
VSI OpenVMS
C++ User's Guide for OpenVMS
Systems

Document Number: XX-XXXXXX-XXX

Publication Date: month 2018

This manual contains information about developing VSI C++ programs on OpenVMS
systems and describes related language features.

Revision Update Information: This is a new manual.

Operating system and Version: VSI OpenVMS Version X.X

Software Version: VSI C++ Version X.X

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

Copyright © 2018 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Portions of the ANSI C++ Standard Library have been implemented using source licensed from and copyrighted by Rogue Wave Software, Inc.

Information pertaining to the C++ Standard Library has been edited and reprinted with permission of Rogue Wave Software, Inc. All rights
reserved.

Portions copyright 1994-2002 Rogue Wave Software, Inc.

The VSI OpenVMS documentation set is available on DVD.

ii

C++ User's Guide for
OpenVMS Systems

Preface ... viii
1. About VSI ... viii
2. Intended Audience .. viii
3. Structure of this Document ... viii
4. Associated Documents .. ix
5. Related Documents ... ix
6. Conventions Used in this Manual .. ix
7. Platform Labels ... x
8. New and Changed Features in C++ I64 Version 7.2 ... x
9. New and Changed Features in Version 7.1 .. xi
10. VSI Encourages Your Comments .. xii
11. Product Support ... xii

Chapter 1. Building and Running C++ Programs ... 1
1.1. Using the DECTPU Text Editor .. 2
1.2. Using the Compiler ... 2

1.2.1. Compiler Command Qualifiers .. 2
1.2.2. Compiler Error Messages ... 2

1.3. Linking a Program (Alpha only) .. 3
1.3.1. CXXLINK Interactions with OpenVMS Linker Qualifiers .. 4
1.3.2. Migrating from LINK to CXXLINK .. 4
1.3.3. Linking to the C++ Standard Library ... 5
1.3.4. Linking to the C++ Class Library .. 5
1.3.5. Linker Command Qualifiers ... 6
1.3.6. Linker Error Messages .. 7

1.4. Linking a Program (I64 only) .. 7
1.4.1. Linking Against C++ Class and Standard Library Shareable Images 8
1.4.2. Linking Against the Object Library (Linking /NOSYSSHARE) 8

1.5. Running a C++ Program .. 8
1.5.1. Run-Time Errors .. 9
1.5.2. Passing Arguments to the main Function .. 9

1.6. Name Demangling ... 10
1.6.1. Creating the Data File ... 11
1.6.2. Using the CXXDEMANGLE Facility ... 11

1.7. Performance Optimization Qualifiers .. 12
1.8. Improving Build Performance .. 13
1.9. Deploying Your Application .. 13

1.9.1. Redistribution of the DECC$CRTL.OLB Object Library .. 13
1.9.2. Redistribution of the LIBCXXSTD.OLB Object Library .. 13

Chapter 2. VSI C++ Implementation .. 15
2.1. Implementation-Specific Attributes ... 15

2.1.1. #pragma Preprocessor Directive .. 15
2.1.2. Predefined Macros and Names .. 27
2.1.3. Translation Limits ... 30
2.1.4. Numerical Limits .. 30
2.1.5. Argument-Passing and Return Mechanisms ... 31

2.2. Implementation Extensions and Features ... 31
2.2.1. Identifiers .. 31
2.2.2. Order of Static Object Initialization .. 33
2.2.3. Integral Conversions .. 33
2.2.4. Floating-Point Conversions ... 33
2.2.5. Explicit Type Conversion ... 33
2.2.6. The sizeof Operator .. 33
2.2.7. Explicit Type Conversion ... 34
2.2.8. Multiplicative Operators ... 34
2.2.9. Additive Operators (§r.5.7) ... 34
2.2.10. Shift Operators (§r.5.8) .. 34

iii

C++ User's Guide for
OpenVMS Systems

2.2.11. Equality Operators ... 34
2.2.12. Type Specifiers ... 34
2.2.13. asm Declarations (Alpha only) ... 35
2.2.14. Linkage Specifications ... 35
2.2.15. Class Layout .. 35
2.2.16. Virtual Function and Base Class Tables ... 36
2.2.17. Multiple Base Classes .. 36
2.2.18. Temporary Objects .. 37
2.2.19. File Inclusion ... 38
2.2.20. Nested Enums and Overloading ... 41
2.2.21. Guiding Declarations ... 42

2.3. Alternative Tokens .. 43
2.4. Run-time Type Identification ... 44
2.5. Message Control and Information Options ... 44

Chapter 3. C++ Language Environment .. 46
3.1. cname Headers ... 46
3.2. Using Existing C Header Files .. 46

3.2.1. Providing C and C++ Linkage .. 47
3.2.2. Resolving C++ Keyword Conflicts ... 47
3.2.3. Handling Scoping Issues .. 48
3.2.4. Support for <stdarg.h> and <varargs.h> Header Files 48

3.3. Using VSI C++ with Other Languages .. 49
3.4. Linkage to Non-C++ Code and Data ... 49
3.5. How to Organize Your C++ Code .. 49

3.5.1. Code That Does Not Use Templates ... 49
3.5.2. Code That Uses Templates ... 50
3.5.3. Summary ... 52
3.5.4. Creating Libraries ... 53

3.6. Sample Code for Creating OpenVMS Shareable Images ... 53
3.7. Hints for Designing Upwardly Compatible C++ Classes ... 54

3.7.1. Source Compatibility ... 55
3.7.2. Link Compatibility .. 55
3.7.3. Run Compatibility .. 56

Chapter 4. Porting to I64 Systems .. 57
4.1. Compiler Considerations ... 57

4.1.1. Messages ... 57
4.1.2. Quotas .. 57
4.1.3. Dialect Changes ... 58
4.1.4. ABI/Object Model changes ... 58
4.1.5. Command-Line Qualifiers .. 58
4.1.6. Floating Point .. 61
4.1.7. Intrinsics and Builtins .. 62
4.1.8. ELF .. 62
4.1.9. Templates .. 63
4.1.10. Exceptions and Condition Handlers .. 64

4.2. Library Changes ... 68
4.2.1. Library Reorganization .. 68
4.2.2. Language Run-Time Support Library .. 69
4.2.3. Class Library ... 69
4.2.4. Standard Library ... 69

4.3. CXXLINK Changes ... 74
4.4. Installation ... 75

Chapter 5. Using Templates ... 77
5.1. Template Instantiation Model .. 77
5.2. Manual Template Instantiation ... 78

5.2.1. Mixing Automatic and Manual Instantiation .. 78

iv

C++ User's Guide for
OpenVMS Systems

5.2.2. Instantiation Directives .. 79
5.2.3. Using Command Qualifiers for Manual Instantiation ... 82

5.3. Using Template Object Repositories (Alpha only) .. 83
5.3.1. Specifying Alternate Repositories .. 83
5.3.2. Reducing Compilation Time with the /TEMPLATE_DEFINE=TIMESTAMP Qualifier 83
5.3.3. Compiling Programs with Automatic Instantiation .. 84
5.3.4. Linking Programs with Automatic Instantiation .. 85
5.3.5. Creating Libraries ... 86
5.3.6. Multiple Repositories .. 86

5.4. Using COMDATS (I64 only) ... 87
5.5. Advanced Program Development and Templates ... 87

5.5.1. Implicit Inclusion .. 87
5.5.2. Dependency Management ... 88
5.5.3. Creating a Common Instantiation Library .. 88

5.6. Command-Line Qualifiers for Template Instantiation ... 90
5.6.1. Instantiation Model Qualifiers ... 90
5.6.2. Other Instantiation Qualifiers .. 92
5.6.3. Repository Qualifiers ... 93

Chapter 6. Handling C++ Exceptions ... 94
6.1. Compiling with Exceptions ... 94
6.2. Linking with Exceptions (Alpha only) ... 94
6.3. The terminate() and unexpected() Functions ... 95
6.4. C++ Exceptions and Other Conditions .. 95
6.5. C++ Exceptions and Signals (Alpha only) .. 96
6.6. C++ Exceptions with setjmp and longjmp .. 96
6.7. C++ Exceptions, lib$establish and vaxc$establish .. 97
6.8. Performance Considerations .. 97
6.9. C++ Exceptions and Threads ... 97
6.10. Debugging with C++ Exceptions (Alpha only) .. 98

Chapter 7. The C++ Standard Library .. 99
7.1. Important Compatibility Information ... 100

7.1.1. /[NO]USING_STD Compiler Compatibility Qualifier .. 100
7.1.2. Pre-ANSI/ANSI Iostreams Compatibility ... 100
7.1.3. Support for pre-ANSI and ANSI operator new() ... 102
7.1.4. Overriding operator new() (Alpha only) ... 102
7.1.5. Overriding operator new() (I64 only) .. 104
7.1.6. Support for Global array new and delete Operators .. 104
7.1.7. IOStreams Expects Default Floating-Point Format ... 105

7.2. How to Build Programs Using the C++ Standard Library .. 105
7.3. Optional Switch to Control Buffering (Alpha only) .. 106
7.4. Enhanced Compile-time Performance of ANSI Iostreams .. 106
7.5. Using RMS Attributes with iostreams ... 107
7.6. Upgrading from the Class Library to the Standard Library ... 107

7.6.1. Upgrading from the Class Library Vector to the Standard Library Vector 107
7.6.2. Upgrading from the Class Library Stack to the Standard Library Stack 108
7.6.3. Upgrading from the Class Library String Package Code ... 109
7.6.4. Upgrading from the Class Library Complex to the ANSI Complex Class 110
7.6.5. Upgrading from the Pre-ANSI iostream library to the VSI C++ Standard Library 112

Chapter 8. Using the OpenVMS Debugger .. 121
8.1. Debugging C++ Programs ... 121

8.1.1. Compiling and Linking in Preparation for Debugging .. 121
8.1.2. Debugger Support ... 121
8.1.3. Starting and Ending a Debugging Session .. 122
8.1.4. Features Basic to Debugging C++ Programs .. 122

8.2. Using the OpenVMS Debugger with C++ Data ... 124
8.2.1. Nonstatic Data Members .. 124

v

C++ User's Guide for
OpenVMS Systems

8.2.2. Reference Objects and Reference Members .. 125
8.2.3. Pointers to Members .. 125
8.2.4. Referencing Entities by Type ... 127

8.3. Using the OpenVMS Debugger with C++ Functions .. 128
8.3.1. Referring to Overloaded Functions ... 128
8.3.2. Referring to Destructors ... 129
8.3.3. Referring to Conversions .. 129
8.3.4. Referring to User-Defined Operators .. 129
8.3.5. Referring to Function Arguments ... 129
8.3.6. Calling C++ Member Functions from the Debugger ... 130

Chapter 9. Using 64-bit Address Space .. 132
9.1. 32-bit Versus 64-bit Development Environment ... 132

9.1.1. Model ANSI (Alpha only) .. 133
9.1.2. Memory Allocators .. 133
9.1.3. 64-bit Pointer Support in the C Run Time Library ... 134

9.2. Qualifiers and Pragmas ... 134
9.2.1. The /MODEL=ANSI Qualifier (Alpha only) ... 134
9.2.2. The /POINTER_SIZE Qualifier ... 134
9.2.3. The __INITIAL_POINTER_SIZE Macro .. 135
9.2.4. Pragmas .. 135

9.3. Determining Pointer Size .. 136
9.3.1. Special Cases ... 137
9.3.2. Mixing Pointer Sizes ... 138

9.4. Header File Considerations .. 138
9.5. Prologue/Epilogue Files .. 138

9.5.1. Rationale ... 138
9.5.2. Using Prologue/Epilogue Files ... 139

9.6. Avoiding Problems .. 140
9.7. Reasons for Not Using Mixed Pointer Sizes ... 140

Appendix A. Compiler Command Qualifiers ... 143
Appendix B. Programming Tools .. 177

B.1. VSI Language-Sensitive Editor .. 177
B.1.1. Starting and Terminating an LSE Session .. 177
B.1.2. LSE Placeholders and Tokens ... 177
B.1.3. Compiling and Reviewing Source Code from an LSE Session 178
B.1.4. VSI Source Code Analyzer (SCA) ... 178

Appendix C. Built-In Functions .. 180
C.1. Built-In Functions for Alpha Systems (Alpha only) .. 180

C.1.1. Translation Macros ... 180
C.1.2. Intrinsic Functions .. 181
C.1.3. Privileged Architecture Library Code Instructions ... 181
C.1.4. Other Builtins .. 198

C.2. Built-In Functions for I64 Systems (I64 only) ... 215
C.2.1. Builtin Differences on I64 Systems .. 215
C.2.2. Built-in Functions Specific to I64 Systems .. 216

Appendix D. Class Library Restrictions ... 231
D.1. Class Library Restrictions .. 231

Appendix E. Compiler Compatibility ... 232
E.1. Compatibility with Other C++ Compilers .. 232
E.2. Compatibility with Version 5.6 and Earlier ... 233

E.2.1. Language Differences .. 233
E.2.2. Implementation Differences .. 234
E.2.3. Using Templates ... 235
E.2.4. Library Differences ... 236

vi

C++ User's Guide for
OpenVMS Systems

E.3. Using Classes ... 236
E.3.1. Friend Declarations ... 236
E.3.2. Member Access .. 236
E.3.3. Base Class Initializers .. 236

E.4. Undefined Global Symbols for Static Data Members ... 237
E.5. Functions and Function Declaration Considerations ... 237
E.6. Using Pointers .. 237

E.6.1. Pointer Conversions .. 237
E.6.2. Bound Pointers ... 238
E.6.3. Constants in Function Returns ... 238
E.6.4. Pointers to Constants ... 238

E.7. Using typedefs .. 238
E.8. Initializing References .. 238
E.9. Using the switch and goto Statements ... 239
E.10. Using Volatile Objects .. 239
E.11. Preprocessing .. 240
E.12. Managing Memory .. 240
E.13. Size-of-Array Argument to delete Operator .. 240
E.14. Flushing the Output Buffer .. 240
E.15. Linking .. 240
E.16. Incrementing Enumerations ... 240
E.17. Guidelines for Writing Clean 64-Bit Code .. 241

Index ... 242

vii

Preface

Preface

This manual contains information about developing and debugging VSI C++ programs on OpenVMS systems,
and includes information on other OpenVMS features and tools that work with the compiler.

1. About VSI
VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard Enterprise to develop
and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so closely
associated with the OpenVMS operating system and its original author, Digital Equipment Corporation.

2. Intended Audience
This manual is intended for experienced programmers who need to develop VSI C++ programs on OpenVMS
systems. Users of this manual should have a basic understanding of the C++ language and some familiarity with
the Digital Command Language (DCL).

3. Structure of this Document
This manual is organized as follows:

• Chapter 1, Building and Running C++ Programs shows how to create, compile, link, and run VSI C++
programs.

• Chapter 2, VSI C++ Implementation describes features and characteristics that are specific to the VSI C++
implementation.

• Chapter 3, C++ Language Environment describes guidelines and procedures for customizing your language
environment.

• Chapter 4, Porting to I64 Systems describes how to make code used with other C++ implementations acceptable
to the VSI C++ compiler.

• Chapter 5, Using Templates describes how to use templates with VSI C++.

• Chapter 6, Handling C++ Exceptions explains how to use C++ exception handling.

• Chapter 7, The C++ Standard Library describes the VSI C++ implementation of the C++ Standard Library.

• Chapter 8, Using the OpenVMS Debugger explains how to use the OpenVMS Debugger with VSI C++.

• Chapter 9, Using 64-bit Address Space explains how to use 64-bit address space.

• Appendix A, Compiler Command Qualifiers describes compiler command qualifiers.

• Appendix B, Programming Tools provides information on using programming tools with VSI C++.

• Appendix C, Built-In Functions describes built-in functions.

• Appendix D, Class Library Restrictions describes Class Library restrictions.

viii

Preface

4. Associated Documents
The following documents contain information associated with topics in this manual:

• Stroustrup, Bjarne. The Annotated C++ Reference Manual. Reading, Massachusetts: Addison-Wesley, 1997.

This text combines a user guide and language reference manual to provide an exhaustive introduction to the
C++ programming language, including sophisticated language features. Where appropriate, section numbers
shown in parentheses (for example, §r.2.3) refer to relevant portions of The Annotated C++ Reference Manual.

• VSI C++ Class Library Reference Manual

This manual describes a library of VSI C++ classes.

• HP C++ Installation Guide for OpenVMS Alpha

This document supplies the information necessary to install VSI C++ on OpenVMS Alpha systems.

• HP C++ Installation Guide for OpenVMS I64

This document supplies the information necessary to install VSI C++ on OpenVMS I64 systems.

• HP C Run-Time Library Reference Manual for OpenVMS Systems

This library manual provides information, useful to VSI C++ users, on the OpenVMS Run-Time Library (RTL)
for C functions and macros, which include the ANSI C standard library. This manual also contains information
about porting programs to and from other operating systems.

The Annotated C++ Reference Manual and the STL Tutorial and Reference Guide are available only in printed
form. Online copies are not available.

5. Related Documents
• Carroll, Martin D. and Margaret E. Ellis. Designing and Coding Reusable C++. Reading, Massachusetts:

Addison-Wesley, 1995.

This text provides practical information for designing and implementing C++ programs.

• Myers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs, 3rd edition. Reading,
Massachusetts: Addison-Wesley, 1997.

• Myers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading,
Massachusetts: Addison-Wesley, 1995.

These texts provide practical information for designing and implementing C++ programs.

• International Standard ISO/IEC 14882

Defines the C++ International Standard. The document is available for downloading at the ANSI Electronic
Store (start at http://www.ansi.org).

The printed version is also available for purchase from the same web site. Choose “Catalogs/Standards
Information”, then “ANSI-ISO-IEC Online Catalog”, then search for “14882”.

6. Conventions Used in this Manual
Table 1, “Conventions Used in this Manual” lists the conventions used in this manual.

ix

Preface

Table 1. Conventions Used in this Manual

Convention Meaning
class complex {
.
.
.
};

A vertical ellipsis indicates that some intervening program code or
output is not shown. Only the more pertinent material is shown in the
example.

,… A horizontal ellipsis in a syntax description indicates that you can
enter additional parameters, options, or values. A comma preceding
the ellipsis indicates that successive items must be separated by
commas.

The generic class …

The get() function …

Monospaced type denotes the names of VSI C++ language
elements, and also the names of classes, members, and nonmembers.
Monospaced type is also used in text to reference code elements
displayed in examples.

italic Italic type denotes the names of variables that appear as parameters or
in arguments to functions, and also denotes book titles.

boldface Boldface type in text indicates the first instance of terms defined in
text.

7. Platform Labels
This guide contains information applicable to the VSI OpenVMS operating system on Alpha and Intel Itanium
processors. The information in this guide applies to both of these processors, except when specifically labeled
as follows:

(Alpha only) Specific to the OpenVMS operating system running on an Alpha
processor.

(I64 only) Specific to the OpenVMS operating system running on an Intel
Itanium processor. On this platform, the product name of the
operating system is OpenVMS for Industry Standard 64 for Integrity
servers (abbreviated in this manual as OpenVMS I64 or I64).

8. New and Changed Features in C++ I64
Version 7.2
Some of the new or changed features supported by this version of the compiler are:

• 64-bit pointer support is added for C++ I64.

This support is compatible with the 64-bit pointer support in the C++ and C compilers for OpenVMS Alpha.
It supports the same /POINTER_SIZE command-line qualifier, the __INITIAL_POINTER_SIZE predefined
macro, and the same pragmas (#pragma pointer_size and #pragma required_pointer_size).
Please see the V7.2 release notes for more information on 64-bit pointer support for the I64 compiler.

• Variadic macros are now supported.

This feature allows macros to take a variable number of arguments. It was added to VSI C Version 6.4 and is
supported by a number of other C and C++ compilers. This feature is available only when the value of the /
STANDARD qualifier is RELAXED (the default), MS, or GNU.

• Support is added for generation of a new section type in the object file that maps mangled names to their original
unmangled form.

x

Preface

Future versions of the linker will take advantage of this feature by using the demangled spelling of an identifier
name for its error messages. In addition, the linker will be able to generate a new section in the linker map that
shows mangled names and their corresponding unmangled orginal name.

• Prologue and epilogue file header processing is now supported in VSI C++.

• The __FUNCTION__ identifier is added.

__FUNCTION__ is a predefined pointer to char defined by the compiler, which points to the name of the
function as it appears in the source program. __FUNCTION__ is same as __func__ of C99.

9. New and Changed Features in Version 7.1
VSI C++ Version 7.1 runs on OpenVMS Alpha and OpenVMS Integrity servers. The compiler behaves much the
same on both systems, with some differences, primarily in the support for built-in functions, default floating-point
representation, and predefined macros. These differences are noted in the relevant sections of this manual.

Some of the new or changed features supported by this version of the compiler on both Alpha and I64 systems are:

• cname header support is added (Section 3.1, “cname Headers”).

The C++ compiler implements section 17.4.1.2 - Headers [lib.headers] "C++ Headers for C Library Facilities"
of the C++ Standard.

The implementation consists of 18 <cname> headers defined in the Standard (Chapter 3, C++ Language
Environment). As required by the C++ standard, the <cname> headers define C names in the std namespace.

The /[NO]PURE_CNAME qualifier is added to control insertion of the names by <cname> headers into
the std namespace only (/PURE_CNAME), or into the std namespace and the global namespace (/
NOPURE_CNAME).

• The /[NO]FIRST_INCLUDE=(file[,…]) qualifier is added (see Appendix A, Compiler Command Qualifiers
for the detailed description).

This qualifier includes the specified files before any source files. It corresponds to the UNIX -FI switch.

• The #pragma include_directory preprocessor directive is added (Section 2.1.1.7, “#pragma
include_directory Directive”).

This pragma is intended to ease DCL command-line length limitations when porting applications from POSIX-
like environments built with makefiles containing long lists of -I options that specify directories to search for
headers.

• Changes are made to the /WARNING qualifier and compiler messages (Section 2.5, “Message Control and
Information Options”).

Changes to the /WARNINGS qualifier include bug fixes and improved compatibility with the C compiler. Some
changes that might affect user compilations are:

• The /WARNINGS=ENABLE=ALL qualifier now enables all compiler messages including informational-
level messages.

• The /WARNINGS=INFORMATIONALS qualifier continues to enable most informationals, but we
recommend that /WARNINGS=ENABLE=ALL be used instead

• Using /WARNINGS=INFORMATIONALS=<tag> no longer enables all other informational messages.

Also, some compiler diagnostics might be different on Alpha and I64 systems, and some conditions detected
on one platform might not be detected on the other.

xi

Preface

• A new C++ front end is added to provide improved conformance to the C++ International Standard.

• Support for /STANDARD=CFRONT is retired.

10. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending electronic
mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have OpenVMS support
contracts through VSI can contact <support@vmssoftware.com> for help with this product. Users who
have OpenVMS support contracts through HPE should contact their HPE Support channel for assistance.

11. Product Support
Premium support is available on a per-incident basis

http://www.hp.com/hps/perevent/pv_software.html

and annual contracts

http://www.hp.com/hps/os/os_openvms.html

from HP Services in the US and some other countries. In the US and Canada, call, toll-free, 1-800-354-9000. In
other countries, support phone numbers are available on the web at:

http://welcome.hp.com/country/us/en/wwcontact.html

Free support is limited to bug reports that can be sent to

<compaq_cxx.bug@hp.com>

Send a complete but short example reproducing the problem, including the following:

• Compiler and operating system versions

• All necessary sources (such as INCLUDE files and module sources)

• Data files

• Commands used to compile, link and run the program

• Expected results and incorrect results obtained

Please try to reduce the problem to as small a source as possible, because we may be unable to diagnose large
applications.

We answer most quickly those problem reports that include a small but complete reproducible example, along
with descriptions of the compile and link options used and the exact text of any diagnostic messages or other
incorrect results. Reports that include only program fragments or involve very large applications generally will
not be accepted.

Please note that this is not a “programming consulting service” and that you should have clear evidence of a product
problem before contacting us. If you need consulting services, please contact HP Services.

xii

Building and Running C++ Programs

Chapter 1. Building and Running C++
Programs
C++ is an evolving language in which new features have recently replaced outmoded constructs. The C++ Standard
Library provided with this release defines a complete specification of the C++ International Standard, with some
differences, as described in the in the online release notes in:

SYS$HELP:CXX_RELEASE_NOTES

When switching from a Version 5.n compiler, you might need to modify your source files, especially if you use
the default language mode. In addition, language changes can affect the run-time behavior of your programs. If
you want to compile existing source code with minimal source changes, compile using the /STANDARD=ARM
qualifier. See Chapter 2, VSI C++ Implementation.

This chapter provides information about basic steps in developing a C++ program on an OpenVMS system. These
steps are shown in Figure 1.1, “Steps in Developing a C++ Program”.

Figure 1.1. Steps in Developing a C++ Program

To create and modify a C++ program, you must invoke a text editor. The OpenVMS system provides you with
at least two text editors: VAX EDT (EDT) and the VSI Text Processing Utility (DECTPU). Another editor that
you can use is the VSI Language-Sensitive Editor (LSE), which is sold separately (see Appendix B, Programming
Tools for more information on LSE). Use .cxx as the file type to signify that you are creating a C++ source program.

When you compile your program with the cxx command, you do not have to specify the file type; by default, C
++ first looks for files with the .cxx type.

If the compilation succeeds, the compiler creates an object file with the type .obj. If the compiler detects errors,
the system displays each error detected. You then reinvoke a text editor to make corrections.

When your program compiles successfully, you use the CXXLINK facility to create an executable image. Compiler
and linker commands both take qualifiers, as described in Sections 1.2 and 1.3.

When you have an executable image file, use the run command, or define a foreign command, to run your
program. See Section 1.5, “Running a C++ Program” for more information on running image files.

1

Building and Running C++ Programs

1.1. Using the DECTPU Text Editor
With DECTPU, you have a choice of two editing interfaces, the Extensible Versatile Editor (EVE) or the DECTPU
EDT Keypad Emulator. You can also create your own interfaces with DECTPU. At any time during your editing
session you have access to online help.

When you invoke DECTPU to create a file, the editor automatically creates a journal file, which you can use to
recover your keyboard entries if the system fails during an editing session. To initiate recovery, use the following
command format:

edit/tpu/recover file-spec

The interactive editor interface, EVE, responds to all the common editing functions, invoked using the editing
keypad, and supports more advanced functions that you type as commands on the EVE command line. For more
information on using EVE, see the Guide to VMS Text Processing.

1.2. Using the Compiler
The compiler detects source program errors and shows each error either in a screen display or in the batch log
file, depending on whether you run the compiler interactively or in batch mode. If the compilation succeeds, the
compiler generates machine-language instructions from the source statements, and groups these instructions into
an object module for the linker.

The compiler command cxx has the following format:

cxx[/qualifier...][file-spec [/qualifier...]],...

You use qualifiers to instruct the compiler to perform some action. A qualifier placed immediately after the CXX
command affects all the files listed. A qualifier placed immediately after a file specification affects only the
preceding file, unless you concatenate your files. A qualifier placed on an individual file specification overrides
a qualifier placed immediately after the CXX command.

If you include more than one file specification on the same line, use commas (,) or plus signs (+) as separators.
For example:

$ cxx/list prog_1, prog_2, prog_3

A comma instructs the compiler to keep source files separate and to create an object file and a listing file for each
source file. A plus sign instructs the compiler to concatenate each of the specified source files, and to create one
object file and one listing file. Any qualifier specified for one file within a list of concatenated files affects all
these files.

Note

Comma lists are not supported on I64 systems. Their use causes a fatal error.

1.2.1. Compiler Command Qualifiers
For a complete description of command line qualifiers, refer to Appendix A, Compiler Command Qualifiers or
to the online HELP.

1.2.2. Compiler Error Messages
If the compiler detects errors in your source code, the compiler signals these errors by displaying diagnostic
messages in the following format:

%CXX-s-ident, message-text

2

Building and Running C++ Programs

 at line number n in file name

Where:

s

Is the error severity, represented as follows:

F Fatal error. The compiler stops immediately without producing an object file. You
cannot link the program until you correct this error.

E Error. The compiler proceeds, and possibly generates other messages, but does not
produce an object file. You cannot link the program until you correct this error.

W Warning. The compiler takes some corrective action and produces an object file.
However, to avoid unexpected results you must verify that the compiler's action is what
you wanted.

I Information. The compiler informs you of specific actions taken. You need not take any
action yourself regarding this message.

S Success.

ident

Is a mnemonic (abbreviation) of the message text.

message-text

Is the full text of a compiler diagnostic message explaining what happened.

n

Is an integer that gives you the number of the line where the error occurs. The number is relative to the
beginning of the file or module in which the error occurs. The number appears on your terminal but not in
listing files.

name

Is the name of the file or module in which the error occurs. The name appears on your terminal but not in
listing files.

To be sure your program runs successfully, examine the diagnostic messages, evaluate error severity, and make
any necessary corrections.

You can suppress certain information and warning diagnostic messages using the #pragma message
preprocessor directive. For information about this directive, see Section 2.1.1.11, “#pragma message Directive ”.

1.3. Linking a Program (Alpha only)
This section describes how to link a C++ program on OpenVMS Alpha systems.

After your program or module successfully compiles, you must use the CXXLINK facility to combine your object
modules into one executable image.

The CXXLINK facility is layered on the OpenVMS Linker utility and provides the ability to link your C+
+ application. Besides linking your C++ application, the CXXLINK facility completes the automatic template
instantiation process; see Chapter 5, Using Templates for details. CXXLINK also ensures that the Standard
Template Library run-time support and the exception handling run-time support are linked into your application
as needed.

3

Building and Running C++ Programs

CXXLINK uses the same command line format that you would use to invoke the OpenVMS Linker utility; thus,
you can simply replace the LINK verb with CXXLINK in your command procedures. The CXXLINK command
has the following format:

CXXLINK[/command-qualifier]... {file-spec[/file-qualifier...]},...

If you include more than one input file specification, use commas or plus signs as separators. By default, the linker
creates an output file with the same name as the first input file and the file type .exe. If you want the output file
to take the name of your main program, be sure to specify your main program file first. You can also use the /
EXECUTABLE=name.exe qualifier on the CXXLINK command line to specify a name for the executable image.

Do not use the linker cluster= option to reference OpenVMS object modules that define global static objects.
Using this option prevents the constructors and destructors for global static objects from being run during image
activation and exit.

Caution
The OpenVMS Linker expects a function whose identifier is main. If a C++ program lacking a definition of main
is inadvertently linked, then program execution begins at the first function seen by the linker.

1.3.1. CXXLINK Interactions with OpenVMS Linker
Qualifiers
CXXLINK makes use of the OpenVMS Linker Utility's LNK$LIBRARY logical names to specific object libraries
as input to the linker. If the CXXLINK command includes the /USERLIBRARY qualifier in any form, an
informational message will be displayed and CXXLINK will list any required object libraries in a linker options
file.

1.3.1.1. Command Parameters and Qualifier
In addition to the following qualifiers, the CXXLINK command accepts the same parameters and qualifiers as the
OpenVMS Linker utility (see Section 1.3.5, “Linker Command Qualifiers” for some of the more useful OpenVMS
Linker qualifiers). CXXLINK-specific qualifiers are stripped off prior to calling the OpenVMS Linker utility and
therefore have no effect on default device or directory specifications applied by the OpenVMS Linker facility.

Command Qualifiers Defaults

/[NO]LOG_FILE[=filename] /NOLOG_FILE
/PREINST /PREINST
/PRELINK=(option[,option2]) See HELP.
/REPOSITORY=(writeable-
repository[,readonly-repository,...])

See HELP.

/USE_LINK_INPUT[=filename] /NOUSE_LINK_INPUT
/VERSION None.

For more information about CXXLINK qualifiers and parameters, type HELP CXXLINK.

1.3.2. Migrating from LINK to CXXLINK
Because a single CXXLINK command can invoke the OpenVMS Linker utility multiple times, you must not
specify user mode (DEFINE/USER_MODE) logical names. If CXXLINK executes a second LINK command, the
original DEFINE/USER_MODE logical name is not retained for that second command. Incorrect results can occur.

You should check command procedures that perform link operations of code generated by the C++ compiler for
any /USER_MODE logical names that are intended to be in effect during a LINK operation. If you find any, you
can modify the procedures CXXLINK in one of the following ways:

4

Building and Running C++ Programs

• Define the logical name without /USER_MODE. This means that the logical name should be deassigned, or
its previous value reassigned, after the CXXLINK operation is completed to ensure that prior state is restored.
Any ON ERROR cases that may be jumped to if the CXXLINK fails should check for and deassign or reassign
the logical name if needed.

• Move the definition(s) into a separate command procedure. CXXLINK checks the logical name CXX
$LINK_INIT, and if it is defined, executes the command procedure in its subprocess prior to executing any
LINK command.

Consider the following procedure:

$ DEFINE/USER MYLIB MYAREA:MYLIB.OLB
$ LINK A,B,SYS$INPUT:/OPT
MYLIB/LIB
$

To have the procedure work with CXXLINK, modify it as follows:

$ CREATE CXX$LINK_INIT.COM
$ DEFINE MYLIB MYAREA:MYLIB.OLB
$EOD
$ DEFINE/USER CXX$LINK_INIT SYS$DISK:[]CXX$LINK_INIT.COM
$ LINK A,B,SYS$INPUT:/OPT
MYLIB/LIB
$!
$ DELETE CXX$LINK_INIT.COM;

Note that the CXX$LINK_INIT command procedure defines MYLIB without the /USER_MODE qualifier. This
is because the command procedure is executed only once in the spawned process.

1.3.3. Linking to the C++ Standard Library
When you compile and link programs that use the C++ Standard Library, no special qualifiers are required. The
C++ driver automatically includes the Standard Library run-time support on the link command, and automatic
template instantiation is the default mode.

For example, to build a program called prog.cxx that uses the Standard Library, you enter the following
command:

$ CXX prog.cxx

For detailed information about the Standard Library, refer to Chapter 7, The C++ Standard Library.

1.3.4. Linking to the C++ Class Library
Reusing code is a cornerstone of object-oriented programming. To minimize the time it takes to develop new
applications, a set of reusable classes is an essential part of the VSI C++ compiler environment. Class libraries
offer a variety of predefined classes that enable you to work more efficiently.

For a detailed explanation of the class library packages supplied with the compiler, see the VSI C++ Class Library
Reference Manual, CXX_CLASSLIB.PS, in the SYS$COMMON:[SYSHLP.CXX$HELP] directory.

The Class Library has always been provided in shareable image format. Starting with OpenVMS Version 6.2, the
Class Library is also provided in object library format.

Using the Class Library as an object library provides a functional advantage over using the shareable image.
When your program redefines the global new and delete operators and uses the Class Library object library, the
new and delete calls within the Class Library are directed to the new and delete operators defined by your
program. On the other hand, when your program uses the Class Library shareable image, the new and delete

5

Building and Running C++ Programs

calls within the Class Library always call the standard new and delete operators. Linking with the shareable
image is the default method.

When you use the Class Library as a shareable image, the Class Library code resides in an image file in SYS
$SHARE and is shared by all C++ programs. This process has the advantages of: reducing the size of a program's
executable image, decreasing the amount of disk space taken up by the program's image, and letting your program
swap in and out of memory faster because of decreased size.

1.3.4.1. Linking Against the Class Library Object Library
To link against the Class Library object library on OpenVMS Version 6.2 or higher systems, you need to specify
the /NOSYSSHR qualifier on your CXXLINK command. For example:

$ CXXLINK/NOSYSSHR my_program.obj

If your program defines nonlocal static objects whose constructors or destructors use any part of the Class
Library, you need to ensure that the Class Library is initialized before your objects' constructors are invoked.
(Note that this is not an issue when you link against the Class Library shareable image.) To guarantee this order
of initialization, specify the Class Library initialization object module CXXL_INIT as the first module in your
CXXLINK command. To do this, use a CXXLINK command similar to the following:

$ CXXLINK/NOSYSSHR/EXE=my_program SYS$SHARE:STARLET.OLB/INCLUDE=CXXL_INIT,
 -
_$ my_program.obj

If your program uses the task package, you must explicitly include the CMA shared library when you link /
NOSYSSHR, as in the following example:

$ CXXLINK/NOSYSSHR my_program.obj,SYS$INPUT:/OPT -
_$ SYS$SHARE:CMA$LIB_SHR/SHARE
^Z

1.3.4.2. Linking Against the Class Library Shareable Image
No special action is needed to link with the Class Library; simply specify the object modules and object libraries
that you want to link. The linker automatically finds and resolves any references to objects in the Class Library
when it searches the system-supplied shareable image library, SYS$LIBRARY:IMAGELIB.OLB.

1.3.5. Linker Command Qualifiers
 You can use qualifiers to modify OpenVMS Linker output and to invoke debugging and traceback facilities. The
following list shows some of the most useful LINK command qualifiers that you can specify on your CXXLINK
command. For a full discussion of the OpenVMS Linker, see the VSI OpenVMS Linker Utility manual.

Command Qualifiers Defaults

/BRIEF None.
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG /NODEBUG
/[NO]EXECUTABLE[=file-spec] /EXECUTABLE=first-object-file-name.exe
/FULL None.
/[NO]MAP /NOMAP (interactive) /MAP (batch)
/[NO]SHAREABLE /NOSHAREABLE
/[no]TRACEBACK /TRACEBACK

6

Building and Running C++ Programs

1.3.6. Linker Error Messages
 If the OpenVMS Linker detects errors while linking object modules, the linker displays messages indicating the
cause and severity of error. Because CXXLINK uses the OpenVMS Linker to link your C++ program, CXXLINK
displays these linker messages. The linker does not produce an image file if errors or fatal errors occur (conditions
with severities of E or F).

Some problems that commonly occur during linking are as follows:

• You try to link a program without defining every function that the program calls.

The linker responds by issuing warnings. For example:

%LINK-W-USEUNDEF symbol-name

A symbol name that you do not recognize could be a mangled name. Name mangling is the mechanism
that the compiler uses to encode exceptionally long identifiers, including C++ function names. By default,
CXXLINK displays such symbols in their demangled form. To see a symbol in its mangled form, use the /
PRELINK=NODEMANGLE qualifier on your CXXLINK command. (See Section 1.6, “Name Demangling”
for more information about name demangling.)

• You try to link a module that had warning or error messages during compilation.

To avoid unexpected results, verify that the linker's action is acceptable.

• You try to link a nonexistent module.

Check to see if the module exists (in the directory or library you expect it to be in) and is spelled correctly.

• You redefine a C RTL function, or override the global operators new or delete. For more information, see
the /[NO]PREFIX_LIBRARY_ENTRIES Qualifier in Section 1.2.1, “Compiler Command Qualifiers”.

For an explanation of linker messages, invoke the HELP/MESSAGE utility.

1.4. Linking a Program (I64 only)
This section describes how to link a C++ program on OpenVMS I64 systems.

After your program or module successfully compiles, you must use either the CXXLINK facility or OpenVMS
Linker to combine your object modules into one executable image.

The CXXLINK facility is layered on the OpenVMS Linker utility and provides the ability to link your C++
application. On I64 systems, the CXXLINK facility accepts the same command qualifiers as CXXLINK on Alpha
systems, including the full range of the Linker's command qualifiers that the CXXLINK facility passes to the
Linker. For a description of Linker commands, see the VSI OpenVMS Linker Utility manual.

On I64 systems, the only benefit of using CXXLINK instead of the Linker is that CXXLINK reports non-mangled
names of undefined and multiply-defined symbols. It does this by intercepting Linker diagnostics and converting
mangled names reported by the Linker to their original names, using the information in the demangler database.

The demangler database is a file created by the compiler. By default, it is created in a [.CXX_REPOSITORY]
subdirectory of the current directory. For both the C++ compiler and CXXLINK, the location of the repository is
controlled by the /REPOSITORY qualifier. For CXXLINK to correctly translate mangled names to their original,
non-mangled counterparts, it is important to use the same repository for both compiling and linking.

Do not use the Linker CLUSTER= option to reference OpenVMS object modules that define global static objects.
Using this option prevents the constructors and destructors for global static objects from being run during image
activation and exit.

7

Building and Running C++ Programs

Caution

The OpenVMS Linker expects a function whose identifier is main. If a C++ program lacking a definition of main
is inadvertently linked, then program execution begins at the first function seen by the linker.

1.4.1. Linking Against C++ Class and Standard Library
Shareable Images
On I64 systems, the C++ Class and Standard Library, as well as the language run-time support library, are delivered
as system shareable images in SYS$LIBRARY:

CXXL$011_SHR.EXE - class library image
CXXL$RWRTL.EXE - standard library image
CXXL$LANGRTL.EXE - language run-time support image

As system shareable images, these CXXL$ images are part of the system library of shareable images,
IMAGELIB.OLB, which is automatically searched by the Linker. Consequently, no special actions are required
to link C++ applications against the class or standard library shareable image.

For example, if PROG.CXX uses a class from the C++ class or standard library, the following sequence of
commands will compile, link, and run the program:

$ CXX PROG.CXX
$ CXXL PROG.OBJ ! (or LINK PROG.OBJ)
$ RUN PROG.EXE

1.4.2. Linking Against the Object Library (Linking /
NOSYSSHARE)
In addition to being delivered as system shareable images, the C++ class, standard, and language run-time support
libraries are also delivered in object form in the system object library STARLET.OLB, thus making it possible to
link C++ applications /NOSYSSHARE.

The C++ libraries themselves do not impose any restrictions on linking /NOSYSSHARE. However, because they
are layered on top of the C Run-Time Library, the rules for linking an application that references the C Run-Time
Library /NOSYSSHARE do apply.

For example, when linking /NOSYSSHARE, you must explicitly include CMA$TIS routines in the link by either
linking against the CMA$TIS_SHR.EXE shareable image or forcing the CMA$TIS module from STARLET.OLB
in the link. See the HP C Run-Time Library Reference Manual for more details.

Here are two examples of linking a C++ program /NOSYSSHARE:

$ CXXL/NOSYSSHARE PROG.OBJ, SYS$INPUT:/OPT
SYS$SHARE:CMA$TIS_SHR/SHARE
^Z

$ CXXL/NOSYSSHARE prog.obj, -
_$ SYS$SHARE:STARLET.OLB/INCLUDE=CMA$TIS

1.5. Running a C++ Program
When your program successfully links, use the DCL RUN command to execute the image file. The RUN command
has the following format:

RUN [/[NO]DEBUG] file-spec

8

Building and Running C++ Programs

/DEBUG
/NODEBUG

Determines whether you invoke the OpenVMS Debugger during run time. Use the /DEBUG qualifier to
invoke the debugger if your image was not linked with the debugger. However, do not use the /DEBUG
qualifier on images linked with the /NOTRACEBACK qualifier. Use the /NODEBUG qualifier if you linked
your image with the /DEBUG qualifier and you do not want the debugger to prompt you. The default is RUN/
DEBUG if you linked your image with the /DEBUG qualifier; otherwise, the default is RUN/NODEBUG.

For more information on debugging C++ programs, see Chapter 8, Using the OpenVMS Debugger.

1.5.1. Run-Time Errors
When an error occurs during program execution, the OpenVMS condition handler terminates execution and
displays messages and traceback information on the currently defined sys$error device. In the symbolic stack dump
traceback message, the condition handler lists the modules that were active when the error occurred, indicating
the sequence in which the modules were called.

Traceback information is available at run time only for modules compiled with /DEBUG=TRACEBACK and
linked with the /TRACEBACK qualifier in effect (the default for both compiler and linker commands). You should
exclude traceback information only from thoroughly debugged program modules.

The traceback information makes reference to numbered lines that are listing lines in your program. If you include
header files in the source file using the #include directive, the line numbers do not correspond to the source-
file lines. To see the numbers that correspond to those referenced in the traceback information, generate a listing
file using the /LIST qualifier to the compiler command.

1.5.2. Passing Arguments to the main Function
The main function in a C++ program can accept arguments from the command line from which it was invoked.
The syntax for a main function is as follows:

int main(int argc,
char *argv[],
char *envp[])
{
. . .
return status;
}

In this syntax, parameter argc is the count of arguments present in the command line that invoked the program,
and parameter argv is a character-string array of the arguments. Parameter envp is the environment array, which
contains process information such as the user name and controlling terminal. Parameter envp has no bearing on
passing command-line arguments; its primary use in C++ programs is during exec and getenv function calls.
For more information, see the HP C Run-Time Library Reference Manual for OpenVMS Systems.

In the main function definition, the parameters are optional. However, you can access only the parameters that
you define. You can define the main function in any of the following ways:

int main()
int main(int argc)
int main(int argc, char *argv[])
int main(int argc, char *argv[], char *envp[])

To pass arguments to the main function, you can use a DCL foreign command to point to the program, or you
can define the logical name DCL$PATH to point to an area containing the program.

To make use of DCL$PATH in the previous example, the resulting program executable would have to be named
"echo.exe".

9

Building and Running C++ Programs

You can then place echo.exe into a specific directory and point the logical name DCL$PATH to it.

For example:

$ RENAME commarg.exe echo.exe
$ COPY echo.exe sys$login:
$ DEFINE DCL$PATH SYS$LOGIN:

The output would be identical to that shown in the previous example when a foreign command was used. To pass
arguments to the main function, you must define the program as a DCL foreign command. When a program is
defined and run as a foreign command, the parameter argc is always greater than or equal to 1, and argv[0]
always contains the name of the image file.

The procedure for defining a foreign command involves using a DCL assignment statement to assign the name of
the image file to a symbol that is later used to invoke the image. For example:

$ echo == "$ dsk$:commarg.exe"Return

The symbol echo is defined as a foreign command that invokes the image in commarg.exe. The definition of
echo must begin with a dollar sign ($) and include a device name.

For more information about the procedure for defining a foreign command, see the VSI OpenVMS DCL Dictionary.

The following example shows a C++ program called commarg.cxx, which displays the command-line
arguments that were used to invoke it:

// This program echoes the command-line arguments.

#include <iostream.h>

main(int argc, char *argv[])
{
 int i;
 for (i = 0; i < argc; ++i)
 cout << i << " := >" << argv[i] << "<\n";
 return 0;
}

A sample output for this example is as follows:

$ echo Long "Day's" "Journey into Night"Return
0 := >db7:commarg.exe;1<
1 := >long<
2 := >Day's<
3 := >Journey into Night<

DCL converts unquoted arguments on the command line to uppercase letters. However, the C RTL internally parses
the altered command line and puts all unquoted arguments back in lowercase. This makes access to arguments in
VSI C++ programs compatible with C++ programs developed on other systems.

All arguments in the command line are delimited by spaces or tabs. Arguments with embedded spaces or tabs must
be enclosed in quotation marks (" ").

1.6. Name Demangling
 Because of the need to provide type-safe linking, VSI C++ encodes type information in external function names.
This encoding is called name mangling.

Mangled names can appear in diagnostic messages from commands such as CXXLINK/NOEXPAND or from
the OpenVMS Linker utility. To enable users to decode (or demangle) these names, the compiler provides the

10

Building and Running C++ Programs

CXXDEMANGLE facility. The CXXDEMANGLE facility translates mangled names into the names as they
originally appeared in C++ source code.

To do the translation, CXXDEMANGLE uses a data file written by the compiler during compilation. The data file
contains a mapping of mangled names to their demangled forms.

1.6.1. Creating the Data File
Each time you compile a program, the compiler stores, in a data file, all the program's external symbols in their
mangled and demangled forms. If the data file does not exist, the compiler creates the data file. Otherwise, the
compiler appends information to the existing data file.

You can specify the name and location of the data file using the logical name CXX$DEMANGLER_DB. For
example, if you want your data file to be named MYCXXDB.DAT in the DISK1:[MYDIR] directory, define the
CXX$DEMANGLER_DB logical name as follows:

$ DEFINE CXX$DEMANGLER_DB DISK1:[MYDIR]MYCXXDB.DAT

If the CXX$DEMANGLER_DB logical name is not defined, the compiler uses the default file name CXX
$DEMANGLER_DB in the writeable repository. Refer to Chapter 5, Using Templates for details on how to specify
the writeable repository.

1.6.2. Using the CXXDEMANGLE Facility
To demangle a symbol name, CXXDEMANGLE must use the same data file as the compiler used when it compiled
the program containing the symbol.

Hence, if you defined the CXX$DEMANGLER_DB logical name when you compiled the program, you should
also define the logical name when you use the CXXDEMANGLE facility.

Similarly, if you did not define the CXX$DEMANGLER_DB logical name but specified the /REPOSITORY
qualifier during compilation, specify the same /REPOSITORY qualifier on your CXXDEMANGLE command.

If you did not specify the /REPOSITORY qualifier on your compile command, the compiler uses the data
file in the default writeable repository. To use the CXXDEMANGLE facility in this case, either issue the
CXXDEMANGLE command from the same directory where the compile command was issued, or specify the
appropriate /REPOSITORY qualifier on your CXXDEMANGLE command.

CXXDEMANGLE provides both a command-line interface and an interactive interface, as follows:

• To use the command-line interface, enter the CXXDEMANGLE command followed by a comma-separated list
of mangled symbol names. CXXDEMANGLE then displays the demangled form of each symbol and exits. The
command-line interface has the following syntax:

CXXDEMANGLE mangled-symbol-name [,...]

The following example shows appropriate use of this syntax:

$ CXXDEMANGLE COPY_ _XPIPIPI
int * copy(int *, int *, int *)
$ CXXDEMANGLE COPY_ _XPPCPPCPPC, CXX$ADJCNTDFFRNCXPPP9MNS0IUE0NU
char ** copy(char **, char **, char **)
int * adjacent_difference(int *, int *, int *, minus<int >)
$

If you specify a mangled symbol name using the command-line interface and the symbol contains lowercase
letters, you must place the symbol within quotes. For example:

$ CXXDEMANGLE "MyFunction_ _xic"

11

Building and Running C++ Programs

• To use the interactive interface, enter the CXXDEMANGLE command without specifying a symbol name.
CXXDEMANGLE then waits for you to enter a symbol name in its mangled form. When you enter a symbol,
CXXDEMANGLE displays the demangled form of the symbol and waits for you to enter another symbol, and
so forth. To exit the interactive interface, enter Ctrl/Z. The syntax for the interactive interface is as following:

CXXDEMANGLE
mangled-symbol-name
[...]
Ctrl/Z

The following example shows appropriate use of this syntax:

$ CXXDEMANGLE
COPY_ _XPIPIPI
int * copy(int *, int *, int *)
COPY_ _XPPCPPCPPC
char ** copy(char **, char **, char **)
CXX$ADJCNTDFFRNCXPPP9MNS0IUE0NU
int * adjacent_difference(int *, int *, int *, minus<int >)
Ctrl/Z
$

When you use the interactive interface, quotes are not necessary when entering mangled symbol names that
contain lowercase letters.

If CXXDEMANGLE is unable to translate a mangled symbol name, it echoes the mangled symbol name.

1.6.2.1. Command Qualifier
The CXXDEMANGLE command accepts a single qualifier, /REPOSITORY.

/REPOSITORY=(repository[,...])

Names the repository directories that contain the data files used by CXXDEMANGLE.The /REPOSITORY
qualifier is ignored if you define the CXX$DEMANGLER_DB logical name. See the preceding text for details.

1.7. Performance Optimization Qualifiers
The following compiler qualifiers can be used to improve performance. However, they can also change behavior
for nonstandard-compliant programs:

• /[NO]ANSI_ALIAS – Specifies whether the compiler assumes the ANSI C aliasing rules to generate better
optimized code. The default is /ANSI_ALIAS.

• /ASSUME=[NO]POINTERS_TO_GLOBALS – Controls whether the compiler can safely assume that global
variables have not had their addresses taken in code that is not visible to the current compilation. The default
is /ASSUME=POINTERS_TO_GLOBALS.

• /ASSUME=[NO]TRUSTED_SHORT_ALIGNMENT – Allows the compiler additional assumptions about the
alignment of short types that, although naturally aligned, may cross a quadword boundary. The default is /
ASSUME=NOTRUSTED_SHORT_ALIGNMENT.

• /ASSUME=[NO]WHOLE_PROGRAM – Tells the compiler that except for “well-behaved library
routines”, the whole program consists only of the single object module being produced by this
compilation. The optimizations enabled by /ASSUME=WHOLE_PROGRAM include all those enabled
by /ASSUME=NOPOINTER_TO_GLOBALS and possibly other optimizations. The default is /
ASSUME=NOWHOLE_PROGRAM.

You can use the /OPTIMIZE qualifier to improve performance. This qualifier will not change application behavior.

12

Building and Running C++ Programs

On I64 systems, the floating-point formats D_FLOAT, G_FLOAT, and F_FLOAT are emulated using
IEEE_FLOAT. Because this can hinder performance, using the /FLOAT=IEEE_FLOAT default is recommended.

See Appendix A, Compiler Command Qualifiers for detailed descriptions of these qualifiers.

1.8. Improving Build Performance
Partitioning a large application into several shared libraries, which are then linked into an executable, is a useful
technique for reducing link times during development. See Section 3.5, “How to Organize Your C++ Code” for
more information.

1.9. Deploying Your Application
The VSI C++ kit contains two Run-Time Library components that you might need to redistribute with your
applications:

• C++ Standard Library Object Library (LIBCXXSTD)

• C Run-Time Object Library (DECC$CRTL.OLB)

The next sections describe the method that developers must use to redistribute Run-Time Library components to
user systems. Redistribution of other components on the VSI C++ kit is prohibited. The redistribution rights set
forth in the Software Product Description do not apply to the DECC$CRTL.EXE or DECC$CRTL.README files
which are distributed with this kit.

1.9.1. Redistribution of the DECC$CRTL.OLB Object
Library
Redistribution of this library is only required by those applications which need to be linked during or after
installation on an end user target system. If you link your application and ship either a shareable or executable
image to your customers, then redistribution of the object library is not necessary. The linking process of your
application causes those library modules to be incorporated into your resultant image.

There are two options that you can use to redistribute the DECC$CRTL.OLB object library. The options are based
on whether the library is needed after the installation is completed.

The first option is for applications which link during installation, but have no need for the object library once
installation is completed. For that set of developers, we recommend placing DECC$CRTL.OLB on your kit, but
to link using the copy in VMI$KWD and not issue a PROVIDE_FILE option which would move this file onto
the system. In other words, the object library resides only on your kit, is used during installation to link your
application, but is not placed onto the end user system.

The second option is for applications which do need the object library after installation is completed. For this class
of applications, the object library should be placed in a product specific location on the target system and not in
SYS$LIBRARY. The contents of this object library must not be inserted into the SYS$LIBRARY:STARLET.OLB
library.

1.9.2. Redistribution of the LIBCXXSTD.OLB Object
Library
Redistribution of this library is only required by those applications which need to be linked during or after
installation on an end user target system. If you link your application and ship either a shareable or executable
image to your customers, then redistribution of the object library is not necessary. The linking process of your
application causes those library modules to be incorporated into your resultant image.

There are two options that you can be used to redistribute the LIBCXXSTD.OLB object library. The options are
based on whether the library is needed after the installation is completed.

13

Building and Running C++ Programs

The first option is for applications which link during installation, but have no need for the object library once
installation is completed. For that set of developers, we recommend placing LIBCXXSTD.OLB on your kit, but
to link using the copy in VMI$KWD and not issue a PROVIDE_FILE option which would move this file onto
the system. In other words, the object library resides only on your kit, is used during installation to link your
application, but is not placed onto the end user system.

The second option is for applications that do need the object library after installation is completed. For this class
of applications, the object library should be placed in a product specific location on the target system and not in
SYS$LIBRARY. The contents of this object library must not be inserted into the SYS$LIBRARY:STARLET.OLB
library.

14

VSI C++ Implementation

Chapter 2. VSI C++ Implementation
This chapter discusses the features and characteristics specific to the VSI C++ implementation, including pragmas,
predefined names, numerical limits, and other implementation-dependent aspects of the language definition.

2.1. Implementation-Specific Attributes
This section describes pragmas, predefined names, and limits placed on the number of characters and arguments
used in C++ programs.

2.1.1. #pragma Preprocessor Directive
The #pragma preprocessor directive is a standard method for implementing features that differ from one compiler
to the next. This section describes pragmas specifically implemented in the C++ compiler for OpenVMS systems.

The following #pragma directives are subject to macro expansion. A macro reference can occur anywhere after
the pragma keyword.

builtins inline linkage1 use_linkage1

dictionary noinline module extern_model
member_alignment message define_template extern_prefix

1Not supported; specific to C

This manual displays keywords used with #pragma in lowercase letters. However, these keywords are not case
sensitive.

2.1.1.1. #pragma [no]builtins
The #pragma builtins directive enables the C++ built-in functions that directly access processor instructions.
If the pragma does not appear in your program, the default is #pragma nobuiltins.

C++ supports the #pragma builtins preprocessor directive for compatibility with VAX C, but it is not
required.

2.1.1.2. #pragma define_template Directive
The #pragma define_template directive instructs the compiler to instantiate a template with the arguments
specified in the pragma. This pragma has the following syntax:

#pragma define_template identifier

For example, the following statement instructs the compiler to instantiate the template mytempl with the
arguments arg1 and arg2:

#pragma define_template mytempl<arg1, arg2>

For more information on how to use templates with the #pragma define_template directive, see Section 5.2,
“Manual Template Instantiation”.

2.1.1.3. #pragma environment Directive
The #pragma environment directive offers a way to single-handedly set, save, or restore the states of
context pragmas. This directive protects include files from contexts set by encompassing programs and protects
encompassing programs from contexts that could be set in header files that the encompassing programs include.

On OpenVMS systems, the #pragma environment directive affects the following pragmas:

15

VSI C++ Implementation

#pragma member_alignment
#pragma message
#pragma extern_model
#pragma extern_prefix

This pragma has the following syntax:

#pragma environment command_line
#pragma environment header_defaults
#pragma environment restore
#pragma environment save

command_line

Sets, as specified on the command line, the states of all the context pragmas. You can use this pragma to protect
header files from environment pragmas that take effect before the header file is included.

header_defaults

Sets the states of all the context pragmas to their default values. This is almost equivalent to the situation in which
a program with no command line options and no pragmas is compiled; except that this pragma sets the pragma
message state to #pragma nostandard, as is appropriate for header files.

save

Saves the current state of every pragma that has an associated context.

restore

Restores the current state of every pragma that has an associated context.

Without requiring further changes to the source code, you can use #pragma environment to protect header
files from things like language extensions and enhancements that might introduce additional contexts.

A header file can selectively inherit the state of a pragma from the including file and then use additional pragmas
as needed to set the compilation to non-default states. For example:

#ifdef __PRAGMA_ENVIRONMENT
#pragma __environment save
#pragma __environment header_defaults
#pragma member_alignment restore
#pragma member_alignment save
#endif
.
. /* contents of header file */
.
#ifdef __PRAGMA_ENVIRONMENT
#pragma __environment restore
#endif

In this example:

Saves the state of all context pragmas
Sets the default compilation environment
Pops the member alignment context from the #pragma member_alignment stack that was pushed by
#pragma __environment save (restoring the member alignment context to its preexisting state)
Pushes the member alignment context back onto the stack so that the #pragma __environment
restore can pop the entry off

Thus, the header file is protected from all pragmas, except for the member alignment context that the header file
was meant to inherit.

16

VSI C++ Implementation

2.1.1.4. #pragma extern_model Directive
The #pragma extern_model directive controls the compiler's interpretation of data objects that have external
linkage. You can use this pragma to select the global symbol model to use for externs. The default is the relaxed
refdef model.

Note
Take great care when using the non-default extern_model. The main purpose of extern_model is to allow C
++ to share global data with code written in other languages. Declarations that cause data to be allocated according
to the C++ object model, that is, declarations for other than POD (Plain Old Data) objects, cannot generally be
shared reliably with other languages, and should only appear in regions of source that are subject to the default
extern_model of relaxed_refdef.

Within regions of source subject to an extern_model other than relaxed_refdef, declarations that allocate
data with names visible to the linker should be limited exclusively to POD types. In particular, declaring a C++
class containing a static data member within such a region may produce unintended behavior.

After you select a global symbol model with #pragma extern_model, the compiler treats all subsequent
declarations of objects of the extern storage class accordingly, until it encounters another #pragma
extern_model directive.

The global symbol models are as follows:

• Common block model

In this model, all declarations are definitions and the linker combines all definitions with the same name into
one definition. For Fortran program units, such extern variables appear as named COMMON blocks. The
syntax is as follows:

#pragma extern_model common_block [(no)shr]

The shr and noshr keywords determine whether the psects created for definitions are marked as shared or
not shared. Fortran COMMON blocks normally have the shared attribute. If neither keyword is specified, the
pragma acts as if noshr was specified.

Note
The C language permits objects declared with the const type qualifier to be allocated in read-only memory, and
when the C compiler allocates a psect for a const object, it marks that section as read-only.

This is not compatible with the C++ conventions because the C++ language permits objects with static storage
duration to be initialized with values computed at run-time (before the main function gains control). When the C
++ compiler allocates a psect for such a declaration, it marks the psect writable. Normally, only one compilation
(the one responsible for initialization) will allocate a psect for a const object, and there is no problem.

But under the common_block extern model, the compilers will always allocate a psect for such a declaration,
leading to a "conflicting attributes" warning from the linker if the same const-qualified declaration is processed
by both C and C++. It is best to avoid use of the common_block extern model when const objects with external
linkage are shared between C and C++. If the common_block model must be used, then the const type qualifier
should be removed (for example, by preprocessor conditionals) from the declaration processed by the C compiler.

• Relaxed refdef model

This model is the default. Some declarations are references and some are definitions. Multiple uninitialized
definitions for the same object are allowed and resolved into one by the linker. However, a reference requires
that at least one definition exists. The syntax is as follows:

#pragma extern_model relaxed_refdef [(no)shr]

17

VSI C++ Implementation

The shr and noshr keywords determine whether the psects created for definitions are marked as shared or
not shared. If neither keyword is specified, the pragma acts as if noshr was specified.

• Strict refdef model

In this model, some declarations are references and some are definitions. It requires exactly one definition in
the program for each symbol referenced. The syntax is as follows:

#pragma extern_model strict_refdef ["name"] [(no)shr]

If specified, name in quotes is the name of the psect for any definition.

shr and noshr keywords determine whether the psects created for definitions are marked as shared or not
shared. Neither keyword can be specified unless a name for the psect is given. If neither keyword is specified,
the pragma acts as if noshr was specified.

• Globalvalue model

This model is like the strict refdef model except that these global objects have no storage; instead, global objects
are link-time constant values. The syntax is as follows:

#pragma extern_model globalvalue

• Save

This pragma pushes the current extern model of the compiler onto a stack. The stack records all the
information associated with the extern model. The syntax is as follows:

#pragma extern_model save

• Restore

This pragma pops the extern model stack of the compiler. The compiler's extern model is set as the state
just popped off the stack. The stack records all the information associated with the extern model. The syntax
is as follows:

#pragma extern_model restore

Note

• The global symbols and psect names generated under the control of this pragma obey the case-folding rules
of the /NAME qualifier.

• While #pragma extern_model can be used to allocate several variables in the same psect, the placement of
variables relative to each other within that psect cannot be controlled: the compiler does not necessarily allocate
distinct variables to memory locations according to the order of appearance in the source code.

Furthermore, the order of allocation can change as a result of seemingly unrelated changes to the source code,
command-line options, or from one version of the compiler to the next; it is essentially unpredictable. The
only way to control the placement of variables relative to each other is to make them members of the same
struct type or, on OpenVMS Alpha systems, by using the noreorder attribute on a named #pragma
extern_model strict_refdef.

The #pragma extern_model directive has the following syntax:

#pragma extern_model model_spec [attr[,attr]...]

model_spec is one of the following:

18

VSI C++ Implementation

common_block
relaxed_refdef
strict_refdef "name"
strict_refdef (No attr specifications allowed)
globalvalue (No attr specifications allowed)

[attr[,attr]...] are optional psect attribute specifications chosen from the following (at most one from each line):

gbl lcl (Not allowed with relaxed_refdef)
shr noshr
wrt nowrt
pic nopic (Not meaningful for Alpha)
ovr con
rel abs
exe noexe
vec novec
For OpenVMS Alpha and Integrity systems: 0 byte 1 word 2 long 3 quad 4 octa 5 6 7 8
9 10 11 12 13 14 15 16 page
For OpenVMS VAX systems: 2 long 3 quad 4 octa 9 page

The last line of attributes are numeric alignment values. When a numeric alignment value is specified on a section,
the section is given an alignment of two raised to that power.

On OpenVMS Alpha and Integrity systems, the strict_refdef "name" extern_model can also take the
following psect attribute specifications:

• noreorder — causes variables in the section to be allocated in the order they are defined.

• natalgn — has no effect on OpenVMS systems.

It does, however, change the behavior on Tru64 UNIX systems: when specified, natalgn causes the global
variables defined within the section to be allocated on their natural boundary. Currently, all global variables
on Tru64 UNIX systems are allocated on a quadword boundary. When the natalgn attribute is specified, the
compiler instead allocates the variable on an alignment that is natural for its type (chars on byte boundaries,
ints on longword boundaries, and so on).

Specifying the natalgn attribute also enables the noreorder attribute.

Note
Use of the natalgn attribute can cause a program to violate the Tru64 UNIX Calling Standard. The calling
standard states that all global variables must be aligned on a quadword boundary. Therefore, variables declared in
a natalgn section should only be referenced in the module that defines them.

Table 2.1, “Program-Section Attributes” lists the attributes that can be applied to program sections.

Table 2.1. Program-Section Attributes

Attribute Meaning

PIC or NOPIC The program section or the data these attributes refers to does not
depend on any specific virtual memory location (PIC), or else the
program section depends on one or more virtual memory locations
(NOPIC).

CON or OVR The program section is concatenated with other program sections
with the same name (CON) or overlaid on the same memory locations
(OVR).

REL or ABS The data in the program section can be relocated within virtual memory
(REL) or is not considered in the allocation of virtual memory (ABS).

19

VSI C++ Implementation

Attribute Meaning

GBL or LCL The program section is part of one cluster, is referenced by the same
program section name in different clusters (GBL), or is local to each
cluster in which its name appears (LCL).

EXE or NOEXE The program section contains executable code (EXE) or does not
contain executable code (NOEXE).

WRT or NOWRT The program section contains data that can be modified (WRT) or data
that cannot be modified (NOWRT).

RD or NORD These attributes are reserved for future use.
SHR or NOSHR The program section can be shared in memory (SHR) or cannot be

shared in memory (NOSHR).
USR or LIB These attributes are reserved for future use.
VEC or NOVEC The program section contains privileged change mode vectors (VEC) or

does not contain those vectors (NOVEC).
COM or NOCOM The program section is a conditionally defined psect associated with

a conditionally defined symbol. This is the type of psect created
when you declare an uninitialized definition with extern_model
relaxed_refdef.

See the VSI OpenVMS Linker Utility Manual for more complete information on each.

The default attributes are: noshr, rel, noexe, novec, nopic.

For strict_refdef, the default is con. For common_block and relaxed_refdef, the default is ovr.

The default for wrt/nowrt is determined by the first variable placed in the psect. If the variable has the const
type qualifier (or the readonly modifier), the psect is set to nowrt. Otherwise, it is set to wrt.

Restrictions on Setting Psect Attributes

Be aware of the following restriction on setting psect attributes.

The #pragma extern_model directive does not set psect attributes for variables declared as tentative
definitions in the relaxed_refdef model. A tentative definition is one that does not contain an initializer.
For example, consider the following code:

#pragma extern_model relaxed_refdef long
int a;
int b = 6;
#pragma extern_model common_block long
int c;

Psect A is given octaword alignment (the default) because a is a tentative definition. Psect B is correctly given
longword alignment because it is initialized and is, therefore, not a tentative definition. Psect C is also given
longword alignment because it is declared in an extern_model other than relaxed_refdef.

Note

The psect attributes are normally used by system programmers who need to perform declarations normally done
in macro. Most of these attributes are not needed in normal C programs. Also, notice that the setting of attributes
is supported only through the #pragma mechanism, and not through the /EXTERN_MODEL command-line
qualifier.

2.1.1.5. #pragma extern_prefix Directive

20

VSI C++ Implementation

The #pragma extern_prefix directive controls the compiler's synthesis of external names, which the
linker uses to resolve external name requests. When you specify #pragma extern_prefix with a string
argument, the compiler prepends the string to all external names produced by the declarations that follow the
pragma specification.

This pragma is useful for creating libraries where the facility code can be attached to the external names in the
library.

The syntax is as follows:

 "string"
#pragma extern_prefix save
 restore

"string"

Prepends the quoted string to external names in the declarations that follow the pragma specification.

save

Saves the current pragma prefix string.

restore

Restores the saved pragma prefix string.

The default external prefix, when none has been specified by a pragma, is the null string. The recommended use
is as follows:

#pragma extern_prefix save
#pragma extern_prefix "prefix-to-prepend-to-external-names"
... some declarations and definitions ...
#pragma extern_prefix restore

When an extern_prefix is in effect and you are using #include to include header files, but do not want
the extern_prefix to apply to extern declarations in the header files, use the following code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""
#include …
#pragma extern_prefix restore
Otherwise, the external identifiers for definitions in the included files will be prepended with the external prefix.

All external names prefixed with a nonnull string using #pragma extern_prefix are converted to uppercase
letters regardless of the setting of the /NAMES qualifier.

The compiler treats #pragma extern_prefix independently of the /PREFIX_LIBRARY_ENTRIES
qualifier. The /PREFIX_LIBRARY_ENTRIES qualifier affects only ANSI and C Run-Time Library (RTL) entries;
the extern_prefix pragma affects external identifiers for any externally visible name.

2.1.1.6. #pragma function Directive
The #pragma function directive specifies that calls to the specified functions will occur in the source code.
You normally use this directive in conjunction with #pragma intrinsic, which affects specified functions
that follow the pragma directive. The effect of #pragma intrinsic on a given function continues to the end
of the source file or until a #pragma function directive occurs, specifying that function.

The #pragma function directive has the following syntax:

#pragma function (function1[,function2, ...])
#pragma function ()

21

VSI C++ Implementation

You cannot specify this pragma with empty parentheses. To disable all intrinsic functions, specify the /
OPTIMIZE=NOINTRINSICS qualifier on the command line.

2.1.1.7. #pragma include_directory Directive
The effect of each #pragma include_directory is as if its string argument (including the quotes) were
appended to the list of places to search that is given its initial value by the /INCLUDE_DIRECTORY qualifier,
except that an empty string is not permitted in the pragma form.

The #pragma include_directory directive has the following syntax:

#pragma include_directory <string-literal>

This pragma is intended to ease DCL command-line length limitations when porting applications from POSIX-like
environments built with makefiles containing long lists of -I options that specify directories to search for headers.
Just as long lists of macro definitions specified by the /DEFINE qualifier can be converted to #define directives
in a source file, long lists of places to search specified by the /INCLUDE_DIRECTORY qualifier can be converted
to #pragma include_directory directives in a source file.

Note that the places to search, as described in the help text for the /INCLUDE_DIRECTORY qualifier, include the
use of POSIX-style pathnames, for example "/usr/base". This form can be very useful when compiling code
that contains POSIX-style relative pathnames in #include directives. For example, #include <subdir/
foo.h> can be combined with a place to search such as "/usr/base" to form "/usr/base/subdir/
foo.h", which will be translated to the filespec "USR:[BASE.SUBDIR]FOO.H"

This pragma can appear only in the main source file or in the first file specified on the /FIRST_INCLUDE qualifier.
Also, it must appear before any #include directives.

2.1.1.8. #pragma [no]inline Directive
The #pragma inline directive expands function calls inline. The function call is replaced with the function
code itself.

The #pragma inline directive has the following syntax:

#pragma inline (id,...)
#pragma noinline (id,...)

If a function is named in an inline directive, calls to that function will be expanded as inline code, if possible.

If a function is named in a noinline directive, calls to that function will not be expanded as inline code.

If a function is named in both an inline and a noinline directive, an error message is issued.

For calls to functions named in neither an inline nor a noinline directive, C++ expands the function as inline code
whenever appropriate as determined by a platform-specific algorithm.

2.1.1.9. #pragma intrinsic Directive
The #pragma intrinsic directive specifies that calls to the specified functions are intrinsic. Intrinsic
functions are functions in which the compiler generates optimize code in certain situations, possibly avoiding a
function call.

The #pragma intrinsic directive has the following syntax:

#pragma intrinsic (function1[,function2, ...])

You can use this directive to make intrinsic the default form of functions that have intrinsic forms. The following
functions have intrinsic forms:

abs

22

VSI C++ Implementation

fabs
labs
alloca

You can use the #pragma function directive to override the #pragma intrinsic directive for specified
functions.

The function must have a declaration visible at the time the compiler encounters the #pragma intrinsic
directive. The compiler takes no action if the compiler does not recognize the specified function name as an
intrinsic.

2.1.1.10. #pragma [no]member_alignment Directive
By default, the compiler for OpenVMS systems aligns structure members so that members are stored on the next
boundary appropriate to the type of the member; that is, bytes are on the next byte boundary, words are on the
next word boundary, and so on.

You can use the #pragma member_alignment directive to specify structure member alignment explicitly.
For example, using #pragma member_alignment aligns a long member variable on the next longword
boundary, and it aligns a short member variable on the next word boundary.

Using #pragma nomember_alignment causes the compiler to align structure members on the next byte
boundary regardless of the type of the member. The only exception to this is for bit-field members.

If used, the nomember_alignment pragma remains in effect until the compiler encounters the
member_alignment pragma.

To save and restore the current setting of the member_alignment pragma, you can use the
member_alignment save and member_alignment restore pragmas.

To affect the member alignment of the entire module, use the /MEMBER_ALIGNMENT qualifier. For information
about this qualifier, see Section 2.1.1.10, “#pragma [no]member_alignment Directive”.

2.1.1.11. #pragma message Directive
The #pragma message directive controls the kinds of individual diagnostic messages or groups of messages
that the compiler issues. Use this pragma to override any command-line options specified by the /WARNINGS
qualifier, which affects the types of messages the compiler issues.

Default severities used by the compiler can be changed only if they are informationals, warnings, or discretionary
errors. Attempts to change more severe severities are ignored. If a message severity has not been altered by the
command line and is not currently being controlled by a pragma, the compiler checks to see whether the message
severity should be changed because of the “quiet” state. If not, the message is issued using the default severity.

Error message severities start out with command-line severities applied to default compiler severities. Pragma
message severities are then applied. In general, pragma severities override command-line severities, which
override default severities. The single exception to this is that command-line options can always be used to
downgrade messages. However, command-line qualifiers cannnot be used to raise the severity of messages
currently controlled by pragmas.

The #pragma message directive has the following syntax:

#pragma message disable (message-list)
#pragma message enable (message-list)
#pragma message error (message-list)
#pragma message fatal (message-list)
#pragma message informational (message-list)
#pragma message warning (message-list)
#pragma message restore
#pragma message save

23

VSI C++ Implementation

disable

Suppresses the compiler-issued messages specified in the message-list argument. The message-list argument can
be any one of the following:

• A single message identifier

• The keyword ALL (all messages issued by the compiler)

• A single message identifier enclosed in parentheses

• A comma-separated list of message identifiers enclosed in parentheses

A message identifier is the name immediately following the message severity code letter. For example, consider
the following message:

%CXX-W-MISSINGRETURN, Non-void function "name" does not contain a return
 statement

The message identifier is MISSINGRETURN. To prevent the compiler from issuing this message, use the
following directive:

#pragma message disable MISSINGRETURN

The compiler lets you disable a discretionary message if its severity is warning (W), informational (I), or error
(E) at the time the message is issued. If the message has severity of fatal (F), the compiler issues it regardless of
instructions not to issue messages.

enable

Enables the compiler to issue the messages specified in the message-list argument.

errors

Sets the severity of each message in the message list to Error.

fatals

Sets the severity of each message in the message list to Fatal.

informationals

Sets the severity of each message in the message list to Informational.

warnings

Sets the severity of each message in the message list to Warning.

restore

Restores the saved state of enabling or disabling compiler messages.

save

Saves the current state of enabling or disabling compiler messages.

The save and restore options are useful primarily within header files. See Section 2.1.1.5, “#pragma
extern_prefix Directive”.

#pragma message performs macro expansion so that you map Version 5.6 message tags to Version 6.0 tags:

...
#if __DECCXX_VER > 60000000
#define uninit used_before_set

24

VSI C++ Implementation

#endif

#pragma message disable uninit
int main()
{
 int i,j;

 i=j;
}
#pragma message enable uninit

2.1.1.12. #pragma module Directive
When you compile source files to create an object file, the compiler assigns the first of the file names specified
in the compilation unit to the name of the object file. The compiler adds the .OBJ file extension to the object file.
Internally, the OpenVMS system (the debugger and the librarian) recognizes the object module by the file name;
the compiler also gives the module a version number of 1. For example, given the object file EXAMPLE.OBJ,
the debugger recognizes the EXAMPLE object module.

To change the system-recognized module name and version number, use the #pragma module directive.

You can find the module name and the module version number listed in the compiler listing file and the linker
load map.

The #pragma module directive is equivalent to the VAX C compatible #module directive.

The #pragma module directive has the following syntax:

#pragma module identifier identifier
#pragma module identifier string

The first parameter must be a valid identifier, which specifies the name of the module to be used by the linker.
The second parameter specifies the optional identification that appears on the listing and in the object file. The
second parameter must be a valid identifier of no more than 31 characters, or a character-string constant of no
more than 31 characters.

2.1.1.13. #pragma once Directive
The #pragma once preprocessor directive specifies that the header file is evaluated only once.

The #pragma once directive has the following format:

#pragma once

2.1.1.14. #pragma pack Directive
The #pragma pack directive specifies the byte boundary for packing member's structures.

The #pragma pack directive has the following format:

#pragma pack [(n)]
#pragma pack(push {, identifier} {, n})
#pragma pack(pop {, identifier} {, n})

n specifies the new alignment restriction in bytes as follows:

1 Align to byte
2 Align to word
4 Align to longword

25

VSI C++ Implementation

8 Align to quadword
16 Align to octaword

A structure member is aligned to either the alignment specified by #pragma pack or the alignment determined
by the size of the structure member, whichever is smaller. For example, a short variable in a structure gets byte-
aligned if #pragma pack (1) is specified. If #pragma pack (2) (4), or (8) is specified, the short
variable in the structure gets aligned to word.

If #pragma pack is not used, or if n is omitted, packing defaults to 1 for byte alignment.

With the push/pop syntax of this pragma, you can save and restore packing alignment values across program
components. This allows you to combine components into a single translation unit even if they specify different
packing alignments:

• Every occurrence of pragma pack with a push argument stores the current packing alignment value on an
internal compiler stack. If you provide a value for n, that value becomes the new packing value. If you specify
an identifier, a name of your choosing, it is associated with the new packing value.

• Every occurrence of a pragma pack with a pop argument retrieves the value at the top of the stack and
makes that value the new packing alignment. If an empty stack is popped, the alignment value defaults to the /
[NO]MEMBER_ALIGNMENT command-line setting, and a warning is issued. If you specify a value for n,
that value becomes the new packing value.

If you specify an identifier, all values stored on the stack are removed from the stack until a matching identifier
is found. The packing value associated with the identifier is also removed from the stack, and the packing value
that was in effect just before the identifier was pushed becomes the new packing value. If no matching identifier
is found, the packing value reverts to the command-line setting, and a warning is issued.

The push/pop syntax of pragma pack lets you write header files that ensure that packing values are the same
before and after the header file is encountered. Consider the following example:

// File name: myinclude.h
//
#pragma pack(push, enter_myinclude)
// Your include-file code ...
#pragma pack(pop, enter_myinclude)
// End of myinclude.h

In this example, the current packing value is associated with the identifier enter_myinclude and pushed on
entry to the header file. Your include code is processed. The #pragma pack at the end of the header file then
removes all intervening packing values that might have occurred in the header file, as well as the packing value
associated with enter_myinclude, thereby preserving the same packing value after the header file as before it.

This syntax also lets you include header files that might set packing alignments different from the ones set in your
code. Consider the following example:

#pragma pack(push, before_myinclude)
#include <myinclude.h>
#pragma pack(pop, before_myinclude)

In this example, your code is protected from any changes to the packing value that might occur in
<myinclude.h> by saving the current packing alignment value, processing the include file (which may leave
the packing alignment with an unknown setting), and restoring the original packing value.

2.1.1.15. #pragma unroll Directive (Alpha only)
The #pragma unroll preprocessor directive unrolls the for loop that follows it by the number of times
specified in unroll_factor. The #pragma unroll directive must be followed by a for statement.

This directive has the following format:

26

VSI C++ Implementation

#pragma unroll unroll_factor

The unroll_factor is an integer constant in the range of 0 to 255. If a value of 0 is specified, the compiler ignores the
directive and determines the number of times to unroll the loop in its normal way. A value of 1 prevents the loop
from being unrolled. The directive applies only to the for loop that follows it, not to any subsequent for loops.

2.1.1.16. #pragma [no]standard Directive
This directive performs operations similar to the save and restore options on #pragma message directive:

• #pragma standard is the same as #pragma message restore.

• #pragma nostandard disables all optional messages after doing a #pragma message save operation.

2.1.2. Predefined Macros and Names
The compiler defines the following predefined macros and predefined names. For information on using predefined
macros in header files in the common language environment, see Section 3.2, “Using Existing C Header Files ”.

Table 2.2. Predefined Macros

Macro Description

_BOOL_EXISTS Indicates that bool is a type or keyword
__BOOL_IS_A_RESERVED_WORD Indicates that bool is a keyword
__DATE__1 A string literal containing the date of the translation in the form Mmm

dd yyyy, or Mmm d yyyy if the value of the date is less than 10
__FILE__1 A string literal containing the name of the source file being compiled
__IEEE_FLOAT Identifies floating-point format for compiling the program. The default

value is 1 for OpenVMS I64 systems, and 0 for OpenVMS Alpha and
VAX systems.

__LINE__1 A decimal constant containing the current line number in the C++
source file

__PRAGMA_ENVIRONMENT Indicates that that the pragma environment directive is supported.
__TIME__1 A string literal containing the time of the translation in the form of

hh:mm:ss

_WCHAR_T Indicates that wchar_t is a keyword
1Cannot be redefined or undefined

Table 2.3, “Names with a Defined Value of 1” lists names with a defined value of 1.

Table 2.3. Names with a Defined Value of 1

Name Description

__cplusplus1 Language identification name.
__DECCXX Language identification name.
__VMS System identification
__vms System identification

1Cannot be redefined or undefined

The compiler predefines __VMS; the C compiler predefines VMS and __VMS. Therefore, C++ programmers who
plan to reuse code should check for __VMS.

On OpenVMS systems, the compiler supports the following predefined macro names.

27

VSI C++ Implementation

Table 2.4. Predefined Macros Specific to OpenVMS Systems

Name Description

__Alpha_AXP System identification name
__ALPHA System identification name
__alpha System identification name
__32BITS Defined when pointers and data of type long are 32 bits on Alpha

platforms

The compiler predefines __32BITS when pointers and data of type long are 32 bits on Alpha platforms.

On both UNIX and OpenVMS operating systems, programmers should use the predefined macro __alpha for
code that is intended to be portable from one system to the other.

On OpenVMS I64 systems, the compiler supports the following predefined macro names:

Table 2.5. Predefined Macros Specific to OpenVMS I64 Systems

Name Description

__ia64 System identification name
__ia64__ System identification name
__32BITS Defined when pointers and data of type long are 32 bits.

Predefined macros (with the exception of vms_version, VMS_VERSION, __vms_version,
__VMS_VERSION, and __INITIAL_POINTER_SIZE) are defined as 1 or 0, depending on the system (VAX
or Alpha processor), the compiler defaults, and the qualifiers used. For example, if you compiled using G_FLOAT
format, __D_FLOAT and __IEEE_FLOAT (Alpha processors only) are predefined to be 0, and __G_FLOAT is
predefined as if the following were included before every compilation unit:

 #define __G_FLOAT 1

These macros can assist in writing code that executes conditionally. They can be used in #elif, #if, #ifdef,
and #ifndef directives to separate portable and nonportable code in a C++ program. The vms_version,
VMS_VERSION, __vms_version, and __VMS_VERSION macros are defined with the value of the OpenVMS
version on which you are running (for example, Version 6.0).

C++ automatically defines the following macros pertaining to the format of floating-point variables. You can use
them to identify the format with which you are compiling your program.

__D_FLOAT
__G_FLOAT
__IEEE_FLOAT
_IEEE_FP
__X_FLOAT

The value of __X_FLOAT can be 0 or 1 depending on the floating point mode in effect. You can use the /FLOAT
qualifier to change the mode.

Table 2.6, “Version String and Version Number Macros” lists predefined version string and version number macros.

Table 2.6. Version String and Version Number Macros

Name Description

__VMS_VERSION1 Version identification
__vms_version1 Version identification
__DECCXX_VER2 Version identification

28

VSI C++ Implementation

Name Description

__VMS_VER2 Version identification
1The value is a character string.
2The value is an unsigned long int that encodes the version number.

For example, the defined value of __VMS_VERSION on OpenVMS Version 6.1 is character string V6.1.

You can use __DECCXX_VER to test that the current compiler version is newer than a particular version and
__VMS_VER to test that the current OpenVMS Version is newer than a particular version. Newer versions of
the compiler and the OpenVMS operating system always have larger values for these macros. If for any reason
the version cannot be analyzed by the compiler, then the corresponding predefined macro is defined but has the
value of 0. Releases of the compiler prior to Version 5.0 do not define these macros, so you can distinguish earlier
compiler versions by checking to determine if the __DECCXX_VER macro is defined.

The following example tests for C++ 5.1 or higher:

#ifdef __DECCXX_VER
 #if __DECCXX_VER >= 50100000
 / *Code */
 #endif
#endif

The following tests for OpenVMS Version 6.2 or higher:

#ifdef __VMS_VER
 #if __VMS_VER >= 60200000
 /* code */
 #endif
#endif

Table 2.7, “Macros Defined by Command-Line Qualifiers” shows the macro names for the listed command-line
options.

Table 2.7. Macros Defined by Command-Line Qualifiers

Command-line Option Macro Name

/ALTERNATIVE_TOKENS __ALTERNATIVE_TOKENS

/ASSUME=GLOBAL_ARRAY_NEW __GLOBAL_ARRAY_NEW

/ASSUME=STDNEW __STDNEW

/DEFINE=__FORCE_INSTANTATIONS
(Alpha only)

__FORCE_INSTANTIATIONS

/EXCEPTIONS __EXCEPTIONS

/IEEE_MODE _IEEE_FP

/IMPLICIT_INCLUDE __IMPLICIT_INCLUDE_ENABLED

/L_DOUBLE_SIZE __X_FLOAT

/MODEL=ANSI __MODEL_ANSI

/MODEL=ARM (Alpha only) __MODEL_ARM

/PURE_CNAME __PURE_CNAME, __HIDE_FORBIDDEN_NAMES1

/ROUNDING_MODE __BIASED_FLT_ROUNDS

/RTTI __RTTI

/STANDARD=RELAXED __STD_ANSI, __NOUSE_STD_IOSTREAM

/STANDARD=ANSI __STD_ANSI, __NOUSE_STD_IOSTREAM

29

VSI C++ Implementation

Command-line Option Macro Name

/STANDARD=ARM __STD_ARM, __NOUSE_STD_IOSTREAM

/STANDARD=CFRONT The CFRONT option is no longer supported.
/STANDARD=GNU __STD_GNU, __NOUSE_STD_IOSTREAM

/STANDARD=MS __STD_MS, __NOUSE_STD_IOSTREAM

/STANDARD=STRICT_ANSI __STD_STRICT_ANSI, __USE_STD_IOSTREAM,

__PURE_CNAME, __HIDE_FORBIDDEN_NAMES
/STANDARD=STRICT_ANSI

/WARNINGS=ANSI_ERRORS

__STD_STRICT_ANSI_ERRORS, __PURE_CNAME,

__HIDE_FORBIDDEN_NAMES

/USING=STD __IMPLICIT_USING_STD

/STANDARD=LATEST __STD_STRICT_ANSI, __USE_STD_IOSTREAM,

__PURE_CNAME, __HIDE_FORBIDDEN_NAMES
/STANDARD=LATEST

/WARNINGS=ANSI_ERRORS

__STD_STRICT_ANSI_ERRORS, __PURE_CNAME,

__HIDE_FORBIDDEN_NAMES
1When you compile with VSI C using any values of /STANDARD that set strict C standard conformance (ANSI89, MIA, C99, and LATEST),
versions of the standard header files are included that hide many identifiers that do not follow the rules. The header file <stdio.h>, for example,
hides the definition of the macro TRUE. The compiler accomplishes this by predefining the macro __HIDE_FORBIDDEN_NAMES for the
above-mentioned /STANDARD values.

You can use the /UNDEFINE="__HIDE_FORBIDDEN_NAMES" command-line qualifier to prevent the compiler from predefining this macro
and, thereby, including macro definitions of the forbidden names.

2.1.3. Translation Limits
The only translation limits imposed in the compiler are as follows:

Limit Meaning

32,767 Bytes in the representation of a string literal. This limit does not apply to string literals
formed by concatenation.

8192 Characters in an internal identifier or macro name.
8192 Characters in a logical name.
8192 Characters in a physical source line, on OpenVMS systems.
1012 Bytes in any one function argument.
512 Characters in a physical source line, on OpenVMS Alpha systems.
255 Arguments in a function call.1

255 Parameters in a function definition.1

127 Characters in a qualified identifier in the debugger.
31 Significant characters in an external identifier with “C” linkage. A warning is issued if

such an identifier is truncated.
1The compiler may add one or two hidden arguments to a function, which reduces to 254 or 253 the number of arguments available to the user.

2.1.4. Numerical Limits
The numerical limits, as defined in the header files <limits.h> and <float.h> are as follows:

• The number of bits in a character of the execution character set is eight.

• The representation and set of values for type char and for type signed char are the same. You can change
this equivalence from signed char to unsigned char with a command-line option.

30

VSI C++ Implementation

• The representation and set of values for the short type is 16 bits.

• The representation and set of values for the types int, signed int, and long are the same (32 bits).

• The representation and set of values for type unsigned int and for type unsigned long are the same
(32 bits).

• The representation and set of values for type double are 64 bits.

• The representation and set of values for type long double are 128 bits unless the /L_DOUBLE_SIZE=64)
qualifier is specified.

Specifying a different l_double_size than the default size for your particular version of the operating system
does not work correctly with the standard library.

Numerical limits not described in this list are defined in The Annotated C++ Reference Manual.

2.1.5. Argument-Passing and Return Mechanisms
The compiler passes arrays, functions, and class objects with a constructor or destructor by reference. All other
objects are passed by value.

If a class has a constructor or a destructor, it is not passed by value. In this case, the compiler calls a copy constructor
to copy the object to a temporary location, and passes the address of that location to the called function.

If the return value of a function is a class that has defined a constructor or destructor or is greater than 64 bits,
storage is allocated by the caller and the address to this storage is passed in the first parameter to the called function.
The called function uses the storage provided to construct the return value.

2.2. Implementation Extensions and Features
This section describes the extensions and implementation-specific features of the compiler on OpenVMS systems.

2.2.1. Identifiers
In the compiler, the dollar sign ($) is a valid character in an identifier.

For each external function with C++ linkage, the compiler decorates the function name with a representation of
the function's type.

2.2.1.1. External Name Encoding
The compiler uses the external name encoding scheme described in §7.2.1c of The Annotated C++ Reference
Manual.

For the basic types, the external name encoding scheme is exactly the same as that described in The Annotated
C++ Reference Manual, as follows:

Type Encoding

void v

char c

short s

int i

long l

float f

double d

long double r

31

VSI C++ Implementation

Type Encoding

... e

bool jb

wchar_t jw

Class names are encoded as described in The Annotated C++ Reference Manual, except that the VSI C++ compiler
uses the lowercase q instead of uppercase Q, and denotes the qualifier count as a decimal number followed by
an underscore, as follows:

Class Notation Encoding

simple Complex 7Complex

qualified X::YY q2_1x2yy

Type modifiers are encoded as follows:

Modifier Encoding

const k

signed g

volatile w

unsigned u

__unaligned b

Type declarators are encoded as follows:

Type Notation Encoding

array [10] a10_

function () x

pointer * p

pointer to member S::* m1S

reference & n

unnamed
enumeration type

h

On OpenVMS systems, the compiler also supports the following data types:

Type Encoding

__int16 ji4

__int32 ji5

__int64 ji6

__f_float jf

__g_float jg

__s_float js

__t_float jt

2.2.1.2. Modifying Long Names
On OpenVMS systems, if an identifier for a function name with C++ linkage exceeds 31 characters, the name
is modified as follows:

32

VSI C++ Implementation

1. A unique value is generated by hashing the full decorated name. This seven-character code is appended to the
end of the name.

2. The name is preceded by the cxx$ facility prefix.

3. The name is truncated in three back-to-front passes, eliminating underscores, then vowels, and then consonants
(y is a consonant). A vowel is never removed if the following conditions apply:

• It occurs as the first character in the fully decorated name.

• The character before the vowel is either another vowel or is non-alphanumeric.

The hash code added at the end of the name is not truncated.

Truncation ceases when the truncated name, combined with the cxx$ facility prefix and the unique radix 32
value at the end, equals 31 characters.

For information on how to view the demangled form of these names, see Section 1.6, “Name Demangling”.

2.2.2. Order of Static Object Initialization
Nonlocal static objects are initialized in declaration order within a compilation unit and in link order across
compilation units. On OpenVMS systems, the compiler uses the lib$initialize mechanism to initialize
nonlocal static objects.

2.2.3. Integral Conversions
When demoting an integer to a signed integer, if the value is too large to be represented the result is truncated
and the high-order bits are discarded.

Conversions between signed and unsigned integers of the same size involve no representation change.

2.2.4. Floating-Point Conversions
When converting an integer to a floating-point number that cannot exactly represent the original value, the compiler
rounds off the result of the conversion to the nearest value that can be represented exactly.

When the result of converting a floating-point number to an integer or other floating-point number at compile time
cannot be represented, the compiler issues a diagnostic message.

When converting an integral number or a double floating-point number to a floating-point number that cannot
exactly represent the original value, rounds off the result to the nearest value of type float.

When demoting a double value to float, if the converted value is within range but cannot exactly represent the
original value, the compiler rounds off the result to the nearest representable float value, the compiler performs
similar rounding for demotions from long double to double or float.

2.2.5. Explicit Type Conversion
In C++, the expression T() (where T is a simple type specifier) creates an rvalue of the specified type, whose
value is determined by default initialization. According to the The Annotated C++ Reference Manual, the behavior
is undefined if the type is not a class with a constructor, but the ANSI/ISO International Standard removes this
restriction. With this change you can now write:

 int i=int(); // i must be initialized to 0

2.2.6. The sizeof Operator
The type of the sizeof operator is size_t. In the header file, stddef.h, the compiler defines this type as
unsigned int, which is the type of the integer that holds the maximum size of an array.

33

VSI C++ Implementation

2.2.7. Explicit Type Conversion
A pointer takes up the same amount of memory storage as objects of type int or long (or their unsigned
equivalents). Therefore, a pointer can convert to any of these types and back again without changing its value. No
scaling occurs and the representation of the value is unchanged.

Conversions to and from a shorter integer and a pointer are similar to conversions to and from a shorter integer
and unsigned long. If the shorter integer type was signed, conversion fills the high-order bits of the pointer
with copies of the sign bit.

2.2.8. Multiplicative Operators
 The semantics of the division (/) and remainder (%) operator are as follows:

• If either operand of the division operator is negative, the compiler truncates the result toward 0 (that is, the
smallest integer larger than the algebraic quotient).

• If either operand of the remainder operator is negative, the result takes the same sign as that of the first operand.

In the following cases of undefined behavior detected at compile time, the compiler issues a warning:

Integer overflow
Division by 0
Remainder by 0

2.2.9. Additive Operators (§r.5.7)
You can subtract pointers to members of the same array. The result is the number of elements between the two
array members, and is of type ptrdiff_t. In the header file stddef.h, the compiler defines this type as int.

2.2.10. Shift Operators (§r.5.8)
The expression E1 >> E2 shifts E1 to the right E2 positions. If E1 has a signed type, the compiler fills the
vacated high-order bits of the shifted value E1 with a copy of E1's sign bit (arithmetic shift).

2.2.11. Equality Operators
When comparing two pointers to members, the compiler guarantees equality if either of the following conditions
hold:

• Both pointers are NULL.

• The same address expression (&) created both pointers.

When comparing two pointers to members, the compiler guarantees inequality if either of the following conditions
hold:

• Only one pointer is NULL.

• Each pointer produces a different member if applied to the same object.

When created by different address expressions, two pointers to members may compare either as equal or as unequal
if they produce the same member when applied to the same object.

2.2.12. Type Specifiers
For variables that are modifiable in ways unknown to the compiler, use the volatile type specifier. Declaring
an object to be volatile means that every reference to the object in the source code results in a reference to memory
in the object code.

34

VSI C++ Implementation

2.2.13. asm Declarations (Alpha only)
In the compiler, asm declarations produce a compile-time error. As an alternative to asm, you can use built-in
functions. See Appendix C, Built-In Functions for more information.

2.2.14. Linkage Specifications
Specifying linkage other than “C++” or “C” generates a compile-time error.

In object files, the compiler decorates with type information the names of functions with C++ linkage. This permits
overloading and provides rudimentary type checking across compilation units. The type-encoding algorithm used
is similar to that given in §7.2.1c of The Annotated C++ Reference Manual (see Section 2.2.1.1, “External Name
Encoding”).

2.2.15. Class Layout
 The alignment requirements and sizes of structure components affect the structure's alignment and size. A
structure can begin on any byte boundary and occupy any integral number of bytes.

2.2.15.1. Structure Alignment
 Structure alignment is controlled by the /MEMBER_ALIGNMENT command-line qualifier or by using the
#pragma member_alignment preprocessor directive. If /MEMBER_ALIGNMENT is specified, or implied
by default, the maximum alignment required by any member within the structure determines the structure's
alignment. When the structure or union is a member of an array, padding is added to ensure that the size of a
record, in bytes, is a multiple of its alignment.

Components of a structure are laid out in memory in the order in which they are declared. The first component has
the same address as the entire structure. Padding is inserted between components to satisfy alignment requirements
of individual components.

If /NOMEMBER_ALIGNMENT is specified, each member of a structure appears at the next byte boundary.

2.2.15.2. Bit-Fields
If /MEMBER_ALIGNMENT is specified, or implied by default, the presence of bit-fields causes the alignment
of the whole structure or union to be at least the same as that of the bit-field's base type.

For bit-fields (including zero-length bit-fields) not immediately declared following other bit-fields, their base type
imposes the alignment requirements (less than that of type int). Within the alignment unit (of the same size as
the bit-field's base type), bit-fields are allocated from low order to high order. If a bit-field immediately follows
another bit-field, the bits are packed into adjacent space in the same unit, if sufficient space remains; otherwise,
padding is inserted at the end of the first bit-field and the second bit-field is put into the next unit.

Bit-fields of base type char must be smaller than 8 bits. Bit-fields of base type short must be smaller than
16 bits.

2.2.15.3. Access Specifiers
The layout of a class is unaffected by the presence of access specifiers.

2.2.15.4. Class Subobject Offsets
A class object that has one or more base classes contains instances of its base classes as subobjects. The offsets
of nonvirtual base class subobjects are less than the offsets of any data members that are not part of base class
subobjects.

The offsets of nonvirtual base classes increase in derivation order. The offset of the first nonvirtual base class
subobject of any class is 0. For single inheritance, the address of a class object is always the same as the address
of its base class subobject.

35

VSI C++ Implementation

If a class has virtual functions, an object of that class contains a pointer to a virtual function table (VFPTR).

If a class has virtual base classes, an object of that class contains a pointer to a virtual base class table (VBPTR).

For a class with no base classes, the offset of a VFPTR or VBPTR is greater than the offset of any data members.
Thus, the offset of the first data member of a class with no base classes is 0, which facilitates interoperability with
other languages. If the leftmost base class of a subclass has a VFPTR, a VBPTR, or both, and is not virtual, the
class and its base class share the table or tables.

The offsets of virtual base class subobjects are greater than the offset of any data member, and increase in the order
of derivation of the virtual base classes. In increasing order, a class object contains the following:

1. Nonvirtual base class subobjects

2. Data members

3. VFPTR (if required)

4. VBPTR (if required)

5. Virtual base class subobjects

Consider the following example:

class B1
{
 int x[1];
};
class B2 : virtual B1
{
 int y[2];
 virtual int fl();
};
class B3 : virtual B2, virtual B1
{
 int z[3];
 virtual int f2();
};
class D : B3
{
 int a[4];
 virtual int f1(), f2(), f3();
};

Figure 2.1, “Layout of an Object of D Class” shows the layout of an object of D class for this example.

2.2.16. Virtual Function and Base Class Tables
The compiler allocates storage for virtual function tables (VTBLs) and base class tables (BTBLs) using the
common block extern model. All references to VTBLs and BTBLs share a single copy. (The compiler specifies the
local (LCL) PSECT attribute for these tables. Thus, one copy of each table exists for each program image file.) This
means that you need not be concerned with the associations of these tables during compilation, and the compiler
command switch +e supplied in other implementations is not needed for VSI C++ for OpenVMS systems.

2.2.17. Multiple Base Classes
Within a class object, base class subobjects are allocated in derivation order; that is, immediate base classes are
allocated in the order in which they appear in the class declaration.

36

VSI C++ Implementation

Figure 2.1. Layout of an Object of D Class

2.2.18. Temporary Objects
Under the following conditions, the compiler creates temporary objects for class objects with constructors:

• An object is returned from a function.

• An object is passed as an argument.

• An object is created using the constructor notation.

• A user-defined conversion is implicitly used.

Variations in the compiler generation of such temporary objects can adversely affect their reliability in user
programs. The compiler avoids introducing a temporary object whenever it discovers that the temporary object is
not needed for accurate compilation. Therefore, you should modify or write your programs so as not to depend on
side effects in the constructors or destructors of temporary objects.

2.2.18.1. Lifetime of Temporary Objects
Generally the compiler implements destruction of temporary objects at the end of statements. In certain situations,
however, temporary objects are destroyed at the end of the expression; they do not persist to the end of the
statement. Temporary objects do not persist to the end of statements in expressions that are:

• In operands of built-in conditional operators (|| and &&)

• In the second or third operand of the ternary operator (?:)

• Operands to the built-in comma operator (,)

Consider the following example:

struct A {
 void print(int i);
 A();
 ~A() { }
};

struct B {
 A* find(int i);

37

VSI C++ Implementation

 B(int i);
 B();
 ~B() { }
};

void f() {
 B(8).find(6)->print(6);
 (*(B(5).find(3))).print(3);
 return;
}

In the first and second statements inside void f(), the compiler destroys the temporary object created in
evaluating the expressions B(8) and B(5) after the call to A::print(int).

2.2.18.2. Nonconstant Reference Initialization with a Temporary
Object
If your program tries to initialize a nonconstant reference with a temporary object, the compiler generates a
warning. For example:

struct A {
 A(int);
};
void f(A& ar);

void g() {
 f(5); // warning!!
}

2.2.18.3. Static Member Functions Selected by Expressions
Creating Temporary Objects
When a static member is accessed through a member access operator, the expression on the left side of the dot (.)
or right arrow (->) is not evaluated. In such cases, the compiler creates code that calls the static member function
to handle the destruction of a class type temporary; the compiler does not create temporary destructor code. For
example:

struct A {
 ~A();
 static void sf();
};

struct B {
 A operator ()() const;
};

void f () {
 B bobj;
 bobj().sf(); // If 'bobj()' is evaluated, a temporary of
 // type 'A' is created.
}

2.2.19. File Inclusion
The #include directive inserts external text into the macro stream delivered to the compiler. Programmers often
use this directive to include global definitions for use with compiler functions and macros in the program stream.

38

VSI C++ Implementation

On OpenVMS systems, the #include directive may be nested to a depth determined by the FILLM process quota
and by virtual memory restrictions. The compiler imposes no inherent limitation on the nesting level of inclusion.

In C++ source programs, inclusion of both OpenVMS and most UNIX style file specifications is valid. For
example, the following is a valid UNIX style file specification:

nodename!/device/directory/filename.dat.3

The exclamation point (!) separates the node name from the rest of the specification; slash characters (/) separate
devices and directories; periods (.) separate file types and file versions. Because one character separates two
segments of the file specification, ambiguity can occur.

The /INCLUDE_DIRECTORY=(pathname,...) qualifier provides an additional level of search for user-defined
include files. Each pathname argument can be either a logical name or a legal UNIX style directory in a quoted
string. The default is /NOINCLUDE_DIRECTORY.

The qualifier provides functionality similar to the -I option of the cxx command on Tru64 UNIX systems.
This qualifier allows you to specify additional locations to search for files to include. Putting an empty string
in the specification prevents the compiler from searching any of the locations it normally searches but directs
it to search only in locations you identify explicitly on the command line with the /INCLUDE_DIRECTORY
and /LIBRARY qualifiers (or by way of the specification of the primary source file, depending on the /
NESTED_INCLUDE_DIRECTORY qualifier).

The basic order for searching depends on the form of the header name (after macro expansion), with additional
aspects controlled by other command line qualifiers as well as the presence or absence of logical name definitions.
The valid possibilities for names are as follows:

• Enclosed in quotes. For example: "stdio.h"

• Enclosed in angle brackets. For example: <stdio.h>

Unless otherwise defined, searching a location means that the compiler uses the string specifying the location as
the default file specification in a call to an RMS system service (that is, a $SEARCH/$PARSE) with a primary
file specification consisting of the name in the #include (without enclosing delimiters). The search terminates
successfully as soon as a file can be opened for reading.

Specifying a null string in the /INCLUDE qualifier causes the compiler to do a non-standard search. This search
path is as follows:

1. The current directory (quoted form only)

2. Any directories specified in the /INCLUDE qualifier

3. The directory of the primary input file

4. Text libraries specified on the command line using /LIBRARY

For standard searches, the search order is as follows:

1. Search the current directory (directory of the source being processed). If angle-bracket form, search only if no
directories are specified with /INCLUDE_DIRECTORY.

2. Search the locations specified in the /INCLUDE_DIRECTORY qualifier (if any).

3. If CXX$SYSTEM_INCLUDE is defined as a logical name, search CXX$SYSTEM_INCLUDE:.HXX or
just CXX$SYSTEM_INCLUDE:., depending on the qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If
nothing is found, go to step 6.

4. If CXX$LIBRARY_INCLUDE is defined as a logical name, CXX$LIBRARY_INCLUDE:.HXX or CXX
$LIBRARY_INCLUDE:., depending on the qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If nothing
is found, go to step 6.

5. If /ASSUME=HEADER_TYPE_DEFAULT is not specified, search the default list of locations for plain-text
copies of compiler header files as follows:

39

VSI C++ Implementation

SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[CXX$LIB.INCLUDE.SYS$STARLET_C].H

If /ASSUME=HEADER_TYPE_DEFAULT is specified, search the default list of locations for plain-text copies
of compiler header files as follows:

SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[CXX$LIB.INCLUDE.SYS$STARLET_C].H
SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]

6. Search the directory of the primary input file.

7. If quoted form, and CXX$USER_INCLUDE is defined as a logical name,
search CXX$USER_INCLUDE:.HXX or CXX$USER_INCLUDE:., depending on the /
ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

8. Search the text libraries. Extract the simple file name and file type from the #include specification, and use them
to determine a module name for each text library. There are three forms of module names used by the compiler:

a. type stripped:

The file type will be removed from the include file specification to form a library module name. Examples:

#include "foo.h" Module name "FOO"
#include "foo" Module name "FOO"
#include "foo" Module name "FOO"

b. type required:

The file type must be a part of the file name. Examples:

#include "foo.h" Module name "FOO.H"
#include "foo" Module name "FOO."
#include "foo" Module name "FOO."

c. type optional:

First an attempt is made to find a module with the type included in the module name. If this is unsuccessful,
an attempt is made with the type stripped from the module name. If this is unsuccessful, the search moves
on to the next library.

If /ASSUME=HEADER_TYPE_DEFAULT is specified, the following text libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier (all files, type stripped)
CXX$TEXT_LIBRARY (all files, type stripped)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)
CXXL$ANSI_DEF (unspecified files, type stripped)

Otherwise, these text libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier (all files, type optional)
CXX$TEXT_LIBRARY (all files, type optional)
CXXL$ANSI_DEF (all files, type required)
DECC$RTLDEF (H files and unspecified files, type stripped)

40

VSI C++ Implementation

SYS$STARLET_C (all files, type stripped)

Two text library search examples (stop when something is found):

Example 1
#include "foo"

a. For each library specified via the /LIBRARY qualifier:

- Look for "FOO."
- Look for "FOO"

b. Look for "FOO." in CXX$TEXT_LIBRARY

c. Look for "FOO" in CXX$TEXT_LIBRARY

d. Look for "FOO." in CXXL$ANSI_DEF (Do not look for "FOO" because the type is required as part of the
module name)

e. Look for "FOO" in DECC$RTLDEF (not "FOO." because the type must not be part of the module name)

f. Look for "FOO" in SYS$STARLET_C (not "FOO." because the type must not be part of the module name)

Example 2
#include "foo.h"

a. For each library specified via the /LIBRARY qualifier:

- Look for "FOO.H"
- Look for "FOO"

b. Look for "FOO.H" in CXX$TEXT_LIBRARY

c. Look for "FOO" in CXX$TEXT_LIBRARY

d. Look for "FOO.H" in CXXL$ANSI_DEF (Do not look for "FOO" because the type is required as part of
the module name)

e. Look for "FOO" in DECC$RTLDEF (not "FOO.H" because the type must not be part of the module name)

f. Look for "FOO" in SYS$STARLET_C (not "FOO.H" because the type must not be part of the module name)

g. If neither CXX$LIBRARY_INCLUDE nor CXX$SYSTEM_INCLUDE is defined as a logical name, then
search SYS$LIBRARY:.HXX.

2.2.20. Nested Enums and Overloading
The C++ language allows programmers to give distinct functions the same name, and uses either overloading or
class scope to differentiate the functions:

void f(int);
void f(int *);
class C {void f(int);};
class D {void f(int);};

Yet, linkers cannot interpret overloaded parameter types or classes, and they issue error messages if they find more
than one definition of any external symbol. C++ compilers, including VSI C++, solve this problem by assigning a

41

VSI C++ Implementation

unique mangled name (also called type safe linkage name) to every function. These unique mangled names allow
the linker to tell the overloaded functions apart.

The compiler forms a mangled name, in part, by appending an encoding of the parameter types of the function
to the function's name, and if the function is a member function, the function name is qualified by the names of
the classes within which it is nested.

For example, for the function declarations at the beginning of this section, the compiler might generate the mangled
names f__Xi, f__XPi, f__1CXi, and f__1DXi respectively. In these names, i means a parameter type was
int, P means “pointer to”, 1C means nested within class C, and 1D means nested within class D.

There is a flaw in the name mangling scheme used by the compiler that can cause problems in uncommon cases.
The compiler fails to note in the encoding of an enum type in a mangled name whether the enum type was nested
within a class. This can cause distinct overloaded functions to be assigned the same mangled name:

struct C1 {enum E {red, blue};};
struct C2 {enum E {red, blue};};

extern "C" int printf(const char *, ...);
void f(C1::E x) {printf("f(C1::E)\n");}
void f(C2::E x) {printf("f(C2::E)\n");}

int main()
{
 f(C1::red);
 f(C2::red);
 return 1;
}

In the previous example, the two overloaded functions named f differ only in that one takes an argument of enum
type C1::E and the other takes an argument of enum type C2::E. Since the compiler fails to include the names
of the classes containing the enum type in the mangled name, both functions have mangled names that indicate
the argument type is just E. This causes both functions to receive the same mangled name.

In some cases, the compiler detects this problem at compile-time and issues a message that both functions have the
same type-safe linkage. In other cases, the compiler issues no message, but the linker complains about duplicate
symbol definitions.

If you encounter such problems, you can recompile using the /DISTINGUISH_NESTED_ENUMS qualifier
(Alpha only). This causes the compiler, when forming a mangled name, to include the name of class or classes
within which an enum is nested, thereby preventing different functions from receiving the same the same mangled
name.

Because the /DISTINGUISH_NESTED_ENUMS qualifier changes the external symbols the compiler
produces, you can get undefined symbol messages from the linker if some modules are compiled
with /DISTINGUISH_NESTED_ENUMS and some are compiled without it. Because of this, /
DISTINGUISH_NESTED_ENUMS might make it difficult to link against old object files or libraries of code.

If you compile your code with /DISTINGUISH_NESTED_ENUMS and try to link against a library that was
compiled without the /DISTINGUISH_NESTED_ENUMS qualifier, you receive an undefined symbol message
from the linker if you attempt to call a function from the library that takes an argument of a nested enum type.
The mangled name of the function in the library will be different from the mangled name your code is using to
call the function.

Note that the /DISTINGUISH_NESTED_ENUMS qualifier has no meaning on I64 systems because it modifies
the behavior of programs compiled with /MODEL=ARM, and that model is not supported on I64 systems.

2.2.21. Guiding Declarations

42

VSI C++ Implementation

A guiding declaration is a function declaration that matches a function template, does not introduce a function
definition (implies an instantiation of the template body and not a explicit specialization), and is subject to different
argument matching rules than those that apply to the template itself – therefore affecting overload resolution.
Consider the following example:

template <class T> void f(T) {
 printf("In template f\n");
}

void f(int);

int main() {
 f(0); // invokes non-template f
 f<>(0.0); // invokes template f
 return 0;
}

void f(int) {
 printf("In non-template f\n");
}

Because there is no concept of guiding declaration in the current version of the C++ International Standard, the
function f in the example is not regarded as an instance of function template f. Furthermore, there are two
functions named f that take an int parameter. A call of f(0) would invoke the former, while a call of f<>(0)
would be required to invoke the latter.

2.3. Alternative Tokens
The compiler supports use of alternative tokens:

/[no]alternative_tokens

Enable use of operator keywords and digraphs to generate tokens as follows:

Operator Keyword Token

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

Digraph Token

:>]
<: [
%> }
<% {

43

VSI C++ Implementation

Digraph Token

%: #

2.4. Run-time Type Identification
The compiler emits type information for run-time type identification (RTTI) in the object module with the virtual
function table, for classes that have virtual function tables.

You can specify the /[NO]RTTI qualifier to enable or disable support for RTTI (runtime type identification)
features: dynamic_cast and typeid. Disabling runtime type identification can also save space in your object
file because static information to describe polymorphic C++ types is not generated. The default is to enable runtime
type information features and generate static information in the object file.

Specifying /NORTTI does not disable exception handling.

The type information for the class may include references to the type information for each base class and
information on how to convert to each. The typeinfo references are mangled in the form __T__<class>.

2.5. Message Control and Information
Options
The compiler supports the following message control options. The options apply only to warning and informational
messages. The ident variable is obtained from the error message.

Indicated messages can specify one or more message identifiers ident or the message group name all.

The default qualifier, /WARNINGS, outputs all enabled informational and warning messages. The /
NOWARNINGS qualifier suppresses both the informational and the warning messages.

Message options are processed and take effect in the following order:

/WARNINGS=NOWARNINGS

Disable all warnings.

/WARNINGS= INFORMATIONALS

Enable informationals.

Although /WARNINGS=INFORMATIONALS enables most informationals, we recommend using /
WARNINGS=ENABLE=ALL instead.

/WARNINGS= INFORMATIONALS=ALL or (ident,...)

Set the severity of the specified messages to Informational. You can specify ALL, which applies only to
discretionary messages. The ALL option also enables informationals that are disabled by default.

With Version 7.1 of the C++ compiler, /WARNINGS=INFORMATIONALS=<tag> no longer enables all
other informational messages.

/WARNINGS= WARNINGS=ALL or (ident,...)

Set the severity of the specified messages to Warning. You can specify ALL, which applies only to
discretionary messages.

/WARNINGS= [NO]ANSI_ERRORS

Issue error messages for all ANSI violations when in STRICT_ANSI mode. The default is /
WARNINGS=NOANSI_ERRORS.

44

VSI C++ Implementation

/WARNINGS=ERRORS=ALL or (ident,...)

Set the severity of the specified messages to Error. You can specify ALL, which applies only to discretionary
messages.

/WARNINGS=ENABLE=ALL or (ident,...)

Enable all compiler messages, including informational-level messages. Enable specific messages that
normally would not be issued when using /QUIET. You can also use this option to enable messages disabled
with /WARNINGS=DISABLE.

/WARNINGS=DISABLE=ALL or (ident,...)

Disable message. This can be used for any nonerror message.

/QUIET

Be more like Version 5.n error reporting. Fewer messages are issued using this option.

This is the default in arm mode (/STANDARD=ARM). All other modes default to /NOQUIET.

You can use the /WARNINGS=ENABLE option with this option to enable specific messages normally
disabled using /QUIET.

The compiler supports the following message information option, which is disabled by default.

/WARNINGS=[NO]TAGS

Display a descriptive tag with each message. "D" indicates that the message is discretionary and that its
severity can be changed from the command line or with a pragma. The tag displayed can be used as the ident
variable in the /WARNINGS options.

Example:

$ cxx/warnings=tags t.cxx
f() {}
^
%CXX-W-NOSIMPINT, omission of explicit type is nonstandard ("int"
 assumed)
 (D:nosimpint)
at line number 1 in file CXX$:[SMITH]STD.CXX;1

f() {}
.....^
%CXX-W-MISSINGRETURN, non-void function "f" (declared at line 1) should
 return a value (D:missingreturn)
at line number 1 in file CXX$:[SMITH]STD.CXX;1

$ cxx /warnings=(notags,disable=nosimpint) t.cxx

f() {}
.....^
%CXX-W-MISSINGRETURN, non-void function "f" (declared at line 1) should
 return a value
at line number 1 in file CXX$:[SMITH]STD.CXX;1

Also see the #pragma message preprocessor directive.

45

C++ Language Environment

Chapter 3. C++ Language
Environment
This chapter describes the guidelines and procedures for customizing your language environment. It includes
sections on changing your C header files to work with C++, organizing your C++ files, interfacing to other
programming languages, and designing upwardly compatible C++ classes.

3.1. cname Headers
The C++ compiler implements section 17.4.1.2 – Headers [lib.headers] "C++ Headers for C Library Facilities" of
the C++ Standard. See also Stroustrup's The C++ Programming Language, 3rd Edition.

The implementation consists of eighteen <cname> headers defined in the C++ Standard:

<cassert> <cctype> <cerrno> <cfloat>
<ciso646> <climits> <clocale> <cmath>
<csetjmp> <csignal> <cstdarg> <cstddef>
<cstdio> <cstdlib> <cstring> <ctime>
<cwchar> <cwctype>

As required by the C++ Standard, the <cname> headers define C names in the std namespace. In /
NOPURE_CNAME mode, the names are also inserted into the global namespace. See the description of the /
[NO]PURE_CNAME compiler qualifier in Appendix A, Compiler Command Qualifiers.

The <cname> headers are located in the same TLB library that contains the C++ standard library and class library
headers: SYS$SHARE:CXXL$ANSI_DEF.TLB.

Examples
1. #include <cstdio>
 void foo() {
 getchar(); // OK in /NOPURE_CNAME mode
 // %CXX-E-UNDECLARED in /PURE_CNAME mode
 }

2. #include <cstdio>
 void foo() {
 std::getchar(); // OK in both modes
 }

3. #include <stdio.h>
 void foo() {
 getchar(); // OK in both modes
 std::getchar(); // OK in both modes
 }

3.2. Using Existing C Header Files
C header files that already conform to ANSI C standards must be modified slightly to be usable by VSI C++
programs. In particular, be sure to address the following issues:

• Enable the proper linkage for each language.

• Ensure that C++ keywords are not used as identifiers.

46

C++ Language Environment

• Reconcile any namespace and scoping differences.

The compiler provides some C header files that have been modified to work with C++, including standard ANSI
C header files. These headers are in the SYS$LIBRARY directory.

The following sections provide details on how to properly modify your headers.

3.2.1. Providing C and C++ Linkage
To modify header files, use conditional compilation and the extern specifier.

When programming header files to be used for both C and C++ programs, use the following convention for
predefined macros. The system header files also provide an example of correct usage of the predefined macros.

#if defined __cplusplus
 /* If the functions in this header have C linkage, this
 * will specify linkage for all C++ language compilers.
 */
 extern "C" {
#endif

if defined __DECC || defined __DECCXX
 /* If you are using pragmas that are defined only
 * with DEC C and DEC C++, this line is necessary
 * for both C and C++ compilers. A common error
 * is to only have #ifdef __DECC, which causes
 * the compiler to skip the conditionalized
 * code.
 */

pragma __extern_model __save
pragma __extern_model __strict_refdef
 extern const char some_definition [];
pragma __extern_model __restore
endif

 /* ...some data and function definitions go here... */

#if defined __cplusplus
 } /* matches the linkage specification at the beginning. */
#endif

See The Annotated C++ Reference Manual for more information on linkage specifications.

3.2.2. Resolving C++ Keyword Conflicts
 If your program uses any of the following C++ language keywords as identifiers, you must replace them with
nonconflicting identifiers:

asm bool catch class

const_cast delete dynamic_cast explicit

export false friend inline

mutable namespace new operator

private protected public reinterpret_cast

static_cast template this throw

true try typeid typename

47

C++ Language Environment

virtual wchar_t

Alternative representation keywords are as follows:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq

3.2.3. Handling Scoping Issues
Distinctions between ANSI C and C++ include slight differences in rules concerning scope. Therefore, you may
need to modify some ANSI C header files to use them with C++.

The following sample code fragment generates an error regarding incompatible types, but the root cause is the
difference in scope rules between C and C++. In ANSI C, the compiler promotes tag names defined in structure
or union declarations to the containing block or file scope. This does not happen in C++.

struct Screen {
 struct _XDisplay *display;
};
typedef struct _XDisplay {
 // …
} Display;

struct Screen s1;
Display *s2;

main()
{
 s1.display = s2;
}

The offending line in this sample is s1.display = s2. The types of s1.display and s2 are the same
in C but different in C++. You can solve the problem by adding the declaration struct _XDisplay; to the
beginning of this code fragment, as follows:

struct _XDisplay; // this is the added line
struct Screen {
struct _XDisplay *display;
};
typedef struct _XDisplay {
 // ...
} Display;
// ...

3.2.4. Support for <stdarg.h> and <varargs.h>
Header Files
The C compiler special built-in macros defined in the header files <stdarg.h> and <varargs.h>. These step
through the argument list of a routine.

Programs that take the address of a parameter, and use pointer arithmetic to step through the argument list to
obtain the value of other parameters, assume that all arguments reside on the stack and that arguments appear in
increasing order. These assumptions are not valid for VSI C++. The macros in <varargs.h> can be used only
by C functions with old-style definitions that are not legal in C++. To reference variable-length argument lists,
use the <stdarg.h> header file.

The OpenVMS calling standard mechanism for returning structures larger than 8 bytes by value uses a hidden
parameter. The parameter is a pointer to storage in the caller's frame. The va_count macro includes this
parameter in its count.

48

C++ Language Environment

3.3. Using VSI C++ with Other Languages
The following are suggestions regarding the use of VSI C++ with other languages:

• Passing entities, such as classes, by reference is safest.

• You cannot invoke class member functions from within any language other than C++.

• Every C++ routine that will be called from the other language should be declared in C++ with extern "C".
For example:

extern "C"
 int myroutine(int, float);

The extern "C" will cause the routine to have an unmangled name, so that you can refer to it as myroutine
from a language such as Cobol or Fortran. Otherwise the routine's link name will be mangled into something
like myrout__Xif.

• If the main routine is defined in the other language, you will probably need to use the other language's command-
line interface to perform your link step. To include the appropriate C++ libraries and startup file, you will need
to add some arguments to the command line. The most reliable way to determine what is needed is to test with
a small C++ program.

3.4. Linkage to Non-C++ Code and Data
With linkage specifications, you can both import code and data written in other languages into a VSI C++ program
and export VSI C++ code and data for use with other languages. See The Annotated C++ Reference Manual for
details on the extern "C" declaration.

3.5. How to Organize Your C++ Code
This section explains the best way for compiler users to organize an application into files; it assumes that you are
using automatic instantiation to instantiate any template classes and functions.

3.5.1. Code That Does Not Use Templates
The general rule is to place declarations in header files and place definitions in library source files. The following
items belong in header files:

• Class declarations

• Global function declarations

• Global data declarations

And the following items belong in library source files:

• Static member data definitions

• Out-of-line member function definitions

• Out-of-line global function definitions

• Global data definitions

Header files should be directly included by modules that need them. Because several modules may include the
same header file, a header file must not contain definitions that would generate multiply defined symbols when
all the modules are linked together.

49

C++ Language Environment

Library source files should be compiled individually and then linked into your application. Because each library
source file is compiled only once, the definitions it contains will exist in only one object module and multiply
defined symbols are thus avoided.

For example, to create a class called “array” you would create the following two files:

Header file, arrayInt.hxx:

// arrayInt.hxx
#ifndef ARRAY_H
#define ARRAY_H

class arrayInt {
private:
 int curr_size;
 static int max_array_size;
public:
 arrayInt() :curr_size(0) {;}
 arrayInt(int);
};

#endif

Library source file, arrayInt.cxx:

// arrayInt.cxx
#include "arrayInt.hxx"

int array::max_array_size = 256;

arrayInt::arrayInt(int size) : curr_size(size) { ...; }

You would then compile the arrayInt.cxx library source file using the following command:

cxx/include=[.include] arrayInt.cxx

The resulting object file could either be linked directly into your application or placed in a library (see Section 3.5.4,
“Creating Libraries”).

The header file uses header guards, which is a technique to prevent multiple inclusion of the same header file.

3.5.2. Code That Uses Templates
With the widespread use of templates in C++, determining the proper place to put declarations and definitions
becomes more complicated.

The general rule is to place template declarations and definitions in header files, and to place specializations in
library source files.

Thus, the following items belong in template declaration files:

• Declarations of global function templates

• Declarations of class templates

• Declarations of global function template specializations

• Declarations of class template specializations

50

C++ Language Environment

The following items can be placed either in the header file with the corresponding template declaration or in
a separate header file that can be implicitly included when needed. This file has the same basename as the
corresponding declaration header file, with a suffix that is found by implicit inclusion. For example, if the
declaration is in the header file inc1.h, these corresponding definitions could be in file inc1.cxx.

• Definitions of out-of-line global function templates

• Definitions of static member data of class templates

• Definitions of out-of-line member functions of class templates

The following must be placed in library source files to prevent multiple definition errors:

• Definitions of global function template specializations

• Definitions of static member data specializations of class templates

• Definitions of out-of-line class member function specializations

These guidelines also apply to nontemplate nested classes inside of template classes.

Note

Do not place definitions of nontemplate class members, nontemplate functions, or global data within template
definition files; these must be placed in library source files.

All these header files should use header guards, to ensure that they are not included more that once either explicitly
or by implicit inclusion.

For example, the array class from Section 3.5.1, “Code That Does Not Use Templates”, modified to use templates,
would now look as follows:

Template declaration file, array.hxx:

// array.hxx
#ifndef ARRAY_HXX
#define ARRAY_HXX

template <class T>
class array {
private:
 int curr_size;
 static int max_array_size;
public:
 array() :curr_size(0) {;}
 array(int size,const T& value = T());
};

#endif

Template definition file, array.cxx:

// array.cxx
template <class T>
int array<T>::max_array_size = 256;

template <class T>
array<T>::array(int size,const T& value) {... ; }

Then you would create a source file myprog.cxx that uses the array class as follows:

51

C++ Language Environment

// myprog.cxx

#include "array.hxx"

main() {
 array<int> ai;

 // ...
}

Figure 3.1, “Placement of Template Declaration and Definition Files” shows the placement of these files.

Figure 3.1. Placement of Template Declaration and Definition Files

You would then compile myprog.cxx in the mydir directory with the following command:

cxx/incl=[.include] myprog.cxx

In this case, you do not need to create library source files because the static member data and out-of-line members
of the array template class are instantiated at the time you compile myprog.cxx.

However, you would need to create library source files for the following cases:

• Your template declaration file declares nontemplate classes, global functions, or global data that require
definitions in a library source file.

• A template class declares an out-of-line nontemplate friend function whose definition must be placed in a library
source file.

• Your template declaration file declares a specialization of a template class whose static member data or out-of-
line member function definitions must be placed in a library source file.

• Your template declaration file declares an out-of-line specialization of a template function, whose definition
must be placed in a library source file.

3.5.3. Summary
Table 3.1, “Declaring and Defining Classes, Functions, and Data” describes where to place declarations and
definitions, as discussed in Section 3.5.1, “Code That Does Not Use Templates” and Section 3.5.2, “Code That
Uses Templates”.

Table 3.1. Declaring and Defining Classes, Functions, and Data

Feature Declaration Out-of-Line Definition

Class Header file

52

C++ Language Environment

Feature Declaration Out-of-Line Definition

Static member data Within class declaration Library source file
Member function Within class declaration Library source file
Global function Header file Library source file
Global data Header file Library source file

Template class Template declaration file
Static member data of template
class

Within template class declaration Template definition file

Member function of template class Within template class declaration Template definition file
Global template function Template declaration file Template definition file
Global, nontemplate friend function
of template class

Within template class declaration Library source file

Specialization of template class Template declaration file
Specialization of template function Template declaration file Library source file

3.5.4. Creating Libraries
Libraries are useful for organizing the sources within your application as well as for providing a set of routines
for other applications to use. Libraries can be either object libraries or shareable libraries. Use an object library
when you want the library code to be contained within an application's image; use shareable libraries when you
want multiple applications to share the same library code.

Creating a library from nontemplate code is straightforward: you simply compile each library source file and place
the resulting object file in your library.

Creating a library from template code requires that you explicitly request the instantiations that you want to provide
in your library. See Chapter 7, The C++ Standard Library for details.

If you make your library available to other users, you must also supply the corresponding declarations and
definitions that are needed at compile time. For nontemplate interfaces, you must supply the header files
that declare your classes, functions, and global data. For template interfaces, you must provide your template
declaration files as well as your template definition files.

For more information on creating libraries, see the OpenVMS Command Definition, Librarian, and Messages
Utilities Manual and the VSI OpenVMS Linker Utility Manual.

3.6. Sample Code for Creating OpenVMS
Shareable Images
The SW_SHR sample code consists of several source modules, a command procedure and this description.
Table 3.2, “Shareable Image Example Files” lists each of the constituent modules, which are located in the directory
SYS$COMMON:[SYSHLP.EXAMPLES.CXX] on your system.

The code creates an OpenVMS shareable image called SW_SHR.EXE that supplies a Stopwatch class identical
to the C++ Class Library's Stopwatch class. For detailed information about the Stopwatch class, refer to the VSI
C++ Class Library Reference Manual, CXX_CLASSLIB.PS, in the SYS$COMMON:[SYSHLP.CXX$HELP]
directory.

SW_SHR also provides an instance of a Stopwatch class named G_sw that shows how to export a class instance
from a shareable image. The exportation occurs in the same way that cout, cin, cerr, and clog are exported
from the C++ Class Library shareable image.

53

C++ Language Environment

Table 3.2. Shareable Image Example Files

Module Name Description

SW_SHARE.HXX General use macros to make exporting of global data (class
instances) from shareable images more transparent to the users of
class objects.

SW.HXX The definition of the Stopwatch class supplied by the shareable
image.

SW.CXX Source associated with the public functions defined in SW.HXX. It
also contains the declaration of the global Stopwatch (G_sw) class
instance.

SW_TEST.CXX A test of each of the Stopwatch's public access points and also the
G_sw class instance.

SW_BUILD.COM A DCL command procedure used to build both the shareable image
and the program.

SW_SHR_ALPHA.OPT An OpenVMS Linker options file, used on OpenVMS systems, that
contains the SYMBOL_VECTOR entry points.

SW_SHR_IA64.OPT An OpenVMS Linker options file, used on OpenVMS I64 systems,
that contains the SYMBOL_VECTOR entry points.

In order to build the example, execute the SW_BUILD.COM procedure, then run the SW_TEST.EXE image.

When you create shared images on OpenVMS systems, you must export guard variables for template static data
members or for static variables defined in inline functions. These guard variables, which are prefixed by __SDG
and __LSG respectively, ensure that static data is initialized only once. You must also export the static variables
in inlined functions and template static data members from the shared image so that they have only one definition.

3.7. Hints for Designing Upwardly Compatible
C++ Classes
If you produce a library of C++ classes and expect to release future revisions of your library, you should consider
the upward compatibility of your library. Having your library upwardly compatible makes upgrading to higher
versions of your library easier for users. And if you design your library properly from the start, you can accomplish
upward compatibility with minimal development costs.

The levels of compatibility discussed in this section are as follows:

1. Source compatibility

2. Link compatibility

3. Run or binary compatibility

The format in which your library ships determines the levels of compatibility that apply:

Library Format Compatibility Level

Source format Source compatibility only
Object format Source and link compatibility
Shareable library format All three kinds of compatibility

If you break compatibility between releases, you should at least document the incompatible changes and provide
hints for upgrading between releases.

54

C++ Language Environment

3.7.1. Source Compatibility
Achieving source compatibility means that users of your library will not have to make any source code changes
when they upgrade to your new library release. Their applications will compile cleanly against your updated header
files and will have the same run-time behavior as with your previous release.

To maintain source compatibility, you must ensure that existing functions continue to have the same semantics
from the user's standpoint. In general, you can make the following changes to your library and still maintain source
compatibility:

• Add new data members and classes.

• Add new virtual and nonvirtual functions (as long as they do not change overload resolution of existing calls).

• Loosen protection.

• Change inline functions to out-of-line, and out-of-line functions to inline.

• Change the implementation of functions.

• Add arguments with default values to existing member functions.

3.7.2. Link Compatibility
Achieving link compatibility means that users of your library can relink an application against your new object or
shareable library and not be required to recompile their sources.

What Can Change
To maintain link compatibility, the internal representation of class objects and interfaces must remain constant. In
general, you can make the following changes to your library and still maintain link compatibility:

• Change anything that is invisible to the user.

• Change the implementation of an out-of-line function.

• Loosen protection.

• Add a new nonvirtual member function (as long as it does not change overload resolution for existing calls).

What Cannot Change
Because the user may be linking object modules from your previous release with object modules from your new
release, the layout and size of class objects must be consistent between releases. Any user-visible interfaces must
also remain unchanged; even the seemingly innocent change of adding const to an existing function will change
the mangled name and thus break link compatibility.

The following are changes that you cannot make in your library:

• Add, move, or delete data members.

• Add, move, or delete virtual functions.

• Change the signature of virtual and nonvirtual functions.

• Remove nonvirtual functions.

• Change inline function definitions.

• Change functions from out-of-line to inline.

55

C++ Language Environment

Designing Your C++ Classes for Link Compatibility
Although the changes you are allowed to make in your library are severely restricted when you aim for link
compatibility, you can take steps to prepare for this and thereby reduce the restrictions. VSI suggests using one
of the following design approaches:

• Set aside dummy (reserved-for-future-use) data fields and virtual functions within your classes. This assumes
you can foresee how much your classes will grow and change in the future.

• Add a level of indirection to hide your virtual functions and data fields from the user. This lets you add
and change data fields and virtual functions without affecting the library user; however, there may be some
disadvantages such as in performance. This approach is detailed in Effective C++, by Scott Meyers.

3.7.3. Run Compatibility
Achieving run compatibility means that users of your library can run an application against your new shareable
library and not be required to recompile or relink the application.

This requires that you follow the guidelines for link compatibility as well as any operating system guidelines for
shareable libraries. On OpenVMS systems, you need to create an upwardly compatible shareable image using a
transfer vector on OpenVMS VAX and a symbol table on OpenVMS. Refer to the VSI OpenVMS Linker Utility
Manual for information on creating a shareable image.

The Annotated C++ Reference Manual offers some advice on compatibility issues. Another good reference is
Designing and Coding Reusable C++ by Martin D. Carroll and Margaret E. Ellis.

56

Porting to I64 Systems

Chapter 4. Porting to I64 Systems
This chapter describes some of the differences and restrictions you might encounter when porting the VSI C++
compiler to an I64 system. For a summary of new and changed features supported by this version of the compiler
on both OpenVMS Alpha and I64 systems, see the Preface of this manual. For any known issues, see the C++
release notes.

VSI C for OpenVMS I64 uses a new technology base that differs substantially from VSI C++ for OpenVMS Alpha
and VSI C for OpenVMS I64. Although a great deal of work has been done to make it highly compatible with VSI
C++ for OpenVMS Alpha, there are a number of differences that you will likely notice. Among them are:

• Resource requirements.

Programs will usually use more memory, both at compile time and at run time. See Section 4.1.2, “Quotas”.

• Floating-point behaviors.

The default on I64 systems is /FLOAT=IEEE/IEEE_MODE=DENORM_RESULTS. Consistent use of
qualifiers across compilations is required. See Section 4.1.6, “Floating Point”.

• Simplified instantiation without repository. See Section 4.1.9, “Templates”.

• No inline assembly language. See Section 4.1.7, “Intrinsics and Builtins”.

• String literal type change.

For standards-compliance and link compatibility between compiler dialects, ordinary string literals now have
the type "array of const char" in all compiler dialects on I64 systems in all compiler modes and on Alpha systems
in /MODEL=ANSI mode.

In /MODEL=ARM mode on Alpha systems, string literals are of type "array of char" in all compiler dialects.

4.1. Compiler Considerations
This section describes porting considerations for the C++ compiler for OpenVMS I64 systems. See Section 4.2,
“Library Changes” for considerations for the standard library, language run-time support library, and class library.

4.1.1. Messages
The move from Alpha systems to I64 systems may cause some minor differences in certain compiler diagnostics
that are signaled from the code generator. As a result, diagnostics for unreachable code and fetches of uninitialized
variables might be different on the two platforms. In addition to a change in message text, some conditions detected
on one platform might not be detected on the other.

There have also been some changes in the /WARNINGS qualifier for both platforms. These include bug fixes and
improved compatibility with the C compiler. For a summary of these changes, see the New and Changed Features
section of the Preface.

4.1.2. Quotas
The C++ compiler for I64 systems is built from a different code base than the C++ compiler for Alpha systems,
and that code base is larger than the code base for Alpha. Also, I64 images tend to be somewhat larger than Alpha
images in general. Image size mostly affects working-set size and the amount of pagefile quota needed to execute
an image without exhausting virtual memory. If you find that programs that compile and run successfully on
Alpha run out of memory on I64 systems (either during compilation or when run), you probably need to increase
your pagefile quota. There are no specific guidelines at this time. You might start by doubling the quota that was
sufficient on Alpha, and then use a "binary-search" approach to arrive at a better quota value for I64 systems

57

Porting to I64 Systems

(doubling again, or halving the increment, until your biggest programs and compilations have just enough memory,
and then adding an appropriate safety margin).

4.1.3. Dialect Changes
Some of the compiler dialects (options to the /STANDARD qualifier) have been updated to reflect the most recent
behaviors of the compilers that the dialect is attempting to match. Other changes involve the removal of less
significant or undesirable compatibility features.

4.1.4. ABI/Object Model changes
The object model and the name mangling scheme used by the C++ compiler on I64 systems are different from
those used on Alpha systems (different from both /MODEL=ARM and /MODEL=ANSI). The I64 compiler uses
the interface described by the I64 Application Binary Interface (ABI).

The C++ compiler has some additional encoding rules that are applied to symbol names after the ABI name
mangling is determined. All symbols with C++ linkage have CRC encodings added to the name, are uppercased
and shorten to 31 characters if necessary. Since the CRC is computed before the name is uppercased, the symbol
name is case-sensitive even though the final name is in uppercase. /NAMES=AS_IS and /NAMES=UPPER are
not applicable to these symbols.

All symbols without C++ linkage will have CRC encodings added if they are longer then 31 characters and /
NAMES=SHORTEN is specified. Global variables with C++ linkage are treated as if they have non-C++ linkage
for compatibility with C and older compilers.

4.1.5. Command-Line Qualifiers
This section describes C++ command-line qualifier differences to be aware of on I64 systems.

Qualifiers/Features Not Supported on I64 Systems
The following command-line qualifiers and features are not supported on C++ for I64 systems, and are diagnosed
by default because ignoring them is likely to alter program behavior:

• Comma lists are not supported. Their use provokes a fatal error.

• /INSTRUCTION_SET=NOFLOATING_POINT is not available on I64 systems. If it is specified, a warning
message is issued, and /INSTRUCTION_SET=FLOATING_POINT is used.

• /L_DOUBLE_SIZE=64 is not available on I64 systems. If it is specified, a warning message is issued, and /
L_DOUBLE_SIZE=128 is used.

Changed/Ignored Qualifiers
A number of other qualifiers not supported on I64 systems are, by default, silently ignored by the compiler. These
qualifiers fall into two groups:

• Qualifiers that should not alter the behavior of a correct program and so, if ignored, should have no visible
effect. Qualifiers that enable optimizations typically have this characteristic.

• Qualifiers that might affect program behavior but, if ignored, produce no significant change in the vast majority
of programs. Examples of qualifiers in this category are /NORTTI (the runtime information is always generated)
and /MODEL=ARM (the ANSI model is functionally superior, and binary compatibility with existing object
code is not an issue for the OpenVMS I64 platform).

Two optional compiler messages can be enabled to diagnose most of these cases:

• The QUALNA message diagnoses uses of the first group.

58

Porting to I64 Systems

• The QUALCHANGE message diagnoses uses of the second group.

If you encounter porting problems, compile /WARN=ENABLE=QUALCHANGE to determine if a qualifier
change might be affecting your application.

If you wish to clean up your build scripts to remove extraneous qualifiers that are not meaningful on I64 systems,
you can enable the QUALNA message.

A list of these qualifiers follows:

• /ARCHITECTURE=option

An additional keyword has been added: ITANIUM2.

If an Alpha keyword (EV4, EV5, EV56, PCA56, EV6, EV68, EV7) is specified for option, it is ignored.

• /ASSUME

The following /ASSUME options are ignored on I64 systems and should not cause any behavior changes:

NORTTI_CTORVTBLS
NOPOINTERS_TO_GLOBALS
TRUSTED_SHORT_ALIGNMENT
WHOLE_PROGRAM

• /CHECK=UNINITIALIZED_VARIABLES

This qualifier has no effect in this version of the compiler.

• /DEBUG

The following debug options are ignored:

/DEBUG=NOSYMBOLS
/DEBUG=NOTRACEBACK

• /DISTINGUISH_NESTED_ENUMS

This qualifier only modified the behavior of programs compiled with /MODEL=ARM. Since that model is not
supported on the I64 platform, this qualifier is meaningless.

• /EXCEPTIONS=NOCLEANUP

The NOCLEANUP keyword for the /EXCEPTIONS qualifier is ignored.

• /EXCEPTIONS=IMPLICIT

The IMPLICIT keyword for the /EXCEPTIONS qualifier is ignored.

• /FLOAT

The default for /FLOAT on OpenVMS I64 systems is IEEE_FLOAT.

See Section 4.1.6, “Floating Point” for more information about floating-point behavior on I64 systems.

• /IEEE_MODE

The default for /IEEE_MODE on I64 systems is DENORM_RESULTS, which generates infinities, denorms,
and NaNs without exceptions.

On OpenVMS Alpha systems, the default for /IEEE_MODE when using /FLOAT=IEEE_FLOAT is FAST,
which causes a FATAL error for exceptional conditions such as divide-by-zero and overflow.

59

Porting to I64 Systems

See Section 4.1.6, “Floating Point” for more information.

• The /MODEL=ARM qualifier is treated the same as the default /MODEL=ANSI (except for the optional
QUALCHANGE diagnostic).

• /OPTIMIZE

There are several changes to the /OPTIMIZE qualifier:

• On I64 systems, for /OPTIMIZE=INLINE, the keywords AUTOMATIC and SPEED do the same thing.

Also, the ALL keyword does not necessarily result in every possible call being inlined, as it does on Alpha
systems.

• The /OPTIMIZE=TUNE qualifier takes a new keyword: ITANIUM2, which is the default at this time. If you
specify an Alpha keyword, it is ignored.

• The /OPTIMIZE=UNROLL=n qualifier is not very useful on I64 systems. Because of this, specifying an
unroll value greater than 0 is simplified to mean that simple loop unrolling is enabled. On I64 systems, the
user does not have the ability to control the number of times a loop is unrolled.

• /OPTIMIZE=LIMIT_INLINE is ignored.

• /TEMPLATE

See Section 4.1.9, “Templates” for information on template instantiation.

• /SHOW=STATISTICS

The /SHOW=STATISTICS qualifier is ignored at this time.

• /STANDARD=CFRONT

The /STANDARD=CFRONT qualifier is no longer available. If it is specified, the compiler issues a warning
message and uses the default dialect, /STANDARD=ANSI.

New Qualifiers
The following command-line qualifier is new for C++:

• /[NO]PURE_CNAME

This qualifier affects insertion of the names into the global namespace by <cname> headers.

In /PURE_CNAME mode, the <cname> headers insert the names into the std namespace only, as defined by
the C++ Standard, and the __PURE_CNAME macro is predefined by the compiler.

In /NOPURE_CNAME mode, the <cname> headers insert the name into the std namespace and also into
the global namespace.

The default depends on the standard mode:

• In /STANDARD=STRICT_ANSI mode, the default is /PURE_CNAME.

• In all other standard modes, the default is /NOPURE_CNAME.

Inclusion of a <name.h> header instead of its <cname.h> counterpart (for example, <stdio.h> instead
of <cstdio>) results in inserting names defined in the header into both the std namespace and the global
namespace. Effectively, this is the same as the inclusion of a <cname> header in the /NOPURE_CNAME mode.

See Section 3.1, “cname Headers” for more information.

60

Porting to I64 Systems

4.1.6. Floating Point
This section describes floating-point behavior on I64 systems.

IEEE Now the Default
On OpenVMS I64 systems, /FLOAT=IEEE_FLOAT is the default floating-point representation. IEEE format
data is assumed and IEEE floating-point instructions are used. There is no hardware support for floating-point
representations other than IEEE, although you can specify the /FLOAT=D_FLOAT or /FLOAT=G_FLOAT
compiler option.

These VAX floating-point formats are supported in the I64 compiler by generating run-time code that converts
VAX floating-point formats to IEEE format to perform arithmetic operations, and then converts the IEEE result
back to the appropriate VAX floating-point format. This imposes additional run-time overhead and some loss of
accuracy compared to performing the operations in hardware on Alpha and VAX systems. The software support
for the VAX formats is provided to meet an important functional compatibility requirement for certain applications
that need to deal with on-disk binary floating-point data.

On I64 systems, the default for /IEEE_MODE is DENORM_RESULTS, which is a change from the default of /
IEEE_MODE=FAST on Alpha systems. This means that by default, floating-point operations may silently generate
values that print as Infinity or Nan (the industry-standard behavior), instead of issuing a fatal run-time error as they
would when using VAX floating-point format or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero
value in this mode is much smaller because results are allowed to enter the denormal range instead of being flushed
to zero as soon as the value is too small to represent with normalization.

The conversion between VAX floating-point formats and IEEE formats on the Intel Itanium architecture is a
transparent process that will not impact most applications. All you need to do is recompile your application.
Because IEEE floating-point format is the default, unless your build explicitly specifies VAX floating-point format
options, a simple rebuild for I64 systems will use the native IEEE formats directly. For the large class of programs
that do not directly depend on the VAX formats for correct operation, this is the most desirable way to build for
I64 systems.

When you compile an OpenVMS application that specifies an option to use VAX floating-point on an I64
system, the compiler automatically generates code for converting floating-point formats. Whenever the application
performs a sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by stores), no conversion will occur.
The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their equivalent IEEE floating-point
formats. For most applications, the conversion process will be transparent and, therefore, a non-issue.

In a few cases, arithmetic calculations might have different results because of the following differences between
VAX and IEEE formats:

• Values of numbers represented

• Rounding rules

• Exception behavior

These differences might cause problems for applications that do any of the following:

• Depend on exception behavior

61

Porting to I64 Systems

• Measure the limits of floating-point behaviors

• Implement algorithms at maximal processor-specific accuracy

• Perform low-level emulations of other floating-point processors

• Use direct equality comparisons between floating-point values, instead of appropriately ranged comparisons (a
practice that is extremely vulnerable to changes in compiler version or compiler options, as well as architecture)

You can test an application's behavior with IEEE floating-point values by first compiling it on an OpenVMS Alpha
system using /FLOAT=IEEE_FLOAT/IEEE_MODE=DENORM.

If that produces acceptable results, then simply build the application on the OpenVMS I64 system using the same
qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is not sufficient because your application
depends on the binary representation of floating-point values, then first try building for your I64 system by
specifying the VAX floating-point option that was in effect for your VAX or Alpha build. This causes the
representation seen by your code and on disk to remain unchanged, with some additional runtime cost for the
conversions generated by the compiler. If this is not an efficient approach for your application, you can convert
VAX floating-point binary data in disk files to IEEE floating-point formats before moving the application to an
I64 system.

/IEEE_MODE Notes
On Alpha systems, the /IEEE_MODE qualifier generally has its greatest effect on the generated code of a
compilation. When calls are made between functions compiled with different /IEEE_MODE qualifiers, each
function produces the /IEEE_MODE behavior with which it was compiled.

On I64 systems, the /IEEE_MODE qualifier primarily affects only the setting of a hardware register at program
startup. In general, the /IEEE_MODE behavior for a given function is controlled by the /IEEE_MODE option
specified on the compilation that produced the main program: the startup code for the main program sets the
hardware register according the command-line qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the /IEEE_MODE qualifier does have
some effect: it might affect the evaluation of floating-point constant expressions, and it is used to set the
EXCEPTION_MODE used by the math library for calls from that compilation. But the qualifier has no effect on
the exceptional behavior of floating-point calculations generated as inline code for that compilation. Therefore,
if floating-point exceptional behavior is important to an application, all of its compilations, including the one
containing the main program, should be compiled with the same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_TO_ZERO has the following
characteristic: its primary effect requires the setting of a runtime status register, and so it needs to be specified on
the compilation containing the main program in order to be effective in other compilations.

More Information
For more information on I64 floating-point behavior, see the white paper OpenVMS floating-point arithmetic on
the Intel Itanium architecture at http://www.hp.com/products1/evolution/alpha_retaintrust/download/i64-floating-
pt-wp.pdf.

4.1.7. Intrinsics and Builtins
The C++ built-in functions available on OpenVMS Alpha systems are also available on I64 systems, with
some differences. Section C.2, “Built-In Functions for I64 Systems (I64 only)” documents these differences and
describes the built-in functions that are specific to I64 systems.

4.1.8. ELF
On OpenVMS Alpha systems, the C++ compiler uses a proprietary object format specific to OpenVMS.

62

Porting to I64 Systems

On OpenVMS I64 systems, the compiler generates ELF objects. ELF is an industry standard object format used
on many UNIX platforms, including Linux. This change should be transparent to most users; it is primarily of
interest to compiler and tools developers. The greatest benefit of this change is that it should make it easier to
create development tools that work on OpenVMS and other platforms.

Extensions to ELF have been used as needed to provide functionality unique to OpenVMS. See the Porting
Applications from VSI OpenVMS Alpha to VSI OpenVMS Industry Standard 64 for Integrity Servers for more
information on ELF.

COMDATS/Group Sections
One feature that ELF provides that is new to OpenVMS is the COMDAT section group — a group of sections in
an object file that can be duplicated in one or more other object files. The linker is expected to keep one group
and ignore all others. The benefit of this feature is that it permits compilers to generate definitions for symbols for
things used in multiple objects without having to worry about creating a single definition in one place. The most
notable uses for this feature are templates and inline functions.

New ELF Type for Weak Symbols
A new Executable and Linkable Format (ELF) type was generated to distinguish between the two types of weak
symbol definitions.

For modules with ABI versions equal to 2 (the most common version used by compilers):

• Type STB_WEAK represents the UNIX-style weak symbol (formerly, the OpenVMS-style weak symbol
definition for ABI Version 1 ELF format).

• Type STB_VMS_WEAK represents the OpenVMS-style of weak symbol definition.

The Librarian supports both the ELF ABI versions 1 and 2 of the object and image file formats within the same
library.

4.1.9. Templates
This section describes template instantiation for I64 systems.

Implemented using ELF COMDATS/Groups Sections
The Alpha C++ compiler had numerous models for instantiating templates. Each attempted to solve the issue of
how to generate one and only one copy of each template. The use of ELF on OpenVMS I64 systems provided the
compiler with the additional option of using COMDAT section groups. Since this technique is superior to all the
models supported on Alpha, this is the only model supported on I64 systems.

In this model, templates are instantiated in a COMDAT section group inside every object module that uses
them. This is very similar to the /TEMPLATE=LOCAL on Alpha systems, except that when the objects
are linked together, the linker removes the duplicate copies. The primary advantage of this technique over /
TEMPLATE=LOCAL and /TEMPLATE=IMPLICIT_LOCAL is the reduction in image size.

A secondary advantage is the elimination of distinct data for each template. For example, if a template maintained
a list of elements it created, each module would have a separate copy of the list. This behavior does not conform
to the standard. If you are currently using /TEMPLATE=LOCAL or /TEMPLATE=IMPLICIT_LOCAL, you will
likely experience no difficulty from this change.

Not in Repository
The most visible difference that results from this new instantiation model occurs in models that instantiate
templates into the repository (/TEMPLATE=AUTOMATIC|ALL_REPOSITORY|USED_REPOSITORY).

With the new model, no repository is needed. Build procedures that use CXXLINK will work transparently. Builds
that attempt to manipulate objects in the repository will fail and will need to be changed. In most cases, the reason
for manipulating the repository directly has been eliminated with the new template instantiation model.

63

Porting to I64 Systems

Also see Chapter 5, Using Templates.

4.1.10. Exceptions and Condition Handlers
The command-line option /EXCEPTIONS=NOCLEANUP is not implemented. As a result, you might see
destructors being called during cleanup in code previously compiled with this option.

Exception specifications are not implemented. Exception specifications on routine declarations and definitions are
accepted syntactically, but their run-time behavior has not yet been implemented.

4.1.10.1. Stack unwinding
According to the C++ Standard, an implementation may or may not unwind the stack before calling terminate
when no matching handler is found for a thrown exception. On I64 systems, the implementation unwinds the stack.
On Alpha systems, it does not.

Consider the following program:

 #include <exception>
 #include <cstdio>
 #include <cstdlib>
 class C {
 public:
 C() { std::printf("Created\n"); }
 ~C() { std::printf("Destroyed\n"); }
 };
 void announce1() {
 std::printf("In terminate\n");
 exit(0);
 }
 int main() {
 C c;
 std::set_terminate(announce1);
 throw 5;
 return 0;
 }

For the above program, the output on OpenVMS Alpha and I64 systems is:

 Alpha: I64:
 Created Created
 In terminate Destroyed
 In terminate

4.1.10.2. Exceptions Not Caught
The compiler assumes that the only two ways an exception can be propagated into a function are:

• From a throw expression, or

• From a routine call that itself can throw an exception.

As a result of this assumption, some exceptions such as those thrown from a signal handler will not be caught.

4.1.10.3. terminate() Incorrectly Called
The C++ I64 compiler incorrectly calls terminate() when, during unwinding, the destruction of an object
results in an exception, even if this exception is caught within the destructor.

64

Porting to I64 Systems

For example, consider the following program:

extern "C" int printf(const char *,...);
struct killit {
 killit () {}
 ~killit () {
 try {
 throw 11;
 } catch (int i) {
 printf("caught %d\n", i);
 }
 }
};
int main () {
 try {
 killit local;
 throw 33;
 } catch (const int &i) {
 printf("caught int: %d\n", i);
 }
 return 0;
}

The expected output for the above example is:

caught 11
caught int: 33

But the executable produced by the C++ I64 compiler calls terminate().

In cases where the expression to be thrown has been evaluated, but before the exception can be caught: if a
called user function such as a copy constructor exits through an uncaught exception, then the compiler incorrectly
attempts to match this latter exception object type to the handlers in enclosing try blocks in succession, instead
of calling terminate().

Further, the function uncaught_exception returns FALSE while in the called user function described above.

For example, consider the following program:

extern "C" int printf(const char *,...);
extern "C" int exit(int);
#include <exception>
void announce () {
 printf("Terminated!\n");
 exit(0);
}
class Y {
 public:
 Y () { printf ("construct Y\n"); }
 Y(Y &rhs) {
 printf ("copy Y\n");
 printf ("uncaught_exception = %s\n", std::uncaught_exception() ?
 "TRUE" : "FALSE");
 throw 20;
 }
 ~Y () { printf ("destruct Y\n"); }
};

void cxx_func () {

65

Porting to I64 Systems

 Y OBJ2;
printf ("In cxx_func\n");
 try {
 throw OBJ2;
 } catch (const Y &) {
 printf("Caught Y &\n");
 } catch (int i) {
 printf("Caught %d\n", i);
 }
 printf ("leaving cxx_func\n");
}
main () {
 std::set_terminate(announce);
 cxx_func();
 printf ("Leaving main\n");
}

The expected output in the above example is:

construct Y
In cxx_func
copy Y
uncaught_exception = TRUE
Terminated!

But the executable produced by the C++ I64 compiler outputs:

construct Y
In cxx_func
copy Y
uncaught_exception = FALSE
Caught 20
leaving cxx_func
destruct Y
Leaving main

The C++ I64 compiler also incorrectly calls terminate() when a destructor invoked during stack unwinding
exits with an exception that violates its own exception specification, instead of calling unexpected().

Consider the following program:

#include <exception>
extern "C" void exit(int);
extern "C" int printf(const char *,...);
void announce2 () {
 printf("announce2: Unexpected!\n");
 exit(0);
}
void announce1 () {
 printf("announce1: Terminated!\n");
 exit(0);
}
class C {
public:
 C() { printf("C()\n"); }
 ~C() throw() { std::set_unexpected(announce2); printf("~C()\n"); throw
 3; }
};
void foo() {

66

Porting to I64 Systems

 C c;
 printf("throwing ...\n");
 throw 5;
}
main() {
 std::set_terminate(announce1);
 foo();
}

In the above example, the expected output is:

C()
throwing ...
~C()
announce2: Unexpected!

But the executable produced by the C++ I64 compiler outputs:

C()
throwing ...
~C()
announce1: Terminated!

4.1.10.4. Problem in unexpected() Behavior
When a user-defined unexpected() routine throws or rethrows an exception, the compiler incorrectly checks
the exception specification of the caller of the routine instead of that of the routine itself, which did not allow the
exception in its exception specification.

Consider the following program:

#include <exception>
#include <cstdlib>
extern "C" int printf(const char *, ...);
void my_unex() {
 printf("In my unex\n");
 throw;
}
void my_term() {
 printf("In my term\n");
 std::exit(0);
}
void foo() throw() { // spec not checked with second rethrow
 printf("In foo\n");
 throw 7;
}
void bar() throw(int) { // this spec checked with second rethrow
printf("In bar\n");
 foo();
}
void foo2() throw(std::bad_exception) { // spec not checked with first
 rethrow
 printf("In foo2\n");
 throw 5;
}
int main() {
 std::set_unexpected(my_unex);
 std::set_terminate(my_term);
 try {

67

Porting to I64 Systems

 foo2();
 } catch (int i) {
 printf("Caught %d\n", i);
} catch (std::bad_exception &) {
 printf("Caught bad_exception\n");
 }
 try {
 bar();
 } catch (int i) {
 printf("Caught %d\n", i);
 } catch (...) {
 printf("Caught ...\n");
 }
 return 0;
}

In the above example, expected output is:

In foo2
In my unex
Caught bad_exception
In bar
In foo
In my unex
In my term

But the compiler produces:

In foo2
In my unex
Caught 5
In bar
In foo
In my unex
Caught 7

4.2. Library Changes
For I64 systems, the C++ standard library has been upgraded and organized as a shareable image. All applicable
fixes and enhancements done in the C++ standard library for Alpha systems, have been applied to the C++ standard
library for I64 systems.

The C++ class library on I64 systems is based on the same code as the C++ class library on Alpha systems. The
major change in the C++ class library for I64 systems is the removal of the tasks and complex packages.

4.2.1. Library Reorganization
The standard library, language run-time support library, and class library have been reorganized for I64 systems.

4.2.1.1. Standard Library and Language Run-Time Support Library
On Alpha systems, the C++ standard library and language run-time support library is delivered in an object library,
LIBCXXSTD.OLB, shipped with the compiler kit.

On I64 systems, the C++ standard library and language run-time support library are delivered as separate system
shareable images shipped with the base operating system. The names of the images are: CXXL$RWRTL.EXE
and CXXL$LANGRTL.EXE, respectively. The images reside in the SYS$LIBRARY directory and are installed
at system startup. The LIBCXXSTD.OLB object library does not exist on I64 systems.

68

Porting to I64 Systems

4.2.1.2. Class Library
On Alpha systems, there are three class library shareable images: CXXL$011_SHR.EXE, CXXL
$011_SHRTASK.EXE, and CXXL$011_TASK.EXE.

On I64 systems, the C++ class library continues to ship as a system shareable image. Because the tasks and complex
packages have been removed, there is only one class library image: CXXL$011_SHR.EXE.

4.2.2. Language Run-Time Support Library
The language run-time support library no longer validates if a negative value has been specified in a call to operator
new. Instead, the value is treated as an unsigned value, and an attempt is made to dynamically allocate the specified
memory.

4.2.3. Class Library
The following class library changes have been made:

• The tasks and complex packages have been removed. The recommended replacements are the pthreads routines
and complex template class, respectively, from the C++ standard library.

• In the String class, the char*() operator, which converts String to a pointer to char, has been removed. The
String class has a const char*() operator, which can be used instead of the removed one.

4.2.4. Standard Library
This section describes changes to the C++ standard library.

4.2.4.1. Changes
There are two major changes in the C++ standard library for I64 systems as compared with the standard library
for Alpha systems:

• The C++ standard library has been upgraded from Version 2.0 of the Rogue Wave C++ Standard Library to
Version 3.0.

• The C++ standard library is delivered with the operating system as the installed system shareable image SYS
$SHARE:CXXL$RWRTL.EXE, and also in STARLET.OLB in the object form for linking /NOSYSSHARE.
On I64 systems, there is no LIBCXXSTD.OLB, which is the object library where the C++ standard library for
OpenVMS Alpha resides.

Additional standard library changes, known issues, and platform differences are noted in the following sections.

4.2.4.2. Library Headers
While the change in the library distribution model should be transparent to customers (except that application
images are much smaller on I64 systems), users on I64 systems may find that the new C++ Standard Library is
much less forgiving in terms of including all necessary library headers than the old Standard Library.

For example, the following program compiles cleanly on OpenVMS Alpha systems despite the fact that it does
not include the <iostream> header necessary for the std::cout object:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <fstream>
using namespace std;
main() {
 cout << "hello, world";
}

69

Porting to I64 Systems

However, on OpenVMS I64 systems, compilation fails with the following error:

%CXX-E-UNDECLARED, identifier "cout" is undefined

It is nearly impossible to describe all combinations of library constructs and header files that would compile cleanly
on Alpha systems and yet fail to compile on I64 systems because a library header required by the C++ standard
for a particular construct has not been included. If a program that used to compile cleanly on an Alpha system fails
to compile on an I64 system, it is always a good idea to check that all necessary library headers are included.

4.2.4.3. Internal Library Headers and Macros
A program that includes internal RW stdlib V2.0 library headers, like <stddefs> or <stdcomp>, or that uses
internal library macros _RW_*, will have to be modified because the new C++ standard library does not necessarily
have the same internal headers or use the same internal macros as the old one.

4.2.4.4. Known Issues and Restrictions
The following are known issues with C++ for OpenVMS I64 systems:

• The C++ Standard Library IOStreams expect floating-point values in the IEEE format, which is the default
floating-point format on I64 systems. Using the Standard Library IOStreams for processing floating-point
values in a format other than IEEE (for example, in a program compiled with the /FLOAT=G_FLOAT or /
FLOAT=D_FLOAT qualifier) is not supported. The C++ class library does not have this restriction.

4.2.4.5. Differences Between Alpha and I64 Systems
The following are differences between the I64 and Alpha standard libraries:

• On OpenVMS Alpha systems, the following constructors for the C++ standard library classes strstream and
ostrstream initialize ptr[count-1] with a null byte:

 strstream(char *ptr, streamsize count,
 ios_base::openmode mode = ios_base::in | ios_base::out);
 ostrstream(char *ptr, streamsize count,
 ios_base::openmode mode = ios_base::out);

This initialization is not required by the C++ standard, and on I64 systems the C++ standard library does not do it.

• On I64 systems, map and multimap containers require the standard-conformant form of allocator class:
allocator<pair<const Key, T> >.

For example, on Alpha systems, it is possible to declare an object of class multimap as the following, with the
second template argument of allocator class omitted:

multimap<string, int, less<string>, allocator<string> > x;

But for I64 systems, this must be changed to:

multimap<string, int, less<string>, allocator<pair<const
 string, int> > > x;

• On I64 systems, the exception.what() function reports the module name, and the message text might be different.

For example, an output on Alpha systems:

Got an exception: string index out of range in function:
basic_string:::replace(size_t,size_t,size_t,char) position: 100 is
greater than length: 0

An output on I64 systems:

70

Porting to I64 Systems

Got an exception: CSRC:[STDIPF_INCLUDE]STRING.CC;:416:
basic_string::replace(size_type, size_type, size_type, value_type):
argument value 100 out of range [0, 0)

• On I64 systems, iostreams extraction operators truncate out-of-range integer values to the maximum possible
value for a given type, and set the failbit for the stream.

For example, consider the following program:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <strstream>
#include <iostream>
using namespace std;
main() {
 istrstream is("32768"); // SHRT_MAX is 32767
 short s;
 is >> s;
 cout << is.fail() << endl;
 cout << s << endl;
}

On Alpha systems, this program gives:

0
-32768

On I64 systems, it gives:

1
32767

Note that on I64 systems, the failbit for the stream is set.

According to the C++ Standard - Template class num_get [lib.locale.num.get], an input that would have caused
scanf to report an input failure should result in setting ios_base::failbit to err. Since on OpenVMS, scanf
reports an input failure in this case (this is an undefined behavior from the point of view of the C standard), the
behavior of the C++ standard library on I64 systems is standard-compliant.

• On Alpha systems, the find template function is implemented using operator!=. On I64 systems, this
function is implemented using operator==, which according to the C++ standard is the operator the find
function should be using.

Consequently, if no conversion from *InputIterator to T exists, on Alpha systems the following function
can be instantiated only if operator!=(*InputIterator,T) exists:

find(InputIterator first, InputIterator last, const T& value)

On I64 systems, however, the function can be instantiated only if operator==(*InputIterator,T)
exists.

The following program illustrates the difference. If you comment out the line bool operator!=(S,
int);, the program does not compile on Alpha systems. If you comment out the line bool operator==(S,
int);, the program does not compile on I64 systems. The behavior on I64 systems is the standard-conformant
behavior.

include <algorithm>
#include <vector>
struct S {

71

Porting to I64 Systems

 int i;
};
bool operator!=(S, int);
bool operator==(S, int);
void foo() {
 std::vector<S> v;
 std::find(v.begin(), v.end(), 0);
}

• On I64 systems, an attempt to write into a stream opened for read (ios::in), causes the stream badbit bit to be set.

On both Alpha and IPF systems, nothing is written into a stream opened for read. However, on Alpha systems,
the stream badbit bit is not set.

The C++ standard does not provide explicit guidance about what to do in this case. However, the behavior on
I64 systems is more reasonable—at least there is an indication that something was wrong.

• On I64 systems, reverse_iterator cannot be instantiated on vector<bool>::iterator type.

For example, the following program, which compiles cleanly on Alpha systems, does not compile on I64
systems:

#include <vector>
typedef std::reverse_iterator<std::vector<bool>::iterator> ri;
main()
{
ri::pointer (ri::*foo)() const = &ri::operator->;
}

A recently adopted resolution for the library issue 120 has made this construct invalid. See http://std.dkuug.dk/
JTC1/SC22/WG21/docs/lwg-active.html#120 for more details.

• On I64 systems, for a random access iterator, operator-(const random_access_iterator&) returning
difference_type must be const.

For example, the following program compiles cleanly on Alpha systems. However, on I64 systems it compiles
only if // const is uncommented.

#include <algorithm>
template <class T> class randomaccessiterator {
public:
 typedef T value_type;
 typedef int difference_type;
 typedef T* pointer;
 typedef T& reference;
 typedef std::random_access_iterator_tag iterator_category;
 bool operator==(const randomaccessiterator&);
 bool operator!=(const randomaccessiterator&);
 T& operator*() const;
 T* operator->();
 randomaccessiterator& operator++();
 const randomaccessiterator& operator++(difference_type);
 randomaccessiterator& operator–();
 const randomaccessiterator& operator–(difference_type);
 randomaccessiterator& operator+=(difference_type);
 randomaccessiterator& operator+(difference_type);
 randomaccessiterator& operator-=(difference_type);
 randomaccessiterator& operator-(difference_type);
 difference_type operator-(const randomaccessiterator&); // const;
};

72

Porting to I64 Systems

struct S {};
typedef randomaccessiterator<S> Iterator;
typedef bool (*Predicate)(Iterator::value_type);
template Iterator std::stable_partition<Iterator, Predicate>(Iterator,
Iterator, Predicate);

Table 76 in the C++ standard specifies the requirements for a random access iterator. It says the expression b
- a must be valid, where a and b denote values of X, the random access iterator. It is not completely clear
from the standard whether values of X also imply const values of X, but if the answer is yes, the behavior
on I64 systems is correct.

• On I64 systems, an attempt to call the strstream.seekg(0) function for an empty stream (the one whose 'next'
pointer is NULL) causes the stream failbit to be set.

This is a standard-compliant behavior. Notice that after the failbit is set for the stream, the strstream.str() function
returns a NULL pointer.

• On I64 systems, after a call to string.resize(newsize), string.capacity() does not necessarily returns newsize.

While on Alpha systems the string.capacity() function returns newsize, this is not required by the C++ standard.
A program relying on Alpha behavior should be modified to call the string.size() function instead.

• On I64 systems, there is no overload of basic_string class for type bool.

Version v3.0 of the Rogue Wave C++ standard library does not have this problematic nonstandard overload. For
OpenVMS Alpha, it has been recently removed from the library.

• On I64 systems, class std::fpos does not have the nonstandard member function offset(). You can use
fpos::operator streamoff() instead. For example:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <sstream>
using namespace std;
void foo() {
 istringstream in("hello, world");
 streamoff offset;
 offset = in.tellg().offset(); // Alpha only
 offset = streamoff(in.tellg()); // either Alpha or IPF
}

• On OpenVMS Alpha systems, in the default built-in C locale, the monetary facets use values typically found in
the en_US locale (English in the United States). For example, on Alpha the default national currency string is
"$". On I64 systems, in any locale, including the C locale, the monetary facets use values defined by the locale.

Consider the following sample program:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>
#include <locale>
#include <stdexcept>
#include <stdlib.h>
#if defined(__osf__) || defined(__vms)
define UK_LOCALE "en_GB.ISO8859-1"
#elif defined(__linux)
define UK_LOCALE "en_GB"
#else

73

Porting to I64 Systems

error unknown platform
#endif
using namespace std;
void outputSym(ostream& os) {
 locale loc = os.getloc();
 const moneypunct<char,false>& mpunct =
 use_facet<moneypunct<char,false> >(loc);
 os << "currency symbol is: " << mpunct.curr_symbol() << endl;
}

This program prints two lines: the national currency symbol in the C locale and the national currency symbol
in the en_GB locale (English in Great Britain).

• Consider a program using the C++ Standard Library IOStreams, like x.cxx below, that writes to cout, but
not to cerr or clog:

x.cxx

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>
main() {
 std::cout << "hello, world" << std::endl;
}

On OpenVMS Alpha systems, if such a program is invoked with SYS$OUTPUT redirected to a file and SYS
$ERROR defined as SYS$OUTPUT, a single version of the output file is created.

On I64 systems, by default, two versions of the file are created: one for SYS$OUTPUT and
another for SYS$ERROR. To get Alpha behavior on an I64 system, define logical name DECC
$COMMON_STDERR_STDOUT to ENABLE. The following command file shows the definition:

x.com

$ if f$search("x.dat") .nes. "" then delete x.dat;*
$ define/user sys$output x.dat
$ define/user sys$error sys$output
$ if f$getsy("arch_name") .eqs. "IA64" then -
 define/user decc$common_stderr_stdout enable
$ run x.exe

4.3. CXXLINK Changes
Because of changes in the architecture on I64 systems, CXXLINK plays a much smaller role. Its only remaining
purpose is to provide human readable (demangled) names for mangled C++ names in diagnostics generated by
the linker.

Specific changes are:

• There is no LIBCXXSTD.OLB

On I64 systems, there is no LIBCXXSTD.OLB, which is the object library where the C++ standard library for
OpenVMS Alpha resides. See Section 4.2.4, “Standard Library” for more information.

• The library is reorganized

The C++ libraries have been reorganized and incorporated into the base system. CXXLINK no longer needs
to specify any C++ libraries when invoking the system linker. See Section 4.2, “Library Changes” for more
information.

74

Porting to I64 Systems

• There are no templates in a repository

With the new template instantiation model, objects are no longer placed in a repository. Therefore, CXXLINK
no longer needs to look at the repositories for templates. See Section 4.1.9, “Templates” for more information.

4.4. Installation
VSI C++ is installed using PCSI for OpenVMS I64 systems.

To install VSI C++ for OpenVMS I64 systems, set the default directory to a writeable directory to allow the IVP
to succeed. Then run the PRODUCT INSTALL command, pointing to the kit location. For example:

$ SET DEFAULT SYS$MANAGER
$ PRODUCT INSTALL CXX/SOURCE=node::device:[kit_dir]

After installation, the C++ release notes will be available at:

SYS$HELP:CXX.RELEASE_NOTES

Here is a sample installation log:

$ PRODUCT INSTALL CXX/SOURCE=NODE1$::DEV1$:[I64_CPP_KIT]
The following product has been selected:
 VSI I64VMS CXX T7.0-9 Layered Product [Installed]
Do you want to continue? [YES]
Configuration phase starting ...
You will be asked to choose options, if any, for each selected product and
 for
any products that may be installed to satisfy software dependency
 requirements.
VSI I64VMS CXX T7.0-9: VSI C++ for OpenVMS Industry Standard
 Copyright 2004 Hewlett-Packard Development Company, L.P.
 This software product is sold by Hewlett-Packard Company
 PAKs used: CXX or CXX-USER
Do you want the defaults for all options? [YES]
 Copyright 2004 Hewlett-Packard Development Company, L.P.
 VSI, the VSI logo, Alpha and OpenVMS are trademarks of
 Hewlett-Packard Development Company, L.P. in the U.S. and/or
 other countries.
 Confidential computer software. Valid license from VSI
 required for possession, use or copying. Consistent with
 FAR 12.211 and 12.212, Commercial Computer Software, Computer
 Software Documentation, and Technical Data for Commercial
 Items are licensed to the U.S. Government under vendor's
 standard commercial license.
Do you want to review the options? [NO]
Execution phase starting ...
The following product will be installed to destination:
 VSI I64VMS CXX T7.0-9 DISK$ICXXSYS:[VMS$COMMON.]
Portion done: 0%...90%...100%
The following product has been installed:
 VSI I64VMS CXX T7.0-9 Layered Product
%PCSI-I-IVPEXECUTE, executing test procedure for VSI I64VMS CXX T7.0-9 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully
VSI I64VMS CXX T7.0-9: VSI C++ for OpenVMS Industry Standard
The compiler is now available from the command line of newly created
 processes.
 To enable access to the compiler from the command line of a currently
 running process (such as this one), execute:

75

Porting to I64 Systems

 SET COMMAND/TABLE=SYS$COMMON:[SYSLIB]DCLTABLES
 The release notes are located in the file SYS$HELP:CXX.RELEASE_NOTES
 for the text form and SYS$HELP:CXX_RELEASE_NOTES.PS for the postscript
 form.
$

76

Using Templates

Chapter 5. Using Templates
A C++ template is a framework for defining a set of classes or functions. The process of instantiation creates a
particular class or function of the set by resolving the C++ template with a group of arguments that are themselves
types or values. For example:

template <class T> class Array {
 T *data;
 int size;
public:
 T &operator[](int);
 /* … */
};

The code in this example declares a C++ class template named Array that has two data members named data
and size and one subscript operator member function. Array<int> instantiates Array with type int.
This instantiation generates the following class definition:

class Array {
 int *data;
 int size;
public:
 int &operator[](int);
 /* … */
};

The compiler supports instantiation of C++ class, function, and static data member templates. The following
sections describe using templates with Version 6.0 compilers or later. To understand the differences between
the current compiler and Version 5.n and to migrate from Version 5.n to current compilers, see the appendix on
migrating from 5.n compilers.

5.1. Template Instantiation Model
For every template used in a C++ program, the compiler must create an instantiation for that template. How the
compiler does this is referred to as the template instantiation model. The template instantiation models differ on the
why, what, when, where, and how a template is instantiated. The following outline gives a framework to compare
the different models.

1. Why

A template can be instantiated implicitly when it is used, manually by specific request, or both.

2. What (part of the template is instantiated)

For a template class, each member of the template can be instantiated separately, or if one member is instantiated
then all members are instantiated.

3. When

Instantiation can occur at compile time or link time. Version 6.0 or later compilers support only compile-time
instantiation.

4. Where

Templates can be instantiated in the object in which they are referenced or in separate objects that are stored
in a repository.

5. How

77

Using Templates

Templates can be instantiated with different linkages. They can be local, global, or COMDAT (I64 only). A
COMDAT is like a weak global definition, but in addition to permitting duplicate definitions, the linker attempts
to eliminate all of the duplicates, saving space in the image.

The numbers in the preceding list are used in subsequent paragraphs to indicate which aspect of the template
instantiation model framework is being referenced.

For complex systems, choosing a template instantiation model is a space, time, and build-complexity issue that can
be considered for optimizing build speed and reducing program size. The default model, referred to as automatic
template instantiation, is standard-compliant and should work transparently for most users. VSI recommends this
model.

Automatic template instantiation:

• Instantiates templates when they are used (1),

• Instantiates only the pieces of a class that are used (2),and

• Occurs at compile time (3).

Template instantiation on Alpha and I64 systems differ on the where and the how:

• On Alpha systems, templates are instantiated in a repository (4) using global linkage (5)

• On I64 systems, templates are instantiated in the objects that refer to them (4) as COMDATs (5).

The compiler, CXXLINK, and linker all work together to assure that all templates used in a program are instantiated
and transparently linked into the final image.

Even when using automatic template instantiation, manual instantiation (1) is also permitted. When using the
default model, manually instantiated templates are placed in the object where the manual instantiation occurs (4).
On Alpha systems, they have global linkage; on I64 systems, they are COMDATs (5).

See Table 5.1, “Template Instantiation Models” for a summary of each template instantiation model's What, Where,
and How for both implicit and manual instantiation (the "Why").

5.2. Manual Template Instantiation
The compiler provides the following methods to instantiate templates manually:

• Using the #pragma preprocessor directives.

Using an instantiation pragma to direct the compiler to instantiate a specific template, as described in
Section 5.2.2, “Instantiation Directives”.

• Using explicit template instantiation syntax.

The C++ language now defines specific syntax for specifying that a template should be instantiated. See The
Annotated C++ Reference Manual.

VSI strongly recommends using the explicit template instantiation syntax when possible.

• Using the command-line qualifier method.

This method directs the compiler to instantiate templates at compile time in the user's object file. Several
qualifiers are available to control linkage and extent of template instantiation. For more information about these
qualifiers, see Section 5.2.3, “Using Command Qualifiers for Manual Instantiation”.

5.2.1. Mixing Automatic and Manual Instantiation

78

Using Templates

Object files that have been compiled using manual instantiation can be linked freely with objects that have been
compiled using automatic instantiation. To ensure that the template instantiations needed by the files compiled
with automatic instantiation are provided, the application must be linked using automatic instantiation, and the
appropriate repositories must be present.

When a template instantiation is present in an explicitly named object file or object library it takes precedence
over the same named instantiation in a repository.

5.2.2. Instantiation Directives
The next sections describe the following instantiatation directives:

#pragma define_template
#pragma instantiate_template
#pragma do_not_instantiate_template

5.2.2.1. #pragma define_template
The compiler provides a mechanism for manual instantiation, using the #pragma define_template
directive. This directive lets you tell the compiler what class or function template to instantiate in conjunction with
the actual arguments with which the template is to be instantiated.The #pragma define_template directive
has the following format:

#pragma define_template identifier [<template_arguments>]

Identifier is the name of the class or function template that the compiler is directed to instantiate at compile time. For
the instantiation to succeed, the definition of the template must appear before the #pragma define_template
directive.

Template_arguments is a list of one or more actual types that correspond to the template parameters for the
particular class or function template being instantiated. Whatever type is specified is used as the type for the
instantiation.

The following is an example of a valid template manual instantiation:

 //main.cxx
 #include <stdlib.h>
 template <class T> void sort (T*);
 int al[100];
 float a2[100];
 int main()
 {
 sort(a1);
 sort(a2);
 return EXIT_SUCCESS;
 }
 //sort.cxx
 template <class T> void sort (T *array)
 {
 /* body of sort */
 }
 #pragma define_template sort<int>
 #pragma define_template sort<float>

To compile and link these sources, enter the following command:

CXXLINK main.cxx,sort.cxx /TEMPLATE_DEFINE=(NOAUTO)

When you use #pragma define_template or explicit instantiation, only the specified template is
instantiated; templates to which it refers because of member types or base classes are not instantiated.

79

Using Templates

Sorting an array of template class elements requires the use of additional pragmas for the module sort.cxx.
For example:

 template <class T> void sort (T* array)
 {
 /*body of sort*/
 }
 template <class T> class entity {
 public:
 T member;
 int operator < (const entity<T> &) const;
 }
 template <class T>
 int entity<T>::operator < (const entity<T> &operand) const
 {
 return member < operand.member;
 }
 int al[100];
 float a2[100];
 entity<int> a3[100];
 #pragma define_template sort<int>
 #pragma define_template sort<float>
 #pragma define_template sort<entity<int> >
 void sort_all_arrays ()
 {
 sort(a1);
 sort(a2);
 sort(a3);
 }

The define_template pragma is position sensitive. If a define_template occurs lexically before a
function, member function, or static data member template definition, the compiler is unable to instantiate the
corresponding template because the body of that template is not present before the pragma directive.

The compiler instantiates all instances of sort and of entity::operator < needed for this compilation unit.

To organize a program to use the define_template pragma, you can place the declarations of class and
functions templates into header files, and instantiate all instances of a particular template from a single compilation
unit. The following example shows how to do this:

 // sort.h
 #include <stdlib.h>
 template <class T> void sort (T*);
 // entity.h
 template <class T> class entity {
 public:
 T member;
 int operator < (const entity<T> &) const;
 };
 // main.cxx
 #include "sort.h"
 #include "entity.h"
 int al[100];
 float a2[100];
 entity<int> a3[100];
 int main()
 {
 sort(a1);
 sort(a2);

80

Using Templates

 sort(a3);
 return EXIT_SUCCESS;
 }
 // sort.cxx
 #include "sort.h"
 #include "entity.h"
 template <class T> void sort (T* array)
 {
 /*body of sort*/
 }
 #pragma define_template sort<int>
 #pragma define_template sort<float>
 #pragma define_template sort<entity<int> >

Compiling the following file provides a definition of entity::operator < with type int:

 // entity.cxx
 #include "entity.h"
 template <class T>
 int entity<T>::operator < (const entity<T> &operand) const
 {
 return member < operand.member;
 }
 #pragma define_template entity<int>

To compile this example, issue the following command:

 cxxlink main.cxx,sort.cxx,entity.cxx

If the program uses other instantiations of entity in other compilation units, you can provide definitions of
operator < for those entities by adding define_template pragmas to entity.cxx. For example, if other
compilation units use the following instantiations of entity, appending the following pragmas to entity.cxx
causes the compiler to generate instantiations of operator < for those requests of entity:

 entity<long> and entity< entity<int> >,
 #pragma define_template entity<long>
 #pragma define_template entity< entity<int> >

Like any other pragma, the #pragma define_template pragma must appear on a single line. Pragmas
may be continued on multiple lines by escaping the end of line with a backslash (\) as with other preprocessor
statements.

5.2.2.2. #pragma instantiate and #pragma do_not_instantiate
The compiler also provides several pragmas that provide fine control over the instantiation process. Instantiation
pragmas, for example, can be used to control the instantiation of specific template entities or sets of template
entities. There are two instantiation pragmas:

• The instantiate pragma causes a specified entity to be instantiated, similar to the define_template
pragma. It provides finer instantiation control than define_template when instantiating function templates.

• The do_not_instantiate pragma suppresses the instantiation of a specified entity. It is typically used to
suppress the instantiation of an entity for which a specific definition is supplied.

The argument to the instantiation pragma can be:

a template class name A<int>

a template class declaration class A<int>

81

Using Templates

a member function name A<int>::f

a static data member name A<int>::i

a static data declaration A<int>::i

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

A pragma in which the argument is a template class name (for example, A<int> or class
A<int> is equivalent to repeating the pragma for each member function and static data member declared
in the class. When instantiating an entire class, a given member function or static data member may be excluded
using the do_not_instantiate pragma. For example:

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

The template definition of a template entity must be present in the compilation for an instantiation to occur. If an
instantiation is explicitly requested by use of the instantiate pragma and no template definition is available or a
specific definition is provided, an error is issued.

template <class T> void f1(T); // No body provided
template <class T> void g1(T); // No body provided
void f1(int) {} // Specific definition
 #include <stdlib.h>
int main()
{
 int i;
 double d;
 f1(i);
 f1(d);
 g1(i);
 g1(d);
 return EXIT_SUCCESS;
}
#pragma instantiate void f1(int) // error - specific definition
#pragma instantiate void g1(int) // error - no body provided

The functions f1(double) and g1(double) are not instantiated (because no bodies were supplied) but no
errors are produced during the compilation (if no bodies are supplied at link time, a linker error is produced).

A member function name (for example, A<int>::f can be used as a pragma argument only if it refers
to a single user-defined member function (that is, not an overloaded function). Compiler-generated functions are
not considered, so a name may refer to a user-defined constructor even if a compiler-generated copy constructor
of the same name exists. Overloaded member functions can be instantiated by providing the complete member
function declaration:

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma must not be a compiler-generated function, an inline function, or a pure
virtual function.

5.2.3. Using Command Qualifiers for Manual
Instantiation
Alternatively, you could use the /TEMPLATE_DEFINE qualifier to instantiate templates manually.

Considering the previous examples in this section, you can use this qualifier to supply definitions of
sort<int>, sort<float>, and sort<entity><int> by compiling the
following file using /TEMPLATE_DEFINE=ALL:

82

Using Templates

 // sort.cxx
 #include "sort.h"
 #include "entity.h"
 template <class T>
 static sort (T* array)
 {
 /*body of sort*/
 }
 static void function_never_used ()
 {
 int al[100];
 float a2[100];
 entity<int> a3[100];
 sort(a1);
 sort(a2);
 sort(a3);
 }

You can use the /TEMPLATE_DEFINE=USED and /TEMPLATE_DEFINE=LOCAL qualifiers for manual
template instantiation. The /TEMPLATE_DEFINE=USED qualifier acts like /TEMPLATE_DEFINE=ALL,
except that only those template instantiations that are referenced in the source file are actually instantiated. The /
TEMPLATE_DEFINE=LOCAL qualifier acts like /TEMPLATE_DEFINE=USED, except that the templates are
instantiated with internal linkage. This provides a simple way to build applications but creates executables that are
larger than necessary. It also fails if the template classes being instantiated have static data members.

You can use the /TEMPLATE_DEFINE=ALL_REPOSITORY, /TEMPLATE_DEFINE=USED_REPOSITORY,
and /TEMPLATE_DEFINE=IMPLICIT_LOCAL qualifiers to create preinstantiation libraries. See Section 5.6,
“Command-Line Qualifiers for Template Instantiation”.

5.3. Using Template Object Repositories
(Alpha only)
In automatic template instantiation mode, the compiler attempts to instantiate every referenced template at compile
time. For automatic instantiation to work, at least one compilation that references a template function must be able
to find the template definition. There is no restriction on where a template can be declared or defined, as long as
the definition is visible to the compilation unit. You can use implicit inclusion to find it.

The compiler writes instantiation object files to a directory called the repository; file names are based on the names
of the entities being instantiated. The default repository is [.cxx_repository].

5.3.1. Specifying Alternate Repositories
You can use the /REPOSITORY command-line qualifier to specify one or more alternate repository directories.
The first repository named is the read-write repository into which the compiler writes instantiation objects when
processing. At link time, all repositories are read only. There is one object file in the repository for each instantiated
template function, for each instantiated static data member, and for each virtual table required for virtual functions.

When the program is linked, the linker searches the repositories for needed template instantiations.

5.3.2. Reducing Compilation Time with the /
TEMPLATE_DEFINE=TIMESTAMP Qualifier
To keep instantiations up to date, the compiler always instantiates templates by default, even if the required
template already exists in the respository. However, in environments that share many templates among many
sources, this process can increase compilation time.

83

Using Templates

In these environments, users can specify the /TEMPLATE_DEFINE=TIMESTAMP qualifier to override the
default behavior and thereby reduce compilation time. This qualifier causes the compiler to create a timestamp file
named TIMESTAMP. in the repository. Thereafter, instantiations are added or regenerated only if needed; that is,
if they do not alreay exist, or if existing ones are older than the timestamp.

The /TEMPLATE_DEFINE=TIMESTAMP qualifier is immediately useful when building a system from scratch,
starting with an empty repository. It avoids reinstantiating unchanged code and is totally safe, because all required
instantiations are generated and up to date.

Incremental application building is normally done without this qualifier, so that new instantiations overwrite earlier
ones as sources are recompiled.

Although the /TEMPLATE_DEFINE=TIMESTAMP qualifier is intended mainly for initial builds, you can use it
for ongoing development in a structured way. Because the compiler creates a new timestamp file only if one does
not already exist, you must remove or modify any existing timestamp file before making changes to your code
base. This procedure ensures that all subsequent compilations generate up-to-date instantiations.

In the following example, the file is removed before and immediately after the compilation of a.cxx, b.cxx,
and c.cxx.

$ DELETE [.cxx_repository]TIMESTAMP.;*
$ CXX /TEMPLATE_DEFINE=TIMESTAMP a.cxx
$ CXX /TEMPLATE_DEFINE=TIMESTAMP b.cxx
$ CXX /TEMPLATE_DEFINE=TIMESTAMP c.cxx
$ DELETE [.cxx_repository]TIMESTAMP.;*

All instantiations needed by a.cxx, b.cxx, and a.cxx are generated only once, as opposed to the default
scheme, in which they would be generated three times if all three modules used the instantiations.

Specifying the /TEMPLATE_DEFINE=VERBOSE qualifier causes the compiler to emit an informational message
naming the instantiation and repository file being skipped in this mode.

5.3.3. Compiling Programs with Automatic
Instantiation
In general, the use of automatic template instantiation is transparent to the user. Automatic template instantiation
is enabled by default. The following commands are equivalent:

CXX file.cxx
CXX/TEMPLATE_DEFINE=(AUTO,PRAGMA) file.cxx
CXX/REPOSITORY=[.CXX_REPOSITORY] file.cxx

These commands:

• Cause the compilation of the file file.cxx

• Create any instantiations that are required whose definitions are visible to the compiler

• Create an executable, a.out, by linking together the generated object file and any instantiations required from
the repository

You can specify the repository explicitly with the /REPOSITORY qualifier. For example:

CXX /REPOSITORY=C$:[PROJECT.REPOSITORY] file.cxx

This command compiles file.cxx, produces an object file in the current directory, and puts instantiated template
files in the directory C$:[PROJECT.REPOSITORY].

You can specify multiple directories using the /REPOSITORY qualifier. The first named repository is denoted
as the read/write repository. The compiler writes instantiation files to this repository. The other repositories are

84

Using Templates

denoted as read only repositories. They are searched by the link command as described in Section 5.3.4, “Linking
Programs with Automatic Instantiation”.

The compiler attempts to instantiate templates at compile time; therefore, any specialization used in the program
must be declared in each file in which the specialization is referenced, to prevent the instantiation of the overridden
template function.

If a template instantiation refers to a static function, that function is created as an external entry point in the primary
object file, and the instantiation object file in the repository then refers to this __STF function.

If the template instantiation is linked into an application that does not have the original primary object file, an
unresolved reference to the __STF function occurs. If this happens, recompile an object file that regenerates the
instantiation or use manual instantiation to reinstantiate the template.

5.3.4. Linking Programs with Automatic Instantiation
When compiling and linking an application, you must use the same repositories in both the compilation and link
steps.

If you name a repository explicitly in the compile step, you must also name it in the link step. For example:

CXX /REPOSITORY=[.MY_REPOSITORY] a.cxx,b.cxx
CXXLINK /REPOSITORY=[.MY_REPOSITORY] a.obj b.obj

If you use different repositories the compilation of the sources, you must specify all of them on the link step:

CXX /REPOSITORY=[.REPOSITORY1] a.cxx
CXX /REPOSITORY=[.REPOSITORY2] b.cxx
CXXLINK /REPOSITORY=([.REPOSITORY1],[.REPOSITORY2]) a.obj b.obj

At link time, the specified repositories are searched in the order given, to find the required instantiations. If you
use several repositories, and if one of them is the default, you must specify all repositories on the link step:

CXX a.cxx
CXX /REPOSITORY=[.REPOSITORY2] b.cxx
CXX /REPOSITORY=([.CXX_REPOSITORY],[.REPOSITORY2]) a.obj b.obj

It is usually much easier and safer to use a single repository, because the same instantiations could potentially be
present in multiple repositories, and it is possible to update some but not all repositories when changes are made
to templates.

The CXXLINK step processes object files so that all the external symbol references are resolved. The objects are
linked together in the following order:

1. The order in which object files and object libraries are specified on the command line.

2. If /NOTEMPLATE_PRELINK is specified, stop.

3. For each unresolved external, search the repositories in the order specified on the command line for an file that
contains that external. If such a file is found, add it at the top of the list of object files being searched.

4. Link again and repeat Step 3 until no more externals are found or until no more object files are found in which
to resolve the external.

Note the following:

• Instantiations that appear in explicitly linked object files or libraries hide instantiations in the repositories.

• Only template instantiations that are actually referenced in sources that can instantiate them
appear in the repository. You must specify any other instantiations manually or use the /
TEMPLATE_DEFINE=ALL_REPOSITORY qualifier.

85

Using Templates

• Instantiations are satisfied from the list of unsatisfied externals from the linking of specified files, but are linked
at the beginning of those files. This means that they are linked in only if they are satisfied from no specified
file, given the linker's file order behavior, and if they bring in any external references they need from the first
library that satisfies them.

5.3.5. Creating Libraries
Creating libraries with object files created with automatic instantiations is relatively straightforward. You must
decide where the instantiations that were generated automatically are provided to the users of the library. For
applications that use the library to link successfully, all template instantiations that are needed by the code in the
library must be available at link time. This can be done in two ways:

• Put the instantiations in the library. They hide the same named instantiations in any repositories or any libraries
following the library on the command line.

• Provide a repository that contains the instantiations.

It is usually easiest to put the instantiations in the library. This is a good choice if the instantiations are internal to
the library and are not instantiated directly by the user's code. To put the instantiations in the library, add all of the
object files in the repositories required by the library into the library as shown in the following example:

CXX /REPOSITORY=[.lib_repository] a.cxx,b.cxx,c.cxx
LIBRARY/CREATE/OBJECT mylib
LIBRARY/INSERT/OBJECT mylib a.obj,b.obj,c.obj
LIBRARY/INSERT/OBJECT mylib [.lib_repository]*.OBJ

If the template instantiations can be overridden by the user, the templates should be provided in a repository that
the user specifies after all the user's repositories. For the previous example, create the library as follows:

CXX /REPOSITORY=[.lib_repository] a.cxx,b.cxx,c.cxx
LIBRARY/CREATE/OBJECT mylib
LIBRARY/INSERT/OBJECT mylib a.obj,b.obj,c.obj

When linking the application, enter the CXXLINK command as follows:

CXXLINK user_code.obj,mylib/LIB

If some objects from [.lib_repository] are not contained in mylib.olb, specify
[.lib_repository] as the last read-only repository on the line follows:

CXXLINK /REPOSITORY=([.cxx_repository],[.lib_repository])
 user_code.obj,mylib/LIB

You must explicitly name the repository when linking, even if it is the default repository [.cxx_repository];
cxx first satisfies all unresolved instantiations from [.cxx_repository], and uses [.lib_repository]
to resolve any remaining unresolved instantiations.

Only the instantiations that are required by the code in the library are generated in the library repository
lib_repository. If you must provide other instantiations that you require but cannot instantiate, you
must provide these instantiations using manual template instantiation or by specifying the qualifier /
TEMPLATE_DEFINE=ALL_REPOSITORY.

5.3.6. Multiple Repositories
As shown in Section 5.5.3, “Creating a Common Instantiation Library”, multiple repositories can be specified
to link an application. The first repository named is the read-write repository, and when compiling, the compiler
writes instantiation object files into it. At link time, all repositories are read only.

The repositories are searched in a linear order, iteratively, and satisfy only the unresolved instantiations from each
pass. That is, references from instantiations that are added in one pass are not resolved until the next pass. Consider
the link line in the previous example:

86

Using Templates

mylib.olb

In this example, all references that could be resolved from lib_repository would be resolved in the first
pass. Any reference arising from an instantiation in lib_repository in the first pass would be resolved by
instantiations in [.cxx_repository] in the second pass.

5.4. Using COMDATS (I64 only)
The primary purpose of a template repository is to guarantee that only one copy of a template instantiation is
included in a program. Another way to achieve this is to use COMDATs. COMDATs are special symbols that
are globally visible; however, when the linker encounters a duplicate definition, it is removed. This allows the
compiler to define templates directly in every object module that uses them.

The principal benefit of using COMDATS is build speed, but it also can simplify the build procedure:

• Compilation speed is improved because writing template instantiations into the current object is significantly
faster then writing them into the repository, because of object overhead in the latter case.

• Link speed is improved because determining which templates to include from the template repository requires
multiple passes of the linker.

• The build is simplified by eliminating the need to manage the template repository and explicitly extract objects.

COMDATs are implemented on I64 systems using ELF group sections. COMDATs are not implemented on Alpha
systems because EOBJ does not support them. If EOBJ supported COMDATs, then they also would have been used
on Alpha systems instead of the template object repository. Currently, there are no plans to implement COMDATs
on Alpha systems.

Because templates instantiated using COMDATs exist in the same object where they are used, there are no special
procedures for linking programs or creating libraries, except that a template can only be exported from a single
shared library. If two shared libraries with the same exported template are linked together, a MULDEF will occur.
This restriction also exists on Alpha systems.

5.5. Advanced Program Development and
Templates
The following sections discuss templates in the context of advanced program development.

5.5.1. Implicit Inclusion
When implicit inclusion is enabled, the compiler assumes that if it needs a definition to instantiate a template entity
declared in a .h or .hxx file, it can implicitly include the corresponding implementation file to obtain the source
code for the definition.

If a template entity ABC::f is declared in file xyz.h, and an instantiation of ABC::f is required in a compilation
but no definition of ABC::f appears in the source code, the compiler checks whether a file xyz.cxx exists. If
it does, the compiler processes it as if it were included at the end of the main source file.

When looking for a template definition, the compiler uses the following lookup order:

1. If the #include name for the header file containing the template declaration is specified with an absolute
path name, look only in the directory specified by the path name.

2. If the #include for the header file containing the template declaration is specified with a relative path name,
take the following action:

• If the header file name is specified with double quotation marks (" ") and the /NOCURRENT_INCLUDE
qualifier was not specified, append the relative path name to the directory containing the source file and
search for files with the appropriate suffixes.

87

Using Templates

• Otherwise, append the relative path name to all the -I directories and look in those resulting directories for
files with the appropriate suffixes.

Note

A place containing a forward slash (/) character is considered to be a UNIX-style name. If the name in the
#include directive also contains a "/" character that is not the first character and is not preceded by a an
exclamation mark character (!) (that is, it is not an absolute UNIX-style pathname), the name in the #include
directive is appended to the named place, separated by a "/" character, before applying the decc$to_vms
pathname translation function.

For source files, the appropriate suffixes are, in order of preference: .CXX, .C, .CC, and .CPP or as defined by
the /TEMPLATE_DEFINE=DEFINITION_FILE_TYPE qualifier.

The compiler ignores any file extension that does not begin with a dot (.).

The /TEMPLATE_DEFINE=DEFINITION_FILE_TYPE qualifier allows the user to define explicitly the file
extensions to be used with implicit inclusion. For example:

CXX file.cxx /TEMPLATE_DEFINE=DEF=".CPP.CC"

This command searches for template definition files with the extensions .CPP and .CC.

5.5.2. Dependency Management
The compiler does no dependency management of its own. Because template instantiations are compiled when
source files that reference those instantiations are compiled, those source files must be recompiled if the template
declaration or definition changes.

The /MMS output from the compiler lists the implicitly included files, so that the MMS program can automatically
recompile any source files that depend upon template files. If MMS is not being used, it is the user's responsibility
to ensure that instantiations that have changed are recompiled. The user does so by recompiling at least one source
file that references the changed instantiations.

The compiler does not check command line dependencies of template instantiations at link time. If you compile
two different source files that instantiate a specific template with two different sets of qualifiers, the behavior is
undefined. Use consistent qualifier settings for each build into each repository. Examples of qualifier settings that
could cause unexpected results are as follows:

• /STANDARD=STRICT_ANSI. Use of guiding declarations is not allowed, and some templates might not be
instantiated as they would be in other modes.

• /DEBUG. Debug information is generated for some instantiations and not for others. Be sure that is what you
want.

• /NOMEMBER_ALIGNMENT. Some instantiations with this setting assume that classes have unaligned
members; instantiations generated by compiling files with the default setting do not.

5.5.3. Creating a Common Instantiation Library
Because the automatic instantiation model has changed to a compile time model with Version 6.0, (see Sections
5.3.3 and 5.3.4), the procedure used to create a common instantiation library has also changed. This section
describes the new procedure.

If you want to put all current instantiations into a common instantiation library, follow these steps:

1. Compile with the /TEMPLATE=VERBOSE qualifier and save the results to a file.

88

Using Templates

2. Edit that file and save the names that appear after the “automatically instantiating ...” string. You can ignore
any messages about instantiating vtables. Put #pragma instantiate before each name.

3. Put the result of that edit into a separate source file and include at the top of the file any headers needed for
template definitions.

4. Put matching #pragma do_not_instantiate (see Section 5.2.2.2, “#pragma instantiate and #pragma
do_not_instantiate”) into the headers that define each of these template classes or functions.

5. Place each #pragma do_not_instantiate directive between an #ifndef of the form #ifndef
SOME_MACRO_NAME and an #endif.

6. Compile the inst.cxx file with SOME_MACRO_NAME defined.

7. Link the source file with the resulting object file.

The following examples show how to create a common instantiation library for all the instantiations currently
being automatically instantiated for this file.

// foo.cxx
#include <stdlib.h>
#include <vector>
#include "C.h"
int main() {
 vector<C> v;
 v.resize(20);
 return EXIT_SUCCESS:
}
// C.h
#ifndef __C_H
class C {};
#endif

Compiling with the /TEMPLATE=VERBOSE qualifier shows which instantiations occur automatically:

1. Place all these instantiations into a file called inst.cxx that is built separately or into a library:

// inst.cxx
#include <vector>
#include "C.h"
#pragma instantiate void std::vector<C, std::allocator<C >
 >::resize(unsigned long)
#pragma instantiate void std::vector<C, std::allocator<C >
 >::insert(C *, unsigned long, const C &)
#pragma instantiate void std::vector<C, std::allocator<C >
 >::__insert(C *, unsigned long, const C &, __true_category)
#pragma instantiate C *std::copy_backward(C *, C *, C *)
#pragma instantiate void std::fill(C *, C *, const C &)
#pragma instantiate C *std::copy(C *, C *, C *)
#pragma instantiate const unsigned long std::basic_string<char,
std::char_traits<char >, std::allocator<void> >::npos

2. Add these instantiations into C.h and change “instantiate” to “do_not_instantiate”. Add an #ifndef, so that
when building inst.cxx, the compiler creates these instantiations in the inst object file:

#ifndef __C_H
class C {};
#ifndef __BUILDING_INSTANTIATIONS
#pragma do_not_instantiate void std::vector<C, std::allocator<C
 >

89

Using Templates

 >::resize(unsigned long)
#pragma do_not_instantiate void std::vector<C, std::allocator<C
 >
 >::insert(C *, unsigned long, const C &)
#pragma do_not_instantiate void std::vector<C, std::allocator<C
 >
 >::__insert(C *, unsigned long, const C &, __true_category)
#pragma do_not_instantiate C *std::copy_backward(C *, C *, C *)
#pragma do_not_instantiate void std::fill(C *, C *, const C &)
#pragma do_not_instantiate C *std::copy(C *, C *, C *)
#pragma do_not_instantiate const unsigned long
 std::basic_string<char, std::char_traits<char >,
 std::allocator<void> >::npos
#endif
#endif

3. Build the inst object file:

CXX/DEFINE=BUILDING_INSTANTIATIONS inst.cxx

4. Link with the inst object file. It will use instantiations from that file instead of creating them automatically:

cxx foo.cxx
cxxlink foo inst

To verify that your procedure worked correctly, you can remove all files from the cxx_repository
subdirectory before you compile foo.cxx. This subdirectory should contain no instantiations after linking with
the inst object file.

If you have an inst.cxx file that contains many instantiations and you do not want all the symbols in
the inst object file to be put into a user's executable even if only some symbols are used, (as happens
with archive libraries), you can either split the inst.cxx into many smaller source files, or specify the /
DEFINE_TEMPLATE=USED_REPOSITORY qualifier to create the instantiations as separate object files in the
repository (see Section 5.6, “Command-Line Qualifiers for Template Instantiation”). You must then link all the
required individual object files in the repository into your library.

5.6. Command-Line Qualifiers for Template
Instantiation
This section describes the C++ command-line qualifiers that specify the template instantiation model, and
additional template-related qualifiers.

5.6.1. Instantiation Model Qualifiers
The following CXX command-line qualifiers specify the template instantiation model to be used. Specify only one:

/TEMPLATE_DEFINE=ALL

Instantiate all template entities declared or referenced in the compilation unit, including typedefs. For each
fully instantiated template class, all its member functions and static data members are instantiated even if they
were not used. Nonmember template functions are instantiated even if the only reference was a declaration.
Instantiations are created with external linkage. Overrides /REPOSITORY at compile time. Instantiations are
placed in the user's object file.

/TEMPLATE_DEFINE=ALL_REPOSITORY

Instantiate all templates declared or used in the source program and put the object code generated as separate
object files in the repository. Instantiations caused by manual instantiation directives are also put in the

90

Using Templates

repository. This is similar to /TEMPLATE_DEFINE=ALL except that explicit instantiations are also put in
the repository, rather than than an external symbol being put in the main object file. This qualifier is useful
for creating a pre-instantiation library.

/TEMPLATE_DEFINE=[NO]AUTOMATIC

/TEMPLATE_DEFINE=AUTOMATIC directs the compiler to use the automatic instantiation model of C+
+ templates.

/TEMPLATE_DEFINE=NOAUTOMATIC directs the compiler to not implicitly instantiate templates.

/TEMPLATE_DEFINE=AUTOMATIC is the default.

/TEMPLATE_DEFINE=IMPLICIT_LOCAL

Same as /TEMPLATE_DEFINE=LOCAL, except manually instantiated templates are placed in the repository
with external linkage. This is useful for build systems that need to have explicit control of the template
instantiation mechanism. This mode can suffer the same limitations as /TEMPLATE_DEFINE=LOCAL. This
mode is the default when /STANDARD=GNU is specified.

/TEMPLATE_DEFINE=LOCAL

Similar to /TEMPLATE_DEFINE=USED except that the functions are given internal linkage. This qualifier
provides a simple mechanism for getting started with templates. The compiler instantiates as local functions
the functions used in each compilation unit, and the program links and runs correctly (barring problems
resulting from multiple copies of local static variables). However, because many copies of the instantiated
functions can be generated, this qualifier might not be not suitable for production use.

The /TEMPLATE_DEFINE=LOCAL qualifier cannot be used in conjunction with automatic
template instantiation. If automatic instantiation is enabled by default, it is disabled by the /
TEMPLATE_DEFINE=LOCAL qualifier. Explicit use of /TEMPLATE_DEFINE=LOCAL and /
TEMPLATE_DEFINE=AUTO is an error.

/TEMPLATE_DEFINE=USED

Instantiate those template entities that were used in the compilation. This includes all static data members for
which there are template definitions. Overrides /TEMPLATE_DEFINE=AUTO at compile time.

/TEMPLATE_DEFINE=USED_REPOSITORY

Like /TEMPLATE_DEFINE=ALL_REPOSITORY, but instantiates only templates used by the compilation.
The explicit instantiations are also put into the repository as separate object files.

Table 5.1, “Template Instantiation Models” summarizes each template instantiation model's What, Where, and
How (as described in Section 5.1, “Template Instantiation Model”) for both implicit and manual instantiation.

Table 5.1. Template Instantiation Models

Why Implicit Why ManualModel (/
TEMPLATE=) What Where How What Where How

AUTO part repository
for Alpha,
object for
I64

global for
Alpha,
COMDAT for
I64

part object global for
Alpha,
COMDAT for
I64

NOAUTO N/A N/A N/A part object global for
Alpha,
COMDAT for
I64

91

Using Templates

Why Implicit Why ManualModel (/
TEMPLATE=) What Where How What Where How

IMPLICIT_LOCAL part object local for Alpha,
COMDAT for
I64

part object global for
Alpha,
COMDAT for
I64

LOCAL part object local for Alpha,
COMDAT for
I64

part object local for Alpha,
COMDAT for
I64

USED part object global for
Alpha,
COMDAT for
I64

part object global for
Alpha,
COMDAT for
I64

USED_REPO part repository global for
Alpha,
COMDAT for
I64

part repository global for
Alpha,
COMDAT for
I64

ALL all object global for
Alpha,
COMDAT for
I64

all object global for
Alpha,
COMDAT for
I64

ALL_REPO all repository
for Alpha,
object for
I64

global for
Alpha,
COMDAT for
I64

all repository
for Alpha,
object for
I64

global for
Alpha,
COMDAT for
I64

5.6.2. Other Instantiation Qualifiers
The following qualifiers are independent of the model used and each other:

/TEMPLATE_DEFINE=DEFINITION_FILE_TYPE="file-type-list"

Specifies a string that contains a list of file types that are valid for template definition files. Items in the list
must be separated by commas and preceded by a period. A type is not allowed to exceed the OpenVMS limit
of 31 characters. This qualifier is applicable only when automatic instantiation has been specified. The default
is /TEMPLATE_DEFINE=DEF=".CXX,.C,.CC,.CPP".

/TEMPLATE_DEFINE=PRAGMA

Determines whether the compiler ignores #pragma define_template directives encountered during
the compilation. This qualifier lets you quickly switch to automatic instantiation without having to remove
all the pragma directives from your program's code base.The default is /TEMPLATE_DEFINE=PRAGMA,
which enables #pragma define_template.

/TEMPLATE_DEFINE=VERBOSE

Turns on verbose or verify mode to display each phase of instantiation as it occurs. During the compilation
phase, informational level diagnostics are generated to indicate which templates are automatically being
instantiated. This qualifier is useful as a debugging aid.

/PENDING_INSTANTIATIONS[=n]

Limit the depth of recursive instantiations so that infinite instantiation loops can be detected before some
resource is exhausted. The /PENDING_INSTANTIATIONS qualifier requires a positive non-zero value n
as argument and issues an error when n instantiations are pending for the same class template. The default
value forn is 64.

92

Using Templates

5.6.3. Repository Qualifiers
The following qualifiers are only applicable if a repository is being used (Alpha only):

/TEMPLATE_DEFINE=TIMESTAMP

Causes the compiler to create a timestamp file named TIMESTAMP. in the repository. Thereafter,
instantiations are added or regenerated only if needed; that is, if they do not alreay exist, or if existing ones
are older than the timestamp.

/REPOSITORY

Specifies a repository that C++ uses to store requested template instantiations. The default is /
REPOSITORY=[.CXX_REPOSITORY]. If multiple repositories are specified, only the first is considered
writable, and the default repository is ignored unless specified.

93

Handling C++ Exceptions

Chapter 6. Handling C++ Exceptions
Exception handling is a C++ language mechanism for handling unusual program events (not just errors). On
OpenVMS systems, VSI C++ implements the exception handling model described in the C++ International
Standard.

This includes support for throwing and catching exceptions, and calling the terminate() and unexpected()
functions. C++ exception-handling support is implemented using functions and related OpenVMS system
services that comprise the OpenVMS condition-handling facility. Hence, C++ exception-handling support is fully
integrated with existing uses of the OpenVMS condition handling facility.

6.1. Compiling with Exceptions
Because exceptions are enabled by default, you need not specify the /EXCEPTIONS qualifier whenever you
compile the program.

For more information about the /EXCEPTIONS qualifier see Appendix A, Compiler Command Qualifiers.

Note

If you are programming in kernel mode or creating a protected shareable image, C++ exception handling is not
supported. To ensure that your code does not contain constructs that trigger C++ exceptions or to prevent errors
from occurring during initialization of exception handlers at runtime, specify the /NOEXCEPTIONS qualifier
when compiling.

6.2. Linking with Exceptions (Alpha only)
If any files in your program contain throw expressions, try blocks, or catch statements, or if any files in
your program are compiled with the exceptions, you must link your program using the cxxlink facility (see
Section 1.3, “Linking a Program (Alpha only)” for more information on this facility). For example:

$ cxxlink my_prog.obj

Using the cxxlink facility ensures that the run-time support for exceptions (sys
$library:libcxxstd.olb) is linked into your program.

Linking with /NOSYSSHR (OpenVMS Version 6.2)
If you are running OpenVMS Version 6.2 or later, and you want to link using the /NOSYSSHR qualifier, you
must specify a linker options file on your cxxlink command. Otherwise, your link might fail because of undefined
symbol references.

The linker options file should contain the following:

sys$share:librtl.exe/shar

For example, if cxx_exc.opt is your linker options file containing the above line, then a possible link command
would be:

$ cxxlink my_prog.obj, my_disk:[my_dir]cxx_exc.opt/opt

Because the necessary run-time libraries are not provided in object format on OpenVMS Version 6.1 and earlier
releases, linking with /NOSYSSHR on those systems is not recommended.

For more information about linking with /NOSYSSHR and about OpenVMS linker options files see the VSI
OpenVMS Linker Utility Manual.

94

Handling C++ Exceptions

6.3. The terminate() and unexpected()
Functions
The unexpected() and set_unexpected() functions are implemented as defined in the ISO/IEC
International Standard.

The terminate() and set_terminate() functions are implemented as defined in the ISO/IEC
International Standard. By default, the terminate() function raises the OpenVMS condition cxxl
$_terminate, and then calls the abort() function.

On Alpha systems, no stack unwinding is done by the terminate() function. Hence, no destructors are called
for constructed objects when a thrown exception results in a call of the terminate() function. Instead, the
program is terminated.

On I64 systems, stack unwinding is done.

If a C++ function is called from a program in which the main function is not C++, terminate() is not called.
Instead, the call stack points to the point of the throw.

6.4. C++ Exceptions and Other Conditions
Because C++ exceptions are implemented using the OpenVMS condition handling facility, C++ modules will
work properly when they are part of a program that makes other uses of OpenVMS condition handling.

The raising and handling of an OpenVMS condition can result in the destruction of C++ automatic objects. If the
handling of an OpenVMS condition results in an unwind through a C++ function's stack frame, then destructors
will be called for automatic objects declared in that stack frame, just as if a C++ exception had been caught by
a handler in an outer stack frame.

The C++ exception handling facility can also be used to catch OpenVMS conditions that are raised independently
of C++ throw expressions. Except for those OpenVMS conditions that result in the delivery of signals, a C++
catch(…) handler will catch both C++ thrown exceptions and OpenVMS conditions. (For more information
about OpenVMS conditions that result in the delivery of signals, see Section 6.5, “C++ Exceptions and Signals
(Alpha only)”.)

You can use the data type struct chf$signal_array &, defined in the system header file chfdef.h,
to catch OpenVMS conditions and to obtain information about the raised conditions. The C++ exceptions support
transfers control to catch(struct chf$signal_array &) handlers when it determines that an OpenVMS
condition was raised independently of a C++ throw statement.

If the catch (struct chf$signal_array &) handler specifies a class object, then the C++ exceptions
support sets the class object to be a reference to the raised OpenVMS condition's signal argument vector. In the
following example, obj.chf$l_sig_name will have the value 1022 when it is printed:

#include <chfdef.h>
#include <iostream.hxx>
#include <lib$routines.h>
main ()
{
 try {
 lib$signal (1022);
 } catch (struct chf$signal_array &obj) {
 cout << obj.chf$l_sig_name << endl;
 }
}

A catch(struct chf$signal_array &) handler will also catch a thrown object that is explicitly declared
to be of type struct chf$signal_array &. In this case, the value of the catch handler's object is determined
by the originally thrown object, not the OpenVMS signal argument vector.

95

Handling C++ Exceptions

You can also use the data type struct chf$signal_array * to catch both OpenVMS conditions and
objects explicitly declared to be of type struct chf$signal_array *. If a catch(struct chf
$signal_array *) handler specifies an object, then that object becomes a pointer to the thrown object.

For more information about OpenVMS conditions, see the OpenVMS Calling Standard.

6.5. C++ Exceptions and Signals (Alpha only)
Certain OpenVMS conditions (as described in the HP C Run-Time Library Reference Manual for OpenVMS
Systems) normally result in the delivery of signals. These signals can be processed using the signal handler
mechanism described in the HP C Run-Time Library Reference Manual for OpenVMS Systems.

You can call the following run-time function in conjunction with the /EXCEPTION=IMPLICIT qualifier to cause
these OpenVMS conditions to be treated as exceptions, instead of signals:

cxxl$set_condition(condition_behavior signal_or_exc)

This can be done by putting the following call in your program:

#include <cxx_exception.h>
…
cxxl$set_condition (cxx_exception);

Caution

You must specify /EXCEPTION=IMPLICIT; otherwise, the code that would normally cause a signal and now
causes an exception might be moved out of the try block.

After your program calls the cxxl$set_condition (cxx_exception) function you can then catch these
exceptions using any of the following handlers:

catch(struct chf$signal_array &)
catch(struct chf$signal_array *)
catch(…)

To revert back to the default signal behavior, you can make the following call:

cxxl$set_condition (unix_signal);

Caution

Avoid doing a C++ throw from a C signal handler or VMS exception handler because this action could terminate
your program.

The following are defined in the header file cxx_exception.h:

The cxxl$set_condition() function
The condition_behavior {unix_signal=0, cxx_exception=1 } enumeration type

The cxxl$set_condition function returns the previous setting. This function affects all threads in a process.

6.6. C++ Exceptions with setjmp and longjmp
If a C++ function calls either the setjmp() or the longjmp() routine, C++ exceptions support is disabled for
that function. This means the following:

• No exceptions can be caught by the function's catch handlers.

96

Handling C++ Exceptions

• No destructors are called for the function's automatic data if an exception propagates through the function.

• The unexpected() function is not called for that function.

• If either setjmp() or longjmp() is called from main(), then terminate() is not called for an
unhandled exception.

6.7. C++ Exceptions, lib$establish and vaxc
$establish
If a C++ function calls either the lib$establish() or the vaxc$establish() routine, then C++
exceptions support is disabled for that function. This means the following:

• No exceptions can be caught by the function's catch handlers.

• No destructors are called for the function's automatic data if an exception propagates through the function.

• The unexpected() function is not called for that function.

• If either lib$establish() or vaxc$establish() is called from main(), then terminate() is not
called for an unhandled exception.

6.8. Performance Considerations
The compiler optimizes the implementation of exception handling for normal execution, as follows:

• Applications that do not use C++ exceptions and are compiled with the /NOEXCEPTIONS qualifier incur no
run-time or image size overhead.

• Applications compiled with exceptions enabled that have try blocks or automatic objects with destructors incur
an increase in image size.

• As much as possible, the run-time overhead for exceptions is incurred when throwing and catching exceptions,
not when entering and exiting try blocks normally.

6.9. C++ Exceptions and Threads
C++ exceptions are thread safe. This means that multiple threads within a process can throw and catch exceptions
concurrently. However, exceptions do not propagate from one thread to another, nor can one thread catch an
exception thrown by another thread.

The set_terminate() and set_unexpected() functions set the terminate() and unexpected()
handlers for the calling thread. Therefore, each thread in a program has its own terminate() and
unexpected() handlers.

If you want every thread in your program to use the same nondefault terminate() or unexpected()
handlers, then you must call the set_terminate() and set_unexpected() functions separately from
each thread.

By default, the C++ exception package allows the delivery of the CMA$_EXIT_THREAD condition, but not the
CMA$_ALERTED condition. This latter condition is raised to a thread that is being cancelled. The following
routine (test_thread) allows an application to control the default behavior of these two conditions:

int cxxl$catchable_condition (int condition, int on_or_off);

The condition is either CMA$_EXIT_THREAD or CMA$_ALERTED. A value of zero means the program does
not want the condition to result in a catch clause receiving the exception. This is the default behavior for CMA

97

Handling C++ Exceptions

$_ALERTED. A value of nonzero means the program does want the condition to result in the catch clause of the
thread to receive control when the exception is raised. The behavior is undefined for any other condition value
passed.

The return value of the routine is the previous setting for the passed condition value:

#include <pthread.h>
 #include <cxx_exception.h>
 #include <cma$def.h>
 ...
 static void *test_thread (...) {
 ...
 try {
 ...
 } catch (chf$signal_array *p) {
 switch (p->chf$l_sig_name)
 {
 case CMA$_ALERTED:
 printf (" test_thread caught CMA$_ALERTED\n");
 break;
 default:
 printf (" test_thread caught (%d)\n", p->chf$l_sig_name);
 break;
}
 }
 }
 int main () {
 ...
 if (cxxl$catchable_condition(CMA$_ALERTED,1))
 printf (" CMA$_ALERTED continues to be catchable\n");
 else printf (" CMA$_ALERTED is now catchable\n");
 ...
 pthread_create (&thread, ...);
 ...
 pthread_cancel (thread);
 ...
 }

For more information about threads, see the Guide to DECthreads manual.

6.10. Debugging with C++ Exceptions (Alpha
only)
You can use the OpenVMS Debugger set break/exception command to set a breakpoint when an exception is
thrown. You can use the show calls command to determine the location where the exception was thrown.

98

The C++ Standard Library

Chapter 7. The C++ Standard Library
The C++ Standard Library provided with this release defines a complete specification of the C
++ International Standard, with some differences, as described in the online release notes in:SYS
$HELP:CXX_RELEASE_NOTES.PS

Note that portions of the C++ Standard Library have been implemented in VSI C++ using source licensed from and
copyrighted by Rogue Wave Software, Inc. Information pertaining to the C++ Standard Library has been edited
and incorporated into VSI C++ documentation with permission of Rogue Wave Software, Inc. All rights reserved.

Some of the components in the C++ Standard Library are designed to replace nonstandard components that are
currently distributed in the Class Library. VSI will continue to provide the Class Library in its nonstandard form.
However, you now have the option of using new standard components.

This chapter provides more information on the VSI C++ implementation of the Standard Library, including upward
compatibility, compiling, linking, and thread safety. Small example programs showing how to use the C++ standard
library are located in the directory SYS$COMMON:[SYSHLP.EXAMPLES.CXX].

The following are Standard Library qualifiers introduced with VSI C++:

/[NO]USING_STD

Controls whether standard library header files are processed as though the compiled code were written as
follows:

using namespace std;
#include <header>

These qualifiers are provided for compatibility for users who do not want to qualify use of each standard
library name with std:: or put using namespace std; at the top of their sources.

/USING_STD turns implicit using namespace std on; this is the default when compiling /
STANDARD=ARM, /STANDARD=MS, or /STANDARD=RELAXED.

/NOUSING_STD turns implicit using namespace std off; this is the default when compiling /
STANDARD=STRICT_ANSI.

/ASSUME=[NO]STDNEW

Controls whether calls are generated to the ANSI or pre-ANSI implementation of the operator new().
On memory allocation failure, the ANSI implementation throws std::bad_alloc, while the pre-ANSI
implementation returns 0.

/ASSUME=STDNEW generates calls to the ANSI new() implementation; this is the default when compiling
with /STANDARD=RELAXED and /STANDARD=STRICT_ANSI.

/ASSUME=NOSTDNEW generates calls to the pre-ANSI new() implementation; this is the default when
compiling with /STANDARD=ARM and /STANDARD=MS.

/ASSUME=[NO]GLOBAL_ ARRAY_NEW

Controls whether calls to global array new and delete are generated as specified by ANSI. Pre-ANSI global
array new generated calls to operator new(). According to ANSI, use of global array new generate calls
to operator new()[].

/ASSUME=GLOBAL_ARRAY_NEW generates calls to operator new()[] for global array new
expressions such as new int[4]; this is the default when compiling /STANDARD=RELAXED, /
STANDARD=STRICT_ANSI, and /STANDARD=MS.

/ASSUME=NOGLOBAL_ARRAY_NEW generates calls to operator new() for global array new
expressions such as new int[4] and preserves compatibility with Version 5.n; this is the default when
compiling /STANDARD=ARM).

99

The C++ Standard Library

7.1. Important Compatibility Information
On Alpha systems, because the standardization process for the C++ Standard Library is not yet completed, VSI
cannot guarantee that this version of the library is compatible with any past or future releases. We ship the run-
time portion of the library in object form, not in shareable form, to emphasize this situation. (Alpha only)

On I64 systems, the standard library is distributed as a system shareable image SYS$LIBRARY:CXXL
$RWRTL.EXE, and also in object form in the system object library STARLET.OLB. (I64 only)

The following sections describe specific compatibility issues.

7.1.1. /[NO]USING_STD Compiler Compatibility
Qualifier
All standard library names in VSI C++ are inside the namespace std. Typically you would qualify each standard
library name with std:: or put using namespace std; at the top of your source file.

To make things easier for existing users, using namespace std; is included in a file provided with every
standard library header when you are in ARM, MS, or RELAXED compiler modes. This is not the default in
STRICT_ANSI mode.

The compiler supplied qualifiers /NOUSING_STD and /USING_STD can be used to override the default. /
NOUSING_STD turns the implicit using namespace std off; /USING_STD turns it on.

7.1.2. Pre-ANSI/ANSI Iostreams Compatibility
The C++ Standard Library offers support for the standard iostream library based on the C++ International
Standard. As defined by the standard, iostream classes are in the new header files <iostream>, <ostream>,
<istream>, and so on (no .h or .hxx extension).

For backward compatibility, the pre-ANSI iostream library is still provided. The two libraries exhibit subtle
differences and incompatibilities.

Users can choose which version (ANSI or pre-ANSI) of iostreams they want to use; either version of iostreams
can be integrated seamlessly with the new Standard Library and string functionality.

To accomplish this goal, macros called __USE_STD_IOSTREAM and __NO_USE_STD_IOSTREAM are
provided. If you do not set these macros explicitly, the default in ARM, MS, and RELAXED modes is to use the
pre-ANSI iostream library. In STRICT_ANSI mode, the default is to use the ANSI iostream library.

Note that for the most part, support for pre-ANSI iostreams is contained in headers with .h or .hxx extensions.
This is not the case for iostream.h/iostream.hxx, fstream.h/fstream.hxx, and iomanip.h/
iomanip.hxx. In these cases, the iostream library provided is controlled solely by the /STANDARD compilation
choice and use of __USE_STD_IOSTREAM/__NO_USE_STD_IOSTREAM.

You override the default by defining __USE_STD_IOSTREAM or __NO_USE_STD_IOSTREAM on either the
command line or in your source code.

In ARM, MS, and RELAXED modes, specify use of the ANSI iostreams in one of the following ways:

• Enter /DEFINE=(__USE_STD_IOSTREAM) on the command line.

• Put the following in your source file before any include files:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif

In STRICT_ANSI mode, specify use of the pre-ANSI iostreams in one of the following ways:

• Enter /DEFINE=(__NO__USE_STD_IOSTREAM) on the command line.

100

The C++ Standard Library

• Put the following in your source file before any include files:

#ifndef __NO_USE_STD_IOSTREAM
#define __NO_USE_STD_IOSTREAM
#endif

You receive a #error warning if

• you compile in a mode indicating you want ANSI behavior; that is, /STANDARD=STRICT_ANSI,

• you enter a header with a .h or .hxx (for example, #include <iostream.h>).

You can avoid the error by compiling with /DEFINE=(__NO_USE_STD_IOSTREAM).

Many of the other headers, <string> for example, make use of the iostream classes. The default version of
iostreams that is automatically included when you include one of these headers depends on the mode you compile in
and the setting of the macros __USE_STD_IOSTREAM and __NO_USE_STD_IOSTREAM as described earlier.

Because the standard locale class and the standard iostream class are so closely tied, you cannot use the standard
locale class with the pre-ANSI iostream classes. If you want to use locale, you must use the ANSI iostream classes.

It is possible to use the pre-ANSI and the ANSI iostream library in the same source file, because all the standard
iostream names (that is, cout, cin, and so on) are in namespace std, and all the pre-ANSI names are in the
global namespace. This is not recommended, though, because there is no guarantee of stream objects being the
same size or, for example, of ::cout being in sync with std::cout.

Nevertheless, if you want to combine them, you must recognize that the underlying ANSI iostream is called
iostream_stdimpl.hxx and that the pre_ANSI header is called iostream_impl.hxx. The following
example shows how to include a pre-ANSI header before and ANSI header:

 #include <stdlib.h>
 #undef __USE_STD_IOSTREAM
 #include <iostream_impl.hxx>
 #define __USE_STD_IOSTREAM
 #include <iostream_stdimpl.hxx>

 int main()
 {
 std::string s("abc");
 ::cout << "abc" << endl; // pre-standard iostreams
 std::cout << "abc" << std::endl; // standard iostreams
 return EXIT_SUCCESS;
 }

If you include an ANSI iostreams header before a pre-ANSI iostreams header, follow these steps:

1. Compile your source using /NOUSING_STD.

2. Use the __USE_STD_IOSTREAM macro as shown in the following example. You must define
__USE_STD_IOSTREAM at the end of your include file list so that the template definition files (the .cc files)
are included in the correct mode.

 // Compile this with /nousing_std
 #include <stdlib.h>
 #define __USE_STD_IOSTREAM
 #include <iostream_stdimpl.hxx>
 #undef __USE_STD_IOSTREAM
 #include <iostream_impl.hxx>
 #define __USE_STD_IOSTREAM // so the template definition files are ok

 int main()
 {

101

The C++ Standard Library

 std::string s("abc");
 ::cout << "abc" << endl; // pre-standard iostreams
 std::cout << "abc" << std::endl; // standard iostreams
 return EXIT_SUCCESS;
 }

7.1.3. Support for pre-ANSI and ANSI operator new()
The Standard C++ Library supports the ANSI implementation of the operator new() as well as the pre-ANSI
implementation of operator new(). The ANSI implementation throws std::bad_alloc on memory
allocation failures.

The pre-ANSI implementation of the operator new() returns 0 on memory allocation failures. Because
the ANSI behavior is incompatible with pre-ANSI applications, a compile time qualifier has been added (/
ASSUME=[NO]STDNEW) to control whether calls to ANSI new() or pre-ANSI new are generated.

The following examples show how ANSI versus pre-ANSI new() check for memory allocation. First, here is an
ANSI new() check for memory allocation failure:

 try {
 myobjptr = new (myobjptr);
 }
 catch (std::bad_alloc e) {
 cout << e.what() << endl;
 };

The following example shows a pre-ANSI new() check for memory allocation failure:

 if ((myobjptr = new (myobjptr)) == 0)
 call_failure_routine();

When upgrading pre-ANSI new() code to work with the C++ Standard Library you also can use the nothrow
version of ANSI new(). To do so in the pre-ANSI example, you could recode it as follows:

 if ((myobjptr = new (myobjptr, nothrow)) == 0)
 call_failure_routine();

Two command line qualifiers are available in the compiler to control whether calls are generated to the ANSI or
pre-ANSI implementation of operator new():

• Use the /ASSUME=STDNEW qualifier to generate calls to the ANSI new() implementation.

• Use the /ASSUME=NOSTDNEW qualifier to generate calls to the pre-ANSI new() implementation. You can
override global new() by declaring your own functions.

When compiling with /STANDARD=RELAXED or /STANDARD=STRICT_ANSI, /ASSUME=STDNEW is the
default.

When compiling with /STANDARD=ARM and /STANDARD=MS, /ASSUME=NOSTDNEW is the default. The
compiler defines the macro __STDNEW when the /ASSUME=STDNEW qualifier is specified.

7.1.4. Overriding operator new() (Alpha only)
On Alpha systems, the ability to override the library version of global operator new() and global operator
delete() is available with OpenVMS Version 6.2 and later. If you want to define your own version of global
operator new() on OpenVMS systems, you must define your own version of global operator delete()
and vice versa. To define a global operator new() or a global operator delete() to replace the version
used by the C++ Standard Library or the C++ Class Library, or both, follow these steps:

1. Define a module to contain two entry points for your version of global operator new(). You
must code the module so that it is always compiled either with the /ASSUME=STDNEW or with the /
ASSUME=NOSTDNEW qualifier.

102

The C++ Standard Library

2. If you code your module to compile with /ASSUME=STDNEW, follow instructions in the next subsection.
If you code your module to compile with /ASSUME=NOSTDNEW, follow instructions in the section called
“Compiling with /ASSUME=NOSTDNEW”.

Compiling with /ASSUME=STDNEW
1. Verify that your module contains two entry points for your version of global operator new(). One entry point,

which has the name __nw__XUi (/MODEL=ARM) or __7__nw__FUi (/MODEL=ANSI), is used to
override global operator new() in the Class Library. The other entry point, which has the name new, is used to
override global operator new() in the Standard Library.

2. Define global operator new() in terms of the entry point new. Code __nw__XUi (for /MODEL=ARM)
or __7__nw__FUi (for /MODEL=ANSI) to call operator new. Your module appears as follows:

 #include <new>
...
using namespace std;

// Redefine global operator new(),
// entry point into C++ Standard Library based on
// compiling /assume=stdnew. This also overrides user
// calls to operator new().
void *operator new(size_t size) throw(std::bad_alloc) {
 printf("in my global new\n");
 ...
 void *p = malloc(size);
 return(p);
}

// redefine global operator delete()
void operator delete(void *ptr) throw() {
 free (ptr);
}

// entry point into C++ Class Library
#ifdef __MODEL_ANSI
extern "C" void *__7__nw__FUi(size_t size) {
#else // __MODEL_ARM
extern "C" void *__nw__XUi(size_t size) {
#endif
 printf("in my new\n");
 return ::operator new(size);
}

Compiling with /ASSUME=NOSTDNEW
1. Verify that your module contains two entry points for your version of global operator new(). One entry point,

which has the name cxxl$__stdnw__XUi (for /MODEL=ARM) or cxxl$__7__stdnw__FUi (for /
MODEL=ANSI), is used to override global operator new() in the Standard Library. The other entry point,
which has the name new, is used to override global operator new() in the Class Library.

2. Define global operator new() in terms of the entry point new. Code cxxl$__stdnw__XUi (/
MODEL=ARM) or cxxl$__stdnw__FUi (/MODEL=ANSI) to call operator new. Your module appears
as follows:

 #include <new>
...
using namespace std;

103

The C++ Standard Library

// Redefine global operator new(),
// entry point into C++ Class Library based on
// compiling /assume=nostdnew
void *operator new(size_t size) {
 printf("in my global new\n");
 ...
 void *p = malloc(size);
 return(p);
}

// redefine global operator delete()
void operator delete(void *ptr) {
 free (ptr);
}

// entry point into C++ Standard Library
#ifdef __MODEL_ANSI
extern "C" void *cxxl$__7__stdnw__FUi(size_t size) {
#else // __MODEL_ARM
extern "C" void *cxxl$__stdnw__XUi(size_t size) {
 return ::operator new(size);
}

3. Link your program using the /NOSYSSHR qualifier of the LINK command. You must also link with a linker
options file that includes the shareable images your program requires. (This is because some components of
OpenVMS systems ship only in shareable form.) The file contains at least the shareable images shown below.
The options file cannot contain, DECC$SHR, because it contains the definitions of new() and delete() that
you are attempting to override. So your LINK command will be similar to the following:

$ CXXLINK TEST,SYS$LIBRARY:STARLET.OLB/INCLUDE=CXXL_INIT, -
SYS$DISK:[]AVMS_NOSYSSHR.OPT/OPT/NOSYSSHR

where AVMS_NOSYSSHR.OPT is:

SYS$SHARE:CMA$TIS_SHR/SHARE
SYS$SHARE:LIBRTL/SHARE

Linking /NOSYSSHR is the only way to override calls to new() and delete() in the C++ Class Library
and C++ Standard Library.

If the set_new_handler() function is referenced when overriding operator new() and delete(),
“multiply defined” linker warnings will result. To remove these warnings, the set_new_handler()
function must also be overridden. Using set_new_handler() when the operator new() and
delete() functions are being overridden, requires that the set_new_handler() function be defined
in terms of the user provided operator new() and delete() functions.

7.1.5. Overriding operator new() (I64 only)
Overriding operators new and delete has been simplified on I64 systems. If user code overrides any of the new
and delete operators, the compiler and library picks up the overridden versions without any other changes to the
source code or the command line. Changes such as those described for Alpha systems in Section 7.1.4, “Overriding
operator new() (Alpha only)” are unnecessary and will not work on I64 systems.

7.1.6. Support for Global array new and delete
Operators
VSI C++ Version 6.n and higher fully supports the array new and delete operators as described in the ANSI
standard. Previous versions did not.

104

The C++ Standard Library

You might therefore encounter a compatibility problem if you have overridden the run-time library's operator
new() with your own version.

For example:

#include <stdlib.h>
#include <iostream.h>

inline void* operator new(size_t s) {
 cout << "called my operator new" << endl;
 return 0;
}

int main() {
 new int; // ok, this still calls your own
 new int[4]; // In V6.0 calls the C++ library's operator new[]
 return EXIT_SUCCESS;
}

In older versions, both new int and new int[4] would generate a call to operator new() (they would just
be asking for different sizes). With the current compiler, new int still generates a call to operator new().
However, new int[4] generates a call to operator new()[]. This means that if you still want to override
the library's operator new you must do one of the following:

1. Provide your own definition of operator new()[].

2. Use the /ASSUME=NOGLOBAL_ARRAY_NEW qualifier.

The /ASSUME=NOGLOBAL_ARRAY_NEW qualifier converts all expressions such as new int[4] to calls
to the global operator new(), thus preserving compatibility with older compiler versions.

Note that this qualifier has no effect on class-specific array operator new and delete; it affects only the
global operators.

When compiling with /STANDARD=RELAXED or /STANDARD=STRICT_ANSI, and /STANDARD=MS
modes, /ASSUME=GLOBAL_ARRAY_NEW is the default.

When compiling with /STANDARD=ARM, /ASSUME=NOGLOBAL_ARRAY_NEW is the default. A macro
__GLOBAL_ARRAY_NEW is predefined by the compiler when /ASSUME=GLOBAL_ARRAY_NEW is used.

7.1.7. IOStreams Expects Default Floating-Point
Format
The C++ standard library IOStreams expects floating-point values in the default floating-point format for each
platform: G_FLOAT on Alpha systems and IEEE on I64 systems. Using standard library IOStreams for processing
floating-point values in a different format (for example, in a program compiled /FLOAT=IEEE on Alpha or /
FLOAT=G_FLOAT on I64) is not supported. The C++ class library does not have this restriction.

7.2. How to Build Programs Using the C++
Standard Library
Building programs that use the C++ Standard Library requires the following changes in usage of the C++ compiler
and linker commands:

• The CXX command line no longer needs to include the /ASSUME=NOHEADER_TYPE_DEFAULT qualifier
because this is now the default.

Similarly, the command line no longer needs to include the /TEMPLATE=AUTO qualifier because the compiler
performs automatic template instantiation by default.

105

The C++ Standard Library

• On Alpha systems, to link a program that uses the C++ Standard Library, you must use the CXXLINK command
in place of the LINK command. The CXXLINK command continues the automatic template instantiation
process, includes the Standard Library run-time support (SYS$LIBRARY:LIBCXXSTD.OLB) at link time, and
creates the final image. See Section 1.3, “Linking a Program (Alpha only)” for more details. (Alpha only)

On I64 systems, to link a program that uses the C++ Standard Library, you must use either the CXXLINK
facility or OpenVMS Linker. See Section 1.4, “Linking a Program (I64 only)” for more details. (I64 only)

For example, to build a program called prog.cxx that uses the Standard Library, you can use the following
commands:

$ CXX prog.cxx
$ CXXLINK prog.obj

Thread Safety
The Standard Library provided with this release is thread safe but not thread reentrant. Thread safe means that all
library internal and global data is protected from simultaneous access by multiple threads. In this way, internal
buffers as well as global data like cin and cout are protected during each individual library operation. Users,
however, are responsible for protecting their own objects.

According to the C++ standard, results of recursive initialization are undefined. To guarantee thread safety,
the compiler inserts code to implement a spinlock if another thread is initializing local static data. If recursive
initialization occurs, the code deadlocks even if threads are not used.

7.3. Optional Switch to Control Buffering
(Alpha only)
The inplace_merge, stable_sort, and stable_partition algorithms require the use of a temporary
buffer. Two methods are available for allocating this buffer:

• Preallocate 16K bytes of space on the stack.

• Allocate the required amount of storage dynamically.

By default, the current VSI C++ Standard Library makes use of the preallocated buffer, which avoids the overhead
of run-time allocation. If your application requires a buffer that exceeds 16K, it cannot take advantage of this
default.

If you are concerned with minimizing the use of stack space in your program, or if your application requires a
buffer that exceeds 16K, define the __DEC_DYN_ALLOC macro to enable dynamic buffering. Do this by adding
the following to your compile command line:

/DEFINE=__DEC_DYN_ALLOC

7.4. Enhanced Compile-time Performance of
ANSI Iostreams
To speed the compile-time performance of programs that use the standard iostream and locale components,
the Standard Library includes many common template instantiations of these components

To force programs to create instantiations at compile-time (for example, if you want to debug them and thus need
them to be compiled with the /DEBUG qualifier), define the macro __FORCE_INSTANTIATIONS (Alpha only)
on the command line by specifying /DEFINE=(__FORCE_INSTANTIATIONS). This definition suppresses the

106

The C++ Standard Library

#pragma do_not_instantiate directives in the headers so that the compiler creates the instantiations in
your repository directory.

You must then specify the /REPOSITORY= qualifier to force the compiler to link your instantiations instead of
those in the Standard Library.

7.5. Using RMS Attributes with iostreams
The standard library class fstream constructors amd open() member function do not support different RMS
attributes, for example, creating a stream-lf file.

To work around this restriction, use the C library creat() or open() call, which returns a file descriptor, and
then use the fstream constructor, which accepts a file descriptor as its argument. For example:

#define __USE_STD_IOSTREAM
#include <fstream>

int main()
{
 int fp;

 // use either creat or open
 //if (!(fp= creat("output_file.test", 0, "rfm=stmlf")))

 if (!(fp= open("output_file.test", O_WRONLY | O_CREAT | O_TRUNC , 0,
"rfm=stmlf")))
 perror("open");

 ofstream output_file(fp); // use special constructor, which takes
 // a file descriptor as argument
 // ...
}

Note that this coding is not allowed if you compile with /STANDARD=STRICT_ANSI, because the constructor
in the example is an extension to the C++ standard interface.

7.6. Upgrading from the Class Library to the
Standard Library
The following discussion guides you through upgrading the Class Library code to use the Standard Library,
specifically replacing the vector and stack classes in the vector.hxx header file to the Standard Library vector
and stack classes.

7.6.1. Upgrading from the Class Library Vector to the
Standard Library Vector
To change your code from using the Class Library vector to the Standard Library vector, consider the following
actions:

• Change the name of your #include statement from <vector.h> or <vector.hxx> to <vector>.

• Remove the vectordeclare and vectorimplement declarations from your code.

• Change all vector(type) declarations to vector<type>. For example, vector(int) vi should
become vector<int> vi.

107

The C++ Standard Library

• The following member functions are replaced in the Standard Library:

Nonstandard Vector Function Standard Library Vector Function

elem(int index) operator[](size_t index)

(no bounds checking)
operator[](int index) at(size_t index)

(bounds checking)
setsize(int newsize) resize(size_t newsize)

• When copying vectors of unequal lengths, note that the Standard Library vector has a different behavior as
follows:

When using the Standard Library vector, if the target vector is smaller than the source vector, the target vector
automatically increases to accommodate the additional elements.

The Class Library vector displays an error and aborts when this situation occurs.

• Note that another difference in behavior occurs when you specify a negative index for a vector.

The Class Library vector class detects the negative specification and issues an error message. However, the
Standard Library vector silently converts the negative value to a large positive value, because indices are
represented as type size_t (unsigned int) rather than int.

• When an out-of-bounds error occurs, the Class Library vector prints an error message and aborts, whereas the
Standard Library vector throws an out-of-range object.

7.6.2. Upgrading from the Class Library Stack to the
Standard Library Stack
To change your code from using the existing stack to the Standard Library stack, consider the following actions:

• Change the name of your #include statement from <stack.h> or <stack.hxx> to <stack>.

• Remove the stackdeclare and stackimplement declarations from your code.

• Change all stack(type) declarations to stack<type, deque<type> >. For example,
stack(int) si should become stack<int, deque<int> > si.

• Do not specify an initial size for a Standard Library stack. The stack must start out empty and grow dynamically
(as you push and pop).

• The following member functions are not supported or have different semantics:

Class Library Stack Standard Library Stack

size_used() Does not exist because the size() function always is equal to the
size_used() function.

full() Does not exist because the stack always is full.
pop() Does not return the popped element. To simulate Class Library

behavior, first obtain the element as the return type from the top()
function and then call the pop() function. For example, change int
i=s.pop(); to the following:

int i=s.top();
s.pop();

108

The C++ Standard Library

• The Standard Library stack differs from the Class Library stack in the way errors are detected. Unlike the
nonstandard stack, you cannot overflow a Standard Library stack because space is allocated dynamically as you
push elements onto the stack.

7.6.3. Upgrading from the Class Library String
Package Code
The Standard Library basic_string can replace the Class Library String Package.

The following list guides you through upgrading nonstandard code to use the Standard Library basic_string:

• Change #include <string.h> or #include <string.hxx> to #include <string>.

• Change all declarations of String to string (uppercase S to lowercase s).

• On Alpha systems, when compiling with the __DEC_STRING_COMPATIBILITY macro defined, the String
Package allowed assignment of a string directly to a char *; however, the basic_string library does
not allow this. You can assign the string's const char* representation using the c_str() or data()
basic_string member functions. For example:

string s("abc");
char* cp = s; // not allowed
const char* cp = s.data(); // ok

The state of the string is undefined if the result of data() is cast to a non-const char* and then the value
of that char* is changed.

• The String Package member functions upper() and lower() are not in the basic_string library. You
can write these functions as nonmember functions, as follows:

template <class charT, class traits, class Allocator>
inline
basic_string<charT, traits, Allocator>
upper(const basic_string<charT,traits, Allocator>& str) {
 basic_string<charT, traits, Allocator> newstr(str);
 for (size_t index = 0; index < str.length(); index++)
 if (islower(str[index]))
 newstr[index] = toupper(str[index]);
 return newstr;
}

template <class charT, class traits, class Allocator>
inline
basic_string<charT, traits, Allocator>
lower(const basic_string<charT,traits, Allocator>& str) {
 basic_string<charT, traits, Allocator> newstr(str);
 for (size_t index = 0; index < str.length(); index++)
 if (isupper(str[index]))
 newstr[index] = tolower(str[index]);
 return newstr;
}

Then instead of calling upper() and lower() as member functions of the basic_string, pass the string
as an argument. For example:

s2 = s1.upper(); // does not compile
s2 = upper(s1); // ok

• The String Package match() member function does not exist. Equivalent functionality exists in the Standard
Library algorithm mismatch(), although using it is more complicated. For example:

109

The C++ Standard Library

string s1("abcdef");
string s2("abcdgf");
assert(s1.match(s2)==4); // does not compile
pair<string::iterator,string::iterator> p(0,0); // ok
p=mismatch(s1.begin(),s1.end(),s2.begin());
assert(p.first-s1.begin()==4);
string s3 = s1;
p=mismatch(s1.begin(),s1.end(),s3.begin());
assert(p.first == s1.end()); // everything matched

• The String Package index() member function does not exist. The basic_string library equivalent is
find().

• The String Package constructor that takes two positional parameters (a start and end position) and constructs a
new string does not exist. It is replaced in the basic_string library with the member function substr().
For example:

string s1("abcde");
string s2 = s1(1,3); // does not compile
string s2 = s1.substr(1,3); // ok

• Many previously undetected run-time errors now throw standard exceptions in the String library.

7.6.4. Upgrading from the Class Library Complex to
the ANSI Complex Class

Note

On I64 systems, the Class Library Complex package has been removed, so upgrading to the Standard Library
complex class is the only option on this platform. (I64 only)

This section explains how to upgrade from the pre-ANSI complex library to the current standard complex library.

In the pre-ANSI library, complex objects are not templatized. In the ANSI library, complex objects are templatized
on the type of the real and imaginary parts. The pre-ANSI library assumes the type is double, whereas the ANSI
library provides specializations for float, double, and long double as well as allowing users to specialize on their
own floating point types.

Mathematical error checking is not supported in the ANSI library. Users who rely on detection of underflow,
overflow, and divide by zero should continue using the pre-ANSI complex library.

The following is a detailed list of important changes:

• Change #include <complex.h> or #include <complex.hxx> to #include <complex>.

• Change all declarations of complex to complex<double>, for example:

complex c;

Change to:

complex<double> c;

• The polar() function no longer supplies a default value of 0 for the second argument. Users will have to
explicitly add it to any calls that have only one argument, for example:

complex c;
c = polar(c); // get polar

110

The C++ Standard Library

Change to:

complex<double> c;
c = polar(c,0.0);

• If you are calling a mathematical function or mathematical operator that takes scalars as arguments (polar()
for example), then you must adjust the arguments you pass in to be the same type as the complex template
parameter type. For example, you would have to change:

complex c = polar(0,0);
complex c2 = c+1;

Change to:

complex<double> c = polar(0.0,0.0); // 0.0 is double
complex<double> c2= c + 1.0; // 1.0 is double

• The complex_zero variable is not declared in the complex header file. If you want to use it, you will have to
declare it yourself. For example, add the following to the top of your source file:

static const complex<double> complex_zero(0.0,0.0);

• The sqr() and arg1() functions are gone. If you want to continue to use them, you should define them in
one of your own headers, using the following definitions:

template <class T>
inline complex<T> sqr(const complex<T>& a)
{
 T r_val(real(a));
 T i_val(imag(a));
 return complex<T>
 (r_val * r_val -
 i-val * i_val,
 2 * r_val * -_val);
}
template <class T>
inline T arg1(const complex<T>& a)

{
 T val = arg(a);

 if(val > -M_PI && val <= M_PI)
 return val;

 if(val > M_PI)
 return val - (2*M_PI);

 // val <= -PI
 return val + (2*M_PI);
}

• The pow(complex, int) function is no longer provided. You must use pow(complex<double>,
double). This means changing calls such as:

pow(c,1);

Change to:

pow(c,1.0);

111

The C++ Standard Library

This might yield different results. If the function previously was underflowing or overflowing, it might not
continue to happen.

• The complex output operator (<<) does not insert a space between the comma and the imaginary part. If you
want the space, you would need to print the real and imaginary parts separately, adding your own comma and
space; that is:

complex<double> c;
cout << "(" << c.real() << ", " << c.imag() << ")"; // add extra space

• The complex input operator (>>) does not raise an Objection if bad input is detected; it instead sets input stream's
state to ios::failbit.

• Floating point overflow, underflow, and divide by zero do not set errno and will cause undefined behavior.
Complex error checking and error notification is planned for a subsequent release.

• You should no longer need to link your program explicitly with the complex library. It is automatically linked
in as part of the Standard Library. However, you must still explicitly link in the C math library, as shown in
the following example:

#include <stdlib.h>
#include <complex>

int main() {
 complex<double> c1(1,1), c2(3.14,3.14);
 cout << "c2/c1: " << c2/c1 << endl;
 return EXIT_SUCCESS;
 % cxx example.cxx #error
 % cxx example.cxx -1m #okay
}

7.6.5. Upgrading from the Pre-ANSI iostream library to
the VSI C++ Standard Library
This section explains how to upgrade from the pre-ANSI iostream library to the ANSI iostream library. In this
section, pre-ANSI iostreams refers to versions of the iostream library found in the Class Library; ANSI iostreams
refers to versions found in the VSI C++ Standard Library.

There are a number of differences between the pre-ANSI and ANSI iostream library. One major difference between
the pre-ANSI and ANSI iostream library is that the ANSI library is templatized on the object input/output on
which operations are being performed. In the pre-ANSI library, iostreams has no templates. The ANSI library also
provides specializations for char and wchar_t.

Important differences are as follows:

• With the current compiler, you access the pre-ANSI iostream library by default in non strict_ansi
compiler modes. You can control the version of iostreams you use with the __USE_STD_IOSTREAM and
__NO_USE_STD_IOSTREAM macros. If you want to use the ANSI iostream library, do either of the following:

• Enter /DEFINE=(__USE_STD_IOSTREAM) on the command line.

• Put the following in your source file before any include files:

#ifndef __USE_STD_IOSTREAM)
#define __USE_STD_IOSTREAM)
#endif

• Header names are different in the ANSI library, so to use ANSI iostreams, change the iostreams headers you
include as follows:

112

The C++ Standard Library

From To

#include <iostream.h>

#include <iostream.hxx>

#include <iostream>

#include <fstream.h>

#include <fstream.hxx>

#include <fstream>

#include <strstream.h>

#include <strstream.hxx>

#include <strstream>

#include <iomanip.h>

#include <iomanip.hxx>

#include <iomanip>

• All Standard Library names in the ANSI iostream library are in namespace std. Typically you would qualify
each Standard Library name with std:: or put using namespace std; at the top of your source file.

To facilitate upgrading in all but STRICT_ANSI mode, using namespace std; is set by default. In
STRICT_ANSI mode, after including an ANSI iostream header, you must qualify each name inside namespace
std individually or do

using namespace std;

• In the pre-ANSI iostream library, including <iomanip.h> or <strstream.h> gave you access to cout,
cin, and cerr. To access the predefined streams with the ANSI iostream library, make the following changes:

change

#include <iomanip.h>

to

#include <iomanip>

#include <iostream>

#include using namespace std;

change

#include <strstream.h>

to

#include <strstream>

#include <iostream>

using namespace std;

• The istream::ipfx, istream::isfx, ostream::opfx, ostream::osfx do not exist in the
ANSI iostreams. Their functionality is provided by the sentry class found in basic_istream and
basic_ostream, respectively.

Common prefix code is provided by the sentry's constructor. Common suffix code is provided by the sentry's
destructor. As a result, calls to ipfx(), isfx(), opfx(), and osfx() have their functionality replaced by
construction and destruction of std::istream::sentry objects and std::ostream::sentry
object respectively. For example:

#include <iostream.hxx> | #include <iostream.hxx>
void func (istream &is) | void func (ostream &os)
{ | {
 if (is.ipfx()) | if (os.opfx())
 ... | ...
 is.isfx(); | os.osfx();
} | }
 |
Would be coded as: | Would be coded as:
 |
#include <iostream> | #include <iostream>

113

The C++ Standard Library

void func (istream &is) | void func (ostream &os)
{ | {
 istream::sentry ipfx(is); | ostream::sentry opfx(os);
 if (ipfx) | if (opfx)
 ... | ...
 //is.isfx(); implicit in dtor | //os.osfx(); implicit in dtor
} | }

• The following macros from the pre-ANSI <iomanip.h> are no longer available in <iomanip>:

SMANIP, IMANIP, OMANIP, IOMANIP,
SAPP, IAPP, OAPP, IOAPP,
SMANIPREF, IMANIPREF, OMANIPREF, IOMANIPREF,
SAPPREF, IAPPREF, OAPPREF, IOAPPREF

You can add them yourself, but their use will not be portable.

• The streambuf::stossc() function, which advances the get pointer forward by one character
in a stream buffer, is not available in the ANSI iostream library. You can make use of the
std::streambuf::sbumpc() function to move the get pointer forward one place. This function returns
the character it moved past. These two functions are not exactly equivalent – if the get pointer is already beyond
the end, stossc() does nothing, and sbumpc() returns EOF.

 istream &extract(istream &is)
 {
 ...
 is.rdbuf()->stossc();
 }

• ios::bitalloc() is no longer available in the ANSI iostream library.

• The filebuf constructors have changed in the ANSI iostream library. The pre-ANSI filebuf class
contained three constructors:

 class filebuf : public streambuf
 {
 filebuf();
 filebuf(int fd);
 filebuf(int fd, char * p, int len);
 ...
 }

In the ANSI iostream library, filebuf is a typedef for basic_filebuf<char>, and the C++ Working
Paper defines one filebuf constructor:

basic_filebuf();

To facilitate backward compatibility, the ANSI iostream library does provide basic_filebuf(int fd)
as an extension. However, the use of extensions is not portable.

For example, consider the filebuf constructors in the following pre-ANSI iostream library program:

#include <fstream.hxx>

int main () {
 int fd = 1;
 const int BUFLEN = 1024;
 char buf [BUFLEN];
 filebuf fb(fd,buf,BUFLEN);
 filebuf fb1(fd);

114

The C++ Standard Library

 return 0;
}

To be strictly ANSI conforming, you would need to recode as follows:

 filebuf fb(fd,buf,BUFLEN); as filebuf fb(); and
 filebuf fb1(fd); as filebuf fb1();

If you want to make use of the ANSI iostream filebuf(fd) extension, you could recode:

 filebuf fb(fd,buf,BUFLEN); as filebuf fb(fd); and
 filebuf fb1(fd); as filebuf fb1(fd);

• The ANSI iostream library contains support for the filebuf::fd() function, which returns the file
descriptor for the filebuf object and EOF if the filebuf object is closed as a nonportable extension. This
function is not supported under the /STANDARD=STRICT_ANSI compiler mode.

• The following functions are not defined in the ANSI iostream library. They are provided in the ANSI iostream
library for backward compatibility only. Their use is not portable.

 ifstream::ifstream(int fd);
 ifstream::ifstream(int fd, char *p, int len)
 ofstream::ofstream(int fd);
 ofstream::ofstream(int fd, char *p, int len);
 fstream::fstream(int fd);
 fstream::fstream(int fd, char *p, int len);

• The following attach functions, which attach, respectively, a filebuf, fstream, ofstream, and
ifstream to a file are not available in the ANSI iostream library:

 filebuf::attach(int);
 fstream::attach(int);
 ifstream::attach(int);
 ofstream::attach(int);

If you do not want to make use of ANSI iostream library extensions, you must recode the use of attach as
follows:

Change from:

#include <fstream.hxx>
#include <stdio.h>
#include <fcntl.h>
int main () {
 int fd;
 fd = open("t27.in",O_RDWR | O_CREAT, 0644);
 ifstream ifs;
 ifs.attach(fd);
 fd = creat("t28.out",0644);
 ofstream of;
 of.attach(fd);
 return 0;
}

To:

#include <fstream>
int main () {
 ifstream ifs("t27.in", ios::in | ios::out);
 ofstream ofs("t28.out");

115

The C++ Standard Library

 return 0;
}

• The ios enumerators for controlling the opening of files, ios::nocreate and ios::noreplace, are not
available in the ANSI iostream library.

• The istream_withassign and ostream_withassign classes are not available in the ANSI iostream
library.

• In the ANSI iostream library ios_base::width() applies to all formatted inserters including operator
<< (char). This means that the stream width specified by either the manipulator setw() or the
ios_base::width() member function will apply padding to the next output item even if it is a char.

This was not the case in the pre-ANSI iostream library, where width() applied to all formatted inserters except
the char inserter. The reasons for the change (to allow ostream::operator<<(char) to do formatting)
are:

1. It allows operator<< functions to do formatting consistently.

2. It allows operator<<(char) and put(char) (formatted and unformatted operations on char) to have
different functionality.

Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#include <iomanip>
#else
#include <iostream.hxx>
#include <iomanip.hxx>
#endif
int main () {
 cout.width(10);
 cout.fill('^');
 cout << 'x' << '\n';
 cout << '[' << setw(10) << 'x' << ']' << endl;
 return 0;
}

In the ANSI iostream library the output is:

^^^^^^^^^x
[^^^^^^^^^x]

In the pre-ANSI iostream library the output is:

x
[x]^^^^^^^^^

• In the pre-ANSI iostream library, printing signed char * or a unsigned char * printed the address
of the string. In the ANSI iostream library the string is printed. Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#else
#include <iostream.hxx>
#endif

int main () {

116

The C++ Standard Library

 char * cs = (char *) "Hello";
 signed char *ss = (signed char *) "world";
 unsigned char *us = (unsigned char *) "again";

 cout << cs << " " << ss << " " << us << endl;
 return 0;
}

The output in the ANSI iostream library is:

Hello world again

The output in the pre-ANSI iostream library is:

Hello 0x120001748 0x120001740

To obtain output equivalent to the pre-ANSI iostreams, you might do the following:

cout << hex << showbase << (long) ss << " "
 << (long) us << endl;

• In the pre-ANSI iostream library printing a signed char prints its integer value. In the ANSI iostream library
printing a signed char prints it as a character. Consider the following example:

#ifdef __USE_STD_IOSTREAM
#include <iostream>
#else
#include <iostream.hxx>
#endif

int main () {
 signed char c = (signed char) 'c';
 cout << c << endl;
 return 0;
}

The output in the ANSI iostream library is:

c

The output in the pre-ANSI iostream library is:

99

To obtain output equivalent to the pre-ANSI iostreams, you must do the following:

cout << (long) c << endl;

• In the ANSI iostream library, reading invalid floating point input (where invalid input is caused by no digits
following the letter e or E and an optional sign) from a stream sets failbit to flag this error state. In the pre-ANSI
iostream library, these type of error conditions might not be detected. Consider this program fragment:

 double i;
 cin >> i;
 cout << cin.rdstate() << ' ' << i << endl;

On the input: 123123e

The output in the ANSI iostream library is:

4 2.65261e-314 // failbit set 117

The C++ Standard Library

The output in the pre-ANSI iostream library is:

0 123123 // goodbit set

• In the ANSI iostream library, reading integer input (which is truncated as the result of a conversion operation)
from a stream sets failbit to flag this overflow condition. In the pre-ANSI iostream library, these types of
conditions might not be detected. Consider this program fragment:

 int i;
 cin >> i;
 cout << cin.rdstate() << ' ' << i << endl;

On the input: 9999999999999999

The output in the ANSI iostream library is:

4 1874919423 // failbit set

The output in the pre-ANSI iostream library is:

0 1874919423 // failbit not set

In the ANSI iostream library, reading -0 from a stream into an unsigned int outputs 0; this was not the case
with the pre-ANSI iostream library. Consider the following:

 unsigned int ui;
 cin >> ui;
 cout << cin.rdstate() << ' ' << ui << endl;

On the input: -0

The output in the ANSI iostream library is:

0 0

• In the ANSI iostream library, the istream::getline() function extracts characters and stores them into
successive locations of an array whose first element is designated by s. If fewer than n characters are input,
failbit is set. This was not the case in the pre-ANSI iostream library. Consider the following:

#include <stdlib.h>
int main()
{
 char buffer[10];
 cin.getline (buffer,10);
 cout << cin.rdstate() << ' ' << buffer << endl;
 return EXIT_SUCCESS;
}

With input of: 1234567890

The output in the ANSI iostream library is:

4 123456789

The output in the pre-ANSI iostream library is:

0 123456789

• When printing addresses, the ANSI library does not print a leading “0x” to indicate a hexadecimal base. The
pre-ANSI library did. Consider the following:

118

The C++ Standard Library

#include <stdlib.h>
#include <iostream>
int main()
{
double d;
int i;
 void *p = (void *) &d;
 int *pi = &i;
 cout << (void *) 0 << ' ' << p << ' ' pi << endl;
 return EXIT_SUCCESS;
}

The output in the ANSI iostream library is:

0 11fffe7a0 11fffe798

The output in the pre-ANSI iostream library is:

0x0 0x11fffdc40 0x11fffdc38

• basic_filebuf::setbuf is a protected member function in the ANSI iostream library. Therefore, the
following longer compiles:

#include <stdlib.h>
int main() {
 filebuf fb;
 ...
 fb.setbuf(0,0);
 return EXIT_SUCCESS;
}

• In the ANSI iostream library, the Standard C++ streams are synchronized with the Standard C streams by default.
Calling sync_with_stdio() with false allows the Standard C++ streams to operate independently of
the Standard C streams. In the pre-ANSI iostream library the Standard C++ streams are not synchronized with
the Standard C streams by default.

You notice the consequences of this change if you redirect the output of a program using the Standard C++
streams to a log file by entering the following commands at the DCL prompt:

$ define sys$output t.out
$ run program
$ deassign sys$output

For example, if you write something like this using ANSI iostreams:

#ifndef __USE_STD_IOSTREAM
#define __USE_STD_IOSTREAM
#endif
#include <iostream>
void main () {
 int s = 5;
 cout << "i" << s;
}

and if you redirect the output to a log file using the commands shown in the example, the log file contains
two records:

i
5

119

The C++ Standard Library

If you write something like this using pre-ANSI iostreams:

#include <iostream.hxx>
void main () {
 int s = 5;
 cout << "i" << s;
}

and if you redirect the output to a log file using the commands shown in the example, the log file contains one
record: i5.

To obtain the Pre-ANSI iostreams behavior with ANSI iostreams, you can use either of the following
workarounds:

• Redirect your output to a file by entering the following commands:

$ define/user sys$output t.out
$ run program

The output of the log file, t.out, contains one record: i5.

• Recode your program so that the Standard C++ streams operate independently of the Standard C streams. Do
this by calling sync_with_stdio() with a false argument as follows:

#include <stdlib.h>
#ifndef __USE_STD_IOSTREAM
define __USE_STD_IOSTREAM
#endif
#include <iostream>
int main () {
 ios_base::sync_with_stdio(false);
 int s = 5;
 cout << "i" << s;
 return EXIT_SUCCESS
}

If you now redirect the output to a log file, the log file contains one record: i5.

120

Using the OpenVMS Debugger

Chapter 8. Using the OpenVMS
Debugger
A debugger helps you find run-time errors by letting you observe and interactively manipulate program execution
step by step, until you discover where the program functions incorrectly. The OpenVMS Debugger is symbolic,
meaning that you can refer to symbolic names for the memory addresses allocated to variables, routines, labels,
and so on. You need not use virtual addresses.

The language of the source program you are currently debugging determines the format you use to enter and
display data. The language also determines the format used for features, such as comment characters, operators,
and operator precedence, which have language-specific settings. However, if you have modules written in another
language, you can switch from one language to another during your debugging session.

8.1. Debugging C++ Programs
The OpenVMS Debugger supports the language constructs of C++ and other debugger-supported programming
languages. This section describes features specific to debugging C++ programs. For more information on the
OpenVMS Debugger, see the OpenVMS Debugger Manual.

8.1.1. Compiling and Linking in Preparation for
Debugging
To use the debugger, compile and link your program with the /DEBUG qualifier on both commands. On the
compiler command, the /DEBUG qualifier writes into the object module the debug symbol records declared in the
program source file. These records make the names of variables and other declared symbols accessible to debugger
commands. If your program has several compilation units, make sure you use the /DEBUG qualifier to compile
each unit you want to debug.

On OpenVMS I64 systems, specifying /DEBUG gives you /DEBUG=(TRACEBACK,SYMBOLS=BRIEF),
which omits debug information for unused labels and unused types, even when /NOOPTIMIZE is specified. This
feature results in much smaller object files. To include unused labels and types, specify the SYMBOLS=NOBRIEF
keyword explicitly (/DEBUG=(SYMBOLS=NOBRIEF)).

On OpenVMS Alpha systems, specifying /DEBUG gives you /DEBUG=(TRACEBACK,SYMBOLS), which
effectively gives you /DEBUG=(TRACEBACK,SYMBOLS=NOBRIEF).

Additionally, use the /NOOPTIMIZE qualifier with the compiler command. Optimized code can reduce program
size and increase execution speed, but can also create inconsistencies in memory content that adversely affects
debugging. Use the default /OPTIMIZE qualifier only with programs that have been completely debugged.

8.1.2. Debugger Support
Additionally, compilation with normal (full) optimization will have the following noticeable effects on OpenVMS
Alpha systems:

• Stepping by line will generally seem to bounce forward and back, due to the effects of code scheduling. The
general drift will definitely be forward, but initial experience indicates that the effect will be very close to
stepping by instruction.

• Variables that are “split” (so that they are allocated in more than one location during different parts of their
lifetimes) are not described at all.

Although not handled quite like normal split variables, formal parameters that are passed in registers share many
of the same problems as split variables. Even with the /NOOPTIMIZE qualifier, such a parameter often will be
copied immediately to a “permanent home” (either on the stack or in some other register) during the routine

121

Using the OpenVMS Debugger

prolog. The debugger symbol table description of such parameters encodes this permanent home location and
not the physical register in which the parameter is passed. The end-of-prolog location is recorded in the debugger
symbol tables and will be used as the preferred breakpoint location when a breakpoint is set in the context of an
appropriately set module (so that symbol table information is available to the debugger).

 On the linker command, the /DEBUG qualifier incorporates into the executable image all the symbol information
contained in the object modules. Using the /DEBUG qualifier on the linker command also starts the debugger
at run time.

Debugger Command-Line Options
The compiler provides a set of debugger options that you can specify to the /DEBUG qualifier on the compiler
command line. These options determine the kind of information that the compiler places in the object module for
use by the OpenVMS Debugger. These debugger options include using traceback records and using the debugger
symbol table. For more information, see the /DEBUG qualifier in Appendix A, Compiler Command Qualifiers.

8.1.3. Starting and Ending a Debugging Session
When you enter the DCL run command and specify your executable image file, the OpenVMS Debugger takes
control. The debugger displays a message indicating its version, the programming language the source code is
written in, and the name of the image file. When the DBG> prompt appears, you can enter debugger commands.

To execute the program, enter the debugger go command. Execution proceeds until the debugger pauses or stops
the program (for example, to prompt you for user input, to signal an error, or to inform you that your program
completed successfully).

To interrupt the debugging session in progress, press Ctrl/C. The DBG> prompt displays and you can again enter
debugger commands.

To end a debugging session, enter the debugger exit command or press Ctrl/Z.

8.1.4. Features Basic to Debugging C++ Programs
This section describes features essential for debugging C++ programs.

8.1.4.1. Determining Language Mode
The OpenVMS Debugger is in C++ language mode when invoked against a main program or routine written in C
++. If you are debugging an application with modules written in some language other than C++, you may switch
back to C++ language mode by using the command set language c_plus_plus.

You can use the show language command to determine the language mode set. For example:

DBG> show language
language: C_PLUS_PLUS
DBG>

8.1.4.2. Built-In Operators
This section describes the built-in operators that you can use in debugger commands. The operators in C++
language expressions are as follows:

Symbol Function Kind

* Indirection Prefix
& Address of Prefix
sizeof size of Prefix
– Unary minus (negation) Prefix
+ Addition Infix

122

Using the OpenVMS Debugger

Symbol Function Kind

– Subtraction Infix
* Multiplication Infix
/ Division Infix
% Remainder Infix
<< Left shift Infix
>> Right shift Infix
== Equal to Infix
!= Not equal to Infix
> Greater than Infix
>= Greater than or equal to Infix
< Less than Infix
<= Less than or equal to Infix
~ (tilde) Bit-wise NOT Prefix
& Bit-wise AND Infix
| Bit-wise OR Infix
^ Bit-wise exclusive OR Infix
! Logical NOT Prefix
&& Logical AND Infix
|| Logical OR Infix

Because the exclamation point (!) is an operator, it cannot be used in C++ programs as a comment delimiter.
However, to permit debugger log files to be used as debugger input, the debugger still recognizes the exclamation
point as a comment delimiter if it is the first nonspace character on a line. In C++ language mode, the debugger
accepts a forward slash immediately followed by an asterisk (/*) as the comment delimiter. The comment continues
to the end of the current line. A matching asterisk immediately followed by a slash (*/) is neither needed nor
recognized.

The debugger accepts the asterisk (*) prefix as an indirection operator in both C++ language expressions and
debugger address expressions. In address expressions, the asterisk prefix is synonymous to the period (.) prefix or
the at sign (@) prefix when the language is set to C++.

To prevent unintended modifications to the program being debugged, the debugger does not support any of the
assignment operators in C++ (or any other language). Thus, such operators as =, +=, –, ++, and −− are not
recognized. To alter the contents of a memory location, you must do so with an explicit deposit command.

8.1.4.3. Constructs in Language and Address Expressions
The supported constructs in language and address expressions for C++ are as follows:

Symbol Construct

[] Subscripting
. (period) Structure component selection
-> Pointer dereferencing

8.1.4.4. Data Types
 Predefined data types supported in the debugger are as follows:

123

Using the OpenVMS Debugger

C++ Data Type OpenVMS Data Type Name

int, long Longword Integer
unsigned int, unsigned long Longword Unsigned
long long Quadword Integer
unsigned long long Quadword Unsigned
short int Word Integer
unsigned short int Word Unsigned
char Byte Integer
unsigned char Byte Unsigned
float F_Floating (Alpha default), S_Floating (I64 default)
double G_Floating (Alpha default), T_Floating (I64 default), D_Floating
enum None
struct None
union None
class None
Pointer type None
Array type None

Uppercase letters in parentheses represent standard data type mnemonics in the OpenVMS common language
environment. For more information, see OpenVMS Programming Interfaces: Calling a System Routine.

Supported data types specific to OpenVMS systems are as follows:

C++ Data Type OpenVMS Data Type Name

__int16 Word Integer
unsigned __int16 Word Unsigned
__int32 Longword Integer
unsigned __int32 Longword Unsigned
__int64 Quadword Integer
unsigned __int64 Quadword Unsigned

8.2. Using the OpenVMS Debugger with C++
Data
This section describes how to use the OpenVMS Debugger with C++ data.

8.2.1. Nonstatic Data Members
This section describes how to refer to data members that are not declared static.

8.2.1.1. Noninherited Data Members
To refer to a nonstatic data member that is defined directly in a C++ class (or a struct or union), use its name
just as with a C language struct or union member. The following example shows the correct use of a nonstatic
data member reference:

DBG> examine x.m, p->m

124

Using the OpenVMS Debugger

8.2.1.2. Inherited Data Members
Currently, debugger support distinguishes nonstatic data members inherited from various base classes by prefixing
their names with a sequence of significant base class names on the inheritance path to the member, and then the
class that the member is declared in. A base class on a path from an object to a member is significant if the base
class in question is derived from using multiple inheritance. Thus, a base class is significant if it is mentioned in
a base list containing more than one base specifier.

This notation generates the minimum number of base class prefixes necessary to describe the inheritance path to
a base class, because it involves naming only those base classes where one must choose where to proceed next
when traversing the path. When no multiple inheritance is involved, the reference has the following syntax:

CLASS::member

Specify the sequence of significant base classes in the order from the object's most derived significant class, to
the significant base class closest to the object.

8.2.2. Reference Objects and Reference Members
Because the debugger understands the concept of reference objects and reference members to objects, you can
examine a reference object or reference member directly, without dereferencing it as you would for a pointer. To
access the values of objects declared with a reference, use the name of the object.

For example, consider the following code:

class C {
public:
 int &ref_mem;
 C(int &arg) : ref_mem(arg) {}
};

main()
{
 auto int obj = 5;
 auto int &ref_obj = obj;
 auto C c(obj);
 obj = 23;
}
...

The following sequence shows the correct way to use the debugger to examine the members:

break at R8_2_3\main\%LINE 13
 13: }
DBG> exam obj, ref_obj
R8_2_3\main\obj: 23
R8_2_3\main\ref_obj: 23
DBG> exam c
R8_2_3\main\c: class C
 ref_mem: 23
DBG> exam c.ref_mem
R8_2_3\main\c.ref_mem: 23

8.2.3. Pointers to Members
For Alpha systems compiled with /MODEL=ANSI and for I64 systems, a pointer to member is an offset into a
structure.

125

Using the OpenVMS Debugger

Consider the following example:

struct A {
 int mem0;
};

struct B {
 int mem1;
 int mem2;
};

struct C : public A, public B {
 int mem3;
 int mem4;
};

/* pointer to member initalized with pointer to member
 * address of the same class.
 */
int C::*pmc = &C::mem2;

/* pointer to member initialized with pointer to member
 * address of one of the * base classses. An implicit
 * conversion occurs.
 */
int C::*pmbc = &B::mem2;

extern "C" printf (const char *,...);

main()
{
 C *cinst = new C;
 cinst->*pmc = 7;
 printf("cinst pointer to member value is %d\n",cinst->mem2);
}

If you compile this program with the /NOOPTIMIZE/DEBUG qualifiers, from the last line in the program, you
can use the pointer to member to display the following information:

DBG> set radix hex
DBG> exam *cinst
*EX8_2_4\main\cinst: struct C
 inherit A
 mem0: 00000000
 inherit B
 mem1: 00000000
 mem2: 0000000A
 mem3: 00000000
 mem4: 00000000

DBG> set radix hex

DBG> exa pmc
EX8_2_4\pmc: 00000008

DBG> exam pmbc
EX8_2_4\pmbc: 00000008

DBG> exam cinst

126

Using the OpenVMS Debugger

EX8_2_4\main\cinst: 0000000080000090

DBG> exam 080000090+8
0000000080000098: 00000007

For the preceding sample program, the above debug sequence examines the pointer to member (pmc or pmbc)
to obtain an offset into the structure, and adds this value to the address of the object (*cinst). In our example,
this is *cinst + the value of pmc.

For Alpha systems compiled with the default object model (/MODEL=ARM), a pointer to member involves
executing a piece of function-like code, called a thunk.

The argument to this function is the address of the base class containing the member. This address is obtained by
adding the offset of the start of the base class to the address of the object. This offset adjustment is needed when
the pointer to member refers to a multiply inherited base class.

A sample debug sequence for the previous program example follows:

DBG> set radix hex
DBG> sho sym /full C
type C
 struct (C, 2 components), size: 20 bytes
 inherits: A, size: 4 bytes, offset: 0000000000000000 bytes
 B, size: 8 bytes, offset: 0000000000000004 bytes
 contains the following members:
 mem3 : longword integer, size: 4 bytes, offset: 000000000000000C
 bytes
 mem4 : longword integer, size: 4 bytes, offset: 0000000000000010
 bytes
DBG> exam pmc
EX8_2_4\pmc: 000100D8

DBG> exam cinst
EX8_2_4\main\cinst: 006706F0

DBG> call 000100D8(006706F0+4)
value returned is 006706F8

DBG> exam 006706F8
00000000006706F8: 00000007

This debug sequence first obtains the offset to the start of the nested class containing the member pointed to with
show sym /full. In this case, the offset is 4.

It then examines the pointer to member (pmc) and determines the address of the object (cinst). In our case, pmc
= 100D8 (thunk) and cinst = 6706F0.

Then it calls the thunk, passing the address of the object plus the offset: CALL 000100D8(006706F0+4). This call
to the thunk returns the address of the member.

Finally, it examines the member (006706F8).

8.2.4. Referencing Entities by Type
To examine and display the value of an object or member by type, use the command examine/type. Similarly,
you can modify the value of an expression to be deposited to a type you specify by using the command deposit/
type. With the /type qualifier, the syntax for these commands is as follows:

deposit/type=(name)

127

Using the OpenVMS Debugger

examine/type=(name)

The type denoted by name must be the name of a variable or data type declared in the program. The /type qualifier
is particularly useful for referencing C++ objects that have been declared with more than one type.

8.3. Using the OpenVMS Debugger with C++
Functions
This section describes how to reference the various kinds of functions and function arguments.

8.3.1. Referring to Overloaded Functions
You can use the debug SHOW SYMBOL command to see all the overloaded names for a given function. You can
set breakpoints on an overloaded function by specifying either the object name and function name followed by the
argument types, or by specifying the class name and function name followed by the arguments.

For example, consider the following sample program:

extern "C" {int printf(const char *,...);}

class base{
 public:
 base(){};
 base(int){};

 ~base(){};

 void base_f1() {printf("called base_f1()\n");}

 void base_f2() {printf("called base_f2()\n");}
 void base_f2(int) {printf("called base_f2(int)\n");}
 void base_f2(char c) {printf("call base_f2(char)\n");}
};

int main()
{
 base b;
 base b1(1);
 b.base_f1();
 b.base_f2(10);
 b.base_f2();
 b.base_f2('c');
}

The following debug sequence for the previous sample program shows how to set breakpoints on overloaded
symbols and how to list these functions:

DBG> s
stepped to EX8_3_1\main\%LINE 20
 20: base b1(1);
DBG> set break base::base_f1
DBG> set break base::base_f2
%DEBUG-I-NOTUNQOVR, symbol 'base::base_f2' is overloaded
overloaded name base::base_f2
 instance base::base_f2(char)
 instance base::base_f2(int)
 instance base::base_f2()

128

Using the OpenVMS Debugger

%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> set break base::base_f2(char)

8.3.2. Referring to Destructors
The C++ I64 debugger supports the following format for setting a break on a destructor:

DBG> set break stack::~stack()
DBG> set break stack::~stack(int)

Older (Alpha) debuggers require use of the %name syntax:

DBG> set break stack::%name'~stack'

8.3.3. Referring to Conversions
The set of atomic types are drawn from the following set of names:

void char signed_char unsigned_char signed_short
unsigned_short int signed_int unsigned_int signed_long
unsigned_long float double long_double

Pointer types are named (type)*. Reference types are named (type)&. The types struct, union, class,
and enum are named by their tags, and the qualifiers const and volatile precede their types with a space
in between.For example:

DBG> set break C::int, C::(const S)&

8.3.4. Referring to User-Defined Operators
The following operators can be overloaded by user-defined functions:

+ - * / % ^
& | ~ ! = <
> += -= *= /= %=
^= &= |= << >> >>=
<<= == != <= >= &&
| ++ – ->* , ->
[] () delete new

The following example shows the correct use of user-defined function references:

DBG> set break stack::%name'operator++'()

8.3.5. Referring to Function Arguments
In OpenVMS Debugger referencing, you use this, *this, and this->m as follows:

• All nonstatic member functions have a pointer parameter available named this. For example:

DBG> examine this

• Use *this to examine the prefix object that a member function is invoked against. For example:

DBG> examine *this

• Use the this parameter to refer to a data member m of the prefix argument to a member function. For example:

DBG> examine this->m

129

Using the OpenVMS Debugger

8.3.6. Calling C++ Member Functions from the
Debugger
When calling C++ member functions from the debugger, you cannot make the call using the same syntax that
you would use in a C++ source file. You must call the class-qualified member function name with the object as
the first argument.

For example:

extern "C" void printf(const char *,...);

class C12 {
 int i;
 int j;
public:
 static int sum;
public:
 C12() : i(1), j(2) {}
 void method();
 static int get_sum() {
 printf("called static function get_sum()\n");
 return sum;
 }
};
void C12::method()

{
 i = i + j;
 printf("C12::method called: i=%d, j=%d\n",i,j);
}

int C12::sum = 0;

main()
{
 C12 cinst;
 cinst.method();
 C12::get_sum();
 printf("End of example.\n");
}

When you compile this example with /DEBUG/NOOPT, you can call the member function with the following
command:

DBG> call C12::method(cinst)

Be aware that when a nonstatic member function is called, the compiler passes an implicit first parameter, the
"this" pointer. But, when using the debugger's call instruction, you must explicitly pass this hidden first argument:

//Call the nonstatic member function:
DBG> call cinst.method(cinst)
C12::method called: i=3 j=2
value returned is 28
// notice that the following call confuses debug:
DBG> call cinst.method()
%DEBUG-E-MISOPEMIS, misplaced operator or missing operand at 'end of

130

Using the OpenVMS Debugger

expression'

However, when calling a static member function, there is no implict this pointer and there function may be called
using the class name or the object name:

// Call the static function:
DBG> call C12::get_sum
called static function get_sum()
value returned is 0
DBG> call cinst.get_sum
called static function get_sum()
value returned is 0

131

Using 64-bit Address Space

Chapter 9. Using 64-bit Address
Space
This chapter describes 64-bit address support for the VSI C++ compiler on OpenVMS Alpha and I64 systems.

The introduction of 64-bit address space in OpenVMS greatly increases the amount of memory available to
applications. VSI C++ has been enhanced to permit use of this memory. The compiler provides a great deal of
flexibility about how this memory can be used. Conceptually, this flexibility can be viewed as four models for
development:

• 32-bit development

• 64-bit development

• 32-bit development with long pointers

• 64-bit development with short pointers

In a 32-bit development environment, all pointers are 32-bits long and only 2 gigabytes of address space is
available. This is the default and was the only option that was available before this version of the compiler. In a
64-bit development environment, all pointers are 64-bits long and the address space is over a billion gigabytes.

Working in a homogeneous 32-bit or 64-bit environment is the preferred and recommended way to do development.
VSI C++ for OpenVMS, combined with the C Run-Time library, provide a seemless environment for development.
It should be possible for a well written, portable program developed using 32-bit pointers to be recompiled and
relinked to use 64-bit pointers.

Because it is not always possible or desirable to work in a homogeneous pointer environment. VSI C++ supports
mixed pointer sizes, however, it requires greater care by developers. Some contexts where heterogeneous pointer
sizes might be used are:

• Memory requirements of 32-bit application exceeds 2 gigabytes

• Access to a legacy 32-bit library is required from a 64-bit application

• The memory foot print of a 64-bit application needs to be reduced

When the memory requirements of a 32-bit application begins to exceed 2 gigabytes, the most straight forward
solution is to convert the application to be a 64-bit application. Since practical considerations, like the size of the
application or the lack of source code for all parts can prevent this, the alternative approach of isolating the use
of 64-bit pointers to a small portion of the application may be preferable. In this situation, development would
continue in the 32-bit environment, using long pointers when necessary.

When doing 64-bit development, there are times when it becomes necessary or desirable to use 32-bit pointers.
The most common instance is interfacing with a 32-bit library. Another is to save space, because 64-bit pointers
consume twice as much memory as 32-bit pointers. In this situation, development could be done in a 64-bit
environment, using short pointers when necessary.

Limited empirical evidence suggests that using 32-bit pointers to save space can reduce memory consumption by
approximately 25% but at the cost of greater complexity and the creation of potentially unnecessary constraints
in the application.

9.1. 32-bit Versus 64-bit Development
Environment
Besides pointer size, the following components of the development environment determine whether it is a 32- or
64-bit environment:

• Memory allocators

132

Using 64-bit Address Space

• Libraries

Memory allocators control where in the address space memory is allocated. Memory can be allocated in 32- or
64-bit space independent of the pointer size. The default memory allocator is appropriate for the development
environment being used.

Libraries in a 32-bit environment expect pointers to be 32-bits and memory to reside in the 32-bit address space,
while libraries in the 64-bit environment expect pointers to be 64-bits. VSI C++ for OpenVMS ships with two
libraries: one for the 32-bit environment and one for the 64-bit environment. In addition to supporting the 64-bit
environment, the second library also supports the new object model referred to as model ANSI.

/MODEL=ANSI only affects the pointer size on Alpha systems. The qualifier is silently ignored on I64 systems.

Caution
When compiling /POINTER_SIZE=LONG, the STL template classes (such as string, and set, map) can be used
only when /MODEL=ANSI is specified.

The C Runtime is a single library that supports both environments. See the HP C Run-Time Library Reference
Manual for OpenVMS Systems for information about how support for both environments was achieved with a
single library. See Section 9.6, “Avoiding Problems” for a discussion of why it is difficult to produce a single C
++ library to support both environments.

9.1.1. Model ANSI (Alpha only)
The new ANSI object model allows the compiler to better conform to the ANSI/ISO C++ standard while providing
the 64-bit development environment. This object model is specified using the /MODEL=ANSI compiler and link
options. /MODEL=ANSI only affects the pointer size on Alpha systems. The qualifier is silently ignored on I64
systems.

To build a 64-bit application using the ANSI object model, you enter commands in the following format:

$ cxx /model=ansi filename.cxx
$ cxxlink/model=ansi filename

Caution
The new ANSI object model is not compatible with the old object model. You must compile and link your entire
application with one model or the other.

9.1.2. Memory Allocators
In C++, the primary memory allocator is new. Use of the default allocators causes memory to be allocated that is
appropriate for the default pointer size for the module (not the current pointer size). Specialized placement-new
allocators can be used to control where an object is allocated. The header newext.hxx contains the following
definitions:

enum addr32_t (addr_32 };
enum addr64_t {addr_64 };

#pragma pointer_size short
void *operator new(addr32_t, size_t s) { return _malloc32(s); }
void *operator new[](addr32_t, size_t s) { return _malloc32(s); }

#pragma pointer_size long
void *operator new(addr64_t, size_t s) { return _malloc64(s); }
void *operator new[](addr64_t, size_t s) { return _malloc64(s); }

133

Using 64-bit Address Space

Use of the allocators from the C Run Time is also possible. You can select a specific C allocator by adding a prefix
underbar and either 32 or 64 as a suffix.

Function 32-bit 64-bit
malloc _malloc32 _malloc64
calloc _calloc32 _calloc64
realloc _realloc32 _realloc64
strdup _strdup32 _strdup64

When attempting to mix pointer sizes in your program, distinguish between the concepts of pointer size and
memory allocators. The pointer size dictates the maximum amount of address space a pointer can reference, while
the allocator controls the where the memory will be allocated.

A library implemented with 64-bit pointers that uses only a 32-bit allocator can with care be used by an application
that uses 32-bit pointers. If the library uses a 64-bit allocator, the application cannot reference any pointers returned.
To a large extent, it is the memory allocator, not the pointer size, that determines interoperability.

9.1.3. 64-bit Pointer Support in the C Run Time Library
In addition to allocators, other functions in the C Run Time Library, such as strcpy, are affected by pointer size.
As with the alloators, the C++ compiler calls a version of the routine is for the development environment. See the
HP C Run-Time Library Reference Manual for OpenVMS Systems for more details.

9.2. Qualifiers and Pragmas
The following qualifiers, pragmas, and predefined macros control pointer size:

• /MODEL=ANSI (Alpha only)

• /[NO]POINTER_SIZE={LONG | SHORT | 64 |32}

• #pragma pointer_size

• #pragma required_pointer_size

• #pragma environment cxx_header_defaults

• __INITIAL_POINTER_SIZE predefined macro

9.2.1. The /MODEL=ANSI Qualifier (Alpha only)
The /MODEL=ANSI qualifier enables the new ANSI object model. This model implies /POINTER_SIZE=LONG
in addition to supporting new C++ constructs that could not be supported in the object model designed to
support the ARM definition of the language. This option must be specified during compilation and linking. /
MODEL=ANSI only affects the pointer size on Alpha systems. The qualifier is silently ignored on I64 systems.

9.2.2. The /POINTER_SIZE Qualifier
The /POINTER_SIZE qualifier lets you specify a value of 64 or 32 (or LONG or SHORT) as the default pointer
size within the compilation unit. You can compile one set of modules using 32-bit pointers and another set using
64-bit pointers. Take care when these two separate groups of modules call each other.

The default is /NOPOINTER_SIZE, which has the following effects:

• Disables pointer-size features, such as the ability to use #pragma pointer_size

• Directs the compiler to assume that all pointers are 32-bit pointers

134

Using 64-bit Address Space

This default represents no change from previous versions of VSI C++.

Specifying /POINTER_SIZE with a keyword value (32, 64, SHORT, or LONG) has the following effects:

• Enables processing of #pragma pointer_size.

• Sets the initial default pointer size to 32 or 64, as specified.

• Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 32 or 64, as specified. If /
POINTER_SIZE is omitted from the command line, __INITIAL_POINTER_SIZE is 0, which allows you
to use #ifdef __INITIAL_POINTER_SIZE to test whether the compiler supports 64-bit pointers.

• For /POINTER_SIZE=64, the C RTL name mapping table is changed to select the 64-bit versions of malloc,
calloc, and other RTL routines by default.

Use of the /POINTER_SIZE qualifier also influences the processing of C RTL header files:

• For those functions that have both 32-bit and 64-bit implementations, specifying /POINTER_SIZE enables
function prototypes to access both functions, regardless of the actual value supplied to the qualifier. The value
specified to the qualifier determines the default implementation to call during that compilation unit.

• Functions that require a second interface to be used with 64-bit pointers reside in the same object libraries
and shareable images as their 32-bit counterparts. Because no new object libraries or shareable images are
introduced, using 64-bit pointers does not require changes to your link command or link options files.

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for more information on the impact of
64-bit pointer support on VSI C++ RTL functions.

9.2.3. The __INITIAL_POINTER_SIZE Macro
The __INITIAL_POINTER_SIZE preprocessor macro is useful for header-file authors to determine:

• Whether the compiler supports 64-bit pointers.

• Whether the application expects to use 64-bit pointers.

Header-file code can then be conditionalized using the following preprocessor directives:

#if defined (<double_uscore>INITIAL_POINTER_SIZE) /* Compiler supports 64-
bit pointers */
#if <double_uscore>INITIAL_POINTER_SIZE > 0 /* Application uses 64-
bit pointers */
#if <double_uscore>INITIAL_POINTER_SIZE == 32 /* Application uses some
 64-bit pointers,
 but default RTL routines are 32-
bit.*/

#if <double_uscore>INITIAL_POINTER_SIZE == 64 /* Application uses 64-bit
 pointers and
 default RTL routines are 64-bit. */

9.2.4. Pragmas
The #pragma pointer_size#pragma required_pointer_size and preprocessor directives can be
used to change the pointer size currently in effect within a compilation unit. You can default pointers to 32-bits
and then declare specific pointers within the module as 64-bits. In this case, you also need to specifically call the
appropriate allocator to obtain memory from the 64-bit memory area.

These pragmas have the following format:

#pragma pointer_size keyword

135

Using 64-bit Address Space

#pragma required_pointer_size keyword

The keyword is one of the following:

{short|32} 32-bit pointer
{long|64} 64-bit pointer
save Saves the current pointer size
restore Restores the current pointer size to its last saved state

The #pragma pointer_size and #pragma required_pointer_size directives work essentially the
same way, except that #pragma required_pointer_size always takes effect regardless of command-
line qualifiers, while #pragma pointer_size is in effect only when the /POINTER_SIZE command-line
qualifier is used.

By changing the command-line qualifier, #pragma pointer_size allows a program to be built using 64-bit
features as purely as a 32-bit program.

The #pragma required_pointer_size is intended for use in header files where interfaces to system data
structures must use a specific pointer size regardless of how the program is compiled.

An alternative to control the pointer size is #pragma environment. This pragma controls all compiler states
that include pointer size. This pragma is fully documented in Section 2.1.1.3, “#pragma environment Directive”.
The primary change for support of long pointers is the addition of a new cxx_header_defaults keyword.

This new keyword is similar to the header_defaults keyword, but differs in the effect on pointer_size. With
header_defaults, pointer_size is made short, while with cxx_header_defaults, the pointer_size depends on
the model being used. When developing in model ANSI, the pointer_size is 64 bits; in model ARM (the
default), it is 32 bits.

9.3. Determining Pointer Size
The pointer-size qualifiers and pragmas affect only a limited number of constructs in the C++ language itself. At
places where the syntax creates a pointer type, the pointer-size context determines the size of that type. Pointer-
size context is defined by the most recent pragma (or command-line qualifier) affecting pointer size.

Here are examples of places in the syntax where a pointer type is created:

• The * in a declaration or cast:

int **p; // Declaration
ip = (int **)i; // Cast

• The outer (leftmost) brackets [] in a formal parameter imply a *:

void foo(int ia[10][20]) {}

// Means the following:

void foo(int (*ia)[20]) {}

• A function declarator as a formal parameter imply a *:

void foo (int func()):

// Means the following:

void foo (int (*)() func);

• Any formal parameter of array or function type implies a *, even when bound in a typedef:

typedef int a_type[10];

136

Using 64-bit Address Space

void foo (a_type ia);

// Means the following:

void foo (int *ia);

9.3.1. Special Cases
The following special cases are not affected by pointer-size context:

• Formal parameters to main are always treated as if they were in a #pragma pointer_size
system_default context, which is 32-bit pointers for OpenVMS systems.

For example, regardless of the #pragma pointer_size 64 directive, argv[0] is a 32-bit pointer:

#pragma pointer_size 64

main(int argc, char **argv)
 { ASSERT(sizeof(argv[0]) == 4); }

Note that using /POINTER_SIZE=LONG=ARGV (I64 only) allows argv to be a pointer to long pointers.

• A string literal produces a pointer based on the current pointer size when used as an rvalue:

#pragma pointer_size 64

ASSERT(sizeof("x" + 0) == 8);

#pragma pointer_size 32

ASSERT(sizeof("x" + 0) == 4);

• The & operator yields a pointer based on the current pointer size unless it is applied to pointer dereference, in
which case it is the size of the dereferenced pointer type:

#pragma pointer_size 32
sizeof(&foo) == 32

#pragma pointer_size 64
sizeof(&foo) == 64

sizeof(&s ->next) == sizeof(s)

• The size of this pointer depends on the size in effect at the point of the member's signature definition, not on
the use of the pointer.

class foo {
 public:
 void f();
 void f2();
};

#pragma required_pointer_size short
void foo::f()
{ sizeof(this)==4 } // this is short

#pragma required_pointer_size long
void foo::f2()
#pragma required_pointer_size short

137

Using 64-bit Address Space

{ sizeof(this)==8; } // this is long

9.3.2. Mixing Pointer Sizes
An application can use both 32-bit and 64-bit addresses. The following semantics apply when mixing pointers:

• Assignments (including arguments) silently promote a 32-bit pointer rvalue to 64 bits if other type rules are
met. Promotion means sign extension.

• A warning is issued for an assignment of a 64-bit rvalue to a 32-bit lvalue (without an explicit cast).

• For purposes of type compatibility, a different size pointer is a different type (for example, when matching a
prototype to a definition, or other contexts involving redeclaration), however, overloading is not permitted.

• The debugger knows the difference between pointers of different sizes.

9.4. Header File Considerations
Take note of the following general header-file considerations:

• Header files usually define interfaces with types that must match the layout used in library modules.

• Header files often do not bind “top-level” pointer types. Consider, for example:

fprintf(FILE *, const char *, ...);

A "FILE * fp;" in a declaration in a different area of source code might be a different size.

• All pointer parameters occupy 64 bits in the calling sequence, so a top-level mismatch of this kind is acceptable
if the called function does not lose the high bits internally.

• Routines dealing with pointers to pointers (or data structures containing pointers) cannot be enabled to work
simply by passing them both 32-bit and 64-bit pointers. You need separate 32-bit and 64-bit variants of the
routine.

Be aware that pointer-size controls are not unique in the way they affect header files; other features that affect data
layout have similar impact. For example, most header files should be compiled with 32-bit pointers regardless of
pointer-size context. Also, most system header files must be compiled with member_alignment regardless of
user pragmas or qualifiers.

To address this issue more generally, you can use the pragma environment directive to save context and set
header defaults at the beginning of each header file, and then to restore context at the end. See Section 2.1.1.3,
“#pragma environment Directive” for a description of pragma environment.

For header files that have not yet been upgraded to use #pragma environment, the /POINTER_SIZE=64
qualifier can be difficult to use effectively. For such header files, the compiler automatically applies user-defined
prologue and epilogue files before and after the text of the included header file. See Section 9.5, “Prologue/
Epilogue Files” for more information on prologue/epilogue files.

9.5. Prologue/Epilogue Files
VSI C++ automatically processes user-supplied prologue and epilogue header files. This feature is an aid to using
header files that are not 64-bit aware within an application that is built to exploit 64-bit addressing.

9.5.1. Rationale
VSI C++ header files typically contain a section at the top that:

1. Saves the current state of the member_alignment, extern_model, extern_prefix, and message
pragmas.

138

Using 64-bit Address Space

2. Sets these pragmas to the default values for the system.

A section at the end of the header file then restores these pragmas to their previously-saved state.

Mixed pointer sizes introduce another kind of state that typically needs to be saved, set, and restored in header
files that define fixed 32-bit interfaces to libraries and data structures.

The #pragma environment preprocessor directive allows headers to control all compiler states (message
suppression, extern_model, member_alignment, and pointer_size) with one directive.

However, for header files that have not yet been upgraded to use #pragma environment, the /
POINTER_SIZE=64 qualifier can be difficult to use effectively. In this case, the automatic mechanism to include
prologue/epilogue files allows you to protect all of the header files within a single directory (or modules within
a single text library). You do this by copying two short files into each directory or library that needs it, without
having to edit each header file or library module separately.

In time, you should modify header files to either exploit 64-bit addressing (like the C RTL), or to protect themselves
with #pragma environment. Prologue/epilogue processing can ease this transition.

9.5.2. Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1. When the compiler encounters an #include preprocessing directive, it determines the location of the file or
text library module to be included. It then checks to see if one or both of the two following specially named
files or modules exist in the same location as the included file:

<double_uscore>DECC_INCLUDE_PROLOGUE.H
<double_uscore>DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the text library file containing the
included module. (In the case of a text library, the .h is stripped off.)

The directory is the result of using the $PARSE/$SEARCH system services with concealed device name logicals
translated. Therefore, if an included file is found through a concealed device logical that hides a search list, the
check for prologue/epilogue files is still specific to the individual directories making up the search list.

2. If the prologue and epilogue files do exist in the same location as the included file, then the content of each
is read into memory.

3. The text of the prologue file is processed just before the text of the file specified by the #include.

4. The text of the epilogue file is processed just after the text of the file specified by the #include.

5. Subsequent #includes that refer to files from the same location use the saved text from any prologue/
epilogue file found there.

The prologue/epilogue files are otherwise treated as if they had been included explicitly: #line directives
are generated for them if /PREPROCESS_ONLY output is produced, and they appear as dependencies if /
MMS_DEPENDENCY output is produced.

To take advantage of prologue/epilogue processing for included header files, you need to create two files,
__DECC_INCLUDE_PROLOGUE.H and __DECC_INCLUDE_EPILOGUE.H, in the same directory as the
included file.

Suggested content for a prologue file is:

<double_uscore>DECC_INCLUDE_PROLOGUE.H:

#ifdef <double_uscore>PRAGMA_ENVIRONMENT
#pragma environment save
#pragma environment header_defaults

139

Using 64-bit Address Space

#else
#error "<double_uscore>DECC_INCLUDE_PROLOGUE.H: This compiler does not
 support
pragma environment"
#endif

Suggested content for an epilogue file is:

<double_uscore>DECC_INCLUDE_EPILOGUE.H:

#ifdef <double_uscore>PRAGMA_ENVIRONMENT
#pragma <double_uscore>environment restore
#else
#error "<double_uscore>DECC_INCLUDE_EPILOGUE.H: This compiler does not
 support
pragma environment"
#endif

9.6. Avoiding Problems
Consider the following suggestions to avoid problems related to pointer size:

• Write code to work with either 32-bit or 64-bit pointers.

• Do bit manipulation on unsigned int and unsigned __int64, and carefully cast pointers to and from
them.

• Heed compile-time warnings, using casts only where you are sure that pointers are not truncated.

9.7. Reasons for Not Using Mixed Pointer
Sizes
Although VSI C and C++ allow mixing pointer sizes, mixed pointers can cause certain types of error when used
incorrectly. Consider the following examples:

• Truncation

 #pragma pointer_size long
 int *y=_malloc64(); // Y is a 64-bit pointer
 #pragma pointer_size short
 int *x=y; // X is a 32-bit pointer, which results in truncation.

• Misread/miswrite

 int i,j;
 #pragma pointer_size short
 int *ptr=&i;
 int **pptr=&ptr;
 #pragma pointer_size long
 int **lptr=pptr;

 *lptr = &j; // miswrite: 8 bytes write, but points to 4 byte ptr.
 ptr = *lptr; // misread: 8 bytes read, but points to 4 byte ptr.

Furthermore, the following C++ features discourage the use of mixed pointers:

• Objects can allocate memory. Even if an object is in the 32-bit address space, the data contained in that object
might not be.

140

Using 64-bit Address Space

#pragma pointer_size long
class myObject {
 char *myData;
 public:
 myObject() { myData = new char[1000]; }
 ~myObject() { delete[] myData; }
 char *getData() { return myData; }
};

#pragma pointer_size short
myObject *ptr = new myObject(); //32-bit pointer to object in 32 bit
 space
char *data = ptr->getData(); //32-bit pointer truncated 64 bit pointer
 to data in 64 bit space

• Virtual functions make it difficult to maintain backward compatibility. Consider the following two
implementations of an interface called API. One is written in C, the other in C++. With the C implementation,
you can add the new entry with the new pointer size in an upwardly compatible way. In C++, you cannot do so
because the functions are virtual. Adding a virtual function to a class breaks backward compatibility. Granted,
the C++ interface provides polymorphism that is not available in the C interface, but the availability of this
feature is one of the reasons why applications are designed using C++.

// C implementation of API
void API_f1(int);
#pragma pointer_size short
void API_f2(int *);
#pragma pointer_size long
void API_f2_64(int*);
void API_f3(int);

// C++ implementatin of API
class BASE {
public:
 virtual void f1(int);
#pragma pointer_size short
 virtual void f2(int *);
#pragma pointer_size long
 virtual void f2_64(int*);
};
class API : public BASE {
public:
 virtual void f3(int);
}

• Polymorphism semantics are difficult to define. It is easy to imagine overloading while working with mixed
32/64 bit pointers when the parameter is a simple pointer: the pointers are simply different types. However,
if the pointer is embedded in a structure, how are these structures differentiated? Consider the following code
fragment:

struct FILE {
 char *buffer;
};

FILE *fopen(const char *,,,);
int fclose(FILE*);

It is easy to consider tagging the structure with a flag to indicate whether it is long or short, but it is possible for
a structure to have more than one pointer definition. In that case, there could be 2^n different versions of the

141

Using 64-bit Address Space

struct. To avoid these issues, the C++ compiler treats 32 and 64 bit pointers as the same type. If you want
to treat pointers as different based on size, use template classes:

x.cxx

#include <stdio.h>
#include <iostream>

#if !__INITIAL_POINTER_SIZE
#error this program should be compiled with /POINTER_SIZE qualifier
#endif

template <class T>
class short_pointer {
#pragma pointer_size save
#pragma pointer_size short
 T* ptr;
public:
 short_pointer(T* x) { ptr = x; }
 operator T*() { return ptr; }
 size_t get_ptr_size() { return sizeof(ptr); }
#pragma pointer_size restore
};

template <class T>
class long_pointer {
#pragma pointer_size save
#pragma pointer_size long
 T* ptr;
public:
 long_pointer(T* x) { ptr = x; }
 operator T*() { return ptr; }
 size_t get_ptr_size() { return sizeof(ptr); }
#pragma pointer_size restore
};

template<class T>
void func(short_pointer<T> x) { *x = 5; cout << x.get_ptr_size() <<
 endl; }
template<class T>
void func(long_pointer<T> x) { *x = 5; cout << x.get_ptr_size() <<
 endl; }

int main() {
#pragma pointer_size short
 func(short_pointer<int>((int*)_malloc32(sizeof(int))));
#pragma pointer_size long
 func(long_pointer<int>((int*)malloc(sizeof(int))));
}

$ pipe cxx/pointer=short x.cxx ; cxxl x.obj ; run x.exe
4
8
$ pipe cxx/pointer=long x.cxx ; cxxl x.obj ; run x.exe
4
8
$

142

Appendix A. Compiler
Command Qualifiers

Appendix A. Compiler Command
Qualifiers
This appendix describes the qualifiers available to the CXX command.

Qualifiers indicate special actions to be performed by the compiler or special input file properties. Compiler
qualifiers can apply to either the CXX command or to the specification of the file being compiled. When a qualifier
follows the CXX command, it applies to all the files listed. When a qualifier follows the file specification, it applies
only to the file immediately preceding it.

Table A.1, “CXX Command Qualifiers” summarizes CXX qualifiers. Detailed descriptions follow the table.

Table A.1. CXX Command Qualifiers

Command Qualifiers Defaults

/[NO]ALTERNATIVE_TOKENS /See text.
/[NO]ANSI_ALIAS /ANSI_ALIAS
/ARCHITECTURE=option /ARCHITECTURE=GENERIC
/ASSUME=(option[,...]) See text.
/
[NO]CHECK[=[NO]UNINITIALIZED_VARIABLES]
(Alpha only)

/NOCHECK

/[NO]COMMENTS=option /COMMENTS=SPACE
/[NO]DEBUG[=(option[,...])] /DEBUG=(TRACEBACK,NOSYMBOLS)
/[NO]DEFINE=(identifier[=definition][,...]) /NODEFINE
/[NO]DEFINE=__FORCE_INSTANTIATIONS
(Alpha only)

/NODEFINE=__FORCE_INSTANTIATIONS

/[NO]DEFINE=__[NO_]USE_STD_IOSTREAM /DEFINE=__NO_USE_STD_IOSTREAM
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]DISTINGUISH_NESTED_ENUMS /NODISTINGUISH_NESTED_ENUMS
/ENDIAN=option /ENDIAN=LITTLE
/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30
/EXCEPTIONS /See text.
/EXPORT_SYMBOLS (I64 only) /See text.
/EXTERN_MODEL=option /EXTERN_MODEL=RELAXED_REFDEF
/[NO]FIRST_INCLUDE=(file[,...]) /NOFIRST_INCLUDE
/FLOAT=option /FLOAT=G_FLOAT (Alpha only)

/FLOAT=IEEE_FLOAT (I64 only)
/GRANULARITY=option /GRANULARITY=QUADWORD
/IEEE_MODE[=option] /IEEE_MODE=FAST (Alpha only)

/IEEE_MODE=DENORM_RESULTS (I64 only)
/[NO]IMPLICIT_INCLUDE /IMPLICIT_INCLUDE
/[NO]INCLUDE_DIRECTORY=(pathname[,...]) /NOINCLUDE_DIRECTORY
/L_DOUBLE_SIZE=option /L_DOUBLE_SIZE=128

143

Appendix A. Compiler
Command Qualifiers

Command Qualifiers Defaults

/LIBRARY See text.
/[NO]LINE_DIRECTIVES /LINE_DIRECTIVES
/[NO]LIST[=file-spec] /NOLIST (interactive mode)

/LIST (batch mode)
/[NO]MACHINE_CODE /NOMACHINE_CODE
/[NO]MAIN=POSIX_EXIT /NOMAIN
/[NO]MEMBER_ALIGNMENT /MEMBER_ALIGNMENT
/[NO]MMS_DEPENDENCIES=[=(option[,option)]] /NOMMS_DEPENDENCIES
/MODEL={ANSI | ARM} (Alpha only) /MODEL=ARM
/NAMES=(option1,option2) /NAMES=(UPPERCASE,TRUNCATED)
/NESTED_INCLUDE_DIRECTORY[=option] /

NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE
/[NO]OBJECT[=file-spec] /OBJECT=.OBJ
/[NO]OPTIMIZE[=(option[,...])] /OPTIMIZE
/PENDING_INSTANTIATIONS[=n] /PENDING_INSTANTIATIONS=64
/[NO]POINTER_SIZE[=option] /NOPOINTER_SIZE
/[NO]PREFIX_LIBRARY_ENTRIES[=(option[,...])] See text.
/[NO]PREPROCESS_ONLY[=filename] /NOPREPROCESS_ONLY
/PSECT_MODEL=[NO]MULTILANGUAGE /NOMULTILANGUAGE
/[NO]PURE_CNAME /PURE_CNAME (/STANDARD=STRICT_ANSI)

/NOPURE_CNAME (All other modes)
/[NO]QUIET /NOQUIET
/REENTRANCY=option /REENTRANCY=TOLERANT
/REPOSITORY=option /REPOSITORY=[.CXX_REPOSITORY]
/ROUNDING_MODE=option /ROUNDING_MODE=NEAREST
/[NO]RTTI /RTTI
/[NO]SHARE_GLOBALS /NOSHARE_GLOBALS
/SHOW[=(option[,...])] /SHOW=(HEADER,SOURCE
/STANDARD=(option,...) /STANDARD=RELAXED
/[NO]TEMPLATE_DEFINE[=(option,...)] See text.
/[NO]UNDEFINE=(identifier[,...]) /NOUNDEFINE
/[NO]UNSIGNED_CHAR /NOUNSIGNED_CHAR
/[NO]USING_STD /NOUSING_STD
/[NO]VERSION /NOVERSION
/[NO]WARNINGS[=(option[,...])] /WARNINGS
/[NO]XREF[=file-spec] (Alpha only) /NOXREF

/ALTERNATIVE_TOKENS
/NOALTERNATIVE_TOKENS

Enables use of the following operator keywords and digraphs to generate tokens:

144

Appendix A. Compiler
Command Qualifiers

Operator Keyword Token

and &&
and_eq &=
bitand &
bitor |
compl ~
not !
not_eq !=
or ||
or_eq |=
xor ^
xor_eq ^=

Digraph Token

:>]
%: #
%> }
<% {
<: [

The default is /NOALTERNATIVE_TOKENS when compiling with the /STANDARD=ARM, /
STANDARD=MS, or /STANDARD=RELAXED option. The default is /ALTERNATIVE_TOKENS
when compiling with the /STANDARD=STRICT_ANSI or /STANDARD=GNU option. Specifying /
ALTERNATIVE_TOKENS also defines the __ALTERNATIVE_TOKENS macro.

/ANSI_ALIAS
/ANSI_ALIAS (D)
/NOANSI_ALIAS

Directs the compiler to assume the ANSI/ISO C aliasing rules, which gives it the freedom to generate better
optimized code.

/NOANSI_ALIAS specifies that any pointer can point to any object, regardless of type. /ANSI_ALIAS
specifies that pointers to a type T can point to objects of the same type, ignoring type qualifiers such as const,
unaligned, or volatile, or whether the object is signed or unsigned. Pointers to a type T can also point to
structures, unions, or array members whose type follows the rules above.

The aliasing rules are further explained in the ANSI C89 Standard.

/ARCHITECTURE=option
/ARCHITECTURE=GENERIC (D)

Determines the Alpha or Intel processor instruction set to be used by the compiler. The /ARCHITECTURE
qualifier uses the same keyword options (keywords) as the /OPTIMIZE=TUNE qualifier.

Where the /OPTIMIZE=TUNE qualifier is primarily used by certain higher-level optimizations for instruction
scheduling purposes, the /ARCHITECTURE qualifier determines the type of code instructions generated for
the program unit being compiled.

OpenVMS provides an operating system kernel that includes an instruction emulator. This emulator allows
new instructions, not implemented on the host processor chip, to execute and produce correct results.
Applications using emulated instructions will run correctly, but may incur significant software emulation
overhead at runtime.

145

Appendix A. Compiler
Command Qualifiers

All Alpha processors implement a core set of instructions. Certain Alpha processor versions include additional
instruction extensions.

Select one of the /ARCHITECTURE qualifier options shown in the following table.

Option Usage

GENERIC Generates code that is appropriate for all processor generations. This is
the default.

HOST Generates code for the processor generation in use on the system being
used for compilation.

Running programs compiled with this option on other implementations
of the Alpha architecture may encounter instruction-emulation
overhead.

ITANIUM2 (I64 only) Generates code for the Intel Itanium 2 processor family. For use on I64
systems only.

EV4 (Alpha only) Generates code for the 21064, 21064A, 21066, and 21068
implementations of the Alpha architecture.

Programs compiled with the EV4 option run without instruction-
emulation overhead on all Alpha processors.

EV5 (Alpha only) Generates code for some 21164 chip implementations of the Alpha
architecture that use only the base set of Alpha instructions (no
extensions).

Programs compiled with the EV5 option will without instruction-
emulation overhead on all Alpha processors.

EV56 (Alpha only) Generates code for some 21164 chip implementations that use the byte
and word-manipulation instruction extensions of the Alpha architecture.

Running programs compiled with the EV56 option might incur
emulation overhead on EV4 and EV5 processors, but will still run
correctly on OpenVMS Version 7.1 (or higher) systems.

PCA56 (Alpha only) Generates code for the 21164PC chip implementation that uses the
byte- and word-manipulation instruction extensions and multimedia
instruction extensions of the Alpha architecture.

Programs compiled with the PCA56 option might incur emulation
overhead on EV4, EV5, and EV56 processors, but still run correctly on
OpenVMS Version 7.1 (or higher) systems.

EV6 (Alpha only) Generates code for the 21264 implementation of the Alpha architecture.
EV68 (Alpha only) Generates code for the 21264/EV68 implementation of the Alpha

architecture.
EV7 (Alpha only) Generates code for the EV7 implementation of the Alpha architecture.

See also /OPTIMIZE=TUNE, which is a more typical option. Note that if /ARCHITECTURE is explicitly
specified and /OPTIMIZE=TUNE is not, the tuning processor defaults to the architecture processor; for
example, /ARCHITECTURE=EV6 implies /OPTIMIZE=TUNE=EV6.

/ASSUME
/ASSUME=(option[,...])

Controls compiler assumptions. You may select the following options:

146

Appendix A. Compiler
Command Qualifiers

Option
Usage

[NO]WRITABLE_STRING_LITERALS Stores string constants in a writable psect. Otherwise, such
constants are placed in a nonwriteable psect. The default is
NOWRITABLE_STRING_LITERALS.

[NO]ACCURACY_SENSITIVE Specifies whether certain code transformations that affect floating-
point operations are allowed. These changes may or may not affect
the accuracy of the program's results.

If you specify NOACCURACY_SENSITIVE, the compiler is free
to reorder floating-point operations based on algebraic identities
(inverses, associativity, and distribution). This allows the compiler
to move divide operations outside of loops, which improves
performance.

The default, ACCURACY_SENSITIVE, directs the compiler
to use only certain scalar rules for calculations. This setting can
prevent some optimization.

[NO]ALIGNED_OBJECTS Controls an optimization for dereferencing pointers.

Dereferencing a pointer to a longword- or quadword-aligned
object is more efficient than dereferencing a pointer to a byte- or
word-aligned object. Therefore, the compiler can generate more
optimized code if it makes the assumption that a pointer object of
an aligned pointer type does point to an aligned object.

Because the compiler determines the alignment of the dereferenced
object from the type of the pointer, and the program is allowed to
compute a pointer that references an unaligned object (even though
the pointer type indicates that it references an aligned object), the
compiler must assume that the dereferenced object's alignment
matches or exceeds the alignment indicated by the pointer type.

The default, /ASSUME=ALIGNED_OBJECTS, allows the
compiler to make such an assumption. With this assumption
made, the compiler can generate more efficient code for pointer
dereferences of aligned pointer types.

To prevent the compiler from assuming the pointer
type's alignment for objects to which it points, use the /
ASSUME=NOALIGNED_OBJECTS qualifier. This option
causes the compiler to generate longer code sequences to
perform indirect load and store operations to avoid hardware
alignment faults for arbitrarily aligned addresses. Although /
ASSUME=NOALIGNED_OBJECTS might generate less efficient
code than the default /ASSUME=ALIGNED_OBJECTS option,
by avoiding hardware alignment faults, it speeds the execution of
programs that reference unaligned data.

[NO]GLOBAL_ARRAY_NEW Controls whether calls to global array new and delete are generated
as specified by ANSI. Pre-ANSI global array new generated calls
to operator new(). According to ANSI, use of global array new
generates calls to operator new()[]. The GLOBAL_ARRAY_NEW
option also defines the macro __GLOBAL_ARRAY_NEW.

GLOBAL_ARRAY_NEW generates calls to operator new()
[] for global array new expressions such as new int[4]; this
is the default when compiling /STANDARD=RELAXED, /

147

Appendix A. Compiler
Command Qualifiers

Option
Usage

STANDARD=STRICT_ANSI, /STANDARD=GNU, and /
STANDARD=MS.

NOGLOBAL_ARRAY_NEW generates calls to operator new()
for global array new expressions such as new int[4]; and preserves
compatibility with Version 5.n; this is the default when compiling /
STANDARD=ARM.

[NO]HEADER_TYPE_DEFAULT Controls whether the compiler appends a file extension to a file
name. The default is /ASSUME=NOHEADER_TYPE_DEFAULT.
To prevent the compiler from appending a file extension to files
(such as STL header files that must not have file extensions) use
the /ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

[NO]MATH_ERRNO Controls whether intrinsic code is generated for math functions that
set the errno variable. The default is /ASSUME=MATH_ERRNO,
which does not allow intrinsic code for such math functions to be
generated, even if /OPTIMIZE=INTRINSICS is in effect. Their
prototypes and call formats, however, are still checked.

[NO]POINTERS_TO_GLOBALS Controls whether the compiler can safely assume that global
variables have not had their addresses taken in code that is not
visible to the current compilation.

The default is /ASSUME=POINTERS_TO_GLOBALS, which
directs the compiler to assume that global variables have had
their addresses taken in separately compiled modules and that,
in general, any pointer dereference could be accessing the same
memory as any global variable. This is often a significant barrier to
optimization.

While the /ANSI_ALIAS option allows some resolution based
on data type, /ASSUME=POINTERS_TO_GLOBALS provides
significant additional resolution and improved optimization in
many cases.

The /ASSUME=NOPOINTERS_TO_GLOBALS option tells
the compiler that any global variable accessed through a pointer
in the compilation must have had its address taken within that
compilation. The compiler can see any code that takes the address
of an extern variable. If it does not see the address of the variable
being taken, the compiler can assume that no pointer points to the
variable.

Note that /ASSUME=NOPOINTERS_TO_GLOBALS does not
tell the compiler that the compilation never uses pointers to access
global variables.

Also note that on I64 systems, the NOPOINTERS_TO_GLOBALS
option is ignored and should not cause any behavior changes.

[NO]STDNEW Controls whether calls are generated to the ANSI or pre-ANSI
implementation of the operator new(). On memory allocation
failure, the ANSI implementation throws std::bad_alloc,
while the pre-ANSI implementation returns 0.

/ASSUME=STDNEW generates calls to the ANSI new()
implementation; this is the default when compiling with /

148

Appendix A. Compiler
Command Qualifiers

Option
Usage

STANDARD=RELAXED, /STANDARD= STRICT_ANSI, and /
STANDARD=GNU.

/ASSUME=NOSTDNEW generates calls to the pre-ANSI
new() implementation; this is the default when compiling with /
STANDARD=ARM and /STANDARD=MS.

[NO]TRUSTED_SHORT_ALIGNMENT Allows the compiler additional assumptions about the alignment
of short types that, although thought to be naturally aligned, might
cross a quadword boundary.

The TRUSTED_SHORT_ALIGNMENT option indicates that the
compiler should assume any datatype accessed through a pointer is
naturally aligned. This generates the fastest code, but can silently
generate the wrong results when an unaligned short object crosses a
quadword boundary.

Note that on I64 systems, the TRUSTED_SHORT_ALIGNMENT
option is ignored and should not cause any behavior changes.

The NOTRUSTED_SHORT_ALIGNMENT tells the compiler
that short objects might not be naturally aligned. The compiler
generates slightly larger (and slower) code that gives the correct
result, regardless of the actual alignment of the data. This is the
default.

Note that the NOTRUSTED_SHORT_ALIGNMENT option
does not override the __unaligned type qualifier or the /
ASSUME=NOALIGNED_OBJECTS option.

[NO]WHOLE_PROGRAM Tells the compiler that except for well-behaved library routines,
the whole program consists only of the single object module being
produced by this compilation. The optimizations enabled by /
ASSUME=WHOLE_PROGRAM include all those enabled by /
ASSUME=NOPOINTERS_TO_GLOBALS and possibly other
optimizations.

Note that on I64 systems, the WHOLE_PROGRAM option is
ignored and should not cause any behavior changes.

The default is /ASSUME=NOWHOLE_PROGRAM.

/CHECK
/CHECK[=([NO]UNINITIALIZED _VARIABLES)] (Alpha only)
/NOCHECK (D)

Use this qualifier as a debugging aid.

Use /CHECK=UNINITIALIZED_VARIABLES to initialize all automatic variables to the value
0x7ff580057ff58005. This value is a floating NaN and, if used, causes a floating-point trap. If used as a pointer,
this value is likely to cause an ACCVIO.

Note that on I64 systems, /CHECK=UNINITIALIZED_VARIABLES emits a warning and is ignored.

149

Appendix A. Compiler
Command Qualifiers

/COMMENTS
/COMMENTS[=option]
/COMMENTS=SPACE (D)
/NOCOMMENTS

Specifies whether comments appear in preprocessor output files. If comments do not appear, this qualifier
specifies what replaces them. The options are:

Option Usage

AS_IS Specifies that the comment appear in the output file. This is the default
if you use the /COMMENTS qualifier without specifying an option.

SPACE Specifies that a single space replaces the comment in the output file.
This is the default if you do not specify the /COMMENTS qualifier at
all.

Specifying /NOCOMMENTS tells the preprocessor that nothing replaces the comment in the output file. This
may result in inadvertent token pasting.

The preprocessor may replace a comment at the end of a line or replace a line by itself with nothing, even
if you specify /COMMENTS=SPACE. Specifying /COMMENTS=SPACE cannot change the meaning of the
program.

/DEBUG
/DEBUG[=(option[,...])]
/DEBUG=(TRACEBACK, NOSYMBOLS) (D)
/NODEBUG

Requests that information be included in the object module for use with the OpenVMS Debugger. You can
select the following options:

Option Usage

ALL Includes all possible debugging information. /DEBUG=ALL is
equivalent to /DEBUG=(TRACEBACK,SYMBOLS), which
on I64 systems is equivalent to /DEBUG=(TRACEBACK,
SYMBOLS=NOBRIEF).

NONE Excludes all debugging information. This option is equivalent
to specifying /NODEBUG, which is equivalent to /
DEBUG=(NOTRACEBACK,NOSYMBOLS).

NOSYMBOLS Turns off symbol generation
SYMBOLS Generates symbol-table records. On I64 systems, /DEBUG=

SYMBOLS is equivalent to /DEBUG=SYMBOLS=BRIEF. On
Alpha systems, /DEBUG=SYMBOLS is effectively equivalent to /
DEBUG=NOBRIEF.

SYMBOLS=BRIEF (I64 only) Generates debug information with unreferenced labels and types
pruned out to produce smaller object sizes. On Alpha systems,
BRIEF is ignored.

SYMBOLS=NOBRIEF (I64 only) Generates complete debug information. On Alpha systems, the
NOBRIEF keyword is ignored, but you still get complete debug
information.

NOTRACEBACK Excludes traceback records. This option is equivalent to
specifying /NODEBUG and is used to avoid generating extraneous
information from thoroughly debugged program modules.

TRACEBACK Includes only traceback records. This option is the default if you do
not specify the /DEBUG qualifier on the command line.

150

Appendix A. Compiler
Command Qualifiers

On Alpha systems /DEBUG is equivalent to /DEBUG=(TRACEBACK,SYMBOLS).

On I64 systems /DEBUG is equivalent to /DEBUG=(TRACEBACK,SYMBOLS), which is equivalent to /
DEBUG=(TRACEBACK,SYMBOLS=BRIEF).

/DEFINE
/DEFINE=(identifier[=definition][,...])
/NODEFINE (D)

Performs the same function as the #define preprocessor directive. That is, /DEFINE defines a token string
or macro to be substituted for every occurrence of a given identifier in the program.

DCL converts all input to uppercase unless it is enclosed in quotation marks.

The simplest form of a /DEFINE definition is as follows: /DEFINE=true

This results in a definition like the one that would result from the following definition: #define TRUE 1

When more than one /DEFINE is present on the CXX command line or in a single compilation unit, only
the last /DEFINE is used.

When both /DEFINE and /UNDEFINE are present on a command line, /DEFINE is evaluated before /
UNDEFINE

/DEFINE=__FORCE_INSTANTIATIONS (Alpha only)
/NODEFINE=__FORCE_INSTANTIATIONS (D)

Forces the standard library template pre-instantiations to be created in the user's repository. Normally these
instantiations are suppressed because the library already contains them.

On I64 systems, defining __FORCE_INSTANTIATIONS has no effect.

/DEFINE=__[NO_]USE_STD_IOSTREAM
/DEFINE=__NO_USE_STD_IOSTREAM (D)

Use or do not use the standard iostreams. Specifying /DEFINE=__USE_STD_IOSTREAM forces the
inclusion of the ANSI standard version of the iostream header file. This is the default in STRICT_ANSI mode.
Otherwise, the pre-standard AT&T-compatible version of iostreams is used.

/DIAGNOSTICS
/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)

Creates a file containing compiler diagnostic messages. The default file extension for a diagnostics file is .DIA.
The diagnostics file is used with the VSI Language-Sensitive Editor (LSE). To display a diagnostics file, enter
the command REVIEW/FILE=file-spec while in LSE.

/DISTINGUISH_NESTED_ENUMS
/NODISTINGUISH_NESTED_ENUMS (D)

Causes the compiler, when forming a mangled name, to include the name of any enclosing classes within
which an enum is nested, thereby preventing different functions from receiving the same mangled name.

This qualifier has no meaning on I64 systems because it modifies the behavior of programs compiled with /
MODEL=ARM, and that model is not supported on I64 systems.

/ENDIAN
/ENDIAN={BIG | LITTLE}
/ENDIAN=LITTLE (D)

Controls whether big or little endian ordering of bytes is carried out in character constants.

151

Appendix A. Compiler
Command Qualifiers

/ERROR_LIMIT
/ERROR_LIMIT[=number]
/ERROR_LIMIT=30 (D)
/NOERROR_LIMIT

Limits the number of error-level diagnostic messages that are acceptable during program compilation.
Compilation terminates when the limit (number) is exceeded. /NOERROR_LIMIT specifies that there is no
limit on error messages.

The default is /ERROR_LIMIT=30, which specifies that compilation terminates after issuing 30 error
messages.

/EXCEPTIONS
/EXCEPTIONS=CLEANUP (D)
/EXCEPTIONS=NOCLEANUP (Alpha only)
/EXCEPTIONS=EXPLICIT (D)
/EXCEPTIONS=IMPLICIT (Alpha only)
/NOEXCEPTIONS

Controls whether support for C++ exceptions is enabled or disabled. C++ exceptions are enabled by default
(equivalent to /EXCEPTIONS=CLEANUP). When C++ exceptions are enabled, the compiler generates code
for throw expressions, try blocks, and catch statements. The compiler also generates special code for main
programs so that the terminate() routine is called for unhandled exceptions. You can select from the following
options:

CLEANUP Generate cleanup code for automatic objects. When an exception
is handled at run-time and control passes from a throw-point to
a handler, call the destructors for all automatic objects that were
constructed because the try-block containing the handler was
entered.

NOCLEANUP (Alpha only) Do not generate cleanup code. Using this option can reduce the size
of your executable when you want to throw and handle exceptions
and cleanup of automatic objects during exception processing is not
important for your application.

The NOCLEANUP option is ignored on I64 systems.
EXPLICIT Tells the compiler to assume the standard C++ rules about

exceptions. Catch clauses can catch only those exceptions resulting
from the evaluation of a throw expression within the body of the
catch clause's try block or from within a procedure called from
within the catch clause's try block.

IMPLICIT (Alpha only) On Alpha systems, tells the compiler that an exception might
be thrown at any time the program is executing code within the
body of the try block. These exceptions might be the result of a
throw expression, hardware errors, or software errors (such as
dereferencing an invalid pointer).

Specifying /EXCEPTIONS=IMPLICIT seriously interferes
with the compiler's ability to optimize code. When the compiler
optimizes a function, it must ensure that the values of all variables
after an exception is caught remain the same as they were at the
point where the exception was throw. The optimizer is therefore
limited in its ability to rearrange stores and expressions that might
cause an exception to be thrown.

With /EXCEPTIONS=EXPLICIT, this is not a serious restriction,
because the compiler cannot rearrange stores and expressions
around the code that explicitly raises an exception. In implicit
exception mode, however, almost any code has the potential to

152

Appendix A. Compiler
Command Qualifiers

cause an exception to be thrown, thereby dramatically reducing the
optimizer's ability to rearrange code.

Also, if the compiler can determine that no throw expressions
occur within a try block, it can eliminate the exception handling
overhead the try block introduces, including all code within the
catch clauses associated with the try block. Because no exceptions
can occur during the execution of the code within the try block, no
code within the catch clauses can ever be executed. The compiler
cannot do this with /EXCEPTIONS=IMPLICIT.

Use /EXCEPTIONS=IMPLICIT if your program converts signals
to C++ exceptions by calling cxxl$set_condition(cxx_exception).
Failure to do so may result in your code not catching the exceptions
produced by signals.

For example, consider the following routine:

 void f(int *p) {
 try {
 *p = 2;
 } catch (...) {
 ...
 }
 }

Failure to compile the routine with /EXCEPTIONS=IMPLICIT may result in a failure to catch the exception
generated by the SIGBUS signal that occurs if p is 0. This is because the compiler sees that there are no throws
nor procedure calls within f and therefore optimizes away the try block leaving:

 void f(int *p) {
 *p = 2;
 }

Except for those OpenVMS conditions that result in the delivery of signals, if you raise a condition explicitly
using a mechanism such as LIB$SIGNAL, you may use /EXCEPTIONS=EXPLICIT.

The /NOEXCEPTIONS qualifier disables C++ exceptions as follows:

1. The compiler issues errors for throw expressions, try blocks, and catch statements, but might generate code
for these constructs.

2. On Alpha systems, the compiler does not generate cleanup code for automatic objects.

3. The compiler does not generate special code for main programs so that the terminate() function is called
for unhandled exceptions.

The /EXCEPTIONS qualifier defines the macro __EXCEPTIONS.

/EXPORT_SYMBOLS=(OPTIONS_FILE=<name> [,EXCLUDE=<list of images>] [,export_option]
[,NOTEMPLATES]) (I64 only)

Creating OpenVMS shareable images that contain C++ code has long been a problem for users. When building
a shareable image, you must specify a list of exported global symbols. For C++ code, determining this list
can be very difficult for the following reasons:

• Required C++ name mangling makes it difficult to know the name of the external symbol created for a
C++ name.

• OpenVMS CRC encoding (to 31 characters) further complicates mapping source names to object names.

• Certain C++ constructs require compiler-generated names to be created and exported.

153

Appendix A. Compiler
Command Qualifiers

To help solve the problem, the VSI C++ compiler provides the /EXPORT_SYMBOLS qualifier and
__declspec(dllexport) declaration modifier.

The default file extension for the OPTIONS_FILE <name> is .OPT.

If the file exists, the compiler appends to it. If the file does not exist, the compiler creates it.

The output for the compilation is:

 !
 ! Entries added for <module>
 !
 <symbol vector>
 <symbol vector>
 .
 .
 .

The output file is suitable input to a linker options file that can be used to build a shareable image containing
the compiled object.

The format of each <symbol vector> is:

 SYMBOL_VECTOR=(<global name>={DATA | PROCEDURE}) ! <comment field>

The <comment field> format is:

 <unmangled name> [<promoted static flag>] [<class information>]

The <promoted static flag> is one of the following:

PSDM - for promoted static data members
PTSDM - for promoted template static data members

The <promoted static flag> is output whenever the symbol is a promoted local static or a promoted template
static data member. This is important because these variables, while declared static, actually become global
symbols when compiled.

The <class information> field is present if the symbol is a member of a class. It contains the name of the class.

Note
• When /EXPORT_SYMBOLS is specified, an object file must also be generated. So /EXPORT_SYMBOLS

cannot be used with /NOOBJ, /PREPROCESS_ONLY, or any other qualifier that prevents the creation of an
object file.

• When the options file already exists, the compiler reads all the symbols that are listed there. If the current
compilation also defines one of those symbols, that symbol will not be added to the options file. This is necessary
to prevent SYMVALRDEF warnings from the linker.

• When the compiler reads the existing file, it treats SYMBOL_VECTOR directives that are in comments (of the
form !SYMBOL_VECTOR...) as if they were not commented. In this way, if a user does not want to export
a symbol, placing it in comments will prevent the compiler from emitting a directive for that symbol when it
compiles other sources that might also define the symbol.

• The symbols placed in the options file are a subset of the symbols defined in the output object file. The
export_option value controls exactly which symbols are placed there. There are three choices:

Export_option Value Usage

ALL Place all symbols suitable for placement in a sharable image into the
options file. The compiler knows that certain symbols are not suited for
placement in a shareable image and excludes them from the options file.

154

Appendix A. Compiler
Command Qualifiers

Export_option Value Usage
Some examples are certain compiler-generated constructor/destructor
jackets and symbols in the unnamed namespace.

EXPLICIT Place only those symbols marked with the
__declspec(dllexport) declaration modifier into the options
file.

AUTOMATIC(D) If the compiler processes a __declspec(dllexport), then act
as if EXPLICIT was specified. If the compiler does not process a
__declspec(dllexport), then act as if ALL was specified.

• The EXCLUDE option of the /EXPORT_SYMBOLS qualifier can be used to specify a list of shareable images.
The compiler searches these images for any symbols that it might want to place in the output options file. If it
finds the symbol in the image, then that symbol will not be put into the options file.

• The NOTEMPLATES option can be used to control the emission of symbols associated with template
instantiations. Specifying this option causes the compiler to suppress symbols created by template instantiation.
This includes instantiations of class templates, its data members and member functions, and instantiations
of function templates. This option could be used to avoid multiple definition diagnostics from the linker if
multiple sharable images might be instantiating (and exporting) the same template symbols. Symbols marked
with __declspec(dllexport) still get exported. This option has no effect on symbols from template
specializations. Note that while this option might make the sharable images smaller by not exporting the template
symbols, the executable image that links with these sharable images might be larger because it will contain the
instantiated template symbols.

Because shareable images almost always contain a number of objects, the commands for creating the options
file the first time might be:

$ DELETE options_file.OPT;*
$ CXX SOURCE1/EXPORT_SYMBOLS=OPTIONS_FILE=options_file
$ CXX SOURCE2/EXPORT_SYMBOLS=OPTIONS_FILE=options_file
$ CXX SOURCE3/EXPORT_SYMBOLS=OPTIONS_FILE=options_file
 .
 .
 .
$ CXX SOURCEn/EXPORT_SYMBOLS=OPTIONS_FILE=options_file

Where SOURCE1 - SOURCEn are the sources for the shareable. After the compilations, the options_file.OPT
will contain correct symbol vector information for the shareable.

The first time this options file is created, it can be considered a candidate options file. It contains all the
symbol vector entries for all the C++ globals that make sense to export from the C++ language point of view.
A user can then edit this file to exclude (by commenting out) entries that should not be exported, based on
the design of the library.

Once an options file is created, it should be maintained for input to subsequent compilations. In this way,
any new symbols caused by a change in the source will be added to the end of the compilation. Any existing
symbols will not be added, as described in the NOTES section above. This technique ensures that the order
of symbols remains unchanged, and that future shared libraries are compatible with existing ones.

/EXTERN_MODEL
/EXTERN_MODEL=option
/EXTERN_MODEL=RELAXED_REFDEF (D)

In conjunction with the /SHARE_GLOBALS qualifier, controls the initial extern model of the compiler.
Conceptually, the compiler behaves as if the first line of the program being compiled was a #pragma
extern_model directive with the model and psect name, if any, specified by the /EXTERN_MODEL
qualifier and with the SHR or NOSHR keyword specified by the /SHARE_GLOBALS qualifier.

For example, assume the command line contains the following qualifier:

155

Appendix A. Compiler
Command Qualifiers

/EXTERN_MODEL=STRICT_REFDEF="MYDATA"/NOSHARE

The compiler acts as if the program began with the following line:

 #pragma extern_model strict_refdef "MYDATA" noshr

For more information on the various models, see Section 2.1.1.4, “#pragma extern_model Directive”.

The /EXTERN_MODEL qualifier takes the following options, which have the same meaning as for the
#pragma extern_model directive:

COMMON_BLOCK
RELAXED_REFDEF
STRICT_REFDEF=["NAME"]
GLOBALVALUE

The default is RELAXED_REFDEF.

Use of an /EXTERN_MODEL value other than RELAXED_REFDEF should be limited to compilations
that either declare only POD (Plain Old Data) objects, or that carefully use the extern_model (and/or
environment) #pragma directives to ensure that declarations of non-POD objects appear only in source
that is subject to the default extern_model of relaxed_refdef.

/FIRST_INCLUDE
/FIRST_INCLUDE=(file[,...])
/NOFIRST_INCLUDE (D)

Includes the specified files before any source files. This qualifier corresponds to the Tru64 UNIX -FI switch.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the line before the first line of
the source were:

#include "file"

If more than one file is specified, the files are included in their order of appearance on the command line.

This qualifier is useful if you have command lines to pass to the C compiler that are exceeding the DCL
command-line length limit. Using the /FIRST_INCLUDE qualifier can help solve this problem by replacing
lengthy /DEFINE and /WARNINGS qualifiers with #define and #pragma message preprocessor
directives placed in a /FIRST_INCLUDE file.

The default is /NOFIRST_INCLUDE.

/FLOAT
/FLOAT=option
/FLOAT=G_FLOAT (Alpha only) (D)
/FLOAT=IEEE_FLOAT (I64 only) (D)

Controls the format of floating-point variables. The options are:

Option Usage

D_FLOAT double variables are represented in VAX D_floating format. float
variables are represented in VAX F_floating format. The __D_FLOAT
macro is predefined.

G_FLOAT double variables are represented in VAX G_floating format. float
variables are represented in VAX F_floating format. The __G_FLOAT
macro is predefined.

IEEE_FLOAT float and double variables are represented in IEEE floating-point
format (S_float and T_float, respectively). The __IEEE_FLOAT macro
is predefined. Use the /IEEE_MODE qualifier for controlling the
handling of IEEE exceptional values.

156

Appendix A. Compiler
Command Qualifiers

On Alpha systems, the default is /FLOAT=G_FLOAT.

On I64 systems, the default is /FLOAT=IEEE_FLOAT.

See Section 4.1.6, “Floating Point” for additional information on floating-point representation on I64 and
Alpha systems.

/GRANULARITY
/GRANULARITY=option
/GRANULARITY=QUADWORD (D)

Controls the size of shared data in memory that can be safely accessed from different threads. The possible
size values are BYTE, LONGWORD, and QUADWORD.

Specifying BYTE allows single bytes to be accessed from different threads sharing data in memory without
corrupting surrounding bytes. This option will slow runtime performance.

Specifying LONGWORD allows naturally aligned 4-byte longwords to be accessed safely from different
threads sharing data in memory. Accessing data items of 3 bytes or less, or unaligned data, may result in data
items written from multiple threads being inconsistently updated.

Specifying QUADWORD allows naturally aligned 8-byte quadwords to be accessed safely from different
threads sharing data in memory. Accessing data items of 7 bytes or less, or unaligned data, might result in
data items written from multiple threads being inconsistently updated. This is the default.

/IEEE_MODE
/IEEE_MODE=option
/IEEE_MODE=FAST (D) (Alpha only)
/IEEE_MODE=DENORM_RESULTS (D) (I64 only)

Selects the IEEE floating-point mode to be used if the /FLOAT=IEEE_FLOAT qualifier is specified. The
options are:

Option Usage

FAST During program execution, only finite values (no infinities, NaNs,
or denorms) are created. Underflows and denormal values are
flushed to zero. Exceptional conditions, such as floating-point
overflow, divide-by-zero, or use of an IEEE exceptional operand
are fatal.

UNDERFLOW_TO_ZERO Generate infinities and NaNs. Flush denormalized results and
underflow to zero without exceptions.

DENORM_RESULTS Same as the UNDERFLOW_TO_ZERO option, except that
denorms are generated.

INEXACT Same as the DENORM_RESULTS option, except that inexact
values are trapped. This is the slowest mode, and is not appropriate
for any sort of general-purpose computations.

On Alpha systems, the default is /IEEE_MODE=FAST.

On I64 systems, the default is /IEEE_MODE=DENORM_RESULTS.

The INFINITY and NAN macros defined in <math.h> are available to programs compiled with /
FLOAT=IEEE and /IEEE_MODE={anything other than FAST}.

On Alpha systems, the /IEEE_MODE qualifier generally has its greatest effect on the generated code of a
compilation. When calls are made between functions compiled with different /IEEE_MODE qualifiers, each
function produces the /IEEE_MODE behavior with which it was compiled.

On I64 systems, the /IEEE_MODE qualifier primarily affects only the setting of a hardware register at program
startup. In general, the /IEEE_MODE behavior for a given function is controlled by the /IEEE_MODE option

157

Appendix A. Compiler
Command Qualifiers

specified on the compilation that produced the main program: the startup code for the main program sets the
hardware register according the command-line qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the /IEEE_MODE qualifier does have
some effect: it might affect the evaluation of floating-point constant expressions, and it is used to set the
EXCEPTION_MODE used by the math library for calls from that compilation. But the qualifier has no
effect on the exceptional behavior of floating-point calculations generated as inline code for that compilation.
Therefore, if floating-point exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the same /IEEE_MODE setting.

Even on Alpha systems, the particular setting of /IEEE_MODE=UNDERFLOW_TO_ZERO has this
characteristic: its primary effect requires the setting of a runtime status register, and so it needs to be specified
on the compilation containing the main program in order to be effective in other compilations.

Also see the /FLOAT qualifier.

/IMPLICIT_INCLUDE
/IMPLICIT_INCLUDE (D)
/NOIMPLICIT_INCLUDE

/IMPLICIT_INCLUDE enables inclusion of source files as a method of finding definitions of template entities.
By default it is enabled for normal compilation, and disabled for preprocessing only. The search rules for
finding template definition files is the same as for include files.

/NOIMPLICIT_INCLUDE disables inclusion of source files as a method of finding definitions of template
entities. You might want to use this option in conjunction with the /STANDARD=MS command line option,
to match more closely the behavior on Microsoft C++.

/INCLUDE_DIRECTORY
/INCLUDE_DIRECTORY=(place[,...])
/NOINCLUDE_DIRECTORY (D)

Provides an additional level of search for user-defined include files. Each pathname argument can be either a
logical name or a legal UNIX style directory in a quoted string. The default is /NOINCLUDE_DIRECTORY.

The /INCLUDE_DIRECTORY qualifier provides functionality similar to the -I option of the cxx command
on Tru64 UNIX systems. This qualifier allows you to specify additional locations to search for files to include.
Putting an empty string in the specification prevents the compiler from searching any of the locations it
normally searches but directs it to search only in locations you identify explicitly on the command line with
the /INCLUDE_DIRECTORY And /LIBRARY qualifiers (or by way of the specification of the primary source
file, depending on the /NESTED_INCLUDE_DIRECTORY qualifier).

The basic order for searching depends on the form of the header name (after macro expansion), with additional
aspects controlled by other command line qualifiers as well as the presence or absence of logical name
definitions. The valid possibilities for names are as follows:

• Enclosed in quotes. For example: "stdio.h"

• Enclosed in angle brackets. For example: <stdio.h>

Unless otherwise defined, searching a location means that the compiler uses the string specifying the location
as the default file specification in a call to an RMS system service (that is, a $SEARCH/$PARSE) with a
primary file specification consisting of the name in the #include (without enclosing delimiters). The search
terminates successfully as soon as a file can be opened for reading.

pecifying a null string in the /INCLUDE qualifier causes the compiler to do a non-standard search. This search
path is as follows:

1. The current directory (quoted form only)

2. Any directories specified in the /INCLUDE qualifier

3. The directory of the primary input file

158

Appendix A. Compiler
Command Qualifiers

4. Text libraries specified on the command line using /LIBRARY

For standard searches, the search order is as follows:

1. Search the current directory (directory of the source being processed). If angle-bracket form, search only
if no directories are specified with /INCLUDE_DIRECTORY.

2. Search the locations specified in the /INCLUDE_DIRECTORY qualifier (if any).

3. If CXX$SYSTEM_INCLUDE is defined as a logical name, search CXX
$SYSTEM_INCLUDE:.HXX or just CXX$SYSTEM_INCLUDE:., depending on the qualifier /
ASSUME=NOHEADER_TYPE_DEFAULT. If nothing is found, go to step 6.

4. If CXX$LIBRARY_INCLUDE is defined as a logical name, CXX$LIBRARY_INCLUDE:.HXX or CXX
$LIBRARY_INCLUDE:., depending on the qualifier /ASSUME=NOHEADER_TYPE_DEFAULT. If
nothing is found, go to step 6.

5. If /ASSUME=HEADER_TYPE_DEFAULT is not specified, search the default list of locations for plain-
text copies of compiler header files as follows:

SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]
SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C].H

If /ASSUME=HEADER_TYPE_DEFAULT is specified, search the default list of locations for plain-text
copies of compiler header files as follows:

SYS$COMMON:[CXX$LIB.INCLUDE.DECC$RTLDEF_HXX].HXX
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF].H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C].H
SYS$COMMON:[CXX$LIB.INCLUDE.CXXL$ANSI_DEF]

6. Search the directory of the primary input file.

7. If quoted form, and CXX$USER_INCLUDE is defined as a logical name,
search CXX$USER_INCLUDE:.HXX or CXX$USER_INCLUDE:., depending on the /
ASSUME=NOHEADER_TYPE_DEFAULT qualifier.

8. Search the text libraries. Extract the simple file name and file type from the #include specification, and
use them to determine a module name for each text library. There are three forms of module names used
by the compiler:

a. type stripped:

The file type will be removed from the include file specification to form a library module name.
Examples:

#include "foo.h" Module name "FOO"
#include "foo" Module name "FOO"
#include "foo" Module name "FOO"

b. type required:

The file type must be a part of the file name. Examples:

#include "foo.h" Module name "FOO.H"
#include "foo" Module name "FOO."
#include "foo" Module name "FOO."

159

Appendix A. Compiler
Command Qualifiers

c. type optional:

First an attempt is made to find a module with the type included in the module name. If this is
unsuccessful, an attempt is made with the type stripped from the module name. If this is unsuccessful,
the search moves on to the next library.

If /ASSUME=HEADER_TYPE_DEFAULT is specified, the following text libraries are searched in this
order:

Libraries specified on the command line with the /LIBRARY qualifier (all files, type stripped)
CXX$TEXT_LIBRARY (all files, type stripped)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)
CXXL$ANSI_DEF (unspecified files, type stripped)

Otherwise, these text libraries are searched in this order:

Libraries specified on the command line with the /LIBRARY qualifier (all files, type optional)
CXX$TEXT_LIBRARY (all files, type optional)
CXXL$ANSI_DEF (all files, type required)
DECC$RTLDEF (H files and unspecified files, type stripped)
SYS$STARLET_C (all files, type stripped)

Two text library search examples (stop when something is found):

Example 1
#include "foo"

a. For each library specified via the /LIBRARY qualifier:

- Look for "FOO."
- Look for "FOO"

b. Look for "FOO." in CXX$TEXT_LIBRARY

c. Look for "FOO" in CXX$TEXT_LIBRARY

d. Look for "FOO." in CXXL$ANSI_DEF (Do not look for "FOO" because the type is required as part
of the module name)

e. Look for "FOO" in DECC$RTLDEF (not "FOO." because the type must not be part of the module name)

f. Look for "FOO" in SYS$STARLET_C (not "FOO." because the type must not be part of the module
name)

Example 2
#include "foo.h"

a. For each library specified via the /LIBRARY qualifier:

- Look for "FOO.H"
- Look for "FOO"

b. Look for "FOO.H" in CXX$TEXT_LIBRARY

c. Look for "FOO" in CXX$TEXT_LIBRARY

160

Appendix A. Compiler
Command Qualifiers

d. Look for "FOO.H" in CXXL$ANSI_DEF (Do not look for "FOO" because the type is required as part
of the module name)

e. Look for "FOO" in DECC$RTLDEF (not "FOO.H" because the type must not be part of the module
name)

f. Look for "FOO" in SYS$STARLET_C (not "FOO.H" because the type must not be part of the module
name)

g. If neither CXX$LIBRARY_INCLUDE nor CXX$SYSTEM_INCLUDE is defined as a logical name,
then search SYS$LIBRARY:.HXX.

/L_DOUBLE_SIZE
/L_DOUBLE_SIZE=option
/L_DOUBLE_SIZE=128 (D)

Determines how the compiler interprets the long double type. The qualifier options are 64 and 128.

Specifying /L_DOUBLE_SIZE=64 treats all long double references as G_FLOAT, D_FLOAT, or T_FLOAT,
depending on the value of the /FLOAT qualifier. Specifying /L_DOUBLE_SIZE=64 also defines the macro
__X_FLOAT=0.

Note: The /L_DOUBLE_SIZE=64 option is not available on I64 systems. If it is specified, the compiler issues
a warning message and uses /L_DOUBLE_SIZE=128.

Specifying /L_DOUBLE_SIZE=128 treats all long double references as X_FLOAT. The /
L_DOUBLE_SIZE=128 option also defines the macro __X_FLOAT=1. This is the default.

/LIBRARY

Indicates that the associated input file is a text library containing source text modules specified in #include
directives. The compiler searches the specified library for all #include module names that are not enclosed
in angle brackets or quotation marks. The name of the library must be concatenated with the file specification
using a plus sign. For example: CXX DATAB/LIBRARY+APPLICATION

/LINE_DIRECTIVES
/LINE_DIRECTIVES (D)
/NOLINE_DIRECTIVES

Controls whether #line directives appear in preprocessed output files.

/LIST
/LIST[=file-spec] (Batch default)
/NOLIST (Interactive default)

Controls whether a listing file is produced. The default output file extension is .LIS

/MACHINE_CODE
/NOMACHINE_CODE (D)

Controls whether the listing produced by the compiler includes the machine-language code generated during
the compilation. If you use this qualifier you also need to use the /LIST qualifier. On Alpha systems, machine-
language code is not added to the listing file when object-file generation is disabled (using the /NOOBJECT
qualifier).

/MAIN=POSIX_EXIT
/MAIN=POSIX_EXIT
/NOMAIN (D)

Directs the compiler to call __posix_exit instead of exit when returning from main.

161

Appendix A. Compiler
Command Qualifiers

/MEMBER_ALIGNMENT
/MEMBER_ALIGNMENT (D)
/NOMEMBER_ALIGNMENT

Directs the compiler to naturally align data structure members. This means that data structure members are
aligned on the next boundary appropriate to the type of the member, rather than on the next byte. For instance,
a long variable member is aligned on the next longword boundary; a short variable member is aligned on the
next word boundary.

Any use of the #pragma member_alignment or #pragma nomember_alignment directives within
the source code overrides the setting established by this qualifier. Specifying /NOMEMBER_ALIGNMENT
causes data structure members to be byte-aligned (with the exception of bit-field members).

/MMS_DEPENDENCIES
/MMS_DEPENDENCIES[=(option[,option)]]
/NOMMS_DEPENDENCIES (D)

Instructs the compiler to produce a dependency file. The format of the dependency file is as follows:

object_file_name:<tab><source file name>
object_file_name:<tab><full path to first include file>
object_file_name:<tab><full path to second include file>

You can specify none, one, or both of the following qualifier options:

FILE[=filespec] Specifies where to save the dependency file. The default file
extension for a dependency file is .mms. Other than using a
different default extension, this qualifier uses the same procedure
that /OBJECT and /LIST use for determining the name of the
output file.

SYSTEM_INCLUDE_FILES Specifies whether to include dependency information about
system include files (that is, those included with #include
<filename>). The default is to include dependency information
about system include files.

/MODEL (Alpha only)
/MODEL={ANSI | ARM}
/MODEL=ARM (D)

On Alpha systems, determines the layout of C++ classes, name mangling, and exception handling.

On I64 systems, the default (and only) object model & demangling scheme used is the I64 Application Binary
Interface (ABI). The compiler accepts the /MODEL qualifier, but it has no effect.

On Alpha systems, /MODEL=ARM is the default and generates objects that are link compatible with all
releases prior to VSI C++ version 6.3, and with all objects compiled with the /MODEL=ARM qualifier in
releases of VSI C++ Version 6.3 or later. Specifying this option defines the macro __MODEL_ARM.

The /MODEL=ANSI qualifier supports the complete ISO/ANSI C++ specification, including distinct name
mangling for templates. The ANSI model also reduces the size of C++ non-POD class objects. Note that this
option generates objects that are not compatible with all prior and future releases of VSI C++, or with objects
compiled using the /MODEL=ARM qualifier.

If you specify the /MODEL=ANSI qualifier, you must recompile and relink (using CXXLINK/
MODEL=ANSI) your entire application, including libraries. Specifying this option defines the macro
__MODEL_ANSI.

162

Appendix A. Compiler
Command Qualifiers

/NAMES
/NAMES=(option1,option2)
/NAMES=(UPPERCASE,TRUNCATED) (D)

Option1 converts all definitions and references of external symbols and psects to the case specified. Option1
values are:

Option Usage

UPPERCASE Converts to uppercase.
AS_IS Leaves the case as specified in the source.

Option2 controls whether or not external names greater than 31 characters get truncated or shortened. Option2
values are:

Option Usage

/NAMES=TRUNCATED (default) Truncates long external names to the first 31 characters.
/NAMES=SHORTENED Shortens long external names.

A shortened name consists of the first 23 characters of the name
followed by a 7-character Cyclic Redundancy Check (CRC)
computed by looking at the full name, and then a "$".

The default is /NAMES=(UPPERCASE,TRUNCATED).

Note
The I64 C++ compiler has some additional encoding rules that are applied to symbol names after the ABI name
mangling is determined. All symbols with C++ linkage have CRC encodings added to the name, are uppercased
and shorten to 31 characters if necessary. Since the CRC is computed before the name is uppercased, the symbol
name is case-sensitive even though the final name is in uppercase. /NAMES=AS_IS and /NAMES=UPPER are
not applicable to these symbols.

All symbols without C++ linkage will have CRC encodings added if they are longer then 31 characters and /
NAMES=SHORTEN is specified. Global variables with C++ linkage are treated as if they have non-C++ linkage
for compatibility with C and older compilers.

/NESTED_INCLUDE_DIRECTORY
/NESTED_INCLUDE_DIRECTORY[=option]
/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (D)

Controls the first step in the search algorithm the compiler uses when looking for files included
using the quoted form of the #include preprocessing directive: #include "file-spec" The /
NESTED_INCLUDE_DIRECTORY qualifier has the following options:

Option Usage

PRIMARY_FILE Directs the compiler to search the default file type for headers
using the context of the primary source file. This means that only
the file type (".H" or ".") is used for the default file-spec but, in
addition, the chain of "related file-specs" used to maintain the
sticky defaults for processing the next top-level source file is
applied when searching for the include file.

INCLUDE_FILE Directs the compiler to search the directory containing the
file in which the #include directive itself occurred. The
meaning of "directory containing" is: the RMS "resultant string"
obtained when the file in which the #include occurred was
opened, except that the filename and subsequent components are

163

Appendix A. Compiler
Command Qualifiers

Option Usage
replaced by the default file type for headers (".H", or just "." if /
ASSUME=NOHEADER_TYPE_DEFAULT is in effect). The
"resultant string" will not have translated any concealed device
logical.

NONE Directs the compiler to skip the first step of processing #include
"file.h" directives. The compiler starts its search for the
include file in the /INCLUDE_DIRECTORY directories.

For more information on the search order for included files, see the /INCLUDE_DIRECTORY qualifier.

/OBJECT
/OBJECT[=file-spec]
/OBJECT=.OBJ (D)
/NOOBJECT

Controls whether the compiler produces an output object module. The default output file extension is .OBJ.

Note that the /OBJECT qualifier has no impact on the output file of the /MMS_DEPENDENCIES qualifier.

/OPTIMIZE
/OPTIMIZE[=option]
/OPTIMIZE=(LEVEL=4,INLINE=AUTOMATIC,INTRINSICS,UNROLL=0,
NOOVERRIDE_LIMITS,TUNE=GENERIC) (D)
/NOOPTIMIZE

Controls the level of code optimization that the compiler performs. The options are as follows:

Option Usage

LEVEL=n Selects the level of code optimization. Specify an integer from 0 (no optimization)
to 5 (full optimization).
Provides inline expansion of functions that yield optimized code when they are
expanded. You can specify one of the following keywords to control inlining:
NONE No inlining is done, even if requested by the language

syntax.
MANUAL Inlines only those function calls for which the program

explicitly requests inlining.
AUTOMATIC Inlines all of the function calls in the MANUAL

category, plus additional calls that the compiler
determines are appropriate on this platform. On Alpha
systems, the heuristics for AUTOMATIC are similar
to those for SIZE; on I64 systems, they are more like
those for SPEED. AUTOMATIC is the default.

SIZE Inlines all of the function calls in the MANUAL
category plus any additional calls that the compiler
determines would improve run-time performance
without significantly increasing the size of the
program.

SPEED Performs more aggressive inlining for run-time
performance, even when it might significantly increase
the size of the program.

[NO]INLINE

ALL Inlines every call that can be inlined while still
generating correct code. Recursive routines, however,
will not cause an infinite loop at compile time. On I64
systems, ALL is treated as if SIZE had been specified.

164

Appendix A. Compiler
Command Qualifiers

Option Usage
Note that /OPT=INLINE=ALL is not recommended
for general use, because it performs very aggressive
inlining and can cause the compiler to exhaust virtual
memory or take an unacceptably long time to compile.

[NO]OVERRIDE_LIMITS
(I64 only)

Controls whether or not the compiler uses certain built-in limits on the size and
complexity of a function to "throttle back" the amount of optimization performed
in order to reduce the likelihood that the compiler will use excessive memory
resources or CPU time attempting to optimize the code.

The default is NOOVERRIDE_LIMITS, which means that when compiling
a function that has an unusually large number of basic blocks, live variables,
or other properties that tend to cause the optimizer to use extra resources,
the informational message OPTLIMEXC might be issued to notify you that
optimization has been reduced to avoid excessive resource use.

You can choose to ignore this message or disable it (the message is not issued on
compilations with optimization disabled).

Or you can specify /OPTIMIZE=OVERRIDE_LIMITS, which instructs the
compiler to not check the limits and to attempt full optimization no matter how
large or complex the function, knowing that the compilation might exhaust
memory or seem to be in a loop.

If using /OPTIMIZE=OVERRIDE_LIMITS does result in excessive resource
use, you are sure that the compiler process has plenty of memory quota available,
you are convinced that the compilation does not contain any unusually large or
complex functions, and you can provide complete source code, then you might
want to contact your support channel to see if there is a problem in the compiler
causing it to use more resources than it should for the particular compilation at
hand.
Specifies the preferred processor for execution. This option makes some decisions
preferentially for the specified processor (for example, for code scheduling).
Note that code valid only for the specified processor can be generated. However,
parallel code can be generated for processors down to the specified architecture
level if necessary; that is, tuning specifies the preferred target, while architecture
level specifies a lower boundary on available processor features.

For example, /ARCHITECTURE=EV56/OPTIMIZE=TUNE=EV6 specifies
that the code does not need to run on a processor older than an EV56, and that
the code will probably run on an EV6. The generated code will run on all EV56
and later systems without any emulation. The code might have run-time selected
conditional regions specifically for EV6. Also, note that because emulation is
provided, the code should run, but potentially at very significantly reduced speed,
on pre-EV56 processors.

The options for TUNE are the same as the options for /ARCH. You can specify
one of the following keywords:
GENERIC Selects instruction tuning that is appropriate for all

implementations of the operating system architecture.
This option is the default.

HOST Selects instruction tuning that is appropriate for the
machine on which the code is being compiled.

TUNE

ITANIUM2 (I64 only) Selects instruction tuning for the Intel Itanium 2
processor.

165

Appendix A. Compiler
Command Qualifiers

Option Usage

EV5 (Alpha only) Selects instruction tuning for the 21164
implementation of the operating system architecture.

EV56 (Alpha only) Selects instruction tuning for the 21164
implementation of the operating system architecture.

PCA56 (Alpha only) Selects instruction tuning for 21164 chip
implementations that use the byte- and word-
manipulation instruction extensions of the Alpha
architecture.

Running programs compiled with the EV56 keyword
might incur emulation overhead on EV4 and EV5
processors, but will still run correctly on OpenVMS
Version 7.1 (or later) systems.

PCA56 (Alpha only) Selects instruction tuning for the 21164PC chip
implementation that uses the byte- and word-
manipulation instruction extensions and multimedia
instruction extensions of the Alpha architecture.

Programs compiled with the PCA56 keyword might
incur emulation overhead on EV4, EV5, and EV56
processors, but will still run correctly on OpenVMS
Version 7.1 (or later) systems.

EV6 (Alpha only) Selects instruction tuning for the first-generation
21264 implementation of the Alpha architecture.

EV67 (Alpha only) Selects instruction tuning for the second-generation
21264 implementation of the Alpha architecture.

[NO]INTRINSICS Controls whether certain functions are handled as intrinsic functions without
explicitly enabling each of them as an intrinsic through the #pragma
intrinsic preprocessor directive.

Functions that can be handled as intrinsics are:

Main Group - ANSI:

abs atanl atan2l ceill cosl floorf memcpy sinf
atan atan ceil cos fabs floorl memmove sinl
 sin
atanf atan2f ceilf cosf floor labs memset strcpy
 strlen

Main Group - Non-ANSI:

 alloca atand2 bzero sind
 atand bcopy cosd

Printf functions:

 fprintf printf sprintf

Printf non-ANSI:

 snprintf

ANSI math functions that set errno, thereby requiring /
ASSUME=NOMATH_ERRNO:

166

Appendix A. Compiler
Command Qualifiers

Option Usage
acos asinf coshl log log10f powl sqrt tanf
acosf asinl exp logf log10l sinh sqrtf tanl
acosl cosh expf logl pow sinhf sqrtl tanh
 tanhl
asin coshf expl log10 powf sinhl tan tanhf

Non-ANSI math functions that set errno, thereby requiring /
ASSUME=NOMATH_ERRNO:

 log2 tand

The /OPTIMZE=INTRINSICS qualifier works with /OPTIMIZE=LEVEL=n and
some other qualifiers to determine how intrinsics are handled:

• If the optimization level specified is less than 4, the intrinsic-function
prototypes and call formats are checked, but normal run-time calls are still
made.

• If the optimization level is 4 or higher, intrinsic code is generated.

• Intrinsic code is not generated for math functions that set the errno variable
unless /ASSUME=NOMATH_ERRNO is specified. Such math functions,
however, do have their prototypes and call formats checked.

The default is /OPTIMIZE=INTRINSICS, which turns on this handling.

To turn it off, use /NOOPTIMIZE or /OPTIMIZE=NOINTRINSICS.
UNROLL=n Controls loop unrolling done by the optimizer. Specify a positive integer to

indicate the number of times to unroll loop bodies. If you specify 0 or do not
supply a value, the optimizer determines its own unroll amount. The default is
UNROLL=0. Specifying UNROLL=1 effectively disables loop unrolling.

On I64 systems, you do not have the ability to control the number of times a loop
is unrolled. You can either disable loop unrolling with UNROLL=1, or accept the
UNROLL=0 default, which lets the optimizer determine the unroll amount.

The default is /OPTIMIZE, which is equivalent to /OPTIMIZE=LEVEL=4.

PENDING_INSTANTIATIONS
/PENDING_INSTANTIATIONS[=n]
/PENDING_INSTANTIATIONS=64(D)

Limit the depth of recursive instantiations so that infinite instantiation loops can be detected before some
resource is exhausted. The /PENDING_INSTANTIATIONS qualifier requires a positive non-zero value as
argument and issues an error when n instantiations are pending for the same class template. The default value
for n is 64.

/POINTER_SIZE
/POINTER_SIZE=option
/NOPOINTER_SIZE (D)

Controls whether pointer-size features are enabled, and whether pointers are 32 bits or 64 bits long.

On both Alpha and I64 systems, the default is /NOPOINTER_SIZE, which disables pointer-size features,
such as the ability to use #pragma pointer_size, and directs the compiler to assume that all pointers
are 32-bit pointers. This default represents no change over previous versions of VSI C++.

You can specify one of the following options:

167

Appendix A. Compiler
Command Qualifiers

SHORT The compiler assumes 32-bit pointers.
32 Same as SHORT.
LONG The compiler assumes 64-bit pointers.
LONG[=ARGV] The compiler assumes 64-bit pointers. If the ARGV option to LONG or

64 is present, the main argument argv will be an array of long pointers
instead of an array of short pointers. (I64 only)

64 Same as LONG.

Specifying /POINTER_SIZE=32 directs the compiler to assume that all pointers are 32-bit pointers. But unlike
the default of /NOPOINTER_SIZE, /POINTER_SIZE=32 enables use of the #pragma pointer_size
long and #pragma pointer_size short preprocessor directives to control pointer size throughout
your program.

Specifying /POINTER_SIZE=64 directs the compiler to assume that all pointers are 64-bit pointers, and also
enables use of the #pragma pointer_size directives.

/PREFIX_LIBRARY_ENTRIES
/PREFIX_LIBRARY_ENTRIES=(option,...)
/NOPREFIX_LIBRARY_ENTRIES
/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES (D)

Controls C Run-Time Library (RTL) name prefixing. For user programs that do not include the ANSI header
files but call the ANSI library, the compiler automatically adds a DECC$ prefix to all C RTL library calls
just before the name for the external reference or global definition is put into the object file. The C RTL
shareable image (DECC$SHR.EXE) resides in IMAGELIB.OLB with a DECC$ prefix for its entry points.
Every external name in IMAGELIB.OLB has a DECC$ prefix, and, therefore, has an OpenVMS-conformant
name space (a requirement for inclusion in IMAGELIB).

The options are as follows:

Option Usage

EXCEPT=(name,...) The names specified are not prefixed.
ALL_ENTRIES All VSI C++ names are prefixed.

Note: ALL_ENTRIES prefixes all functions defined by the C99
standard, including those that may not be supported in the current
run-time library. So calling functions introduced in C99 that are not
yet implemented in the OpenVMS C RTL will produce unresolved
references to symbols prefixed by DECC$ when the program is
linked. In addition, the compiler will issue a CC-W-NOTINCRTL
message when it prefixes a name that is not in the current C RTL.

ANSI_C89_ENTRIES Only ANSI/ISO C library names are prefixed.
RTL=name References to the C RTL, indicated by NAME, are generated.

NAME must be 1017 characters or fewer.

If you want no names prefixed, specify /NOPREFIX_LIBRARY_ENTRIES.

/PREPROCESS_ONLY
/PREPROCESS_ONLY[=filename]
/NOPREPROCESS_ONLY (D)

Causes the compiler to perform only the actions of the preprocessor phase and write the resulting processed
text out to a file. The default output file extension is .IXX. Use of /PREPROCESS_ONLY prevents the
generation of an object or XREF file.

168

Appendix A. Compiler
Command Qualifiers

/PSECT_MODEL
/PSECT_MODEL=MULTILANGUAGE
/PSECT_MODEL=NOMULTILANGUAGE (D)

Controls whether the compiler allocates the size of overlaid psects to ensure compatibility when the psect is
shared by code created by other VSI compilers.

This qualifier solves a problem that can occur when a psect generated by a Fortran COMMON block is overlaid
with a psect consisting of a C struct. Because Fortran COMMON blocks are not padded, if the C struct is
padded, the inconsistent psect sizes can cause linker error messages.

Compiling with /PSECT_MODEL=MULTILANGUAGE ensures that the compiler uses a
consistent psect size allocation scheme. The corresponding Fortran squalifier is /
ALIGN=COMMON=[NO]MULTILANGUAGE.

The default is /PSECT=NOMULTILANGUAGE, which should be sufficient for most applications.

/PURE_CNAME
/PURE_CNAME (D) (/STANDARD=STRICT_ANSI)
/NOPURE_CNAME (D) (All other modes)

Affects insertion of the names into the global namespace by <cname> headers.

In /PURE_CNAME mode, the <cname> headers insert the names into the std namespace only, as defined
by the C++ Standard. In this mode, the __PURE_CNAME and __HIDE_FORBIDDEN_NAMES macros are
predefined by the compiler.

In /NOPURE_CNAME mode, the <cname> headers insert the name into the std namespace and also into
the global namespace. In this mode, the __PURE_CNAME and __HIDE_FORBIDDEN_NAMES macros are
not predefined by the compiler.

The default depends on the standard mode:

• In /STANDARD=STRICT_ANSI mode, the default is /PURE_CNAME.

• In all other standard modes, the default is /NOPURE_CNAME.

Inclusion of a <name> header instead of its <cname> counterpart (for example, <stdio.h> instead of
<cstdio>) results in inserting names defined in the header into both the std namespace and the global
namespace. Effectively, this is the same as the inclusion of a <cname> header in /NOPURE_CNAME mode.

/QUIET
/QUIET
/NOQUIET (D)

Specifying /QUIET causes the compiler to report errors like the Version 5.n compiler (issue fewer messages).
This is the default for ARM mode (/STANDARD=ARM). All other modes default to /NOQUIET.

Use /WARNINGS=ENABLE to enable specific messages normally disabled with /QUIET.

/REENTRANCY
/REENTRANCY=option
/REENTRANCY=TOLERANT (D)

Controls the type of reentrancy that reentrant C RTL routines exhibit. (See also the DECC
$SET_REENTRANCY RTL routine.)

This qualifier is for use only with a module containing the main routine.

The reentrancy level is set at run time according to the /REENTRANCY qualifier specified while compiling
the module containing the main routine. This option affects the behavior of the C RTL, but has no effect on
the C++ libraries.

169

Appendix A. Compiler
Command Qualifiers

You can specify one of the following options:

Option Usage

AST Uses the __TESTBITSSI built-in function to perform simple locking
around critical sections of RTL code, and may additionally disable
asynchronous system traps (ASTs) in locked region of codes. This type
of locking should be used when AST code contains calls to VSI C RTL
I/O routines.

MULTITHREAD Designed to be used in conjunction with the DECthreads product. It
performs DECthreads locking and never disables ASTs.

NONE Gives optimal performance in the RTL, but does absolutely no locking
around critical sections of RTL code. It should be used only in a single
threaded environment when there is no chance that the thread of
execution will be interrupted by an AST that would call the C RTL.

TOLERANT Uses the __TESTBITSSI built-in function to perform simple locking
around critical sections of RTL code, but ASTs are not disabled. This
type of locking should be used when ASTs are used and must be
delivered immediately. This is the default reentrancy type.

/REPOSITORY
/REPOSITORY=(PATHNAME [,...])
/REPOSITORY=[.CXX_REPOSITORY] (D)

Specifies a repository that C++ uses to store requested template instantiations. The default is /
REPOSITORY=[.CXX_REPOSITORY]. If multiple repositories are specified, only the first is considered
writable and the default repository is ignored unless specified.

/ROUNDING_MODE
/ROUNDING_MODE=option
/ROUNDING_MODE=NEAREST (D)

Lets you select an IEEE rounding mode if /FLOAT=IEEE_FLOAT is specified. The options are as follows:

Option Usage

CHOPPED Rounds toward 0.
DYNAMIC Sets the rounding mode for IEEE floating-point instructions

dynamically, as determined from the contents of the floating-point
control register.

MINUS_INFINITY Rounds toward minus infinity.
NEAREST Sets the normal rounding mode (unbiased round to nearest). This is the

default.

If you specify either /FLOAT=G_FLOAT or /FLOAT=D_FLOAT, then rounding defaults to /
ROUNDING_MODE=NEAREST, with no other choice of rounding mode.

/RTTI
/RTTI (D)
/NORTTI (Alpha only)

Enables or disables support for RTTI (runtime type identification) features: dynamic_cast and typeid.
Disabling runtime type identification can also save space in your object file because static information to
describe polymorphic C++ types is not generated. The default is to enable runtime type information features
and generate static information in the object file. The /RTTI qualifier defines the macro __RTTI.

Note that specifying /NORTTI does not disable exception handling.

170

Appendix A. Compiler
Command Qualifiers

/SHARE_GLOBALS
/SHARE_GLOBALS
/NOSHARE_GLOBALS (D)

Controls whether the initial extern_model is shared or not shared (for those extern_models where it is
allowed). The initial extern_model of the compiler is a fictitious pragma constructed from the settings of the /
EXTERN_MODEL and /SHARE_GLOBALS.

The default value is /NOSHARE_GLOBALS, which has the following effects:

• When linking old object files or object libraries with newly produced object files, you might get "conflicting
attributes for psect" messages, which can be safely ignored as long as you are not building shareable
libraries.

• The /noshare_globals default makes building shareable libraries easier.

/SHOW
/SHOW=(option[,...])
/SHOW=(HEADER,SOURCE) (D)

Used with the /LIST qualifier to set or cancel specific listing options. You can select the following options:

Option Usage

ALL Print all listing information.
[NO]HEADER Print/do not print header lines at the top of each page (D = HEADER)
[NO]INCLUDE Print/do not print contents of #include files (D = NOINCLUDE)
NONE Print no listing information
[NO]SOURCE Print/do not print source file statements (D = SOURCE)
[NO]STATISTICS Print/do not print compiler performance statistics (D =

NOSTATISTICS). On I64 systems, the /SHOW=STATISTICS option is
ignored.

/STANDARD
/STANDARD=(option)
/STANDARD=RELAXED (D)

The compiler implements the International ANSI C++ Standard. The /STANDARD qualifier directs the
compiler to interpret source code according to certain nonstandard syntax conventions followed by other
implementations of the C++ language. The options are:

Option
Usage

RELAXED Allow language constructs required by the International ANSI C++
Standard. This mode also supports some non-ANSI extensions and
issues messages for some nonstandard usage that does not strictly
comply with the standard. This is the default compiler mode. This
option also defines the macro __STD_ANSI. Please note that ANSI is
accepted as a synonym for RELAXED to be compatible with previous C
++ versions.

ARM Minimize source changes when compiling programs developed using
Version 5.n. This option also defines the macro __STD_ARM. The /
STANDARD=ARM qualifier uses the pre-ansi AT&T version of the
iostream library and defines the macro __NO_USE_STD_IOSTREAM.

CFRONT As of VSI C++ Version 7.1, support for /STANDARD=CFRONT is
retired.

171

Appendix A. Compiler
Command Qualifiers

Option
Usage

GNU Use this option if you want to compile programs developed using
the GNU C++ compiler. This option also defines the __STD_GNU
macro. The /STANDARD=GNU qualifier uses the pre-ansi
AT&T version of the iostream library and defines the macro
__NO_USE_STD_IOSTREAM. The following changes in behavior are
provided for compatibility with the GNU C++ compiler:

• These options are enabled by default:

/ALTERNATIVE_TOKENS
/TEMPLATE_DEFINE=LOCAL
/NOIMPLICIT_INCLUDE

• Access control is not enforced for types defined inside a class.

• Unrecognized character escape sequences in string literals produce an
informational instead of a warning message.

• The __INLINE keyword is enabled and is equivalent to inline.

• The severity of the error "incompatible parameter" (tag
incompatibleprm) is reduced to warning.

• When overloading, enum types are treated as integral types.

The following known incompatibility is not addressed in the /
STANDARD=GNU mode:

• The compiler strictly enforces the requirement to define functions
before they are used. This requirement also applies to built-in
functions such as strlen.

MS Allow language constructs supported by the Visual C++ compiler. This
option also defines the macro __STD_MS. The /STANDARD=MS
qualifier uses the pre-ansi AT&T version of the iostream library and
defines the macro __NO_USE_STD_IOSTREAM.

STRICT_ANSI Enforce the ANSI standard strictly but permit some ANSI violations
that should be errors to be warnings. This option also defines the macro
__STD_STRICT_ANSI. To force ANSI violations to be issued as errors
instead of warnings, use /WARNINGS=ANSI_ERRORS in addition
to /STANDARD=STRICT_ANSI. This combination defines the macro
__STD_STRICT_ANSI_ERRORS. The /STANDARD=STRICT_ANSI
qualifier uses the ANSI/ISO standard version of the iostream library and
defines the macro __USE_STD_IOSTREAM.

LATEST Latest C++ standard dialect (Alpha, I64). /STANDARD=LATEST is
currently equivalent to /STANDARD=STRICT_ANSI, but is subject to
change when newer versions of the C++ standard are released.

For more information on the effect of the /STANDARD qualifier on VSI C++ compile-time error checking,
Section E.1, “Compatibility with Other C++ Compilers”.

/TEMPLATE_DEFINE=(option,...)
/NOTEMPLATE_DEFINE

Controls compiler behavior pertaining to the instantiation of C++ templates. See Chapter 5, Using Templates
for details on how to instantiate templates using this qualifier.

Note that you must specify a value for /TEMPLATE_DEFINE.

172

Appendix A. Compiler
Command Qualifiers

Select only one of the following optional values to determine the template instantiation model:

Option Usage

ALL Instantiate all template entities declared or referenced in the
compilation unit, including typedefs. For each fully instantiated
template class, all its member functions and static data members
are instantiated even if they were not used. Nonmember template
functions are instantiated even if the only reference was a
declaration. Instantiations are created with external linkage.
Overrides /REPOSITORY at compile time. Instantiations are
placed in the user's object file

ALL_REPOSITORY Instantiate all templates declared or used in the source program
and put the object code generated as separate object files in
the repository. Instantiations caused by manual instantiation
directives are also put in the repository. This is similar to /
TEMPLATE_DEFINE=ALL except that explicit instantiations are
also put in the repository, rather than than an external symbol being
put in the main object file. This qualifier is useful for creating a
pre-instantiation library.

AUTOMATIC Directs the compiler to use the automatic instantiation model of C+
+ templates. /TEMPLATE_DEFINE=AUTOMATIC is the default.

NOAUTOMATIC Directs the compiler to not implicitly instantiate templates.
IMPLICIT_LOCAL Same as /TEMPLATE_DEFINE=LOCAL, except manually

instantiated templates are placed in the repository with external
linkage. This is useful for build systems that need to have explicit
control of the template instantiation mechanism. This mode can
suffer the same limitations as /TEMPLATE_DEFINE=LOCAL.
This mode is the default when /STANDARD=GNU is specified.

LOCAL Similar to /TEMPLATE_DEFINE=USED except that the
functions are given internal linkage. This qualifier provides
a simple mechanism for getting started with templates. The
compiler instantiates as local functions the functions used in each
compilation unit, and the program links and runs correctly (barring
problems resulting from multiple copies of local static variables).
However, because many copies of the instantiated functions can be
generated, this qualifier might not be not suitable for production
use.

The /TEMPLATE_DEFINE=LOCAL qualifier cannot be
used in conjunction with automatic template instantiation.
If automatic instantiation is enabled by default, it is
disabled by the /TEMPLATE_DEFINE=LOCAL qualifier.
Explicit use of /TEMPLATE_DEFINE=LOCAL and /
TEMPLATE_DEFINE=AUTO is an error.

USED Instantiate those template entities that were used in the compilation.
This includes all static data members for which there are template
definitions. Overrides /TEMPLATE_DEFINE=AUTO at compile
time.

USED_REPOSITORY Like ALL_REPOSITORY, but instantiates only templates used by
the compilation. The explicit instantiations are also put into the
repository as separate object files.

The following /TEMPLATE_DEFINE optional values are independent of the model used and each other:

173

Appendix A. Compiler
Command Qualifiers

Option Usage

DEFINITION_FILE_TYPE="file-type-
list"

Specifies a string that contains a list of file types that are valid for
template definition files. Items in the list must be separated by
commas and preceded by a period. A type is not allowed to exceed
the OpenVMS limit of 31 characters. This qualifier is applicable
only when automatic instantiation has been specified. The default
is /TEMPLATE_DEFINE=DEF=".CXX,.C,.CC,.CPP".

PRAGMA Determines whether the compiler ignores #pragma
define_template directives encountered during the
compilation. This qualifier lets you quickly switch to automatic
instantiation without having to remove all the pragma
directives from your program's code base. The default is /
TEMPLATE_DEFINE=PRAGMA, which enables #pragma
define_template.

VERBOSE Turns on verbose or verify mode to display each phase of
instantiation as it occurs. During the compilation phase,
informational level diagnostics are generated to indicate which
templates are automatically being instantiated. This qualifier is
useful as a debugging aid.

TIMESTAMP (Alpha only) only applicable if a repository is being used. Causes the compiler
to create a timestamp file named TIMESTAMP. in the repository.
Thereafter, instantiations are added or regenerated only if needed;
that is, if they do not alreay exist, or if existing ones are older than
the timestamp. Also see /REPOSITORY.

Also see /PENDING_INSTANTIATIONS.

/UNDEFINE
/UNDEFINE=(identifier[,...])
/NOUNDEFINE (D)

Performs the same function as the #undefine preprocessor directive: it cancels a macro definition.

The /UNDEFINE qualifier is useful for undefining the predefined C++ preprocessor constants. For example,
if you use a preprocessor constant to conditionally compile segments of code specific to C++ for OpenVMS
systems, you can undefine constants to see how the portable sections of your program execute. For example:

/UNDEFINE="deccxx"

When both /DEFINE and /UNDEFINE are present on the CXX command line, /DEFINE is evaluated before /
UNDEFINE.

/UNSIGNED_CHAR
/UNSIGNED_CHAR
/NOUNSIGNED_CHAR (D)

The /UNSIGNED_CHAR qualifier changes the default for all char types from signed to unsigned. The /
NOUNSIGNED_CHAR qualifier causes all plain char declarations to have the same representation and set
of values as signed char declarations.

/USING_STD
/USING_STD
/NOUSING_STD (D)

Controls whether standard library header files are processed as though the compiled code were written as
follows:

using namespace std;
#include <header>

174

Appendix A. Compiler
Command Qualifiers

These options are provided for compatibility for users who do not want to qualify use of each standard library
name with std:: or put using namespace std; at the top of their sources.

/USING_STD turns implicit using namespace std on; this is the default when compiling /
STANDARD=ARM, /STANDARD=GNU, /STANDARD=MS, or /STANDARD=RELAXED.

/NOUSING_STD turns implicit using namespace std off; this is the default when compiling /
STANDARD=STRICT_ANSI.

/VERSION
/VERSION
/NOVERSION (D)

Causes the compiler to identify (print out) its version and operating system. The listing file also contains the
compiler version. You cannot specify this qualifier with any other qualifiers.

/WARNINGS
/WARNINGS[=(option[,...])]
/WARNINGS (D)
/NOWARNINGS

Controls the issuance of compiler diagnostic messages and lets you modify the severity of messages.

The default qualifier, /WARNINGS, outputs all enabled warning and informational messages for the compiler
mode you are using. The /NOWARNINGS qualifier suppresses warning and informational messages.

Options apply only to warning and informational messages.

The message-list in the following table of options can be any one of the following:

• A single message identifier (within parentheses, or not). The message identifier is the name following the
message severity letter on the first line of an issued message. For example, in the following message, the
message identifier is GLOBALEXT:

%CC-W-GLOBALEXT, a storage class of globaldef, globalref, or
 globalvalue
is a language extension.

• A comma-separated list of message identifiers, enclosed in parentheses.

• The keyword ALL.

The options are processed and take effect in the following order:

NOWARNINGS Suppresses warnings.
NOINFORMATIONALS Suppresses informational messages.
ENABLE=message-list Enables issuance of the specified messages. Can be used to enable

specific messages that normally would not be issued when using /
QUIET or messages disabled with /WARNINGS=DISABLE.

DISABLE=message-list Disables issuance of the specified messages. Can be used for any
nonerror message specified by a message number or tag. Specify
ALL to suppress all informationals and warnings.

INFORMATIONALS=message-list Sets the severity of all specified messages to Informational. Fatal
and Error messages cannot be made less severe. Can also be used to
enable informationals that are disabled by default.

Note: With C++ Version 7.1, using /
WARNINGS=INFORMATIONALS=<tag> no longer enables all
other informational messages.

175

Appendix A. Compiler
Command Qualifiers

WARNINGS=message-list Sets the severity of the specified messages to Warning. Fatal and
Error messages cannot be made less severe.

[NO]ANSI_ERRORS Issues error messages for all ANSI violations
when in STRICT_ANSI mode. The default is /
WARNINGS=NOANSI_ERRORS.

[NO]TAGS Displays a descriptive tag at the end of each message. "D" indicates
that the severity of the message can be controlled from the
command line. The tag displayed can be used as the message
identifier in the /WARNINGS qualifier options.

ERRORS=message-list Sets the severity of the specified messages to Error.

Supplied Error and Fatal messages cannot be made less severe.
(Exception: A message can be upgraded from Error to Fatal, then
later downgraded to Error again, but it can never be downgraded
from Error.)

Warnings and Informationals can be made any severity.
FATALS=message-list Sets the severity of the specified messages to Fatal.

Also see the #pragma message preprocessor directive.

/XREF (Alpha only)
/XREF[=file-spec]
/NOXREF (D)

Controls whether the compiler generates a file of source code analysis information. The default file name is
the file name of the primary source file; the default file type is .XREF. Use the SCA IMPORT command to
convert an .XREF file into an analysis data file that is ready for loading into an SCA library.

176

Appendix B. Programming Tools

Appendix B. Programming Tools
This appendix provides information on tools that you can use to develop and refine your C++ programs. Some
ship with the OpenVMS operating system but others require separate purchase.

B.1. VSI Language-Sensitive Editor
The VSI Language-Sensitive Editor (LSE) is a text editor intended specifically for software development. LSE
includes the following features:

• Formatted language constructs, or templates, for most VSI programming languages. These templates include
keywords and required punctuation, and use placeholders to indicate where to insert optional or required code.

• Commands for compiling, reviewing, and correcting compilation errors from within the editor.

• Integration with VSI Code Management System (CMS). You can enter CMS commands from within the editor
to coordinate the progress of program development on OpenVMS systems. For more information on CMS, see
the Guide to DEC Code Management System.

B.1.1. Starting and Terminating an LSE Session
To invoke LSE and associate a buffer with C++, use the following syntax:

LSEDIT [/qualifier...]filename.cxx

To invoke LSE without associating the editing buffer with a programming language, enter the following command
at the DCL prompt:

$ lsedit file-spec

To end an LSE session, press Ctrl/Z to get the LSE> prompt. Then, enter the exit command if you want to save
the current file modification, or enter the quit command if you want to discard the current file modification.

B.1.2. LSE Placeholders and Tokens
The language-sensitive features of LSE simplify the tasks of writing and maintaining program code. Among these
features are placeholders and tokens.

Placeholders are markers in the source code that indicate where a program element is expected. Placeholders are
worded to denote the appropriate syntax in a given context. You do not need to type placeholders; LSE inserts
them, surrounded by brackets ([]) or braces ({}) and at signs (@). Braces indicate where source code is required
in the program's context; brackets indicate that you have the option of supplying additional constructs or erasing
the placeholder.

Tokens are LSE words that, when expanded, provide additional language constructs. You can type tokens directly
into the buffer. You use tokens in situations such as modifying an existing program to add program elements where
no placeholders exist. For example, if you type while and then enter the expand command, a template for a
while construct appears in your buffer in place of the characters you typed. You also can use tokens as a shortcut
in situations where expanding a placeholder would entail a complicated sequence of actions.

LSE has commands for manipulating tokens and placeholders, as follows:

Command Default Key Binding Description

expand Ctrl/E Expands a placeholder
unexpand PF1-Ctrl/E Reverses the effect of the most

recent placeholder expansion

177

Appendix B. Programming Tools

Command Default Key Binding Description

goto placeholder/forward Ctrl/N Moves the cursor forward to the
next placeholder

goto placeholder/reverse Ctrl/P Moves the cursor backward to the
previous placeholder

erase placeholder/
forward

Ctrl/K Erases a placeholder

unerase placeholder PF1-Ctrl/K Restores the most recently erased
placeholder

{Enter | Return} Enter

Return

Selects a menu option

To display a list of all the predefined tokens supplied with C++, enter the following LSE command:

LSE> show token

To display a list of all the predefined placeholders supplied with C++, enter the following LSE command:

LSE> show placeholder

For information about a particular token or placeholder, specify the name of the token or placeholder after the
show token or show placeholder command.

To create a list of either tokens or placeholders, first execute the appropriate show command to put the list in the
$show buffer. Then, enter the following commands:

LSE> go buffer $show
LSE> write file-spec

When you exit LSE, you can use the DCL print command to print a copy of the file you wrote.

B.1.3. Compiling and Reviewing Source Code from an
LSE Session
To compile your source code and to review compilation errors without leaving the editing session, use the LSE
commands compile and review. The compile command issues a DCL command in a subprocess to invoke
the compiler. The compiler then generates a file of compile-time diagnostic information that LSE uses to review
any compilation errors. The diagnostic information is generated with the /DIAGNOSTICS qualifier that LSE
appends to the compilation command.

For example, if you enter the compile command while editing the buffer user.cxx, LSE executes the
following DCL command:

$ CXX user.cxx/DIAGNOSTICS=USER.DIA

LSE supports all the command qualifiers available with the compiler.

The /DIAGNOSTICS qualifier is ignored on I64 systems.

The review command displays any diagnostic messages that result from a compilation. LSE displays the
compilation errors in one window and corresponding source code in a second window. This lets you view the error
messages while examining the associated code.

B.1.4. VSI Source Code Analyzer (SCA)

178

Appendix B. Programming Tools

Although the compiler does not support the VSI Source Code Analyzer (SCA) through the CXX /
ANALYSIS_DATA command-line qualifier, users can generate a .ana file that contains information on all the
tokens within a C++ program. For example, users can do the following:

SCA> find some_variable_name

To use the SCA analyze command with C++ files so that in turn you can execute find commands on your C
++ code from LSE or SCA, do the following:

• At the command line, issue the SCA command:

$ SCA

• Set your SCA library with the set library command. For example:

SCA> set library projdisk:[user.any_existing_sca_lib]

• Issue the analyze command on your .cxx file:

SCA> analyze testprog.cxx

This command places the file testprog.ana in your current working directory.

• Load the resulting .ana file:

SCA> load testprog.ana

179

Appendix C. Built-In Functions

Appendix C. Built-In Functions
This appendix describes the built-in functions available when you compile on OpenVMS systems. These functions
allow you to access hardware and machine instructions directly.

These functions allow you to directly access hardware and machine instructions to perform operations that are
cumbersome, slow, or impossible in other C++ compilers.

These functions are very efficient because they are built into the VSI C++ compiler. This means that a call to one
of these functions does not result in a reference to a function in the VSI C Run-Time Library or to a function in
your program. Instead, the compiler generates the machine instructions necessary to carry out the function directly
at the call site. Because most of these built-in functions closely correspond to single Alpha or Itanium machine
instructions, the result is small, fast code.

Be sure to include the <builtins.h> header file in your source program to access these built-in functions.
Definitions for return types int64 and uint64 are contained in the header file <ints.h>.

Some of the built-in functions have optional arguments or allow a particular argument to have one of many different
types. To describe all valid combinations of arguments, the following built-in function descriptions list several
different prototypes for the function. As long as a call to a built-in function matches one of the prototypes listed,
the call is valid. Furthermore, any valid call to a built-in function behaves as if the corresponding prototype were
in scope of the call. The compiler, therefore, performs the argument checking and conversions specified by that
prototype.

The majority of the built-in functions are named after the processor instruction that they generate. The built-in
functions provide direct and unencumbered access to those processor instructions. Any inherent limitations to
those instructions are limitations to the built-in functions as well. For instance, the MOVC3 instruction and the
_MOVC3 built-in function can move at most 65,535 characters.

For more information on the Alpha built-in functions, see the corresponding machine instructions in the Alpha
Architecture Handbook or Alpha Architecture Reference Manual.

For more information on the I64 built-in functions, see the corresponding machine instructions in the Intel®
Itanium® Architecture Software Developer's Manual.

C.1. Built-In Functions for Alpha Systems
(Alpha only)
The following sections describe the VSI C++ built-in functions available on OpenVMS Alpha systems.

C.1.1. Translation Macros
VSI C++ for OpenVMS systems does not support the built-in functions available with VSI C++ for OpenVMS
VAX systems. However, the <builtins.h> header file contains macro definitions that translate some VAX C
built-in functions to the equivalent VSI C++ for OpenVMS built-in functions. Consequently, the following VAX
C built-in functions are effectively supported:

_BBCCI(position, address)

_BBSSI(position, address)

_INSQHI(new_entry, head)

_INSQTI(new_entry, head)

180

Appendix C. Built-In Functions

_INSQUE(new_entry, predecessor)

_REMQHI(head, removed_entry)

_REMQTI(head, removed_entry)

_REMQUE(entry, removed_entry)

_PROBER(mode, length, address)

_PROBEW(mode, length, address)

For more detail on any of these functions, see <builtins.h> or the description of the corresponding
native Alpha function in this chapter. For example, for a description of _INSQHI, see the section called
“__PAL_INSQHIL”.

C.1.2. Intrinsic Functions
VSI C++ on Alpha systems supports in-line assembly code, commonly called ASMs on UNIX platforms.

Like built-in functions, ASMs are implemented with a function-call syntax. But unlike built-in functions, to use
ASMs you must include the <c_asm.h> header file containing prototypes for the three types of ASMs, and the
#pragma intrinsic preprocessor directive.

Syntax:

__int64 asm(const char *, ...); /* for integer operations,
 like mulq */

float fasm(const char *, ...); /* for single precision float
 instructions */

double dasm(const char *, ...); /* for double precision float
 instructions */

 #pragma intrinsic (asm)
 #pragma intrinsic (fasm)
 #pragma intrinsic (dasm)

The first argument to the asm, fasm, or dasm function contains the instruction(s) to be generated inline and the
metalanguage that describes the interpretation of the arguments.

The remaining arguments (if any) are the source and destination arguments for the instruction being generated.

C.1.3. Privileged Architecture Library Code
Instructions
The following Privileged Architecture Library Code (PALcode) instructions are available as built-in functions:

__PAL_GENTRAP __PAL_INSQHIL __PAL_REMQHIL __PAL_MTPR_ASTEN
 __PAL_MFPR_ASTEN
__PAL_HALT __PAL_INSQTIL __PAL_REMQTIL __PAL_MTPR_ASTSR
 __PAL_MFPR_ASTSR
__PAL_PROBER __PAL_INSQUEL __PAL_REMQUEL __PAL_MTPR_DATFX
 __PAL_MFPR_ESP
__PAL_PROBEW __PAL_INSQHIQ __PAL_REMQHIQ __PAL_MTPR_ESP
 __PAL_MFPR_FEN

181

Appendix C. Built-In Functions

__PAL_CHME __PAL_INSQTIQ __PAL_REMQTIQ __PAL_MTPR_FEN
 __PAL_MFPR_IPL
__PAL_CHMK __PAL_INSQUEQ __PAL_REMQUEQ __PAL_MTPR_IPIR
 __PAL_MFPR_MCES
__PAL_CHMS __PAL_INSQUEL_D __PAL_REMQUEL_D __PAL_MTPR_IPL
 __PAL_MFPR_PCBB
__PAL_CHMU __PAL_INSQUEQ_D __PAL_REMQUEQ_D __PAL_MTPR_MCES
 __PAL_MFPR_PRBR
__PAL_LDQP __PAL_INSQHILR __PAL_REMQHILR __PAL_MTPR_PRBR
 __PAL_MFPR_PTBR
__PAL_STQP __PAL_INSQTILR __PAL_REMQTILR __PAL_MTPR_SCBB
 __PAL_MFPR_SCBB
__PAL_BPT __PAL_INSQHIQR __PAL_REMQHIQR __PAL_MTPR_SIRR
 __PAL_MFPR_SISR
__PAL_BUGCHK __PAL_INSQTIQR __PAL_REMQTIQR __PAL_MTPR_SSP
 __PAL_MFPR_SSP
__PAL_CFLUSH __PAL_MTPR_TBIA
 __PAL_MFPR_TBCHK
__PAL_DRAINA __PAL_MTPR_TBIAP
 __PAL_MFPR_USP
__PAL_RD_PS __PAL_MTPR_TBIS
 __PAL_MFPR_VPTB
__PAL_SWPCTX __PAL_MTPR_TBISD
 __PAL_MFPR_WHAMI
__PAL_SWASTEN __PAL_MTPR_TBISI
__PAL_WR_PS_SW __PAL_MTPR_USP
__PAL_IMB __PAL_MTPR_VPTB

The following sections describe these PALcodes.

__PAL_BPT
This function is provided for program debugging. It generates a Breakpoint trap.

This function has the following format:

void __PAL_BPT (void);

__PAL_BUGCHK
This function is provided for error reporting. It generates a Bug-check trap.

This function has the following format:

__PAL_CFLUSH
This function flushes at least the entire physical page specified by the page frame number value from any data
caches associated with the current processor. After a CFLUSH is done, the first subsequent load on the same
processor to an arbitrary address in the target page is fetched from physical memory.

This function has the following format:

void __PAL_CFLUSH (int value);

value

A page frame number.

__PAL_CHME

182

Appendix C. Built-In Functions

This function allows a process to change its mode to Executive in a controlled manner. The change in mode also
results in a change of stack pointers: the old pointer is saved and the new pointer is loaded. Registers R2 to R7, PS,
and PC are pushed onto the selected stack. The saved PC addresses the instruction following the CHME instruction.

This function has the following format:

void __PAL_CHME (void);

__PAL_CHMK
This function allows a process to change its mode to kernel in a controlled manner. The change in mode also results
in a change of stack pointers: the old pointer is saved and the new pointer is loaded. Registers R2 to R7, PS, and
PC are pushed onto the kernel stack. The saved PC addresses the instruction following the CHMK instruction.

This function has the following format:

void __PAL_CHMK (void);

__PAL_CHMS
This function allows a process to change its mode to Supervisor in a controlled manner. The change in mode also
results in a change of stack pointers: the old pointer is saved and the new pointer is loaded. Registers R2 to R7, PS,
and PC are pushed onto the selected stack. The saved PC addresses the instruction following the CHMS instruction.

This function has the following format:

void __PAL_CHMS (void);

__PAL_CHMU
This function allows a process to call a routine using the change mode mechanism. Registers R2 to R7, PS, and
PC are pushed onto the current stack. The saved PC addresses the instruction following the CHMU instruction.

This function has the following format:

void __PAL_CHMU (void);

__PAL_DRAINA
This function stalls instruction issuing until all prior instructions are guaranteed to complete without incurring
aborts.

This function has the following format:

void __PAL_DRAINA (void);

__PAL_GENTRAP
This function is used for reporting run-time software conditions. It generates a Software trap.

This function has the following format:

void __PAL_GENTRAP (uunsigned __int64 encoded_software_trap);

encoded_software_trap

The particular software condition that has occurred.

__PAL_HALT

183

Appendix C. Built-In Functions

This function halts the processor when executed by a process running in kernel mode. This is a privileged function.

This function has the following format:

void __PAL_HALT (void);

__PAL_IMB
This function makes the instruction stream coherent with the data stream. It must be executed after software or I/
O devices write into the instruction stream or modify the instruction stream virtual address mapping, and before
the new value is fetched as an instruction. Note that executing an IMB on one processor in a multiprocessor
environment does not affect instruction caches on other processors.

This function has the following format:

void __PAL_IMB (void);

__PAL_INSQHIL
This function inserts an entry at the front of a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be equal.

This function has the following format:

int __PAL_INSQHIL (void *head, void *new_entry);
/* At head, interlocked */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on a longword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQHILR
This function inserts an entry into the front of a longword queue in an indivisible manner. This operation is
interlocked against similar operations by other preprocessors or devices in the system. This function must have
write access to the header and queue entries. The pointers to head and new_entry must not be equal. All parts of
the queue must be memory resident.

This function has the following format:

int __PAL_INSQHILR (void *head, void *new_entry);
/* At head, interlocked resident */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

new_entry

184

Appendix C. Built-In Functions

A pointer to the new entry to be inserted. The entry must be aligned on a quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQHIQ
This function inserts an entry at the front of a quadword queue in an indivisible manner. This operation is
interlocked against similar operations by other preprocessors or devices in the system. This function must have
write access to header and queue entries. The pointers to head and new_entry must not be equal.

This function has the following format:

int __PAL_INSQHIQ (void *head, void *new_entry);
/* At head, interlocked */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on an octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQHIQR
This function inserts an entry into the front of a quadword queue in an indivisible manner. This operation is
interlocked against similar operations by other preprocessors or devices in the system. This function must have
write access to the header and queue entries. The pointers to head and new_entry must not be equal. All parts of
the queue must be memory resident.

This function has the following format:

int __PAL_INSQHIQR (void *head, void *new_entry);
/* At head, interlocked resident */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on an octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

185

Appendix C. Built-In Functions

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIL
This function inserts an entry at the end of a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be equal.

This function has the following format:

int __PAL_INSQTIL (void *head, void *new_entry);
/* At tail, interlocked */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on a quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTILR
This function inserts an entry at the end of a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. The pointers to head and new_entry must not be equal. All parts of the queue
must be memory resident.

This function has the following format:

int __PAL_INSQTILR (void *head, void *new_entry);
/* At tail, interlocked resident */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on a quadword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIQ
This function inserts an entry at the end of a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to header and queue entries. The pointers to head and new_entry must not be equal.

186

Appendix C. Built-In Functions

This function has the following format:

int __PAL_INSQTIQ (void *head, void *new_entry);
/* At tail, interlocked */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on an octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIQR
This function inserts an entry at the end of a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. The pointers to head and new_entry must not be equal. All parts of the queue
must be memory resident.

This function has the following format:

int __PAL_INSQTIQR (void *head, void *new_entry);
/* At tail, interlocked resident */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on an octaword boundary.

There are three possible return values:

• –1 if the entry was not inserted because the secondary interlock failed

• 0 if the entry was inserted but it was not the only entry in the list

• 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQUEL
This function inserts a new entry after an existing entry into a longword queue. This function must have write
access to header and queue entries.

This function has the following format:

int __PAL_INSQUEL (void *predecessor, void *new_entry);

predecessor

A pointer to an existing entry in the queue.

new_entry

187

Appendix C. Built-In Functions

A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

__PAL_INSQUEL_D
This function inserts a new entry after an existing entry into a longword queue deferred. This function must have
write access to header and queue entries.

This function has the following format:

int __PAL_INSQUEL_D (void **predecessor, void *new_entry);
/* Deferred */

predecessor

A pointer to a pointer to the predecessor entry.

new_entry

A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

__PAL_INSQUEQ
This function inserts a new entry after an existing entry into a quadword queue. This function must have write
access to header and queue entries.

This function has the following format:

int __PAL_INSQUEQ (void *predecessor, void *new_entry);

predecessor

A pointer to an existing entry in the queue.

new_entry

A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

__PAL_INSQUEQ_D
This function inserts a new entry after an existing entry into a quadword queue deferred. This function must have
write access to header and queue entries.

This function has the following format:

188

Appendix C. Built-In Functions

int __PAL_INSQUEQ_D (void **predecessor, void *new_entry);
/* Deferred */

predecessor

A pointer to a pointer to the predecessor entry.

new_entry

A pointer to the new entry to be inserted.

There are two possible return values:

• 0 if the entry was not the only entry in the queue

• 1 if the entry was the only entry in the queue

__PAL_LDQP
This function returns the quadword-aligned memory object specified by address.

This function has the following format:

unsigned __int64 __PAL_LDQP (void *address);

address

A pointer to the quadword-aligned memory object to be returned.

If the object pointed to by address is not quadword-aligned, the result is unpredictable.

__PAL_MFPR_XXXX
These privileged functions return the contents of a particular processor register. The XXXX indicates the processor
register to be read.

These functions have the following format:

/* AST Enable */
unsigned int __PAL_MFPR_ASTEN (void);
/* AST Summary Register */
unsigned int __PAL_MFPR_ASTSR (void);
/* Executive Stack Pointer */
void *__PAL_MFPR_ESP (void);
/* Floating-Point Enable */
int __PAL_MFPR_FEN (void);
/* Interrupt Priority Level */
int __PAL_MFPR_IPL (void);
/* Machine Check Error Summary */
int __PAL_MFPR_MCES (void);
/* Privileged Context Block Base */
void *__PAL_MFPR_PCBB (void);
/* Processor Base Register */
__int64 __PAL_MFPR_PRBR (void);
/* Page Table Base Register */
int __PAL_MFPR_PTBR (void);
/* System Control Block Base */
void *__PAL_MFPR_SCBB (void);
/* Software Interrupt Summary Register */
unsigned int __PAL_MFPR_SISR (void);
/* Supervisor Stack Pointer */

189

Appendix C. Built-In Functions

void *__PAL_MFPR_SSP (void);
/* Translation Buffer Check */
__int64 __PAL_MFPR_TBCHK (void *address);
/* User Stack Pointer */
void *__PAL_MFPR_USP (void);
/* Virtual Page Table */
void *__PAL_MFPR_VPTB (void);
/* Who Am I */
__int64 __PAL_MFPR_WHAMI (void);

__PAL_MTPR_XXXX
These privileged functions load a value into one of the special processor registers. The XXXX indicates the
processor register to be loaded.

These functions have the following format:

/* AST Enable */
void __PAL_MTPR_ASTEN (unsigned int mask);
/* AST Summary Register */
void __PAL_MTPR_ASTSR (unsigned int mask);
/* Data Alignment Trap Fixup */
void __PAL_MTPR_DATFX (int value);
/* Executive Stack Pointer */
void __PAL_MTPR_ESP (void *address);
/* Floating-Point Enable */
void __PAL_MTPR_FEN (int value);
/* Interprocessor Interrupt Request */
void __PAL_MTPR_IPIR (__int64 number);
/* Interrupt Priority Level */
int __PAL_MTPR_IPL (int value);
/* Machine Check Error Summary */
void __PAL_MTPR_MCES (int value);
/* Processor Base Register */
void __PAL_MTPR_PRBR (__int64 value);
/* System Control Block Base */
void __PAL_MTPR_SCBB (void *address);
/* Software Interrupt Request Register */
void __PAL_MTPR_SIRR (int level);
/* Supervisor Stack Pointer */
void __PAL_MTPR_SSP (int *address);
/* Translation Buffer Invalidate All*/
void __PAL_MTPR_TBIA (void);
/* Translation Buffer Invalidate All Process */
void __PAL_MTPR_TBIAP (void);
/* Translation Buffer Invalidate Single */
void __PAL_MTPR_TBIS (void *address);
/* Translation Buffer Invalidate Single Data */
void __PAL_MTPR_TBISD (void *address);
/* Translation Buffer Invalidate Single Instruction */
void __PAL_MTPR_TBISI (void *address);
/* User Stack Pointer */
void __PAL_MTPR_USP (void *address);
/* Virtual Page Table */
void __PAL_MTPR_VPTB (void *address);

__PAL_PROBER

190

Appendix C. Built-In Functions

This function checks the write accessibility of the first and last byte of the given address and length pair.

This function has the following format:

int __PAL_PROBER (const void *base_address, int length,
char mode);

base_address

The pointer to the memory segment to be tested for read access.

length

The length of the memory segment, in bytes.

mode

The processor mode used for checking access.

There are two possible return values:

• 0 if both bytes are not accessible

• 1 if both bytes are accessible

__PAL_PROBEW
This function checks the write accessibility of the first and last byte of the given address and length pair.

This function has the following format:

int __PAL_PROBEW (const void *base_address, int length,
char mode);

base_address

The pointer to the memory segment to be tested for write access.

length

The length of the memory segment, in bytes.

mode

The processor mode used for checking access.

There are two possible return values:

• 0 if both bytes are not accessible

• 1 if both bytes are accessible

__PAL_RD_PS
This function returns the Processor Status (PS).

This function has the following format:

unsigned __int64 __PAL_RD_PS (void);

__PAL_REMQHIL

191

Appendix C. Built-In Functions

This function removes the first entry from a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int __PAL_REMQHIL (void *head, void **removed_entry);
/* At head, interlocked */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQHILR
This function removes the first entry from a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQHILR (void *head, void **removed_entry);
/* At head, interlocked resident */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQHIQ
This function removes the first entry from a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries.

192

Appendix C. Built-In Functions

This function has the following format:

int __PAL_REMQHIQ (void *head, void **removed_entry);
/* At head, interlocked */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQHIQR
This function removes the first entry from a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQHIQR (void *head, void **removed_entry);
/* At head, interlocked resident */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQTIL
This function removes the last entry from a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int __PAL_REMQTIL (void *head, void **removed_entry);
/* At tail, interlocked */

193

Appendix C. Built-In Functions

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQTILR
This function removes the last entry from a longword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQTILR (void *head, void **removed_entry);
/* At tail, interlocked resident */

head

A pointer to the queue header. The header must be aligned on a quadword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQTIQ
This function removes the last entry from a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries.

This function has the following format:

int __PAL_REMQTIQ (void *head, void **removed_entry);
/* At tail, interlocked */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

removed_entry

194

Appendix C. Built-In Functions

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQTIQR
This function removes the last entry from a quadword queue in an indivisible manner. This operation is interlocked
against similar operations by other preprocessors or devices in the system. This function must have write access
to the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQTIQR (void *head, void **removed_entry);
/* At tail, interlocked resident */

head

A pointer to the queue header. The header must be aligned on an octaword boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

• –1 if the entry cannot be removed because the secondary interlock failed

• 0 if the queue was empty

• 1 if the entry was removed and the queue has remaining entries

• 2 if the entry was removed and the queue is now empty

__PAL_REMQUEL
This function removes an entry from a longword queue. This function must have write access to header and queue
entries.

This function has the following format:

int _PAL_REMQUEL (void *entry, void **removed_entry);

entry

A pointer to the queue entry to be removed.

removed_entry

A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

195

Appendix C. Built-In Functions

• 1 if the entry was removed and the queue has remaining entries

__PAL_REMQUEL_D
This function removes an entry from a longword queue deferred. This function must have write access to header
and queue entries.

This function has the following format:

int __PAL_REMQUEL_D (void **entry, void **removed_entry);
/* Deferred */

entry

A pointer to a pointer to the queue entry to be removed.

removed_entry

A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

__PAL_REMQUEQ
This function removes an entry from a quadword queue. This function must have write access to header and queue
entries.

This function has the following format:

int __PAL_REMQUEQ (void *entry, void **removed_entry);

entry

A pointer to the queue entry to be removed.

removed_entry

A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

__PAL_REMQUEQ_D
This function removes an entry from a quadword queue deferred. This function must have write access to header
and queue entries.

This function has the following format:

int __PAL_REMQUEQ_D (void **entry, void **removed_entry);
/* Deferred */

196

Appendix C. Built-In Functions

entry

A pointer to a pointer to the queue entry to be removed.

removed_entry

A pointer to the address of the entry removed from the queue.

There are three possible return values:

• –1 if the queue was empty

• 0 if the entry was removed and the queue is now empty

• 1 if the entry was removed and the queue has remaining entries

__PAL_STQP
This function writes the quadword value to the memory location pointed to by address.

This function has the following format:

void __PAL_STQP (void *address, unsigned __int64 value);

address

Memory location to be written to.

value

Quadword value to be stored.

If the location pointed to by address is not quadword-aligned, the result is unpredictable.

__PAL_SWASTEN
This function swaps the previous state of the Asynchronous System Trap (AST) enable bit for the new state. The
new state is supplied in bit 0 of new_state_mask. The previous state is returned, zero-extended.

A check is made to determine if an AST is pending. If the enabling conditions are present for an AST at the
completion of this instruction, the AST occurs before the next instruction.

This function has the following format:

unsigned int __PAL_SWASTEN (int new_state_mask);

new_state_mask

An integer whose 0 bit is the new state of the AST enable bit.

__PAL_SWPCTX
This function returns ownership of the data structure that contains the current hardware privileged context (the
HWPCB) to the operating system and passes ownership of the new HWPCB to the processor.

This function has the following format:

void __PAL_SWPCTX (void *address);

address

197

Appendix C. Built-In Functions

A pointer to the new HWPCB.

__PAL_WR_PS_SW
This function writes the low-order three bits of mask into the Processor Status software field (PS<SW>).

This function has the following format:

void __PAL_WR_PS_SW (int mask);

mask

An integer whose low-order three bits are written into PS<SW>.

C.1.4. Other Builtins
Absolute Value (__ABS)
The __ABS built-in is functionally equivalent to its counterpart, abs, in the standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
int __ABS (int x);

This built-in function does, however, offer performance improvements because there is less call overhead
associated with its use.

f you include <stdlib.h>, the built-in function is automatically used for all occurrences of abs. To disable
the built-in function, use #undef abs.

Acquire and Release Longword Semaphore
(__ACQUIRE_SEM_LONG, __RELEASE_SEM_LONG)
The __ACQUIRE_SEM_LONG and __RELEASE_SEM_LONG functions provide a counted semaphore
capability where the positive value of a longword is interpreted as the number of resources available.

The __ACQUIRE_SEM_LONG function loops until the longword has a positive value and then decrements it
within a load-locked/store-conditional sequence; it then issues a memory barrier. This function returns 1 if the
resource count was successfully decremented within the specified number of retries, and 0 otherwise. With no
explicit retry count, the function does not return until it succeeds.

The __RELEASE_SEM_LONG function issues a memory barrier and then does an
__ATOMIC_INCREMENT_LONG on the longword.

The __ACQUIRE_SEM_LONG function has the following formats:

int __ACQUIRE_SEM_LONG (volatile void *address);
int __ACQUIRE_SEM_LONG_RETRY (volatile void *address, int retry);

The __RELEASE_SEM_LONG function has the following format:

int __RELEASE_SEM_LONG (volatile void *address);

address

The longword-aligned address of the resource count.

retry

198

Appendix C. Built-In Functions

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

Add Aligned Word Interlocked (__ADAWI)
The __ADAWI function adds its source operand to the destination. This function is interlocked against similar
operations by other processors or devices in the system.

This function has the following format:

int __ADAWI (short src, short *dest);

src

The value to be added to the destination.

dest

A pointer to the destination. The destination must be aligned on a word boundary.

The __ADAWI function returns a simulated VAX processor status longword (PSL).

Add Atomic Longword (__ADD_ATOMIC_LONG)
The __ADD_ATOMIC_LONG function adds the specified expression to the longword data segment pointed to
by the address parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int __ADD_ATOMIC_LONG int fnc(void *, int, ...);

address

The address of the data segment.

expression

An integer expression.

…

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted. If the operation cannot be performed successfully in the specified number of retries, a value of 0 is
returned.

A value of 1 is returned upon successful completion.

Add Atomic Quadword (__ADD_ATOMIC_QUAD)
The __ADD_ATOMIC_QUAD function adds the specified expression to the quadword data segment pointed to
by the address parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int __ADD_ATOMIC_QUAD (void *address, int expression, ...);

address

The address of the data segment.

expression

199

Appendix C. Built-In Functions

An integer expression.

…

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted. If the operation cannot be performed successfully in the specified number of retries, a value of 0 is
returned.

A value of 1 is returned upon successful completion.

AND Atomic Longword (__AND_ATOMIC_LONG)
The __AND_ATOMIC_LONG function performs a bit-wise or arithmetic AND of the specified expression with
the aligned longword pointed to by the address parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int __AND_ATOMIC_LONG (void *address, int expression, ...);

address

The longword-aligned address of the data segment.

expression

An integer expression.

…

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted (which will be at least once, even if the count argument is 0). If the operation cannot be performed
successfully in the specified number of retries, a value of 0 is returned.

A value of 1 is returned upon successful completion.

AND Atomic Quadword (__AND_ATOMIC_QUAD)
The __AND_ATOMIC_QUAD function performs a bit-wise or arithmetic AND of the specified expression with
the aligned quadword pointed to by the address parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int __AND_ATOMIC_QUAD (void *address, int expression, ...);

address

The address of the aligned quadword.

expression

An integer expression.

...

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted (which will be at least once, even if the count argument is 0). If the operation cannot be performed
successfully in the specified number of retries, a value of 0 is returned.

A value of 1 is returned upon successful completion.

Atomic Add Longword (__ATOMIC_ADD_LONG)

200

Appendix C. Built-In Functions

The __ATOMIC_ADD_LONG function adds the specified expression to the aligned longword pointed to by the
address parameter within a load-locked/store-conditional code sequence and returns the value of the longword
before the addition was performed.

This function has one of the following formats:

int __ATOMIC_ADD_LONG (volatile void *address,
int expression);

int __ATOMIC_ADD_LONG_RETRY (volatile void *address,
int expression, int retry,
int *status);

address

The longword-aligned address of the data segment.

expression

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Add Quadword (__ATOMIC_ADD_QUAD)
The __ATOMIC_ADD_QUAD function adds the specified expression to the aligned quadword pointed to by the
address parameter within a load-locked/store-conditional code sequence and returns the value of the quadword
before the addition was performed.

This function has one of the following formats:

int __ATOMIC_ADD_QUAD (volatile void *address,
int expression);

int __ATOMIC_ADD_QUAD_RETRY (volatile void *address,
int expression, int retry,
int *status);

address

The quadword-aligned address of the data segment.

expression

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

201

Appendix C. Built-In Functions

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic AND Longword (__ATOMIC_AND_LONG)
The __ATOMIC_AND_LONG function performs a bit-wise or arithmetic AND of the specified expression with
the aligned longword pointed to by the address parameter within a load-locked/store-conditional code sequence
and returns the value of the longword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_AND_LONG (volatile void *address,
int expression);

int __ATOMIC_AND_LONG_RETRY (volatile void *address,
int expression, int retry,
int *status);

address

The longword-aligned address of the data segment.

expression

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic AND Quadword (__ATOMIC_AND_QUAD)
The __ATOMIC_AND_QUAD function performs a bit-wise or arithmetic AND of the specified expression with
the aligned quadword pointed to by the address parameter within a load-locked/store-conditional code sequence
and returns the value of the quadword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_AND_QUAD (volatile void *address,
int expression);

int __ATOMIC_AND_QUAD_RETRY (volatile void *address,
int expression, int retry,
int *status);

address

The quadword-aligned address of the data segment.

expression

An integer expression.

retry

202

Appendix C. Built-In Functions

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic OR Longword (__ATOMIC_OR_LONG)
The __ATOMIC_OR_LONG function performs a bit-wise or arithmetic OR of the specified expression with the
aligned longword pointed to by the address parameter within a load-locked/store-conditional code sequence and
returns the value of the longword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_OR_LONG (volatile void *address, int expression);

int __ATOMIC_OR_LONG_RETRY (volatile void *address, int expression,
 int retry, int *status);

address

The longword-aligned address of the data segment.

expression

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic OR Quadword (__ATOMIC_OR_QUAD)
The __ATOMIC_OR_QUAD function performs a bit-wise or arithmetic OR of the specified expression with the
aligned quadword pointed to by the address parameter within a load-locked/store-conditional code sequence and
returns the value of the quadword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_OR_QUAD (volatile void *address,
int expression);

int __ATOMIC_OR_QUAD_RETRY (volatile void *address,
int expression,
int retry, int *status);

address

The quadword-aligned address of the data segment.

expression

203

Appendix C. Built-In Functions

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Increment Longword (__ATOMIC_INCREMENT_LONG)
The __ATOMIC_INCREMENT_LONG function increments by 1 the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int __ATOMIC_INCREMENT_LONG (volatile void *address);

int __ATOMIC_INCREMENT_LONG_RETRY (volatile void *address,
int retry, int *status);

address

The longword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Increment Quadword (__ATOMIC_INCREMENT_QUAD)
The __ATOMIC_INCREMENT_QUAD function increments by 1 the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

int __ATOMIC_INCREMENT_QUAD (volatile void *address);

__int64 __ATOMIC_INCREMENT_QUAD (volatile void *address,
int retry, int *status);

address

The quadword-aligned address of the data segment.

retry

204

Appendix C. Built-In Functions

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Decrement Longword (__ATOMIC_DECREMENT_LONG)
The __ATOMIC_DECREMENT_LONG function decrements by 1 the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int __ATOMIC_DECREMENT_LONG (volatile void *address);

int __ATOMIC_DECREMENT_LONG_RETRY (volatile void *address, int retry, int
 *status);

address

The longword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Decrement Quadword (__ATOMIC_DECREMENT_QUAD)
The __ATOMIC_DECREMENT_QUAD function decrements by 1 the aligned quadword pointed to by the
address parameter within a load-locked/store-conditional code sequence and returns the value of the quadword
before the operation was performed.

This function has the following formats:

int __ATOMIC_DECREMENT_QUAD (volatile void *address);

__int64 __ATOMIC_DECREMENT_QUAD_RETRY (volatile void *address, int retry,
 int *status);

address

The quadword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

205

Appendix C. Built-In Functions

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Exchange Longword (__ATOMIC_EXCH_LONG)
The __ATOMIC_EXCH_LONG function stores the value of the specified expression into the aligned longword
pointed to by the address parameter within a load-locked/store-conditional code sequence and returns the value
of the longword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_EXCH_LONG (volatile void *address,
int expression);

int __ATOMIC_EXCH_LONG_RETRY (volatile void *address,
int expression,
int retry, int *status);

address

The longword-aligned address of the data segment.

expression

An integer expression.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Atomic Exchange Quadword (__ATOMIC_EXCH_QUAD)
The __ATOMIC_EXCH_QUAD function stores the value of the specified expression into the aligned quadword
pointed to by the address parameter within a load-locked/store-conditional code sequence and returns the value
of the quadword before the operation was performed.

This function has one of the following formats:

int __ATOMIC_EXCH_QUAD (volatile void *address,
int expression);

int __ATOMIC_EXCH_QUAD_RETRY (volatile void *address,
int expression, int retry,
int *status);

address

The quadword-aligned address of the data segment.

expression

An integer expression.

retry

206

Appendix C. Built-In Functions

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Allocate Bytes from Stack (__ALLOCA)
The __ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *__ALLOCA (unsigned int n);

n

The number of bytes to be allocated.

A pointer to the allocated memory is returned.

Single-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide single-precision, floating-point chopped arithmetic:

__ADDF_C __ADDS_C __SUBF_C __SUBS_C

__MULF_C __MULS_C __DIVF_C __DIVS_C

They have the following format:

float __op{F,S}_C (float operand1, float operand2);

Where op is one of ADD, SUB, MUL, DIV, and {F,S} represents VAX or IEEE floating-point arithmetic.

The result of the arithmetic operation is returned.

Double-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide double-precision, floating-point chopped arithmetic:

__ADDG_C __ADDT_C __SUBG_C __SUBT_C

__MULG_C __MULT_C __DIVG_C __DIVT_C

They have the following format:

double __op{G,T}_C (double operand1, double operand2);

Where op is one of ADD, SUB, MUL, DIV, and {G,T} represents VAX or IEEE floating-point arithmetic.

The result of the arithmetic operation is returned.

Copy Sign Built-in Functions
Built-in functions are provided to copy selected portions of single- and double-precision, floating-point numbers.

These built-in functions have the following format:

207

Appendix C. Built-In Functions

float __CPYSF (float operand1, float operand2);
double __CPYS (double operand1, double operand2);

float __CPYSNF (float operand1, float operand2);
double __CPYSN (double operand1, double operand2);

float __CPYSEF (float operand1, float operand2);
double __CPYSE (double operand1, double operand2);

The copy sign built-in functions (__CPYSF and __CPYS) fetch the sign bit in operand1, concatenate it with the
exponent and fraction bits from operand2, and return the result.

The copy sign negate built-in functions (__CPYSNF and __CPYSN) fetch the sign bit in operand1, complement
it, concatenate it with the exponent and fraction bits from operand2, and return the result.

The copy sign exponent built-in functions (__CPYSEF and __CPYSE) fetch the sign and exponent bits from
operand1, concatenate them with the fraction bits from operand2, and return the result.

Compare Store Longword (__CMP_STORE_LONG)
The __CMP_STORE_LONG function has the following format:

int __CMP_STORE_LONG (void *source, int old_value,
int new_value, void *dest);

This function compares the value pointed to by source with the longword old_value. If they are equal, the longword
new_value is stored into the value pointed to by dest. The comparison is within a load-locked/store-conditional
code sequence.

The function returns 0 if the two values are unequal, if source and dest are not in the same 16-byte lock region,
or if some other process accessed the 16-byte lock region before new_value could be stored. The function returns
1 if the two values are equal and new_value was stored atomically.

Compare Store Quadword (__CMP_STORE_QUAD)
The __CMP_STORE_QUAD function has the following format:

int __CMP_STORE_QUAD (void *source, __int64 old_value,
__int64 new_value, void *dest);

This function compares the value pointed to by source with the quadword old_value. If they are equal, the
quadword new_value is stored into the value pointed to by dest. The comparison is within a load-locked/store-
conditional code sequence.

The function returns 0 if the two values are unequal, if source and dest are not in the same 16-byte lock region,
or if some other process accessed the 16-byte lock region before new_value could be stored. The function returns
1 if the two values are equal and new_value was stored atomically.

Cosine (__COS)
The __COS built-in function is functionally equivalent to its counterpart, cos, in the standard header file
<math.h>.

Its format is also the same:

#include <math.h>
double __COS (double x);

x

A radian value.

208

Appendix C. Built-In Functions

This built-in function does, however, offer performance improvements because there is less call overhead
associated with its use.

If you include <math.h>, the built-in function is automatically used for all occurrences of cos. To disable the
built-in function, use #undef cos.

Convert G_Floating to F_Floating Chopped (__CVTGF_C)
The __CVTGF_C function converts a double-precision, VAX G_floating-point number to a single-precision, VAX
F_floating-point number. This conversion chops to single-precision; then the 8-bit exponent range is checked for
overflow or underflow.

This function has the following format:

float __CVTGF_C (double operand);

operand

A double-precision, VAX floating-point number.

Convert G-Floating to Quadword (__CVTGQ)
The __CVTGQ function rounds a double-precision, VAX floating-point number to a 64-bit integer value and
returns the result.

This function has the following format:

__int64 __CVTGQ (double operand);

operand

A double-precision, VAX floating-point number.

Convert IEEE T_Floating to IEEE S_Floating Chopped
(__CVTTS_C)
The __CVTTS_C function converts a double-precision, IEEE T_floating-point number to a single-precision, IEEE
S_floating-point number. This conversion chops to single-precision; then the 8-bit exponent range is checked for
overflow or underflow.

This function has the following format:

float __CVTTS_C (double operand);

operand

A double-precision, IEEE floating-point number.

Convert IEEE T-Floating to Quadword (__CVTTQ)
The __CVTTQ function rounds a double-precision, IEEE-floating-point number to a 64-bit integer value and
returns the result.

This function has the following format:

__int64 __CVTTQ (double operand);

operand

A double-precision, IEEE T-floating-point number.

209

Appendix C. Built-In Functions

Floating-Point Absolute Value (__FABS)
The __FABS built-in function is functionally equivalent to its counterpart, fabs, in the standard header file
<math.h>.

Its format is also the same:

#include <math.h>
double@@__FABS (double x);

x

A floating-point number.

This built-in function does, however, offer performance improvements because there is no call overhead associated
with its use.

If you include <math.h>, the built-in function is automatically used for all occurrences of fab. To disable the
built-in function, use #undef fab.

Test for Bit Clear then Clear Bit Interlocked
(__INTERLOCKED_TESTBITCC_QUAD)
The __INTERLOCKED_TESTBITCC_QUAD function performs the following functions in interlocked fashion:

1. Returns the complement of the specified bit before being cleared.

2. Clears the bit.

This function has the following formats:

int __INTERLOCKED_TESTBITCC_QUAD (volatile void *address,
 int bit_position);

int __INTERLOCKED_TESTBITCC_QUAD_RETRY (volatile void *address,
 int bit_position, int retry, int *status);

address

The quadword-aligned base address of the bit field.

bit_position

The position within the field of the bit that you want cleared, in the range of 0 to 63.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

Test for Bit Set Then Set Bit Interlocked
(__INTERLOCKED_TESTBITSS_QUAD)
The __INTERLOCKED_TESTBITSS_QUAD function performs the following functions in interlocked fashion:

210

Appendix C. Built-In Functions

1. Returns the value of the specified bit before being set.

2. Sets the bit.

This function has the following formats:

int __INTERLOCKED_TESTBITSS_QUAD (volatile void *address,
 int bit_position);

int __INTERLOCKED_TESTBITSS_QUAD_RETRY (volatile void *address,
int expression, int retry, int *status);

address

The quadword-aligned base address of the bit field.

bit_position

The position within the field of the bit that you want cleared, in the range of 0 to 63.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status

A pointer to an integer that is set to 0 if the operation did not succeed within the specified number of retries, and
set to 1 if the operation succeeded.

_leadz
The _leadz built-in function returns the number of leading zeroes (starting at the most significant bit position) in
its argument. For example, _leadz(1) returns 63, and _leadz(0) returns 64.

This function has the following format:

__int64 _leadz (unsigned __int64);

Lock and Unlock Longword (__LOCK_LONG, __UNLOCK_LONG)
The __LOCK_LONG and __UNLOCK_LONG functions provide a binary spinlock capability based on the low-
order bit of a longword.

The __LOCK_LONG function executes in a loop waiting for the bit to be cleared and then sets it within a load-
locked/store-conditional sequence; it then issues a memory barrier. The __UNLOCK_LONG function issues a
memory barrier and then zeroes the longword.

The __LOCK_LONG_RETRY function returns 1 if the lock was acquired in the specified number of retries and
0 if the lock was not acquired.

The __LOCK_LONG function has the following formats:

int __LOCK_LONG (volatile void *address);

int __LOCK_LONG_RETRY (volatile void *address, int retry);

The __UNLOCK_LONG function has the following format:

int __UNLOCK_LONG (volatile void *address);

211

Appendix C. Built-In Functions

address

The quadword-aligned address of the longword used for the lock.

retry

A retry count of type int that indicates the number of times the operation is attempted (which is at least once, even
if the retry argument is 0). If the operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

Longword Absolute Value (__LABS)
The __LABS built-in function is functionally equivalent to its counterpart, labs, in the standard header file
<stdlib.h>.

Its format is also the same:

#include <stdlib.h>
long int@@__LABS (long int x);

x

An integer.

This built-in function does, however, offer performance improvements because there is less call overhead
associated with its use.

If you include <stdlib.h>, the built-in function is automatically used for all occurrences of labs. To disable
the built-in function, use #undef labs.

Memory Barrier (__MB)
The __MB function directs the compiler to generate a memory barrier instruction.

This function has the following format:

void __MB (void);

Memory Copy and Set Functions (__MEMCPY, __MEMMOVE,
__MEMSET)
The __MEMCPY, __MEMMOVE, and __MEMSET built-in functions are functionally equivalent to their
counterparts in the standard header file <string.h>.

Their format is also the same:

#include <string.h>

void *__MEMCPY (void *s1, const void *s2, size_t size);

void *__MEMMOVE (void *s1, const void *s2, size_t size);

void *__MEMSET (void *s, int value, size_t size);

These built-in functions do, however, offer performance improvements because there is less call overhead
associated with their use.

If you include <string.h>, the built-in functions are automatically used for all occurrences of memcpy,
memmove, and memset. To disable the built-in functions, use #undef memcpy, #undef memmove, and
#undef memset.

212

Appendix C. Built-In Functions

_popcnt
The _popcnt built-in function returns the number of "1" bits (0 to 64) in its argument. For example, _popcnt(12)
returns 2.

This function has the following format:

__int64 _popcnt (unsigned __int64);

_poppar
The _poppar built-in function returns 1 if the number of "1" bits in its argument is odd; otherwise it returns 0.
For example, _poppar(12) returns 0.

This function has the following format:

__int64 _poppar (unsigned __int64);

Read Process Cycle Counter (__RPCC)
The __RPCC function reads the current process cycle counter.

This function has the following format:

__int64 __RPCC (void);

Sine (__SIN)
The __SIN built-in function is functionally equivalent to its counterpart in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double@@__SIN (double x);

x

A radian value.

This built-in function does, however, offer performance improvements because there is less call overhead
associated with its use.

If you include <math.h>, the built-in function is used automatically for all occurrences of sin. To disable the
built-in function, use #undef sin.

Test for Bit Clear then Clear Bit Interlocked (__TESTBITCCI)
The __TESTBITCCI function performs the following operations in interlocked fashion:

• Returns the complement of the specified bit before being cleared

• Clears the bit

This function has the following format:

int __TESTBITCCI (void *address, int position, ...);

address

The base address of the field.

213

Appendix C. Built-In Functions

position

The position within the field of the bit that you want cleared.

…

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted. If the operation cannot be performed successfully in the specified number of retries, a value of 0 is
returned.

Test for Bit Set then Set Bit Interlocked (__TESTBITSSI)
The __TESTBITSSI function performs the following operations in interlocked fashion:

• Returns the value of the specified bit before being set

• Sets the bit

This function has the following format:

int __TESTBITSSI (void *address, int position, ...);

address

The base address of the field.

position

The position within the field of the bit that you want set.

…

An optional retry count of type int. If specified, the retry count indicates the number of times the operation is
attempted. If the operation cannot be performed successfully in the specified number of retries, a value of 0 is
returned.

_trailz
The _trailz built-in function returns the number of trailing zeros (counting after the least significant set bit to the
least significant bit position) in its argument. For example, _trailz(2) returns 1, and _trailz(0) returns 64.

This function has the following format:

__int64 _trailz (unsigned __int64);

Trap Barrier Instruction (__TRAPB)
The __TRAPB function allows software to guarantee that, in a pipeline implementation, all previous arithmetic
instructions will be completed without incurring any arithmetic traps before any instructions after the TRAPB
instruction are issued.

This function has the following format:

void __TRAPB (void);

Unsigned Quadword Multiply High (__UMULH)
The __UMULH function performs a quadword multiply high instruction.

This function has the following format:

214

Appendix C. Built-In Functions

unsigned __int64 __UMULH (unsigned __int64 operand1, unsigned
 __int64 operand2);

operand1

A 64-bit unsigned integer.

operand2

A 64-bit unsigned integer.

The two operands are multiplied as unsigned integers to produce a 128-bit result. The high order 64-bits are
returned. Built-In Functions for I64 Systems (I64 only)

C.2. Built-In Functions for I64 Systems (I64
only)
The VSI C++ built-in functions available on OpenVMS Alpha systems are also available on I64 systems, with
some differences, as described in this section. This section also describes built-in functions that are specific to
I64 systems.

C.2.1. Builtin Differences on I64 Systems
The <builtins.h> header file contains comments noting which built-in functions are not available or are not
the preferred form for I64 systems. The compiler issues diagnostics where using a different built-in function for
I64 systems would be preferable.

Note
The comments in <builtins.h> reflect only what is explicitly present in that header file itself, and in
the compiler implementation. You should also consult the content and comments in <pal_builtins.h>
to determine more accurately what functionality is effectively provided by including <builtins.h>. For
example, if a program explicitly declares one of the Alpha built-in functions and invokes it without having
included <builtins.h>, the compiler might issue the BIFNOTAVAIL error message, regardless of whether
or not the function is available through a system service. If the compilation does include <builtins.h>,
and BIFNOTAVAIL is issued, then either there is no support at all for the built-in function or a new version of
<pal_builtins.h> is needed.

Here is a summary of these differences on I64 systems:

• There is no support for the asm, fasm, and dasm intrinsics (declared in the <c_asm.h> header file).

• The functionality provided by the special-case treatment of R26 in an Alpha system asm, as in asm("MOV
R26,R0"), is provided by a new built-in function for I64 systems:

__int64 __RETURN_ADDRESS(void);

This built-in function produces the address to which the function containing the built-in call will return (the
value of R26 on entry to the function on Alpha systems; the value of B0 on entry to the function on I64 systems).
This built-in function cannot be used within a function specified to use nonstandard linkage.

• The only PAL function calls implemented as built-in functions within the compiler are the 24 queue-
manipulation builtins. The queue manipulation builtins generate calls to new OpenVMS system services SYS
$<name>, where <name> is the name of the builtin with the leading underscores removed.

Any other OpenVMS PAL calls are supported through macros defined in the <pal_builtins.h> header
file included in the <builtins.h> header file. Typically, the macros in <pal_builtins.h> transform
an invocation of an Alpha system builtin into a call to a system service that performs the equivalent function on

215

Appendix C. Built-In Functions

an I64 system. Two notable exceptions are __PAL_GENTRAP and __PAL_BUGCHK, which instead invoke
the I64 specific compiler builtin __break2.

• There is no support for the various floating-point built-in functions used by the OpenVMS math library (for
example, operations with chopped rounding and conversions).

• For most built-in functions that take a retry count, the compiler issues a an error message. Such builtins must
be replaced with the corresponding builtin that does not have a retry count. This is necessary because the retry
behavior allowed by Alpha load-locked/store-conditional sequences does not exist on I64 systems. There are
two exceptions to this: __LOCK_LONG_RETRY and __ACQUIRE_SEM_LONG_RETRY; in these cases, the
retry behavior involves comparisons of data values, not just load-locked/store-conditional.

• The __CMP_STORE_LONG and __CMP_STORE_QUAD built-in functions produce an error message, and
must be replaced with the new __CMP_SWAP_LONG and __CMP_SWAP_QUAD built-in functions.

C.2.2. Built-in Functions Specific to I64 Systems
The <builtins.h> header file contains a section at the top conditionalized to just __ia64 with the support
for built-in functions specific to I64 systems. This includes macro definitions for all of the registers that can be
specified to the __getReg, __setReg, __getIndReg, and __setIndReg built-in functions. Parameters that are const-
qualified require an argument that is a compile-time constant.

The following sections describe the VSI C++ built-in functions available on OpenVMS I64 systems.

Get Hardware Register Value (__getReg)
The __getReg function gets the value from a hardware register based on the register index specified. This function
produces a corresponding mov = r instruction.

This function has the following format:

unsigned __int64 __getReg (const int whichReg);

whichReg

The index of the hardware register from which the value is obtained. The __getReg and __setReg functions can
access the following registers:

Register Name whichReg
_IA64_REG_IP 1016
_IA64_REG_PSR 1019
_IA64_REG_PSR_L 1019

General Integer Registers:

Register Name whichReg
_IA64_REG_GP 1025
_IA64_REG_SP 1036
_IA64_REG_TP 1037

Application Registers:

Register Name whichReg
_IA64_REG_AR_KR0 3072
_IA64_REG_AR_KR1 3073
_IA64_REG_AR_KR2 3074
_IA64_REG_AR_KR3 3075
_IA64_REG_AR_KR4 3076
_IA64_REG_AR_KR5 3077

216

Appendix C. Built-In Functions

_IA64_REG_AR_KR6 3078
_IA64_REG_AR_KR7 3079
_IA64_REG_AR_RSC 3088
_IA64_REG_AR_BSP 3089
_IA64_REG_AR_BSPSTORE 3090
_IA64_REG_AR_RNAT 3091
_IA64_REG_AR_FCR 3093
_IA64_REG_AR_EFLAG 3096
_IA64_REG_AR_CSD 3097
_IA64_REG_AR_SSD 3098
_IA64_REG_AR_CFLAG 3099
_IA64_REG_AR_FSR 3100
_IA64_REG_AR_FIR 3101
_IA64_REG_AR_FDR 3102
_IA64_REG_AR_CCV 3104
_IA64_REG_AR_UNAT 3108
_IA64_REG_AR_FPSR 3112
_IA64_REG_AR_ITC 3116
_IA64_REG_AR_PFS 3136
_IA64_REG_AR_LC 3137
_IA64_REG_AR_EC 3138

Control Registers:

Register Name whichReg
_IA64_REG_CR_DCR 4096
_IA64_REG_CR_ITM 4097
_IA64_REG_CR_IVA 4098
_IA64_REG_CR_PTA 4104
_IA64_REG_CR_IPSR 4112
_IA64_REG_CR_ISR 4113
_IA64_REG_CR_IIP 4115
_IA64_REG_CR_IFA 4116
_IA64_REG_CR_ITIR 4117
_IA64_REG_CR_IIPA 4118
_IA64_REG_CR_IFS 4119
_IA64_REG_CR_IIM 4120
_IA64_REG_CR_IHA 4121
_IA64_REG_CR_LID 4160
_IA64_REG_CR_IVR 4161 *
_IA64_REG_CR_TPR 4162
_IA64_REG_CR_EOI 4163
_IA64_REG_CR_IRR0 4164 *
_IA64_REG_CR_IRR1 4165 *
_IA64_REG_CR_IRR2 4166 *
_IA64_REG_CR_IRR3 4167 *
_IA64_REG_CR_ITV 4168
_IA64_REG_CR_PMV 4169
_IA64_REG_CR_CMCV 4170
_IA64_REG_CR_LRR0 4176
_IA64_REG_CR_LRR1 4177

* getReg only

Set Hardware Register Value (__setReg)
The __setReg function sets the value for a hardware register based on the register index specified. This function
produces a corresponding mov = r instruction.

217

Appendix C. Built-In Functions

This function has the following format:

void __setReg (const int whichReg, unsigned __int64 value);

whichReg

The index of the hardware register whose value is being set. See the __getReg functions for the list of registers
that can be accessed.

value

The value to which the register is set.

Get Index Register Value (__getIndReg)
The __getIndReg function returns the value of an indexed register. The function accesses a register (index) in a
register file (whichIndReg) of 64-bit registers.

This function has the following format:

unsigned __int64 __getIndReg
(const int whichIndReg, __int64 index);

whichIndReg

The register file.

index

The index in the register file of the hardware register whose value is being requested. See the __getReg functions
for the list of registers that can be accessed.

Indirect Registers for getIndReg and setIndReg:

Register Name whichReg

_IA64_REG_INDR_CPUID 9000 *
_IA64_REG_INDR_DBR 9001
_IA64_REG_INDR_IBR 9002
_IA64_REG_INDR_PKR 9003
_IA64_REG_INDR_PMC 9004
_IA64_REG_INDR_PMD 9005
_IA64_REG_INDR_RR 9006
_IA64_REG_INDR_RESERVED 9007

* getIndReg only

Set Index Register Value (__setIndReg)
The __setIndReg function copies a value into an indexed register. The function accesses a register (index) in a
register file (whichIndReg) of 64-bit registers.

This function has the following format:

void __setIndReg (const int whichIndReg, __int64 index,
unsigned __int64 value);

whichIndReg

The register file.

218

Appendix C. Built-In Functions

index

The index in the register file of the hardware register to be set. See the __getIndReg function for the list of registers
that can be accessed.

value

The value to which the register is set.

Generate Break Instruction (__break)
The __break function generates a break instruction with an immediate.

This function has the following format:

void __break (const int __break_arg);

__break_arg

An immediate value for the __break instruction to use.

Serialize Data (__dsrlz)
The __dsrlz function serializes data. Maps to the srlz.d instruction.

This function has the following format:

void __dsrlz (void);

Flush Cache Instruction (__fc)
The __fc function flushes a cache line associated with the address given by the argument. Maps to the fcr
instruction.

This function has the following format:

void __fc (__int64 __address);

__address

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Flush Write Buffers (__fwb)
The __fwb function flushes the write buffers. Maps to the fwb instruction.

This function has the following format:

void __fwb (void);

Invalidate ALAT (__invalat)
The __invalat function invalidates ALAT. Maps to the invala instruction.

This function has the following format:

void __invalat (void);

Invalidate ALAT (__invala)

219

Appendix C. Built-In Functions

The __invala function is the same as the __invalat function.

Execute Serialize (__isrlz)
The __isrlz function executes the serialize instruction. Maps to the srlz.i instruction.

This function has the following format:

void __isrlz (void);

Insert Data Address Translation Cache (__itcd)
The __itcd function inserts an entry into the data translation cache. Maps to the itc.d instruction.

This function has the following format:

void __itcd (__int64 pa);

pa

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Insert Instruction Address Translation Cache (__itci)
The __itci function inserts an entry into the instruction translation cache. Maps to the itc.i instruction.

This function has the following format:

void __itci (__int64 pa);

pa

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Insert Data Translation Register (__itrd)
The __itrd function maps to the itr.d instruction.

This function has the following format:

void __itrd (__int64 whichTransReg, __int64 pa);

whichTransReg

The data translation register to be used by the itr.d instruction.

pa

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Insert Instruction Translation Register (__itri)
The __itri function maps to the itr.i instruction.

This function has the following format:

void __itri (__int64 whichTransReg, __int64 pa);

220

Appendix C. Built-In Functions

whichTransReg

The data translation register to be used by the itr.i instruction.

pa

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Purge Translation Cache Entry (__ptce)
The __ptce function maps to the ptc.e instruction.

This function has the following format:

void __ptce (__int64 va);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Purge Global Translation Cache (__ptcg)
The __ptcg function purges the global translation cache. Maps to the ptc.g

r,r

instruction.

This function has the following format:

void __ptcg (__int64 va, __int64 pagesz);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

pagesz

The address range of the purge.

Purge Local Translation Cache (__ptcl)
The __ptcl function purges the local translation cache. Maps to the ptc.l

r,r

instruction.

This function has the following format:

void __ptcl (__int64 va, __int64 pagesz);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

pagesz

221

Appendix C. Built-In Functions

The address range of the purge.

Purge Global Translation Cache and ALAT (__ptcga)
The __ptcga function purges the global translation cache and ALAT. Maps to the ptc.ga

r,r

instruction.

This function has the following format:

void __ptcga (__int64 va, __int64 pagesz);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

pagesz

The address range of the purge.

Purge Data Translation Register (__ptrd)
The __ptrd function purges the data translation register. Maps to the ptr.d

r,r

instruction.

This function has the following format:

void __ptrd (__int64 va, __int64 pagesz);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

pagesz

The address range of the purge.

Purge Instruction Translation Register (__ptri)
The __ptri function purges the instruction translation register. Maps to the ptr.i

r,r

instruction.

This function has the following format:

void __ptri (__int64 va, __int64 pagesz);

va

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

pagesz

222

Appendix C. Built-In Functions

The address range of the purge.

Reset System Mask (__rsm)
The __rsm function resets the system mask bits of the PSR. Maps to the rsm imm24 instruction.

This function has the following format:

void __rsm (int mask);

mask

An integer value inserted into the instruction as a 24-bit immediate value.

Reset User Mask (__rum)
The __rum function resets the user mask.

This function has the following format:

void __rum (int mask);

mask

An integer value inserted into the instruction as a 24-bit immediate value.

Set System Mask (__ssm)
The __ssm function sets the system mask.

This function has the following format:

void __ssm (int mask);

mask

An integer value inserted into the instruction as a 24-bit immediate value.

Set User Mask (__sum)
The __sum function sets the user mask bits of the PSR. Maps to the sum imm24 instruction.

This function has the following format:

void __sum (int mask);

mask

An integer value inserted into the instruction as a 24-bit immediate value.

Enable Memory Synchronization (__synci)
The __synci function enables memory synchronization. Maps to the sync.i instruction.

This function has the following format:

void __synci (void);

Translation Hashed Entry Address (__thash)
The __thash function generates a translation hash entry address. Maps to the thash r = r instruction.

223

Appendix C. Built-In Functions

This function has the following format:

void __thash(__int64 __address);

__address

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Translation Hashed Entry Tag (__ttag)
The __ttag function generates a translation hash entry tag. Maps to the ttag r=r instruction.

This function has the following format:

void __ttag(__int64 __address);

__address

A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a 64-bit general register used by the
instruction to be generated.

Atomic Compare and Exchange
(_InterlockedCompareExchange_acq)
The _InterlockedCompareExchange_acq function atomically compares and exchanges the value specified by the
first argument (a 64-bit pointer). This function maps to the cmpxchg4.acq instruction with appropriate setup.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange_acq (volatile unsigned int
 *Destination,
 unsigned __int64 Newval, unsigned __int64 Comparand);

The value at *Destination is compared with the value specified by Comparand. If they are equal, Newval is written
to *Destination, and Oldval is returned. The exchange will have taken place if the value returned is equal to the
Comparand. The following algorithm is used:

ar.ccv = Comparand;
Oldval = *Destination; //Atomic
if (ar.ccv == *Destination) //Atomic
 *Destination = Newval; //Atomic
return Oldval;

Those parts of the algorithm that are marked "Atomic" are performed atomically by the cmpxchg4.acq instruction.
This instruction has acquire ordering semantics; that is, the memory read/write is made visible prior to all
subsequent data memory accesses of the Destination by other processors.

Destination

The value to be compared with Comparand and, if equal, replaced with the value of Newval.

Newval

The new value to replace the value in Destination.

Comparand

The value with which to compare Destination.

224

Appendix C. Built-In Functions

Atomic Compare and Exchange
(_InterlockedCompareExchange64_acq)
The _InterlockedCompareExchange64_acq function is the same as the _InterlockedCompareExchange_acq
function, except that those parts of the algorithm that are marked "Atomic" are performed by the cmpxchg8.acq
instruction.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange64_acq (volatile unsigned
 __int64 *Destination,
 unsigned __int64 Newval, unsigned
 __int64 Comparand);

Atomic Compare and Exchange
(_InterlockedCompareExchange_rel)
This function is the same as the _InterlockedCompareExchange_acq function except that those parts of the
algorithm that are marked "Atomic" are performed by the cmpxchg4.rel instruction with release ordering
semantics; that is, the memory read/write is made visible after all previous memory accesses of the Destination
by other processors.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange_rel (volatile unsigned int
 *Destination,
 unsigned __int64 Newval, unsigned
 __int64 Comparand);

Atomic Compare and Exchange
(_InterlockedCompareExchange64_rel)
This function is the same as the _InterlockedCompareExchange_rel function, except that those parts of the
algorithm that are marked "Atomic" are performed by the cmpxchg8.rel instruction.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange64_rel (volatile unsigned
 __int64 *Destination,
 unsigned __int64 Newval, unsigned __int64 Comparand);

Conditional Atomic Compare and Exchange Longword
(__CMP_SWAP_LONG)
The __CMP_SWAP_LONG function performs a conditional atomic compare and exchange operation on a
longword. The longword pointed to by source is read and compared with the longword old_value. If they are
equal, the longword new_value is written into the longword pointed to by source. The read and write is performed
atomically, with no intervening access to the same memory region.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_LONG (volatile void *source, int old_value,
 int new_value);

source

225

Appendix C. Built-In Functions

The longword value to be compared with old_value.

old_value

The longword value source is compared with.

new_value

The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword
(__CMP_SWAP_QUAD)
The __CMP_SWAP_QUAD function performs a conditional atomic compare and exchange operation on a
quadword. The quadword pointed to by source is read and compared with the quadword old_value. If they are
equal, the quadword new_value is written into the quadword pointed to by source. The read and write is performed
atomically, with no intervening access to the same memory region.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_QUAD (volatile void *source, int old_value,
 int new_value);

source

The quadword value to be compared with old_value.

old_value

The quadword value source is compared with.

new_value

The quadword value written to source if source and old_value are equal.

Conditional Atomic Compare and Exchange Longword with
Acquire Semantics (__CMP_SWAP_LONG_ACQ)
The __CMP_SWAP_LONG_ACQ function performs a conditional atomic compare and exchange operation with
acquire semantics on a longword. The longword pointed to by source is read and compared with the longword
old_value. If they are equal, the longword new_value is written into the longword pointed to by source. The read
and write is performed atomically, with no intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made visible before all subsequent data
accesses to the same memory location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_LONG_ACQ (volatile void *source, int old_value,
 int new_value);

source

The longword value to be compared with old_value.

old_value

226

Appendix C. Built-In Functions

The longword value source is compared with.

new_value

The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword with
Acquire Semantics (__CMP_SWAP_QUAD_ACQ)
The __CMP_SWAP_QUAD_ACQ function performs a conditional atomic compare and exchange operation with
acquire semantics on a quadword. The quadword pointed to by source is read and compared with the quadword
old_value. If they are equal, the quadword new_value is written into the quadword pointed to by source. The read
and write is performed atomically, with no intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made visible before all subsequent memory
data accesses to the same memory location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_QUAD_ACQ (volatile void *source, int old_value,
 int new_value);

source

The quadword value to be compared with old_value.

old_value

The quadword value source is compared with.

new_value

The quadword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Longword with
Release Semantics (__CMP_SWAP_LONG_REL)
The __CMP_SWAP_LONG_REL function performs a conditional atomic compare and exchange operation with
release semantics on a longword. The longword pointed to by source is read and compared with the longword
old_value. If they are equal, the longword new_value is written into the longword pointed to by source. The read
and write is performed atomically, with no intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made visible after all previous data memory
acceses to the same memory location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_LONG_REL (volatile void *source, int old_value,
 int new_value);

source

The longword value to be compared with old_value.

old_value

The longword value source is compared with.

227

Appendix C. Built-In Functions

new_value

The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword with
Release Semantics (__CMP_SWAP_QUAD_REL)
The __CMP_SWAP_QUAD_REL function performs a conditional atomic compare and exchange operation with
release semantics on a quadword. The quadword pointed to by source is read and compared with the quadword
old_value. If they are equal, the quadword new_value is written into the quadword pointed to by source. The read
and write is performed atomically, with no intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made visible after all previous data memory
acceses to the same memory location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.

This function has the following format:

int __CMP_SWAP_QUAD_REL (volatile void *source, int old_value,
 int new_value);

source

The quadword value to be compared with old_value.

old_value

The quadword value source is compared with.

new_value

The quadword value written into source if source and old_value are equal.

Return Address (__RETURN_ADDRESS)
The __RETURN_ADDRESS function produces the address to which the function containing the built-in call will
return as a 64-bit integer (on Alpha systems, the value of R26 on entry to the function; on I64 systems, the value
of B0 on entry to the function).

This built-in function cannot be used within a function specified to use nonstandard linkage.

This function has the following format:

__int64 __RETURN_ADDRESS (void);

Implement Alpha __PAL_GENTRAP and __PAL_BUGCHK Builtins
(__break2)
The __break2 function is used to implement the Alpha __PAL_GENTRAP and __PAL_BUGCHK built-in
functions on OpenVMS I64 systems.

The __break2 function is equivalent to the __break function with the second parameter passed in general register
17:

R17 = <double_uscore>R17_value; <double_uscore>break
 (<double_uscore>break_code);

This function has the following format:

228

Appendix C. Built-In Functions

void __break2 (__Integer_Constant __break_code, unsigned
 __int64 __r17_value);

__breakcode

The particular software condition that has occurred.

__r17_value

The value of R17, a volatile general register reserved by the OpenVMS Itanium calling standard for use by
compiled code to communicate with specialized compiler support routines that require out-of-band information
passing.

Flush Register Stack (__flushrs)
The __flushrs function flushes the register stack.

This function has the following format:

void __flushrs (void);

Load Register Stack (__loadrs)
The __loadrs function loads the register stack.

This function has the following format:

void __loadrs (void);

Probe Read-Access Permission (__prober)
The __prober function determines whether read access to the virtual address specified by __address bits {60:0}
and the region register indexed by __address bits {63:61} is permitted at the privilege level given by __mode bits
{1:0}. It returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the specified privilege level is higher (lower
number), then the probe is performed with the current privilege level.

This function is the same as the Intel __probe_r function.

This function has the following format:

int __prober (__int64 __address, unsigned int __mode);

__address

Virtual address for which read-access permission is being checked.

__mode

Privilege level for which read-access permission is being checked.

Probe Write-Access Permission (__probew)
The __probew function determines whether write access to the virtual address specified by __address bits {60:0}
and the region register indexed by __address bits {63:61}, is permitted at the privilege level given by __mode bits
{1:0}. It returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the specified privilege level is higher (lower
number), then the probe is performed with the current privilege level.

229

Appendix C. Built-In Functions

This function is the same as the Intel __probe_w function.

This function has the following format:

int __probew (__int64 __address, unsigned int __mode);

__address

Virtual address for which write-access permission is being checked.

__mode

Privilege level for which write-access permission is being checked.

Translation Access Key (__tak)
The __tak function returns the translation access key.

This function has the following format:

unsigned int __tak (__int64 __address);

__address

Virtual address for translation key is being returned.

Translate to Physical Address (__tpa)
The __tpa function translates a virtual address to a physical address.

This function has the following format:

__int64 __tpa(__int64 __address);

__address

Virtual address to be translated.

230

Appendix D. Class
Library Restrictions

Appendix D. Class Library
Restrictions
This appendix describes known problems and restrictions for the Class Library. Please note that String Package,
which is part of the Class Library, is entirely different from the String class that is part of the newly-implemented
C++ Standard Library and known as the String Library. Do not confuse these two contrasting implementations.

D.1. Class Library Restrictions
The following are restrictions in the C++ Class Library:

• No Class Library support for 128-bit long doubles

The Class Library does not include support for 128-bit long doubles.

• Conflict with redefinition of clear()

If your program includes both <curses.h> and <iostream.hxx>, VSI C++ might fail to compile your
program because clear() is defined by both header files. In <curses.h>, clear() is defined as a macro
whereas in <iostream.hxx> clear() is defined as a member function.

Workarounds:

If your program does not use either clear() or uses the clear(), include the <iostream.hxx> header
first, followed by <curses.h>.

If your program uses the ios::clear() function, undefine the clear() macro directly after the
#include <curses.h> statement.

• On OpenVMS Alpha systems, class library IOStreams do not support denormalized IEEE numbers. The
workaround is to use C Run-Time Library functions like printf and scanf instead.

231

Appendix E. Compiler Compatibility

Appendix E. Compiler Compatibility
This appendix describes VSI C++ compatibility with other C++ compilers, and documents compatibility concerns
between the Version 5.n and Version 6.n compilers.

For porting and compatibility between Alpha and I64 systems, see Chapter 4, Porting to I64 Systems.

VSI C++ implements the C++ International Standard, with some differences, as described in the C++ release notes.

This language differs significantly from The Annotated C++ Reference Manual, implemented by the Version
5.n compilers. When switching from a Version 5.n compiler, you might need to modify your source files,
especially if you use the default language mode. In addition, language changes can affect the run-time behavior
of your programs. If you want to compile existing source code with minimal source changes, compile using the /
STANDARD=ARM qualifier option. See Chapter 7, The C++ Standard Library for information on and changes
to the Standard Library.

This chapter describes ways to avoid having the compiler reject program code that previously worked with other
C++ implementations that adhere less strictly to the C++ language definition. References to applicable portions
of The Annotated C++ Reference Manual indicate where you can find additional help.

E.1. Compatibility with Other C++ Compilers
In default mode (/STANDARD=RELAXED), the compiler implements most features of the C++ International
Standard, including:

• Run-time type identification (RTTI), with dynamic_cast and the typeid operator (see Section 2.4, “Run-
time Type Identification”)

• New-style casts (static_cast, reinterpret_cast, and const_cast

• Array new and delete

For compatibility with previous versions, the compiler provides the following language mode options:

/STANDARD=RELAXED

Specify this option if you want an ANSI C++ compiler that supports some commonly used extensions
and is somewhat less strict than the standard. This is the default compiler mode. Please note that /
STANDARD=ANSI is accepted as a synonym for /STANDARD=RELAXED to be compatible with previous
compiler versions.

If you want to use RELAXED mode but find that the compiler generates too many diagnostics in that mode,
you can use the /QUIET option with the /STANDARD=RELAXED option. The /QUIET option relaxes error
checking and suppresses or reduces the severity of many diagnostics. It also suppresses many warnings that
are generated in RELAXED mode but were not issued by Version 5.n compilers. For information on message
control options, see Section 2.5, “Message Control and Information Options”.

/STANDARD=ARM

Specify this option if you want to compile programs developed using Version 5.n and want to minimize source
changes.

VSI C++ Version 6.n and higher also provides support for other C++ dialects and language modes. You can specify
the following options:

/STANDARD=MS

Specify this option if you want the compiler to accept additional Microsoft Visual C++ extensions.

232

Appendix E. Compiler Compatibility

/STANDARD=STRICT_ANSI

Enforce the ANSI standard strictly but permit some ANSI violations that should be errors to be warnings. To
force ANSI violations to be issued with Error instead of Warning severity, use /WARNINGS=ANSI_ERRORS
in addition to /STANDARD=STRICT_ANSI.

/STANDARD=LATEST

Use the latest C standard dialect. /STANDARD=LATEST is currently equivalent to /STANDARD=C99, but
is subject to change when newer versions of the C standard are released.

With /STANDARD=MS you may also want to specify /QUIET to reduce the number of diagnostic messages
generated.

E.2. Compatibility with Version 5.6 and Earlier
This section provides details about differences between the Version 6.n and later compilers, and the Version 5.6
and earlier compilers:

• Language differences

• Implementation differences

• Library differences

E.2.1. Language Differences
Users should be aware of the following language differences between Version 6.n and higher (denoted simply as
Version 6.n in the following list), and previous versions of the compiler.

• The most important language differences result from the current implementation of the C++ International
Standard in the Version 6.n compilers. If you want to compile existing source code with minimal source changes,
compile using the /STANDARD=ARM option.

• Because the Version 6.n compilers perform more error checking than previous versions, they generate
significantly more diagnostic messages. However, you can use the /QUIET option to relax error checking and
reduce the severity of many diagnostics. Message Control and Information Options.

• The following keywords, introduced with the C++ International Standard, are always reserved keywords in all
compiler modes:

bool, const_cast, explicit, export, false, mutable, dynamic_cast,
reinterpret_cast, static_cast, true, typeid, typename, wchar_t

Alternative representation keywords are as follows:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq

• Taking the address of a bit field is not allowed in the current version.

• Creation of temporaries and their lifetimes vary among compiler modes.

• Macro expansion in pragmas can give different results in the current and previous versions.

• The following are distinct types in the Version 6.n compilers; they were the same type in previous versions:

typedef void (*PF)(); // Pointer to an extern "C++" function
extern "C" typedef void (*PCF)(); // Pointer to an extern "C" function
void f(PF);

233

Appendix E. Compiler Compatibility

void f(PCF);

• Version 6.n does not allow converting a pointer to member from a derived class to a virtual base class.

• Calling a nonstatic member function through a null pointer is undefined behavior. Certain cases that used to run
without errors in previous versions no longer run in the current version. For example:

#include <iostream.h>
struct A {
 int a;
};
struct D : public virtual A
{
 A* toA(){ return (A*) this; }
};
main ()
{
 D* d = NULL;
 A* ad = d->toA(); // will ACCVIO
 if (ad==NULL) cout << "ok";
}

• In Version 6.n compilers, bool is a built-in type. In previous versions, it is user-defined, typically as int in
system header files. Mangling differs in this respect only for functions that have arguments of type bool.

In Version 6.n compilers, the size of bool is 1. In previous versions, bool is user defined, typically as int
with a size of 4.

In Version 6.n compilers, the size of a boolean expression (sizeof(a && b)) is 1. In previous versions,
the size is 4, independent of the size of bool.

• Version 6.n compilers do not cause pragmas to become effective within function bodies when scanning template
definitions.

• Version 6.n compilers do not allow the “virtual” storage class modifier to be used with member function
definitions outside a class.

• Version 6.n compilers do not allow declaration of pointers to members of type void. For example, the following
is not allowed:

typedef void Z::* any_ptom;

E.2.2. Implementation Differences
Users should be aware of the following implementation differences between Version 6.n compilers, and previous
versions of the compiler:

• The automatic template instantiation model is different for Version 6.n, and previous compiler versions. See
Section E.2.3, “Using Templates” for details.

It is different yet again for I64 systems. SeeChapter 5, Using Templates for details.

• Version 6.n and higher drops qualifiers on parameters when determining the function type, as dictated by the C+
+ International Standard. For instance, in the following example, the function declarations are the same function.

 f(const int p1);
 f(int p1);

For compatibility with previous versions, if qualifiers are included in function declarations, they are also
included in the mangled name. (Note: this is not true for model ANSI or for I64 systems.)

234

Appendix E. Compiler Compatibility

• Version 6.n differs from previous versions in interpreting undefined behavior, as when incrementing takes effect
in this example:

 f(i++, i++);

• Version 6.n cannot handle a #pragma define_template that spans multiple lines without the backslash
(\) delimiter. Version 5.6 can handle this without problems.

• Version 6.n displays #line number in /PREPROCESS_ONLY output. The previous version displays
#number.

• After encountering an illegal multibyte character sequence, Version 6.n issues a warning diagnostic and
continues processing. The previous version issues an error and stops processing.

• Version 6.n does not support VAX C module include syntax (for example, #include acms$submitter
without <> or " " delimiters). The compiler searches text libraries for modules included using the normal
include syntax (specifying the " " or <> delimiters) and correctly (according to the C++ standard) rejects
#include directives that do not follow this syntax.

E.2.3. Using Templates
The template instantiation model was completely redesigned for C++ Version 6.0. The changes include:

• Automatic template instantiation now occurs at compile time. Necessary templates are instantiated automatically
by the compilation of the source file that needs them and has access to the template definitions.

• During automatic template instantiation, instantiations are written into the repository as object files. Compilation
of instantiations in no longer done at link time.

• For automatic instantiation, the compiler no longer requires that template declarations and definitions appear
in header files.

• Template.map files are no longer supported as a way to match template declarations and definitions.

• Several new manual template instantiation pragmas have been added.

The automatic template instantiation model new with Version 6.0 is not directly compatible with previous template
instantiation mechanisms. When linking applications using Version 6.0 and later, instantiations might not be
resolved from existing Version 5.n repositories. Where possible, it is safest to start fresh with an empty repository
and create the required instantiations by compiling all source files. If this is not possible, there are some strategies
that can be used to link mixed generation instantiations.

If you used both Version 6.n and Version 5.n to build applications, VSI strongly recommends that you use different
repositories to contain automatic template instantiations for Version 6.n and Version 5.n compilations. The default
repository name is the same for Version 6.n as for prior versions. Thus, if you use Version 6.n with older pre-6.n
versions, you should do compilations in a different directory for each compiler or explicitly specify a different
repository for each using the /REPOSITORY qualifier.

E.2.3.1. Linking with Version 5.n Instantiations
When linking applications using Version 6.n against instantiations created with Version 5.n, it is necessary to
complete the Version 5.n instantiation process, to create instantiation object files. If old_repository is a
Version 5.n repository then you would create the Version 5.n instantiation object files by using the Version 5.n
cxxlink:

CXXLINK/NOEXE /REPOSITORY=[.old_repository]
 <Version 5.n object files>

<Version 5.n object files> are the object files that were created using the Version 5.n compiler;
old_repository now contains the instantiation object files. Create a library of these object files as follows:

235

Appendix E. Compiler Compatibility

LIBRARY/CREATE/OBJECT lib_old_repository/LOG
LIBRARY/INSERT/OBJECT lib_old_repository/LOG
 [old_repository]*.obj

When linking using Version 6.n, specify lib_old_repository.olb after all of the Version 5.n object files
that are being linked.

E.2.3.2. Linking Version 5.n Applications Against Version 6.n
Repositories
In a similar way, you can create a library of Version 6.n instantiation object files to link into a Version 5.n
application being linked using C++ Version 5.n. If new_repository is the Version 6.n repository, then a library
of the instantiations would be created by:

LIBRARY/CREATE/OBJECT lib_new_repository/LOG
LIBRARY/INSERT/OBJECT lib_new_repository/LOG [new_repository]*.obj

When linking using Version 5.n, specify lib_new_repository.olb after all of the Version 6.n object files
that are being linked.

E.2.4. Library Differences
Aspects of memory allocation and deallocation have changed from the V5.n and earlier compilers to the Version
6.n compilers. See the description of /[NO]STDNEW and /[NO]GLOBAL_ARRAY_NEW in The C++ Standard
Library.

E.3. Using Classes
This section discusses porting issues pertaining to C++ classes.

E.3.1. Friend Declarations
When making friend declarations, use the elaborated form of type specifier. The following code fragment
implements the legal and comments out the illegal friend declaration:

class Y;
class Z;
class X;
 //friend Y; ** not legal
 friend class Z; // legal
};

E.3.2. Member Access
Unlike some older C++ implementations, VSI C++ strictly enforces accessibility rules for public, protected,
and private members of a base class. For more information, see The Annotated C++ Reference Manual.

E.3.3. Base Class Initializers
 Unlike some older C++ implementations, VSI C++ requires you to use the base class name in the initializer for a
derived class. The following code fragment implements a legal initializer and comments out an illegal initializer:

class Base {
 // …
public:
 Base (int);
};

236

Appendix E. Compiler Compatibility

class Derived : public Base {
 // …
public:
 // Derived(int i) : (i) {/* … */} ** not legal
 Derived(int i) : Base(i) {/* … */} // ** legal, supplies class name
};

For more information, see The Annotated C++ Reference Manual.

E.4. Undefined Global Symbols for Static
Data Members
When a static data member is declared, the compiler issues a reference to the external identifier in the object code,
which must be resolved by a definition. The compiler does not support the declaration anachronism shown in The
Annotated C++ Reference Manual.

For example, consider the following code fragment:

class C {
 static int i;
 };
//missing definition
//int C::i = 5;
int main ()
{
 int x;
 x=C::i;
 return 0;
}

The compiler does not issue any messages during compilation; however, when you attempt to link a program
containing this code, the linker issues an unresolved symbol error message for the variable C::i.

E.5. Functions and Function Declaration
Considerations
VSI C++ requires the use of function definitions as described in The Annotated C++ Reference Manual. For
examples of outdated syntax not allowed in VSI C++, see The Annotated C++ Reference Manual.

Because all linkage specifications for a name must agree, function prototypes are not permitted if the function is
later declared as an inline function. The following code is an example of such a conflicting function declaration:

int f();
inline int f() { return l; }

In this example, f is declared with both internal and external linkage, which causes a compiler error.

E.6. Using Pointers
This section demonstrates how to use pointers effectively in VSI C++.

E.6.1. Pointer Conversions
In VSI C++, you cannot implicitly convert a const pointer to a nonconstant pointer. For example, char * and
const char * are not equivalent; explicitly performing such a cast can lead to unexpected results.

237

Appendix E. Compiler Compatibility

For more information, see The Annotated C++ Reference Manual.

E.6.2. Bound Pointers
Binding a pointer to a member function with a particular object as an argument to the function is not allowed in VSI
C++. For more information on the illegality of casting bound pointers, see The Annotated C++ Reference Manual.

E.6.3. Constants in Function Returns
Because the return value cannot be an lvalue, the const keyword in a function return has no effect on the semantics
of the return. However, using the const keyword in a function return does affect the type signature. For example:

static int f1(int a, int b) {;}
const int (* const (f2[])) (int a, int b) = {f1};

In this example, the referenced type of the pointer value f1 in the initializer for f2[] is function (signed
int, signed int), which returns signed int. This is incompatible with function (signed int,
signed int), which returns const signed int.

You can omit the const of int because it affects only the constant return signature.

E.6.4. Pointers to Constants
The following example shows a type mismatch between a pointer to a char and a pointer to a const char
that some other compilers might not find:

void foo (const char* argv[]) {}
int main()
{
 static char* args[2] = {"foo","bar"};
/* In this statement, the referenced type of the pointer value
 "args" is "pointer to char" which is not compatible with
 "pointer to const char"'*/
 foo (args);
return 0;
}

You can correct this example by changing static char to static const char. Use an explicit type cast
to get an argument match only if no other option is available; such a cast may break on some C++ implementations.

E.7. Using typedefs
Using a synonym after a class, struct, or union prefix is illegal. Using a synonym in the names for
constructors and destructors within the class declaration itself is also illegal.

In the following example, the illegal typedef specifier is commented out:

typedef struct { /* … */ } foo;
// typedef struct foo foobar; ** not legal

For more information, see The Annotated C++ Reference Manual.

E.8. Initializing References
VSI C++ warns against initializing nonconstant references to refer to temporary objects. The following example
demonstrates the problems that can result:

238

Appendix E. Compiler Compatibility

static void f()
{
 int i = 5;
 i++; // OK
 int &ri = 23;
 ri++; // In the initializer for ri, the initialization of a
 // non-const reference requires a temporary for "23".
}

The issue of reference initialization arises most often in assignment operators and in copy constructors. Wherever
possible, declare all reference arguments as const.

For more information, see The Annotated C++ Reference Manual.

E.9. Using the switch and goto Statements
Branching around a declaration with an explicit or implicit initializer is not legal, unless the declaration is in an
inner block that is completely bypassed. To satisfy this constraint, enclose the declaration in a block. For example:

int i;
switch (i) {
case 1:
 int l = 0; //not initialized at this case label
 myint m = 0; //not initialized at this case label
 {
 int j = 0; // legal within the braces
 myint m = 0; // legal within the braces
 }
case 2:
 break;
// …
}

For more information on using the switch statement, see The Annotated C++ Reference Manual.

E.10. Using Volatile Objects
You must supply the meaning of copy constructing and assigning from volatile objects, because the compiler
generates no copy constructors or assignment operators that copy or assign from volatile objects. The following
example contains examples of such errors, as noted in the comments:

class A {
public:
 A() { }
 // A(volatile A&) { }
 // operator=(volatile A&) { return 0; }
};
void foo()
{
 volatile A va;
 A a;
 A cca(va); // error - cannot copy construct from volatile object
 a = va; // error - cannot assign from volatile object
 return;
}

For more information, see The Annotated C++ Reference Manual.

239

Appendix E. Compiler Compatibility

E.11. Preprocessing
VSI C++ allows identifiers, but not expressions, on the #ifdef preprocessor directive. For example:

// this is not legal
// #ifdef KERNEL && !defined(__POSIX_SOURCE)

The following is the legal alternative:

// use this instead
#if defined(KERNEL) && !defined(__POSIX_SOURCE)

For more information, see The Annotated C++ Reference Manual.

E.12. Managing Memory
The proper way to manage memory for a class is to overload the new and delete operators. This is in contrast
to some older C++ implementations, which let you manage memory through assignment to the this pointer.

For more information, see The Annotated C++ Reference Manual.

Program developers must take care that any user-defined new operators always return pointers to quadword-
aligned memory.

E.13. Size-of-Array Argument to delete
Operator
 If a size-of-array argument accompanies a delete operator, VSI C++ ignores the argument and issues a warning.
The following example includes an anachronistic use of the delete operator:

int main()
{
 int *a = new int [20];
 int *b = new int [20];
 delete[20] a; //old-style; argument ignored, warning issued
 delete[] b;
return 0;
}

E.14. Flushing the Output Buffer
Do not depend on the newline character (\n) to flush your terminal output buffer. A previous stream
implementation might have done so, but this behavior is not in conformance with Version 2.0 of the AT&T
iostream library. If you want to flush the output buffer, use the endl manipulator or the flush member
function.

E.15. Linking
When linking applications, use CXXLINK instead of LINK. See Section 1.3, “Linking a Program (Alpha only)”
(Alpha only) and Section 1.4, “Linking a Program (I64 only)” (I64 only).

E.16. Incrementing Enumerations
Some other C++ implementations let you perform integer arithmetic, including ++, on enumerated types; VSI C
++ does not allow this.

240

Appendix E. Compiler Compatibility

E.17. Guidelines for Writing Clean 64-Bit
Code
Paying careful attention to data types can ensure that your code works on both 32-bit and 64-bit systems. Use the
following guidelines to write clean 64-bit code:

• Variables that should be 32 bits in size on both 32-bit systems and 64-bit OpenVMS systems should be declared
as int (not long).

• If you want 32-bit variables on a 32-bit system and an OpenVMS system, declare them as int.

• A 64-bit number on OpenVMS must be declared as __int64 or long long.

• Remember that register variables and unsigned variables default to int (32 bits).

• Constants are 32-bit quantities by default. Performing shift operations or bit operations on constants will give
32-bit results. You must add L to the constant to get a 64-bit result. For example:

long foo, bar;
foo = 1L << bar;

• Assigning to a char is not atomic on OpenVMS systems. You will get a load of 32 or 64 bits, followed by byte
operations to extract, mask, and shift the byte, followed by a store of 32 or 64 bits.

• Bit-fields declared as int on OpenVMS systems generate load/store 32 bits. Bit-fields declared as long on
OpenVMS systems generate load/store 64 bits.

• If you do not explicitly declare the formal parameters to functions, their sizes may not match the caller sizes.
The default is int, which truncates 64-bit addresses.

• The %d and %x format specifiers print 32 bits of data. Use %Ld or %Lx with printf to print 64 bits of data.
You can use %p on both 32- and 64-bit systems to print the value of pointers.

241

Index

Index
Symbols
#ifdef preprocessor directive, 240
#include directive, 38, 41
#pragma pointer_size preprocessor directive, 135
#pragma required_pointer_size preprocessor directive,
135
/[NO]ALTERNATIVE_TOKENS qualifier, 144
/[NO]ANSI_ALIAS qualifier, 145
/[NO]CHECK qualifier

compiler, 149
/[NO]COMMENTS qualifier

compiler, 149
/[NO]DEBUG qualifier, 121, 122

with RUN command, 9
/[NO]DEFINE qualifier, 151
/[NO]DIAGNOSTICS qualifier, 151
/[NO]DISTINGUISH_NESTED_ENUMS qualifier,
151
/[NO]EXCEPTIONS qualifier, 152
/[NO]EXTERN_MODEL qualifier, 155
/[NO]IMPLICIT_INCLUDE qualifier, 158
/[NO]INCLUDE_DIRECTORY qualifier, 38, 41, 158
/[NO]LINE_DIRECTIVES qualifier, 161
/[NO]LIST qualifier, 161
/[NO]MACHINE_CODE qualifier, 161
/[NO]MAIN=POSIX_EXIT qualifier, 161
/[NO]MEMBER_ALIGNMENT qualifier, 35, 161
/[NO]MMS_DEPENDENCIES qualifier, 162
/[NO]OBJECT qualifier, 164
/[NO]OPTIMIZE qualifier, 121, 164
/[NO]PREPROCESS_ONLY qualifier, 168
/[NO]PURE_CNAME qualifier, 169
/[NO]RTTI qualifier, 170
/[NO]SHARE_GLOBALS qualifier, 170
/[NO]TEMPLATE_DEFINE qualifier, 172
/[NO]UNDEFINE qualifier, 174
/[NO]UNSIGNED_CHAR qualifier, 174
/[NO]USING_STD qualifier, 174
/[NO]VERSION qualifier, 175
/[NO]WARNINGS qualifier, 175
/[NO]XREF qualifier, 176
/ALTERNATIVE_TOKENS qualifier, 144
/ANSI_ALIAS qualifier, 145
/ARCHITECTURE qualifier, 145
/ASSUME qualifier, 146
/COMMENTS qualifier

compiler, 149
/DEBUG qualifier, 122, 122

with RUN command, 9
/DEFINE qualifier, 151
/DEFINE=__[NO_]USE_STD_IOSTREAM qualifier,
151
/DEFINE=__FORCE_INSTANTIATIONS qualifier,
151

/DIAGNOSTICS qualifier, 151
/DISTINGUISH_NESTED_ENUMS qualifier, 151
/ENDIAN qualifier, 151
/ERROR_LIMIT qualifier, 151
/EXCEPTIONS qualifier, 152
/EXPORT_SYMBOLS qualifier, 153
/EXTERN_MODEL qualifier, 155
/FIRST_INCLUDE qualifier, 156
/FLOAT qualifier, 156
/GRANULARITY qualifier, 157
/IEEE_MODE qualifier, 157
/IMPLICIT_INCLUDE qualifier, 158
/INCLUDE_DIRECTORY qualifier, 38, 41, 158
/L_DOUBLE_SIZE qualifier, 161
/LIBRARY qualifier, 161
/LINE_DIRECTIVES Qualifier, 161
/LIST qualifier, 161
/MACHINE_CODE qualifier, 161
/MAIN=POSIX_EXIT qualifier, 161
/MEMBER_ALIGNMENT qualifier, 161
/MMS_DEPENDENCIES qualifier, 162
/MODEL qualifier, 162
/MODEL=ANSI qualifier, 134
/NAMES qualifier, 162
/NESTED_INCLUDE_DIRECTORY qualifier, 163
/OBJECT qualifier, 164
/OPTIMIZE qualifier, 164
/PENDING_INSTANTIATIONS qualifier, 167
/POINTER_SIZE Qualifier, 134
/POINTER_SIZE qualifier, 167
/PREFIX_LIBRARIES_ENTRIES qualifier, 168
/PREPROCESS_ONLY qualifier, 168
/PSECT_MODEL qualifier, 168
/PURE_CNAME qualifier, 169
/QUIET qualifier, 169
/REENTRANCY qualifier, 169
/REPOSITORY qualifier, 12, 170
/ROUNDING_MODE qualifier, 170
/RTTI qualifier, 170
/SHARE_GLOBALS qualifier, 170
/SHOW qualifier, 171
/STANDARD qualifier

compiler, 171
/STANDARD=ANSI mode, 232
/STANDARD=RELAXED mode, 232
/TEMPLATE_DEFINE qualifier, 172
/UNDEFINE qualifier, 174
/UNSIGNED_CHAR qualifier, 174
/USING_STD qualifier, 174
/VERSION qualifier, 175
/WARNINGS qualifier, 175
/XREF qualifier, 176
32BITS macro, 27, 28
64-bit coding guidelines, 241
64-bit development environment, 132

/model=ansi qualifer, 134
/pointer_size qualifer, 134
avoiding problems, 140

242

Index

determining pointer size, 136
header file, 138
memory allocators, 133
mixing pointer sizes, 134
model ANSI, 133
pointer size, 132

mixing, 138
special cases, 137

qualifiers and pragmas, 134
/model=ansi, 134
/pointer_size, 134

support in C RTL, 134
<stdarg.h> header file, 48
<varargs.h> header file, 48
[cxx_repository] directory, 83
[cxx_repository] instantiation file, 83
__ABS built-in function, 198
__ACQUIRE_SEM_LONG built-in function, 198
__ADAWI built-in function, 199
__ADD_ATOMIC_LONG built-in function, 199
__ADD_ATOMIC_QUAD built-in function, 199
__ADDF_C built-in function, 207
__ADDG_C built-in function, 207
__ADDS_C built-in function, 207
__ADDT_C built-in function, 207
__ALLOCA built-in function, 207
__AND_ATOMIC_LONG built-in function, 200
__AND_ATOMIC_QUAD built-in function, 200
__ATOMIC_ADD_LONG built-in function, 200
__ATOMIC_ADD_QUAD built-in function, 201
__ATOMIC_AND_LONG built-in function, 202
__ATOMIC_AND_QUAD built-in function, 202
__ATOMIC_DECREMENT_LONG built-in function,
205
__ATOMIC_DECREMENT_QUAD built-in function,
205
__ATOMIC_EXCH_LONG built-in function, 206
__ATOMIC_EXCH_QUAD built-in function, 206
__ATOMIC_INCREMENT_LONG built-in function,
204
__ATOMIC_INCREMENT_QUAD built-in function,
204
__ATOMIC_OR_LONG built-in function, 203
__ATOMIC_OR_QUAD built-in function, 203
__break built-in function, 219
__break2 built-in function, 228
__CMP_STORE_LONG built-in function, 208
__CMP_STORE_QUAD built-in function, 208
__CMP_SWAP_LONG built-in function, 225
__CMP_SWAP_LONG_ACQ built-in function, 226
__CMP_SWAP_LONG_REL built-in function, 227
__CMP_SWAP_QUAD built-in function, 226
__CMP_SWAP_QUAD_ACQ built-in function, 227
__CMP_SWAP_QUAD_REL built-in function, 228
__COS built-in function, 208
__CPYS built-in function, 207
__CPYSE built-in function, 207
__CPYSEF built-in function, 207

__CPYSF built-in function, 207
__CPYSN built-in function, 207
__CPYSNF built-in function, 207
__CVTGF_C built-in function, 209
__CVTGQ built-in function, 209
__CVTTQ built-in function, 209
__CVTTS_C built-in function, 209
__DECC_INCLUDE_EPILOGUE.H file, 138
__DECC_INCLUDE_PROLOGUE.H file, 138
__declspec(dllexport) declaration modifier, 153
__DIVF_C built-in function, 207
__DIVG_C built-in function, 207
__DIVS_C built-in function, 207
__DIVT_C built-in function, 207
__dsrlz built-in function, 219
__FABS built-in function, 210
__fc built-in function, 219
__flushrs built-in function, 229
__fwb built-in function, 219
__getIndReg built-in function, 218
__getReg built-in function, 216
__HIDE_FORBIDDEN_NAMES macro, 169
__INTERLOCKED_TESTBITCC_QUAD built-in
function, 210
__INTERLOCKED_TESTBITSS_QUAD built-in
function, 210
__invala built-in function, 220
__invalat built-in function, 219
__isrlz built-in function, 220
__itcd built-in function, 220
__itci built-in function, 220
__itrd built-in function, 220
__itri built-in function, 220
__LABS built-in function, 212
__loadrs built-in function, 229
__LOCK_LONG built-in function, 211
__MB built-in function, 212
__MEMCPY built-in function, 212
__MEMMOVE built-in function, 212
__MEMSET built-in function, 212
__MULF_C built-in function, 207
__MULG_C built-in function, 207
__MULS_C built-in function, 207
__MULT_C built-in function, 207
__prober built-in function, 229
__probew built-in function, 229
__ptce built-in function, 221
__ptcg built-in function, 221
__ptcga built-in function, 222
__ptcl built-in function, 221
__ptrd built-in function, 222
__ptri built-in function, 222
__PURE_CNAME macro, 169
__RELEASE_SEM_LONG built-in function, 198
__RETURN_ADDRESS built-in function, 228
__RPCC built-in function, 213
__rsm built-in function, 223
__rum built-in function, 223

243

Index

__setIndReg built-in function, 218
__setReg built-in function, 217
__SIN built-in function, 213
__ssm built-in function, 223
__SUBF_C built-in function, 207
__SUBG_C built-in function, 207
__SUBS_C built-in function, 207
__SUBT_C built-in function, 207
__sum built-in function, 223
__synci built-in function, 223
__tak built-in function, 230
__TESTBITCCI built-in function, 213
__TESTBITSSI built-in function, 214
__thash built-in function, 223
__tpa built-in function, 230
__TRAPB built-in function, 214
__ttag built-in function, 224
__UMLH built-in function, 214
__UNLOCK_LONG built-in function, 211
_InterlockedCompareExchange64_acq built-in
function, 225
_InterlockedCompareExchange64_rel built-in
function, 225
_InterlockedCompareExchange_acq built-in function,
224
_InterlockedCompareExchange_rel built-in function,
225
_leadz built-in function, 211
_popcnt built-in function, 213
_poppar built-in function, 213
_trailz built-in function, 214, 214

A
Access

member, 236
Access specifiers, 35
Additive operators, 34
Address expressions

supported constructs in, 123
ALPHA macro, 27
alpha macro, 27
ALPHA_AXP macro, 27
ALTERNATIVE_TOKENS macro, 29
ANSI mode, 232
argc

main function argument, 9
Arguments

command-line, 9
DCL command-line, 9
mechanisms for passing, 31

argv
main function argument, 9

ARM mode, 232
asm declarations, 35
asm intrinsic function, 181
Assignment

to the this pointer, 240

B
Base class initializers, 236
BIASED_FLT_ROUNDS macro, 29
Bit-fields, 35
BOOL_EXISTS macro, 27
BOOL_IS_A_RESERVED_WORD macro, 27
Buffer, output

flushing, 240
Built-in functions, 180

__ABS, 198
__ACQUIRE_SEM_LONG, 198
__ADAWI, 199
__ADD_ATOMIC_LONG, 199
__ADD_ATOMIC_QUAD, 199
__ADDF_C, 207
__ADDG_C, 207
__ADDS_C, 207
__ADDT_C, 207
__ALLOCA, 207
__AND_ATOMIC_LONG, 200
__AND_ATOMIC_QUAD, 200
__ATOMIC_ADD_LONG, 200
__ATOMIC_ADD_QUAD, 201
__ATOMIC_AND_LONG, 202
__ATOMIC_AND_QUAD, 202
__ATOMIC_DECREMENT_LONG, 205
__ATOMIC_DECREMENT_QUAD, 205
__ATOMIC_EXCH_LONG, 206
__ATOMIC_EXCH_QUAD, 206
__ATOMIC_INCREMENT_LONG, 204
__ATOMIC_INCREMENT_QUAD, 204
__ATOMIC_OR_LONG, 203
__ATOMIC_OR_QUAD, 203
__break, 219
__break2, 228
__CMP_STORE_LONG, 208
__CMP_STORE_QUAD, 208
__CMP_SWAP_LONG, 225
__CMP_SWAP_LONG_ACQ, 226
__CMP_SWAP_LONG_REL, 227
__CMP_SWAP_QUAD, 226
__CMP_SWAP_QUAD_ACQ, 227
__CMP_SWAP_QUAD_REL, 228
__COS, 208
__CPYS, 207
__CPYSE, 207
__CPYSEF, 207
__CPYSF, 207
__CPYSN, 207
__CPYSNF, 207
__CVTGF_C, 209
__CVTGQ, 209
__CVTTQ, 209
__CVTTS_C, 209
__DIVF_C, 207
__DIVG_C, 207
__DIVS_C, 207

244

Index

__DIVT_C, 207
__dsrlz, 219
__FABS, 210
__fc, 219
__flushrs, 229
__fwb, 219
__getIndReg, 218
__getReg, 216
__INTERLOCKED_TESTBITCC_QUAD, 210
__INTERLOCKED_TESTBITSS_QUAD, 210
__invala, 219
__invalat, 219
__isrlz, 220
__itcd, 220
__itci, 220
__itrd, 220
__itri, 220
__LABS, 212
__loadrs, 229
__LOCK_LONG, 211
__MB, 212
__MEMCPY, 212
__MEMMOVE, 212
__MEMSET, 212
__MULF_C, 207
__MULG_C, 207
__MULS_C, 207
__MULT_C, 207
__PAL_BPT, 182
__PAL_BUGCHK, 182
__PAL_CFLUSH, 182
__PAL_CHME, 183
__PAL_CHMK, 183
__PAL_CHMS, 183
__PAL_CHMU, 183
__PAL_DRAINA, 183
__PAL_GENTRAP, 183
__PAL_HALT, 183
__PAL_INSQHIL, 184
__PAL_INSQHILR , 184
__PAL_INSQHIQ, 185
__PAL_INSQHIQR , 185
__PAL_INSQTIL, 186
__PAL_INSQTILR , 186
__PAL_INSQTIQ, 186
__PAL_INSQTIQR , 187
__PAL_INSQUEL, 187
__PAL_INSQUEL_D, 188
__PAL_INSQUEQ, 188
__PAL_INSQUEQ_D, 188
__PAL_LDQP, 189
__PAL_MFPR_XXXX, 189
__PAL_MTPR_XXXX, 190
__PAL_PROBER, 191
__PAL_PROBEW, 191
__PAL_RD_PS, 191
__PAL_REMQHIL, 192
__PAL_REMQHILR, 192

__PAL_REMQHIQ, 192
__PAL_REMQHIQR, 193
__PAL_REMQTIL, 193
__PAL_REMQTILR, 194
__PAL_REMQTIQ, 194
__PAL_REMQTIQR, 195
__PAL_REMQUEL, 195
__PAL_REMQUEL_D, 196
__PAL_REMQUEQ, 196
__PAL_REMQUEQ_D, 196
__PAL_STQP, 197
__PAL_SWASTEN, 197
__PAL_SWPCTX, 197
__PAL_WR_PS_SW, 198
__prober, 229
__probew, 229
__ptce, 221
__ptcg, 221
__ptcga, 222
__ptcl, 221
__ptrd, 222
__ptri, 222
__RELEASE_SEM_LONG, 198
__RETURN_ADDRESS, 228
__RPCC, 213
__rsm, 223
__rum, 223
__setIndReg, 218
__setReg, 217
__SIN, 213
__ssm, 223
__SUBF_C, 207
__SUBG_C, 207
__SUBS_C, 207
__SUBT_C, 207
__sum, 223
__synci, 223
__tak, 230
__TESTBITCCI, 213
__TESTBITSSI, 214
__thash, 223
__tpa, 230
__TRAPB, 214
__ttag, 224
__UMULH, 214
__UNLOCK_LONG, 211
_InterlockedCompareExchange64_acq, 225
_InterlockedCompareExchange64_rel, 225
_InterlockedCompareExchange_acq, 224
_InterlockedCompareExchange_rel, 225
_leadz, 211
_popcnt, 213
_poppar, 213
_trailz, 214
Copy sign functions, 207
Double-precision, floating-point arithmetic, 207
PALcodes, 181
Single-precision, floating-point arithmetic, 207

245

Index

translation macros, 180
Built-in operators, 122-123

C
Class

friend declarations, 236
function definitions, 237
implementation details, 236-237
initializer, 236
layout, 35, 36
member access, 236
pointer conversions, 237
structure alignment, 35

bit-field requirements, 35
subobject allocation, 36
subobject offsets, 35

Class library
linking to, 5

cname headers, 46
COMDATS, 87
Command-line arguments, 9

conversion of, 10
DCL, 9

Command-line qualifiers
compiler, 143
debugger options, 122
linker, 6-6

Common instantiation library
creating, 88

Compatibility, 54
Compatibility with Other C++ Compilers, 232, 233
Compiler

command format, 2
command-line qualifiers, 143
cxx command format, 2
error messages, 2-3
template

advanced program development, 87
automatic instantiation, 83
compatibility with earlier versions, 235
creating common instantiation library, 88
creating libraries, 86
dependency management, 88
implicit inclusion, 87
linking Version 5.n applications against Version
6.n repositories, 236
linking with Version 5.n instantiations, 235
mixing automatic and manual instantiation, 78
overview, 77
repositories, 86

template instantiation qualifiers, 82, 90
using, 2

Constant
in function returns, 238
pointer to, 238

Constructs, debugger supported
in address expressions, 123
in language expressions, 123

Conversion
explicit type, 34
floating-point number, 33, 33
integer, 33, 33
pointer, 237

Conversion operators
debugger referencing, 129

Copy sign built-in functions, 207
cplusplus macro, 27
cxx command

format, 2
CXX command

qualifiers for, 143
CXXLINK command, 4, 7
CXXLINK facility, 3, 7

interaction with OpenVMS Linker qualifiers, 4

D
D_FLOAT macro, 28
dasm intrinsic function, 181
Data members

nonstatic, 124-125
Data types

predefined for debugger support, 123
DATE_ macro, 27
Debugger, 121-131

command-line options, 122
Debugger commands

deposit/type, 127
examine/type, 127
set language c_plus_plus, 122
show language, 122

Debugger referencing
by type, 127
conversion operators, 129
destructors, 129
function arguments

this, *this, and this->, 129
nonstatic data members, 124
pointer and reference types, 129
reference members, 125
reference objects, 125

Debugging
preparation for, 121

DEC Text Processing Utility (DECTPU) (see
DECTPU)
DECCXX macro, 27
DECCXX_VER macro, 28
Declaration

asm, 35
Declarations

friend, 236
DECTPU, 1

using, 2
delete operator

overriding global, 6
size-of-array argument to, 240

Demangler

246

Index

CXXDEMANGLE command format, 11
deposit/type debugger command, 127
Destructors

debugger referencing, 129
Division operator, 34
Double-precision, floating-point arithmetic built-in
functions, 207

E
echo DCL command, 10
Editor

DEC Language-Sensitive Editor (LSE), 1
DECTPU, 1, 2

EVE interface, 2
VSI Language-Sensitive Editor (LSE), 177-178

Enumerated types
incrementing, 240

envp
main function argument, 9

Epilogue/prologue files, 138
Equality operators, 34
Error messages

compiler, 2-3
linker, 7-7

Errors
run-time, 9

EVE interface
to DECTPU, 2

examine/type debugger command, 127
EXCEPTIONS macro, 29, 153
Explicit type conversion, 34
Explicit type conversion, language extension, 33
extern specifier, 47
External name encoding, 31, 32

F
fasm intrinsic function, 181
File inclusion directive, #include, 38, 41
FILE_ macro, 27
Floating-point arithmetic built-in functions, 207, 207
Floating-point number

converting to and from an integer, 33
FORCE_INSTANTIATIONS macro, 29
Foreign command

for passing command-line arguments, 9
Friend declarations, 236
Function

constant in returns, 238
definitions, 237

Function arguments, this, *this, and this->
debugger referencing, 129

Function returns
constants in, 238

Functions, 237
debugger referencing, 128-130

G
G_FLOAT macro, 28
GLOBAL_ARRAY_NEW macro, 29, 147
goto statement, 239
Guiding declarations, 42

H
Header file

<stdarg.h>, 48
<varargs.h>, 48
implicit inclusion, 51
implicit inclusion in, 51

Header files
modifying, 47, 48

HIDE_FORBIDDEN_NAMES macro, 29

I
ia64 macros, 28
Identifier, 31
IEEE_FLOAT macro, 27, 28
IEEE_FP macro, 28, 29
Implementation extensions and features, 31, 33
Implicit inclusion, 51, 51

template, 87
automatic instantiation, 83
defining file extensions, 88

IMPLICIT_INCLUDE_ENABLED macro, 29
IMPLICIT_USING_STD Macro

defined by command line qualifier
__IMPLICIT_USING_STD, 29

INITIAL_POINTER_SIZE macro, 135
Initializers

using base class name with, 236
Initializing references, 238
Instantiation

automatic
linking with, 85

directives, 79
#pragma define_template, 79
#pragma do_not_instantiate, 81
#pragma instantiate, 81

manual, 78
mixed automatic and manual, 78
template, 77, 77-93

Instantiation file, 83-85
Integer

converting to and from a floating-point number, 33
Intrinsic functions

asm, 181
dasm, 181
fasm, 181

K
Keywords

conflict resolution, 47

247

Index

L
Language expressions

supported constructs in, 123
Language mode

determining for debugger, 122
LATEST mode, 233
Layout

class, 35, 36
of class object, 36

Leading Zeros built-in function, 211
Limits

numerical, 30
translation, 30

LINE__ macro, 27
Link compatibility, 55
Linkage

between C and C++, 47
specification, 35, 49

Linkage specifications, 49
Linker

command-line qualifiers, 6-7
error messages, 7-7

Linker (Alpha only), 3
Linker (I64 only), 7
Long names

modification by compiler, 32
LSE (see VSI Language-Sensitive Editor)

M
Macro

__DATE_, 27
__FILE_, 27
__IEEE_FLOAT, 27
__INITIAL_POINTER_SIZE, 135
__LINE__, 27
__PRAGMA_ENVIRONMENT, 27
__TIME__, 27
__WHCAR_T, 27
_BOOL_EXISTS, 27
Alpha system

__32BITS, 27
__ALPHA, 27
__alpha, 27
__ALPHA_AXP, 27

BOOL_IS_A_RESERVED_WORD, 27
defined by command line qualifier

__ALTERNATIVE_TOKENS, 29
__BIASED_FLT_ROUNTS, 29
__EXCEPTIONS, 29, 153
__FORCE_INSTANTIATIONS, 29
__GLOBAL_ARRAY_NEW, 29, 147
__HIDE_FORBIDDEN_NAMES, 169
__IMPLICIT_INCLUDE_ENABLED, 29
__MODEL_ANSI, 29, 162
__MODEL_ARM, 29, 162
__NOUSE_STD_IOSTREAM, 29, 171, 171,
171, 172

__PURE_CNAME, 169
__RTTI, 29, 170
__STD_ANSI, 29, 171
__STD_ARM, 29, 171
__STD_GNU, 29, 172
__STD_MS, 29, 171
__STD_NEW, 29
__STD_STRICT_ANSI, 29, 171
__STD_STRICT_ANSI_ERRORS, 29, 171
__USE_STD_IOSTREAM, 29, 171
__USING_STD, 29
__X_FLOAT, 29, 161
_IEEE_FP, 29

floating point
__D_FLOAT, 28
__G_FLOAT, 28
__IEEE_FLOAT, 28
__X_FLOAT, 28
_IEEE_FP, 28

header file
<stdarg.h>, 48
<varargs.h>, 48

I64 system
__32BITS, 28
__ia64, 28
__ia64__, 28

version
__DECCXX_VER, 28
__VMS_VER, 28
__VMS_VERSION, 28
__vms_version, 28

with defined value of 1
__cplusplus, 27
__DECCXX, 27
__VMS, 27
__vms, 27

Macros
VAX C built-in translation, 180

Main function
passing parameters to, 9
syntax of, 9

Member access, 236
memory allocators

64-bit development environment, 133
Memory management, 240
Messages

compiler, 3
MODEL_ANSI macro, 29, 162
MODEL_ARM macro, 29, 162
MS mode, 232
Multiple base classes, 36
Multiplicative operators, 34

N
Name demangling, 10
Names

predefined, 27
Nested enums, 41

248

Index

new operator
overriding global, 6

Non-C++ code, access to, 49
Nonstatic data members, 124-125
NOUSE_STD_IOSTREAM macro, 29, 171, 171, 171,
172
Numerical limits, 30

O
Object

temporary, 37, 38
volatile, 239

Operators
additive, 34
built-in, 122-123
delete, 240
division, 34
equality, 34
multiplicative, 34
remainder, 34
shift, 34
sizeof, 33
user-defined, 129

Output buffer
flushing, 240

P
PALcode built-in functions, 181
PALcode instructions

__PAL_BPT built-in function, 182
__PAL_BUGCHK built-in function, 182
__PAL_CFLUSH built-in function, 182
__PAL_CHME built-in function, 182
__PAL_CHMK built-in function, 183
__PAL_CHMS built-in function, 183
__PAL_CHMU built-in function, 183
__PAL_DRAINA built-in function, 183
__PAL_GENTRAP built-in function, 183
__PAL_HALT built-in function, 183
__PAL_IMB built-in function, 184
__PAL_INSQHIL built-in function, 184
__PAL_INSQHILR built-in function, 184
__PAL_INSQHIQ built-in function, 185
__PAL_INSQHIQR built-in function, 185
__PAL_INSQTIL built-in function, 186
__PAL_INSQTILR built-in function, 186
__PAL_INSQTIQ built-in function, 186
__PAL_INSQTIQR built-in function, 187
__PAL_INSQUEL built-in function, 187
__PAL_INSQUEL_D built-in function, 188
__PAL_INSQUEQ built-in function, 188
__PAL_INSQUEQ_D built-in function, 188
__PAL_LDQP built-in function, 189
__PAL_MFPR_XXXX built-in function, 189
__PAL_MTPR_XXXX built-in function, 190
__PAL_PROBER built-in function, 190
__PAL_PROBEW built-in function, 191

__PAL_RD_PS built-in function, 191
__PAL_REMQHIL built-in function, 191
__PAL_REMQHILR built-in function, 192
__PAL_REMQHIQ built-in function, 192
__PAL_REMQHIQR built-in function, 193
__PAL_REMQTIL built-in function, 193
__PAL_REMQTILR built-in function, 194
__PAL_REMQTIQ built-in function, 194
__PAL_REMQTIQR built-in function, 195
__PAL_REMQUEL built-in function, 195
__PAL_REMQUEL_D built-in function, 196
__PAL_REMQUEQ built-in function, 196
__PAL_REMQUEQ_D built-in function, 196
__PAL_STQP built-in function, 197
__PAL_SWASTEN built-in function, 197
__PAL_SWPCTX built-in function, 197
__PAL_WR_PS_SW built-in function, 198

Parameters
main function, 9, 9

Pointer, 237
bound to member function, 238
conversions, 237
to constants, 238

pointer_size pragma, 135
Pointers to members

debugger representation, 125
Portability concerns

conversion of command-line arguments, 10
PRAGMA_ENVIRONMENT macro, 27
Pragmas, 15

(see also Preprocessor directive)
#pragma [no]inline, 22
#pragma [no]member_alignment, 23
#pragma [no]standard, 27
#pragma builtins, 15
#pragma define_template, 15
#pragma environment, 16
#pragma extern_model, 17
#pragma extern_prefix, 20
#pragma function, 21
#pragma include_directory, 22
#pragma intrinsic, 22
#pragma message, 23
#pragma module, 25
#pragma once, 25
#pragma pack, 25
#pragma unroll, 26
pointer_size, 135
required_pointer_size, 135

Predefined data types, debugger supported, 123
Predefined names, 27
Preprocessor directives

#ifdef, 240
#pragma, 15
#pragma [no]inline, 22
#pragma [no]member_alignment, 23
#pragma [no]standard, 27
#pragma builtins, 15

249

Index

#pragma define_template, 15
#pragma environment, 16
#pragma extern_model, 17
#pragma extern_prefix, 20
#pragma function, 21
#pragma include_directory, 22
#pragma intrinsic, 22
#pragma message, 23
#pragma module, 25
#pragma once, 25
#pragma pack, 25
#pragma pointer_size, 135
#pragma required_pointer_size, 135
#pragma unroll, 26

Product support, xii
Programming tools

VSI Language-Sensitive Editor (LSE), 177-178
Programs

linking (Alpha only), 3
linking (I64 only), 7
linking to class library, 5
running, 8
steps in developing, 1

Prologue/epilogue files, 138
PURE_CNAME macro, 29

Q
Qualifiers, compiler

/[NO]ALTERNATIVE_TOKENS, 144
/[NO]ANSI_ALIAS, 145
/[NO]CHECK, 149
/[NO]COMMENTS, 149
/[NO]DEBUG, 121, 122
/[NO]DEFINE, 151
/[NO]DIAGNOSTICS, 151
/[NO]DISTINGUISH_NESTED_ENUMS, 151
/[NO]IMPLICIT_INCLUDE, 158
/[NO]INCLUDE_DIRECTORY, 38, 41, 158
/[NO]LINE_DIRECTIVES, 161
/[NO]LIST, 161
/[NO]MACHINE_CODE, 161
/[NO]MAIN=POSIX_EXIT, 161
/[NO]MEMBER_ALIGNMENT, 35, 161
/[NO]MMS_DEPENDENCIES, 162
/[NO]OBJECT, 164
/[NO]OPTIMIZE, 121, 164
/[NO]PREPROCESS_ONLY, 168
/[NO]TEMPLATE_DEFINE, 172
/[NO]UNDEFINE, 174
/[NO]UNSIGNED_CHAR, 174
/[NO]USING_STD, 174
/[NO]VERSION, 175
/[NO]WARNINGS, 175
/ARCHITECTURE, 145
/ASSUME, 146
/DEFINE=__[NO_]USE_STD_IOSTREAM, 151
/DEFINE=__FORCE_INSTANTIATIONS, 151
/ENDIAN, 151

/ERROR_LIMIT, 151
/EXCEPTIONS, 152
/EXPORT_SYMBOLS, 153
/EXTERN_MODEL, 155
/FIRST_INCLUDE, 156
/FLOAT, 156
/GRANULARITY, 157
/IEEE_MODE, 157
/L_DOUBLE_SIZE, 161
/LIBRARY, 161
/MODEL, 162
/NAMES, 162
/NESTED_INCLUDE_DIRECTORY, 163
/PENDING_INSTANTIATIONS, 167
/POINTER_SIZE, 167
/PREFIX_LIBRARY_ENTRIES, 168
/PSECT_MODEL, 168
/QUIET, 169
/REENTRANCY, 169
/REPOSITORY, 170
/ROUNDING_MODE, 170
/RTTI, 170
/SHARE_GLOBALS, 170
/SHOW, 171
/STANDARD, 171
/XREF, 176

Qualifiers, CXXDEMANGLE facility
/REPOSITORY, 12

R
Reference members

debugger access to, 125
Reference objects

debugger access to, 125
References

initializing, 238
RELAXED mode, 232
Remainder operator, 34
required_pointer_size pragma, 135
RTTI macro, 29, 170
run command, 8
Run compatibility, 56
Run-time errors, 9
Running programs, 8

S
Scope rules

differences between ANSI C and C++, 48
set language c_plus_plus debugger command, 122
Shareable images, creating, 53, 54
Shift operators, 34
show language debugger command, 122
Single-precision, floating-point arithmetic built-in
functions, 207
Size-of-array argument

to delete operator, 240
sizeof operator, 33

250

Index

Source compatibility, 55
Specifiers

access, 35
extern , 47
type, 34
typedef, 238

Standard Library, 1
building programs with, 105
compatibility issues, 100-105

/[NO]USING_STD compatibility qualifier, 100
global array new and delete , 104
IOSTREAMS, 105
overriding operator(new) , 102, 104
pre-ANSI and ANSI operator(new) , 102
pre-ANSI/ANSI iostreams compatibility, 100

using RMS attributes with iostreams, 107
Standard Template Library

building programs with, 105
using RMS attributes with iostreams, 107

Statement
goto, 239
switch, 239

Static object initialization
order of, 33

STD_ANDI macro, 29, 171
STD_ARM macro, 29, 171
STD_GNU macro, 29, 172
STD_MS macro, 29, 171
STD_NEW macro, 29
STD_STRICT_ANSI macro, 29, 171
STD_STRICT_ANSI_ERRORS macro, 29, 171
STRICT_ANSI mode, 233
String Library

building programs with, 105
iostreams

using RMS attributes with, 107
Structure alignment

of class, 35
Subobject allocation

class, 36
Subobject offsets

class, 35
switch statement, 239
Syntax

main function, 9

T
Template

compatibility with earlier versions, 235
Template instantiation, 77, 77-93
Temporary objects, 37, 38

handling destruction after static member function
call, 38

this function argument
debugger referencing, 129

this pointer
assignment to, 240

Thread safety, 106

TIME__ macro, 27
Traceback information , 9
Trailing Zeros built-in function, 214
Translation limits, 30
Translation macros, 180
Type conversion

explicit, 34
Type specifier

volatile, 34
typedef specifier, 238

U
USE_STD_IOSTREAM macro, 29, 171
User-defined operators, 129
USING_STD macro, 29

V
Variable-length argument list, 48
VMS macro, 27
vms macro, 27
VMS_VER macro, 28
VMS_VERSION macro, 28
vms_version macro, 28
Volatile object, 239
volatile type specifier, 34
VSI Language-Sensitive Editor (LSE), 1, 177-178
VSI Source Code Analyzer (SCA), 178

W
WCHAR_T__ macro, 27

X
X_FLOAT macro, 28, 29, 161

251

	C++ User's Guide for OpenVMS Systems
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Structure of this Document
	4. Associated Documents
	5. Related Documents
	6. Conventions Used in this Manual
	7. Platform Labels
	8. New and Changed Features in C++ I64 Version 7.2
	9. New and Changed Features in Version 7.1
	10. VSI Encourages Your Comments
	11. Product Support

	Chapter 1. Building and Running C++ Programs
	1.1. Using the DECTPU Text Editor
	1.2. Using the Compiler
	1.2.1. Compiler Command Qualifiers
	1.2.2. Compiler Error Messages

	1.3. Linking a Program (Alpha only)
	1.3.1. CXXLINK Interactions with OpenVMS Linker Qualifiers
	1.3.1.1. Command Parameters and Qualifier

	1.3.2. Migrating from LINK to CXXLINK
	1.3.3. Linking to the C++ Standard Library
	1.3.4. Linking to the C++ Class Library
	1.3.4.1. Linking Against the Class Library Object Library
	1.3.4.2. Linking Against the Class Library Shareable Image

	1.3.5. Linker Command Qualifiers
	1.3.6. Linker Error Messages

	1.4. Linking a Program (I64 only)
	1.4.1. Linking Against C++ Class and Standard Library Shareable Images
	1.4.2. Linking Against the Object Library (Linking /NOSYSSHARE)

	1.5. Running a C++ Program
	1.5.1. Run-Time Errors
	1.5.2. Passing Arguments to the main Function

	1.6. Name Demangling
	1.6.1. Creating the Data File
	1.6.2. Using the CXXDEMANGLE Facility
	1.6.2.1. Command Qualifier

	1.7. Performance Optimization Qualifiers
	1.8. Improving Build Performance
	1.9. Deploying Your Application
	1.9.1. Redistribution of the DECC$CRTL.OLB Object Library
	1.9.2. Redistribution of the LIBCXXSTD.OLB Object Library

	Chapter 2. VSI C++ Implementation
	2.1. Implementation-Specific Attributes
	2.1.1. #pragma Preprocessor Directive
	2.1.1.1. #pragma [no]builtins
	2.1.1.2. #pragma define_template Directive
	2.1.1.3. #pragma environment Directive
	2.1.1.4. #pragma extern_model Directive
	2.1.1.5. #pragma extern_prefix Directive
	2.1.1.6. #pragma function Directive
	2.1.1.7. #pragma include_directory Directive
	2.1.1.8. #pragma [no]inline Directive
	2.1.1.9. #pragma intrinsic Directive
	2.1.1.10. #pragma [no]member_alignment Directive
	2.1.1.11. #pragma message Directive
	2.1.1.12. #pragma module Directive
	2.1.1.13. #pragma once Directive
	2.1.1.14. #pragma pack Directive
	2.1.1.15. #pragma unroll Directive (Alpha only)
	2.1.1.16. #pragma [no]standard Directive

	2.1.2. Predefined Macros and Names
	2.1.3. Translation Limits
	2.1.4. Numerical Limits
	2.1.5. Argument-Passing and Return Mechanisms

	2.2. Implementation Extensions and Features
	2.2.1. Identifiers
	2.2.1.1. External Name Encoding
	2.2.1.2. Modifying Long Names

	2.2.2. Order of Static Object Initialization
	2.2.3. Integral Conversions
	2.2.4. Floating-Point Conversions
	2.2.5. Explicit Type Conversion
	2.2.6. The sizeof Operator
	2.2.7. Explicit Type Conversion
	2.2.8. Multiplicative Operators
	2.2.9. Additive Operators (§r.5.7)
	2.2.10. Shift Operators (§r.5.8)
	2.2.11. Equality Operators
	2.2.12. Type Specifiers
	2.2.13. asm Declarations (Alpha only)
	2.2.14. Linkage Specifications
	2.2.15. Class Layout
	2.2.15.1. Structure Alignment
	2.2.15.2. Bit-Fields
	2.2.15.3. Access Specifiers
	2.2.15.4. Class Subobject Offsets

	2.2.16. Virtual Function and Base Class Tables
	2.2.17. Multiple Base Classes
	2.2.18. Temporary Objects
	2.2.18.1. Lifetime of Temporary Objects
	2.2.18.2. Nonconstant Reference Initialization with a Temporary Object
	2.2.18.3. Static Member Functions Selected by Expressions Creating Temporary Objects

	2.2.19. File Inclusion
	2.2.20. Nested Enums and Overloading
	2.2.21. Guiding Declarations

	2.3. Alternative Tokens
	2.4. Run-time Type Identification
	2.5. Message Control and Information Options

	Chapter 3. C++ Language Environment
	3.1. cname Headers
	3.2. Using Existing C Header Files
	3.2.1. Providing C and C++ Linkage
	3.2.2. Resolving C++ Keyword Conflicts
	3.2.3. Handling Scoping Issues
	3.2.4. Support for <stdarg.h> and <varargs.h> Header Files

	3.3. Using VSI C++ with Other Languages
	3.4. Linkage to Non-C++ Code and Data
	3.5. How to Organize Your C++ Code
	3.5.1. Code That Does Not Use Templates
	3.5.2. Code That Uses Templates
	3.5.3. Summary
	3.5.4. Creating Libraries

	3.6. Sample Code for Creating OpenVMS Shareable Images
	3.7. Hints for Designing Upwardly Compatible C++ Classes
	3.7.1. Source Compatibility
	3.7.2. Link Compatibility
	3.7.3. Run Compatibility

	Chapter 4. Porting to I64 Systems
	4.1. Compiler Considerations
	4.1.1. Messages
	4.1.2. Quotas
	4.1.3. Dialect Changes
	4.1.4. ABI/Object Model changes
	4.1.5. Command-Line Qualifiers
	4.1.6. Floating Point
	4.1.7. Intrinsics and Builtins
	4.1.8. ELF
	4.1.9. Templates
	4.1.10. Exceptions and Condition Handlers
	4.1.10.1. Stack unwinding
	4.1.10.2. Exceptions Not Caught
	4.1.10.3. terminate() Incorrectly Called
	4.1.10.4. Problem in unexpected() Behavior

	4.2. Library Changes
	4.2.1. Library Reorganization
	4.2.1.1. Standard Library and Language Run-Time Support Library
	4.2.1.2. Class Library

	4.2.2. Language Run-Time Support Library
	4.2.3. Class Library
	4.2.4. Standard Library
	4.2.4.1. Changes
	4.2.4.2. Library Headers
	4.2.4.3. Internal Library Headers and Macros
	4.2.4.4. Known Issues and Restrictions
	4.2.4.5. Differences Between Alpha and I64 Systems

	4.3. CXXLINK Changes
	4.4. Installation

	Chapter 5. Using Templates
	5.1. Template Instantiation Model
	5.2. Manual Template Instantiation
	5.2.1. Mixing Automatic and Manual Instantiation
	5.2.2. Instantiation Directives
	5.2.2.1. #pragma define_template
	5.2.2.2. #pragma instantiate and #pragma do_not_instantiate

	5.2.3. Using Command Qualifiers for Manual Instantiation

	5.3. Using Template Object Repositories (Alpha only)
	5.3.1. Specifying Alternate Repositories
	5.3.2. Reducing Compilation Time with the /TEMPLATE_DEFINE=TIMESTAMP Qualifier
	5.3.3. Compiling Programs with Automatic Instantiation
	5.3.4. Linking Programs with Automatic Instantiation
	5.3.5. Creating Libraries
	5.3.6. Multiple Repositories

	5.4. Using COMDATS (I64 only)
	5.5. Advanced Program Development and Templates
	5.5.1. Implicit Inclusion
	5.5.2. Dependency Management
	5.5.3. Creating a Common Instantiation Library

	5.6. Command-Line Qualifiers for Template Instantiation
	5.6.1. Instantiation Model Qualifiers
	5.6.2. Other Instantiation Qualifiers
	5.6.3. Repository Qualifiers

	Chapter 6. Handling C++ Exceptions
	6.1. Compiling with Exceptions
	6.2. Linking with Exceptions (Alpha only)
	6.3. The terminate() and unexpected() Functions
	6.4. C++ Exceptions and Other Conditions
	6.5. C++ Exceptions and Signals (Alpha only)
	6.6. C++ Exceptions with setjmp and longjmp
	6.7. C++ Exceptions, lib$establish and vaxc$establish
	6.8. Performance Considerations
	6.9. C++ Exceptions and Threads
	6.10. Debugging with C++ Exceptions (Alpha only)

	Chapter 7. The C++ Standard Library
	7.1. Important Compatibility Information
	7.1.1. /[NO]USING_STD Compiler Compatibility Qualifier
	7.1.2. Pre-ANSI/ANSI Iostreams Compatibility
	7.1.3. Support for pre-ANSI and ANSI operator new()
	7.1.4. Overriding operator new() (Alpha only)
	7.1.5. Overriding operator new() (I64 only)
	7.1.6. Support for Global array new and delete Operators
	7.1.7. IOStreams Expects Default Floating-Point Format

	7.2. How to Build Programs Using the C++ Standard Library
	7.3. Optional Switch to Control Buffering (Alpha only)
	7.4. Enhanced Compile-time Performance of ANSI Iostreams
	7.5. Using RMS Attributes with iostreams
	7.6. Upgrading from the Class Library to the Standard Library
	7.6.1. Upgrading from the Class Library Vector to the Standard Library Vector
	7.6.2. Upgrading from the Class Library Stack to the Standard Library Stack
	7.6.3. Upgrading from the Class Library String Package Code
	7.6.4. Upgrading from the Class Library Complex to the ANSI Complex Class
	7.6.5. Upgrading from the Pre-ANSI iostream library to the VSI C++ Standard Library

	Chapter 8. Using the OpenVMS Debugger
	8.1. Debugging C++ Programs
	8.1.1. Compiling and Linking in Preparation for Debugging
	8.1.2. Debugger Support
	8.1.3. Starting and Ending a Debugging Session
	8.1.4. Features Basic to Debugging C++ Programs
	8.1.4.1. Determining Language Mode
	8.1.4.2. Built-In Operators
	8.1.4.3. Constructs in Language and Address Expressions
	8.1.4.4. Data Types

	8.2. Using the OpenVMS Debugger with C++ Data
	8.2.1. Nonstatic Data Members
	8.2.1.1. Noninherited Data Members
	8.2.1.2. Inherited Data Members

	8.2.2. Reference Objects and Reference Members
	8.2.3. Pointers to Members
	8.2.4. Referencing Entities by Type

	8.3. Using the OpenVMS Debugger with C++ Functions
	8.3.1. Referring to Overloaded Functions
	8.3.2. Referring to Destructors
	8.3.3. Referring to Conversions
	8.3.4. Referring to User-Defined Operators
	8.3.5. Referring to Function Arguments
	8.3.6. Calling C++ Member Functions from the Debugger

	Chapter 9. Using 64-bit Address Space
	9.1. 32-bit Versus 64-bit Development Environment
	9.1.1. Model ANSI (Alpha only)
	9.1.2. Memory Allocators
	9.1.3. 64-bit Pointer Support in the C Run Time Library

	9.2. Qualifiers and Pragmas
	9.2.1. The /MODEL=ANSI Qualifier (Alpha only)
	9.2.2. The /POINTER_SIZE Qualifier
	9.2.3. The __INITIAL_POINTER_SIZE Macro
	9.2.4. Pragmas

	9.3. Determining Pointer Size
	9.3.1. Special Cases
	9.3.2. Mixing Pointer Sizes

	9.4. Header File Considerations
	9.5. Prologue/Epilogue Files
	9.5.1. Rationale
	9.5.2. Using Prologue/Epilogue Files

	9.6. Avoiding Problems
	9.7. Reasons for Not Using Mixed Pointer Sizes

	Appendix A. Compiler Command Qualifiers
	Appendix B. Programming Tools
	B.1. VSI Language-Sensitive Editor
	B.1.1. Starting and Terminating an LSE Session
	B.1.2. LSE Placeholders and Tokens
	B.1.3. Compiling and Reviewing Source Code from an LSE Session
	B.1.4. VSI Source Code Analyzer (SCA)

	Appendix C. Built-In Functions
	C.1. Built-In Functions for Alpha Systems (Alpha only)
	C.1.1. Translation Macros
	C.1.2. Intrinsic Functions
	C.1.3. Privileged Architecture Library Code Instructions
	C.1.4. Other Builtins

	C.2. Built-In Functions for I64 Systems (I64 only)
	C.2.1. Builtin Differences on I64 Systems
	C.2.2. Built-in Functions Specific to I64 Systems

	Appendix D. Class Library Restrictions
	D.1. Class Library Restrictions

	Appendix E. Compiler Compatibility
	E.1. Compatibility with Other C++ Compilers
	E.2. Compatibility with Version 5.6 and Earlier
	E.2.1. Language Differences
	E.2.2. Implementation Differences
	E.2.3. Using Templates
	E.2.3.1. Linking with Version 5.n Instantiations
	E.2.3.2. Linking Version 5.n Applications Against Version 6.n Repositories

	E.2.4. Library Differences

	E.3. Using Classes
	E.3.1. Friend Declarations
	E.3.2. Member Access
	E.3.3. Base Class Initializers

	E.4. Undefined Global Symbols for Static Data Members
	E.5. Functions and Function Declaration Considerations
	E.6. Using Pointers
	E.6.1. Pointer Conversions
	E.6.2. Bound Pointers
	E.6.3. Constants in Function Returns
	E.6.4. Pointers to Constants

	E.7. Using typedefs
	E.8. Initializing References
	E.9. Using the switch and goto Statements
	E.10. Using Volatile Objects
	E.11. Preprocessing
	E.12. Managing Memory
	E.13. Size-of-Array Argument to delete Operator
	E.14. Flushing the Output Buffer
	E.15. Linking
	E.16. Incrementing Enumerations
	E.17. Guidelines for Writing Clean 64-Bit Code

	Index

