5–12
5.4 MIN Statistical Function . 5–17
5.5 TOTAL Statistical Function . 5–23

iv

6 RDML Clauses and Statements
6.1 BASED ON Clause . 6–4
6.2 COMMIT Statement . 6–7
6.3 DATABASE Statement . 6–11
6.4 Database Handle Clause . 6–20
6.5 DECLARE_STREAM Statement . 6–26
6.6 DECLARE_VARIABLE Clause . 6–32
6.7 DEFINE_TYPE Clause . 6–35
6.8 END_STREAM Statement, Declared . 6–36
6.9 END_STREAM Statement, Undeclared . 6–40
6.10 ERASE Statement . 6–42
6.11 FETCH Statement . 6–49
6.12 FINISH Statement . 6–54
6.13 FOR Statement . 6–58
6.14 FOR Segmented String Statement . 6–66
6.15 GET Statement . 6–71
6.16 MODIFY Statement . 6–77
6.17 ON ERROR Clause . 6–90
6.18 PREPARE Statement . 6–98
6.19 READY Statement . 6–102
6.20 REQUEST_HANDLE Clause . 6–106
6.21 ROLLBACK Statement . 6–111
6.22 START_STREAM Statement, Declared . 6–115
6.23 START_STREAM Statement, Undeclared 6–120
6.24 START_TRANSACTION Statement . 6–128
6.25 STORE Statement . 6–140
6.26 STORE Statement with Segmented Strings 6–151
6.27 TRANSACTION_HANDLE Clause . 6–157

A RDML-Generated Data Types

B VAX C Language Functions for I/O Operations

Index

v

Figures
3–1 Conditional Expression Component of an RSE 3–6

Tables
1–1 RDML Keywords . 1–4
2–1 Value Expressions . 2–2
2–2 Arithmetic Operators and Functions . 2–5
3–1 Conditional Expression Truth Table . 3–4
3–2 Values Returned by Conditional Expressions 3–5
3–3 Relational Operators . 3–31
4–1 Record Selection Expression Clause Functions 4–2
5–1 Statistical Functions . 5–3
5–2 Statistical Expression Data Type Conversions for RDML 5–3
6–1 Functions of RDML Statements and Clauses 6–1
6–2 Summary of Database Handle Usage in Preprocessed

Programs . 6–22
6–3 VAX Rdb/ELN and Rdb/VMS Share Modes 6–134
6–4 Defaults for the START_TRANSACTION Statement 6–135
A–1 RDML-Generated Data Types for VAX C . A–1
A–2 RDML-Generated Data Types for VAX Pascal A–2
A–3 RDML-Generated Data Types for VAXELN Pascal A–3
B–1 Summary of VAX C Input/Output Functions B–2

vi

Preface

The Relational Data Manipulation Language (RDML) comprises clauses,
expressions, and statements that can be embedded in C and Pascal programs.
These programs can be processed by the RDML preprocessor, which converts
the RDML statements into a series of equivalent calls to the database.
Following successful preprocessing, the programmer can submit the resulting
source code to the host language compiler.

Purpose of This Manual
This manual describes the syntax and semantics of all the Relational Data
Manipulation Language (RDML) statements and language elements.

Intended Audience
This manual is intended for programmers who will embed RDML statements
in C or Pascal programs. To get the most out of this manual, you should
be proficient in either C or Pascal. You should also be familiar with
data processing procedures and basic database management concepts and
terminology.

Operating System Information
Information about the versions of the operating system and related software
that are compatible with this version of Rdb/VMS is included with the
Rdb/VMS media kit, in the VAX Rdb/VMS Installation Guide.

For information on the compatibility of other software products with this
version of Rdb/VMS, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to
verify which versions of your operating system are compatible with this version
of Rdb/VMS.

vii

Structure
This manual contains six chapters and two appendixes:

Chapter 1 Provides an introduction to the RDML language and the
RDML preprocessor.

Chapter 2 Describes the syntax and rules of RDML value expressions.

Chapter 3 Describes the syntax and rules of RDML conditional
expressions.

Chapter 4 Describes the syntax and rules of RDML record selection
expressions.

Chapter 5 Describes the syntax and rules of RDML statistical
functions.

Chapter 6 Describes the syntax and rules of RDML clauses and
statements.

Appendix A Contains tables listing the VAX C, VAX Pascal, and
VAXELN Pascal data types that RDML generates for each
data type permitted in an Rdb database.

Appendix B Describes the sample C functions used in this manual to
handle I/O tasks. This appendix also contains the source
code for these functions.

Examples are provided for each statement, clause, and function described in
each chapter. These examples are complete programs that you can copy and
run against the PERSONNEL database.

Related Manuals
VAX Rdb/VMS Introduction and Master Index

Introduces Rdb/VMS and explains major terms and concepts. Includes a
glossary, a directory of Rdb/VMS documentation, and a master index that
combines entries from all the Rdb/VMS manuals.

VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML

Describes how to use the features of Rdb/VMS to retrieve, store, change,
and erase data. Shows how to write programs that use Rdb/VMS as a
data access method; contains information on writing programs in high-
level languages that are supported by Rdb/VMS preprocessors, including
Relational Data Manipulation Language (RDML); and describes Callable
RDO, an interactive utility for languages without preprocessors.

VAX Rdb/VMS RDO and RMU Reference Manual

Provides reference material and a complete description of the statements
and syntax of the Rdb/VMS Relational Database Operator (RDO) interface
and the commands of the Rdb/VMS Management Utility (RMU).

viii

VAX Rdb/ELN Technical Overview

Contains an introduction to VAX Rdb/ELN concepts and components.
It also has a glossary of the terms used throughout the VAX Rdb/ELN
documentation set.

VAX Rdb/ELN Guide to Application Development

Describes VAX Rdb/ELN application design and development. It also
describes how to define, back up, restore, and journal your VAX Rdb/ELN
database.

VAX Rdb/VMS Guide to Distributed Transactions

Describes the two-phase commit protocol and distributed transactions,
explains how to start and complete distributed transactions using SQL,
RDBPRE, and RDML, and how to recover from unresolved transactions
using RMU commands.

Guide to VAX C

Describes VAX C constructs in context with both the history of the C
programming language and that of the VMS environment. It contains
information on VAX C program development in the VMS environment, the
VAX C programming language, and cross-system portability concerns.

VAX C Run-Time Library Reference Manual

Describes the functions and macros in the VAX C Run-Time Library.

VAX Pascal User’s Guide

Describes how to interact with the VMS operating system using VAX
Pascal. It contains information dealing with input and output with the
Record Management System (RMS), optimizations, program section use,
calling conventions, and error processing. This document is intended for
programmers who have full working knowledge of Pascal.

Programming in VAX Pascal

Presents two sections: Section I introduces the Digital Command Language
(DCL) and the VMS text editor (EDT), and explains how to compile, link,
execute, and debug programs; Section II describes the elements of the
Pascal language supported by VAX Pascal.

ix

Syntax Diagrams
This manual presents the syntax of RDML statements with syntax diagrams.
Syntax diagrams graphically portray required, repeating, and optional
characteristics of any RDML statement.

To read a syntax diagram, start from the left and follow the arrows until you
exit from the diagram at the right. When you come to a branch in the path,
choose the branch that contains the option you want. If you want to omit an
option, choose the path with no language elements. If a diagram occupies
more than one horizontal line, the arrow returns to the left margin. Syntax
diagrams can contain:

Names of syntax
diagrams

If a diagram is named, the name is in lowercase type
followed by an equal sign and appears above and to the left
of the diagram. Syntax diagrams can refer to each other
by name. The equal sign (=) indicates that the name is
equivalent to the diagram and that the diagram can be
substituted wherever the name appears.

If the diagram contains the name of a second diagram,
substitute the second diagram where its name appears.
Such a substitution is similar to putting the name of a field
where ‘‘field-name’’ appears. Most named syntax diagrams
appear as subdiagrams following the main diagram.

Keywords Keywords appear in uppercase type. If a keyword is
underlined, you must include it in the statement. A
keyword without underlining is optional; however, it makes
the statement more readable. Omitting an optional keyword
does not change the meaning of a statement.

Punctuation marks Punctuation marks are included in the diagram when
required by the syntax of the command or statement. All
punctuation marks shown are required.

User-supplied elements User-supplied elements appear in lowercase type. These
elements can include names, expressions, and literals. They
usually follow the diagram.

You can learn the syntax of a command or statement by reading that
statement’s syntax diagram.

ERASE context-var
on-error

on-error =

ON ERROR statement END_ERROR

x

ERASE Is in uppercase type and underlined on the main line of the diagram.
Therefore, you must supply the keyword (which can usually be
abbreviated).

context-var Is in lowercase type on the main line of the diagram. Therefore, you
must supply a substitute for context-var. The commentary following
the diagram describes the possible values and the function for the
user-supplied element, in this case context-var.

on-error Is in lowercase type on a branch. Because it parallels an empty branch,
the on-error clause is optional. The subdiagram expands the definition
of on-error.

statement Is in lowercase type on a main branch. The on-error clause is optional,
but if you include it, you must have ON ERROR, at least one statement,
and END_ERROR. The optional reverse loop under the statement
indicates that more than one statement can appear within the ON
ERROR . . . END_ERROR block.

All lowercase words are explained in the argument list that follows the
diagram. Some explanations refer you to other diagrams that appear elsewhere
in this manual.

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the RETURN key at the end of a line of
input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted, to focus full attention on the statements or commands themselves.

The section explains the conventions used in this manual:

CTRL/x This symbol in examples tells you to press the CTRL (control) key and
hold it down while pressing the specified letter key.

RETURN This symbol in examples indicates the RETURN key.

TAB This symbol in examples indicates the TAB key.

.

.

.

A vertical ellipsis in an example means that information not directly
related to the example has been omitted.

. . . A horizontal ellipsis in statements or commands means that parts of
the statement or command not directly related to the example have
been omitted.

xi

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt.
This symbol indicates that the DCL interpreter is ready for input.

UPPERCASE Statements appearing in uppercase type in programming examples are
RDML statements.

lowercase Statements appearing in lowercase type in programming examples are
host language statements (C or Pascal).

References to Products
This document often refers to the following products by their abbreviated
names:

VAX C software is referred to as C.

VAX Pascal and VAXELN Pascal software are referred to as Pascal. When
the use of a language statement is not the same in both the VAXELN and
VMS environments, that language is specified as VAXELN Pascal or VAX
Pascal.

VAX Rdb/VMS and VAX Rdb/ELN relational database systems are referred
to as Rdb. When the use of an RDML statement is different for one
database system, that product is specified as Rdb/VMS or Rdb/ELN.

VAX CDD/Plus software is referred to as the data dictionary or the
dictionary.

VIDA software is referred to as VIDA.

xii

Technical Changes and New Features

This section presents a list of some of the new Rdb/VMS Version 4.0 features
and technical changes that are described in this manual. See the Version 4.0
VAX Rdb/VMS Release Notes for more information about all the new Version
4.0 features and technical changes, and for reports of current limitations or
restrictions.

The Version 4.0 major new features and technical changes described in this
manual include:

Support for the two-phase commit protocol

Support for internationalization in the following areas:

DEC Multinational Character Set (MCS) characters in database object
names

Database object names that can be referred to from RDML include
context variables, relations, fields, and constraint names.

Date and time literals appearing in RDML queries

These date and time literals are converted at compile time using the
VMS V5.0 RTL routine LIB$CONVERT_DATE_STRING.

If the logical name SYS$LANGUAGE is set to the appropriate language
(SPANISH, for example) and an appropriate LIB$DT_INPUT_FORMAT
is defined, then RDML will compile the query.

If the language or input format is set incorrectly, RDML generates an
appropriate date conversion error.

Date and time support for headers in RDML programs

If the logical name SYS$LANGUAGE is set to the appropriate
language and the logical name LIB$DT_FORMAT is defined, the date
and time appearing in RDML listing files will be formatted using the
formats specified in LIB$DT_FORMAT.

xiii

Technical changes have been minimal in this manual and have been made
only where necessary in order to provide technical clarifications, to fix
errors of omission, and to make corrections.

xiv

1
Introduction

This chapter provides a brief overview of the Relational Data Manipulation
Language (RDML) and the RDML preprocessor.

1.1 RDML Language
RDML, the language, is a set of data manipulation statements, clauses,
expressions, and functions that can be embedded in VAX C and VAX Pascal
programs to access an Rdb/VMS or Rdb/ELN database.

1.1.1 RDML Language Elements
The RDML language elements fall into five broad categories:

Value expressions

Conditional expressions

Record selection expressions

Statistical functions

Clauses and statements

1.1.1.1 Value Expressions A value expression is a symbol or string of
symbols used to calculate a value. Value expressions allow you to perform
arithmetic calculations on database values, so that, for example, you could
double each employee’s salary by using one expression, rather than modifying
the value of each employee’s salary one by one. Host language variables also
fall into the category of value expressions. By using host language variables
in your application you allow the end user to decide which value Rdb/VMS
will retrieve from the database. For a complete list and information on value
expressions, see Chapter 2.

Introduction 1–1

1.1.1.2 Conditional Expressions A conditional expression, sometimes
called a Boolean expression, represents the relationship between two value
expressions. Conditional expressions can be used to retrieve a subset of records
from a relation on the basis of requirements you specify. For example, you can
specify that you want Rdb to return only those records in the EMPLOYEES
relation in which an employee’s last name begins with S. For a complete list
and information on conditional expressions, see Chapter 3.

1.1.1.3 Record Selection Expressions A record selection expression (RSE)
is an expression that defines specific conditions individual records must meet
before Rdb includes them in a record stream. A record stream is a temporary
group of related records that satisfies the conditions you specify in the record
selection expression. With a record selection expression, you can specify that
you want Rdb to retrieve only those records in the EMPLOYEES relation that
have a corresponding record in the COLLEGES relation. For a complete list
and information on record selection expressions, see Chapter 4.

1.1.1.4 Statistical Functions Statistical functions calculate values based on
a value expression for every record in a record stream. Expressions that use
statistical functions are sometimes called aggregate expressions, because they
calculate a single value for a collection of records. For example, you could use
a statistical function to find the total number of employees in the database,
or the total number of employees in a department. For a complete list and
information on statistical functions, see Chapter 5.

1.1.1.5 Clauses and Statements RDML clauses and statements are
the basic elements of the RDML language; they allow you to start and
end a transaction, step through a record stream, add new records, modify
existing records, or delete records. They are also the elements that can make
programming easier by providing standardized ways to define host language
variables and host language functions to hold database values. For a complete
list and information on RDML clauses and statements, see Chapter 6.

1.1.2 RDML in the Rdb/VMS and Rdb/ELN Environments
All RDML language elements can be used in both Rdb/VMS and Rdb/ELN
environments. However, two RDML language elements have meaning only
within the Rdb/ELN environment. They are:

The PREPARE statement

The CONCURRENCY option of the START_TRANSACTION statement

Both of these RDML language elements may be used in programs that access
an Rdb/VMS database; however, they will have no effect in that environment.

1–2 Introduction

1.1.3 Data Definition and RDML
RDML does not include data definition statements. In order to perform data
definition tasks you must use:

The SQL interactive environment, an SQL program, the Relational
Database Operator (RDO), or the Callable RDO program interface in the
Rdb/VMS environment. RDO and the SQL interactive environment are
interactive interfaces available to Rdb/VMS users. Callable RDO lets your
RDML program communicate with Rdb/VMS using a callable procedure,
RDB$INTERPRET. Calls to RDB$INTERPRET may be embedded in your
RDML program to perform data definition tasks. For more information
on using SQL, see the VAX Rdb/VMS Guide to Using SQL. For more
information on RDO, see the VAX Rdb/VMS Guide to Using RDO,
RDBPRE, and RDML. For more information on Callable RDO, see the
VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML.

ERDL, the Rdb/ELN data definition language (DDL) compiler in the
Rdb/ELN environment. By creating an Rdb/ELN DDL file on the Rdb/ELN
development system and processing it with ERDL, you can perform data
definition tasks. For more information on ERDL, see the VAX Rdb/ELN
Guide to Application Development.

1.1.4 RDML Keywords and Naming Conventions
When you create a name for a context variable, database handle, or stream,
make sure you do not choose RDML keywords for these names. RDML
keywords are listed in Table 1–1. Also, do not use context variables or
database handle names that are the same as the name of a relation in your
database. You may, however, use field names that are the same as RDML
keywords or relation names.

Introduction 1–3

Table 1–1 RDML Keywords

ALPHABETIZED
AND
ANY
AS
ASC
ASCENDING
AT
AVERAGE
BASED
BATCH_UPDATE
BETWEEN
BY
COMMIT
COMMIT_TIME
COMPILETIME
CONCURRENCY
CONSISTENCY
CONTAINING
COUNT
CROSS
DATABASE
DBKEY
DECLARE_STREAM
DECLARE_VARIABLE
DEFAULT
DEFAULTS
DESC
DESCENDING
DIV
END
END_ERROR
END_FETCH
END_FOR
END_GET
END_MODIFY
END_STORE
END_STREAM
EQ

ERASE
ERROR
EVALUATING
EXCLUSIVE
EXTERN
EXTERNAL
FETCH
FILENAME
FINISH
FIRST
FOR
FROM
GE
GET
GLOBAL
GREATER_EQUAL
GREATER_THAN
GT
IN
INVOKE
IS
LE
LENGTH
LESS_EQUAL
LESS_THAN
LOCAL
LT
MATCHING
MAX
MIN
MISSING
MODIFY
NE
NOT
NOT_EQUAL
NOWAIT
OF

ON
ON_ERROR
OR
OVER
PATHNAME
PREPARE
PROTECTED
RDB$LENGTH
RDB$MISSING
RDB$VALUE
READ
READ_ONLY
READ_WRITE
READY
REDUCED
REQUEST_HANDLE
RESERVING
ROLLBACK
RUNTIME
SAME
SCOPE
SHARED
SORTED
STARTING
START_STREAM
START_TRANS
STORE
TO
TOTAL
TRANSACTION_HANDLE
UNIQUE
USING
VALUE
VERB_TIME
WAIT
WITH
WRITE

1–4 Introduction

1.1.5 Multinational Characters in Rdb/VMS Metadata Names
Rdb/VMS supports the use of the DEC Multinational Character Set (MCS)
in database object names such as relations, fields, indexes, and constraints.
Context variables can also contain MCS characters.

Required support in the language processors includes: fields, relations and
context variables.

Note the following restrictions:

Database handles are declared as host language variables and used as
PSECT names, therefore, these cannot contain MCS characters due to
current VMS and host language restrictions.

Transaction and request handles are assumed to be host language
variables, therefore, these cannot contain MCS characters due to current
host language restrictions.

The included CDD/Plus record may not be acceptable to the host language
if the fields contain MCS characters.

The CDO DEFINE FIELD syntax allows the NAME FOR {language} clause
to be used for some VMS languages to override the default field name.
Being able to override the default field name permits records that are
based on Rdb/VMS relations to be included and to succeed in executing
even if MCS characters are used.

The GET *, STORE *, and MODIFY * statements assume that the record
field names (from CDD/Plus or declared manually) match the relation field
names precisely.

This mean that fields with MCS characters will generate illegal host
language variable names.

The workaround is to name each field specifically and avoid the wildcard
field syntax.

1.1.6 Conversion of Date and Time Literals in RDML Queries
RDML converts date and time literals that appear in queries at compile time
to international date and time formats. RDML converts the date and time
literals by using the VMS V5.0 (or higher) Run-Time Library (RTL) routine
LIB$CONVERT_DATE_STRING. The input formats for this RTL routine are
described in the VMS RTL Library (LIB$) Manual.

If the logical name SYS$LANGUAGE is set to the appropriate language and
the appropriate LIB$DT_INPUT_FORMAT logical name is defined, then RDML
will compile the query.

If the language or input format is set incorrectly, RDML generates an
appropriate date conversion error.

Introduction 1–5

The following example assumes that the SYS$LANGUAGE logical name has
been set to SPANISH:

FOR E IN EMPLOYEES
WITH E.BIRTHDAY = ’1 abril, 1990’

END_FOR

1.1.7 Copying Date and Time Literals Within RDML Host
Language Programs

This section describes how to copy date and time literals within host language
programs.

For C programs you can use either of the following:

The memcpy function

When the value of J.JOB_START has been stored in the database, you can
use the memcpy function for copying the date from the field, J.JOB_START,
to the field, J.JOB_END, as shown in the following example:

memcpy (J.JOB_END,J.JOB_START,8)

The third argument, 8, indicates the length in bytes of the field that is
copied.

Note Do not use strcpy function to copy date literals from field to field.

An assignment statement that copies the date to a field

In the following example, you assign J.JOB_END to a literal date string:

J.JOB_END = ’23-APR-1990’

For Pascal programs, you can use the := assignment statement for copying the
date to or from a field. In the following example, the field, J.JOB_START, is
copied to the field, J.JOB_END:

J.JOB_START := ’1-JAN-1989’
J.JOB_START := J.JOB_END

For more information see the examples in Section 6.16.

1.1.8 Date and Time Support for Headers in RDML Program
Listings

RDML provides support for international date and time formats in the headers
of program listings.

If the logical name SYS$LANGUAGE is set to the appropriate language and
the logical name that converts program headers, LIB$DT_FORMAT, is defined,
then the date and time appearing in RDML listing files will be formatted using
the formats specified in the LIB$DT_FORMAT logical name.

1–6 Introduction

1.2 RDML Preprocessor
The RDML preprocessor converts RDML statements embedded in a VAX C or
VAX Pascal program into a series of equivalent RDB$. . . calls to Rdb/VMS.
Following successful preprocessing, you can submit your program to the host
language compiler.

Note RDML/C programs are case sensitive. In addition to following the VAX C
conventions about the use of upper case and lower case, you must use upper case
for all RDML language elements in RDML/C programs. RDML/Pascal is not
case sensitive.

For information on preprocessing, linking, and running an RDML program, see
the VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML for Rdb/VMS
applications or the VAX Rdb/ELN Guide to Application Development for
Rdb/ELN applications.

Introduction 1–7

2
RDML Value Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
value expressions that can be used with embedded RDML statements in C and
Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database provided with Rdb/VMS and Rdb/ELN.

A value expression is a symbol or string of symbols used to calculate a value.
When you use a value expression in a statement, Rdb calculates the value
associated with the expression and uses it when executing the statement.

RDML Value Expressions 2–1

Format

value-expr =

host-variable
db-field
quoted-string
numeric-literal
statistical-expr
arithmetic-expr
missing-value
first-expr
concat-expr
dbkey
(value-expr)
- value-expr
+ value-expr

Table 2–1 summarizes the function of each value expression.

Table 2–1 Value Expressions

Value Expression Function

Arithmetic Combines arithmetic operators with numeric values, numeric
host language variables, and/or numeric database fields.

Concatenated Consists of the concatenate operator (|) and two value
expressions. Joins the second value expression to the first value
expression.

Database field Consists of a context variable and a field name. Use a context
variable as a temporary name for a relation. You define a context
variable in a record selection expression.

FIRST FROM Returns the first value from the record stream, formed by a
record selection expression. Use to find the first record that
contains a value that you specify.

Host language
variable

Holds data to be passed between your calling program and your
database system. A host language variable is a program variable
in your host language.

(continued on next page)

2–2 RDML Value Expressions

Table 2–1 (Cont.) Value Expressions

Value Expression Function

RDB$DB_KEY Returns a logical key to a specific record by using an internal
system pointer. Use to retrieve a specific record from the
database.

RDB$MISSING Returns the constant that is the missing value. If you use this
value to store or modify a field, it will be marked as empty. No
data will be stored in the field.

Statistical Uses functions, such as AVERAGE or MAX. Use to calculate
values based on a value expression for every record in a record
stream. Statistical expressions are described in Chapter 5.

RDML Value Expressions 2–3

Arithmetic Value Expression

2.1 Arithmetic Value Expression

Use an arithmetic value expression to combine arithmetic operators with
numeric values, numeric host language variables, and database fields.

When you use an arithmetic value expression in a statement, Rdb calculates
the value associated with the expression and uses that value when executing
the statement. Therefore, an arithmetic expression must result in a value. If
either operand of an arithmetic expression is a missing value, the resultant
value also is missing.

Format
arith-expr =

numeric-value + numeric-value
numeric-host-var - numeric-host-var
numeric-db-field * numeric-db-field

/

Arguments
numeric-value
A numeric literal.

numeric-host-var
A host language variable that holds a numeric value.

numeric-db-field
A database field (qualified with a context variable) that holds a numeric value.

+ – * /
Arithmetic operators. Table 2–2 lists the arithmetic operators and their
functions.

2–4 RDML Value Expressions

Arithmetic Value Expression

|
The concatenation operator. A concatenated expression is a value expression
that combines two other value expressions by joining the second to the end of
the first.

Table 2–2 Arithmetic Operators and Functions

Operator Function

+ Add

– Subtract

* Multiply

/ Divide

Usage Notes
The minus sign (–) is also used as the unary operator for negation.

You do not have to use spaces to separate arithmetic operators from value
expressions.

You can combine value expressions of any kind—including numeric
expressions, string expressions, and literals—with the concatenation
operator.

You can use parentheses to control the order in which Rdb performs
arithmetic operations. Rdb evaluates arithmetic expressions in the
following order:

1 Value expressions in parentheses

2 Unary negation

3 Multiplication and division, from left to right

4 Addition and subtraction, from left to right

5 Concatenation, from left to right

RDML Value Expressions 2–5

Arithmetic Value Expression

Examples
Example 1

The following programs demonstrate the use of the multiplication (*)
arithmetic operator and the MODIFY statement. These programs select the
record of an employee in the SALARY_HISTORY relation with the specified
employee ID and with no value for the SALARY_END field. The purpose
of specifying the MISSING option for the SALARY_END field is to ensure
that the only salary amount affected is the employee’s present salary. Next,
the employee’s salary is multiplied by 1.1 to produce a 10% salary increase.
The MODIFY statement replaces the old value in this employee’s SALARY_
AMOUNT field with the new value.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = "00164"
AND SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * 1.1;

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program multiply (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

2–6 RDML Value Expressions

Arithmetic Value Expression

FOR SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = ’00164’
AND SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT := SH.SALARY_AMOUNT * 1.1;

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the subtraction (–) arithmetic
operator, the CROSS clause, and the MODIFY statement. These programs
decrease a selected employee’s salary by an amount you enter from the
keyboard while the program runs. To achieve this interactive processing, these
programs declare the host language variable, deduction, with the DECLARE_
VARIABLE clause. For more information on the DECLARE_VARIABLE clause,
see Chapter 6.

Additionally, the C program declares and uses a function named read_float.
This function (described in Appendix B) causes the program to prompt for, and
store, a value for deduction. The Pascal readln and writeln statements perform
a similar function.

After you enter a value for deduction, the programs join records from the
EMPLOYEES and SALARY_HISTORY relations over the common field,
EMPLOYEE_ID. This creates a record stream consisting of the records
specified by E.EMPLOYEE_ID that have no value stored in the SALARY_END
field. By specifying SALARY_END as MISSING, these programs will select
only the current SALARY_HISTORY record for the employee. The value of
deduction is subtracted from the selected employee’s salary amount. The
MODIFY statement stores a value of 1 in the SALARY_AMOUNT field for that
employee.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern float read_float();
static DECLARE_VARIABLE deduction SAME AS SALARY_HISTORY.SALARY_AMOUNT;

main()
{
deduction = read_float("Amount to be deducted for malfeasance:");

RDML Value Expressions 2–7

Arithmetic Value Expression

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY
OVER EMPLOYEE_ID WITH E.EMPLOYEE_ID = "00164"
AND SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT = SH.SALARY_AMOUNT - deduction;

END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program subtract (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE deduction SAME AS SALARY_HISTORY.SALARY_AMOUNT;

begin

write (’Amount to be deducted for malfeasance:’);
readln (deduction);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY
OVER EMPLOYEE_ID WITH E.EMPLOYEE_ID = ’00164’
AND SH.SALARY_END MISSING

MODIFY SH USING
SH.SALARY_AMOUNT := SH.SALARY_AMOUNT - deduction;

END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

2–8 RDML Value Expressions

Database Field Value Expression

2.2 Database Field Value Expression

Use the database field value expression to refer to specific database fields in
record selection expressions and in other value expressions.

Format

db-field-expr

context-var . field-name

Arguments
context-var
A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Chapter 4 for more
information.

field-name
The name of a field in a relation.

Usage Notes
If you access several record streams at once, the context variable lets you
distinguish among fields from different records, even if different fields have
the same name.

If you access several record streams at once that consist of the same
relation and fields within that relation, context variables let you
distinguish among the record streams.

The context established by the context variable is valid during the
execution of the statement or clause in which the context variable is
declared. See Chapter 4 for more information on context variables.

RDML Value Expressions 2–9

Database Field Value Expression

Examples
Example 1

The following programs demonstrate the use of the database field value
expression. These programs use the clause, FOR J IN JOBS, to declare the
context variable J. This allows the programs to use the database field value
expression, J.JOB_CODE, to mean the JOB_CODE field from the JOBS
relation. These programs search the JOB_CODE field for the string ‘‘APGM’’.
Any record that contains the specified string becomes part of the record stream.
These programs then use the context variable J to qualify the fields in the host
language print statements. The job title, minimum salary, and the maximum
salary for each record in the record stream are printed.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR J IN JOBS WITH J.JOB_CODE = "APGM"
printf ("%s", J.JOB_TITLE);
printf (" $%f", J.MINIMUM_SALARY);
printf (" $%f\n", J.MAXIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program fld_value (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR J IN JOBS WITH J.JOB_CODE = ’APGM’
writeln (J.JOB_TITLE,

’ $’, J.MINIMUM_SALARY: 10 : 2,
’ $’, J.MAXIMUM_SALARY: 10 : 2);

END_FOR;

2–10 RDML Value Expressions

Database Field Value Expression

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of a database field value
expression to qualify fields in a CROSS clause, a SORTED BY clause, and a
REDUCED TO clause of a record selection expression. These programs:

Declare the context variables E for EMPLOYEES and SH for SALARY_
HISTORY

Using a CROSS clause, join these two relations on the basis of
their common field, EMPLOYEE_ID (that is, E.EMPLOYEE_ID and
SH.EMPLOYEE_ID)

Reduce the record stream so that the only values returned are unique
combinations of the values in SH.SALARY_AMOUNT, E.LAST_NAME, and
E.EMPLOYEE_ID

Sort the record stream on the basis of the database fields, E.LAST_NAME,
SH.SALARY_AMOUNT, and E.EMPLOYEE_ID

Display fields from the two relations

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY OVER EMPLOYEE_ID
REDUCED TO E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID
SORTED BY E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID

printf ("%s ", E.EMPLOYEE_ID);
printf ("%s ", E.LAST_NAME);
printf ("%f\n", SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

RDML Value Expressions 2–11

Database Field Value Expression

Pascal Program

program two_rel (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY OVER EMPLOYEE_ID
REDUCED TO E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID
SORTED BY E.LAST_NAME, SH.SALARY_AMOUNT, E.EMPLOYEE_ID

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME, ’ ’, SH.SALARY_AMOUNT:10:2);
END_FOR;

COMMIT;
FINISH;
end.

2–12 RDML Value Expressions

FIRST FROM Value Expression

2.3 FIRST FROM Value Expression

The FIRST FROM value expression causes Rdb to return the first record in
the record stream that matches the record selection expression specified in
the FIRST FROM value expression. If there are no matches, you receive a
run-time error.

Format

first-from-expr =

FIRST value-expr FROM
handle-options

rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A transaction handle, a request handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Value Expressions 2–13

FIRST FROM Value Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
The following statements (using Pascal) produce the same answer if there
is exactly one employee with the specified ID number:

GET statement with FIRST FROM value expression:

GET
id = FIRST E.STATE FROM E IN EMPLOYEES

WITH E.EMPLOYEE_ID = ’00176’;
END_GET;

FOR statement with restrictive record selection expression:

FOR FIRST 1 E IN EMPLOYEES WITH E.EMPLOYEE_ID = ’00176’
writeln (E.STATE);

END_FOR;

writeln statement with a FIRST FROM expression with a host
language statement:

writeln (FIRST E.STATE FROM E IN EMPLOYEES
WITH E.EMPLOYEE_ID = ’00176’);

However, Digital recommends that you use the GET statement instead of
the host language display statement. The GET statement supports the ON
ERROR clause and thereby allows you to identify errors that might occur
during the GET operation.

2–14 RDML Value Expressions

FIRST FROM Value Expression

Furthermore, when you use the GET statement, RDML generates its own
code to retrieve the database value; when you use a host language display
statement, RDML calls a function to retrieve the database value and
thereby increases the overhead associated with the query.

Examples
Example 1

The following programs demonstrate the use of the FIRST FROM value
expression. These programs find and print the first occurrence of a supervisor
ID that is the same as the specified employee ID from the CURRENT_JOB
relation.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE id SAME AS PERS.CURRENT_JOB.EMPLOYEE_ID;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
id = FIRST CJ.SUPERVISOR_ID FROM CJ IN CURRENT_JOB

WITH CJ.EMPLOYEE_ID = "00200"
SORTED BY CJ.EMPLOYEE_ID;

END_GET;

printf ("Id is %s", id);

COMMIT;
FINISH;
}

Pascal Program

program first_value (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE id SAME AS PERS.CURRENT_JOB.EMPLOYEE_ID;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Value Expressions 2–15

FIRST FROM Value Expression

GET
id = FIRST CJ.SUPERVISOR_ID FROM CJ IN CURRENT_JOB

WITH CJ.EMPLOYEE_ID = ’00200’
SORTED BY CJ.EMPLOYEE_ID;

END_GET;

writeln (id);

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the FIRST FROM value
expression. The programs find the first record in the JOBS relation with
the value ‘‘Company President’’ in the JOB_TITLE field. Using this record’s
value for JOB_CODE, these programs create a record stream that contains
the records in the CURRENT_JOB relation that have this same job code. The
programs print the value that the first record from this record stream holds in
the LAST_NAME field.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE name SAME AS PERS.CURRENT_JOB.LAST_NAME;
main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
name = FIRST CJ.LAST_NAME FROM CJ IN CURRENT_JOB

WITH CJ.JOB_CODE = FIRST J.JOB_CODE FROM J IN JOBS
WITH J.JOB_TITLE = "Company President"
SORTED BY CJ.JOB_CODE;

END_GET;

printf ("Last name is %s", name);

COMMIT;
FINISH;
}

2–16 RDML Value Expressions

FIRST FROM Value Expression

Pascal Program

program first_val (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE name SAME AS PERS.CURRENT_JOB.LAST_NAME;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
name = FIRST CJ.LAST_NAME FROM CJ IN CURRENT_JOB

WITH CJ.JOB_CODE = FIRST J.JOB_CODE FROM J IN JOBS
WITH J.JOB_TITLE = ’Company President’
SORTED BY CJ.JOB_CODE;

END_GET;

writeln (’Last name is: ’, name);

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the FIRST FROM value
expression and the SORTED BY clause in a record selection expression. The
programs sort (in alphabetical order) the records in the CURRENT_JOB
view, based on the sort key DEPARTMENT_CODE. JOB_CODE is the second
sort key, so RDML arranges (alphabetically) those records with different
values for the JOB_CODE field that have the same value stored in the
DEPARTMENT_CODE field. EMPLOYEE_ID is the third sort key, so RDML
arranges (in ascending numerical order) those records with different values for
the EMPLOYEE_ID field that have the same value stored in the JOB_CODE
field.

The first print statement displays the EMPLOYEE_ID and the LAST_NAME
fields of the sorted records. A GET statement retrieves records from a record
stream created by joining the DEPARTMENTS relation with the CURRENT_
JOB view over the DEPARTMENT_CODE field. The FIRST statement selects
the first record from the record stream in which the department code in the
DEPARTMENTS relation is the same as the department code for a record in
the sorted CURRENT_JOB view. The print statement displays the department
name of this selected record.

RDML Value Expressions 2–17

FIRST FROM Value Expression

A third record stream is created by joining the JOBS relation with the
CURRENT_JOB view over the JOB_CODE field. The FIRST FROM statement
selects the first record from the JOBS relation in which the job code in the
JOBS relation is the same as the job code for a record in the sorted CURRENT_
JOB view. The print statement displays the job title of this selected record.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE name SAME AS PERS.DEPARTMENTS.DEPARTMENT_NAME;
DECLARE_VARIABLE title SAME AS PERS.JOBS.JOB_TITLE;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT_JOB
SORTED BY CJ.DEPARTMENT_CODE, CJ.JOB_CODE, CJ.EMPLOYEE_ID

printf ("%s %s\n",CJ.EMPLOYEE_ID, CJ.LAST_NAME);

GET
name = FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = CJ.DEPARTMENT_CODE;

title = FIRST J.JOB_TITLE FROM J IN JOBS
WITH J.JOB_CODE = CJ.JOB_CODE;

END_GET;

printf ("Department name is: %s\n", name);
printf ("Title is: %s\n\n", title);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first_comp (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE name SAME AS PERS.DEPARTMENTS.DEPARTMENT_NAME;
DECLARE_VARIABLE title SAME AS PERS.JOBS.JOB_TITLE;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

2–18 RDML Value Expressions

FIRST FROM Value Expression

FOR CJ IN CURRENT_JOB
SORTED BY CJ.DEPARTMENT_CODE, CJ.JOB_CODE, CJ.EMPLOYEE_ID

writeln (CJ.EMPLOYEE_ID, ’ ’, CJ.LAST_NAME);

GET
name = FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = CJ.DEPARTMENT_CODE;

title = FIRST J.JOB_TITLE FROM J IN JOBS
WITH J.JOB_CODE = CJ.JOB_CODE;

END_GET;

writeln (’Department name is: ’, name);
writeln (’Title is: ’, title);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Value Expressions 2–19

Host Language Variable Value Expression

2.4 Host Language Variable Value Expression

Use a host language variable value expression to pass data between a calling
program and Rdb.

Format

C-host-variable =

vax-name
* . field-identifier

[expression]
,

"->" field-identifier

Pascal-host-variable =

vax-name
. field-identifier

[expression]
,

^
field-identifier

Arguments
vax-name
A valid VAX name.

field-identifier
A valid host language field identifier.

2–20 RDML Value Expressions

Host Language Variable Value Expression

expression
An expression that resolves to a valid host language array element in C or
Pascal. May include an RDML arithmetic operator. However, host language
operators, such as ++ and -- in C or DIV in Pascal are not supported.

"!"
The C pointer symbol. It is shown in quotes to distinguish it from the arrows
that show the logical flow of the syntax. Do not use quotes around the pointer
symbol in your program.

Usage Notes
Host language variables can be:

Simple names, such as HEIGHT and NAME

Record fields, such as P1.TERMINAL

Pointers, such as PT^ and TREE^.NODENAME in Pascal, or
TREE!NODENAME in C

Array elements, such as A[1] and B [I1, (I2-1)*2] in Pascal,
B[I1][(I2-1)*2] in C

You can use host language variables in record selection expressions.

You can use host language variables as names to represent databases
and database elements. These names are called handles. See Section 6.4,
Section 6.20, and Section 6.27 for more information.

You can declare a host language variable by referring to a database field
with a DECLARE_VARIABLE clause. See Section 6.6 for details.

When using C:

Be certain that text string variables are the same length as the text
field in which you are storing them. Pad strings that are shorter than
the text field with blank spaces; truncate strings that are longer than
the text field.

Because the DECLARE_VARIABLE clause provides an extra character
for null termination of character string variables, you may terminate
text string variables with the null character in C programs. For
example, if the field is defined as ‘‘DATATYPE IS TEXT SIZE IS 10’’,
then the first ten characters of the text string variable must be valid
data, and the eleventh may be the null character.

RDML Value Expressions 2–21

Host Language Variable Value Expression

General host language array elements such as [(int)(etype)] cannot be
used in RSEs.

Examples
Example 1

The following programs demonstrate the use of a host language variable
value expression. These programs declare a host language variable, badge,
to hold the value of an employee ID. You enter the value of badge from the
keyboard as the program runs. These programs declare badge using the
DECLARE_VARIABLE clause. See Chapter 6 for more information on the
DECLARE_VARIABLE clause.

Additionally, the C program declares and uses a function named read_string.
This function causes the program to prompt for, and store, a value for badge.
See Appendix B for the source code and more information on read_string. The
Pascal readln and writeln statements perform a similar function.

The programs find the employee in the EMPLOYEES relation with an ID
that is the same as the value of the host language variable. The MODIFY
statement stores a new value for that employee’s status code.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main()
{
read_string ("Employee ID: ", badge, sizeof(badge));

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

strcpy(E.STATUS_CODE,"1");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

2–22 RDML Value Expressions

Host Language Variable Value Expression

Pascal Program

program modify_with_host (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write (’Employee ID: ’);
readln (badge);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

E.STATUS_CODE := ’1’;
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the host language variable
value expression. As in Example 1, the programs declare host language
variables with the DECLARE_VARIABLE clause and prompt for user input at
run time.

The programs create a record stream that contains all the employee records in
the EMPLOYEES relation with a status code equal to the value stored in the
host language variable, stat_code. The programs print the employee ID, first
name, and last name of these employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE stat_code SAME AS EMPLOYEES.STATUS_CODE;

main()
{
read_string("Status Code: ",stat_code,sizeof(stat_code));

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Value Expressions 2–23

Host Language Variable Value Expression

FOR E IN EMPLOYEES WITH E.STATUS_CODE = stat_code
printf ("%s %s %s\n\n",

E.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program host_var (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE stat_code SAME AS EMPLOYEES.STATUS_CODE;

begin

write (’Status Code: ’);
readln (stat_code);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES WITH E.STATUS_CODE = stat_code
writeln (E.EMPLOYEE_ID, ’ ’, E.FIRST_NAME, ’ ’, E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of a host language variable value
expression as a transaction handle. See Section 6.27 for more information
on transaction handles. These programs declare the host language variable,
EMP_UPDATE. The programs use EMP_UPDATE to qualify the transaction
in the START_TRANSACTION statement, the record selection expression,
and the COMMIT statement. The record selection expression modifies the
record with the specified ID number in the EMPLOYEES relation. The
COMMIT statement, also qualified with the transaction handle, ensures that
the modified record is stored in the database.

The C program uses the function pad_string to append trailing blanks to
the LAST_NAME field. This ensures that the last name matches the length
defined for the field. For more information and the source code for pad_string,
see Appendix B.

2–24 RDML Value Expressions

Host Language Variable Value Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
int EMP_UPDATE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00178"

MODIFY E USING
pad_string("Brannon", E.LAST_NAME, sizeof(E.LAST_NAME));

END_MODIFY;
END_FOR;

COMMIT(TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
}

Pascal Program

program trhand (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var EMP_UPDATE : [volatile] integer := 0;

begin

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITH E.EMPLOYEE_ID = ’00178’

MODIFY E USING
E.LAST_NAME := ’Brannon’;

END_MODIFY;
END_FOR;

COMMIT (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
end.

RDML Value Expressions 2–25

RDB$DB_KEY Value Expression

2.5 RDB$DB_KEY Value Expression

The RDB$DB_KEY (database key or dbkey) value expression lets you retrieve
a specific record from the database using an internal system pointer. The
database key is a logical pointer that indicates a specific record in the database.
You can retrieve this key as though it were a field in the record. Once you have
retrieved the database key, you can use it to retrieve its associated record
directly, as part of a record selection expression. The database key gives you
the ability to keep track of a subset of records in the database and retrieve
them directly.

Format

db-key =

context-var . RDB$DB_KEY

Argument
context-var
A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

Usage Notes
The database key reference must be within the scope of the context variable
in the source code. RDML determines which relation the RDB$DB_KEY
refers to from the context variable that you use.

The scope of the database key can be either the COMMIT or FINISH
statement. When the scope is COMMIT, the database key is valid for as
long as the transaction in which it is retrieved is active. When the scope is
FINISH, the database key is valid for the duration of the database attach
in which it is retrieved. By default, the scope is COMMIT.

You should use the RDB$DB_KEY value expression only if you have to
repeatedly access the same records. For example, you may sort employees
by seniority and use the database key for each employee as a way of
moving back and forth within the list of sorted employees.

2–26 RDML Value Expressions

RDB$DB_KEY Value Expression

In conjunction with a GET statement, you can retrieve the database key
of a record being stored by using this expression as part of a STORE
statement.

Examples
Example 1

The following programs demonstrate the use of the RDB$DB_KEY value
expression in a record selection expression. The programs sort the
EMPLOYEES relation in ascending order of employee ID. Then, using the
first 100 records from the EMPLOYEES relation, the programs build two
arrays: rdb_key_array and rdb_name_array. In building these arrays within
a FOR statement, these programs create a one-to-one correspondence between
the elements in the rdb_key_array and the rdb_name_array. Each time a new
element is added to each of these arrays, the next EMPLOYEES record from
the sorted stream is printed.

This one-to-one correspondence allows the programs to step through the
EMPLOYEES records directly. This is demonstrated in the second FOR
statement. The second FOR statement loops through the rdb_key_array in
reverse order; each time the address of an array element in rdb_key_array is
incremented, an EMPLOYEES record is accessed and printed, also in reverse
order.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
DECLARE_VARIABLE rdb_key_array[100] SAME AS EMPLOYEES.RDB$DB_KEY;
DECLARE_VARIABLE rdb_name_array[100] SAME AS EMPLOYEES.LAST_NAME;

int cnt = 0;

READY PERS;

START_TRANSACTION READ_ONLY;

FOR FIRST 100 E IN EMPLOYEES SORTED BY E.EMPLOYEE_ID
rdb_key_array[cnt] = E.RDB$DB_KEY;
strcpy (rdb_name_array[cnt], E.LAST_NAME);
printf("%s - 1st pass\n", E.LAST_NAME);
++cnt;

END_FOR;

RDML Value Expressions 2–27

RDB$DB_KEY Value Expression

for (cnt = --cnt; cnt >= 0; --cnt)
FOR E IN EMPLOYEES
WITH E.RDB$DB_KEY = rdb_key_array[cnt]

if (strcmp(E.LAST_NAME, rdb_name_array[cnt]) != 0)
printf("%s DOES NOT MATCH %s\n",

E.LAST_NAME, rdb_name_array[cnt]);
else printf("%s - 2nd pass\n", E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program db_key (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

type
Rdb_Key_Type = BASED ON EMPLOYEES.RDB$DB_KEY;
Rdb_Name_Type = BASED ON EMPLOYEES.LAST_NAME;

var
Rdb_Key_Array : ARRAY [1..101] OF Rdb_Key_Type;
Rdb_Name_Array : ARRAY [1..101] OF Rdb_Name_Type;
Cnt : INTEGER := 1;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 100 E IN EMPLOYEES SORTED BY E.EMPLOYEE_ID
Rdb_Key_Array[Cnt] := E.RDB$DB_KEY;
Rdb_Name_Array[Cnt] := E.LAST_NAME;
WRITELN(E.LAST_NAME, ’ - 1st pass’);
Cnt := Cnt + 1;

END_FOR;

for Cnt := Cnt - 1 downto 1 do
FOR E IN EMPLOYEES
WITH E.RDB$DB_KEY = Rdb_Key_array[Cnt]

if E.LAST_NAME <> Rdb_Name_Array[Cnt]
then

writeln (E.LAST_NAME, ’DOES NOT MATCH’,
Rdb_Name_Array[Cnt])

else
writeln (E.LAST_NAME , ’ - 2nd pass’);

END_FOR;

COMMIT;
FINISH;
end.

2–28 RDML Value Expressions

RDB$MISSING Value Expression

2.6 RDB$MISSING Value Expression

The RDB$MISSING value substitutes the missing value (if one was defined)
for a specified database field.

To use RDB$MISSING, you must have previously defined a missing value for
the field when you defined the database. If a field is left blank, or you use
RDB$MISSING without having defined a missing value for that field in its
field definition, RDML issues an error.

For information on how to define a missing value for a field, see the
documentation for your database system. If you are using Rdb/VMS, see
the VAX Rdb/VMS Guide to Database Design and Definition. If you are using
Rdb/ELN, see the Define Field section in the VAX Rdb/ELN Reference Manual.

Format

missing-value =

RDB$MISSING

(context-var . field-name)
relation-name . field-name
db-handle . relation-name . field-name

Arguments
context-var
A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

field-name
The name of a field in a relation.

relation-name
The name of a relation in a database.

db-handle
A database handle. A host language variable that identifies a database.

RDML Value Expressions 2–29

RDB$MISSING Value Expression

Usage Notes
There is no default missing value.

Use the RDB$MISSING value expression as though it is a constant in the
host language.

Do not use the RDB$MISSING expression to test for the presence of
values. Rather, you should use the MISSING conditional expression.

During a STORE operation, instead of using RDB$MISSING to mark
a field as empty, you can simply exclude this field from the STORE
statement. When you retrieve the record that contains this field, the
missing value associated with the field will be returned. However, you
cannot use this method, nor RDB$MISSING, if the field has the validation
clause ‘‘VALID IF NOT MISSING’’.

The value of RDB$MISSING is set at preprocessing time. If you redefine
the missing value for a field and do not preprocess the program with the
RDB$MISSING value expression, your program actually stores the old
value rather than marking the field as empty. Note that the MISSING
conditional expression checks the missing value for a field at run time.

Examples
Example 1

The following programs demonstrate the use of the RDB$MISSING value
expression with the STORE statement. The programs store the specified
values for the fields in the DEGREES relation. In these programs, a value
for DEGREE_FIELD is not specified; instead, the RDB$MISSING value
expression is specified. This does not actually assign a value to the degree
field; RDML marks the DEGREE_FIELD as empty and stores nothing in this
field.

The C program uses the function pad_string to append trailing blanks to the
strings before they are stored. This ensures that the strings match the length
defined for the fields. For more information and the source code for pad_string,
see Appendix B.

2–30 RDML Value Expressions

RDB$MISSING Value Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

STORE D IN DEGREES USING
pad_string ("76156", D.EMPLOYEE_ID, sizeof(D.EMPLOYEE_ID));
pad_string ("HVDU" , D.COLLEGE_CODE, sizeof(D.COLLEGE_CODE));
D.YEAR_GIVEN = 1978;
pad_string ("BA", D.DEGREE, sizeof(D.DEGREE));
pad_string (RDB$MISSING(D.DEGREE_FIELD),D.DEGREE_FIELD,

sizeof(D.DEGREE_FIELD));
END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program store_missing (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

STORE D IN DEGREES USING
D.EMPLOYEE_ID := ’76156’;
D.COLLEGE_CODE := ’HVDU’;
D.YEAR_GIVEN := 1978;
D.DEGREE := ’BA’;
D.DEGREE_FIELD := RDB$MISSING(D.DEGREE_FIELD);

END_STORE;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the RDB$MISSING value
expression with the MODIFY statement and the COUNT statistical expression.
The programs print an introductory statement before attaching to the
database.

RDML Value Expressions 2–31

RDB$MISSING Value Expression

The record selection expression crosses the SALARY_HISTORY and
EMPLOYEES relations over the common EMPLOYEE_ID field. The COUNT
function limits the record stream to those records in the EMPLOYEES relation
with five or more corresponding records in the SALARY_HISTORY relation.
The programs print the last name of the employees in this record stream.

Using the MODIFY statement, the programs mark the STATUS_CODE field as
empty for the employees in the record stream (no value is stored in the field).
However, the ROLLBACK statement undoes all changes to the database, and
all the fields remain as they were before the program began.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

printf ("Impose early retirement on all employees with\n");
printf ("5 or more salary history records\n");

FOR E IN EMPLOYEES
WITH (COUNT OF SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID >= 5)

printf ("%s is being forced to retire early\n", E.LAST_NAME);
MODIFY E USING

strncpy(E.STATUS_CODE, RDB$MISSING (E.STATUS_CODE), 1);
END_MODIFY;

END_FOR;

printf ("Only fooling...Let’s rollback and forget it.\n");

ROLLBACK;
FINISH;
}

Pascal Program

program missing_with_modify (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin

writeln (’Impose early retirement on all employees with ’);
writeln (’5 or more salary history records’);

READY PERS;
START_TRANSACTION READ_WRITE;

2–32 RDML Value Expressions

RDB$MISSING Value Expression

FOR E IN EMPLOYEES
WITH (COUNT OF SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID >= 5)

writeln (E.LAST_NAME, ’ is being forced to retire early’);
MODIFY E USING

E.STATUS_CODE := RDB$MISSING (E.STATUS_CODE);
END_MODIFY;

END_FOR;

writeln (’Only fooling...Let’’s rollback and forget it.’);

ROLLBACK;
FINISH;
end.

RDML Value Expressions 2–33

3
RDML Conditional Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
conditional expressions that can be used with embedded RDML statements in
C and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with Rdb/VMS.

A conditional expression, sometimes called a Boolean expression, represents
the relationship between two value expressions. Conditional expressions are
used in the WITH clause of the record selection expression.

The value of a conditional expression is true, false, or missing. If there is no
value stored in a field of a record, then the relationship of that field to others
is unknown. Therefore, the results of comparisons that use that field are
considered missing.

A missing value for a field in a relation has no value associated with it. The
missing value is an attribute of a field rather than a value stored in a field.

RDML Conditional Expressions 3–1

The three types of conditional expressions are:

Those that express a relationship between two value expressions, using a
relational operator

For example, the expression SH.SALARY_AMOUNT > 50000 is true if the
value in the SALARY_AMOUNT field of the SALARY_HISTORY record is
greater than 50,000. When Rdb evaluates this expression, it examines the
relationship between the two value expressions, SH.SALARY_AMOUNT
and 50,000. If the value in the SALARY_AMOUNT field of a record is
MISSING, then that record is not included in the record stream.

Those that express a characteristic of a single value expression

For example, E.STATE MISSING is true if there is no value in the STATE
field of an EMPLOYEES record.

Those that express a relationship among three value expressions

For example, E.MIDDLE_INITIAL BETWEEN ‘‘A’’ AND ‘‘N’’.

Format

conditional-expr
NOT conditional-expr

conditional-expr AND conditional-expr
conditional-expr OR conditional-expr

conditional-expr =

value-expr rel-operator value-expr
any-clause
between-clause
containing-clause
matching-clause
missing-clause
starting-with-clause
unique-clause

3–2 RDML Conditional Expressions

rel-operator =

EQ
=
NE
<>
GT
>
GE
>=
LT
<
LE
<=

Arguments
NOT
AND
OR
Logical operators that combine conditional expressions. The result of such a
combination is also a conditional expression.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rel-operator
A relational operator. Controls the comparison of value expressions. In all
cases, if either operand in a relational expression is missing, the value of the
condition is missing.

Usage Notes
Rdb compares character string literals according to the ASCII collating
sequence. Rdb considers lowercase letters to have a greater value than
uppercase letters and the letters near the beginning of the alphabet to
have a lesser value than those near the end.

‘‘a’’ > ‘‘A’’

RDML Conditional Expressions 3–3

‘‘b’’ > ‘‘Z’’

‘‘a’’ < ‘‘z’’

‘‘A’’ < ‘‘Z’’

The RDML preprocessor evaluates conditional expressions in the following
order:

NOT
AND
OR

You can use parentheses to alter this default order of evaluation.

Table 3–1 is a truth table for complex conditional expressions that use
logical operators. For example, if conditional expression A is true and B is
missing, then ‘‘A AND B’’ is evaluated as missing.

Table 3–1 Conditional Expression Truth Table

Values of A and B
NOT
Condition

AND
Condition

OR
Condition

A B NOT A A AND B A OR B

True True False True True

True False False False True

True Missing False Missing True

False True True False True

False False True False False

False Missing True False Missing

Missing Missing Missing Missing Missing

Table 3–2 describes the function of each type of conditional expression.

3–4 RDML Conditional Expressions

Table 3–2 Values Returned by Conditional Expressions

Conditional
Expression Values

ANY True if the record stream specified by the record
selection expression (RSE) includes at least one
record.

BETWEEN True if the first value expression is equal to or
between the second and third value expressions.

CONTAINING True if the string specified by the second string
expression is found within the string specified by
the first. Case insensitive.

MATCHING True if the second expression matches a substring
of the first value expression. MATCHING allows
you to use the asterisk (*) to specify a string of
any characters, and the percent character (%) to
specify a single character. Case insensitive.

MISSING True if the specified value expression is missing.

Relational operator True if the first and second value expressions
are found in the relationship specified by the
relational operator.

STARTING WITH True if the characters of the first string expression
match the second string expression. Case
sensitive.

UNIQUE True if the record stream specified by the record
selection expression (RSE) consists of exactly one
record.

Examples
Example 1

The following programs demonstrate the use of a FOR loop with a conditional
expression. The conditional expression limits the records contained in the
record stream, and compares the SALARY_AMOUNT field name to the host
language variable (limit).

RDML Conditional Expressions 3–5

Figure 3–1 Conditional Expression Component of an RSE

FOR SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT GT LIMIT

conditional expression

record selection expression

ZK−7549−GE

The record stream consists of all records in which the result of the comparison
is true. Figure 3–1 shows the relationship of the conditional expression to the
record selection expression.

Notice that the host language variable in these programs receives its value
at run time through interactive processing. The C program uses the function,
read_float, to receive and store the value for the host language variable. See
Appendix B for the source code and details on using this function. The Pascal
program uses the writeln and readln statements to produce similar results.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern float read_float();
static DECLARE_VARIABLE limit SAME AS SALARY_HISTORY.SALARY_AMOUNT;

main()
{
limit = read_float("Salary limit: ");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT GT limit
printf ("$%f\n", SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

3–6 RDML Conditional Expressions

Pascal Program

program cond_exp (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE limit SAME AS SALARY_HISTORY.SALARY_AMOUNT;

begin

write (’Salary limit: ’);
readln (limit);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT GT limit
writeln (’$’, SH.SALARY_AMOUNT:10:2);

END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs combine several conditional expressions using the
AND, NOT, and CONTAINING expressions. If, for a given record, the first,
second, and third conditions are all true, that record becomes part of the record
stream defined by the FOR statement. The programs print the names of the
colleges that meet the specified conditions.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE_NAME NOT CONTAINING "UNIV"
AND C.COLLEGE_NAME NOT CONTAINING "COLLEGE"
AND C.COLLEGE_NAME NOT CONTAINING "ACADEMY"

printf ("%s\n", C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
}

RDML Conditional Expressions 3–7

Pascal Program

program cond_and_bool (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE_NAME NOT CONTAINING ’UNIV’
AND C.COLLEGE_NAME NOT CONTAINING ’COLLEGE’
AND C.COLLEGE_NAME NOT CONTAINING ’ACADEMY’

writeln (C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–8 RDML Conditional Expressions

ANY Conditional Expression

3.1 ANY Conditional Expression

The ANY conditional expression tests for the presence of any record in a record
stream.

An ANY conditional expression is true if the record stream specified by the
record selection expression includes at least one record. If you precede the
ANY expression with the optional NOT qualifier, the condition is true if no
records are in the record stream.

Format

any-clause =

ANY
NOT handle-options

rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

RDML Conditional Expressions 3–9

ANY Conditional Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

rse
A record selection expression. A clause that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Examples
Example 1

The following programs demonstrate the use of the NOT ANY conditional
expression. The programs join the EMPLOYEES and DEGREES relations over
their common EMPLOYEE_ID field. The NOT ANY expression finds those
employees who do not have an employee ID stored in a DEGREES record (and
therefore, either do not have a degree or this information has not been added
to the database). Then the programs print the last names of those employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH NOT ANY D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

printf ("%s \n",E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program any_with_not (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

3–10 RDML Conditional Expressions

ANY Conditional Expression

FOR E IN EMPLOYEES
WITH NOT ANY D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the ANY conditional expression.
The programs create a record stream that contains all the records from the
SALARY_HISTORY relation that hold a value greater than 50,000 in the
SALARY_AMOUNT field. The informational message ‘‘Someone is not
underpaid’’ is printed if one or more records are found that meet the previously
stated condition. Note that the print statements in these examples do not have
access to the context variable created in the GET statement.

C Program

#include <stdio.h>

DATABASE PERS = FILENAME "PERSONNEL";

int who;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
who = ANY SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT > 50000.00;

END_GET;

COMMIT;

if (who)
printf ("Someone is not underpaid \n");

FINISH;
}

RDML Conditional Expressions 3–11

ANY Conditional Expression

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

who : boolean;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

GET
who = ANY SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT > 50000.00

END_GET;

COMMIT;

if (who) then
writeln (’Someone is not underpaid.’);

FINISH;
end.

3–12 RDML Conditional Expressions

BETWEEN Conditional Expression

3.2 BETWEEN Conditional Expression

The BETWEEN conditional expression creates a record stream that contains
records with values that fall within a range you specify.

This expression is true if the first value expression is equal to or between the
second and third value expressions. If you precede the BETWEEN expression
with the optional NOT qualifier, the condition is true if no records are within
the range you specify in the second and third value expressions.

Format
between-clause =

value-expr BETWEEN
NOT

value-expr AND value-expr

Argument
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

Usage Notes
Value expressions that are string literals must be enclosed in quotation
marks. Use double quotation marks (" ") in C programs. Use single
quotation marks (’ ’) in Pascal programs.

Value expressions that are numeric literals must not be enclosed in
quotation marks.

Dates are stored in the database in an encoded binary format. Therefore,
when using the BETWEEN conditional expression with dates, your
application must first convert the dates to a binary format. See Section 4.1
for an example of a date conversion.

RDML Conditional Expressions 3–13

BETWEEN Conditional Expression

Examples
Example 1

The following programs demonstrate the use of the BETWEEN conditional
expression with a numeric field. These programs form a record stream that
consists of all the records in the CURRENT_SALARY relation where the
SALARY_AMOUNT field contains a value greater than or equal to 10,000 and
less than or equal to 20,000. These programs print the last name and salary
from each of the records in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR CS IN CURRENT_SALARY
WITH CS.SALARY_AMOUNT
BETWEEN 10000.00 AND 20000.00

printf ("%s %f\n", CS.LAST_NAME, CS.SALARY_AMOUNT);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program between_numeric (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CS IN CURRENT_SALARY
WITH CS.SALARY_AMOUNT
BETWEEN 10000.00 AND 20000.00

writeln (CS.LAST_NAME, CS.SALARY_AMOUNT :10:2);
END_FOR;

COMMIT;
FINISH;
end.

3–14 RDML Conditional Expressions

BETWEEN Conditional Expression

Example 2

The following programs demonstrate the use of the BETWEEN conditional
expression with a text string field. The programs form a record stream that
consists of all the records in the EMPLOYEES relation where the LAST_
NAME field begins with any letter between ‘‘A’’ and ‘‘M’’. Note that any last
name that begins with an ‘‘M’’ is not within this range (unless the entire last
name is ‘‘M’’). The programs then print the last name contained in each record
in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES
WITH E.LAST_NAME BETWEEN "A" AND "M"

printf ("%s\n", E.LAST_NAME);
END_FOR

COMMIT;
FINISH;
}

Pascal Program

program between_alphabetic (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME BETWEEN "A" AND "M"

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3–15

CONTAINING Conditional Expression

3.3 CONTAINING Conditional Expression

The CONTAINING conditional expression tests for the presence of a specified
string anywhere inside a string expression.

This expression is true if the string specified by the second (pattern) string
expression is found within the string specified by the first (target) string
expression. If either of the string expressions in a CONTAINING conditional
expression is a missing value, the result is the missing value.

If you precede CONTAINING with the optional NOT qualifier, the condition is
true if no records contain the specified string.

Note The CONTAINING conditional expression is not case sensitive; it considers
uppercase and lowercase forms of the same character to be a match.

Format

containing-clause =

value-expr CONTAINING value-expr
NOT

Argument
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. With the CONTAINING conditional expression, Rdb searches the
first value expression for the presence of the second value expression. The
second value expression is a literal.

3–16 RDML Conditional Expressions

CONTAINING Conditional Expression

Usage Notes
Dates are stored in the database in an encoded binary format. Therefore,
when using the CONTAINING conditional expression with dates, your
program must first convert the dates to a binary format. See Section 4.1
for an example of a date conversion.

The CONTAINING conditional expression will not execute properly in
RDML/Pascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST_NAME CONTAINING host-var

.

.

.
END_FOR;

Note that a PACKED ARRAY data type is generated by the DECLARE_
VARIABLE, DEFINE_TYPE, and BASED_ON clauses for field values of
data type TEXT.

Therefore, when you declare a host language variable in an RDML/Pascal
program as the comparison value in a CONTAINING conditional
expression, you should declare a variable of data type VARYING STRING.
Do not use the DECLARE_VARIABLE, DEFINE_TYPE, or BASED_ON
clause to declare this variable.

The CONTAINING conditional expression is not sensitive to diacritical
markings nor is it case sensitive. Thus " a" matches " A" , " á" , " à" , " ä" ,
" Á" , " À" , " Â" , and so on. (Note that in Norwegian, " ä" is treated as if it
were " ae" .)

In Spanish, the combinations " ch" and " ll" are treated as if they were
individual unique single letters. Thus, CONTAINING "C" will find " C" , " c" ,
" ç" , and " Ç" , but not " CH" , " ch" , " Ch" and " cH" .

RDML Conditional Expressions 3–17

CONTAINING Conditional Expression

Examples
Example 1

The following programs demonstrate the use of the CONTAINING conditional
expression. The programs create a record stream that contains all the records
in the EMPLOYEES relation in which the LAST_NAME field contains the
string ‘‘IACO’’ (in upper or lower case letters). The programs print the
employee ID and last name from each record contained in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME CONTAINING "IACO"

printf ("%s %s\n", E.EMPLOYEE_ID,
E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program containing (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME CONTAINING ’IACO’

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–18 RDML Conditional Expressions

CONTAINING Conditional Expression

Example 2

The following programs demonstrate the use of the NOT CONTAINING
conditional expression. The programs declare two host language variables,
name1 and name2, to hold values to use in the CONTAINING conditional
expression. The programs then create a record stream that contains all the
records in the COLLEGES relation where the COLLEGE_NAME field contains
neither the string ‘‘univ’’ nor the string ‘‘college’’ (in uppercase or lowercase).
The programs then print the college name from each record contained in the
record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE name1, name2 SAME AS COLLEGES.COLLEGE_NAME;

main()
{
strcpy(name1,"univ");
strcpy(name2, "college");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR C IN COLLEGES
WITH C.COLLEGE_NAME NOT CONTAINING name1
AND C.COLLEGE_NAME NOT CONTAINING name2

printf("%s\n",C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program not_contain (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
name1 : VARYING [10] OF CHAR;
name2 : VARYING [10] OF CHAR;

begin

name1 := ’univ’;
name2 := ’college’;

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Conditional Expressions 3–19

CONTAINING Conditional Expression

FOR C IN COLLEGES
WITH C.COLLEGE_NAME NOT CONTAINING name1
AND C.COLLEGE_NAME NOT CONTAINING name2

writeln (C.COLLEGE_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–20 RDML Conditional Expressions

MATCHING Conditional Expression

3.4 MATCHING Conditional Expression

The MATCHING conditional expression lets you use the asterisk (*) pattern
matching character in combination with other characters to test for the
presence of a specified string anywhere inside a string expression.

This expression is true if the string specified by the second (pattern)
string expression is found within the string specified by the first (target)
string expression. If either of the string expressions in a MATCHING
conditional expression is missing, the result is missing.

If you precede MATCHING with the optional NOT qualifier, the condition is
true if the pattern string is not found within the string specified by the target
string.

Note The MATCHING conditional expression is not case sensitive; it considers
uppercase and lowercase forms of the same character to be a match.

Format

matching-clause =

value-expr MATCHING match-expr
NOT

Arguments
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing
the statement. When you use the MATCHING conditional expression, Rdb
searches the first value expression to see if it starts with the characters
specified in the second value expression. The second value expression is a
string literal. See Chapter 2 for more information on value expressions.

RDML Conditional Expressions 3–21

MATCHING Conditional Expression

match-expr
A match expression. An unquoted host language variable or an expression in
quotation marks that is used to match a pattern. Use double quotation marks
(" ") in C programs. Use single quotation marks (’ ’) in Pascal programs. The
match expression can include the following special symbols (called wildcards):

* Matches a string of zero or more characters

% Matches a single character

Usage Notes
The MATCHING conditional expression will not execute properly in
RDML/Pascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment, host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST_NAME MATCHING host-var

.

.

.
END_FOR;

Note that a PACKED ARRAY data type is generated by the DECLARE_
VARIABLE, DEFINE_TYPE, and BASED_ON clauses for field values of
data type TEXT.

Therefore, when you declare a host language variable in an RDML/Pascal
program as the comparison value in a MATCHING conditional expression,
you should declare a variable of data type VARYING STRING. Do not
use the DECLARE_VARIABLE, DEFINE_TYPE, or BASED_ON clause to
declare this variable.

You can use any combination of wildcards in a matching expression;
however, if you choose not to use any wildcards in a matching expression;
the expression must match the value stored in the database exactly. For
example, using the PERSONNEL database, if you want to find all the
employees with the last name Smith and do not want to use wildcards, you
must append nine blank spaces to the name Smith. This is because the
LAST_NAME field is defined as TEXT 14 in the PERSONNEL database. If
LAST_NAME were defined as TEXT 5 you would not need to append blank
spaces to the name.

3–22 RDML Conditional Expressions

MATCHING Conditional Expression

FOR E IN EMPLOYEES
WITH E.LAST_NAME MATCHING "Smith "

.

.

.
END_FOR;

Digital recommends that you use the relational operator equals (=)
instead of the MATCHING conditional expression if you do not need to use
wildcards. The equals operator ignores trailing blanks. For example, the
following record selection expression will retrieve all the records in the
EMPLOYEES relation with the value Smith in the LAST_NAME field:

FOR E IN EMPLOYEES
WITH E.LAST_NAME = "Smith"

.

.

.
END_FOR;

If you used the MATCHING conditional expression instead of the equals
operator in the previous code fragment, MATCHING would only retrieve
employees with the last name of ‘‘Smith’’ if the definition for LAST_NAME
was TEXT 5. If the definition is TEXT 10, the MATCHING conditional
expression would retrieve all records with the name ‘‘Smith’’ only if you
appended five trailing blanks to the name ‘‘Smith ’’.

The MATCHING conditional expression is not sensitive to diacritical
markings nor is it case sensitive. Thus, " a" matches " A" , " á" , " à" , " ä" ,
" Á" , " À" , " Â" , and so on. (Note that in Norwegian, " ä" is treated as if it
were " ae" .)

In Spanish, the combinations " ch" and " ll" are each treated as individual
unique single letters. If you define your collating sequence as SPANISH,
the percent sign (%) matches any single letter, including " ch" and " ll" .
" C%" and " C*" do not match " CH" , " ch" , " Ch" , or " cH" .

Examples
Example 1

The following programs demonstrate the use of the MATCHING conditional
expression and the SORTED BY clause. The programs declare a host language
variable, match-string, to use in the MATCHING condition expression. Then
the programs create a record stream that contains all the records in the
EMPLOYEES relation in which the LAST_NAME field begins with the letter

RDML Conditional Expressions 3–23

MATCHING Conditional Expression

‘‘R’’ (as specified in the host language variable). Next, the programs sort
the record stream in ascending numerical order of the employee IDs. The
programs print, in numerical order, the employee ID, followed by the last name
and first name for each record in the record stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE match_string SAME AS EMPLOYEES.LAST_NAME;

main()
{
strcpy(match_string,"R*");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME MATCHING match_string
SORTED BY E.EMPLOYEE_ID

printf ("%s %s %s",E.EMPLOYEE_ID,
E.LAST_NAME,
E.FIRST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
match_string: VARYING [10] OF CHAR;

begin

match_string := ’R*’;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME MATCHING match_string
SORTED BY E.EMPLOYEE_ID

writeln (E.EMPLOYEE_ID,’ ’, E.LAST_NAME, E.FIRST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–24 RDML Conditional Expressions

MATCHING Conditional Expression

Example 2

The following programs demonstrate the use of the MATCHING conditional
expression and the SORTED BY clause. The programs create a record stream
that contains all the records in the EMPLOYEES relation in which the LAST_
NAME field has the string ‘‘on’’ anywhere within the last name. The record
stream is sorted in ascending alphabetical order and the programs print the
first five records from the sorted stream.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 5 E IN EMPLOYEES
WITH E.LAST_NAME MATCHING "*on*"
SORTED BY E.LAST_NAME

printf ("%s\n",E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 5 E IN EMPLOYEES
WITH E.LAST_NAME MATCHING ’*on*’
SORTED BY E.LAST_NAME

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Conditional Expressions 3–25

MATCHING Conditional Expression

Example 3

The following programs demonstrate the use of the MATCHING conditional.
The programs create a record stream that contains the records in the
EMPLOYEES relation in which the LAST_NAME field has a name beginning
with the string ‘‘Bl’’ and ending with the string ‘‘ck’’ with only one character
between the two strings. These programs might retrieve names such as
‘‘Black’’ and ‘‘Block’’.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME MATCHING "Bl%ck"

printf ("%s\n",E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program matching_last (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME MATCHING ’Bl%ck’

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–26 RDML Conditional Expressions

MISSING Conditional Expression

3.5 MISSING Conditional Expression

The MISSING conditional expression tests for the absence of a field value. A
missing value expression will evaluate to true for a given field if no data is
stored in the field.

If you precede MISSING with the optional NOT qualifier, the condition is true
if the field contains a value.

Format

missing-cond-expr

db-field-expr MISSING
NOT

Argument
db-field-expr
A database field value expression. A database field value expression is a field
name qualified with a context variable. See Chapter 2 for more information.

Usage Notes
Use the MISSING conditional expression to test for the absence of a field
value.

Some of the conditions that result in a field being marked as missing are:

A STORE statement has been used to explicitly store the MISSING
VALUE in a field of a record. For example, if ’ Unknown’ is defined
as the missing value for the DEGREE_FIELD field in the DEGREES
relation, the following STORE statement will mark the DEGREE_
FIELD field as missing for the employee with an EMPLOYEE_ID of
00198.

RDML Conditional Expressions 3–27

MISSING Conditional Expression

STORE D IN DEGREES USING
D.EMPLOYEE_ID := ’00198’;
D.COLLEGE_CODE := ’PURD’;
D.YEAR_GIVEN := ’1982’;
D.DEGREE := ’BA’;
D.DEGREE_FIELD := ’Unknown’;

END_STORE;

A STORE statement has been used to store a record, and the field has
been omitted from the list of field values stored.

STORE D IN DEGREES USING
D.EMPLOYEE_ID := ’00198’;
D.COLLEGE_CODE := ’PURD’;
D.YEAR_GIVEN := ’1982’;
D.DEGREE := ’BA’;

END_STORE;

A STORE statement has been used to store a record, and the field is
assigned the RDB$MISSING value expression.

STORE D IN DEGREES USING
D.EMPLOYEE_ID := ’76156’;
D.COLLEGE_CODE := ’HVDU’;
D.YEAR_GIVEN := 1978;
D.DEGREE := ’BA’;
D.DEGREE_FIELD := RDB$MISSING(D.DEGREE_FIELD);

END_STORE;

Rdb evaluates the MISSING conditional expression at run time to
determine if a field’s value is missing.

Examples
Example 1

The following programs demonstrate the use of the MISSING conditional
expression. The programs form a record stream that contains the records in
the COLLEGES relation that have nothing stored in the STATE field, but do
have a college code stored in the COLLEGE_CODE field. Each record in the
COLLEGES relation is tested for the previously stored condition; if a record
meets the condition these programs print a message and the college code of
this record.

3–28 RDML Conditional Expressions

MISSING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.STATE MISSING
AND C.COLLEGE_CODE NOT MISSING;

printf ("State Missing for COLLEGE: %s\n", C.COLLEGE_CODE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program missing (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.STATE MISSING
AND C.COLLEGE_CODE NOT MISSING;

writeln (’State Missing for COLLEGE: ’, C.COLLEGE_CODE);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MISSING conditional
expression. The programs create a record stream that contains the records in
the EMPLOYEES relation in which the BIRTHDAY field is marked as empty.
These programs then print a message and the last name from the records in
the record stream.

RDML Conditional Expressions 3–29

MISSING Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.BIRTHDAY NOT MISSING

printf ("%s exists.\n", E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program missing (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.BIRTHDAY NOT MISSING

writeln (E.LAST_NAME, ’ exists’);
END_FOR;

COMMIT;
FINISH;
end.

3–30 RDML Conditional Expressions

Relational Operators

3.6 Relational Operators

Relational operators compare value expressions. Relational operators are used
in conditional expressions. Table 3–3 lists the RDML relational operators and
under which conditions their value is true.

Table 3–3 Relational Operators

Relational
Operator Value

EQ = True if the two value expressions are equal.

NE <> True if the two value expressions are not equal.

GT > True if the first value expression is greater than the second.

GE >= True if the first value expression is greater than or equal to the
second.

LT < True if the first value expression is less than the second.

LE <= True if the first value expression is less than or equal to the second.

Note In all cases, if either value expression is the missing value, the value of the
condition is missing.

Examples
The following programs demonstrate the use of the LE (less than or equal to)
operator in a record selection expression. The programs find the employees
with an employee ID number that is less than or equal to 00400. Then the
programs print the selected employee IDs.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID LE "00400"
printf ("%s\n", E.EMPLOYEE_ID);

END_FOR;

RDML Conditional Expressions 3–31

Relational Operators

COMMIT;
FINISH;
}

Pascal Program

program relation (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID LE ’00400’
writeln (E.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
end.

3–32 RDML Conditional Expressions

STARTING WITH Conditional Expression

3.7 STARTING WITH Conditional Expression

The STARTING WITH conditional expression tests for the presence of a
specified string at the beginning of a string expression. This expression is true
if the first string expression begins with the characters specified in the second
string expression.

If you precede the STARTING WITH expression by the optional NOT qualifier,
the condition is true if the first string does not begin with the characters
specified by the second string.

Note The STARTING WITH conditional expression is case sensitive; it considers
uppercase and lowercase forms of the same character to be different.

Format

starting-with-clause =

value-expr STARTING WITH value-expr
NOT

Argument
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

Usage Notes
To find records regardless of case:

Specify all possibilities in the search condition.

Use the CONTAINING conditional expression for searches that are not
case sensitive.

If either of the string expressions in a STARTING WITH conditional
expression is missing, the result is missing.

RDML Conditional Expressions 3–33

STARTING WITH Conditional Expression

The STARTING_WITH conditional expression will not execute properly in
RDML/Pascal when you use a host language variable of data type PACKED
ARRAY for comparison in this expression. For example, in the following
code fragment, host-var is the comparison value.

FOR E IN EMPLOYEES
E.LAST_NAME STARTING_WITH host-var

.

.

.
END_FOR;

Note that a PACKED ARRAY data type is generated by the DECLARE_
VARIABLE, DEFINE_TYPE, and BASED_ON clauses for field values of
data type TEXT.

Therefore, when you declare a host language variable in an RDML/Pascal
program as the comparison value in a STARTING WITH conditional
expression, you should declare a variable of data type VARYING STRING.
Do not use the DECLARE_VARIABLE, DEFINE_TYPE, or BASED_ON
clause to declare this variable.

Because the STARTING WITH conditional expression is case sensitive,
searches for uppercase multinational characters will not include lowercase
multinational characters, and vice versa. For example, STARTING WITH

"Ç" will retrieve a set of records that is different from those retrieved by
STARTING WITH "ç" .

In Spanish, the combinations " ch" and " ll" are treated as if they were
individual unique single letters. For example, if a domain is defined with
the collating sequence SPANISH, then STARTING WITH "c" will not retrieve
the word " char" , but it will retrieve the word " cat" .

Examples
Example 1

The following programs demonstrate the use of the STARTING WITH
conditional expression. The programs create a record stream that contains the
records in the EMPLOYEES relation in which the LAST_NAME field contains
a name that begins with the string ‘‘IACO’’. Because STARTING WITH is
case sensitive, a last name starting with ‘‘Iaco’’ is not the same as a last name
starting with ‘‘IACO’’. Names stored in the PERSONNEL database have only
the first letter capitalized. Therefore, the programs create an empty record
stream and nothing is printed.

3–34 RDML Conditional Expressions

STARTING WITH Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME STARTING WITH "IACO"

printf("%s %s\n", E.EMPLOYEE_ID, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program starting (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME STARTING WITH ’IACO’

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the STARTING WITH
conditional expression. These programs create a record stream that contains
the records in the EMPLOYEES relation in which the LAST_NAME field has
a name that begins with the string ‘‘IACO’’ or ‘‘Iaco’’. The programs print the
employee IDs and last names from each record in the record stream.

RDML Conditional Expressions 3–35

STARTING WITH Conditional Expression

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE name1, name2 SAME AS EMPLOYEES.LAST_NAME;

main()
{
strcpy(name1, "IACO");
strcpy(name2, "Iaco");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME STARTING WITH name1
OR E.LAST_NAME STARTING WITH name2

printf("%s %s\n", E.EMPLOYEE_ID, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program start_two_cond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
name1 : VARYING [10] OF CHAR;
name2 : VARYING [10] OF CHAR;

begin

name1 := ’IACO’;
name2 := ’Iaco’;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.LAST_NAME STARTING WITH ’IACO’
OR E.LAST_NAME STARTING WITH ’Iaco’

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

3–36 RDML Conditional Expressions

STARTING WITH Conditional Expression

Example 3

The following programs demonstrate the use of the NOT STARTING WITH
conditional expression and the COUNT statistical function. The programs
create a record stream that contains the records in the COLLEGES relation
in which the value for the STATE field does not begin with the letter ‘‘M’’. The
COUNT statistical function determines the number of records in the record
stream and the print statement displays this number.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

int atot;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
atot = COUNT OF C IN COLLEGES WITH C.STATE NOT STARTING WITH "M";

END_GET;

COMMIT;

printf ("%d", atot);
FINISH;
}

Pascal Program

program starting (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
atot : integer;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
atot = COUNT OF C IN COLLEGES WITH C.STATE NOT STARTING WITH ’M’;

END_GET;

COMMIT;
writeln (atot);

FINISH;
end.

RDML Conditional Expressions 3–37

UNIQUE Conditional Expression

3.8 UNIQUE Conditional Expression

The UNIQUE conditional expression tests for the presence of a single record in
a record stream. This expression is true if the record stream specified by the
record selection expression consists of only one record.

If you precede UNIQUE with the optional NOT qualifier, the condition is true
if more than one record is in the record stream or if the stream is empty.

Format
unique-clause =

UNIQUE
NOT handle-options

rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

3–38 RDML Conditional Expressions

UNIQUE Conditional Expression

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML associates a default transaction handle with the
transaction.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Examples
Example 1

The following programs demonstrate the use of the UNIQUE conditional
expression. The programs join the EMPLOYEES and DEGREES relations
over the EMPLOYEE_ID common field. The UNIQUE expression limits the
record stream to those records in the EMPLOYEES relation that have only
one corresponding record in the DEGREES relation. These programs print
an informational message and the selected employees’ first and last names in
alphabetical order based on the first name.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY E.FIRST_NAME
WITH UNIQUE D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

printf("%s %s has one and only one college degree.\n",
E.FIRST_NAME, E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

RDML Conditional Expressions 3–39

UNIQUE Conditional Expression

Pascal Program

program unique_expr (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.FIRST_NAME, ’ ’, E.LAST_NAME,
’ has one and only one college degree.’);

END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the NOT UNIQUE conditional
expression. The programs join the EMPLOYEES and SALARY_HISTORY
relations over the EMPLOYEE_ID common field. The NOT UNIQUE
conditional expression limits the records in the record stream to those
records in the EMPLOYEE relation that have more than one corresponding
record in the SALARY_HISTORY relation. The SORTED BY clause sorts the
records in alphabetical order. These programs print the last names of the
employees in the record stream, and an informational message.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
AND (NOT UNIQUE SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
SORTED BY E.LAST_NAME

printf("%s has had two or more salary reviews.\n", E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

3–40 RDML Conditional Expressions

UNIQUE Conditional Expression

Pascal Program

program unique_not (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
AND (NOT UNIQUE SH IN SALARY_HISTORY

WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID)
SORTED BY E.LAST_NAME

writeln (E.LAST_NAME, ’ has had two or more salary reviews.’);
END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the UNIQUE conditional
expression in a reflexive join. These programs create two record streams by
joining the EMPLOYEES relation with itself. This is achieved by declaring two
context variables, E and EMP, for the EMPLOYEES relation. RDML compares
the CITY field of each record in the EMPLOYEES relation with every other
record in the same relation. The UNIQUE conditional expression selects the
records in which one and only one employee lives in any given city. These
programs print an informational message and the city, first name, and last
name of each of those employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES

WITH E.CITY = EMP.CITY
printf ("City is: %s\n", E.CITY);
printf ("Employee name is: %s %s\n\n",E.FIRST_NAME, E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

RDML Conditional Expressions 3–41

UNIQUE Conditional Expression

Pascal Program

program unique_cond_exp (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES

WITH E.CITY = EMP.CITY
writeln (’City is: ’, E.CITY);
writeln (’Employee name is: ’,E.FIRST_NAME, E.LAST_NAME);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

3–42 RDML Conditional Expressions

4
RDML Record Selection Expressions

This chapter describes the Relational Data Manipulation Language (RDML)
record selection expressions (RSEs) that can be used with embedded RDML
statements in C and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with Rdb/VMS.

A record selection expression is an expression that defines specific
conditions individual records must meet before Rdb includes them in a record
stream. A record stream is a temporary group of related records that satisfy
the conditions you specify in the record selection expression.

Record selection expressions let you:

Include all records in the relation

Eliminate duplicate records

Limit the number of records displayed

Test for values and conditions

Sort the records in the record stream

Combine records from the same or different relations

RDML Record Selection Expressions 4–1

Format

rse =

relation-clause
first-clause cross-clause

with-clause reduce-clause sort-clause

Table 4–1 summarizes the function of each record selection expression clause.

Table 4–1 Record Selection Expression Clause Functions

RSE Clause Function

CROSS Joins records from two or more relations.

FIRST N Restricts the record stream to the number of records specified by
‘‘N’’.

REDUCED TO Isolates unique field values within the record stream.

Relation Declares context variable for the record stream.

SORTED BY Sorts records in the record stream by values of specific fields.

WITH Specifies conditions that must be met for records to be included in
the record stream.

Usage Notes
You can use simple and complex host language variables, such as arrays
or records, in a record selection expression. However, do not use functions
or procedures within the record selection expression. Instead, assign the
result of a function to a host language variable and use that variable
within the record selection expression. For example, the following Pascal
code will not preprocess:

(* Bad code - will not preprocess *)
FOR FIRST 5 E IN EMPLOYEES WITH E.LAST_NAME = SUBSTR(STRING,1,24)

writeln (E.LAST_NAME);
END_FOR;

4–2 RDML Record Selection Expressions

However, this code will preprocess:

host_variable = SUBSTR(STRING,1,24)

FOR FIRST 5 E IN EMPLOYEES WITH E.LAST_NAME = host_variable
writeln (E.LAST_NAME);

END_FOR;

Record selection expressions cause relations to be referred to in a request
in specific ways. Because there is an implementation-specific limit on the
number of relations that you can refer to in a request, you need to know
that the following factors cause a relation to be referenced:

The name of a relation or view in a record selection expression.

The relations in a view (or virtual relation). Thus, if a view refers to
three relations, referring to that view is the same as referring to four
relations; one for the view, and one for each relation contained in the
view. For example, the following data definition language (DDL) record
selection expression defines a view, NULL_MANAGERS, derived from
the DEPARTMENTS relation (note that the following is not an RDML
statement):

DEFINE VIEW NULL_MANAGERS OF
MGR IN JOB_HISTORY WITH MGR.DEPARTMENT_NAME MISSING.

END NULL_MANAGERS VIEW.

The RDML statement that follows refers to three relations:

1 The view, or virtual relation, NULL_MANAGERS

2 The JOB_HISTORY relation referred to in NULL_MANAGERS

3 The JOB_HISTORY relation in the CROSS clause

FOR MGR IN NULL_MANAGERS CROSS JH IN JOB_HISTORY
WITH MGR.SUPERVISOR_ID = JH.EMPLOYEE_ID

WRITE (’The manager with this ID number: ’, MGR.SUPERVISOR_ID,
’has an unknown department name’);

END_FOR;

The relations in a DDL record selection expression that has a
COMPUTED BY field. This includes COMPUTED BY fields that
refer to other COMPUTED BY fields. For example, the DDL that
follows defines a view of UNIQUE_DEGREES that refers to these three
relations:

1 The view, or virtual relation, UNIQUE_DEGREES

2 The DEGREES relation that is referred to in the view UNIQUE_
DEGREES

RDML Record Selection Expressions 4–3

3 The DEGREES relation that is computed so a total of persons
holding a degree can be found

DEFINE VIEW UNIQUE_DEGREES OF
D IN DEGREES REDUCED TO D.DEGREE.

D.DEGREE.
HOLDERS

COMPUTED BY COUNT OF H IN DEGREES
WITH H.DEGREE = D.DEGREE.

END UNIQUE_DEGREES VIEW.

You should use parentheses to delineate multiple statistical functions in
record selection expressions. Examples of statistical functions are COUNT,
TOTAL, and MAX.

If you use a statistical function (for example, COUNT) with a record
selection expression, enclose it in a GET statement. Embedding the
statistical function in a GET statement incurs less overhead than a
statistical function embedded directly in the host language. The following
Pascal example shows the use of the GET statement with the SORTED BY
clause:

GET
acnt = COUNT OF POOR IN CURRENT_SALARY

CROSS RICH IN CURRENT_SALARY
WITH RICH.SALARY_AMOUNT > (10 * POOR.SALARY_AMOUNT)
SORTED BY POOR.EMPLOYEE_ID;

END_GET;

writeln (’There are’, acnt, ’employees who deserve a raise’);

If you must use a statistical function within the host language, use
parentheses to delineate both expressions from a program function if
necessary to enforce the order of precedence you desire.

Examples
Example 1

The following programs demonstrate the use of CROSS, WITH, and SORTED
BY record selection expression clauses. These programs generate a report for
the personnel department that shows important information about each active
employee, including salary level attained for each job and the department to
which the employee belongs.

4–4 RDML Record Selection Expressions

The EMPLOYEES relation describes each employee in the company. The
SALARY_HISTORY relation contains current salary information along with
the salary start date and salary amount for that job. The JOB_HISTORY
relation holds data about each job an employee holds and has held, including
the department and job code. The JOBS relation contains information about
each job in the company. Each of these relations supplies some data for the
report.

To obtain the necessary fields from each, the programs contain a query to join
the four relations. The WITH clause ensures that the query uses related fields
in each relation.

Note that the SALARY_START field is a DATE data type. In the database, it
is stored in an encoded binary format. To display it, the program must first
convert the retrieved value into an ASCII string. This program calls the VMS
system service ASCTIM to perform the conversion.

C Program

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

DATABASE PERS = FILENAME "PERSONNEL";

extern int SYS$ASCTIM();

main()
{
/* In the following declaration, note one extra space for EOS */
static $DESCRIPTOR(SAL_DATE,"dd-mmm-yyyy hh:mm:ss.cc ");

/* SYS$ASCTIM returns "len" in a 16-bit word */
short len;
long status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS SH IN SALARY_HISTORY
CROSS JH IN JOB_HISTORY
CROSS J IN JOBS
WITH JH.JOB_CODE = J.JOB_CODE
AND SH.SALARY_END MISSING
AND E.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.JOB_END MISSING
SORTED BY J.JOB_CODE,E.EMPLOYEE_ID;

RDML Record Selection Expressions 4–5

status = SYS$ASCTIM (&len, &SAL_DATE, SH.SALARY_START, 0);
if (status != SS$_NORMAL)

{
printf("Date conversion failed\n");
continue;
}

/* Ensure that the returned string is null-terminated, */
/* so that we may use printf to display it. */

SAL_DATE.dsc$a_pointer[len - 1] = ’\0’;

printf ("Job Code %s\n",J.JOB_CODE);
printf ("Employee ID %s\n",E.EMPLOYEE_ID);
printf ("Name %s %s\n",E.FIRST_NAME,E.LAST_NAME);
printf ("Dept Code %s\n",JH.DEPARTMENT_CODE);
printf ("Job Title %s\n",J.JOB_TITLE);
printf ("Start Date %s\n",SAL_DATE.dsc$a_pointer);
printf ("Current Salary $%f\n\n",SH.SALARY_AMOUNT);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

[inherit (’sys$library:starlet.pen’)]

program salary_report (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

type date_asc_type = packed array [1..23] of char;
var sal_date : date_asc_type;

sys_stat : integer;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS SH IN SALARY_HISTORY
CROSS JH IN JOB_HISTORY
CROSS J IN JOBS
WITH JH.JOB_CODE = J.JOB_CODE
AND SH.SALARY_END MISSING
AND E.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.JOB_END MISSING
SORTED BY J.JOB_CODE,E.EMPLOYEE_ID

writeln (’Job Code ’,J.JOB_CODE);
writeln (’Employee ID ’,E.EMPLOYEE_ID);
writeln (’Name ’,E.FIRST_NAME,’ ’,E.LAST_NAME);
writeln (’Dept Code ’,JH.DEPARTMENT_CODE);
writeln (’Job Title ’,J.JOB_TITLE);

4–6 RDML Record Selection Expressions

sys_stat := $ASCTIM(timbuf := sal_date, timadr := SH.SALARY_START);
if (sys_stat <> SS$_NORMAL) then

writeln (’Date conversion failed’)
else

writeln (’Start Date ’,sal_date);
writeln (’Current Salary $’,SH.SALARY_AMOUNT : 10 : 2);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–7

Context Variable

4.1 Context Variable

A context variable is a temporary name that identifies a relation in an Rdb
record stream. Once you have associated a context variable with a relation,
you use the context variable to refer to fields from that relation. In this way,
Rdb always identifies the specific field and its particular relationship to which
you refer.

You must use a context variable in every data manipulation statement that
uses a record selection expression.

If you access several record streams at once, the context variable lets you
distinguish between fields from different record streams, even if different fields
have the same name.

If you access several record streams at once that consist of the same relation
and fields within that relation, context variables let you distinguish between
the two record streams.

Format

context-variable =

identifier

Argument
identifier
A valid alphanumeric host language identifier.

Usage Notes
Context variables are defined explicitly by the record selection expression
(one context variable for each instance of a participating relation).

The context established by the context variable is valid during the
execution of the statement or clause in which the context variable is
declared.

4–8 RDML Record Selection Expressions

Context Variable

Context variables establish a context within which RDML resolves
references to database fields. This context affects only the statement in
which the context variable is declared. All inner (contained or nested)
statements and all outer (containing or nesting) statements are not
affected.

Context variables are implicit in an OVER clause that names a common
field. In the following example, a context variable is not used to identify
EMPLOYEE_ID in the OVER clause:

FOR E IN EMPLOYEES
CROSS D IN DEGREES
OVER EMPLOYEE_ID

The context established by a context variable is valid during the execution
of the statement or clause in which the context variable is declared.
For example, a context variable declared in a FOR statement is only
valid within the FOR . . . END_FOR block, whereas the context variable
declared by the DECLARE_STREAM statement is valid from the execution
of the DECLARE_STREAM statement to the end of the program module.

Context variables are referred to in the following clauses, statements,
functions, and expressions:

ERASE statement

FOR statement

MODIFY statement

STORE statement

START_STREAM statements

Record selection expressions

Field reference

Database key value reference

Statistical and Boolean functions

RDML Record Selection Expressions 4–9

Context Variable

Examples
Example 1

The following programs demonstrate the use of the context variable ‘‘CS’’ for
the CURRENT_SALARY view. These programs:

Use ‘‘CS’’ to qualify field names in the record selection expression, printf,
and writeln statement

Print the employee ID of all the employees who earn more than $40,000

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CS IN CURRENT_SALARY WITH CS.SALARY_AMOUNT > 40000.00
printf ("%s\n",CS.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program context_var (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CS IN CURRENT_SALARY WITH CS.SALARY_AMOUNT > 40000.00
writeln (CS.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
end.

4–10 RDML Record Selection Expressions

Context Variable

Example 2

The following programs demonstrate the use of two context variables, E for
the EMPLOYEES relation and SH for the SALARY_HISTORY relation, to
qualify the EMPLOYEE_ID field used in both relations. The programs produce
a report about each employee’s starting and ending dates at the company.

Note that the SALARY_START and SALARY_END fields from the SALARY_
HISTORY relation are DATE data types. In the database, a DATE field is
stored in an encoded binary format. To display it, the program must first
convert the retrieved value into an ASCII string. This program calls the VMS
system service ASCTIM to perform the conversion.

C Program

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

DATABASE PERS = FILENAME "PERSONNEL";

extern int SYS$ASCTIM();

main()
{
/* In following two declarations, note one extra space for EOS */
static $DESCRIPTOR(SAL_START, "dd-mmm-yyyy hh:mm:ss.cc ");
static $DESCRIPTOR(SAL_END, "dd-mmm-yyyy hh:mm:ss.cc ");

/* SYS$ASCTIM returns len in a 16-bit word */
short len_start,len_end;
long status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY
WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID
SORTED BY E.LAST_NAME;

status = SYS$ASCTIM (&len_start, &SAL_START, SH.SALARY_START, 0);
if (status != SS$_NORMAL)

{
printf("Date conversion failed\n");
continue;
}

status = SYS$ASCTIM (&len_end, &SAL_END, SH.SALARY_END, 0);
if (status != SS$_NORMAL)

{
printf("Date conversion failed\n");
continue;
}

/* Ensure that the returned strings are null-terminated, */
/* so that we may use printf to print them out. */

RDML Record Selection Expressions 4–11

Context Variable

SAL_START.dsc$a_pointer[len_start - 1] = ’\0’;
SAL_END.dsc$a_pointer[len_end - 1] = ’\0’;
printf ("%s %s %s\n",

E.LAST_NAME,
SAL_START.dsc$a_pointer,
SAL_END.dsc$a_pointer);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

[INHERIT (’SYS$LIBRARY:STARLET.PEN’)]

program two_fields (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

type DATE_ASC_TYPE = PACKED ARRAY [1..23] OF CHAR;
var Sal_Start : DATE_ASC_TYPE;

Sal_End : DATE_ASC_TYPE;
Sys_Stat1 : INTEGER;
Sys_Stat2 : INTEGER;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY
WITH E.EMPLOYEE_ID = SH.EMPLOYEE_ID
SORTED BY E.LAST_NAME

Sys_Stat1 := $ASCTIM(timbuf := Sal_Start, timadr := SH.SALARY_START);
Sys_Stat2 := $ASCTIM(timbuf := Sal_End, timadr := SH.SALARY_END);
if ((sys_stat1 <> SS$_NORMAL) OR (sys_stat2 <> SS$_NORMAL))

then writeln (’Date conversion failed’)
else

writeln (E.LAST_NAME, ’ ’, Sal_Start, ’ ’, Sal_End);

END_FOR;

COMMIT;
FINISH;
end.

4–12 RDML Record Selection Expressions

CROSS Clause

4.2 CROSS Clause

The record selection expression’s CROSS clause lets you combine records from
two or more record streams. You can base such record combinations on the
relationship between field values in separate record streams. This combination
is called a relational join.

Format
cross-clause =

CROSS relation-clause
OVER field-name

,

Arguments
relation-clause
A clause that specifies a context variable for a stream or a loop. For more
information on context variables see Section 4.1.

field-name
The name of a field common to both of the relations.

Usage Notes
You cannot cross relations from different databases. A record selection
expression may refer to only one database at a time. Instead, you can use
a nested FOR loop to combine data from different databases.

If you use the OVER clause when crossing more than two relations, the
field name specified in the optional OVER clause must appear in only two
of the relations. If the field name appears in more than two of the relations
that you are crossing, RDML returns an error.

For example, the clause ‘‘R0 IN REL0 CROSS R1 IN REL1 CROSS R2
IN REL2 OVER F1’’ is valid if, and only if, F1 is a field that appears in
relation REL2 and in either relation REL0 or REL1, but not both.

RDML Record Selection Expressions 4–13

CROSS Clause

The CROSS clause is more efficient if the fields shared by the relations
have indexes defined for them.

The CROSS clause, used with neither the WITH nor the OVER clause,
forms the cross product of relations. A cross product is the result of
matching each record of one relation with each record of the other relation.
In most cases, the cross product alone is not useful. Normally, you want
to limit the returned records by using one or more of the following record
selection expression clauses:

FIRST

WITH

SORTED BY

REDUCED

OVER

Do not update a view that refers to more than one relation. Attempts to do
so could cause unexpected results in your database.

Using an OVER clause is equivalent to specifying a WITH clause that
contains a conditional expression. For example, the following two RDML
Pascal queries use WITH and OVER clauses, respectively, to achieve the
same result;

Query 1

START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS JH IN JOB_HISTORY
WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID

WRITE (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME, ’ ’);
WRITE (JH.JOB_CODE, ’ ’, JH.DEPARTMENT_CODE);
WRITELN;

END_FOR;
COMMIT;

Query 2

START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS JH IN JOB_HISTORY OVER EMPLOYEE_ID
WRITE (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME, ’ ’);
WRITE (JH.JOB_CODE, ’ ’, JH.DEPARTMENT_CODE);
WRITELN;

END_FOR;

COMMIT;

4–14 RDML Record Selection Expressions

CROSS Clause

Examples
Example 1

The following programs demonstrate the use of the CROSS clause to join
records from two relations. These programs join the relations CURRENT_JOB
and JOBS over the common JOB_CODE field. This allows these programs to
print a report that contains fields from both relations. Specifically, these fields
are: LAST_NAME from the CURRENT_JOBS relation, JOB_CODE from the
JOBS relation, and JOB_TITLE from the JOBS relation.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT_JOB
CROSS J IN JOBS OVER JOB_CODE

printf ("%s",CJ.LAST_NAME);
printf (" %s",J.JOB_CODE);
printf (" %s\n", J.JOB_TITLE);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program person_job (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT_JOB
CROSS J IN JOBS OVER JOB_CODE

writeln (CJ.LAST_NAME, ’ ’,J.JOB_CODE, ’ ’,J.JOB_TITLE);
END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–15

CROSS Clause

Example 2

The following programs demonstrate the use of the CROSS clause to join a
relation with itself (a reflexive join). These programs:

Join the JOBS relation on itself

Specify two different context variables, STAFF and EXEC, for the JOBS
relation

Form a stream with records that contain data on pairs of employees,
STAFF and EXEC

Form these pairs when:

The wage class of a staff member is equal to 2, and the wage class of
the executive is equal to 4

The staff member’s maximum salary amount is greater than the
minimum salary amount of an executive

Print the job code of each staff member and the maximum salary he or she
can be paid

Print the job code of each executive and the minimum salary he or she can
be paid

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR EXEC IN JOBS
CROSS STAFF IN JOBS
WITH EXEC.WAGE_CLASS = ’4’
AND STAFF.WAGE_CLASS = ’2’
AND STAFF.MAXIMUM_SALARY > EXEC.MINIMUM_SALARY

printf ("%s",STAFF.JOB_CODE);
printf (" %f\n",STAFF.MAXIMUM_SALARY);
printf ("%s",EXEC.JOB_CODE);
printf (" %f\n",EXEC.MINIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

4–16 RDML Record Selection Expressions

CROSS Clause

Pascal Program

program reflexive_join (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR EXEC IN JOBS
CROSS STAFF IN JOBS
WITH EXEC.WAGE_CLASS = ’4’
AND STAFF.WAGE_CLASS = ’2’
AND STAFF.MAXIMUM_SALARY > EXEC.MINIMUM_SALARY

writeln (STAFF.JOB_CODE);
writeln (STAFF.MAXIMUM_SALARY:10:2);
writeln (EXEC.JOB_CODE);
writeln (EXEC.MINIMUM_SALARY:10:2);
writeln

END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the CROSS clause and the
REDUCED TO clause in a reflexive join. These programs create two context
variables, POOR and RICH, for the CURRENT_SALARY view. This allows
the program to compare records in the CURRENT_SALARY relation to each
other. The WITH clause selects records from the EMPLOYEES relation in
which the salary amount of an employee in the POOR record stream is, at
most, 10 percent of the salary earned by any other employee in the relation.
The REDUCED TO clause ensures that duplicate records (based on employee
ID) are discarded from the selection. These programs print an informational
message and the employee IDs of the POOR employees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–17

CROSS Clause

FOR POOR IN CURRENT_SALARY
CROSS RICH IN CURRENT_SALARY
WITH RICH.SALARY_AMOUNT > (10.0 * POOR.SALARY_AMOUNT)
REDUCED TO POOR.EMPLOYEE_ID

printf ("%s deserves a raise\n",POOR.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program salary_info (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
START_TRANSACTION READ_ONLY;

FOR POOR IN CURRENT_SALARY
CROSS RICH IN CURRENT_SALARY
WITH RICH.SALARY_AMOUNT > (10.0 * POOR.SALARY_AMOUNT)
REDUCED TO POOR.EMPLOYEE_ID

writeln (POOR.EMPLOYEE_ID, ’ deserves a raise.’);
END_FOR;

COMMIT;
FINISH;
end.

Example 4

The following programs demonstrate the use of the CROSS clause to join fields
from two relations. These programs join the EMPLOYEES relation and the
DEGREES relation over the EMPLOYEE_ID field. The programs print a list of
all the employees’ IDs and college degrees from the COLLEGES relation. The
REDUCED TO clause ensures that this list does not contain duplicate pairings
of employee IDs and degrees.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

4–18 RDML Record Selection Expressions

CROSS Clause

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE_ID
REDUCED TO E.EMPLOYEE_ID,D.DEGREE

printf ("%s",E.EMPLOYEE_ID);
printf (" %s\n",D.DEGREE);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program cross_with_reduced (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE_ID
REDUCED TO E.EMPLOYEE_ID, D.DEGREE

write (E.EMPLOYEE_ID,’ ’);
writeln (D.DEGREE);

END_FOR;

COMMIT;
FINISH;
end.

Example 5

The following programs demonstrate the use of the CROSS clause to join three
relations over multiple join fields. These programs create a record stream
that contains records from the EMPLOYEES, JOB_HISTORY, and JOBS
relations. A record from the JOB_HISTORY relation is included in the record
stream only if it has a corresponding record in EMPLOYEES relation (based
on EMPLOYEE_ID) and a corresponding record in the JOBS relation (based on
the JOB_CODE field). These programs print information from records in the
record stream using fields from both the JOB_HISTORY and JOBS relations.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–19

CROSS Clause

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY
CROSS J IN JOBS
WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.JOB_CODE = J.JOB_CODE

printf ("%s",JH.EMPLOYEE_ID);
printf (" %s",JH.DEPARTMENT_CODE);
printf (" %s",JH.JOB_CODE);
printf (" %s\n",J.WAGE_CLASS);
printf ("%s",J.JOB_TITLE);
printf (" %f",J.MINIMUM_SALARY);
printf (" %f\n\n",J.MAXIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program mult_join_fields (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY
CROSS J IN JOBS
WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.JOB_CODE = J.JOB_CODE

write (JH.EMPLOYEE_ID, ’ ’);
write (JH.DEPARTMENT_CODE,’ ’);
write (JH.JOB_CODE,’ ’);
writeln (J.WAGE_CLASS);
write (J.JOB_TITLE);
write (J.MINIMUM_SALARY:10:2);
writeln (J.MAXIMUM_SALARY:10:2);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

4–20 RDML Record Selection Expressions

CROSS Clause

Example 6

The following programs demonstrate the use of the CROSS clause to join a
relation with itself and with another relation. These programs:

Join CURRENT_JOB with itself and then with JOBS on the JOB_CODE
CJ2

Select only those records for which the EMPLOYEE_ID in CJ1 is the same
as the SUPERVISOR_ID in CJ2

Display the employee’s name, his or her supervisor’s name, and his or her
manager’s title

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ1 IN CURRENT_JOB
CROSS CJ2 IN CURRENT_JOB
CROSS J IN JOBS WITH J.JOB_CODE = CJ2.JOB_CODE
AND CJ1.SUPERVISOR_ID = CJ2.EMPLOYEE_ID

printf ("Employee: %s ", CJ1.LAST_NAME);
printf ("Boss: %s ", CJ2.LAST_NAME);
printf ("Managers Title: %s\n ", J.JOB_TITLE);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program self_and_another (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–21

CROSS Clause

FOR CJ1 IN CURRENT_JOB
CROSS CJ2 IN CURRENT_JOB
CROSS J IN JOBS
WITH J.JOB_CODE = CJ2.JOB_CODE
AND CJ1.SUPERVISOR_ID = CJ2.EMPLOYEE_ID

writeln (’Employee: ’, CJ1.LAST_NAME,
’ Boss: ’, CJ2.LAST_NAME,
’ Manager’’s Title: ’, J.JOB_TITLE);

END_FOR;

COMMIT;
FINISH;
end.

4–22 RDML Record Selection Expressions

FIRST Clause

4.3 FIRST Clause

The FIRST clause allows you to specify the maximum number of records to be
included in a record stream formed by a record selection expression.

Format

first-clause =

FIRST value-expr

Argument
value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

Usage Notes
If the value expression is greater than the number of records that satisfy
the conditions of the record selection expression, Rdb returns all the
records it finds. For example:

FOR FIRST 50000 E IN EMPLOYEES
WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);

END_FOR;

If only 10,000 records are in the EMPLOYEES relation, Rdb returns only
those 10,000. It does not produce any informational messages that indicate
the discrepancy between the requested number of records and the number
actually returned.

If the value expression evaluates to a zero or a negative number, the record
stream is empty. Rdb will not return any records, nor will it generate an
error.

RDML Record Selection Expressions 4–23

FIRST Clause

If you specify a sort order in the record selection expression, Rdb first sorts
the records that satisfy the conditions of the record selection expression.
Although many records may satisfy those conditions, the FIRST qualifier
restricts the number of records in the record stream after sorting. For
example:

FOR FIRST 10 E IN EMPLOYEES SORTED BY E.EMPLOYEE_ID
WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);

END_FOR;

Rdb selects only the first 10 records in the sorted EMPLOYEES relation.
See Section 4.6 for more information about the SORTED_BY relation.

If you do not specify a sort order in the record selection expression, Rdb
selects the qualifying records unpredictably and the records returned may
change each time you use the FIRST clause. In other words, if you make
the same query twice you may not get the same results both times, unless
you use the SORTED BY clause.

If the value expression is not an integer, Rdb truncates any fractional part
of the value and uses the remaining integer as the number of records in the
record stream. For example, a program might prompt a user for a value
expression, compute a value, and use it in a record selection expression:

VAR productivity : REAL;
.
.
.

WRITE (’Productivity factor: ’);
READLN (productivity);
FOR FIRST productivity E IN EMPLOYEES

WRITELN (E.LAST_NAME, E.EMPLOYEE_ID);
END_FOR;

Assume here that the value of PRODUCTIVITY is 2.5. Rdb performs all
subsequent actions to the first two records retrieved in the FOR loop.

The value expression cannot contain a database field unless you take one
of the following actions:

Define a context variable in an outer loop, such as:

FOR E IN EMPLOYEES
FOR FIRST E.EMPLOYEE_ID SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID

4–24 RDML Record Selection Expressions

FIRST Clause

Use a self-contained expression, such as:

FOR FIRST (COUNT OF E IN EMPLOYEES
WITH E.STATE = "MA")

SH IN SALARY_HISTORY

See Section 2.2 for more information. Also refer to Chapter 5, which
documents statistical functions.

Examples
Example 1

The following programs demonstrate the use of the FIRST clause and the
SORTED BY clause. These programs sort the EMPLOYEES relation in
ascending order based on the EMPLOYEE_ID field. The FIRST 50 statement
creates a record stream that contains the first 50 records from the sorted
EMPLOYEES relation. The programs then print the employee IDs and last
names of these 50 employee records.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 50 E IN EMPLOYEES
SORTED BY E.EMPLOYEE_ID

printf ("%s ",E.EMPLOYEE_ID);
printf ("%s\n",E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first_clause (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–25

FIRST Clause

FOR FIRST 50 E IN EMPLOYEES
SORTED BY E.EMPLOYEE_ID

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the FIRST clause and the
SORTED BY clause with two sort keys. These programs sort the COLLEGES
relation in ascending order on the basis of the STATE and CITY fields.
Because STATE is the first sort key, records are sorted by state first. Then
the records are sorted by city within each state. The FIRST clause selects the
first 10 records from the sorted relation. These programs then print the college
name, city, and state of each of these 10 records.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 10 C IN COLLEGES
SORTED BY C.STATE, C.CITY

printf("%s %s %s\n", C.COLLEGE_NAME, C.CITY, C.STATE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program first_sorted (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 10 C IN COLLEGES
SORTED BY C.STATE, C.CITY

writeln (C.COLLEGE_NAME, ’ ’, C.CITY,’ ’, C.STATE);
END_FOR;

4–26 RDML Record Selection Expressions

FIRST Clause

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of a host language variable
and the FIRST clause. The programs obtain the value for the host language
variable, how_many, through interactive programming.

The C program uses the function read_int() to prompt for and store the value
for the host language variable. For more information and the source code for
read_int, see Appendix B. The Pascal program uses the readln and writeln
statements to serve a similar function. By doing the interactive processing
before attaching to the database, these programs keep the transaction as short
as possible.

The SORTED BY clause sorts the EMPLOYEES relation in ascending order,
based on the EMPLOYEE_ID field. The value for how_many determines
the number of records the FIRST clause selects from the sorted relation.
The selection process begins with the first record in the sorted relation and
continues selecting records until the specified number have been selected.
These programs print the employee IDs, first names, and last names from
these records.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern int read_int();

main ()
{
int how_many;
how_many = read_int("Enter number of employees to display: ");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST how_many E IN EMPLOYEES
SORTED BY E.EMPLOYEE_ID

printf("%s %s %s\n", E.EMPLOYEE_ID, E.FIRST_NAME, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection Expressions 4–27

FIRST Clause

Pascal Program

program first_with_host (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
how_many : integer;

begin
write (’Enter number of employees to display: ’);
readln (how_many);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST how_many E IN EMPLOYEES
SORTED BY E.EMPLOYEE_ID

writeln (E.EMPLOYEE_ID, ’ ’, E.FIRST_NAME, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 4

The following programs demonstrate the use of the FIRST clause with an
arithmetic operator. These programs sort the records in the CURRENT_
SALARY relation in descending order of salary amount. The FIRST clause
selects the first quarter of the total number of the sorted CURRENT_SALARY
records. These programs then print the last name of the employees in the
selected records and the number of records that the FIRST clause selected.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST (0.25 * COUNT OF CS IN CURRENT_SALARY) EMP IN CURRENT_SALARY
SORTED BY DESCENDING EMP.SALARY_AMOUNT

printf ("%s %d\n",EMP.LAST_NAME,
COUNT OF SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = EMP.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

4–28 RDML Record Selection Expressions

FIRST Clause

Pascal Program

program first_with_stat (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST (0.25 * COUNT OF CS IN CURRENT_SALARY) EMP IN CURRENT_SALARY
SORTED BY DESCENDING EMP.SALARY_AMOUNT

writeln (EMP.LAST_NAME, ’ ’, COUNT OF SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = EMP.EMPLOYEE_ID);

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–29

REDUCED TO Clause

4.4 REDUCED TO Clause

The REDUCED TO clause of the record selection expression lets you eliminate
duplicate values for fields in a record stream. You can use this expression to
eliminate redundancy in the results of a query and to group the records in a
relation according to unique field values.

Format

reduce-clause =

REDUCED TO db-field
,

Argument
db-field
A database field value expression. A database field value expression is a field
name qualified with a context variable. The database field must be defined in
the current context of the statement. For example, the database field must
be defined in the context of the START_STREAM or DECLARE_STREAM
statements or the FOR loop. See Section 2.2 for more information.

Usage Notes
The use of the SORTED BY clause with the REDUCED TO clause is highly
recommended. Without it, you cannot be sure of the order in which records
will be retrieved. If you do not use a SORTED BY clause in the record
selection expression, Rdb selects the qualifying records unpredictably and
the records returned may change. In other words, if you make this query
twice you may not get the same results both times, unless you use the
SORTED BY clause.

If you use the REDUCED TO clause, do not retrieve any fields that you do
not specify in the list of db-fields within the record selection expression. If
you retrieve other fields, the results are unpredictable. In other words, it is
not useful to have a REDUCED TO clause in this case:

4–30 RDML Record Selection Expressions

REDUCED TO Clause

FOR SH IN SALARY_HISTORY REDUCED TO SH.EMPLOYEE_ID
SORTED BY SH.EMPLOYEE_ID

WRITELN (SH.LAST_NAME,FIRST_NAME);
END_FOR;

The preceding example reduces the record stream from the SALARY_
HISTORY relation to a record stream that consists of a list of unique
employee identification numbers. If you want to display fields other than
EMPLOYEE_ID, you should include additional REDUCED TO fields.

In general, the more REDUCED TO keys you use, the more records you
retrieve.

For example, if Ingrid Smith and William Smith are both employees
with records in the EMPLOYEES relation, the following record selection
expression will retrieve one record, while the succeeding record selection
expression will retrieve two:

FOR E IN EMPLOYEES
REDUCED TO E.LAST_NAME
writeln (E.LAST_NAME);

END_FOR;

FOR E IN EMPLOYEES
REDUCED TO E.LAST_NAME, E.FIRST_NAME

writeln (E.LAST_NAME);
END_FOR;

If you use a statistical function (for example, COUNT) with the REDUCED
TO clause, embed it in a GET statement. A statement embedded in the
GET statement incurs less overhead than a statistical function embedded
directly in the host language.

Examples
Example 1

The following programs demonstrate the use of the REDUCED TO clause and
the SORTED BY clause with a single relation. These programs sort the records
in the EMPLOYEES relation on the basis of the STATE field. The REDUCED
TO clause limits the record stream so that each record in the stream has a
different value for the STATE field. These programs then display the list of
states represented in the EMPLOYEES relation.

RDML Record Selection Expressions 4–31

REDUCED TO Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
REDUCED TO E.STATE
SORTED BY E.STATE

printf("%s\n", E.STATE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program reduced_one_rel (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
REDUCED TO E.STATE
SORTED BY E.STATE

writeln (E.STATE);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the REDUCED TO clause and
the SORTED BY clause with multiple relations. These programs:

Print an informational message

Cross CURRENT_JOB and DEGREES relations over the common
EMPLOYEE_ID field

Limit the record stream to those records in the DEGREES relation that
have the same employee ID as the records in the CURRENT_JOB relation
with the department code of ‘‘ENG’’ (engineer)

4–32 RDML Record Selection Expressions

REDUCED TO Clause

Sort the records in the stream in ascending order based on the COLLEGE_
CODE field and within each college code, sort by DEGREE (also in
ascending order)

Reduce the record stream to those records that have unique combinations
of college code and degree

Print the unique combinations of the COLLEGE_CODE and DEGREE
fields for engineers

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
printf ("List unique combinations of COLLEGE CODE and");
printf (" DEGREE for all engineers");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR CJ IN CURRENT_JOB
CROSS D IN DEGREES
OVER EMPLOYEE_ID
WITH CJ.DEPARTMENT_CODE = "ENG"
REDUCED TO D.COLLEGE_CODE, D.DEGREE
SORTED BY D.COLLEGE_CODE, D.DEGREE

printf ("%s %s", D.COLLEGE_CODE, D.DEGREE);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program reduced_clause (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
writeln (’List unique combinations of COLLEGE_CODE and ’,

’DEGREE for all engineers’);

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–33

REDUCED TO Clause

FOR CJ IN CURRENT_JOB
CROSS D IN DEGREES
OVER EMPLOYEE_ID
WITH CJ.DEPARTMENT_CODE = ’ENG’
REDUCED TO D.COLLEGE_CODE, D.DEGREE
SORTED BY D.COLLEGE_CODE, D.DEGREE

writeln (D.COLLEGE_CODE, ’ ’, D.DEGREE);
END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the REDUCED TO clause with
a reflexive join. These programs:

Limit the record stream to those records in the DEGREES relation with a
degree starting with ‘‘M’’ (master’s) or containing ‘‘D’’ (doctorate)

Sort the records by descending EMPLOYEE_ID

Further limit the record stream to those records with unique employee IDs

Print an informational message and the employee ID of those employees
with either a master’s or doctorate degree, or both

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEGREES
WITH D.DEGREE STARTING WITH "M"
OR D.DEGREE CONTAINING "D"
REDUCED TO D.EMPLOYEE_ID
SORTED BY DESCENDING D.EMPLOYEE_ID

printf("%s has an advanced degree.\n", D.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

4–34 RDML Record Selection Expressions

REDUCED TO Clause

Pascal Program

program reduced_one_relation (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEGREES
WITH D.DEGREE STARTING WITH ’M’
OR D.DEGREE CONTAINING ’D’
REDUCED TO D.EMPLOYEE_ID
SORTED BY DESCENDING D.EMPLOYEE_ID

writeln (D.EMPLOYEE_ID, ’ has an advanced degree.’);
END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–35

Relation Clause

4.5 Relation Clause

The record selection expression’s relation clause lets you declare a context
variable for a stream or a loop. Once you associate a context variable with a
relation, you can use only that context variable to refer to records from that
relation in the record stream you created. Each relation (including multiple
uses of the same relation) in the record stream must have a unique context
variable. See Section 4.1 for more information.

Format

relation-clause =

context-var IN relation-name
db-handle .

Arguments
context-var
A context variable. You define a context variable in a relation clause. See
Section 4.1 for more information.

db-handle
Database handle. A host language variable used to refer to a specific database
you have invoked. If you do not supply a database handle, a default database
handle is declared for you by RDML. However, if you are using more than one
database in your program, you should declare database handles for all the
databases.

relation-name
The name of a relation in a database.

4–36 RDML Record Selection Expressions

Relation Clause

Usage Notes
You must use a relation clause in the following RDML statements and
functions:

DECLARE_STREAM

FOR

START_STREAM (Declared and Undeclared)

STORE

DECLARE_STREAM

Statistical and Boolean functions

You must associate a different context variable with each relation you refer
to in the same query. If you access several relations at once, the context
variable lets you distinguish between fields from different relations within
the same statements.

Once you associate a context variable with a relation, you must use it in
other statements to qualify field names. For instance, once you declare a
context variable in a FOR statement, you must use it in other statements
within the FOR . . . END_FOR block (for example, a MODIFY statement)
to qualify field names.

Examples
Example 1

The following programs demonstrate the use of the relation clause with a FOR
loop. These programs declare a context variable E for EMPLOYEES. This
allows the programs to refer to records from the EMPLOYEES relation by
using the context variable E in the host language print statements.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–37

Relation Clause

FOR E IN EMPLOYEES
printf ("%s %s %s\n", E.LAST_NAME,

E.EMPLOYEE_ID,
E.SEX);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program context_variable (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
writeln (E.LAST_NAME, ’ ’, E.EMPLOYEE_ID, ’ ’, E.SEX);

END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of a relation clause with a STORE
statement.

The C program uses the function pad_string to append trailing blanks to
the last name. This ensures that the last name matches the length defined
for the field. For more information and the source code for pad_string, see
Appendix B. Pascal does not require a special function to pad strings; the
Pascal writeln function pads strings for you.

These programs declare a context variable C for the COLLEGES relation. This
allows the programs to refer to the fields in the COLLEGES relation with the
context variable C during the STORE operation.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

4–38 RDML Record Selection Expressions

Relation Clause

STORE C IN COLLEGES USING
pad_string("PURD", C.COLLEGE_CODE, sizeof(C.COLLEGE_CODE));
pad_string("Purdue University",C.COLLEGE_NAME, sizeof(C.COLLEGE_NAME));
pad_string("West Lafayette", C.CITY, sizeof(C.CITY));
pad_string("IN", C.STATE, sizeof(C.STATE));
pad_string("01760", C.POSTAL_CODE, sizeof(C.POSTAL_CODE));

END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program context_store (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.COLLEGE_CODE := ’PURD’;
C.COLLEGE_NAME := ’Purdue University’;
C.CITY := ’West Lafayette’;
C.STATE := ’IN’;
C.POSTAL_CODE := ’01760’;

END_STORE;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the relation clause with the
START_STREAM statement and the FETCH statement. The START_STREAM
statement declares and opens the record stream, EMP_STREAM. The FOR
statement determines the records to be included in the stream. These records
are all the records in the EMPLOYEES relation sorted in descending order,
based on the employee ID. The FETCH statement advances an internal pointer
to the first record in the record stream, gets the record, and the programs print
the last name of this employee.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Record Selection Expressions 4–39

Relation Clause

START_STREAM EMP_STREAM USING E IN EMPLOYEES
SORTED BY DESCENDING E.EMPLOYEE_ID, E.LAST_NAME;
FETCH EMP_STREAM;

printf("%s has the largest badge number\n", E.LAST_NAME);
END_STREAM EMP_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program stream (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM EMP_STREAM USING E IN EMPLOYEES
SORTED BY DESCENDING E.EMPLOYEE_ID, E.LAST_NAME;
FETCH EMP_STREAM;

writeln (E.LAST_NAME, ’ has the largest badge number’);
END_STREAM EMP_STREAM;

COMMIT;
FINISH;
end.

Example 4

The following programs demonstrate the use of the relation clause to qualify
fields with the same names from different relations. The programs:

Join the EMPLOYEES relation and the DEGREES relation over the
common EMPLOYEE_ID field

Join the COLLEGES relation with the DEGREES relation over the
common COLLEGE_CODE field

The joins create a record stream that contains records from the EMPLOYEES,
DEGREES and COLLEGES relations. The SORTED BY clause sorts the
records in ascending order, based on the COLLEGE_CODE, DEGREE,
DEGREE FIELD, and EMPLOYEE_ID fields. Note that these fields are
contained in more than one relation. The programs use the relation clause to
qualify from which relation the program must obtain a specified field value.

These programs print a report using fields from all three relations.

4–40 RDML Record Selection Expressions

Relation Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE_ID
CROSS C IN COLLEGES OVER COLLEGE_CODE
SORTED BY D.COLLEGE_CODE, D.DEGREE, D.DEGREE_FIELD, E.EMPLOYEE_ID;

printf ("%s %s %s %d %s %s\n", C.COLLEGE_NAME,
D.DEGREE,
D.DEGREE_FIELD,
D.YEAR_GIVEN,
E.EMPLOYEE_ID,
E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program qualify_fields (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
CROSS D IN DEGREES OVER EMPLOYEE_ID
CROSS C IN COLLEGES OVER COLLEGE_CODE
SORTED BY D.COLLEGE_CODE, D.DEGREE, D.DEGREE_FIELD, E.EMPLOYEE_ID

writeln (C.COLLEGE_NAME, ’ ’,
D.DEGREE, ’ ’,
D.DEGREE_FIELD, ’ ’,
D.YEAR_GIVEN, ’ ’,
E.EMPLOYEE_ID, ’ ’,
E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–41

Relation Clause

Example 5

The following programs demonstrate the use of the relation clause in a CROSS
clause. These programs:

Cross the CURRENT_JOB view over itself

Declare the context variables BOSS and WORKER in a relation clause to
qualify two record streams with the same field, LAST_NAME

Display the bosses’ and the workers’ names

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR BOSS IN CURRENT_JOB
CROSS WORKER IN CURRENT_JOB
WITH BOSS.EMPLOYEE_ID = WORKER.SUPERVISOR_ID
SORTED BY BOSS.LAST_NAME, WORKER.LAST_NAME

printf ("Boss: %s ", BOSS.LAST_NAME);
printf ("Worker: %s\n", WORKER.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

4–42 RDML Record Selection Expressions

Relation Clause

Pascal Program

program qualify_same_field (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR BOSS IN CURRENT_JOB
CROSS WORKER IN CURRENT_JOB
WITH BOSS.EMPLOYEE_ID = WORKER.SUPERVISOR_ID
SORTED BY BOSS.LAST_NAME, WORKER.LAST_NAME

writeln (’Boss: ’, BOSS.LAST_NAME, ’ ’,
’Worker: ’, WORKER.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–43

SORTED BY Clause

4.6 SORTED BY Clause

The SORTED BY clause of the record selection expression lets you sort the
records in the record stream by the values of specific fields. You sort on a
database field value expression, called a sort key. The sort key determines
the order in which Rdb returns the records in the record stream.

Format
sort-clause =

SORTED BY db-field
ASCENDING
DESCENDING

,

Arguments
ASCENDING
The default sorting order. Rdb sorts the records in ascending order (‘‘A’’
precedes ‘‘B’’, 1 precedes 2, and so on). Missing values appear as the last items
in this list of sorted values. You can abbreviate the ASCENDING keyword to
ASC.

DESCENDING
Rdb sorts strings in ASCII sequence, and numbers in numeric order. (‘‘A’’
follows ‘‘B’’, 1 follows 2, and so on). Missing values appear as the first items in
this list of sorted values. You can abbreviate the DESCENDING keyword to
DESC.

db-field
A database field value expression within the query. A database field value
expression is a field name qualified with a context variable. See Section 2.2 for
more information.

4–44 RDML Record Selection Expressions

SORTED BY Clause

Usage Notes
The sort order for strings is by byte value (ASCII). This order treats
uppercase characters as being greater than lowercase characters. When
you specify the sort order to be ascending, strings beginning with lowercase
characters will appear after strings beginning with uppercase letters.

The value expression is the sort key. For example, the following FOR
statement sorts employees by last name:

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
.
.
.

END_FOR;

If you do not specify the sorting order with the first sort key, the default
order is ascending. In the following example, because the sorting order
is not specified, Rdb automatically sorts the EMPLOYEES records in
ascending order by EMPLOYEE_ID.

FOR E IN EMPLOYEES SORTED BY E.EMPLOYEE_ID
.
.
.

END_FOR;

If you do not specify ASCENDING or DESCENDING for the second or
subsequent sort keys, Rdb uses the order you specified for the preceding
sort key. In the example that follows, Rdb sorts both the EMPLOYEE_
ID and JOB_CODE fields in descending order. The sort order for the
EMPLOYEE_ID and SUPERVISOR_ID fields is explicit; Rdb automatically
determines the sort order for the JOB_CODE field by the preceding sort
key (DESCENDING E.EMPLOYEE_ID).

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY OVER EMPLOYEE_ID
SORTED BY DESCENDING E.EMPLOYEE_ID, JH.JOB_CODE,

ASCENDING JH.SUPERVISOR_ID
.
.
.

END_FOR;

RDML Record Selection Expressions 4–45

SORTED BY Clause

When you use multiple sort keys, Rdb treats the first field or value
expression in the list of sort keys as the major sort key and successive field
or value expressions as minor sort keys. That is, Rdb first sorts the records
into groups based on the first field or value expression. Then Rdb uses the
second key to sort the records within each group, and so on.

Missing values always sort as the highest items in a sorted list. They are
the first items in a list sorted in descending order, and the last items in a
list sorted in ascending order.

Examples
Example 1

The following programs demonstrate the use of the SORTED BY clause using
the default sort order, ascending. The programs:

Sort the records in CURRENT_INFO

Sort in ascending order because no sort order is specified

Print the last names and salaries stored in the sorted records

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI IN CURRENT_INFO
SORTED BY CI.SALARY

printf ("%s $%f\n",CI.LAST_NAME, CI.SALARY);
END_FOR;

COMMIT;
FINISH;
}

4–46 RDML Record Selection Expressions

SORTED BY Clause

Pascal Program

program sort_single_field (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI IN CURRENT_INFO
SORTED BY CI.SALARY

writeln (CI.LAST_NAME, ’ $’, CI.SALARY :10:2);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the SORTED BY clause to
arrange records in descending order. The programs:

Arrange the records in the JOBS relation in descending order on the basis
of the MAXIMUM_SALARY field

Print the JOB_CODE, MAXIMUM_SALARY, and MINIMUM_SALARY
fields from the sorted list

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR J IN JOBS
SORTED BY DESCENDING J.MAXIMUM_SALARY

printf ("%s $%f $%f\n ", J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY);

END_FOR;

COMMIT;
FINISH;
}

RDML Record Selection Expressions 4–47

SORTED BY Clause

Pascal Program

program sort_descending (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR J IN JOBS
SORTED BY DESCENDING J.MAXIMUM_SALARY

writeln (J.JOB_CODE,
’ $’, J.MAXIMUM_SALARY : 10 : 2,
’ $’, J.MINIMUM_SALARY : 10 : 2);

END_FOR;

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the SORTED BY clause and
sort keys. The programs:

Create a record stream that contains all records in the employees relation

Sort this record stream in ascending order by state

Sort by descending city within each state

Print the states, cities, and employee IDs from the sorted record stream

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,
DESCENDING E.CITY

printf ("%s %s %s\n", E.STATE, E.CITY, E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

4–48 RDML Record Selection Expressions

SORTED BY Clause

Pascal Program

program matching_all (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,
DESCENDING E.CITY

writeln (E.STATE, ’ ’, E.CITY,’ ’, E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
end.

RDML Record Selection Expressions 4–49

WITH Clause

4.7 WITH Clause

The record selection expression’s WITH clause contains a conditional
expression that allows you to specify conditions that must be true for a record
to be included in a record stream.

Format

with-clause =

WITH conditional-expr

Argument
conditional-expr
Conditional expression. An expression that evaluates to true or false. See
Chapter 3 for more information.

Usage Notes
A record becomes part of a record stream only when its values satisfy the
conditions you specified in the conditional expression (that is, only when
the conditional expression evaluates to true).

If the conditional expression evaluates to false or missing for a record, that
record is not included in the record stream.

Examples
Example 1

The following programs demonstrate the use of the WITH clause in a record
selection expression. The programs:

Create a record stream of all those records in the EMPLOYEES relation
with an employee ID of 00169

Print the employee IDs and last names from each record in the record
stream

4–50 RDML Record Selection Expressions

WITH Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00169"

printf ("%s ", E.EMPLOYEE_ID);
printf ("%s", E.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program with_clause (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = ’00169’

writeln (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the WITH clause with multiple
conditions. The record selection expression finds all employees who have
only one degree. The record selection expression limits the stream further
by specifying that these employees must have received their degrees from
Stanford University in the field of Arts. These programs print the employee ID
of the employees who fit these conditions.

RDML Record Selection Expressions 4–51

WITH Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS D1 IN DEGREES OVER EMPLOYEE_ID
WITH (UNIQUE D2 IN DEGREES WITH D2.EMPLOYEE_ID = E.EMPLOYEE_ID)
AND D1.DEGREE_FIELD = "Arts"
AND D1.COLLEGE_CODE = "STAN"

printf ("%s\n", E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program multiple_cond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES CROSS D1 IN DEGREES OVER EMPLOYEE_ID
WITH (UNIQUE D2 IN DEGREES WITH D2.EMPLOYEE_ID = E.EMPLOYEE_ID)
AND D1.DEGREE_FIELD = ’Arts’
AND D1.COLLEGE_CODE = ’STAN’

writeln (E.EMPLOYEE_ID);
END_FOR;

COMMIT;
FINISH;
end.

4–52 RDML Record Selection Expressions

5
RDML Statistical Functions

This chapter describes the Relational Data Manipulation Language (RDML)
statistical functions that can be used with embedded RDML statements in C
and Pascal programs.

The C and Pascal programs in this chapter access the sample personnel
database available with Rdb/VMS.

Statistical functions calculate values based on a value expression for every
record in a record stream. Expressions that use statistical functions are
sometimes called aggregate expressions, because they calculate a single value
for a collection of records. When you use a statistical function you specify a
value expression (except for COUNT), and a record selection expression (RSE).
Rdb/VMS then performs the following steps:

1 Evaluates the value expression for each record in the record stream formed
by the record selection expression

2 Calculates a single value based on the results of the first step

You can also use a value expression to group records within a relation and
then use a statistical function to calculate a single value for the group. This
operation is often called a global aggregate because you can group records
by a value in any relation in a database. For example, you can use the
DEPARTMENT_CODE field in the DEPARTMENTS relation to group records
in the SALARY_HISTORY relation in order to get the average salary for each
department.

The following syntax diagram shows the syntax for all the statistical functions.
Refer to the section on each function in this chapter for additional information.

RDML Statistical Functions 5–1

Format
statistical-expr =

MAX value-expr
MIN
TOTAL
AVERAGE
COUNT

handle-options

OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A transaction handle, a request handle, or both.

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

5–2 RDML Statistical Functions

Table 5–1 summarizes the values returned by statistical functions.

Table 5–1 Statistical Functions

Statistical Function Value of Statistical Function

AVERAGE Arithmetic mean of values specified by value expression for
all records indicated by record selection expression. Value
expression must be numeric data.

COUNT Number of records in stream specified by record selection
expression.

MAX Largest of values specified by value expression for all
records indicated by record selection expression.

MIN Smallest of values specified by value expression for all
records indicated by record selection expression.

TOTAL Sum of values specified by value expression for all records
indicated by record selection expression. Value expression
must be numeric data.

When RDML returns the results of a statistical function, it may assign a result
data type that is different from the field data type referred to in the expression.
See Table 5–2 for a summary of these assignments.

Table 5–2 Statistical Expression Data Type Conversions for RDML

Statistical
Function

Field
Data Type

Result
Data Type

C
Equivalent

Pascal
Equivalent

EPascal
Equivalent

MIN, MAX Any Same
as field

Same
as field

Same
as field

Same
as field

COUNT Any LONGWORD int, long INTEGER INTEGER

AVERAGE Any F_FLOATING float SINGLE,
REAL

REAL

TOTAL Any G_FLOATING double DOUBLE DOUBLE

The G_floating data types require the use of the /G_FLOATING qualifier at
compile time.

RDML Statistical Functions 5–3

AVERAGE Statistical Function

5.1 AVERAGE Statistical Function

The AVERAGE statistical function determines the arithmetic mean of values
for all records specified by a record selection expression.

Format

AVERAGE
handle-options

value-expr OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

5–4 RDML Statistical Functions

AVERAGE Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

Usage Notes
If a field value in the value expression is missing, Rdb does not include
that record in its calculation of the average value.

You can use the AVERAGE function only with numeric data types. You can
find the average of all salaries, but you cannot find the average employee’s
name.

If the record stream is empty or all the values in the record stream
are missing, the AVERAGE value is zero in the floating-point form:
0.0000000E+00 if the field is a floating-point data type

Examples
Example 1

The following programs demonstrate the use of the AVERAGE function in a
display statement. These programs:

Use a record selection expression to form a record stream from a view. The
record stream consists of the records for which the value in the SALARY
field is greater than $50,000.00.

Calculate the average salary for these selected records.

Use a GET statement to place the average in a host language variable.

Print this average.

RDML Statistical Functions 5–5

AVERAGE Statistical Function

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

double mean;
main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
mean = AVERAGE CI.SALARY OF CI IN CURRENT_INFO

WITH CI.SALARY > 50000.00;
END_GET;

COMMIT;

printf ("Average is: %f\n",mean);

FINISH;
}

Pascal Program

program average_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
mean : double;
begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
mean = AVERAGE SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY

WITH SH.SALARY_AMOUNT > 50000.00;
END_GET;

COMMIT;

writeln (’Average is: ’, mean:10:2);

FINISH;
end.

Example 2

The following programs demonstrate the use of the AVERAGE function in a
record selection expression. These programs:

Perform a reflexive join on the CURRENT_INFO view so that each record
in the view can be compared to all the records in the view

5–6 RDML Statistical Functions

AVERAGE Statistical Function

Use the AVERAGE function to determine the average salary of the
employees in the CURRENT_INFO view

Compare the value of the SALARY field in each record to this average

Print the IDs and last names of those employees whose salaries are greater
than or equal to this average

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI1 IN CURRENT_INFO
WITH CI1.SALARY >= AVERAGE CI2.SALARY OF CI2 IN CURRENT_INFO

printf ("%s %s\n", CI1.ID, CI1.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program average_with_rse (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI1 IN CURRENT_INFO
WITH CI1.SALARY >= AVERAGE CI2.SALARY OF CI2 IN CURRENT_INFO

writeln (CI1.ID, ’ ’, CI1.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

RDML Statistical Functions 5–7

COUNT Statistical Function

5.2 COUNT Statistical Function

The COUNT statistical function returns the number of records in a record
stream specified by a record selection expression. The COUNT function differs
from other statistical functions because it operates on the record stream
defined by the record selection expression, rather than on the values in that
record stream.

Format

COUNT
handle-options

OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

5–8 RDML Statistical Functions

COUNT Statistical Function

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
The count equals zero if no records are in the record stream.

If any field value is missing from a record in the record stream, the
COUNT function still includes the record in the record stream because
COUNT does not access field values.

Use the GET statement rather than a host language statement to retrieve
a statistical value. The GET statement produces more efficient code than a
host language statement. See Example 1.

Examples
Example 1

The following programs demonstrate the use of the COUNT function in a
display statement. These programs:

Use the COUNT function to compute the number of records stored in the
EMPLOYEES relation

Use the GET statement to place the count in a host language variable

Print an informational message and the computed number of records

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

int num;
main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
num = COUNT OF E IN EMPLOYEES;

END_GET;

printf ("The number of employees is %d", num);

RDML Statistical Functions 5–9

COUNT Statistical Function

COMMIT;
FINISH;
}

Pascal Program

program display_count (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
num : integer;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
num = COUNT OF E IN EMPLOYEES;

END_GET;

writeln (’The number of employees is’, num);

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the COUNT function in a
record selection expression. These programs cross the CURRENT_JOB view
and the DEPARTMENTS relation over the DEPARTMENT_CODE field. The
COUNT function keeps track of how many times the department codes in the
CURRENT_JOBS records match a department code in the DEPARTMENTS
relation. These programs print every department code that has seven or more
employees associated with it.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

printf ("List large departments.");

FOR D IN DEPARTMENTS
WITH (COUNT OF CJ IN CURRENT_JOB

WITH CJ.DEPARTMENT_CODE = D.DEPARTMENT_CODE) >= 7
printf ("%s\n",D.DEPARTMENT_CODE);

END_FOR;

5–10 RDML Statistical Functions

COUNT Statistical Function

COMMIT;
FINISH;
}

Pascal Program

program count_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

writeln (’List large departments.’);

FOR D IN DEPARTMENTS
WITH (COUNT OF CJ IN CURRENT_JOB

WITH CJ.DEPARTMENT_CODE = D.DEPARTMENT_CODE) >= 7
writeln (D.DEPARTMENT_CODE);

END_FOR;

COMMIT;
FINISH;
end.

RDML Statistical Functions 5–11

MAX Statistical Function

5.3 MAX Statistical Function

The MAX statistical function returns the highest value for a value expression
for all records specified by a record selection expression.

Format

MAX
handle-options

value-expr OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

5–12 RDML Statistical Functions

MAX Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
If a field value is missing from a record, Rdb does not include that record
in its calculation of the MAX value.

If the record stream is empty or all the values in the record stream are
missing, the MAX value is:

Blanks if the data type of the field is TEXT

Zeros in the floating-point form: 0.0000000E+00 if the field is a
floating-point data type

17-NOV-1858 00:00:00.00 if the data type of the field is DATE

The ASCII collating sequence is used to determine the maximum value for
TEXT and VARYING STRING. For example, the MAX of ‘‘zebra,’’ ‘‘bear,’’
and ‘‘pelican’’ is ‘‘zebra.’’

Date chronology is used to determine the maximum value for the DATE
data type. For example, the MAX of 05-NOV-1917, 06-NOV-1917, and
07-NOV-1917 is 07-NOV-1917.

Dates are stored in the database in encoded binary format. Therefore,
when using the MAX function with dates you must be certain that your
application converts these dates to a binary format. See Section 5.4 for an
example of a date conversion.

RDML Statistical Functions 5–13

MAX Statistical Function

Examples
Example 1

The following programs demonstrate the use of the MAX function in a display
statement. These programs:

Use the MAX function to compute the highest salary stored in the view
CURRENT_INFO

Use the GET statement to place this value in a host language variable

Print this computed value

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
maxi = MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

printf ("%f",maxi);
COMMIT;
FINISH;
}

Pascal Program

program max_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
maxi = MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

writeln (maxi:10:2);

5–14 RDML Statistical Functions

MAX Statistical Function

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MAX function in an
assignment statement. These programs:

Declare a host language variable, latest_degree

Use the MAX function to compute the highest number stored in YEAR_
GIVEN in the DEGREES relation

Use the GET statement to assign this computed value to the host language
variable

Print an informational message and the value computed by the MAX
function

C Program

#include <stdio.h>
DATABASE PERS = FILENAME ’PERSONNEL’;

main()
{
DECLARE_VARIABLE latest_degree SAME AS DEGREES.YEAR_GIVEN;

READY PERS;
START_TRANSACTION READ_ONLY;

GET
latest_degree = MAX D.YEAR_GIVEN OF D IN DEGREES;

END_GET;

printf ("Latest Degree was awarded in: %d\n", latest_degree);

COMMIT;
FINISH;
}

Pascal Program

program assignmax (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE latest_degree SAME AS DEGREES.YEAR_GIVEN;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Statistical Functions 5–15

MAX Statistical Function

GET
latest_degree = MAX D.YEAR_GIVEN OF D IN DEGREES;

END_GET;

writeln (’Latest Degree was awarded in: ’, latest_degree);

COMMIT;
FINISH;
end.

5–16 RDML Statistical Functions

MIN Statistical Function

5.4 MIN Statistical Function

The MIN statistical function returns the lowest value for a value expression for
all records specified by a record selection expression.

Format

MIN
handle-options

value-expr OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

RDML Statistical Functions 5–17

MIN Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
If a field value is missing, Rdb does not include that record in its
calculation of the MIN value.

If the record stream is empty or all the values in the record stream are
missing, the MIN value is:

Blanks if the data type of the field is TEXT

Zeros in the floating-point form: 0.0000000E+00 if the field is a
floating-point data type

17-NOV-1858 00:00:00.00 if the data type of the field is DATE

The ASCII collating sequence is used to determine the minimum value for
TEXT and VARYING STRING. For example, the MIN of the fields ‘‘zebra,’’
‘‘bear,’’ and ‘‘pelican’’ is ‘‘bear.’’

Date chronology is used to determine the minimum value for the DATE
data type. For example, the MIN of 09-APR-1954, 10-APR-1954, and
11-APR-1954 is 09-APR-1954.

Dates are stored in the database in encoded binary format. Therefore,
when using the MIN function with dates you must be certain that your
application converts these dates to a binary format. See Example 1 for an
example of a date conversion.

5–18 RDML Statistical Functions

MIN Statistical Function

Examples
Example 1

The following programs list the first SALARY_HISTORY record for each
employee, using the MIN function to determine the oldest salary review date.
Note that the SALARY_HISTORY.SALARY_START field is a DATE data
type. In the database, it is stored in encoded binary format. To display it,
the program must convert the retrieved value into an ASCII string. These
programs call the VMS system service routine ASCTIM to perform the
conversion.

Before converting the SALARY_START DATE field, though, the MIN function
is used. The binary value returned by the MIN function is stored temporarily
in a host language variable. This variable is then converted by ASCTIM. This
process is straightforward in Pascal. The C program must define a pointer to
the variable. In C and Pascal, the host language variable is defined using the
DECLARE_VARIABLE clause.

C Program

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

DATABASE PERS = FILENAME "PERSONNEL";

extern int SYS$ASCTIM ();

main()
{
DECLARE_VARIABLE start_binary_date SAME AS SALARY_HISTORY.SALARY_START;

/* In the following declaration, note one extra space for EOS */

static $DESCRIPTOR(sal_ascii_date_desc, "dd-mmm-yyyy hh:mm:ss:cc ");

/* SYS$ASCTIM returns len in a 16-bit word */

short len;
long status;

READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID)
SORTED BY E.EMPLOYEE_ID;

GET
start_binary_date = MIN SH.SALARY_START OF SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
END_GET;

RDML Statistical Functions 5–19

MIN Statistical Function

status = SYS$ASCTIM(&len, &sal_ascii_date_desc, &start_binary_date, 0);
if (status != SS$_NORMAL)

{
printf ("Date conversion failed\n");
continue;

}
/* Ensure that the returned strings are null-terminated, */
/* so that we may use printf to print them out. */

sal_ascii_date_desc.dsc$a_pointer[len - 1] = ’\0’;

printf ("%s %s First Salary Review was: %s\n",
E.EMPLOYEE_ID,
E.LAST_NAME,
sal_ascii_date_desc.dsc$a_pointer);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

[inherit (’sys$library:starlet.pen’)]

program min_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE SAL_START_DATE SAME AS SALARY_HISTORY.SALARY_START;
sal_date : packed array [1..23] of char;
status : integer;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES
WITH (ANY SH IN SALARY_HISTORY
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID)
SORTED BY E.EMPLOYEE_ID
WRITELN;
WRITELN (E.EMPLOYEE_ID, ’ ’, E.LAST_NAME);

GET
sal_start_date := MIN SH.SALARY_START OF SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
END_GET;

status := $ASCTIM(timbuf := sal_date, timadr := sal_start_date);
if (status <> SS$_NORMAL)

then writeln (’ Date conversion failed’)
else writeln (’ First Salary Review was: ’,sal_date);

END_FOR;

5–20 RDML Statistical Functions

MIN Statistical Function

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MIN function in an
assignment statement. These programs:

Use the MIN function to compute the lowest salary in the existing records
of the JOBS relation for which the wage class is ‘‘1’’

Use the GET statement to assign this value to a host language variable

Store a literal value into all fields for a record in the JOBS relation, except
the MINIMUM_SALARY field

Assign the value stored in the host language variable into the record
currently being stored

The C program uses the function pad_string to append trailing blanks and
the null terminator to the strings being stored. This ensures that the strings
match the length defined for the field. For more information and the source
code for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE min SAME AS PERS.JOBS.MINIMUM_SALARY;

extern void pad_string();
main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

GET
min = MIN J2.MINIMUM_SALARY OF J2 IN JOBS

WITH J2.WAGE_CLASS = "1";
END_GET;

STORE J IN JOBS USING
pad_string ("SWPR", J.JOB_CODE, sizeof(J.JOB_CODE));
pad_string ("1", J.WAGE_CLASS, sizeof(J.WAGE_CLASS));
pad_string ("Sweeper", J.JOB_TITLE, sizeof(J.JOB_TITLE));
J.MAXIMUM_SALARY = 10000.00;
J.MINIMUM_SALARY = min;

END_STORE;

RDML Statistical Functions 5–21

MIN Statistical Function

ROLLBACK;
FINISH;
}

Pascal Program

program store_with_min (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE mini SAME AS PERS.JOBS.MINIMUM_SALARY;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

GET
mini = MIN J2.MINIMUM_SALARY OF J2 IN JOBS

WITH J2.WAGE_CLASS = ’1’;
END_GET;

STORE J IN JOBS USING
J.JOB_CODE := ’SWPR’;
J.WAGE_CLASS := ’1’;
J.JOB_TITLE := ’Sweeper’;
J.MINIMUM_SALARY := mini;
J.MAXIMUM_SALARY := 10000.00;

END_STORE;

ROLLBACK;
FINISH;
end.

5–22 RDML Statistical Functions

TOTAL Statistical Function

5.5 TOTAL Statistical Function

The TOTAL statistical function returns the sum of the values specified by a
record selection expression. The value expression must be a numeric data type.

Format
TOTAL

handle-options

value-expr OF rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

RDML Statistical Functions 5–23

TOTAL Statistical Function

value-expr
A value expression. A symbol or a string of symbols used to calculate a
value. When you use a value expression in a statement, Rdb calculates the
value associated with the expression and uses that value when executing the
statement. See Chapter 2 for more information.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in a record stream. See
Chapter 4 for more information.

Usage Notes
You can use the TOTAL function only with numeric data types. The value
expression that follows the TOTAL function cannot use host variables. You
can find the total of all salaries, but you cannot find the total LAST_NAME
in a relation.

The TOTAL value equals zero if no records are in the record stream.

The TOTAL value equals zero if all values are missing.

If a field value is missing, Rdb does not include that record in its
calculation of the TOTAL value.

Examples
Example 1

The following programs demonstrate the use of the TOTAL function in an
assignment statement. These programs:

Use the TOTAL function to compute the total amount budgeted for all
departments in the DEPARTMENTS relation

Print this computed value

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE all SAME AS PERS.DEPARTMENTS.BUDGET_ACTUAL;
main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

5–24 RDML Statistical Functions

TOTAL Statistical Function

GET
all = TOTAL D.BUDGET_ACTUAL OF D IN DEPARTMENTS;

END_GET;

printf ("%f", all);

COMMIT;
FINISH;
}

Pascal Program

program total_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

all : double;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
all = TOTAL D.BUDGET_ACTUAL OF D IN DEPARTMENTS;

END_GET;

writeln (all:10:2);

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the TOTAL function in a
record selection expression. The programs perform a reflexive join on the
CURRENT_INFO view. This results in two record streams, WORKERS and
DEPT. The TOTAL function adds the salary of each worker with a common
department name and compares the totals for each department with the value
$1,000,000,000.00. These programs print an informational message and all the
departments that expend $1,000,000,000.00 or more in salaries.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Statistical Functions 5–25

TOTAL Statistical Function

FOR DEPT IN CURRENT_INFO
WITH (TOTAL WORKERS.SALARY OF WORKERS IN CURRENT_INFO

WITH WORKERS.DEPARTMENT = DEPT.DEPARTMENT) >= 1000000000.00
printf ("Department %s %s\n",DEPT.DEPARTMENT, "makes large salaries");

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program total_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR DEPT IN CURRENT_INFO
WITH (TOTAL WORKERS.SALARY OF WORKERS IN CURRENT_INFO

WITH WORKERS.DEPARTMENT = DEPT.DEPARTMENT) >= 1000000000.00
writeln (’Department ’,DEPT.DEPARTMENT,’ makes large salaries.’);

END_FOR;

COMMIT;
FINISH;
end.

5–26 RDML Statistical Functions

6
RDML Clauses and Statements

This chapter describes the Relational Data Manipulation Language (RDML)
clauses and statements that can be embedded in C and Pascal programs.
These programs can be processed by the RDML preprocessor.

The C and Pascal programs in this chapter access the sample personnel
database available with Rdb/VMS.

Table 6–1 summarizes the functions of the statements and clauses in this
chapter.

Table 6–1 Functions of RDML Statements and Clauses

Clause or Statement Function

BASED ON Extracts the data type and size of a field, allowing
you to declare a host languages type: Pascal
TYPE(s) and C typedef(s).

COMMIT Ends a transaction by making permanent all
changes performed during that transaction.

DATABASE Names the database to be accessed in the program
module in which this statement appears (does not
cause an attach to the database).

Database handle Specifies a database context to the RDML
preprocessor. Necessary when you access two
or more databases in the same program.

DECLARE_STREAM Declares the context of a record stream. Only has
meaning when used with the declared START_
STREAM statement.

(continued on next page)

RDML Clauses and Statements 6–1

Table 6–1 (Cont.) Functions of RDML Statements and Clauses

Clause or Statement Function

DECLARE_VARIABLE Declares a host language variable to have the
same data type and size as a specified database
field. Has the same function and effects as
DEFINE_TYPE clause.

DEFINE_TYPE Declares a host language variable to have the
same data type and size as a specified database
field.

END_STREAM, declared Closes a stream that was previously declared
and opened with the declared START_STREAM
statement.

END_STREAM, undeclared Specifies and closes a record stream.

ERASE Deletes records from a relation in an open stream.

Evaluating clause Allows you to specify the point at which the
named constraints are evaluated.

FETCH Retrieves the next record from a record stream.
The record stream must be started with the
DECLARE_STREAM or START_STREAM
statement.

FINISH Explicitly ends your access to a database.

FOR Executes a statement or group of statements once
for each record in a record stream formed by a
record selection expression.

FOR statement with segmented
strings

Sets up a record stream that consists of segments
from a segmented string field. Provides a means
for retrieving the segments of a segmented string.

GET Assigns values to host variables.

MODIFY Changes the value in one or more fields in one or
more records from an open stream.

ON ERROR Specifies the statement(s) the host language
executes if an error occurs during the execution of
the associated RDML statement.

PREPARE Signals to Rdb/ELN that you intend to commit
a transaction. Useful only in an Rdb/ELN
environment.

READY Causes an attach to the database(s).

(continued on next page)

6–2 RDML Clauses and Statements

Table 6–1 (Cont.) Functions of RDML Statements and Clauses

Clause or Statement Function

REQUEST_HANDLE Identifies a compiled Rdb request. A request
handle is a host language variable.

ROLLBACK Terminates a transaction and undoes all changes
made to the database since the start of the
transaction.

START_STREAM, declared Opens a record stream that has been previously
declared with the DECLARE_STREAM statement.

START_STREAM, undeclared Specifies and opens a record stream.

START_TRANSACTION Starts a transaction.

STORE Inserts a record into an existing relation.

STORE with segmented strings Inserts a segment into a segmented string field.

TRANSACTION_HANDLE Identifies a transaction. If you do not supply
a handle name explicitly, uses the default
transaction handle.

RDML Clauses and Statements 6–3

BASED ON Clause

6.1 BASED ON Clause

The BASED ON clause lets you extract from the database the data type
and size of a field and then use it to declare host language types. The type
is defined as TYPE in Pascal and typedef in C. When you preprocess your
program, the RDML preprocessor assigns the data type and size attributes
associated with the field to the type you declare using the BASED ON clause.

See Section 6.6 for information on declaring host language variables.

Format
BASED ON

db-handle .

relation-name . field-name

Arguments
db-handle
Database handle. A host language variable used to refer to a specific database
you have invoked. For more information, see Section 6.4.

relation-name
The name of a relation in a database.

field-name
The name of a field in a relation.

Usage Notes
Do not use the BASED ON clause to declare host language variables;
instead, use the DECLARE_VARIABLE clause, which is described
Section 6.6.

If a relation name exists in more than one database being accessed by
your program, you must specify the database handle to allow RDML to
determine which relation you mean.

6–4 RDML Clauses and Statements

BASED ON Clause

In RDML/C, when the field in the relation is of the TEXT, DATE, SIGNED
QUADWORD, or SEGMENTED STRING data type, the BASED ON clause
generates a C data type of pointer to char (char *). This allows you to
return pointers to strings as shown in Example 1.

Examples
Example 1

The following programs demonstrate the use of the BASED ON clause to
declare function variables. The programs use the BASED ON clause to declare
the function types job_title_type and job_code_type. The programs pass the
value of the JOB_CODE field to the JOB_NAME function. This function
determines the job title associated with the job code and passes the job title
back to the calling program. Note that in the C program, a host language
variable, temp_job_name, is required so that space is allocated to receive the
results of the strcpy function and the function can return the job title to the
calling program. In Pascal, you assign a value to the function name to return
the job title to the calling program.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

typedef BASED ON JOBS.JOB_CODE job_code_type;
typedef BASED ON JOBS.JOB_TITLE job_title_type;
DECLARE_VARIABLE temp_job_name SAME AS JOBS.JOB_TITLE;

job_title_type job_name(job)
job_code_type job;
{ /* begin function */

READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 1 J IN JOBS
WITH J.JOB_CODE = job

strcpy (temp_job_name, J.JOB_TITLE);
END_FOR;

COMMIT;
FINISH;
return temp_job_name;

} /* end of function */

main ()
{
printf ("%s\n",job_name("APGM"));
}

RDML Clauses and Statements 6–5

BASED ON Clause

Pascal Program

program based_on_clause (INPUT,OUTPUT);
DATABASE PERS = FILENAME ’PERSONNEL’;

type
job_code_type = BASED ON JOBS.JOB_CODE;
job_title_type = BASED ON JOBS.JOB_TITLE;

function job_name (job : JOB_CODE_TYP E) : JOB_TITLE_TYPE;

begin {* function *}
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 1 J IN JOBS
WITH J.JOB_CODE = job

job_name := J.JOB_TITLE;
END_FOR;

COMMIT;
FINISH;

end; {* function *}

begin {* main *}
writeln (job_name (’APGM’));
end.

6–6 RDML Clauses and Statements

COMMIT Statement

6.2 COMMIT Statement

The COMMIT statement ends a transaction and makes permanent any changes
to the database that you made during that transaction.

Format
COMMIT

(TRANSACTION_HANDLE var)

on-error

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

If an application explicitly calls the DECdtm services to start a distributed
transaction, it must also explicitly call DECdtm services to complete the
transaction, rather than using the COMMIT statement.

See the VAX Rdb/VMS Guide to Distributed Transactions for more information
on using the DECdtm service calls in distributed transactions.

on-error
The ON ERROR clause. Specifies a host language statement or an RDML
statement or both to be performed if an error occurs during the COMMIT
operation. See Section 6.17 for details.

RDML Clauses and Statements 6–7

COMMIT Statement

Usage Notes
Digital recommends that you preprocess your program with the
/NODEFAULT_TRANSACTIONS qualifier. When you use the
/NODEFAULT_TRANSACTIONS qualifier, you reduce the overhead
associated with the work that RDML must do to check the state of the
database (for example, if the program has attached to the database, if a
transaction has started, or if a transaction has ended). When you use the
/NODEFAULT_TRANSACTIONS qualifier, you must explicitly start and
commit or roll back your transaction or you will receive an error when you
preprocess your program.

By default, the COMMIT statement affects all readied databases (whether
implicitly readied by a reference to the database or explicitly readied with
the READY statement).

The COMMIT statement writes to the database all changes to data made
with the ERASE, MODIFY, and STORE statements during the transaction.

If you start a transaction without specifying a transaction handle, you use
the default transaction handle (see Section 6.27 for more information on
transaction handles). There is one default transaction handle.

By default, when the RDML preprocessor encounters a statement
without a transaction handle, it uses the default transaction handle.
However, Digital recommends that you preprocess your program with the
/NODEFAULT_TRANSACTIONS qualifier.

If you start a transaction and specify a transaction handle, you must
use that transaction handle to commit that transaction. If the COMMIT
statement succeeds, it automatically initializes the transaction handle to
zero.

The COMMIT statement also:

Flushes all modified buffers

Closes open streams created by FOR and START_STREAM statements

Releases all locks if you are using Rdb/VMS

Reduces the lock level if you are using the CONSISTENCY option of
the START_TRANSACTION statement in the Rdb/ELN environment

Because the COMMIT statement ends a stream, do not explicitly end a
stream (using the END_STREAM statement) after a COMMIT statement
has been executed, or Rdb will return an error.

6–8 RDML Clauses and Statements

COMMIT Statement

However, your source program can place a declared END_STREAM
statement after a COMMIT statement, as long as it is executed before the
COMMIT statement at run time.

Your program cannot continue in a FOR loop after a COMMIT statement.

Examples
Example 1

The following programs demonstrate the use of the COMMIT statement to
make permanent changes to a field value in a database. The programs:

Use a record selection expression to find an employee in the EMPLOYEES
relation with the ID number 00193

Use a MODIFY statement to change the field value of LAST_NAME for
this employee

Although this change is written to the database at the time of the MODIFY
statement, the change is not permanent until the programs issue a COMMIT
statement. After the programs issue the COMMIT statement, the old value for
LAST_NAME is not available.

The C program uses the function pad_string to append trailing blanks to
the last name. This ensures that the last name matches the length defined
for the field. For more information and the source code for pad_string, see
Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = ’00193’
MODIFY E USING

pad_string ("Smith-Fields", E.LAST_NAME, sizeof(E.LAST_NAME));
END_MODIFY;

END_FOR;

RDML Clauses and Statements 6–9

COMMIT Statement

COMMIT;
FINISH;
}

Pascal Program

program commit_changes (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = ’00193’
MODIFY E USING

E.LAST_NAME := ’Smith-Fields’;
END_MODIFY;

END_FOR;

COMMIT;
FINISH;
end.

6–10 RDML Clauses and Statements

DATABASE Statement

6.3 DATABASE Statement

The DATABASE statement names the database to be accessed in a program
or program module and specifies to RDML which database to use and where
to declare variables. RDML does not generate code to attach to the database
when it encounters the DATABASE statement. The READY statement causes
an attach to the database.

The only required parameter for the DATABASE statement is the database
name. The name must be the file name that represents the database file or a
logical name that translates to a file name.

You can also specify the following:

A database handle

A database handle is a name that you can associate with a database so
that your program can refer to more than one database in a module.

The scope of the database handle

A database handle can be either local to the module that declared it, global
to all the modules that refer to the same database, or external to the
module that refers to the same database.

Different sources of the database definition for compilation and execution

This option allows you to compile the program using one database
definition and run the program using another. You must use at least
the COMPILETIME option with a file specification or logical name or a
VAX CDD/Plus path name. If you also use the RUNTIME option, you
can use either a file specification or a host language variable. The host
language variable must be initialized to contain a file specification or a
logical name that translates to a file specification before any operations can
be performed against the database.

The database key (dbkey) scope

This option allows you to specify through a COMMIT statement or a
FINISH statement whether the scope of each record’s database key (dbkey)
is valid. See the explanations of the DBKEY SCOPE IS COMMIT and
DBKEY SCOPE IS FINISH options in the Arguments section for details.

RDML Clauses and Statements 6–11

DATABASE Statement

The request handle scope

This option allows you to specify the scope of system or user request
handles. See the explanations of the REQUEST_HANDLE SCOPE IS
DEFAULT and REQUEST_HANDLE SCOPE IS FINISH options in the
Arguments section for details.

Format
INVOKE DATABASE

db-handle-options

PATHNAME path-name
COMPILETIME FILENAME file-spec

RUNTIME FILENAME file-spec
host-variable

DBKEY SCOPE IS COMMIT
FINISH

REQUEST_HANDLE SCOPE IS DEFAULT
FINISH

db-handle-options =

db-handle =
handle-scope

db-handle =

handle-scope

6–12 RDML Clauses and Statements

DATABASE Statement

handle-scope =

GLOBAL
[]

EXTERNAL

LOCAL

If you choose to use a bracket, you must enclose the handle scope in both the
right-hand and left-hand brackets.

Arguments
db-handle-options
Database handle options. Allows you to specify the scope and name of a
database handle.

db-handle
Database handle. A host language variable used to refer to a specific database
you have invoked. For more information, see Section 6.4.

handle-scope
Specifies the scope of the database handle.

LOCAL
GLOBAL
EXTERNAL

LOCAL specifies that the database will be accessed only from the current
module, and that its database handle will be declared local to the current
module.

GLOBAL (the default) specifies that the database will be accessed from
several modules, including the current module, and that the database
handle will be declared in this module as globally visible.

EXTERNAL specifies that the database will be accessed from several
modules, including the current module, and that the database handle will
be declared in this module as external.

RDML Clauses and Statements 6–13

DATABASE Statement

Note that GLOBAL and EXTERNAL are equivalent when you use the
/LINKAGE=PROGRAM_SECTIONS qualifier (the default). When you use
the /LINKAGE=GLOBAL_SYMBOLS qualifier, there must be one (and only
one) module where a given database handle is declared GLOBAL; all other
modules that access the database by means of that database handle must
declare it as EXTERNAL.

COMPILETIME (FILENAME or PATHNAME)
The source of the database definitions when the program is compiled. For
Rdb/VMS this can be either a CDD/Plus path name or a file specification. For
Rdb/ELN this should be a file specification; Rdb/ELN does not support the
data dictionary. If you specify only the compile-time identifier and omit the
run-time identifier, Rdb uses the compile-time identifier for both preprocessing
and running the program.

RUNTIME FILENAME
The source of the database definitions when the program is run. This can be
either a file specification or a host language variable. If you do not specify this
parameter, Rdb uses the compile-time identifier for both preprocessing and
running the program.

path-name
A full or relative CDD/Plus path name, enclosed in quotation marks, specifying
the source of the database definition. Use single quotation marks (’ ’) when
the host language is Pascal. Use double quotation marks (" ") when the host
language is C. Use only with Rdb/VMS; Rdb/ELN does not have access to the
data dictionary.

file-spec
File specification. A full or partial file specification, or logical name enclosed in
quotation marks, specifying the source of the database. Use single quotation
marks (’ ’) when the host language is Pascal. Use double quotation marks
(" ") when the host language is C.

host-variable
A valid host language variable that equates to a database file specification.
This variable must be declared before the DATABASE statement is issued.

DBKEY SCOPE IS COMMIT (default)
Controls when the dbkey of an erased record can be reused by Rdb. When the
DBKEY SCOPE is COMMIT, Rdb can reuse a dbkey (to store another record)
when the user who erased the original record commits his or her transaction.

6–14 RDML Clauses and Statements

DATABASE Statement

DBKEY SCOPE IS FINISH
Controls when the dbkey of an erased record can be reused by Rdb. When
the DBKEY SCOPE is FINISH, Rdb cannot reuse the dbkey (to store another
record) until the user who erased the original record detaches from the
database (by issuing a FINISH statement).

REQUEST_HANDLE SCOPE IS DEFAULT (default)
The REQUEST_HANDLE SCOPE clause is used by RDBPRE and RDML
preprocessors. When a FINISH statement is issued, any request handles that
were used in queries against that database during that attach become invalid.
If you wish to reuse any of those request handles in a subsequent database
attach, you must first initialize them.

With the REQUEST_HANDLE SCOPE IS DEFAULT option, RDML
automatically initializes any request handles it generates that are in the
same compilation unit as the FINISH statement. RDML does not reinitialize
any user-specified request handles nor does it reinitialize any request handles
that are outside of the compilation unit where the request is initiated. With
this option, the value of the request handle is not set to zero after the RDML
FINISH statement executes.

The REQUEST_HANDLE SCOPE IS FINISH option causes all request handles
to be set to zero automatically when a FINISH statement is issued. Using this
option means that you have less need to use explicit request handles.

The default option is DEFAULT.

REQUEST_HANDLE SCOPE IS FINISH
When the REQUEST_HANDLE SCOPE is FINISH, the value of the request
handle is set to zero after the RDML FINISH statement executes.

The SQL FINISH statement initializes all request handles in all compilation
units in a program. The RDBPRE and RDML preprocessors allow programs
to define and manipulate request handles. If you do not want your request
handles to be reinitialized, then you must use RDML or RDBPRE (not SQL) to
do the attach, and you must use REQUEST_HANDLE SCOPE IS DEFAULT.

For more information on request handles, see the VAX Rdb/VMS Guide to
Using RDO, RDBPRE, and RDML.

RDML Clauses and Statements 6–15

DATABASE Statement

Usage Notes
The common data dictionary is not supported on VAXELN. Therefore, you
cannot specify a path name in the DATABASE statement in the Rdb/ELN
environment. Specify a file name instead.

You must issue a DATABASE statement before you access a database and
the DATABASE statement must appear before any other RDML statement
in your program.

The compile-time database must exist at preprocess time. Otherwise, the
RDML preprocessor returns an error.

The run-time database you declare must exist when you run your program.
Otherwise, Rdb returns an error.

The DATABASE statement declares a database to the program.

In VAXELN Pascal programs, place the DATABASE statement after the
MODULE statement and before the PROGRAM statement.

In VAX Pascal programs, place the DATABASE statement after the
MODULE or PROGRAM statement, and after the declaration of the host
language variable that equates to a database file specification (if such a
variable is used) and before any procedure or function declarations.

In C programs, place the DATABASE statement before any function
declarations; for example, before the ‘‘main’’ function and after the
declaration of the host language variable that equates to a database file
specification (if such a variable is used) and before any procedure or
function declarations.

You must declare each database that you plan to access in a module
(compilation unit).

The DATABASE statement adds a number of declarations to your
program. The declarations, including variable and request definitions,
are automatically included in the output file produced by the RDML
preprocessor.

The DBKEY SCOPE clause controls when the dbkey of an erased record
can be reused by Rdb. When the DBKEY SCOPE is COMMIT Rdb will
not reuse the dbkey of an erased record (to store another record) until the
transaction that erased the original record completes when the user enters
a COMMIT statement. If the user who erased the original record enters a

6–16 RDML Clauses and Statements

DATABASE Statement

ROLLBACK statement, then the dbkey for that record cannot be reused by
Rdb.

The DBKEY SCOPE IS FINISH clause specifies that the dbkey of each
record used is guaranteed not to change until this user detaches from the
database (usually, by issuing a FINISH statement). With the DBKEY
SCOPE IS FINISH clause, an RDML program can complete one or several
transactions and, while still attached to the database, use the dbkey
obtained during a STORE operation to directly access those records.

Note that if you specify DBKEY SCOPE is FINISH and a record you
accessed earlier is erased by another user, you will receive a message to
indicate that that record is no longer available if you attempt to retrieve
that record with the dbkey.

Also, if you specify DBKEY SCOPE IS COMMIT, and you are accessing
records by means of dbkeys that you have stored in a host language
variable, it is possible for you to retrieve a different (new) record than
the record for which you originally saved the dbkey. This occurs when
the original record is erased by another user, you commit the transaction
in which you retrieved the dbkey, start another transaction, and then
attempt to access records with the dbkeys you have stored in host language
variables.

Examples
Example 1

The following programs demonstrate how to specify a compile-time database
and a run-time database as the same database.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

/* perform some action on the database */

COMMIT;
FINISH;
}

RDML Clauses and Statements 6–17

DATABASE Statement

Pascal Program

program db (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

(* perform some actions on the database *)

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate how to specify a database handle along
with naming the DECnet node, device name, directory, and file name for the
compile-time database, and using a host language variable for the run-time
database.

C Program

#include <stdio.h>

char *PRODUCTION_DATABASE;

DATABASE PERS = COMPILETIME FILENAME "DECVAX::DUA1:[DATABASE]PERSONNEL"
RUNTIME FILENAME PRODUCTION_DATABASE;

main ()
{

PRODUCTION_DATABASE = "PERSONNEL";

READY PERS;
START_TRANSACTION READ_ONLY;

/* perform some database actions */

COMMIT;
FINISH;
}

Pascal Program

program db (input,output);

VAR PRODUCTION_DATABASE : VARYING [20] OF CHAR;

DATABASE PERS = COMPILETIME FILENAME ’DECVAX::DUA1:[DATABASE]PERSONNEL’
RUNTIME FILENAME PRODUCTION_DATABASE;

begin

PRODUCTION_DATABASE := ’PERSONNEL’;

6–18 RDML Clauses and Statements

DATABASE Statement

READY PERS;
START_TRANSACTION READ_ONLY;

{* perform some actions on the database *}

COMMIT;
FINISH;
end.

Example 3

The following program fragments demonstrate how to specify a compile-time
database that is global to all modules. Both programs, one using the GLOBAL
database scope and the other using the EXTERNAL database scope, can access
a database.

C Program

/* global declarations file */

DATABASE PERS = [GLOBAL] FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

/* perform some actions on the database */

COMMIT;
FINISH;
}

Pascal Program

program db (input,output);
DATABASE PERS = [EXTERNAL] FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

(* perform some actions on the database *)

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–19

Database Handle Clause

6.4 Database Handle Clause

Rdb uses the database handle to identify the particular database that is
referred to by a database request. The database handle provides context to any
statement that uses it. When your program accesses a single database you do
not have to include database handles or scopes in the DATABASE statement.
Unlike transaction handles and request handles, database handles do not
have to be declared in your programs. The RDML preprocessor automatically
generates the data declaration for the database handle.

Format

db-handle =

host-variable

Argument
host-variable
A valid host language variable name.

Usage Notes
You can use a database handle with the following RDML statements and
clauses to identify a database:

DATABASE

FINISH

READY

Relation clause of the record selection expression

DECLARE_VARIABLE

DEFINE_TYPE

BASED ON clause

START_TRANSACTION statement

6–20 RDML Clauses and Statements

Database Handle Clause

Rdb lets you attach to more than one database at a given time. You use
the database handle to distinguish among the different databases in RDML
statements.

Do not change the value of a database handle after you have declared it in
the database statement; RDML will maintain the handle’s value for you.

By default, the scope of a database handle is GLOBAL.

Rdb/ELN lets separately compiled modules participate in a single
transaction if the scope of a database handle has been declared as
GLOBAL or EXTERNAL and the modules run synchronously. This means
programmers can write code in functional modules without segregating
database access or adding the overhead of multiple attaches to a database.

Rdb/ELN processes that run asynchronously must maintain separate
database handles and attach to the database separately. Rdb/ELN
maintains state information about each process accessing the database.
Two asynchronous processes that share a database handle will overwrite
each other’s state and cause errors.

If you use GLOBAL and EXTERNAL database handles, Digital
recommends that you do not place the two types of database handles
in the same module. Placing the two types in a single module will not
allow your applications to share a single message vector and default
transaction handle, and may return ambiguous results or errors at link
time. Place all GLOBAL database handles in one module to avoid any
ambiguity.

Table 6–2 summarizes how to declare database handles in a precompiled
program.

RDML Clauses and Statements 6–21

Database Handle Clause

Table 6–2 Summary of Database Handle Usage in Preprocessed Programs

Number of
Databases

Number of
Modules

Handle Scope in
Main Module

Handle Scope in
Second Module

Handle Scope
in Additional
Modules

One One Not required Not applicable Not applicable

One Multiple GLOBAL EXTERNAL EXTERNAL

One Multiple EXTERNAL GLOBAL EXTERNAL

Multiple One LOCAL Not applicable Not applicable

Multiple Multiple GLOBAL EXTERNAL EXTERNAL

Multiple Multiple EXTERNAL GLOBAL EXTERNAL

Examples
Example 1

The following programs demonstrate how to declare a database handle, PERS,
for the PERSONNEL database.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME ’PERSONNEL’;

main ()
{
READY PERS;
START_TRANSACTION READ_ONLY;

/* perform some actions on the database */

COMMIT;
FINISH PERS;
}

6–22 RDML Clauses and Statements

Database Handle Clause

Pascal Program

program dbhandle (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

{* perform some actions on the database *}

COMMIT;
FINISH PERS;
end.

Example 2

The following program segments show how to use a database handle in a
READY statement. The segments invoke a database and ready it.

C Program

#include <stdio.h>
DATABASE PERS = COMPILETIME FILENAME "PERSONNEL"

RUNTIME "WORK::DUA1:[RDB.DEMO]PERSONNEL";

main()
{
READY PERS;

.

.

.
}

Pascal Program

program demoprog (input,output);
DATABASE PERS = COMPILETIME FILENAME ’PERSONNEL’

RUNTIME ’WORK::DUA1:[RDB.DEMO]PERSONNEL’;

begin
READY PERS;

.

.

.
end.

RDML Clauses and Statements 6–23

Database Handle Clause

Example 3

The following programs demonstrate the use of the database handle to resolve
possible ambiguities when you invoke more than one database. The programs:

Declare two host language variables, DB1 and DB2, as database handles
for the PERSONNEL and PAYROLL databases respectively

Use DB1 to qualify the outer FOR statement and DB2 to qualify the inner
FOR statement

By matching the employee IDs from the CURRENT_INFO view in each
database, the programs can print salaries stored in the PAYROLL database for
the EMPLOYEES record in the PERSONNEL database.

Because no sample database named PAYROLL is provided with the software,
you cannot run these programs. However, by replacing PAYROLL with
PERSONNEL, you can run the programs to demonstrate the results of using
two database handles.

C Program

#include <stdio.h>
DATABASE DB1 = FILENAME "PERSONNEL";
DATABASE DB2 = FILENAME "WORK$DISK:PAYROLL";

main ()
{
READY DB1, DB2;

START_TRANSACTION READ_ONLY;

FOR CI IN DB1.CURRENT_INFO
printf ("%s %s\n", CI.ID, CI.LAST_NAME);
FOR CI2 IN DB2.CURRENT_INFO WITH CI2.ID = CI.ID

printf ("Actual Year-to-Date Salary = %f\n",
CI2.SALARY);

END_FOR; /* CI2 IN DB2.CURRENT_INFO */
END_FOR; /* CI IN DB1.CURRENT_INFO */

COMMIT;
FINISH;
}

6–24 RDML Clauses and Statements

Database Handle Clause

Pascal Program

program ytd_salary_report (output);
DATABASE DB1 = FILENAME ’PERSONNEL’;
DATABASE DB2 = FILENAME ’WORK$DISK:PAYROLL’;

begin
READY DB1, DB2;

START_TRANSACTION READ_ONLY;

FOR CI IN DB1.CURRENT_INFO
writeln (CI.ID,’ ’, CI.LAST_NAME);
FOR CI2 IN DB2.CURRENT_INFO WITH CI2.ID = CI.ID

writeln (’Actual Year-to-Date Salary = ’,
CI2.SALARY);

END_FOR; (* CI2 IN DB2.CURRENT_INFO *)
END_FOR; (* CI IN DB1.CURRENT_INFO *)

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–25

DECLARE_STREAM Statement

6.5 DECLARE_STREAM Statement

The DECLARE_STREAM statement declares a stream name and associates
that name with a record selection expression. This statement allows you to
place the START_STREAM, FETCH, and END_STREAM statements in any
order within your module, and within separate procedures in the same module.
A stream is limited to a single module.

Format

DECLARE_STREAM
handle-options

declared-stream-name USING rse

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb request. If you do not supply a
request handle explicitly, RDML associates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

6–26 RDML Clauses and Statements

DECLARE_STREAM Statement

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

declared-stream-name
A name you give to the stream you declare. The declared-stream-name must
be a valid host language name.

rse
A record selection expression. A phrase that defines the specific conditions that
individual records must meet before Rdb includes them in a record stream.

Usage Notes
The DECLARE_STREAM statement does not require that the same
number of END_STREAM statements and START_STREAM statements
appear within the same procedure, as long as at execution time exactly
one END_STREAM statement is executed for each START_STREAM
statement. You may find this feature particularly helpful when you are
using host language conditional statements.

The DECLARE_STREAM statement must be used in conjunction with the
declared START_STREAM statement. The DECLARE_STREAM statement
will not work in conjunction with the undeclared START_STREAM
statement, and the reverse is also true.

The DECLARE_STREAM statement must precede any other reference to
the stream that it declares.

The stream name must not conflict with any RDML keywords. See
Table 1–1 for the list of RDML keywords.

Digital recommends that all programs use the DECLARE_STREAM
statement (with the declared START_STREAM statement) in place of the
undeclared START_STREAM statement. The declared START_STREAM
statement provides all the functionality of the undeclared START_
STREAM statement and provides more flexibility in programming than the
undeclared START_STREAM statement.

Any host language variables that appear in the record selection expression
only need to be declared within the program code that contains the
START_STREAM statement declared by the DECLARE_STREAM
statement.

RDML Clauses and Statements 6–27

DECLARE_STREAM Statement

Examples
Example 1

The following programs demonstrate how you can place the START_STREAM,
FETCH, and END_STREAM statements in any order in a module. These
programs are not intended to show good programming style, but rather the
flexibility that the DECLARE_STREAM statement allows in programming.

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_STREAM by_first_name USING
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

DECLARE_STREAM by_last_name USING
E1 IN EMPLOYEES SORTED BY E1.LAST_NAME, E1.FIRST_NAME;

int end_of_stream = FALSE;

close_last()
{
END_STREAM by_last_name;
}

close_first()
{
END_STREAM by_first_name;
}

read_first()
{
FETCH by_first_name;
}

read_last()
{
FETCH by_last_name
AT END

end_of_stream = TRUE;
END_FETCH;
}

6–28 RDML Clauses and Statements

DECLARE_STREAM Statement

open_first()
{
START_STREAM by_first_name;
}

open_last()
{
START_STREAM by_last_name;
}

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;
open_first();
open_last();
/* The streams BY_LAST_NAME and BY_FIRST_NAME will contain the

same number of records. It is only necessary to test
for AT END once. */

end_of_stream = FALSE;

read_last();
read_first();

while (!end_of_stream)
{

/* Alphabetical listing by last name down left column */

printf ("%s%s",E1.LAST_NAME,E1.FIRST_NAME);
printf (" "); /* skip 20 spaces */

/* Alphabetical listing by first name down right column */

printf ("%s%s\n",E2.FIRST_NAME, E2.LAST_NAME);

read_last();

if (!end_of_stream)
{
read_first();
}

}
close_last();
close_first();

COMMIT;
FINISH;
}

RDML Clauses and Statements 6–29

DECLARE_STREAM Statement

Pascal Program

[inherit (’sys$library:starlet.pen’)]

program new_start (input, output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
end_of_stream : BOOLEAN;

DECLARE_STREAM BY_LAST_NAME USING
E1 IN EMPLOYEES SORTED BY E1.LAST_NAME, E1.FIRST_NAME;

DECLARE_STREAM BY_FIRST_NAME USING E2 IN EMPLOYEES SORTED BY
E2.FIRST_NAME, E2.LAST_NAME;

procedure close_last;
begin
END_STREAM BY_LAST_NAME;
end;

procedure close_first;
begin
END_STREAM BY_FIRST_NAME;
end;

procedure read_first;
begin
FETCH BY_FIRST_NAME;
end;

procedure read_last;
begin
FETCH BY_LAST_NAME
AT END

end_of_stream := TRUE;
END_FETCH;
end;

procedure open_first;
begin
START_STREAM by_first_name;
end;

procedure open_last;
begin
START_STREAM by_last_name;
end;

6–30 RDML Clauses and Statements

DECLARE_STREAM Statement

begin
READY PERS;
START_TRANSACTION READ_ONLY;
open_first;
open_last;
(* The streams BY_LAST_NAME and BY_FIRST_NAME will contain the

same number of records. It is only necessary to test
for AT END once. *)

end_of_stream := FALSE;

read_last;
read_first;

while not end_of_stream do
begin

(* Alphabetical listing by last name down left column *)

write (E1.LAST_NAME,E1.FIRST_NAME);
write (’ ’); (* skip 20 spaces *)

(* Alphabetical listing by first name down right column *)

writeln (E2.FIRST_NAME, E2.LAST_NAME);

read_last;

if not end_of_stream then
read_first;

end;

close_last;
close_first;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–31

DECLARE_VARIABLE Clause

6.6 DECLARE_VARIABLE Clause

The DECLARE_VARIABLE clause lets you declare a host language variable
that is compatible with a field associated with a database relation. The
variable inherits the data type and size attributes associated with the field.

Note The DECLARE_VARIABLE and DEFINE_TYPE clauses have exactly the
same function. Digital renamed the clause to clarify that its function is to
declare host language variables, not define host language types. Note that the
DEFINE_TYPE clause can still be used; however, Digital recommends that
all new applications use the DECLARE_VARIABLE clause in place of the
DEFINE_TYPE clause.

Format

DECLARE_VARIABLE host-variable

AS
SAME db-handle .

relation-name . field-name

Arguments
host-variable
A valid host language variable.

db-handle
A database handle. A host language variable used to refer to a specific
database your program uses. The database handle must be the same database
handle specified in the DATABASE statement.

relation-name
The name of a relation in a database.

field-name
The name of a field in a relation.

6–32 RDML Clauses and Statements

DECLARE_VARIABLE Clause

Usage Notes
You should not use the DECLARE_VARIABLE clause to declare program
functions TYPE (in Pascal) or typedef (in C); use the BASED ON clause
instead.

Examples
Example 1

The following example demonstrates the use of the DECLARE_VARIABLE
clause to declare a host language variable that is intended to hold database
values. The programs:

Declare the variable, badge, to have the same data type and size attributes
as the EMPLOYEE_ID field in the EMPLOYEES relation.

Use this variable for interactive processing. Note that the interactive
portion of the programs appears before the READY statement. This keeps
locks on the database to a minimum.

Select the record from the EMPLOYEES relation that has the same value
for EMPLOYEE_ID as is stored in badge.

Modify the status code of this employee.

Note that the C program uses the function read_string to prompt for and
receive a value for badge. For more information and the source code for
read_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main()
{
read_string ("Employee ID: ", badge, sizeof(badge));

READY PERS;
START_TRANSACTION READ_WRITE;

RDML Clauses and Statements 6–33

DECLARE_VARIABLE Clause

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

strcpy(E.STATUS_CODE,"1");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program modify_with_host (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write (’Employee ID: ’);
readln (badge);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

E.STATUS_CODE := ’1’;
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

6–34 RDML Clauses and Statements

DEFINE_TYPE Clause

6.7 DEFINE_TYPE Clause

The DECLARE_VARIABLE and DEFINE_TYPE clauses have exactly the same
function. Digital renamed the clause to clarify that its function is to declare
host language variables, not to define host language types. Note that the
DEFINE_TYPE clause can still be used; however, Digital recommends that
all new applications use the DECLARE_VARIABLE clause in place of the
DEFINE_TYPE clause. Refer to Section 6.6 for more information.

RDML Clauses and Statements 6–35

END_STREAM Statement, Declared

6.8 END_STREAM Statement, Declared

The declared END_STREAM statement ends a declared stream.

Note Digital recommends that all programs use the declared START_STREAM
statement (with the DECLARE_STREAM statement) in place of the un-
declared START_STREAM statement. The declared START_STREAM
statement provides all the functionality of the undeclared START_STREAM
statement and provides more flexibility in programming than the undeclared
START_STREAM statement.

Format

END_STREAM stream-name

on-error

Arguments
stream-name
A valid host language variable. This name must be the same name used in the
associated DECLARE_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statement or both to be performed if an error occurs during the END_STREAM
operation. See Section 6.17 for details.

Usage Notes
You can have more or fewer declared END_STREAM statements than
declared START_STREAM statements in your program, as long as
the structure of the program ensures that exactly one END_STREAM
statement is executed for each START_STREAM statement that is
executed.

6–36 RDML Clauses and Statements

END_STREAM Statement, Declared

You can issue several declared END_STREAM statements in a module,
and as long as you use the same declared stream name in each declared
END_STREAM statement, they will all refer to the same stream.

Examples
Example 1

The following examples demonstrate the use of the declared END_STREAM
clause. The programs:

Declare a stream sal with the DECLARE_STREAM statement that limits
the stream to those records with a value less than $10,000.00 in the
SALARY_AMOUNT field

Start a read/write transaction

Fetch the first record in the stream

Modify that record so that the value in the SALARY_AMOUNT field is
increased by 50 percent

Fetch and modify records in the stream until all the records have been
modified

End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

int end_of_stream;

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

START_STREAM sal;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;

RDML Clauses and Statements 6–37

END_STREAM Statement, Declared

while (! end_of_stream)
{
MODIFY SH USING

SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * (1.5);
END_MODIFY;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;
}

END_STREAM sal;

COMMIT;
FINISH;

}

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
end_of_stream : boolean;

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

START_STREAM sal;

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

while not end_of_stream do
begin

MODIFY SH USING
SH.SALARY_AMOUNT := SH.SALARY_AMOUNT * (1.5);

END_MODIFY;

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

end;

6–38 RDML Clauses and Statements

END_STREAM Statement, Declared

END_STREAM sal;
COMMIT;
FINISH;

end.

RDML Clauses and Statements 6–39

END_STREAM Statement, Undeclared

6.9 END_STREAM Statement, Undeclared

The undeclared END_STREAM statement ends an undeclared stream.

Format

END_STREAM stream-name

on-error

Arguments
stream-name
A valid host language variable. This name must be the same name used in the
associated START_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
END_STREAM operation. See Section 6.17 for details.

Usage Notes
The END_STREAM statement for an undeclared stream must follow the
corresponding START_STREAM statement in the source program.

There must be one and only one END_STREAM statement for every
undeclared START_STREAM statement. If you have fewer END_STREAM
statements than undeclared START_STREAM statements, you will receive
the error message: ‘‘%RDML-W-UNBALSTRM, Undeclared stream ‘‘stream
name’’ has no END_STREAM statement’’.

6–40 RDML Clauses and Statements

END_STREAM Statement, Undeclared

Examples
Example 1

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM CURRENT_INF_STREAM USING
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

printf ("%s makes the largest salary!\n", CI.LAST_NAME);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program record_stream (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM CURRENT_INF_STREAM USING
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

writeln (CI.LAST_NAME, ’ makes the largest salary!’);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–41

ERASE Statement

6.10 ERASE Statement

The ERASE statement deletes a record from a relation or an open stream.

Format

ERASE context-var
on-error

Arguments
context-var
A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Section 4.1 for more
information on context variables.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the ERASE
operation. See Section 6.17 for details.

Usage Notes
Before using the ERASE statement, you must start a read/write
transaction and establish a record stream using a context variable
with a FOR statement or a START_STREAM statement.

Because the effects of erasing some records in one relation and others in a
second can be unpredictable, you should not erase records from views that
refer to more than one relation.

6–42 RDML Clauses and Statements

ERASE Statement

Examples
Example 1

The following programs demonstrate the use of the ERASE statement to delete
records from a relation. The programs:

Start a read/write transaction

Find the records in the COLLEGES relation with the college code ‘‘PURD’’

Delete those records from the COLLEGES relation

Roll back the transaction

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES WITH C.COLLEGE_CODE = "PURD"
ERASE C;

END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program erase_record (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES WITH C.COLLEGE_CODE = ’PURD’
ERASE C;

END_FOR;

ROLLBACK;
FINISH;
end.

RDML Clauses and Statements 6–43

ERASE Statement

Example 2

The following programs demonstrate the use of the ERASE statement to
delete all records with a particular field value from a relation. The programs
delete all the employee records from the JOB_HISTORY relation that have
a department code of ‘‘ELMC.’’ The programs use the ANY statement to find
any records in the JOB_HISTORY relation that have the value ‘‘ELMC’’ in
the DEPARTMENT_CODE field. If there is no record with this value, the
programs print the message ‘‘There are no employees in department ELMC.’’ If
at least one record has this value then the programs:

Use the COUNT function to compute the number of records with this value

Print this computed value

Use the FIRST statement to find the first record in the DEPARTMENTS
relation with the value ‘‘ELMC’’ to determine the department name
associated with this department code

Print this department name

Use a FOR statement to find all the records in the JOB_HISTORY relation
with the job code ‘‘ELMC’’

Print a message noting the employee ID of the employee about to be
deleted from the relation

Use the ERASE statement to delete the employees from the relation

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

int who;
int num;

main()

{
READY PERS;
START_TRANSACTION READ_WRITE;

GET
who = ANY JH IN JOB_HISTORY

WITH JH.DEPARTMENT_CODE = "ELMC";
END_GET;

6–44 RDML Clauses and Statements

ERASE Statement

if (who)
{
GET

num = COUNT OF JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = "ELMC";

END_GET;

printf ("Deleting %d", num);
printf (" employees in ");
printf ("%s\n\n", FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = "ELMC");

FOR JH IN JOB_HISTORY WITH JH.DEPARTMENT_CODE = "ELMC"
printf ("Deleting %s\n", JH.EMPLOYEE_ID);
ERASE JH;

END_FOR; /* JH IN JOB_HISTORY*/
}

else
printf ("There are no employees in department ELMC");

ROLLBACK;
FINISH;
}

Pascal Program

program delete_all (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
who : boolean;
num : integer;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

GET
who = ANY JH IN JOB_HISTORY

WITH JH.DEPARTMENT_CODE = ’ELMC’;
END_GET;

if (who) then
begin
GET

num = COUNT OF JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = ’ELMC’;

END_GET;

write (’ Deleting’,num,’ employees in ’);
writeln (FIRST D.DEPARTMENT_NAME FROM D IN DEPARTMENTS

WITH D.DEPARTMENT_CODE = ’ELMC’);
writeln;

RDML Clauses and Statements 6–45

ERASE Statement

FOR JH IN JOB_HISTORY WITH JH.DEPARTMENT_CODE = ’ELMC’
writeln (’Deleting ’, JH.EMPLOYEE_ID);
ERASE JH;

END_FOR; (* JH IN JOB_HISTORY*)
end

else
writeln (’There are no employees in department ELMC’);

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the ERASE statement
to remove a specific employee’s records from multiple relations. The
programs remove an existing employee’s EMPLOYEE, JOB_HISTORY,
and SALARY_HISTORY records from the database. If the employee has any
DEGREE records, the DEGREE records are also removed. After prompting
the user for the employee’s ID, the program locates the records that contain
that ID number and uses the ERASE statement to delete the records. The
FOR loop ensures that all the records with that ID in the specified relation are
deleted.

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0
DATABASE PERS = FILENAME ’PERSONNEL’;

int employee_found;
extern void read_string();

DECLARE_VARIABLE id SAME AS EMPLOYEES.EMPLOYEE_ID;
DECLARE_STREAM emp_stream USING E IN EMPLOYEES WITH E.EMPLOYEE_ID = id;

main()
{
employee_found = FALSE;
read_string("Enter ID of employee to be deleted from database: ",

id, sizeof(id));

READY PERS;
START_TRANSACTION READ_WRITE RESERVING

EMPLOYEES FOR SHARED WRITE,
DEGREES FOR SHARED WRITE,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE;

6–46 RDML Clauses and Statements

ERASE Statement

FOR E2 IN EMPLOYEES WITH E2.EMPLOYEE_ID = id
employee_found = TRUE;
if (employee_found)

{
FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = id

printf ("\n Deleting employee’s job history record(s)");
ERASE JH;

END_FOR;

FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = id
printf ("\n Deleting employee’s salary history record(s)");
ERASE SH;

END_FOR;

if (ANY D IN DEGREES WITH D.EMPLOYEE_ID = id)
{

FOR D IN DEGREES WITH D.EMPLOYEE_ID = id
ERASE D;
printf ("\n Deleting employee’s degree record(s)");

END_FOR
}

else
{

printf ("\n Employee with ID %s has no DEGREE record.", id);
printf ("\n Continuing transaction.");

}
printf ("\n Employee %s %s deleted from database.",

E.FIRST_NAME,E.LAST_NAME);

ERASE E2;
}

END_FOR;

if (! employee_found)
{

ROLLBACK;
printf ("Employee not found with ID = %s", id);

}
else

{
COMMIT;
printf("Employee with ID %s deleted from database.", id);
}

FINISH;
}

Pascal Program

program remove_emp (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE id SAME AS EMPLOYEES.EMPLOYEE_ID;
DECLARE_STREAM EMP_STREAM USING E IN EMPLOYEES WITH E.EMPLOYEE_ID = id;
emp_found : boolean;

RDML Clauses and Statements 6–47

ERASE Statement

Begin
emp_found := FALSE;

write (’Enter ID of employee to be deleted from database: ’);
readln (id);

READY PERS;
START_TRANSACTION READ_WRITE RESERVING

EMPLOYEES FOR SHARED WRITE,
DEGREES FOR SHARED WRITE,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE;

FOR E2 IN EMPLOYEES WITH E2.EMPLOYEE_ID = id
emp_found := true;

if emp_found = true
then

begin
FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = id

writeln (’Deleting employee’’s job history record(s)’);
ERASE JH;

END_FOR;

FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = id
writeln (’Deleting employee’’s salary history record(s)’);
ERASE SH;

END_FOR;

if (ANY D IN DEGREES WITH D.EMPLOYEE_ID = id) then
FOR D IN DEGREES WITH D.EMPLOYEE_ID = id

ERASE D;
writeln (’Deleting employee’’s degree record(s)’);

END_FOR
else

begin
writeln (’Employee with ID ’,id, ’ has no DEGREE record.’);
writeln (’Continuing transaction.’);

end;

ERASE E2;
end;

END_FOR;

if emp_found = false
then

begin
writeln (’Employee not found with ID = ’,id);
ROLLBACK;

end
else

begin
COMMIT;
writeln (’Employee with ID’, id, ’deleted from database.’);

end;

FINISH;
end.

6–48 RDML Clauses and Statements

FETCH Statement

6.11 FETCH Statement

The FETCH statement retrieves the next record from a record stream. The
FETCH statement is used:

With an undeclared START_STREAM statement

After the START_STREAM statement

Before any other RDML statements that affect the context established
by the START_STREAM statement

With a declared START_STREAM statement

After the DECLARE_STREAM statement

Either before or after the declared START_STREAM statement as long
as it is executed after the declared START_STREAM statement has
executed. (The FETCH statement may physically appear in the source
file before or after the declared START_STREAM statement, but must
be executed after the declared START_STREAM statement.)

The FETCH statement advances the pointer for a record stream to the next
record of a relation. Unlike the FOR statement, which advances to the next
record automatically, the FETCH statement allows you explicit control of the
record stream. For instance, you might use the FETCH statement to print a
report where the first six rows have five columns, and the seventh row only
three. Note that the FETCH statement syntax is the same when used in either
a declared or undeclared stream.

Format
FETCH stream-name

on-error

AT END statement END_FETCH

END_FETCH

RDML Clauses and Statements 6–49

FETCH Statement

Arguments
stream-name
The stream from which you want to FETCH the next record.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FETCH
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed when your
program reaches the end of a record stream. Use a semicolon (;) at the end of
each RDML, Pascal, or C statement.

Usage Notes
Once you establish and open a stream with the START_STREAM
statement, use the FETCH statement to establish the first record in the
record stream as the current record. After that, each FETCH statement
makes the next record in the stream the current record.

The FETCH statement only advances the pointer in a record stream. You
must use other data manipulation statements to manipulate each record
in the stream. For example, you might use FETCH to advance the pointer,
and the GET statement to assign values from that record to host language
variables.

Your program can use either FOR statements or START_STREAM
statements to establish record streams. Furthermore, you can use both
methods in one program. However, you cannot use the FETCH statement
to advance the pointer in a record stream established by a FOR statement.
The FOR statement advances to the next record automatically.

You must always use a FETCH statement before a MODIFY or an ERASE
statement if you want to modify or erase a record in a stream created by
the START_STREAM statement. The START_STREAM statement does
not retrieve the first record in a stream automatically.

The AT END clause allows you to include statements to be executed when
there are no more records in a record stream. For example, if you embed
the FETCH statement in a host language loop structure, you probably
want your program to stop looping when there are no more records in the

6–50 RDML Clauses and Statements

FETCH Statement

stream. You can set the conditions for terminating the loop based on a flag
that is set by the AT END clause. For example, in pseudo code:

while flag = true
FETCH stream_name

AT END
flag = false;

END_FETCH;
end while_loop

Examples
Example 1

The following examples demonstrate the use of the FETCH statement. The
programs:

With the DECLARE_STREAM statement, declare a stream sal that limits
the stream to those records with a value less than ten thousand in the
SALARY_AMOUNT field

Start a read/write transaction

Fetch the first record in the stream

Modify that record so that the value in the SALARY_AMOUNT field is
increased by fifty percent

Fetch and modify records in the stream until all the records have been
modified

End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

int end_of_stream;

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

RDML Clauses and Statements 6–51

FETCH Statement

START_STREAM sal;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;

while (! end_of_stream)
{
MODIFY SH USING

SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * (1.5);
END_MODIFY;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;
}

END_STREAM sal;

COMMIT;
FINISH;

}

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
end_of_stream : boolean;

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

START_STREAM sal;

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

while not end_of_stream do
begin

MODIFY SH USING
SH.SALARY_AMOUNT := SH.SALARY_AMOUNT * (1.5);

END_MODIFY;

6–52 RDML Clauses and Statements

FETCH Statement

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

end;

END_STREAM sal;
COMMIT;
FINISH;

end.

RDML Clauses and Statements 6–53

FINISH Statement

6.12 FINISH Statement

The FINISH statement explicitly detaches from a database. By default,
FINISH, with no parameters, also commits all transactions that have not
been committed or rolled back.

Format

FINISH
db-handle on-error

,

Arguments
db-handle
A host language variable that identifies the database to be closed. Use
the database handle you associated with the database in the DATABASE
statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FINISH
operation. See Section 6.17 for details.

Usage Notes
By default, an unqualified FINISH statement (no specified database
handle) automatically closes all databases known to the module, commits
the default transaction and re-initializes all RDML-specified handles
(database, transaction, and request handles) to zero.

Digital recommends that you use the /NODEFAULT_TRANSACTIONS
qualifier when you preprocess your program. When you use the
/NODEFAULT_TRANSACTIONS qualifier, you reduce the overhead
associated with the work that RDML must do to check the state of the
database (for example, if the program has attached to the database, if a
transaction has started, or if a transaction has ended). When you use the
/NODEFAULT_TRANSACTIONS qualifier, you must explicitly attach to
the database with a READY statement, and explicitly start a transaction

6–54 RDML Clauses and Statements

FINISH Statement

with the START_TRANSACTION statement. The /NODEFAULT_
TRANSACTIONS qualifier will not affect the re-initialization of RDML-
specified handles.

If you specify the /NODEFAULT_TRANSACTIONS qualifier and you
use a FINISH statement without first committing or rolling back your
transaction, Rdb returns an error. If you are using Rdb/VMS, refer to
the VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML for more
information on the /NODEFAULT_TRANSACTIONS qualifier. Refer to the
Rdb/ELN documentation set if you are using Rdb/ELN.

A FINISH statement will never initialize user-supplied handles to zero a
second time.

If you do not use the /NODEFAULT_TRANSACTIONS qualifier and
you issue a FINISH statement without specifying a database handle, it
will cause your program to detach from all the databases invoked in the
module.

Once a database is opened, the program must enter a FINISH statement
before the program ends or exits. A database is considered open if the
program has issued a READY statement (or if you do not specify the
/NODEFAULT_TRANSACTIONS qualifier and the program has issued a
START_TRANSACTION statement, or the database has been referred to
in another RDML statement). Whether you access a single database or
multiple databases, this means you must execute a FINISH statement just
prior to exiting your program. You can use one FINISH statement for all
databases, or you can use a single FINISH statement for each database by
using database handles.

For the best performance, attach to a database once and finish it once
within a program. Attaching to a database several times within your
application program degrades performance.

Close the database before you exit your program to avoid an error.

Examples
Example 1

The following programs:

Declare a database

Enter an RDML FOR loop, implicitly attaching to the database

Print the last name of each employee in the EMPLOYEES relation

RDML Clauses and Statements 6–55

FINISH Statement

Commit the transaction

Close the database

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
FOR E IN EMPLOYEES

printf ("%s\n", E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program empupdate (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
FOR E IN EMPLOYEES

writeln (E.LAST_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following program fragments:

Declare two databases, CUSTORDER and PARTSBOM

Assign database handles to each

Open both databases with the READY statement

Perform some action (indicated by vertical ellipsis)

Finish both databases

Between the second READY statement and the first FINISH statement, you
can access both databases at once.

6–56 RDML Clauses and Statements

FINISH Statement

C Program

#include <stdio.h>
DATABASE ORDER_DB = FILENAME "WORK$DISK:CUSTORDER";
DATABASE PARTS_DB = FILENAME "WORK$DISK:PARTSBOM";

main()
{
READY ORDER_DB;

.

.

.
READY PARTS_DB;

.

.

.
FINISH ORDER_DB;

.

.

.
FINISH PARTS_DB;
}

Pascal Program

program declare_two_db;
DATABASE ORDER_DB = FILENAME ’WORK$DISK:CUSTORDER’;
DATABASE PARTS_DB = FILENAME ’WORK$DISK:PARTSBOM’;

begin
READY ORDER_DB;

.

.

.
READY PARTS_DB;

.

.

.
FINISH ORDER_DB;

.

.

.
FINISH PARTS_DB;
end.

RDML Clauses and Statements 6–57

FOR Statement

6.13 FOR Statement

The FOR statement executes a statement or group of statements once for each
record in a record stream formed by a record selection expression. You can nest
FOR statements within other FOR statements.

You can use either FOR statements or START_STREAM statements to
establish record streams in your program. Furthermore, you can use both
methods in one program. However, you cannot use the FETCH statement to
advance the pointer in a record stream established by a FOR statement. The
FOR statement automatically advances to the next record for each iteration.

Format
FOR

handle-options

rse statement END_FOR
on-error

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

6–58 RDML Clauses and Statements

FOR Statement

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

rse
A record selection expression. A phrase that defines specific conditions that
individual records must meet before Rdb includes them in the record stream.
See Chapter 4 for more information.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FOR
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed within the FOR
loop. Use a semicolon (;) at the end of each RDML, Pascal, or C statement.

Usage Notes
You can use nested FOR loops to form outer joins. In a common type of
join, such as an equijoin, certain values in a field from one relation are
matched with those in another relation. Values that do not match are not
included in the join. An outer join also establishes relationships between
data items by matching fields, but it includes the unmatched values by
adding them to the result of the equijoin.

To accomplish an outer join, you must include the MISSING clause in the
record selection expression so the unmatched values are added at the end
of the join.

For best results, do not use nested FOR loops unless you are referring to
more than one database, or performing outer joins.

You can use a context variable from a FOR statement again, as soon as you
end the FOR loop with the END_FOR statement.

RDML Clauses and Statements 6–59

FOR Statement

Examples
Example 1

The following programs demonstrate the use of the FOR statement to create a
record stream. The programs:

Declare a host language variable dept_code

Prompt for a value for dept_code

Start a read-only transaction

Create a record stream defined by a record selection expression that uses
the value of dept_code

Display the department name for each record in that stream

The C program uses the function read_string to prompt for and receive a value
for dept_code. For more information and the source code for read_string, see
Appendix B. The Pascal writeln and readln functions serve a similar function.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string ();
DECLARE_VARIABLE dept_code SAME AS DEPARTMENTS.DEPARTMENT_CODE;

main ()
{
read_string ("Department Code: ",dept_code, sizeof(dept_code));

READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEPARTMENTS
WITH D.DEPARTMENT_CODE = dept_code

printf ("Department name = %s\n ", D.DEPARTMENT_NAME);
END_FOR;

COMMIT;
FINISH;
}

6–60 RDML Clauses and Statements

FOR Statement

Pascal Program

program for_in_rse (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE dept_code SAME AS DEPARTMENTS.DEPARTMENT_CODE;

begin
write (’Department Code: ’);
readln (dept_code);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR D IN DEPARTMENTS
WITH D.DEPARTMENT_CODE = dept_code

writeln (’Department name = ’, D.DEPARTMENT_NAME);
END_FOR;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the FOR statement to create a
record stream. The programs:

Declare a host language variable, dept_name, to be the same as
CURRENT_INFO.DEPARTMENT using the DECLARE_VARIABLE
clause

Start a read-only transaction

Prompt for a value for dept_name

Create a record stream that consists of two passes of the CURRENT_INFO
view

Find the employee with the highest salary

Print the salary and department name of that employee, and then the
employee’s last name

RDML Clauses and Statements 6–61

FOR Statement

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
DECLARE_VARIABLE dept_name SAME AS CURRENT_INFO.DEPARTMENT;

main()
{
read_string("Department Name: ", dept_name, sizeof(dept_name));

READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI1 IN CURRENT_INFO
WITH CI1.DEPARTMENT = dept_name
AND CI1.SALARY = (MAX CI2.SALARY OF CI2 IN CURRENT_INFO

WITH CI2.DEPARTMENT = dept_name)
printf ("The biggest salary in department %s", dept_name);
printf (" is $%f\n", CI1.SALARY);
printf ("The rich employee is %s", CI1.LAST_NAME);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program for_in_rse (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE dept_name SAME AS CURRENT_INFO.DEPARTMENT;

begin
write (’Department Name: ’);
readln (dept_name);

READY PERS;
START_TRANSACTION READ_ONLY;

FOR CI1 IN CURRENT_INFO
WITH CI1.DEPARTMENT = dept_name
AND CI1.SALARY = (MAX CI2.SALARY OF CI2 IN CURRENT_INFO

WITH CI2.DEPARTMENT = dept_name)
writeln (’The biggest salary in department ’,

dept_name, ’ is $’, CI1.SALARY : 10 : 2);
writeln (’The rich employee is ’, CI1.LAST_NAME);

END_FOR; {CI1 IN EMPLOYEES}

6–62 RDML Clauses and Statements

FOR Statement

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the FOR statement. The
programs:

Sort the EMPLOYEES relation by last name (ascending order)

Find and print information on all employees with degrees

Use the NOT ANY clause to find those employees with a record stored in
the DEGREES relation, but with no value stored in the degree_field

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

printf ("%s %s\n", E.LAST_NAME, E.FIRST_NAME);
printf ("%s %s\n\n", D.DEGREE, D.DEGREE_FIELD);

END_FOR;

FOR FIRST 1 D IN DEGREES
WITH NOT ANY D1 IN DEGREES
WITH D1.EMPLOYEE_ID = E.EMPLOYEE_ID

printf ("%s %s", E.LAST_NAME, E.FIRST_NAME);
printf ("no degree stored %s", RDB$MISSING(D.DEGREE_FIELD));

END_FOR;
END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program outer_join (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

RDML Clauses and Statements 6–63

FOR Statement

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.LAST_NAME, ’ ’, E.FIRST_NAME);
writeln (D.DEGREE, ’ ’, D.DEGREE_FIELD);
writeln;

END_FOR;

FOR FIRST 1 D IN DEGREES
WITH NOT ANY D1 IN DEGREES
WITH D1.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (E.LAST_NAME, ’ ’, E.FIRST_NAME);
writeln (’no degree stored’, ’ ’, RDB$MISSING(D.DEGREE_FIELD));

END_FOR;
END_FOR;

ROLLBACK;
FINISH;
end.

Example 4

The following programs demonstrate the use of the FOR statement and host
language print statements to print a data type of varying text.

The C program:

Declares a host language variable, candidate_status, to hold the value of
the varying text field.

Uses the macro, RDB$VARYING_TO_CSTRING, to copy the data from
the database and store it in candidate_status. This macro is in the
RDMLVAXC.H file, which is automatically included (#include) into your
program by RDML.

Prints the value for candidate_status.

The Pascal program requires no special macro to perform this operation.
Pascal supports varying strings as a native data type.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
char candidate_status[255];

READY PERS;
START_TRANSACTION READ_ONLY;

6–64 RDML Clauses and Statements

FOR Statement

FOR C IN CANDIDATES
printf("%s %s %s\n", C.FIRST_NAME, C.MIDDLE_INITIAL, C.LAST_NAME);
RDB$VARYING_TO_CSTRING(C.CANDIDATE_STATUS,candidate_status);
printf("%s\n\n", candidate_status);

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program varying_text (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

FOR C IN CANDIDATES
writeln (C.FIRST_NAME, C.MIDDLE_INITIAL, C.LAST_NAME);
writeln (C.CANDIDATE_STATUS);
writeln;

END_FOR;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–65

FOR Segmented String Statement

6.14 FOR Segmented String Statement

The FOR segmented string statement forms a stream of segments from a
segmented string field. A single segmented string field value is made up of
multiple segments. To retrieve this value you must form a record stream
that first retrieves the record that contains the segmented string field, and
then form a stream of segments themselves. Thus, the process of retrieving
a segmented string field involves retrieving the record that contains the
segmented string field with either a FOR or START_STREAM statement, then
retrieving the individual segments with a FOR statement with segmented
strings. The first stream (formed by the FOR or START_STREAM statement)
retrieves the records that contain the segmented string. The second stream
(formed by the FOR statement with segmented strings) retrieves the individual
segments that compose the segmented string field.

Format

FOR ss-handle IN ss-field
on-error

statement END_FOR

Arguments
ss-handle
A segmented string handle. A name that identifies the segmented string.

ss-field
A qualified field name that refers to a field defined with the SEGMENTED
STRING data type. Note that this field name, like all field names in a FOR
statement, must be qualified by its own context variable. This second context
variable must match the variable declared in the outer FOR statement. See
the Examples section.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the FOR
operation. See Section 6.17 for details.

6–66 RDML Clauses and Statements

FOR Segmented String Statement

assignment
Associates the two database variables with a value expression.

The database variables refer to the segment of a segmented string and
its length. The special name for the segment can be either ‘‘VALUE’’ or
‘‘RDB$VALUE.’’ The special name for the segment length can be either
‘‘LENGTH’’ or ‘‘RDB$LENGTH.’’ You cannot assign any other database
variables to the value expressions for segmented strings.

The assignment operator for RDML Pascal is ‘‘:=’’.

.

.

.
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
.
.
.

The assignment operator for RDML C is ‘‘=’’ or in this case the strcpy function.

.

.

.
for (line = 0; line <= 2; line++)

STORE LINE IN R.RESUME
strcpy(LINE.VALUE,document[line]);
LINE.LENGTH = strlen(LINE.VALUE);

END_STORE;
.
.
.

For more information, see the segmented string examples in this section and
the value expression examples in Chapter 2.

RDML Clauses and Statements 6–67

FOR Segmented String Statement

Usage Notes
The FOR statement with segmented strings must be embedded within a
simple FOR . . . END_FOR block.

Do not declare the host language variable to hold a segmented string field
with the DECLARE_VARIABLE clause. The data type generated for a
segmented string field is that of the segmented string identifier, which is
the value that actually is stored in a segmented string field. For example,
the following Pascal code might be used to store a RESUME field in the
RESUMES relation. You should not declare the host language variable
document with the DECLARE_VARIABLE clause.

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
FOR SEG IN R.RESUME

writeln (SEG)
END_FOR;

END_FOR;

You cannot modify a subset of the strings contained in a segmented string
field. You must replace the entire segmented string field. See Section 6.16,
Example 3, for an example of modifying a record that contains a segmented
string field.

RDML defines a special name to refer to the segments of a segmented
string. This value expression is equivalent to a field name; it names the
‘‘fields’’ or segments of the string. Furthermore, because segments can
vary in length, RDML also defines a name for the length of a segment.
You must use these value expressions to retrieve the length and value of a
segment. These names are:

RDB$VALUE or VALUE

The value stored in a segment of a segmented string

RDB$LENGTH or LENGTH

The length in bytes of a segment

6–68 RDML Clauses and Statements

FOR Segmented String Statement

Examples
Example 1

The following programs demonstrate the use of the FOR statement to
retrieve segmented strings. Because the PERSONNEL database does not
have any segmented strings stored, the programs first store three strings
in the RESUME field of the RESUMES relation (see Section 6.26 for more
information on storing segmented strings). The programs retrieve the
segmented string using a nested FOR statement. The outer FOR statement
selects a record based on the EMPLOYEE_ID field. The inner FOR statement
prints each segmented string stored in the RESUME field for the selected
employee.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
int line;
char *document[3];

document[0] = "first line of resume ";
document[1] = "second line of resume ";
document[2] = "last line of resume ";

READY PERS;
START_TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE_ID,"12345");
for (line = 0; line <= 2; line++)

STORE SEG IN R.RESUME
strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = "12345"
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

RDML Clauses and Statements 6–69

FOR Segmented String Statement

Pascal Program

program segstr (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

type lines = varying [80] of char;
var linecnt : integer;

document : array [0..2] of lines;

begin

document[0] := ’first line of resume ’;
document[1] := ’second line of resume ’;
document[2] := ’last line of resume ’;

READY PERS;
START_TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
R.EMPLOYEE_ID:= ’12345’;
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
FOR SEG IN R.RESUME

writeln (SEG);
END_FOR;

END_FOR;

COMMIT;
FINISH;
end.

6–70 RDML Clauses and Statements

GET Statement

6.15 GET Statement

The GET statement assigns values to host language variables in RDML
programs.

Format

get-statement =

GET get-item END_GET
on-error ;

get-item =

host-var = value-expr
record-descr = context-var.*
host-var = statistical-expr

Arguments
get-item
The get-item clause includes an equal sign (=), a host language variable on
the right-hand side of the equal sign, and a database value on the left-hand
side of the equal sign. The database value derived from a value expression or
statistical expression is assigned to the host language variable.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the GET
operation. See Section 6.17 for details.

record-descr
A valid host language record structure that contains an entry for each field
in the relation. Each field of the record structure must match exactly the
field names and data types of the fields in the Rdb relation referred to by the
context variable. In C, the field names must be in lowercase type.

RDML Clauses and Statements 6–71

GET Statement

context-var
A context variable. A temporary name that you associate with a relation.
You define a context variable in a relation clause. See Section 4.1 for more
information.

host-var
A valid variable name declared in the host language program.

statistical-expr
A statistical expression. It calculates values based on a value expression for
every record in the record stream.

Usage Notes
You can use the GET statement in four different ways:

When you specify a record stream with the FOR or START_STREAM
statement, you can use the GET statement to assign values from the
current record in the stream to host language variables in your program.
With the START_STREAM statement, you also need a FETCH statement
to establish the current record in the stream.

You can use the GET statement within a STORE operation to retrieve
the values of the record currently being stored. This includes the use of
GET . . . RDB$DB_KEY in a STORE . . . END_STORE block to retrieve
the database key (dbkey) of a record just stored. If you use a GET
statement in a STORE . . . END_STORE block, the GET statement must
be the last statement before the END_STORE statement.

You can use the GET statement alone, without a FOR, FETCH, or STORE
statement, to retrieve the result of a statistical, conditional, or Boolean
expression. The record stream is formed by the record selection expression
within the statistical or conditional expression.

You can use the GET * format of the GET statement to retrieve an entire
record rather than just a field from a record. When you use the GET *
statement you must first declare a record structure that contains all the
fields in the relation. The host language record field names must match
the database field names exactly. See Example 3.

6–72 RDML Clauses and Statements

GET Statement

Examples
Example 1

The following programs demonstrate the use of the GET statement with a
statistical function. The examples store the value of the statistical function in
the host language variable, maxi, then print this value.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
maxi = MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

printf ("%f",maxi);
COMMIT;
FINISH;
}

Pascal Program

program max_function (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE maxi SAME AS PERS.CURRENT_INFO.SALARY;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

GET
maxi = MAX CI.SALARY OF CI IN CURRENT_INFO;

END_GET;

writeln (maxi:10:2);

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–73

GET Statement

Example 2

The following programs demonstrate the use of the GET statement with a
conditional expression. The examples use the ANY conditional expression to
find if any records in the SALARY_HISTORY relation have an amount greater
than $50,000.00 in the SALARY_AMOUNT field. The GET statement places
the result of the ANY expression in the host language variable, who. If a value
over $50,000.00 is found, the programs display the message ‘‘Someone is not
underpaid.’’

C Program

#include <stdio.h>

DATABASE PERS = FILENAME "PERSONNEL";

int who;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

GET
who = ANY SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT > 50000.00;

END_GET;

if (who)
printf ("Someone is not underpaid \n");

COMMIT;
FINISH;
}

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

who : boolean;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

GET
who = ANY SH IN SALARY_HISTORY WITH SH.SALARY_AMOUNT > 50000.00;

END_GET;

if (who) then
writeln (’Someone is not underpaid.’);

6–74 RDML Clauses and Statements

GET Statement

COMMIT;
FINISH;
end.

Example 3

The following programs demonstrate the use of the GET * statement to retrieve
all the fields of a record. The examples declare a host language structure to
hold each field for the COLLEGES relation. The programs then use the FIRST
clause to find the first record in the COLLEGES relation with a college code
of HVDU. The GET * statement places the field values of this record in the
host language record structure. The programs then print the field values of the
retrieved record.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

static struct
{
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;
} colleges_record;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

FOR FIRST 1 C IN COLLEGES
WITH C.COLLEGE_CODE = "HVDU"
GET

colleges_record = C.*;
END_GET;

END_FOR;

printf ("%s %s\n %s %s\n %s\n", colleges_record.college_code,
colleges_record.college_name,
colleges_record.city,
colleges_record.state,
colleges_record.postal_code);

COMMIT;
FINISH;
}

RDML Clauses and Statements 6–75

GET Statement

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
colleges_record:
RECORD
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;

end;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR FIRST 1 C IN COLLEGES
WITH C.COLLEGE_CODE = ’HVDU’
GET

colleges_record = C.*
END_GET;

END_FOR;

writeln (colleges_record.college_code,’ ’,
colleges_record.college_name);

writeln (colleges_record.city, ’ ’,
colleges_record.state);

writeln (colleges_record.postal_code);

COMMIT;
FINISH;
end.

6–76 RDML Clauses and Statements

MODIFY Statement

6.16 MODIFY Statement

The MODIFY statement changes the value in a field in one or more records
from a relation in an open stream.

Format

MODIFY context-var USING
on-error

statement END_MODIFY

context-var.* = record-descr

Arguments
context-var
A context variable. A temporary name that you associate with a relation.
Define the context variable in the relation clause of the FOR or START_
STREAM statement. See Section 4.1 for more information.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the MODIFY
operation. See Section 6.17 for details.

statement
Any valid RDML or host language statement to be executed within the
MODIFY operation. Use a semicolon (;) at the end of each RDML, Pascal, or
C statement.

context-var.*
A context variable declared in the relation clause of the FOR or START_
STREAM statement. The MODIFY statement must appear after the FOR
or START_STREAM statement and before the END_FOR or END_STREAM

RDML Clauses and Statements 6–77

MODIFY Statement

statement. The asterisk wildcard character (*) allows you to modify an entire
record by assigning a record descriptor to the context-var* construct.

record-descr
A valid host language record descriptor that matches all the fields of the
relation. Each field of the record descriptor must match exactly the field names
and data types of the fields in the Rdb/VMS relation referred to by the context
variable. Use a semicolon (;) at the end of the record descriptor.

Usage Notes
Before using the MODIFY statement, you must start a read/write
transaction and establish a record stream with a FOR statement or a
START_STREAM statement.

The context variable you refer to in a MODIFY statement must be the
same as that defined in the FOR or START_STREAM statement.

You can modify fields in only one record at a time.

You can modify a record that contains a segmented string field, but you
cannot not modify selected segments from the segmented string. You must
use a STORE statement with segmented strings to change the segment
contents. Example 3 demonstrates how to modify a record that contains a
segmented string field.

Because the effects of modifying some records in one relation and others in
a second relation can be unpredictable, you should not modify records from
views that refer to more than one relation.

You can use the MODIFY * statement to modify all the fields in a relation.
To use MODIFY *, you must first declare a host language record structure
with field names that match the database field names exactly. Then
put the field values that you want to replace into the host language
record fields and modify the entire database record using the MODIFY *
statement. See Example 4.

6–78 RDML Clauses and Statements

MODIFY Statement

Examples
Example 1

The following programs demonstrate the use of the MODIFY statement with a
host language variable. The programs:

Declare a host language variable, badge, same as
EMPLOYEES.EMPLOYEE_ID

Prompt for a value for badge

Prompt for a new status code

Change the status code for the employee with the specified badge

The C program uses the function read_string to prompt for and receive a
value for badge. For more information and the source code for read_string, see
Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

main()
{
read_string ("Employee ID: ", badge, sizeof(badge));

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

strcpy(E.STATUS_CODE,"1");
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
}

RDML Clauses and Statements 6–79

MODIFY Statement

Pascal Program

program modify_with_host (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write (’Employee ID: ’);
readln (badge);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = badge
MODIFY E USING

E.STATUS_CODE := ’1’;
END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the MODIFY statement to
assign a new value to a field in a record stream. The programs create a record
stream that consists of all the records in the JOB_HISTORY field with a
department code of ‘‘MBMN’’. The MODIFY statement changes the value for
SUPERVISOR_ID to ‘‘00167’’ for all the records in the record stream. Note
that the C program uses the function pad_string to append trailing blanks and
the null terminator to the employee ID. This ensures that the employee ID
matches the length defined for the field. For more information and the source
code for pad_string, see Appendix B. The writeln function in Pascal pads the
employee ID for you.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

6–80 RDML Clauses and Statements

MODIFY Statement

FOR JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = "MBMN"

MODIFY JH USING
pad_string ("00167", JH.SUPERVISOR_ID, sizeof(JH.SUPERVISOR_ID));

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
}

Pascal Program

program modify_field (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

FOR JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = ’MBMN’

MODIFY JH USING
JH.SUPERVISOR_ID := ’00167’;

END_MODIFY;
END_FOR;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the MODIFY statement to
modify a record that contains a segmented string field. The programs:

Store a resume for employee 00164.

Print out this resume.

Commit the transaction.

Begin a second transaction.

Modify the resume field by embedding a STORE statement within a
MODIFY statement. This operation deletes the segmented string handle
associated with the old resume and replaces it with a new segmented
string handle.

Print the new resume.

Commit the transaction.

RDML Clauses and Statements 6–81

MODIFY Statement

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{

int line;
char *document[3];

document[0] = "first line of resume ";
document[1] = "second line of resume ";
document[2] = "last line of resume ";

READY PERS;
START_TRANSACTION READ_WRITE;

/* Store a resume for employee 00164 */

printf("Storing resume entry for employee 00164\n");

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE_ID,"00164");
for (line = 0; line <= 2; line++)

STORE SEG IN R.RESUME
strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_STORE;

/* Read it back */

printf("Resume entry contains:\n");

FOR R IN RESUMES WITH R.EMPLOYEE_ID = "00164"
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;

/* Now modify it */

document[0] = "new first line of resume ";
document[1] = "new second line of resume ";
document[2] = "new last line of resume ";

START_TRANSACTION READ_WRITE;

printf("Modifying resume entry\n");

6–82 RDML Clauses and Statements

MODIFY Statement

FOR R IN RESUMES WITH R.EMPLOYEE_ID = "00164"
MODIFY R USING

for (line = 0; line <= 2; line++)
STORE SEG IN R.RESUME

strcpy(SEG.VALUE,document[line]);
SEG.LENGTH = strlen(SEG.VALUE);

END_STORE;
END_MODIFY;

END_FOR;

/* Read it back */

printf("Resume entry contains:\n");

FOR R IN RESUMES WITH R.EMPLOYEE_ID = "00164"
FOR SEG IN R.RESUME

printf("%s\n",SEG.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program modseg (input, output);

DATABASE FILENAME ’PERSONNEL’;

const
MAXCHARS = 80;
MAXsegs = 3;

type
LINERANGE = 1..MAXsegs;
segs = varying[MAXCHARS] of char;

var
linecnt : LINERANGE;
document : array[LINERANGE] of segs;

begin

document[1] := ’first line of resume’;
document[2] := ’second line of resume’;
document[3] := ’last line of resume’;

READY;

START_TRANSACTION READ_WRITE;

(* Store a resume for employee 00164 *)

writeln(’Storing resume entry for employee 00164’);

RDML Clauses and Statements 6–83

MODIFY Statement

STORE R IN RESUMES USING
R.EMPLOYEE_ID := ’00164’; (* Store EMPLOYEE_ID field *)
for linecnt := 1 to MAXsegs do

STORE LINE IN R.RESUME (* Store RESUME field segments *)
LINE.VALUE := document[linecnt];
LINE.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

(* Read it back *)

writeln(’Resume entry contains:’);

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’00164’
FOR LINE IN R.RESUME

writeln(LINE); (* Print resume segments *)
END_FOR;

END_FOR;

COMMIT;

(* Now modify it *)

document[1] := ’new first line of resume’;
document[2] := ’new second line of resume’;
document[3] := ’new last line of resume’;

START_TRANSACTION READ_WRITE;

writeln(’Modifying resume entry’);

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’00164’
MODIFY R USING

for linecnt := 1 to MAXsegs do
STORE LINE IN R.RESUME (* Modify RESUME, erasing old segments *)

LINE.VALUE := document[linecnt];
LINE.LENGTH := length(document[linecnt]);

END_STORE;
END_MODIFY;

END_FOR;

(* Read it back *)

writeln(’Resume entry contains:’);

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’00164’
FOR LINE IN R.RESUME

writeln(LINE); (* Print new segments for RESUME *)
END_FOR;

END_FOR;

COMMIT;

FINISH;

end.

6–84 RDML Clauses and Statements

MODIFY Statement

Example 4

The following programs demonstrate the use of the MODIFY * statement to
modify a record in the COLLEGES relation. The programs:

Declare a host language record structure with field names that match the
relation field names

Prompt the user for field values

Modify the record

Roll back the transaction

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

static struct
{
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;
} colleges_record;

extern void read_string();

main()
{
read_string ("Enter College Code: ", colleges_record.college_code,

sizeof(colleges_record.college_code));
read_string ("Enter College Name: ", colleges_record.college_name,

sizeof(colleges_record.college_name));
read_string ("Enter College City: ", colleges_record.city,

sizeof(colleges_record.city));
read_string ("Enter College State: ",colleges_record.state,

sizeof(colleges_record.state));
read_string ("Enter Postal Code: ", colleges_record.postal_code,

sizeof(colleges_record.postal_code));

READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.COLLEGE_CODE = "HVDU"

MODIFY C USING
C.* = colleges_record;

END_MODIFY;

END_FOR;

RDML Clauses and Statements 6–85

MODIFY Statement

ROLLBACK;
FINISH;
}

Pascal Program

program store_with_host_lang (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
colleges_record:
RECORD
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;

end;

begin
writeln (’Enter College Code:’);
readln (colleges_record.college_code);
writeln (’Enter College Name:’);
readln (colleges_record.college_name);
writeln (’Enter College City:’);
readln (colleges_record.city);
writeln (’Enter College State:’);
readln (colleges_record.state);
writeln (’Enter College Postal Code:’);
readln (colleges_record.postal_code);

READY PERS;
START_TRANSACTION READ_WRITE;

FOR C IN COLLEGES
WITH C.COLLEGE_CODE = ’HVDU’

MODIFY C USING
C.* = colleges_record;

END_MODIFY;

END_FOR;

ROLLBACK;
FINISH;

end.

6–86 RDML Clauses and Statements

MODIFY Statement

Example 5

The following programs demonstrate the use of the MODIFY statement to
change the date in a record selection expression. These programs:

Assign a value to the DATE data type field using the context variable
P.BIRTHDAY

Change the date by assigning another value to the field

Convert the date

Perform the queries using the value assigned to E.BIRTHDAY

FOR E IN EMPLOYEES WITH E.BIRTHDAY = ’28-feb-1990’
printf("%s,%s\n",E.LAST_NAME,E.FIRST_NAME);

END_FOR;

FOR E IN EMPLOYEES WITH ’1-JAN-1990’>E.BIRTHDAY
printf("%s,%s\n",E.LAST_NAME,E.FIRST_NAME);

END_FOR;

C Program

The C program uses a format specification: E.BIRTHDAY = ’27-feb-1990’

(Alternately, you could use a memcpy function. For an example of the memcpy
function, see the C program example in Example 6.)

#include <stdio.h>

DATABASE MINE = FILENAME "PERSONNEL.RDB";

main()
{

READY MINE ;

START_TRANSACTION READ_WRITE;
STORE E IN EMPLOYEES USING

strcpy (E.EMPLOYEE_ID , "79990");
strcpy (E.LAST_NAME, "Smith ");
strcpy (E.FIRST_NAME , "michael ");
E.BIRTHDAY = ’27-feb-1990’;
END_STORE;

FOR P IN EMPLOYEES WITH P.EMPLOYEE_ID = ’79990’
MODIFY P USING
P.BIRTHDAY = ’28-feb-1990’;
END_MODIFY;

END_FOR;

FOR E IN EMPLOYEES WITH E.BIRTHDAY = ’28-feb-1990’
printf("%s,%s\n",E.LAST_NAME,E.FIRST_NAME);

END_FOR;

RDML Clauses and Statements 6–87

MODIFY Statement

FOR E IN EMPLOYEES WITH ’1-JAN-1990’>E.BIRTHDAY
printf("%s,%s\n",E.LAST_NAME,E.FIRST_NAME);

END_FOR;

COMMIT;
}

Pascal Program

program modify5p(output);

database filename ’PERSONNEL.RDB’;

begin
ready;
start_transaction read_write;
store e in employees
using e.employee_id :=’98116’;

e.birthday := ’16-jan-1991’;
e.last_name := ’mecdiro’;
e.first_name := ’frank’;

end_store;

for p in employees with p.employee_id = ’98116’
modify p using

p.birthday := ’26-jan-1991’;
end_modify;
end_for;

for e in employees with e.birthday = ’26-jan-1991’
writeln(e.employee_id, e.last_name, e.first_name);

end_for;
commit;

end.

Example 6

The following programs demonstrate how to assign a date from one field
of a record selection expression to another, and then modify the date using
an assignment statement. Both fields, in this case the START_DATE and
END_DATE fields, must be the same data type.

The following C program uses the memcpy function to copy the date from
one database field to another. In the memcpy function, ‘‘memcpy (J.JOB_
END,J.JOB_START,8);’’ means 8 bytes are copied. This example is in contrast
to the strcpy function, which is used to copy date text from one database field
to another. You can not use the strcpy function to copy dates between fields.

6–88 RDML Clauses and Statements

MODIFY Statement

C Program

#include <stdio.h>

DATABASE MINE = FILENAME "PERSONNEL.RDB";

main()
{

READY MINE ;

START_TRANSACTION READ_WRITE;
STORE J IN JOB_HISTORY USING

strcpy (J.EMPLOYEE_ID , "79990");
J.JOB_START = ’27-feb-1990’;
END_STORE;

FOR J IN JOB_HISTORY WITH J.EMPLOYEE_ID = ’79990’
MODIFY J USING

memcpy (J.JOB_END,J.JOB_START,8);

END_MODIFY;
END_FOR;

COMMIT;
}

Pascal Program

This program shows how date fields can be assigned to each other directly, as
in the j.job_end := j.job_start assignment:

program modify6p(output);
database filename ’PERSONNEL.RDB’;

var
start_date: rdml$cddadt_type;

begin
ready;
start_transaction read_write;
store j in job_history
using j.employee_id :=’98116’;

j.job_start := ’16-jan-1991’;
end_store;

for j in job_history with j.employee_id = ’98116’
modify j using

j.job_end := j.job_start;
end_modify;
end_for;
commit;

end.

RDML Clauses and Statements 6–89

ON ERROR Clause

6.17 ON ERROR Clause

The ON ERROR clause specifies the statements the host language performs if
an error occurs during the execution of the associated RDML statement.

You can use the ON ERROR clause in all RDML statements except the
DATABASE and DECLARE_STREAM statements.

Formaton-error =

ON ERROR statement END_ERROR

Argument
statement
Any valid RDML or host language statement to be executed when an RDML
error occurs. Use a semicolon (;) at the end of each RDML, Pascal, or C
statement.

Usage Notes
Error handling with RDML is accomplished through the ON ERROR clause
and two program variables, RDB$STATUS and RDB$MESSAGE_VECTOR.

Every routine returns a status value into a program variable that is
declared by RDML. The status value is a longword systemwide condition
value that identifies a unique message in the system message file.
The returned condition value may indicate success, in which case data
manipulation continues uninterrupted. Or, this value may signal an
error, in which case control passes to the ON ERROR clause. RDML
names this condition value RDB$STATUS and declares it to be a
longword. RDB$STATUS is the second element of a twenty-longword
array, RDB$MESSAGE_VECTOR, that RDML uses to pass information
between the database and a C or Pascal program.

When using C as the host language, declare each status value as a
globalvalue.

6–90 RDML Clauses and Statements

ON ERROR Clause

When using Pascal as the host language, declare each status value as an
[VALUE,EXTERNAL] INTEGER.

The use of these variables varies according to the Rdb/VMS or Rdb/ELN
environments. See the VAX Rdb/VMS Guide to Using RDO, RDBPRE, and
RDML or the VAX Rdb/ELN Guide to Application Development for more
information about their use.

Examples
Example 1

The following programs demonstrate the use of the ON ERROR clause to
identify I/O errors that occur during execution of the READY statement.
The programs check the value of RDB$STATUS. If RDB$STATUS contains
the status value ‘‘RDB$_BAD_DB_FORMAT’’ then the ON ERROR clause
associated with the READY statement identifies this error and the programs
print the informational message ‘‘I/O error at READY . . . Possibly because
file not found.’’ If the error is not an I/O error, the programs print the
informational message ‘‘Unexpected Error, Application Terminating.’’ In
both cases, the program eventually terminates because a return or halt is
performed.

C Program

#include <stdio.h>
globalvalue RDB$_BAD_DB_FORMAT;
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS

ON ERROR
if (RDB$STATUS == RDB$_BAD_DB_FORMAT)

printf("I/O error at READY... Possibly because file not found\n");
else

{
printf("Unexpected Error, Application Terminating\n");
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);
}

return;
END_ERROR;

START_TRANSACTION READ_WRITE;

/* perform some read/write operation */

COMMIT;
FINISH;
}

RDML Clauses and Statements 6–91

ON ERROR Clause

Pascal Program

program onerror (output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
RDB$_BAD_DB_FORMAT : [value,external] integer;

begin
READY PERS

ON ERROR
if (RDB$STATUS = RDB$_BAD_DB_FORMAT)
then

writeln (’I/O Error at READY... Possibly because file not found’)
else

begin
writeln (’Unexpected Error, Application Terminating’);
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR)
end;

halt;
END_ERROR;

START_TRANSACTION READ_WRITE;

(* Perform some read/write operation *)

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the ON ERROR clause to
identify lock errors that occur during execution of the START_TRANSACTION
statement. The programs start a transaction using the NOWAIT option. This
means that execution of the START_TRANSACTION statement causes a
lock error if anyone else has a lock on the EMPLOYEES relation when you
run the program. In this case, the program will print the message ‘‘database
unavailable right now’’. The programs will try to access the database up to 100
more times before terminating the program.

If the error is not a lock error, the programs print the message ‘‘Unexpected
Error, Application Terminating’’.

To illustrate this application, build it, and then run it simultaneously from two
different terminals.

6–92 RDML Clauses and Statements

ON ERROR Clause

C Program

globalvalue RDB$_LOCK_CONFLICT;
globalvalue RDB$_DEADLOCK;

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

void handle_error()
{
if (RDB$STATUS == RDB$_LOCK_CONFLICT)

printf("database unavailable right now\n");
else

{
printf("Unexpected Error, Application Terminating\n");
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);
}

return;
}

void access_employees()
{
READY PERS

ON ERROR
handle_error();
return;

END_ERROR;

START_TRANSACTION READ_WRITE NOWAIT
RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
ON ERROR

handle_error();
return;

END_ERROR;

/* perform some read/write operation on the EMPLOYEES relation */
printf ("Accessing EMPLOYEES...\n");

COMMIT;
FINISH;
}

main()
{
int i;
for (i=0; i<=100; i++)

access_employees();
}

RDML Clauses and Statements 6–93

ON ERROR Clause

Pascal Program

program onerror (output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
RDB$_LOCK_CONFLICT : [value,external] integer;
i : integer;
error : boolean;

procedure handle_error;
begin

if RDB$STATUS = RDB$_LOCK_CONFLICT
then

writeln (’database unavailable right now’)
else

begin
writeln (’Unexpected Error, Application Terminating’);
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR)
end;

end;

begin
for i := 1 to 100 do

begin
error := FALSE;
READY PERS;
START_TRANSACTION READ_WRITE NOWAIT

RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
ON ERROR

handle_error;
error := TRUE;

END_ERROR;

if not error then
begin
{ perform some read/write operation on the EMPLOYEES relation }
writeln (’Accessing EMPLOYEES...’);

COMMIT;
FINISH;
end;

end;
end.

6–94 RDML Clauses and Statements

ON ERROR Clause

Example 3

The following programs demonstrate the use of the GOTO statement within
the ON ERROR clause. These programs trap errors that occur during the
execution of the READY statement.

C Program

#include <stdio.h>

DATABASE MINE = COMPILETIME FILENAME "PERSONNEL"
RUNTIME FILENAME "NONEXISTENT.RDB"; /* does not exist */

main()
{

READY MINE
ON ERROR

printf("Forced Error with READY...\n");
goto ninetynine;

END_ERROR;
COMMIT;
goto EXIT;

ninetynine:
printf("recovery finished\n");

EXIT:
FINISH;

Pascal Program

program readytest1 (output);

DATABASE MINE = COMPILETIME FILENAME ’PERSONNEL’
RUNTIME FILENAME ’NONEXISTENT.RDB’; {* does not exist *}

LABEL 99,EXIT;
begin

READY MINE
ON ERROR

writeln(’Forced Error with READY...’);
GOTO 99;
END_ERROR;

COMMIT;
GOTO EXIT;

99:
writeln(’Error recovery finished’);

EXIT:
FINISH;

end.

RDML Clauses and Statements 6–95

ON ERROR Clause

Example 4

The following programs demonstrate the testing of RDB$STATUS after the
END_ERROR statement. In order to test RDB$STATUS after the ON ERROR
clause, you must define RDB$STATUS as RDB$MESSAGE_VECTOR[1].

C program

#include <stdio.h>
globalvalue RDB$_BAD_DB_FORMAT;
DATABASE MINE = COMPILETIME FILENAME "PERSONNEL"

RUNTIME FILENAME "NONEXISTENT.RDB"; /* does not exist */

main()
{

READY MINE
ON ERROR

if (RDB$STATUS == RDB$_BAD_DB_FORMAT)
printf("I/O error at READY ... Possibly because file not found\n");

else
{
printf("Unexpected Error, Application Terminating\n");

RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);
}

return;
END_ERROR;

RDB$STATUS = RDB$MESSAGE_VECTOR[1];
if (RDB$STATUS == 1)

{
printf("There is no error in READY\n");

/*
.
.

*/
}

else
printf("Error recovery finished\n");

COMMIT;
FINISH;

}

6–96 RDML Clauses and Statements

ON ERROR Clause

Pascal Program

program readytest2 (output);

DATABASE MINE = COMPILETIME FILENAME ’PERSONNEL’
RUNTIME FILENAME ’NONEXISTENT.RDB’; {* does not exist *}

var
RDB$_BAD_DB_FORMAT :[value,external] integer;

begin

READY MINE
ON ERROR

if (RDB$STATUS = RDB$_BAD_DB_FORMAT) then
writeln(’I/O error at READY ... Possibly because file not found’)

else
begin

writeln(’Unexpected Error, Application Terminating’);
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

end;
halt;
END_ERROR;

RDB$STATUS := RDB$MESSAGE_VECTOR[2];
if (RDB$STATUS = 1) then

begin
writeln(’There is no error in READY’);

end
else

begin
writeln(’Error recovery finished’);

RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);
end;

COMMIT;
FINISH;

end.

RDML Clauses and Statements 6–97

PREPARE Statement

6.18 PREPARE Statement

Use the PREPARE statement to tell Rdb/ELN that your application intends to
commit a transaction. This causes Rdb/ELN to poll all concerned entities, both
hardware and software, to make sure that the transaction can be committed
without interruption. If it determines that no component stands in the way of
committing the transaction, Rdb/ELN allows a COMMIT statement that has
been issued to execute.

If you use the PREPARE statement in an Rdb/VMS environment, you will
not receive an error message; the PREPARE statement has no effect in an
Rdb/VMS environment.

Format

PREPARE

(TRANSACTION_HANDLE var)

on-error

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable
that you associate with a transaction. If you do not supply a transaction
handle explicitly, RDML supplies the default transaction handle.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the PREPARE
operation. See Section 6.17 for details.

6–98 RDML Clauses and Statements

PREPARE Statement

Usage Notes
The PREPARE statement can be used in two distinct situations:

When you have a transaction that affects multiple databases. In this case,
the PREPARE statement checks that the transaction can be committed
to all affected databases. If the transaction cannot be committed to all
databases at once, you must roll back the transaction.

When you need to synchronize database activity with external events
before a transaction is committed. If the database activity and external
events cannot be properly synchronized, you must roll back the transaction.

Note that the PREPARE statement does not reserve database resources. It
does, however, cause Rdb/ELN to poll all concerned entities, both hardware
and software, to make sure that a transaction can be committed without
any problems. If it determines that no component stands in the way of
committing the transaction, Rdb/ELN allows a COMMIT statement that
has been issued to execute.

Your program logic should specify what to do in case the PREPARE
statement fails.

Examples
Example 1

The following examples demonstrate the use of the PREPARE statement with
a transaction handle. The programs:

Are intended for an Rdb/ELN environment. A CONCURRENCY
transaction and the PREPARE statement are ignored in an Rdb/VMS
environment.

Start a read/write concurrency transaction, SAL_INCREASE.

Store a new JOBS record using the SAL_INCREASE transaction.

Use the PREPARE statement to make sure that the transaction can be
committed successfully in an Rdb/ELN environment.

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the test size of the field. For more information and the source code
for pad_string, see Appendix B.

RDML Clauses and Statements 6–99

PREPARE Statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
int SAL_INCREASE = 0;
RDML$HANDLE_TYPE success;

READY PERS;
success = TRUE;

START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
pad_string ("TYPS", J.JOB_CODE, sizeof(J.JOB_CODE));
pad_string ("1", J.WAGE_CLASS, sizeof(J.WAGE_CLASS));
pad_string ("TYPIST", J.JOB_TITLE, sizeof(J.JOB_TITLE));
J.MINIMUM_SALARY = 10000;
J.MAXIMUM_SALARY = 17000;

END_STORE;

PREPARE (TRANSACTION_HANDLE SAL_INCREASE)
ON ERROR

success = FALSE;
printf ("Sorry. Cannot commit\n");
printf ("Rollback of transaction about to begin ...\n");

END_ERROR;

if (success == FALSE)
{
ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
}

else
{
COMMIT (TRANSACTION_HANDLE SAL_INCREASE);
}

FINISH;
}

Pascal Program

program prepare_stmnt (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
success : boolean;
sal_increase : RDML$HANDLE_TYPE := 0;

begin
READY PERS;
success := TRUE;

6–100 RDML Clauses and Statements

PREPARE Statement

START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE CONCURRENCY;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB_CODE := ’TYPS’;
J.WAGE_CLASS := ’1’;
J.JOB_TITLE := ’Typist’;
J.MINIMUM_SALARY := 10000;
J.MAXIMUM_SALARY := 17000;

END_STORE;

PREPARE (TRANSACTION_HANDLE SAL_INCREASE)
ON ERROR

success := FALSE;
writeln (’Sorry. Cannot commit’);
writeln (’Rollback of transaction about to begin ...’);

END_ERROR;

if success = FALSE then
ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE)

else
COMMIT (TRANSACTION_HANDLE SAL_INCREASE);

FINISH;
end.

RDML Clauses and Statements 6–101

READY Statement

6.19 READY Statement

The READY statement explicitly declares your intention to access one or more
databases and causes an attach to the database.

Format

READY
db-handle on-error

,

Arguments
db-handle
A database handle. A host language variable used to refer to a specific
database your program uses. Specified in a DATABASE statement and
declared by RDML.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the READY
operation. See Section 6.17 for details.

Usage Notes
If you issue a READY statement without specifying a database handle,
your application attaches to all databases declared in that module.

Digital recommends that you use the /NODEFAULT_TRANSACTIONS
qualifier when you preprocess your program. When you use the
/NODEFAULT_TRANSACTIONS qualifier you must issue a READY
statement to attach to the database. You can attach to one of many
databases as you need it and then use the FINISH statement to detach
from it when you are done. In this way, you do not have to allocate system
resources to remain attached to all the required databases throughout the
program.

6–102 RDML Clauses and Statements

READY Statement

You do not have to use the READY statement to access a database. By
default, a database attach occurs automatically the first time you refer
to it. However, Digital recommends that you always issue a READY
statement prior to accessing a database.

You can use the READY statement to test the availability of a database.
For example, you may want to check availability before your program
prompts a user for input.

When you use the READY statement, you can predict when the database
attach is performed. If you do not use a READY statement, the first
database access will cause an attach to occur (except when the
/NODEFAULT_TRANSACTION qualifier is specified), and this may
introduce a delay that is obvious to the user.

Examples
Example 1

The following program fragments demonstrate the use of the READY
statement to open a database. The program fragments:

Use the DATABASE statement to declare the PERSONNEL database

Declare a database handle PERS for PERSONNEL

Open the PERSONNEL database with the READY statement

Close the database with the FINISH statement

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

.

.

.
main ()
{
READY PERS;

.

.

.

FINISH PERS;
}

RDML Clauses and Statements 6–103

READY Statement

Pascal Program

program empupdate;
DATABASE PERS = FILENAME ’PERSONNEL’;

.

.

.
begin
READY PERS;

.

.

.

FINISH PERS;
end.

Example 2

The following program fragments demonstrate how to attach to two databases
within the same program. The program fragments:

Use the DATABASE statement to declare two databases, PERSONNEL
and PAYROLL

Declare database handles for both databases

Attach to both databases

Detach from each database

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";
DATABASE PAY = FILENAME "WORK$DISK:PAYROLL";

main ()
{

.

.

.
READY PERS;

.

.

.
FINISH PERS;

.

.

.

6–104 RDML Clauses and Statements

READY Statement

READY PAY;
.
.
.

FINISH PAY;
.
.
.

READY PERS, PAY;
.
.
.

FINISH PERS, PAY;
}

Pascal Program

program new_employee;
DATABASE PERS = FILENAME ’PERSONNEL’;
DATABASE PAY = FILENAME ’WORK$DISK:PAYROLL’;

.

.

.
READY PERS;

.

.

.
FINISH PERS;

.

.

.

READY PAY;
.
.
.

FINISH PAY;
.
.
.

READY PERS, PAY;
.
.
.

FINISH PERS, PAY;
end.

RDML Clauses and Statements 6–105

REQUEST_HANDLE Clause

6.20 REQUEST_HANDLE Clause

A request handle is a host language variable that identifies a compiled
Rdb request. RDML generates request handles for statements that contain
record selection expressions. In almost all cases it is unnecessary for you to
explicitly specify request handles. However, if you choose to, you can specify a
request handle to identify the requests that RDML generates in the following
statements:

FOR

START_STREAM

Boolean expressions (ANY, UNIQUE)

STORE

Statistical functions (AVERAGE, COUNT, MAX, MIN, TOTAL)

For the syntax diagram that shows the placement of the REQUEST_HANDLE
in each of the RDML statements, see the section describing that statement.

Format

request-handle =

(REQUEST_HANDLE host-variable)

Argument
host-variable
A valid host language variable. See Usage Notes.

Usage Notes
Most applications do not require the use of, or benefit from, user-specified
request handles. Unless you need to refer to a request handle directly
(for example, you want to release a request prior to executing a FINISH
statement) you probably do not need to use request handles. You may
degrade performance if you use request handles unnecessarily.

6–106 RDML Clauses and Statements

REQUEST_HANDLE Clause

Do not release a request unless it is absolutely necessary. If you release a
request, yet continue to refer to that request, you force RDML to recompile
the request each time you refer to it.

RDML-supplied request handles improve the performance for an
application program that repeats identical queries. A request handle
serves as a pointer to the internal representation of a query. Request
handles in an application cause Rdb to reuse this internal representation,
reducing the run-time overhead associated with executing a query. Note
that Rdb uses request handles regardless of whether you specify handle
names for the requests.

If you choose to explicitly declare a request handle in your program, the
request handle must be:

Declared in the host language program as:

RDML$HANDLE_TYPE for Pascal

DECLARE_VARIABLE OF name SAME AS PERS.EMPLOYEES.LAST_NAME;
REQ1 : RDML$HANDLE_TYPE;

RDML$HANDLE_TYPE for C

DECLARE_VARIABLE name SAME AS PERS.EMPLOYEES.LAST_NAME;
extern long RDB$RELEASE_REQUEST();
RDML$HANDLE_TYPE REQ1;

Initialized to zero before being used for the first time. Do not
reinitialize a request prior to each time you refer to it (for example
within a FOR loop). If you reinitialize a request to zero, RDML
recompiles the request each time you refer to it.

Reinitialized to zero after a request is released, or after your program
detaches from the associated database by issuing a FINISH statement.

The value of a request handle is valid from the point when the associated
query is made until the request is released, or until your program detaches
from the database associated with that query by issuing a FINISH
statement.

If you are using modular programming techniques, do not issue a FINISH
statement in one module and then attempt to use a request handle
associated with the finished database in another module. Attempts to do so
will result in the error message: BAD_REQ_HAND.

RDML Clauses and Statements 6–107

REQUEST_HANDLE Clause

Each request has resources associated with it that are used by Rdb to store
the internal representation of the request. Your program can release these
resources in two ways:

By issuing a FINISH statement. This causes your program to detach
from the database associated with the requests and releases the
resources associated with all the requests for the finished database
attach.

By issuing a call to RDB$RELEASE_REQUEST. This does not cause
your program to detach from the database associated with the request.

Before you issue a call to a RDB$RELEASE_REQUEST, you should
declare it in C programs as shown in the following example:

extern long RDB$RELEASE_REQUEST();

You do not need to declare RDB$RELEASE_REQUEST in Pascal
programs; it is declared for you in RDMLVPAS.PAS.

To release a request in Pascal use:

if not RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, request_handle)
then RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

To release a request in C use:

if ((RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, &request_handle) & 1) == 0)
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

Examples
Example 1

The following programs demonstrate the use of the REQUEST_HANDLE
clause in a FOR statement. They also show how to release a request. The
programs:

Declare the host language variable, REQ1, for a request handle and the
local variable, name

Initialize REQ1 to zero

Assign a value to name

Start a transaction

6–108 RDML Clauses and Statements

REQUEST_HANDLE Clause

Use the request handle in the FOR statement

Release the request

Note These programs merely show how to use and release a request. Do not, under
any circumstances, routinely declare and release requests. Doing so will
degrade performance.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_VARIABLE name SAME AS PERS.EMPLOYEES.LAST_NAME;
extern long RDB$RELEASE_REQUEST();
RDML$HANDLE_TYPE REQ1;

main()
{
REQ1 = 0;
strcpy(name,"Gray");

READY PERS;
START_TRANSACTION READ_ONLY;

FOR (REQUEST_HANDLE REQ1) E IN PERS.EMPLOYEES
WITH E.LAST_NAME = name
printf("%s\n",E.FIRST_NAME);

END_FOR;

if ((RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, &REQ1) & 1) == 0)
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

COMMIT;
FINISH;
}

Pascal Program

program request (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

DECLARE_VARIABLE OF name SAME AS PERS.EMPLOYEES.LAST_NAME;
REQ1 : RDML$HANDLE_TYPE;

begin
REQ1 := 0;
name := ’Gray’;

READY PERS;
START_TRANSACTION READ_ONLY;

RDML Clauses and Statements 6–109

REQUEST_HANDLE Clause

FOR (REQUEST_HANDLE REQ1) E IN PERS.EMPLOYEES
WITH E.LAST_NAME = name
writeln (E.FIRST_NAME);

END_FOR;

if not RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, REQ1)
then RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

COMMIT;

FINISH;
end.

6–110 RDML Clauses and Statements

ROLLBACK Statement

6.21 ROLLBACK Statement

The ROLLBACK statement terminates a transaction and undoes all changes
made to the database since the program’s most recent START_TRANSACTION
statement or since the start of the specified transaction.

If an application explicitly calls the DECdtm services to start a distributed
transaction, it must also explicitly call DECdtm services to complete the
transaction, rather than using the ROLLBACK statement.

See the VAX Rdb/VMS Guide to Distributed Transactions for more information
on using the DECdtm service calls in distributed transactions.

Format
ROLLBACK

(TRANSACTION_HANDLE var)

on-error

Arguments
TRANSACTION-HANDLE var
The TRANSACTION_HANDLE keyword followed by a host language variable
you associate with a transaction. If you do not supply a handle name explicitly,
Rdb uses the default transaction handle.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the ROLLBACK
operation. See Section 6.17 for details.

RDML Clauses and Statements 6–111

ROLLBACK Statement

Usage Notes
The ROLLBACK statement affects all databases associated with the
transaction.

The ROLLBACK statement undoes all changes to data made with RDML
ERASE, MODIFY, and STORE statements.

The ROLLBACK statement with no argument will use the default
transaction handle.

If you start a transaction without specifying a transaction handle, you use
the default transaction handle. There is one default transaction handle for
the whole program. By default, when the RDML preprocessor encounters a
statement without a transaction handle, it tests for the default transaction
handle. If there is no default transaction, the RDML preprocessor starts
one. Otherwise, the RDML preprocessor includes that statement in the
existing default transaction.

However, Digital recommends that you use the /NODEFAULT_
TRANSACTIONS qualifier when you preprocess your program. When
you use the /NODEFAULT_TRANSACTIONS qualifier, RDML will not
test for the default transaction handle on each statement it encounters
without a transaction handle. This means that you must explicitly
start and end your transaction (you do not have to specify a transaction
handle). By explicitly starting and ending your transaction and using the
/NODEFAULT_TRANSACTIONS qualifier, you can reduce overhead by
eliminating the work RDML must do to test if a transaction has started.

If you start a transaction and specify a transaction handle, you must use
that transaction handle to roll back that transaction. The ROLLBACK
statement automatically resets both user-specified and RDML-specified
transaction handles to zero.

The ROLLBACK statement also:

Closes open streams

Releases all locks in Rdb/VMS

Reduces all locks if you are using the CONSISTENCY option of the
START_TRANSACTION statement in the Rdb/ELN environment. See
the Rdb/ELN documentation set for details.

6–112 RDML Clauses and Statements

ROLLBACK Statement

Because the ROLLBACK statement closes open streams, you must not
explicitly end the stream after a ROLLBACK statement. If you do end the
stream with the END_STREAM clause of the START_STREAM statement,
Rdb returns an error message.

You cannot continue in a FOR loop after a ROLLBACK statement is issued.

Examples
Example 1

The following programs demonstrate the use of the ROLLBACK statement
with a transaction handle to undo changes to the database made with the
STORE statement. The programs:

Start a read/write transaction, SAL_INCREASE

Store a new JOBS record using the SAL_INCREASE transaction

Use the ROLLBACK statement to undo the changes made to the database
during the SAL_INCREASE transaction; that is, the new record is not
stored in the database

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the text size of the field. For more information and the source code
for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
int SAL_INCREASE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
pad_string ("TYPS", J.JOB_CODE, sizeof(J.JOB_CODE));
pad_string ("1", J.WAGE_CLASS, sizeof(J.WAGE_CLASS));
pad_string ("TYPIST", J.JOB_TITLE, sizeof(J.JOB_TITLE));
J.MINIMUM_SALARY = 10000;
J.MAXIMUM_SALARY = 17000;

END_STORE;

RDML Clauses and Statements 6–113

ROLLBACK Statement

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
}

Pascal Program

program rollback_trans (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;
var sal_increase : [volatile] integer := 0;

begin
READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB_CODE := ’TYPS’;
J.WAGE_CLASS := ’1’;
J.JOB_TITLE := ’Typist’;
J.MINIMUM_SALARY := 10000;
J.MAXIMUM_SALARY := 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
end.

6–114 RDML Clauses and Statements

START_STREAM Statement, Declared

6.22 START_STREAM Statement, Declared

A declared START_STREAM statement starts a stream that was declared
earlier in the module with the DECLARE_STREAM statement. A declared
START_STREAM statement allows you to place the START_STREAM, FETCH,
GET, and END_STREAM statements in any order within a program as long as
they appear after the DECLARE_STREAM statement and are executed at run
time in the order: START_STREAM, FETCH, GET, END_STREAM.

Format

START_STREAM declared-stream-name

on-error

Arguments
declared-stream-name
A valid RDML name. This name must be the same name you use in the
associated DECLARE_STREAM statement.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the START_
STREAM operation. See Section 6.17 for details.

Usage Notes
Because the DECLARE_STREAM statement specifies the record selection
expression and any transaction or request handles, the declared
START_STREAM statement must not specify the record selection
expression, a transaction handle, or a request handle.

You can issue several declared START_STREAM statements in a module,
and as long as you use the same declared stream name, they will all refer
to the same stream.

RDML Clauses and Statements 6–115

START_STREAM Statement, Declared

A stream is limited to one module.

Once you have declared the stream (in the DECLARE_STREAM statement)
and referred to this name in the START_STREAM statement, you should
only use the stream name when you want to:

Fetch the next record with a FETCH statement.

Terminate the stream with the declared END_STREAM statement.

For all other purposes you should use the context variables specified in
the record selection expression of the associated DECLARE_STREAM
statement. For example, if you want to modify records, you must use
the context variable associated with the record in the record selection
expression of the DECLARE_STREAM statement.

Because the context variables specified in a DECLARE_STREAM
statement remain visible until the end of the module, you should not
reuse context variables defined in the record selection expression of the
DECLARE_STREAM statement in other record selection expressions.

Your program can use FOR statements or START_STREAM statements to
establish record streams. The FOR statement is recommended. However,
there are reasons for using a START_STREAM statement to create a record
stream. You can use a START_STREAM statement to process multiple
streams in parallel. Record streams created by the FOR statement can
process nested streams, but not independent streams.

You can process streams in the forward direction only. If you want to move
the stream pointer back to a record that you already processed, you must
end the stream and restart it or use database keys.

The records in a stream are not returned in any specific order unless the
record selection expression that creates the stream contains a SORTED BY
clause.

Note Rdb retrieves the contents of any input host language variables in the record
selection expression when you use the START_STREAM statement. Rdb
cannot reexamine the host language variables until you end and restart the
stream. Therefore, changing the value of a host language variable specified
in the record selection expression that created the stream has no effect on an
active stream.

The statements following a declared START_STREAM statement must
include at least one FETCH statement before you access any record in the
stream.

6–116 RDML Clauses and Statements

START_STREAM Statement, Declared

Declared streams can overlap. For example:

START_STREAM A . . .
.
.
.

START_STREAM B . . .
.
.
.

END_STREAM A . . .
.
.
.

END_STREAM B . . .

Declared streams can be nested. For example:

START_STREAM A . . .
.
.
.

START_STREAM B . . .
.
.
.

END_STREAM B . . .
.
.
.

END_STREAM A . . .

Examples
Example 1

The following programs demonstrate the use of the declared START_STREAM
statement with the declared END_STREAM clause. The programs:

Declare a stream sal with the DECLARE_STREAM statement that limits
the stream to those records with a value less than $10,000.00 in the
SALARY_AMOUNT field

Start a read/write transaction

Fetch the first record in the stream

Modify that record so that the value in the SALARY_AMOUNT field is
increased by 50 percent

RDML Clauses and Statements 6–117

START_STREAM Statement, Declared

Fetch and modify records in the stream until all the records have been
modified

End the stream with the declared END_STREAM statement

C Program

#include <stdio.h>
#define TRUE 1
#define FALSE 0

DATABASE PERS = FILENAME "PERSONNEL";

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

int end_of_stream;

main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

START_STREAM sal;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;

while (! end_of_stream)
{
MODIFY SH USING

SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * (1.5);
END_MODIFY;

FETCH sal
AT END

end_of_stream = TRUE;
END_FETCH;
}

END_STREAM sal;

COMMIT;
FINISH;

}

6–118 RDML Clauses and Statements

START_STREAM Statement, Declared

Pascal Program

program anycond (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
end_of_stream : boolean;

DECLARE_STREAM sal USING SH IN SALARY_HISTORY
WITH SH.SALARY_AMOUNT LT 10000;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

START_STREAM sal;

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

while not end_of_stream do
begin

MODIFY SH USING
SH.SALARY_AMOUNT := SH.SALARY_AMOUNT * (1.5);

END_MODIFY;

FETCH sal
AT END

end_of_stream := TRUE;
END_FETCH;

end;

END_STREAM sal;
COMMIT;
FINISH;

end.

RDML Clauses and Statements 6–119

START_STREAM Statement, Undeclared

6.23 START_STREAM Statement, Undeclared

The START_STREAM statement declares and starts a record stream. The
START_STREAM statement:

Forms a record stream from one or more relations. The record selection
expression determines the records in the record stream.

Places a pointer for that stream just before the first record in this stream.

You must then use the FETCH statement to fetch the next record in the
stream and other RDML statements (for example, MODIFY and ERASE) to
manipulate each record.

Note Digital recommends that all programs use the declared START_STREAM
statement (with the DECLARE_STREAM statement) in place of the undeclared
START_STREAM statement. The declared START_STREAM statement
provides all the features of the undeclared START_STREAM statement
and provides more flexibility in programming than the undeclared START_
STREAM statement.

Format
START_STREAM stream-name

handle-options

USING rse
on-error

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

6–120 RDML Clauses and Statements

START_STREAM Statement, Undeclared

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb/VMS request. If you do not supply
a request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

stream-name
The stream that you create. The stream name must be a valid host language
name.

rse
A record selection expression. A clause that defines specific conditions that
individual records must meet before Rdb includes them in a record stream.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the START_
STREAM operation. See Section 6.17 for details.

Usage Notes
Once you have named the stream, you should only refer to the stream-
name when you want to:

Retrieve the next record with a FETCH statement

Terminate the stream with the END_STREAM statement

For all other purposes you should use context variables. For example, if
you want to modify records, you must use the context variable associated
with the record selection expression of the START_STREAM statement.

RDML Clauses and Statements 6–121

START_STREAM Statement, Undeclared

Any context variable names that you define with the START_STREAM
statement are valid for the life of that stream only. Once you have defined
a context variable in the record selection expression, you cannot reuse that
context variable name elsewhere inside the START_STREAM . . . END_
STREAM block. References to the context variable must occur between the
keywords START_STREAM and END_STREAM. You can use the context
variable name again outside that block.

Your program can use FOR statements or START_STREAM statements to
establish record streams. The FOR statement is recommended. However,
there are reasons for using a START_STREAM statement to create a record
stream. You can use a START_STREAM statement to process multiple
streams in parallel. Record streams created by the FOR statement can
process nested streams, but not independent streams.

If you want to process multiple streams in parallel, you must declare
transaction handles and specify the handles in the START_STREAM
statement.

You can process streams in the forward direction only. If you want to move
the stream pointer back to a record that you already processed, you must
end the stream and restart it (or use dbkeys).

The records in a stream are not returned in any specific order unless the
record selection expression that creates the stream contains a SORTED BY
clause.

Rdb retrieves the contents of any input host language variables in the
record selection expression when you use the START_STREAM statement.
Rdb cannot reexamine the host language variables until you end and
restart the stream. Therefore, changing the value of a host language
variable in the middle of an active stream has no effect on the records
included in the record stream.

The statements following a START_STREAM statement must include at
least one FETCH statement before you access any record in the stream.

6–122 RDML Clauses and Statements

START_STREAM Statement, Undeclared

Streams can overlap, for example:

START_STREAM A . . .
.
.
.

START_STREAM B . . .
.
.
.

END_STREAM A . . .
.
.
.

END_STREAM B . . .

Streams can be nested, for example:

START_STREAM A . . .
.
.
.

START_STREAM B . . .
.
.
.

END_STREAM B . . .
.
.
.

END_STREAM A . . .

Examples
Example 1

The following programs:

Create a record stream, CURRENT_INF_STREAM, that consists of the
CURRENT_INFO record sorted by highest salary first

Fetch the first record, thereby fetching the CURRENT_INFO record with
the highest salary

Display a message about that record

RDML Clauses and Statements 6–123

START_STREAM Statement, Undeclared

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM CURRENT_INF_STREAM USING
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

printf ("%s makes the largest salary!\n", CI.LAST_NAME);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
}

Pascal Program

program record_stream (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM CURRENT_INF_STREAM USING
CI IN CURRENT_INFO SORTED BY DESC CI.SALARY;
FETCH CURRENT_INF_STREAM;

writeln (CI.LAST_NAME, ’ makes the largest salary!’);
END_STREAM CURRENT_INF_STREAM;

COMMIT;
FINISH;
end.

Example 2

The following programs demonstrate the use of the START_STREAM
statement to create a record stream. The programs:

Create a stream of all EMPLOYEES records sorted by LAST_NAME first

Create a stream of all EMPLOYEES records sorted by FIRST_NAME first

List the stream sorted by LAST_NAME in the left column

List the stream sorted by FIRST_NAME in the right column

6–124 RDML Clauses and Statements

START_STREAM Statement, Undeclared

C Program

#include <stdio.h>
DATABASE PERS = FILENAME ’PERSONNEL’;

#define TRUE 1
#define FALSE 0
int END_OF_STREAM;

main()
{
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM BY_LAST_NAME USING
E1 IN EMPLOYEES SORTED BY E1.LAST_NAME, E1.FIRST_NAME;

START_STREAM BY_FIRST_NAME USING
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

/*The streams BY_LAST_NAME and BY_FIRST_NAME will contain the
same number of records. It is only necessary to test
for AT END once.*/

END_OF_STREAM = FALSE;

FETCH BY_LAST_NAME
AT END

END_OF_STREAM = TRUE;
END_FETCH;

if (!END_OF_STREAM)
FETCH BY_FIRST_NAME;

while (!END_OF_STREAM)
{

/*Alphabetical listing by last name down left column*/
printf ("%s %s",E1.LAST_NAME, E1.FIRST_NAME);

printf (" "); /*skip 20 spaces*/

/*Alphabetical listing by first name down right column*/
printf ("%s %s\n",E2.FIRST_NAME, E2.LAST_NAME);

FETCH BY_LAST_NAME
AT END

END_OF_STREAM = TRUE;
END_FETCH;

if (!END_OF_STREAM)
FETCH BY_FIRST_NAME;

} /*while*/

RDML Clauses and Statements 6–125

START_STREAM Statement, Undeclared

END_STREAM BY_LAST_NAME;
END_STREAM BY_FIRST_NAME;

COMMIT;
FINISH;
}

Pascal Program

program two_record_streams (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
end_of_stream : boolean;

begin
READY PERS;
START_TRANSACTION READ_ONLY;

START_STREAM BY_LAST_NAME USING
E1 IN EMPLOYEES SORTED BY E1.LAST_NAME, E1.FIRST_NAME;

START_STREAM BY_FIRST_NAME USING
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

{* The streams BY_LAST_NAME and BY_FIRST_NAME will contain the
exact same number of records. It is only necessary to test
for AT END once. *}

end_of_stream := false;

FETCH BY_LAST_NAME
AT END

end_of_stream := true;
END_FETCH;

if not end_of_stream then
FETCH BY_FIRST_NAME;

while not end_of_stream do begin

{* Alphabetical listing by last name down left column *}
write (E1.LAST_NAME, ’ ’, E1.FIRST_NAME);

write (’ ’ : 20); {skip 20 spaces}

{* Alphabetical listing by first name down right column *}
writeln (E2.FIRST_NAME, ’ ’, E2.LAST_NAME);

FETCH BY_LAST_NAME
AT END

end_of_stream := true;
END_FETCH;

6–126 RDML Clauses and Statements

START_STREAM Statement, Undeclared

if not end_of_stream then
FETCH BY_FIRST_NAME;

end; {* WHILE *}

END_STREAM BY_FIRST_NAME;
END_STREAM BY_LAST_NAME;

COMMIT;
FINISH;
end.

RDML Clauses and Statements 6–127

START_TRANSACTION Statement

6.24 START_TRANSACTION Statement

The START_TRANSACTION statement initiates a transaction. A transaction
is a group of statements whose changes can be made permanent or undone
as a unit. Either all the statements that modify records within a transaction
become permanent when the transaction is completed, or no one of them
does. If you end the transaction with the COMMIT statement, all the changes
within the transaction become permanent. If you end the transaction with the
ROLLBACK statement, all changes made within the transaction are undone.

If an application starts a distributed transaction by explicitly calling the
DECdtm service SYS$START_TRANS, it must complete the transaction by
calling the SYS$END_TRANS or SYS$ABORT_TRANS system service. See
the VAX Rdb/VMS Guide to Distributed Transactions for more information on
using the SYS$END_TRANS or SYS$ABORT_TRANS system service call in
distributed transactions.

Format

START_TRANSACTION
(TRANSACTION_HANDLE var)

distributed-transaction-flag tx-options
on-clause

on-error

distributed-transaction-flag =

DISTRIBUTED_TRANSACTION
DISTRIBUTED_TID distributed-tid

6–128 RDML Clauses and Statements

START_TRANSACTION Statement

tx-options =

BATCH_UPDATE

READ_ONLY WAIT CONCURRENCY
READ_WRITE NOWAIT CONSISTENCY

EVALUATING evaluating-clause
,

RESERVING reserving-clause
,

on-clause =

ON db-handle USING (tx-options)
DEFAULTS

,

AND

evaluating-clause =

constraint
db-handle .

AT VERB_TIME
COMMIT_TIME

RDML Clauses and Statements 6–129

START_TRANSACTION Statement

reserving-clause =

relation-name
db-handle .

,

FOR READ
EXCLUSIVE WRITE
PROTECTED
SHARED

WITH AUTO_LOCKING
WITH NOAUTO_LOCKING

Arguments
TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle name explicitly, Rdb uses the default transaction handle.

If you specify a transaction handle in a START_TRANSACTION statement,
you must also specify the same transaction handle on any operations that
relate to that transaction (for example, COMMIT, FINISH, FOR, ROLLBACK,
START_STREAM, and STORE statements).

DISTRIBUTED_TRANSACTION
You use this clause to specify the distributed transaction of which your
transaction will be a part.

A distributed transaction is a transaction that uses more than one database
handle. Examples of a distributed transaction include:

A transaction that attaches more than once to a single Rdb/VMS database

A transaction that attaches to two or more Rdb/VMS databases

6–130 RDML Clauses and Statements

START_TRANSACTION Statement

A transaction that attaches to more than one database management system
(an Rdb/VMS database and a VAX DBMS database, for example)

Distributed transactions are managed by DECdtm services. DECdtm services
assign a unique distributed transaction identifier (distributed TID) to each
distributed transaction when the distributed transaction is started.

For more information on using distributed transactions, see the VAX Rdb/VMS
Guide to Distributed Transactions.

DISTRIBUTED_TID distributed-tid
A keyword followed by a host language variable. You use the distributed-
tid variable to hold the value of the distributed TID that DECdtm services
generate and return to the application. DECdtm services use the TID to
distinguish the databases involved in a particular distributed transaction.

When your application invokes the DECdtm services implicitly, you do not need
to specify the DISTRIBUTED_TID keyword.

When your application explicitly calls the SYS$START_TRANS system service,
you must specify the DISTRIBUTED_TID keyword. The distributed-tid
variable is an octaword (16 bytes) that you should declare and initialize to zero
at the beginning of your application.

tx-options
Transaction options. Allows you to specify the type of transaction you want,
when you want constraints to be evaluated, and which relations you intend to
access.

on-clause
Allows you to specify a particular database and the tx-options to be applied to
the transaction that accesses that database attach.

BATCH_UPDATE
READ_ONLY
READ_WRITE
Declares what you intend to do with the transaction as a whole. READ_ONLY
is the default. The effects of these transaction modes depend on the system
you are using. Refer to the VAX Rdb/VMS RDO and RMU Reference Manual
if you are using Rdb/VMS. Refer to the VAX Rdb/ELN Reference Manual if you
are using Rdb/ELN.

RDML Clauses and Statements 6–131

START_TRANSACTION Statement

CONSISTENCY
CONCURRENCY
These options specify the consistency mode of the transaction:

CONSISTENCY is the default. This mode guarantees that when all
transactions complete by committing or rolling back, the effect on the
database is the same as if all transactions were run sequentially. In
Rdb/VMS, CONSISTENCY is the only option.

CONCURRENCY is a high-throughput option for Rdb/ELN databases
that guarantees that no transaction sees data written by another active
transaction. The concurrency algorithm reduces system overhead, thereby
improving overall performance while still guaranteeing a high level of data
consistency (although not as high as the consistency mode).

WAIT
NOWAIT
These options specify what your transaction will do if it needs resources that
are locked by another transaction:

WAIT is the default. It causes your transaction to wait until the necessary
resources are released or Rdb detects deadlock.

With NOWAIT, Rdb will return an error if the resources you need are not
immediately available, thereby forcing you to roll back your transaction.

evaluating-clause
Supported by Rdb/VMS only. Allows you to specify the point at which the
named constraints are evaluated. If you specify VERB_TIME, they are
evaluated when the data manipulation statement is issued. If you specify
COMMIT_TIME, they are evaluated when the COMMIT statement executes.
The evaluating clause is allowed syntactically, but is ignored, with read-only
transactions.

constraint
The name of an Rdb/VMS constraint.

reserving-clause
Allows you to specify the relations you plan to use and attempts to lock those
relations for your access.

6–132 RDML Clauses and Statements

START_TRANSACTION Statement

In general, include all the relations your transaction will access. If you use the
WITH AUTO_LOCKING option (the default), constraints and triggers defined
on the reserved relations will be able to access additional relations that do not
appear in the list of reserved relations. The WITH AUTO_LOCKING option
will not work for other relations not referenced in the reserving clause.

Note If you use the RESERVING clause and the WITH NOAUTO_LOCKING option,
you can access only those relations that you have explicitly reserved. If you
access multiple databases with a single START_TRANSACTION statement and
use the RESERVING clause for one or more databases, you can access only the
reserved relations in a database for which you reserve relations.

WITH AUTO_LOCKING (default)
WITH NOAUTO_LOCKING
Rdb/VMS automatically locks any relations referenced within a transaction
unless you specify the optional WITH NOAUTO_LOCKING clause. The default
is WITH AUTO_LOCKING.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the
START_TRANSACTION operation. See Section 6.17 for details.

db-handle
A database handle. A host language variable used to refer to a specific
database your program uses. Optionally qualifies relation-name with a
database handle. This option is required if you access two or more databases
that share relations with the same name.

relation-name
The name of the relation to be used during the transaction.

READ (default)
WRITE
The Rdb lock type. This keyword declares what you intend to do with the
relations you have reserved:

READ reserves the specified relations for read-only access

WRITE reserves the specified relations for read/write access

RDML Clauses and Statements 6–133

START_TRANSACTION Statement

EXCLUSIVE
PROTECTED
SHARED (default)
The Rdb/VMS share modes. The keyword you choose determines what
operations you allow others to perform on the relations you are reserving.
For read-only transactions, EXCLUSIVE and PROTECTED are syntactically
allowed, but are ignored. The CONSISTENCY mode and the choice of
read-only or read/write determines the kind of locking that is necessary.

Table 6–3 summarizes the share modes for both Rdb/ELN and Rdb/VMS.

Table 6–3 VAX Rdb/ELN and Rdb/VMS Share Modes

SHARED Other users can work with the same relations as you. Depending on
the option they choose, they can have read-only or read/write access to
the database.

PROTECTED Other users can read the relations you are using. They cannot have
write access.

EXCLUSIVE Other users cannot read or write to records from the relations
included in your transaction. If another user refers to the same
relation in a START_TRANSACTION statement, Rdb/VMS denies
access to that user.

Usage Notes
There are several levels of defaults for START_TRANSACTION. In
general, Digital recommends that you use explicit START_TRANSACTION
statements, specifying READ_WRITE or READ_ONLY, a list of relations in
the RESERVING clause, and a share mode and lock type for each relation.
Table 6–4 summarizes the defaults for each option and combination of
options.

6–134 RDML Clauses and Statements

START_TRANSACTION Statement

Table 6–4 Defaults for the START_TRANSACTION Statement

Option Default

Transaction Mode:

READ_ONLY
READ_WRITE
BATCH_UPDATE

If you omit the START_TRANSACTION statement (or
specify the START_TRANSACTION statement but do not
specify a transaction mode), then RDML starts a read-
only transaction (unless you have specified the RDML
/NODEFAULT_TRANSACTIONS qualifier). Note that if the
statement is a STORE, MODIFY, or ERASE statement, the
result is an error, because you cannot update the database
in a read-only transaction.

Lock Specification:

RESERVING If you do not specify a reserving option of a RESERVING
clause, the default is SHARED_READ.

If you specify a read/write transaction and do not
include a RESERVING clause, Rdb determines the lock
specification for each relation when it is first accessed
with a data manipulation statement.

If you specify a read/write transaction and include
a RESERVING clause, the default share mode is
SHARED.

If you use the WITH AUTO_LOCKING option of the
RESERVING clause (the default), Rdb/VMS determines
the lock specification for each relation accessed within
the transaction when the relation is first accessed with
a data manipulation statement from a constraint or
trigger.

If you do not specify a transaction mode but do include
a RESERVING clause, the default share mode is
SHARED.

If you specify a read-only transaction, the default
is SHARED_READ, whether or not you specify a
RESERVING clause.

(continued on next page)

RDML Clauses and Statements 6–135

START_TRANSACTION Statement

Table 6–4 (Cont.) Defaults for the START_TRANSACTION Statement

Option Default

Share Mode:

SHARED
PROTECTED
EXCLUSIVE

The default is SHARED.

Lock Type:

READ
WRITE

If you specify a read/write transaction, the default is
WRITE.

If you specify a read-only transaction mode, READ is
the default and only allowed lock type.

Concurrency Option:

CONSISTENCY
CONCURRENCY

CONSISTENCY is the default (and for Rdb/VMS, the only
meaningful option).

Wait Mode:

WAIT
NOWAIT

WAIT is the default.

Evaluating Clause:

VERB_TIME
COMMIT_TIME

By default, Rdb/VMS evaluates each constraint at the time
specified in the DEFINE CONSTRAINT definition. If the
constraint definition does not specify when the constraint
should be checked, the definition default is CHECK ON
UPDATE (VERB_TIME).

If you issue a data manipulation language statement (DML) without
issuing a START_TRANSACTION statement first, Rdb automatically
starts a read-only transaction for you. However, Digital recommends that
you always explicitly start a transaction statement with the START_
TRANSACTION statement. If you issue a DML statement, such as a
GET or FOR statement, and then try to use the START_TRANSACTION
statement, you will get an error message warning that a transaction is
already in progress.

Use of the /NODEFAULT_TRANSACTIONS qualifier requires that you
issue a START_TRANSACTION statement prior to any DML statement.
If you are using Rdb/VMS, see the VAX Rdb/VMS Guide to Using RDO,
RDBPRE, and RDML for details. See the Rdb/ELN documentation set if
you are using Rdb/ELN.

6–136 RDML Clauses and Statements

START_TRANSACTION Statement

You cannot specify the ROLLBACK statement as the action to be taken if
an error occurs during the START_TRANSACTION operation. If an error
occurs during this operation, no transaction exists; therefore, there is no
transaction to roll back.

If you choose not to use the default transaction handle, you must explicitly
declare the transaction handle you use in your program. See Section 6.27
for more information on the TRANSACTION_HANDLE clause.

Read-only consistency transactions are automatically started as read-only
concurrency transactions in Rdb/ELN. Therefore it does not make sense to
start a read-only transaction with CONSISTENCY. (This is not the case in
Rdb/VMS, which does not provide CONCURRENCY.)

In an Rdb/ELN environment, the choice of CONSISTENCY or
CONCURRENCY affects the throughput of both your program and
the programs of other users.

Examples
Example 1

The following statement starts a transaction in C and Pascal programs with
the following characteristics:

Uses the default transaction handle

CONSISTENCY mode in both Rdb/VMS and Rdb/ELN

WAIT option (by default)

Read-only access (by default)

START_TRANSACTION;

Example 2

The following statement starts a transaction in C and Pascal programs in the
Rdb/ELN environment with the following characteristics:

Read/write access

CONCURRENCY mode

WAIT option (by default)

START_TRANSACTION READ_WRITE CONCURRENCY;

RDML Clauses and Statements 6–137

START_TRANSACTION Statement

Example 3

The following statements start a transaction with these characteristics:

Read/write access

CONSISTENCY mode

WRITE access for the named relations (the transaction will wait until
these relations are available at this level of access)

C Statements

DATABASE RDBDEMO = FILENAME "RDBDEMO.RDB";
DATABASE FINANCE = FILENAME "DDP_FINANCES";

.

.

.

START_TRANSACTION READ_WRITE CONSISTENCY
RESERVING RDBDEMO.EMPLOYEES,

RDBDEMO.SALARY_HISTORY,
FINANCE.EMPLOYEES

FOR WRITE;

Pascal Statements

DATABASE RDBDEMO = FILENAME ’RDBDEMO.RDB’;
DATABASE FINANCE = FILENAME ’DDP_FINANCES’;

.

.

.

START_TRANSACTION READ_WRITE CONSISTENCY
RESERVING RDBDEMO.EMPLOYEES,

RDBDEMO.SALARY_HISTORY,
FINANCE.EMPLOYEES

FOR WRITE;

Example 4

The following statements start a transaction with these characteristics:

Read/write access

WITH AUTO_LOCKING

EXCLUSIVE access for the named relations (the transaction will
automatically lock the relations that the triggers and constraints associated
with this relation will need to access)

6–138 RDML Clauses and Statements

START_TRANSACTION Statement

C Example

#include <stdio.h>
DATABASE PERS = FILENAME ’PERSONNEL’;

main()
{

START_TRANSACTION READ_ONLY
RESERVING EMPLOYEES FOR EXCLUSIVE READ WITH AUTO_LOCKING;

if (ANY E IN EMPLOYEES WITH E.STATE = "MA")
printf("Someone lives in Massachusetts and AL works exclusive in NH .\n");

ROLLBACK;

FINISH;

}

Pascal Example

program startwithal4p (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

(* Program to test autolocking qualifier*)

var
DECLARE_VARIABLE emp_id SAME AS EMPLOYEES.EMPLOYEE_ID;

begin
write (’Employee_ID: ’);
readln (emp_id);

READY PERS;
START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR EXCLUSIVE WRITE
WITH AUTO_LOCKING;

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = emp_id

writeln (’Employee ID = ’, E.EMPLOYEE_ID);
ERASE E;

writeln (’Employee ID = ’, E.EMPLOYEE_ID, ’should succeed -- autolocking’);
END_FOR;

ROLLBACK;
end.

RDML Clauses and Statements 6–139

STORE Statement

6.25 STORE Statement

The STORE statement inserts a record into an existing relation. You can add
a record to only one relation with a single STORE statement. The statements
between the keywords STORE and END_STORE form a context block. You
cannot store records into views defined by any of the following record selection
expression clauses:

WITH

CROSS

REDUCED

FIRST

Note Trying to store into views that were defined with any of the preceding clauses
could cause ambiguous results in your database.

Format

STORE
handle-options

context-var IN

relation-name USING
db-handle .

statement
on-error context-var.* = record-descr

END_STORE
get-statement

6–140 RDML Clauses and Statements

STORE Statement

handle-options =

(REQUEST_HANDLE var)
TRANSACTION_HANDLE var
REQUEST_HANDLE var ,

TRANSACTION_HANDLE var

Arguments
handle-options
A request handle, a transaction handle, or both.

REQUEST_HANDLE var
A REQUEST_HANDLE keyword followed by a host language variable. A
request handle identifies a compiled Rdb request. If you do not supply a
request handle explicitly, RDML generates a unique request handle for the
compiled request. See Section 6.20 for more information on request handles.

TRANSACTION_HANDLE var
A TRANSACTION_HANDLE keyword followed by a host language variable. A
transaction handle identifies a transaction. If you do not supply a transaction
handle explicitly, RDML uses the default transaction handle.

context-var
A context variable. A temporary name that you associate with a relation. You
define a context variable in a relation clause.

db-handle
A database handle. A host language variable used to refer to a specific
database your program specifies.

relation-name
The name of a relation in a database.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the STORE
operation. See Section 6.17 for details.

RDML Clauses and Statements 6–141

STORE Statement

statement
Any valid RDML or host language statement to be executed during the
STORE operation. Use a semicolon (;) at the end of each RDML, Pascal, or C
statement.

record-descr
A record descriptor matching all of the fields of the relation. Each field of the
record descriptor must match exactly the field names and data types of the
fields in the Rdb relation referred to by the context variable.

get-statement
The GET statement. If you use a GET statement within a STORE block, it
must be the last statement before the END_STORE keyword.

Usage Notes
You can use the STORE statement to manipulate dates in international
formats. See Section 1.1.6 for more information and Section 6.16 for
examples.

Do not embed host language multipath statements (such as the C switch
statement or the Pascal case statement) in the STORE statement; this may
lead to unpredictable results. The problem occurs when a field is referred
to but not used at run time. This is because RDML assumes that any
field (qualified by the appropriate context variable) mentioned within the
STORE . . . END_STORE block is going to be updated.

In the following example, if the program falls through to case 2 at run
time, the FIRST_NAME field will be modified even though FIRST_NAME
is not mentioned in case 2. Upon seeing the fields referred to in case 1,
RDML sets up a buffer for both the FIRST_NAME and LAST_NAME fields
to be sent to the database. Because case 2 does not supply data for the
FIRST_NAME field, RDML sends to the database whatever happens to be
in the buffer for the first name field.

The following Pascal code will cause unpredictable results:

STORE E IN EMPLOYEES USING
case i of

1: E.LAST_NAME = ’Smith’;
E.FIRST_NAME = ’Andrew’;

2: E.LAST_NAME = ’Jones’;
end;

END_STORE

6–142 RDML Clauses and Statements

STORE Statement

When different fields are referred to in a multipath statement, the RDML
statement should be embedded in the host language multipath statement
as shown in the following Pascal example:

case i of

1: STORE E IN EMPLOYEES USING
E.LAST_NAME = ’Smith’;
E.FIRST_NAME = ’Andrew’;

END_STORE;

2: STORE E IN EMPLOYEES USING
E.LAST_NAME = ’Jones’;

END_STORE;

end;

You can use any valid format of the GET statement within the bounds of
the STORE . . . END_STORE block. However, the GET statement must be
the last statement before the END_STORE keyword.

You may find it particularly useful to use the GET statement to place the
database key (dbkey) of the record you just stored into a host language
variable. Use the GET . . . RDB$DB_KEY construct to assign the value of
the dbkey to the host language variable.

If you do not supply a value for every field in the relation in which you are
storing a record, that fields for which no values are supplied are marked as
missing.

The STORE * statement lets you manipulate database values at the record
level rather than at the field level. You can store all the fields in a relation
with the STORE * statement. To use STORE *, you must first declare a
record structure that contains all the fields in the relation, with record field
names that match the database field names exactly. See Example 4.

Note Trying to store records into views that were defined with any of the
preceding clauses could cause unexpected results.

Examples
Example 1

The following programs demonstrate the use of the STORE statement and
interactive programming to add a new record to the COLLEGES relation. The
programs:

Prompt for user input

RDML Clauses and Statements 6–143

STORE Statement

Start a read/write transaction

Store the user-supplied values in the relation

Roll back the stored record from the database

Note that the C program uses the function read_string to prompt for user
input and to hold these values. This function pads the input values with the
necessary number of blanks to match the text size of each field. For more
information on read_string, see Appendix B. The readln function in Pascal
pads strings for you.

C Program

DATABASE PERS = FILENAME "PERSONNEL";

extern void read_string();
static DECLARE_VARIABLE coll_code SAME AS COLLEGES.COLLEGE_CODE;
static DECLARE_VARIABLE coll_name SAME AS COLLEGES.COLLEGE_NAME;
static DECLARE_VARIABLE coll_city SAME AS COLLEGES.CITY;
static DECLARE_VARIABLE coll_state SAME AS COLLEGES.STATE;
static DECLARE_VARIABLE post_code SAME AS COLLEGES.POSTAL_CODE;

main()
{
read_string ("Enter College Code: ", coll_code, sizeof(coll_code));
read_string ("Enter College Name: ", coll_name, sizeof(coll_name));
read_string ("Enter College City: ", coll_city, sizeof(coll_city));
read_string ("Enter College State: ",coll_state, sizeof(coll_state));
read_string ("Enter Postal Code: ", post_code, sizeof(post_code));

READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
strcpy (C.COLLEGE_CODE, coll_code);
strcpy (C.COLLEGE_NAME, coll_name);
strcpy (C.CITY, coll_city);
strcpy (C.STATE, coll_state);
strcpy (C.POSTAL_CODE, post_code);

END_STORE;

ROLLBACK;
FINISH;
}

6–144 RDML Clauses and Statements

STORE Statement

Pascal Program

program store_with_host_lang (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
DECLARE_VARIABLE coll_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE coll_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE coll_city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE coll_state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE post_code SAME AS COLLEGES.POSTAL_CODE;

begin
writeln (’Enter College Code:’);
readln (coll_code);
writeln (’Enter College Name:’);
readln (coll_name);
writeln (’Enter College City:’);
readln (coll_city);
writeln (’Enter College State:’);
readln (coll_state);
writeln (’Enter College Postal Code:’);
readln (post_code);

READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.COLLEGE_CODE := coll_code;
C.COLLEGE_NAME := coll_name;
C.CITY := coll_city;
C.STATE := coll_state;
C.POSTAL_CODE := post_code;

END_STORE;

ROLLBACK;
FINISH;
end.

Example 2

The following programs demonstrate the use of the STORE statement with
a record selection expression supplying the value for one of the fields. The
programs:

Start a read/write transaction

Assign literal values to all fields in the JOBS relation except the
MAXIMUM_SALARY field

Use the FIRST FROM statement to find the first record in the JOBS
relation that has a wage class of 1

RDML Clauses and Statements 6–145

STORE Statement

Assign the maximum salary from this selected record to the MAXIMUM_
SALARY field for the record being stored

Store these values in the relation

Roll back the record from the database

Note that the C program uses the function pad_string to prompt for user input
and to store the values in the relation. This function pads the input values
with the necessary number of blanks to match the text size of each field. For
more information, and the source code for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();
main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

STORE J1 IN JOBS USING
pad_string ("CLNR", J1.JOB_CODE, sizeof(J1.JOB_CODE));
pad_string ("1", J1.WAGE_CLASS, sizeof(J1.WAGE_CLASS));
pad_string ("Cleaner",J1.JOB_TITLE, sizeof(J1.JOB_TITLE));
J1.MINIMUM_SALARY = 8000;
J1.MAXIMUM_SALARY = (FIRST J2.MAXIMUM_SALARY FROM J2 IN JOBS

WITH J2.WAGE_CLASS = "1");
END_STORE;

ROLLBACK;
FINISH;
}

Pascal Program

program store_with_assign (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

6–146 RDML Clauses and Statements

STORE Statement

STORE J1 IN JOBS USING
J1.JOB_CODE := ’CLNR’;
J1.WAGE_CLASS := ’1’;
J1.JOB_TITLE := ’Cleaner’;
J1.MINIMUM_SALARY := 8000;
J1.MAXIMUM_SALARY := (FIRST J2.MAXIMUM_SALARY FROM J2 IN JOBS

WITH J2.WAGE_CLASS = ’1’);
END_STORE;

ROLLBACK;
FINISH;
end.

Example 3

The following programs demonstrate the use of the STORE statement to store
VARYING TEXT data types.

The C program uses the function pad_string to store the values in the fields
that are defined as text data types. This function appends trailing blanks to
these values. This ensures that the values match the length defined for the
field. For more information and the source code for pad_string, see Appendix B.
The C program also uses a macro, RDB$CSTRING_TO_VARYING to store a
value in a field defined as a varying text data type. This macro is defined in
RDMLVAXC.H, which RDML automatically includes into your program. The
Pascal program does not require the use of any special functions to store either
varying text data types or fixed-length data types; in both cases, the Pascal
assignment operator is sufficient.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();
main()
{
READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN CANDIDATES USING
pad_string ("Clarkson", C.LAST_NAME, sizeof(C.LAST_NAME));
pad_string ("Joel", C.FIRST_NAME, sizeof(C.FIRST_NAME));
pad_string ("R", C.MIDDLE_INITIAL, sizeof(C.MIDDLE_INITIAL));
RDB$CSTRING_TO_VARYING ("Available part time until June 15th",

C.CANDIDATE_STATUS);
END_STORE;

RDML Clauses and Statements 6–147

STORE Statement

ROLLBACK;
FINISH;
}

Pascal Program

program store_varying (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

begin
READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN CANDIDATES USING
C.LAST_NAME := ’Clarkson’;
C.FIRST_NAME := ’Joel’;
C.MIDDLE_INITIAL := ’R’;
C.CANDIDATE_STATUS := ’Available part time until June 15th’;

END_STORE;

ROLLBACK;
FINISH;
end.

Example 4

The following programs demonstrate the use of the STORE * statement to store
varying text in a COLLEGES record. The programs declare a host language
record structure that contains a field for each field in the COLLEGES relation.
After the user specifies the field values, they are stored in the database with
the STORE * statement.

The C program uses the function read_string to prompt for and to read values
into host language variables. For more information and the source code for
read_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

static struct
{
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;
} colleges_record;

extern void read_string();

6–148 RDML Clauses and Statements

STORE Statement

main()
{
read_string ("Enter College Code: \n", colleges_record.college_code,

sizeof(colleges_record.college_code));
read_string ("Enter College Name: \n", colleges_record.college_name,

sizeof(colleges_record.college_name));
read_string ("Enter College City: \n", colleges_record.city,

sizeof(colleges_record.city));
read_string ("Enter College State: \n",colleges_record.state,

sizeof(colleges_record.state));
read_string ("Enter Postal Code: \n", colleges_record.postal_code,

sizeof(colleges_record.postal_code));

READY PERS;
START_TRANSACTION READ_WRITE;

STORE C IN COLLEGES USING
C.* = colleges_record;

END_STORE;

COMMIT;
FINISH;
}

Pascal Program

program store_with_host_lang (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var
colleges_record:
RECORD
DECLARE_VARIABLE college_code SAME AS COLLEGES.COLLEGE_CODE;
DECLARE_VARIABLE college_name SAME AS COLLEGES.COLLEGE_NAME;
DECLARE_VARIABLE city SAME AS COLLEGES.CITY;
DECLARE_VARIABLE state SAME AS COLLEGES.STATE;
DECLARE_VARIABLE postal_code SAME AS COLLEGES.POSTAL_CODE;

end;

begin
writeln (’Enter College Code:’);
readln (colleges_record.college_code);
writeln (’Enter College Name:’);
readln (colleges_record.college_name);
writeln (’Enter College City:’);
readln (colleges_record.city);
writeln (’Enter College State:’);
readln (colleges_record.state);
writeln (’Enter College Postal Code:’);
readln (colleges_record.postal_code);

READY PERS;
START_TRANSACTION READ_WRITE;

RDML Clauses and Statements 6–149

STORE Statement

STORE C IN COLLEGES USING
C.* = colleges_record;

END_STORE;

COMMIT;
FINISH;

end.

6–150 RDML Clauses and Statements

STORE Statement with Segmented Strings

6.26 STORE Statement with Segmented Strings

The STORE statement with segmented strings inserts a segment into a
segmented string.

Format

STORE
(TRANSACTION_HANDLE var)

ss-handle IN ss-field

USING statement END_STORE
on-error

Arguments
ss-handle
A segmented string handle. A name that identifies the segmented string.

ss-field
A qualified field name that refers to a field defined with the SEGMENTED
STRING data type. Note that this field name, like all field names in a FOR
statement, must be qualified by its own context variable. This second context
variable must match the context variable declared in the outer FOR statement.
See the Examples section.

on-error
The ON ERROR clause. Specifies host language statements or RDML
statements or both to be performed if an error occurs during the STORE
operation. See Section 6.17 for details.

assignment
An RDML or host language statement that associates the database variables
with a value expression.

RDML Clauses and Statements 6–151

STORE Statement with Segmented Strings

The database variables refer to the segment of a segmented string and
its length. The special name for the segment can be either ‘‘VALUE’’ or
‘‘RDB$VALUE’’. The special name for the segment length can be either
‘‘LENGTH’’ or ‘‘RDB$LENGTH’’. You cannot assign any other database
variables to the value expressions for segmented strings.

The assignment operator for RDML Pascal is ‘‘:=’’.

.

.

.
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
.
.
.

The assignment operator for RDML C is ‘‘=’’ or strcpy.

.

.

.
for (line = 0; line <= 2; line++)

STORE LINE IN R.RESUME
strcpy(LINE.VALUE,document[line]);
LINE.LENGTH = strlen(LINE.VALUE);

END_STORE;
.
.
.

For more information, see the segmented string examples in this section.

6–152 RDML Clauses and Statements

STORE Statement with Segmented Strings

Usage Notes
The STORE statement with segmented strings must be embedded within
a simple STORE . . . END_STORE block or within a (MODIFY . . . END_
MODIFY) block.

Do not declare the host language variable to hold a segmented string field
with the DECLARE_VARIABLE clause. The data type generated for a
segmented string field is that of the segmented string identifier, which is
the value that actually is stored in a segmented string field. For example,
the following Pascal code might be used to store a RESUME field in the
RESUMES relation. You should not declare the host language variable
document with the DECLARE_VARIABLE clause.

STORE R IN RESUMES USING
R.EMPLOYEE_ID = ’12345’
for linecount := 0 to 2 do

STORE SEG IN R.RESUME USING
SEG.VALUE := document[lincnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

RDML defines a special name to refer to the segments of a segmented
string. This value expression is equivalent to the field name; it names the
segments of the string. Furthermore, because segments can vary in length,
RDML also defines a name for the length of a segment. You must use these
value expressions to retrieve the length and value of a segment. These
names are:

RDB$VALUE or VALUE

The value stored in a segment of a segmented string

RDB$LENGTH or LENGTH

The length in bytes of a segment

Be sure to define a sufficiently large value for the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name. An adequate buffer
size is needed to store large segmented strings (using segmented string
storage maps), in storage areas other than the default RDB$SYSTEM
storage area. The minimum acceptable value for the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name must be equal to the sum
of the length of the segments of the segmented string. For example, if you
know that the sum of the length of the segments is one megabyte, then
1,048,576 bytes is an acceptable value for this logical name.

RDML Clauses and Statements 6–153

STORE Statement with Segmented Strings

You must specify the logical name value because when the RDML
precompiler stores segmented strings, Rdb/VMS does not know which table
contains the string until after the entire string is stored. Rdb/VMS buffers
the entire segmented string, if possible, and does not store it until the
STORE statement executes.

If the segmented string remains buffered, it is stored in the appropriate
storage area. If the string is not buffered (because it is larger than the
defined value for the logical name or the default value of 10,000 bytes), it
is stored in the default storage area and the following exception message is
displayed:

%RDB-F-IMP_EXC, facility-specific limit exceeded
-RDMS-E-SEGSTR_AREA_INC, segmented string was stored incorrectly

To avoid this error, set the value of the RDMS$BIND_SEGMENTED_
STRING_BUFFER logical name to a sufficiently large value. Note that
a value of up to 500 MB can be specified for this logical name. See the
VAX Rdb/VMS RDO and RMU Reference Manual for more information on
defining storage areas.

Examples
Example 1

The following programs demonstrate the use of the STORE statement to store
segmented strings in a record. The programs:

Declare an array to hold the segmented strings to be stored

Assign values to the array

Use a STORE operation to store the employee ID in the RESUMES relation

Embed a second STORE operation in the first, in order to store the
segmented strings in the same record in which the value for EMPLOYEE_
ID has been stored

Store the values from the array into the RESUME field of the RESUMES
relation

Complete the STORE operation

Retrieve the segmented strings (just stored) using a nested FOR statement

See Section 6.14 for more information on retrieving segmented strings.

6–154 RDML Clauses and Statements

STORE Statement with Segmented Strings

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

main()
{
int line;
char *document[3];

document[0] = "first line of resume ";
document[1] = "second line of resume ";
document[2] = "last line of resume ";

READY PERS;
START_TRANSACTION READ_WRITE;

STORE R IN RESUMES USING
strcpy (R.EMPLOYEE_ID,"12345");

for (line = 0; line <= 2; line++)
STORE LINE IN R.RESUME

strcpy(LINE.VALUE,document[line]);
LINE.LENGTH = strlen(LINE.VALUE);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = "12345"
FOR LINE IN R.RESUME

printf("%s\n",LINE.VALUE);
END_FOR;

END_FOR;

COMMIT;
FINISH;
}

Pascal Program

program segstr (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

type lines = varying [80] of char;
var linecnt : integer;

document : array [0..2] of lines;

begin

document[0] := ’first line of resume ’;
document[1] := ’second line of resume ’;
document[2] := ’last line of resume ’;

READY PERS;
START_TRANSACTION READ_WRITE;

RDML Clauses and Statements 6–155

STORE Statement with Segmented Strings

STORE R IN RESUMES USING
R.EMPLOYEE_ID:= ’12345’;
for linecnt := 0 to 2 do

STORE SEG IN R.RESUME
SEG := document[linecnt];
SEG.LENGTH := length(document[linecnt]);

END_STORE;
END_STORE;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
FOR SEG IN R.RESUME

writeln (SEG);
END_FOR;

END_FOR;

COMMIT;
FINISH;
end.

6–156 RDML Clauses and Statements

TRANSACTION_HANDLE Clause

6.27 TRANSACTION_HANDLE Clause

A transaction handle is a host language variable that allows you to associate
a name with a particular transaction. If you do not supply a handle name
explicitly, RDML defines a default transaction handle for the transaction. You
can use a transaction handle in the following RDML statements, clauses and
functions:

Boolean functions (ANY, UNIQUE)

COMMIT

DECLARE_STREAM

FOR

FOR SEGMENTED_STRINGS

PREPARE

ROLLBACK

START_STREAM, Undeclared

START_TRANSACTION

Statistical functions (AVERAGE, COUNT, MIN, MAX, TOTAL)

STORE

STORE SEGMENTED_STRINGS

For the syntax diagram that shows the placement of the TRANSACTION_
HANDLE in each of the preceding statements, see the section describing that
statement.

Format

transaction-handle =

(TRANSACTION_HANDLE host-var)

RDML Clauses and Statements 6–157

TRANSACTION_HANDLE Clause

Argument
host-var
A valid host language variable. See Usage Notes.

Usage Notes
A transaction handle must be:

Declared in the host language program as:

Either [VOLATILE]INTEGER or RDML$HANDLE_TYPE for Pascal

Either Integer (int) or RDML$HANDLE_TYPE for C

Initialized to zero (0) for C and Pascal

Note Rdb/VMS allows each user only one active transaction per database. A user
is permitted to have multiple active transactions as long as each transaction
is either attached to a different database, or each transaction is a separate
instance of an attach to the same database.

Rdb/ELN allows each user to have multiple active transactions attached to
the same database.

Examples
Example 1

The following programs demonstrate the use of a transaction handle. These
programs declare the host language variable, emp_update. The programs
use emp_update to qualify the transaction in the START_TRANSACTION
statement, the record selection expression, and ROLLBACK (instead of the
COMMIT statement). The record selection expression modifies the record
with the specified identification number in the EMPLOYEES relation. The
COMMIT statement, also qualified with the transaction handle, ensures that
the modified record is stored in the database.

The C program uses the function pad_string to append trailing blanks and the
null terminator to the LAST_NAME field. This ensures that the length of the
last name matches the length defined for the field. For more information and
the source code for pad_string, see Appendix B.

6–158 RDML Clauses and Statements

TRANSACTION_HANDLE Clause

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
int EMP_UPDATE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00178"

MODIFY E USING
pad_string("Brannon", E.LAST_NAME, sizeof(E.LAST_NAME));

END_MODIFY;
END_FOR;

ROLLBACK (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
}

Pascal Program

program trhand (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;

var EMP_UPDATE : [volatile] integer := 0;

begin

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE EMP_UPDATE) READ_WRITE;

FOR (TRANSACTION_HANDLE EMP_UPDATE) E IN EMPLOYEES
WITH E.EMPLOYEE_ID = ’00178’

MODIFY E USING
E.LAST_NAME := ’Brannon’;

END_MODIFY;
END_FOR;

ROLLBACK (TRANSACTION_HANDLE EMP_UPDATE);
FINISH;
end.

RDML Clauses and Statements 6–159

TRANSACTION_HANDLE Clause

Example 2

The following programs demonstrate the use of a transaction handle with a
ROLLBACK statement to undo changes to the database made with the STORE
statement. The programs:

Start a read/write transaction, SAL_INCREASE

Store a new JOBS record using the SAL_INCREASE transaction

Use the ROLLBACK statement to undo the changes made to the database
during the SAL_INCREASE transaction; that is, the new record is not
stored in the database

Note that the C program uses the function pad_string. This function ensures
that the values stored in each field have the correct number of trailing blanks
to match the text size of the field. For more information and the source code
for pad_string, see Appendix B.

C Program

#include <stdio.h>
DATABASE PERS = FILENAME "PERSONNEL";

extern void pad_string();

main()
{
int SAL_INCREASE = 0;

READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
pad_string ("TYPS", J.JOB_CODE, sizeof(J.JOB_CODE));
pad_string ("1", J.WAGE_CLASS, sizeof(J.WAGE_CLASS));
pad_string ("TYPIST", J.JOB_TITLE, sizeof(J.JOB_TITLE));
J.MINIMUM_SALARY = 10000;
J.MAXIMUM_SALARY = 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
}

6–160 RDML Clauses and Statements

TRANSACTION_HANDLE Clause

Pascal Program

program rollback_trans (input,output);
DATABASE PERS = FILENAME ’PERSONNEL’;
var sal_increase : [volatile] integer := 0;

begin
READY PERS;
START_TRANSACTION (TRANSACTION_HANDLE SAL_INCREASE) READ_WRITE;

STORE (TRANSACTION_HANDLE SAL_INCREASE) J IN JOBS USING
J.JOB_CODE := ’TYPS’;
J.WAGE_CLASS := ’1’;
J.JOB_TITLE := ’Typist’;
J.MINIMUM_SALARY := 10000;
J.MAXIMUM_SALARY := 17000;

END_STORE;

ROLLBACK (TRANSACTION_HANDLE SAL_INCREASE);
FINISH;
end.

RDML Clauses and Statements 6–161

A
RDML-Generated Data Types

The tables in this appendix list the VAX C, VAX Pascal, and VAXELN Pascal
data types that RDML generates for each data type permitted in an Rdb
database.

In some cases, the data type that RDML generates depends on the scale factor.
For example, the following entry is from the VAX C table:

Rdb Database Data Type VAX C Data Type Generated by RDML

SIGNED WORD SCALE n int (n=1,2,3,4) char [8] (n>4)

This table entry indicates that the value of n determines whether an ‘‘int’’
or ‘‘char [8]’’ data type is defined for a database field whose type is SIGNED
WORD SCALE n. If n equals 1, 2, 3, or 4, RDML will declare that field as an
int. If n is greater than 4, RDML will declare that field as a char [8].

See Table A–1 for RDML-generated data types for VAX C.

Table A–1 RDML-Generated Data Types for VAX C

Rdb Database Data Type VAX C Data Type Generated by RDML

SIGNED BYTE (no scale) char

SIGNED BYTE SCALE n short (n=1,2)

SIGNED BYTE SCALE n int (n=3,4,5,6,7)

SIGNED BYTE SCALE n char [8] (n>8)

SIGNED BYTE SCALE –n double

(continued on next page)

RDML-Generated Data Types A–1

Table A–1 (Cont.) RDML-Generated Data Types for VAX C

Rdb Database Data Type VAX C Data Type Generated by RDML

SIGNED WORD short

SIGNED WORD SCALE n int (n=1,2,3,4)

SIGNED WORD SCALE n char [8] (n>4)

SIGNED WORD SCALE –n float

SIGNED LONGWORD int

SIGNED LONGWORD SCALE n char [8]

SIGNED LONGWORD SCALE –n double

SIGNED QUADWORD char [8]

SIGNED QUADWORD SCALE n char [8]

SIGNED QUADWORD SCALE –n double

F_FLOATING float

G_FLOATING double

DATE char [8]

TEXT n char [n+1]

VARYING STRING n unsupported

SEGMENTED STRING ID char [8]

The VARYING STRING data type is not supported in C. However, you can
still use VARYING STRINGS in RDML/C. See Section 6.13, Example 4, and
Section 6.25, Example 3.

See Table A–2 for RDML-generated data types for VAX Pascal and Table A–3
for VAXELN Pascal.

Table A–2 RDML-Generated Data Types for VAX Pascal

Rdb Database Data Type VAX Pascal Data Type Generated by RDML

SIGNED BYTE (no scale) [BYTE] –128 . . . 127;

SIGNED BYTE SCALE n WORD (n=1,2)

SIGNED BYTE SCALE n INTEGER (n=3,4,5,6,7)

SIGNED BYTE SCALE n RECORD L0:UNSIGNED;L1:INTEGER;END
(n>8)

(continued on next page)

A–2 RDML-Generated Data Types

Table A–2 (Cont.) RDML-Generated Data Types for VAX Pascal

Rdb Database Data Type VAX Pascal Data Type Generated by RDML

SIGNED BYTE SCALE –n DOUBLE (n<0)

SIGNED WORD [WORD] –32768..32767

SIGNED WORD SCALE n INTEGER (n=1,2,3,4)
RECORD
L0:UNSIGNED;L1:INTEGER;END (n>4)

SIGNED WORD SCALE –n REAL

SIGNED LONGWORD INTEGER

SIGNED LONGWORD SCALE n RECORD L0:UNSIGNED;L1:INTEGER;END

SIGNED LONGWORD SCALE –n DOUBLE

SIGNED QUADWORD QUADWORD RECORD L0:UNSIGNED;
L1:INTEGER;END

SIGNED QUADWORD SCALE n RECORD L0:UNSIGNED;L1:INTEGER;END

SIGNED QUADWORD SCALE –n DOUBLE

F_FLOATING REAL

G_FLOATING DOUBLE

DATE [BYTE(8)] RECORD END

TEXT n CHAR (n=1) PACKED ARRAY [1..n] OF CHAR
(n>1)

VARYING STRING n VARYING [n] OF CHAR

SEGMENTED STRING ID RECORD L0:UNSIGNED;L1:INTEGER;END

Table A–3 RDML-Generated Data Types for VAXELN Pascal

Rdb Database Data Type
VAXELN Pascal Data Type Generated by
RDML

SIGNED WORD –32768..32767

SIGNED WORD SCALE n INTEGER (n=1,2,3,4) LARGE_INTEGER (n>4)

SIGNED WORD SCALE –n REAL

SIGNED LONGWORD INTEGER

SIGNED LONGWORD SCALE n LARGE_INTEGER

SIGNED LONGWORD SCALE –n DOUBLE

SIGNED QUADWORD LARGE_INTEGER

(continued on next page)

RDML-Generated Data Types A–3

Table A–3 (Cont.) RDML-Generated Data Types for VAXELN Pascal

Rdb Database Data Type
VAXELN Pascal Data Type Generated by
RDML

SIGNED QUADWORD SCALE n LARGE_INTEGER

SIGNED QUADWORD SCALE –n DOUBLE

F_FLOATING REAL

G_FLOATING DOUBLE

DATE LARGE_INTEGER

TEXT n CHAR (n=1) STRING(n)

VARYING STRING n VARYING_STRING(n)

SEGMENTED STRING ID LARGE_INTEGER

A–4 RDML-Generated Data Types

B
VAX C Language Functions for I/O

Operations

The VAX C functions described in this appendix are used to simplify the
code in examples and to allow you to concentrate on the RDML statements
rather than C input/output (I/O) issues. When you design your application
programs you should carefully consider the I/O operations and determine the
best method for handling these operations in your application. Most likely, the
simple methods shown here are not sufficient. Read the Guide to VAX C for
information on handling I/O tasks in C programs.

The C functions described in this appendix are:

pad_string

read_float

read_int

read_string

The source code for the functions appears at the end of this appendix.

VAX C Language Functions for I/O Operations B–1

Table B–1 Summary of VAX C Input/Output Functions

pad_string Truncates or appends blanks to text strings. This function is
used in the examples with STORE and MODIFY statements to
ensure that the size of the string to be stored matches the size of
the field into which it is being stored.

read_int Prompts for integer input from the keyboard and stores this
input in a C variable. This function also performs error testing
for valid input.

read_float Prompts for floating-point input from the keyboard and stores
this input in a C variable. This function also performs error
testing for valid input.

read_string Prompts for text string input from the keyboard and stores this
input in a C variable. This function also truncates or appends
blanks to the input text strings as appropriate to fill out the field
to the correct size. When used in conjunction with STORE and
MODIFY statements, read_string ensures that the size of the
string to be stored matches the size of the field into which it is
being stored.

Usage Notes
To use these functions with the sample programs, you must:

1 Create a file that contains the functions listed in the following source code.

2 Name this file using the appropriate file extension (for example, C_
FUNCTIONS.C).

3 Compile this file using the CC/G_FLOATING command.

4 Declare within your module those functions that you want to call.

5 Link the object file that contains these functions to the object file for the
module in which you want to use them. For example:

LINK myfile.obj,c_functions.obj,options_file/OPT

B–2 VAX C Language Functions for I/O Operations

Source Code:

/***
* *
* Code is provided for the following four functions. *
* *
* ’pad_string’ copies a null terminated string to a *
* specified target, with space padding or truncation. *
* It is used by the ’read_string’ function. *
* *
* ’read_int’ reads decimal integer from standard input. *
* *
* ’read_float’ reads a floating-point (real) number from *
* standard input. *
* *
* ’read_string’ reads a string from standard input, and *
* returns a padded or truncated result. *
* *
***/

#include <stdio.h>

#ifndef TRUE
#define TRUE (1==1)
#define FALSE (1!=1)
#endif

#ifndef EOS
#define EOS ’\0’
#endif
/***

* *
* pad_string (source, target, size) *
* *
* Function to take a null terminated string (source) *
* and copy it to target, padding with spaces, or *
* truncating, as appropriate, to the specified size. *
* *
* Note that the resulting string will not be null- *
* terminated. *
* *
***/

void pad_string(source, target, size)
char *source,

*target;
int size;
{
char *sptr = source, /* Temporary source ptr */

tptr = target; / Temporary target ptr */

/* Copy no more than ’size’ chars to the target string. */

VAX C Language Functions for I/O Operations B–3

while (size > 0)
{
if (!(*tptr = *sptr))

break;
sptr++;
tptr++;
size--;
}

/* Pad the end with spaces, if necessary. */

while (size-- > 0)
*tptr++ = ’ ’;

}
/***

* *
* read_int(prompt) *
* *
* Function to read a decimal integer from stdin. *
* Keeps prompting until valid integer is input. *
* *
***/

int read_int(prompt)
char *prompt;
{
int len = 0; /* Temporary length */
int i; /* Temporary integer */
int matches; /* Match count */

if (prompt != NULL)
len = strlen(prompt); /* Extract the length once */

while (TRUE)
{
/* If prompt specified, output it */

if (len != 0)
fputs(prompt, stdout);

/* Get a decimal integer from stdin, converted */
/* (Note that any white space will terminate it) */

matches = scanf("%d", &i);

/* Flush extraneous input */

while (getchar() != ’\n’)
;

if (matches == 1) /* If we matched on the scanf, we got one */
break;

/* Invalid, so print error message and do it again */

fprintf(stderr, "Invalid input -- try again\n");
}

return i;
}

B–4 VAX C Language Functions for I/O Operations

/***
* *
* read_float(prompt) *
* *
* Function to read a floating-point (real) number *
* from stdin. *
* Keeps prompting until valid float is input. *
* *
***/

float read_float(prompt)
/* prompt is the phrase you want to output to the terminal to

prompt the user for a real number. */
char *prompt;
{
int len = 0; /* Temporary length */
float f; /* Temporary float */
int matches; /* Match count */

if (prompt != NULL)
len = strlen(prompt); /* Extract the length once */

while (TRUE)
{
/* If prompt specified, output it */

if (len != 0)
fputs(prompt, stdout);

/* Get a real number from stdin, converted */
/* (Note that any white space will terminate it) */

matches = scanf("%f", &f);

/* Flush extraneous input */

while (getchar() != ’\n’)
;

if (matches == 1) /* If we matched on the scanf, we got one */
break;

/* Invalid, so print error message and do it again */

fprintf(stderr, "Invalid input -- try again\n");
}

return f;
}

VAX C Language Functions for I/O Operations B–5

/***
* *
* read_string(prompt, target, size) *
* *
* Function to read a string from stdin. *
* Truncates or pads the string to size. *
* *
* The returned string will not be null-terminated. *
* *
* If valid string input, returns 0. *
* If EOF, returns EOF. *
* *
***/

int read_string(prompt, target, size)
char *prompt;
char *target;
int size;
{
static char buffer[132]; /* Input buffer */
int return_value; /* Value to be returned */

/* If prompt specified, output it */

if (prompt != NULL)
if (strlen(prompt) != 0)

fputs(prompt, stdout); /* Output prompt without newline */

/* Get an input line */

if (gets(buffer) != NULL) /* Get a line of input */
{
pad_string(buffer, target, size); /* Pad or truncate it */
return_value = 0; /* Return success */
}

else
return_value = EOF;

return return_value;
}

B–6 VAX C Language Functions for I/O Operations

Index

A
Absent values

MISSING conditional expression,
3–27

Access control
START_TRANSACTION statement,

6–128
Accessing multiple databases

FINISH statement, 6–55
using database handles, 6–21
using the BASED ON clause, 6–4
using the READY statement, 6–102

Accessing records
database key, 2–26
START_TRANSACTION statement,

6–128
Access modes

EXCLUSIVE, 6–134, 6–137
PROTECTED, 6–134, 6–137
SHARED, 6–134, 6–137

Adding a record to a relation
STORE statement, 6–140

Addition
arithmetic operator, 2–5

Advancing in a stream
FETCH statement, 6–49
FOR statement, 6–58

Aggregate expressions
See Statistical functions

Alphabetic characters
sort order of, 4–45

AND logical operator, 3–4
described, 3–7e to 3–8e

ANY conditional expression
described, 3–9, 3–10e, 3–11e to

3–12e
testing for presence of record, 3–9

Arithmetic expression, 2–6e to 2–8e
order of evaluation, 2–5

Arithmetic operator, 2–4t
addition, 2–5
division, 2–5
in value expression, 2–4
multiplication, 2–5, 2–6
subtraction, 2–5, 2–7
unary operator, 2–5

Arithmetic value expressions, 2–2, 2–4
ASCII

sorting order, 4–45
ASCTIM routine

using to convert DATE data types,
4–5, 4–11, 5–19

Assigning values to host language
variable

using the GET statement, 6–71, 6–72
Assignment operator

in STORE statement with segmented
strings, 6–152

Index–1

AT END clause
described, 6–50, 6–51e to 6–53e

AUTO_LOCKING option
of START_TRANSACTION statement,

6–132, 6–133, 6–134t
Availability of a database

testing for, 6–103
AVERAGE function

average of values, 5–4
described, 5–4, 5–6e to 5–7e
restrictions, 5–5

B
BASED ON clause

data type generated, 6–5
declaring function and type, 6–4
described, 6–4, 6–5e
extracting data type and size of field,

6–4
multiple database access, 6–4
restrictions, 6–4, 6–5

BETWEEN conditional expression,
3–13

described, 3–13, 3–14e to 3–15e
with DATE data types, 3–13
with numerics, 3–14
with text strings, 3–15

Binding to a database
See DATABASE statement

Boolean expressions, 3–1
See also Conditional expressions

C
Callable RDO, 1–3

using, 1–3
Case sensitivity

and conditional expressions
CONTAINING, 3–16
MATCHING, 3–21
STARTING WITH, 3–33

CDD/Plus
path names, 6–14
restrictions, 6–16

Changing field values
MODIFY statement, 6–77

Changing record values
MODIFY statement, 6–77

C language
converting DATE data types, 5–19
DATABASE statement

placement in program, 6–16
data types generated by RDML, A–1
declaring

function variables, 6–4
request handles, 6–106
status values, 6–90
transaction handles, 6–158
typedef, 6–4
variables, 6–32

functions used in this manual
pad_string, B–1
read_float, B–2
read_int, B–1
read_string, B–2
source code, B–3
usage of, B–2

issuing a call to RDB$RELEASE_
REQUEST, 6–108

storing VARYING TEXT, 6–147
string literals, 3–13
variables

usage with RDML, 2–20
Closing a database

FINISH statement, 6–54
Closing an open stream

COMMIT statement, 6–8
Combining records from different

relations
See CROSS clause

COMMIT statement
and ending streams, 6–8
closing open streams, 6–8
described, 6–7, 6–9e
restrictions, 6–8
to release locks, 6–8
writing changes to a database, 6–7

Index–2

Committing a transaction
in an Rdb/ELN environment, 6–99

Common data dictionary (CDD/Plus)
See CDD/Plus

COMPILETIME option
DATABASE statement, 6–14
restrictions, 6–16

COMPUTED BY clause
used with RSE, 4–3

Concatenated value expression, 2–2
Conditional expressions, 1–2

ANY, 3–9
BETWEEN, 3–13
CONTAINING, 3–16
described, 3–1, 3–6e to 3–8e
effect of a missing value, 3–1
MATCHING, 3–21
MISSING, 3–27
order of evaluation, 3–4
relational operators, 3–31, 3–31t
retrieving result, 6–72
STARTING WITH, 3–33
summary of, 3–4t
truth table, 3–4t
UNIQUE, 3–38
WITH clause, 3–1

Conditional programming
using the DECLARE_STREAM

statement, 6–27
using the STORE statement, 6–142

Connecting to a database
See DATABASE statement

Consistency mode
START_TRANSACTION statement,

6–137
Consistency of data

concurrency option, 6–132
consistency option, 6–132

CONTAINING conditional expression
described, 3–16, 3–18e to 3–20e
pattern matching, 3–16
restrictions, 3–17
use with DATE data type, 3–17
with multinational characters, 3–17

Context block
STORE statement, 6–140

Context variable
described, 4–8, 4–10e to 4–12e
relation clause, 2–9, 4–36
to distinguish field, 2–9

Converting DATE data types, 4–5,
4–11, 5–19

COUNT function
described, 5–8, 5–9e to 5–11e
effects of missing values, 5–9
number of records in a stream, 5–8
using with the GET statement, 4–4,

5–9
CROSS clause

combining records from different
relations, 4–13

cross product, 4–14
described, 4–13, 4–15e to 4–22e
OVER clause restrictions, 4–13
relational joins, 4–13
restrictions, 4–14
used with index keys, 4–14
with reflexive joins, 4–17

Cross product
definition, 4–14

D
Database field

numeric, 2–4
Database field value expression, 2–2

described, 2–9, 2–10, 2–10e to 2–12e
Database handle clause, 6–20
Database handles

described, 6–20, 6–22e to 6–25e
EXTERNAL, 6–21
GLOBAL, 6–21
identifying a database, 6–20
in precompiled program, 6–21t
multiple database access, 6–21
restrictions, 6–21
used with synchronous and

asynchronous processes, 6–21

Index–3

Database keys
See Dbkeys

Database names
specifying, 6–11

Databases
adding record

STORE statement, 6–140
attaching to

DATABASE statement, 6–11
consistency, 6–137
detaching from

FINISH statement, 6–54
erasing record from

ERASE statement, 6–42
performance

effect of reattaching to a database,
6–55

specifying a database name, 6–11
DATABASE statement

COMPILETIME option, 6–14
connecting to a database, 6–11
described, 6–11, 6–17e to 6–19e
placement in program, 6–16
RUNTIME option, 6–14
use in module, 6–16

Data declaration
BASED ON clause

declaring function and type, 6–4
DECLARE_VARIABLE clause, 6–32
DEFINE_TYPE clause, 6–35

Data definition
performing in RDML program, 1–3

Data manipulation statement, 6–1t
Data types

DATE, 4–5, 4–11, 5–19
converting with ASCTIM, 4–11,

5–19
generated by RDML, A–1t

for VAX C, A–1
for VAXELN Pascal, A–3
for VAX Pascal, A–2

generated by the BASED ON clause,
6–5

VARYING STRING, 6–64, 6–147

DATE
data type

converting with ASCTIM, 4–5
Date literals

conversion to international format,
1–5

Db-handle clause, 6–20
of START_TRANSACTION statement,

6–133
Dbkeys, 2–26

accessing record, 2–26
defining the scope of, 2–26
described, 2–26, 2–27e to 2–28e
internal system pointer, 2–26
RDB$DB_KEY value expression,

2–26
retrieving, 6–143
scope

specifying with the DATABASE
statement, 6–14

scope of, 2–26
value expression, 2–26

DECdtm
coordinating distributed transactions

with, 6–131
defined, 6–131

DECdtm/VMS
See DECdtm

DECLARE_STREAM statement, 6–26,
6–28e

DECLARE_VARIABLE clause
declaring host language variables,

6–32
described, 6–32, 6–33e to 6–34e

Declaring function and type, 6–4
Declaring streams, 6–26
DEC Multinational Character Set (MCS)

See Multinational Character Set
(MCS)

DEFINE_TYPE clause
declaring host language variables,

6–35
described, 6–35

Index–4

Defining data
in RDML program, 1–3
using Callable RDO, 1–3
using ERDL, 1–3

Deleting records from a database
ERASE statement, 6–42

Detecting the end of a stream, 6–50
Distributed TID

See Distributed transaction identifier
Distributed transaction

coordinating, 6–131
defined, 6–130, 6–131
joining, 6–130
starting, 6–130

Distributed transaction identifier
defined, 6–131
initializing, 6–131
specifying, 6–130, 6–131

DISTRIBUTED_TRANSACTION clause
of START_TRANSACTION statement,

6–130
Division

arithmetic operator, 2–5

E
Ending stream

and the COMMIT statement, 6–8
for a declared stream, 6–36
for an undeclared stream, 6–40

Ending transaction
COMMIT statement, 6–7
ROLLBACK, 6–111

End of stream condition
detecting, 6–50

END_STREAM statement
declared, 6–36
undeclared, 6–40
with undeclared START_STREAM

statement, 6–120
EQ

equal relational operator, 3–31t
ERASE statement

described, 6–42, 6–43e to 6–49e

ERASE statement (Cont.)
erasing records from a database,

6–42
restrictions, 6–42

ERDL, 1–3
Error handling

ON ERROR clause, 6–90
RDB$MESSAGE_VECTOR, 6–90
RDB$STATUS, 6–90

Evaluating clause
of START_TRANSACTION statement,

6–132
EXCLUSIVE lock, 6–137

START_TRANSACTION statement,
6–137

Extracting data type and size of fields,
6–4

F
FETCH statement

advancing in a stream, 6–49
contrasted with FOR statement,

6–50, 6–58
described, 6–49, 6–51e to 6–53e
retrieving records from a stream,

6–49
using with declared streams, 6–49
using with START_STREAM

statement, 6–50
using with undeclared streams, 6–49

Field
extracting data type and size, 6–4

Field attribute
missing value, 3–27

Finishing a database
effect of request handle, 6–107

FINISH statement
closing a database, 6–54
described, 6–54, 6–56e to 6–57e
for multiple database access, 6–55
used with database handles, 6–55

FIRST clause
described, 4–23, 4–25e to 4–29e

Index–5

FIRST clause (Cont.)
restrictions when used with a view,

4–25
specifying number of records in

stream, 4–23
using with the SORTED BY clause,

4–23
FIRST FROM value expression, 2–2

described, 2–13, 2–15e to 2–19e
using with GET statement, 2–14

FOR segmented string statement
described, 6–66, 6–69e to 6–70e
retrieving segmented string, 6–66

FOR statement
contrasted with FETCH statement,

6–50, 6–58
creating a record stream, 6–58
described, 6–58, 6–60e to 6–65e
retrieving segmented string, 6–66

G
GE

greater than or equal to relational
operator, 3–31t

GET statement
assigning value to a host language

variable, 6–72
described, 6–71, 6–73e to 6–76e
retrieving dbkeys, 2–27
retrieving results of a Boolean

expression, 6–72
retrieving results of a conditional

expression, 6–72
retrieving results of a statistical

function, 4–4, 4–31, 6–72
with a STORE statement, 6–72,

6–143
with the FIRST FROM value

expression, 2–14
GT

greater than relational operator,
3–31t

H
Handle

database, 6–20
request, 6–106

setting scope, 6–15
transaction, 6–130, 6–157

Handle options, 3–9
Handling an error

See ON ERROR clause
Host language variable

as a transaction handle, 2–25
declaring with DECLARE_VARIABLE

clause, 6–32
declaring with DEFINE_TYPE clause,

6–35
described, 2–20, 2–22e to 2–25e
numeric, 2–4
used in C programs, 2–21
value expression, 2–2, 2–20

I
Identifying a database

See Database handles
Indexes

using with the CROSS clause, 4–14
International dates

using the STORE statement, 6–142
Internationalization, 1–5, 3–17, 3–23,

3–34
INVOKE DATABASE statement

setting scope of request handle, 6–15
Invoking a database

See DATABASE statement

J
Joining records of relation with itself

See Reflexive joins

K
Keyword list, 1–3, 1–3t

Index–6

L
LE

less than or equal to relational
operator, 3–31t

LIB$CONVERT_DATE_STRING, 1–5
Locked resource

using NOWAIT mode, 6–132
using WAIT mode, 6–132

Lock reduction
with COMMIT statement, 6–8

Locks
read-only, 6–133
read/write, 6–133

Lock specifications, 6–137
reserving options on START_

TRANSACTION, 6–137
Logical operators

AND, 3–3, 3–4
NOT, 3–3, 3–4
OR, 3–3, 3–4
use in conditional expression, 3–3

Loop
FOR statement, 6–58

LT
less than relational operator, 3–31t

M
MATCHING conditional expression

described, 3–21, 3–24e to 3–26e
pattern matching, 3–21
restriction, 3–22
with multinational characters, 3–23

MAX function
described, 5–12, 5–14e to 5–16e
effect of missing values, 5–13
highest value for a value expression,

5–12
MIN function

described, 5–17, 5–19e to 5–22e
effect of missing values, 5–18
lowest value for a value expression,

5–17

MISSING conditional expression
described, 3–27, 3–28e to 3–30e
testing for absence of value (null),

3–27
Missing values

assignment, 2–29
described, 2–29, 2–31e to 2–33e
with the STORE statement, 6–143

Modifying
records

See MODIFY statement
segmented strings, 6–68, 6–78, 6–153

described, 6–81e
MODIFY statement

changing field values, 6–77
described, 6–77, 6–79e to 6–89e
modifying records, 6–77
restrictions, 6–78

Modular programming
and the FINISH statement, 6–107

Multinational characters
in CONTAINING conditional

expression, 3–17
in MATCHING conditional expression,

3–23
in STARTING WITH conditional

expression, 3–34
Multinational Character Set (MCS)

in database object names, 1–5
Multiple database access

effect of the FINISH statement, 6–55
Multiple sort keys, 4–45, 4–46
Multiplication

arithmetic operator, 2–5

N
Naming conventions, 1–3
NE

not equal relational operator, 3–31t
Negating changes to a database

ROLLBACK statement, 6–111
Negation

arithmetic operator, 2–5

Index–7

Nested FOR statement
described, 6–63e

NOAUTO_LOCKING option
of START_TRANSACTION statement,

6–132, 6–133, 6–134t
with RESERVING clause, 6–133

/NODEFAULT_TRANSACTIONS
qualifier

and use of the COMMIT statement,
6–8

with the FINISH statement, 6–54,
6–55

with the READY statement, 6–102
with the ROLLBACK statement,

6–112
with the START_TRANSACTION

statement, 6–136
NOT logical operator, 3–4

ANY, 3–9, 3–10
BETWEEN, 3–13
CONTAINING, 3–16
MATCHING, 3–21
MISSING, 3–27
STARTING WITH, 3–33
UNIQUE, 3–38

NOWAIT mode, 6–132
Nulls

See MISSING conditional expression
Numeric value argument

in arithmetic expression, 2–4

O
ON ERROR clause

described, 6–90, 6–91e to 6–97e
handling an error, 6–90
RDB$MESSAGE_VECTOR, 6–90
RDB$STATUS, 6–90

Opening a database
READY statement, 6–102

Opening a declared stream, 6–115
OR logical operators, 3–4
Outer joins, 6–59

OVER clause
restrictions, 4–13

P
Pascal

converting DATE data types, 5–20
DATABASE statement

placement in program, 6–16
data types generated by RDML, A–2,

A–3
declaring

functions, 6–4
request handles, 6–106
status values, 6–91
transaction handles, 6–158
TYPE, 6–4
variables, 6–32

issuing a call to RDB$RELEASE_
REQUEST, 6–108

storing varying text, 6–147
string literals, 3–13
variables

usage with RDML, 2–20
Path names

CDD/Plus, 6–14
Pattern matching

CONTAINING conditional expression,
3–16

MATCHING conditional expression,
3–21

STARTING WITH conditional
expression, 3–33

PREPARE statement
described, 6–98
in an Rdb/ELN environment, 6–98
in an Rdb/VMS environment, 6–98

Preprocessor, 1–7
PROTECTED locks

START_TRANSACTION statement,
6–137

PSECT names, 1–5

Index–8

R
RDB$CSTRING_TO_VARYING, 6–147
RDB$DB_KEY value expression, 2–3

described, 2–26, 2–27e to 2–28e
using with GET statement, 2–27

RDB$INTERPRET
calls to, 1–3

RDB$LENGTH
of segmented string, 6–152

RDB$MESSAGE_VECTOR
described, 6–91e
error handling, 6–90

RDB$MISSING value expression, 2–3
assigning a missing value, 2–29
described, 2–29, 2–31e to 2–33e

RDB$RELEASE_REQUEST, 6–108
RDB$STATUS

described, 6–91e
error handling, 6–90

RDB$VALUE
of segmented string, 6–152

RDB$VARYING_TO_CSTRING, 6–64
described, 6–64e

Rdb/ELN
and RDML, 1–2

Rdb/ELN environment
committing transactions, 6–99

Rdb/VMS
and RDML, 1–2

RDML
and Rdb/ELN, 1–2
and Rdb/VMS, 1–2
clauses and statements, 1–2
conditional expressions, 1–2
keywords, 1–3
language elements, 1–1
naming conventions, 1–3
record selection expressions, 1–2
statistical functions, 1–2
using with distributed transaction,

6–130
value expressions, 1–1
with Callable RDO, 1–3

RDML-generated data types
for VAX C, A–1, A–1t
for VAXELN Pascal, A–3t
for VAX Pascal, A–2t

RDML keywords, 1–3t
RDMS$BIND_SEGMENTED_STRING_

BUFFER logical name
for storing segmented strings, 6–153

Read-only
transaction mode, 6–133

Read/write
transaction mode, 6–133

READY statement
described, 6–102, 6–103e to 6–105e
opening a database, 6–102
to access multiple databases, 6–102

Records
manipulating with the STORE

statement, 6–143
Record selection expressions, 1–2

COMPUTED BY clause, 4–3
CROSS clause, 4–13
described, 4–1
FIRST clause, 4–23
limit on referencing relations, 4–3
REDUCED TO clause, 4–30
referencing a relation or view, 4–3
relation clause, 4–36
restrictions, 4–2, 6–42, 6–78, 6–140
SORTED BY clause, 4–44
summary of, 4–2t
used with a statistical function, 4–31
WITH clause, 4–50

Record streams
DECLARE_STREAM statement,

6–26
establishing a pointer, 6–120
FETCH statement, 6–49
FOR segmented string statement,

6–66
FOR statement, 6–58
multiple stream access, 2–9
START_STREAM statement,

declared, 6–115

Index–9

Record streams (Cont.)
START_STREAM statement,

undeclared, 6–120
Record values

modifying
MODIFY statement, 6–77

retrieving
FETCH statement, 6–49
FOR segmented string statement,

6–66
FOR statement, 6–58

storing, 6–140, 6–151
REDUCED TO clause

described, 4–30, 4–31e to 4–35e
isolating unique values, 4–30
reduce key, 4–30, 4–31
restrictions, 4–30, 4–31
using reflexive joins, 4–17
with a statistical function, 4–31
with the SORTED BY clause, 4–30

Reduce key
See REDUCED TO clause

Reflexive joins, 4–16
with REDUCED TO and CROSS

clauses, 4–17
Relational join

See CROSS clause
Relational operators

described, 3–31, 3–31e to 3–32e
Relation clause

defining a context variable, 4–36
described, 4–36, 4–37e to 4–43e

Request handles, 5–4
and the FINISH statement, 6–107
setting scope, 6–15

REQUEST_HANDLE clause
declarations in host language

program, 6–106
described, 6–106, 6–109e to 6–110e
naming requests, 6–106

Reserved word list
See RDML keywords, 1–3

RESERVING clause, 6–137
NOAUTO_LOCKING option, 6–133

RESERVING clause (Cont.)
of START_TRANSACTION statement,

6–132, 6–134t
Restrictions

AVERAGE function, 5–5
BASED ON clause, 6–4
CDD/Plus, 6–16
COMMIT statement, 6–8
compile-time database, 6–16
CROSS clause, 4–14
ERASE statement, 6–42
FIRST clause, 4–25
MODIFY statement, 6–78
OVER clause, 4–13
REDUCED TO clause, 4–30, 4–31
run-time database, 6–16
TOTAL function, 5–24
using database handle, 6–21
using the BASED ON clause, 6–5
using the CONTAINING conditional

expression, 3–17
using the MATCHING conditional

expression, 3–22
using the STARTING WITH

conditional expression, 3–34
WITH clause, 4–50

Retrieving dbkeys, 2–27, 6–14
Retrieving missing values, 2–29
Retrieving records from a stream

See FETCH statement
Retrieving segmented strings

See FOR segmented string statement
Retrieving the value of a dbkey, 6–72
ROLLBACK statement

described, 6–111, 6–113e, 6–114e
undoing changes to a database,

6–111
RSE

See Record selection expressions
Run-time databases

restrictions, 6–16
RUNTIME option

DATABASE statement, 6–14

Index–10

S
Scope

of context variable, 4–8
of database handle, 6–11, 6–20, 6–21
of database key, 6–11
of dbkeys, 2–26, 6–14, 6–17
of request handle, 6–12

SCOPE IS DEFAULT
request handle, 6–15

Segmented strings, 6–155e
described, 6–66
FOR statement, 6–66
modifying, 6–68, 6–78, 6–153

described, 6–81e
retrieving, 6–66
STORE statement with, 6–151

Setting scope of request handle
INVOKE DATABASE statement,

6–15
SHARED lock

START_TRANSACTION statement,
6–137

SORTED BY clause
ASCII order, 4–45
described, 4–44, 4–46e to 4–49e
sorting records, 4–44
sort keys, 4–44
with the REDUCED TO clause, 4–30

Sort keys
in SORTED BY clause, 4–44
multiple, 4–45, 4–46

STARTING WITH conditional
expression

described, 3–33, 3–35e to 3–38e
match of initial characters, 3–33
restriction, 3–34
with multinational characters, 3–34

START_STREAM statement, 6–124e
declared

described, 6–115, 6–118e to
6–119e

described, 6–159e

START_STREAM statement (Cont.)
undeclared

creating a record stream, 6–120
described, 6–120

START_TRANSACTION statement
accessing records, 6–128
beginning a transaction, 6–128
described, 6–128, 6–137e to 6–139e
DISTRIBUTED_TRANSACTION

clause, 6–130
ensuring consistency, 6–132
lock specifications, 6–137
share modes, 6–134
transaction modes, 6–131, 6–133
wait modes, 6–132

Statistical functions, 1–2
aggregate expression, 5–1
and the GET statement, 4–4, 4–31,

5–5, 5–9
AVERAGE function, 5–4
COUNT function, 5–8
in a REDUCED TO clause

described, 4–31e
in a SORTED BY clause

described, 4–31e
listed, 5–3t
list of result data types, 5–3t
MAX function, 5–12
MIN function, 5–17
retrieving result, 6–72
TOTAL function, 5–23
used with RSE, 4–31

Statistical value expressions, 2–3
AVERAGE, 2–3

Status values
declaration in C programs, 6–90
declaration in Pascal programs, 6–91

STORE * statement, 6–143
STORE statement

context block, 6–140
creating fields with missing values,

6–143
described, 6–140, 6–144e to 6–150e
restrictions, 6–142

Index–11

STORE statement (Cont.)
storing a segmented string, 6–151
storing record in a relation, 6–140
storing varying text, 6–147, 6–148
view restrictions, 6–140

STORE statement with segmented
strings

described, 6–151
Storing a record

STORE statement, 6–140
Storing segmented strings

See STORE statement with
segmented strings

Stream processing
FETCH statement, 6–49
FOR statement, 6–58
START_STREAM statement,

undeclared, 6–120
String literals

value of, 3–3
Subtraction

arithmetic operator, 2–5
SYS$LANGUAGE logical name, 1–5

T
Time literals

conversion to international format,
1–5

TOTAL function
described, 5–23, 5–24e to 5–26e
restrictions, 5–24
sum of values for a value expression,

5–23
Transaction

COMMIT statement, 6–7
distributed, 6–131
ROLLBACK statement, 6–111
START_TRANSACTION statement,

6–128
with multiple database handles,

6–131
Transaction modes

read-only, 6–133

Transaction modes (Cont.)
read/write, 6–133

TRANSACTION_HANDLE clause
declaration in host language program,

6–158
described, 2–25e, 6–113e to 6–114e,

6–130, 6–157
naming transactions, 6–157

Truth tables
for complex condition, 3–4t

U
Unary minus, 2–5
Undoing changes to a database

ROLLBACK statement, 6–111
UNIQUE conditional expression

described, 3–38, 3–39e to 3–42e
testing for presence of single record,

3–38
Unique value

REDUCED TO clause, 4–30

V
Value expressions, 1–1, 2–2t

arithmetic, 2–2, 2–4
calculating value, 2–1
comparison, 3–31
concatenated, 2–2
database field, 2–2, 2–9
FIRST FROM, 2–2, 2–13
function of, 2–2
host variable, 2–2, 2–20
RDB$DB_KEY, 2–3, 2–26
RDB$MISSING, 2–3, 2–29
statistical, 2–3

AVERAGE, 2–3
MAX, 2–3

unary minus, 2–5
Variables, 2–20

using, 4–2
VARYING STRING data type, 6–64,

6–147

Index–12

View restrictions
ERASE statement, 6–42
MODIFY statement, 6–78
REDUCED TO clause, 4–31
STORE statement, 6–140

W
WAIT mode, 6–132
WITH AUTO_LOCKING option

of START_TRANSACTION statement,
6–132, 6–133, 6–134t

WITH clause
conditional expression, 3–1
described, 4–50, 4–51e to 4–52e
record selection, 4–50
restrictions when used with a view,

4–50
WITH NOAUTO_LOCKING option

of START_TRANSACTION statement,
6–133

Writing changes to a database
COMMIT statement, 6–7

Index–13

