
AA–N038F–TE

VAX Rdb/VMS
Guide to Using RDO, RDBPRE,
and RDML

December 1990

This manual provides information about data manipulation and programming with
relational databases using the following VAX Rdb/VMS interfaces: interactive RDO,
Callable RDO, and the RDBPRE and RDML preprocessors.

Revision/Update Information: This manual is a revision and supersedes previous
versions.

Operating System: VMS

Software Version: VAX Rdb/VMS Version 4.0

digital equipment corporation
maynard, massachusetts

The information in this document is subject to change without notice and should not
be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

Any software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license. No responsibility
is assumed for the use or reliability of software or equipment that is not supplied by
Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1989,1990.

All rights reserved.
Printed in U.S.A.

The Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, CDD/Plus,
DEC, DEC/CMS, DECdecision, DECdtm, DECforms, DECintact, DEC/MMS, DECnet,
DECtp, DECtrace, DECwindows, MicroVAX, ULTRIX, UNIBUS, VAX, VAX ACMS, VAX
Ada, VAX BASIC, VAX C, VAX CDD, VAXcluster, VAX COBOL, VAX DATATRIEVE,
VAX DBMS, VAXELN, VAX FMS, VAX FORTRAN, VAX Pascal, VAX RALLY, VAX
Rdb/ELN, VAX Rdb/VMS, VAX RMS, VAX SPM, VAXstation, VAX TEAMDATA, VIDA,
VMS, VT, and the DIGITAL Logo.

MS-DOS is a registered trademark of Microsoft Corporation. OS/2 is a trademark of
International Business Machine Corporation.

This document is available in printed and online versions.

This document was prepared using VAX DOCUMENT, Version 1.2.

Contents

Preface . xxv

Technical Changes and New Features xxxi

1 Introduction to VAX Rdb/VMS Data Manipulation
1.1 What Is a Relational Database? . 1–2
1.1.1 Single-File and Multifile Databases . 1–3
1.1.2 Using Normalization to Eliminate Data Redundancy 1–3
1.2 Using RDO . 1–4
1.2.1 Beginning an RDO Session . 1–5
1.2.2 Getting Online Help in RDO . 1–6
1.2.3 Using Record Selection Expressions . 1–6
1.2.4 Using Multiline Statements in RDO . 1–7
1.2.5 Exiting from RDO . 1–8
1.3 Using the Sample Database . 1–8
1.3.1 Creating the Sample Database . 1–9
1.4 Using Rdb/VMS Statements in Programs 1–11
1.5 Internationalization Support . 1–14
1.5.1 Controlling Input and Display Format 1–14
1.5.2 Specifying Collating Sequence . 1–14

iii

2 Accessing a Database and Using Transactions
2.1 Invoking a Database . 2–1
2.1.1 Accessing the Database by File Name 2–2
2.1.2 Accessing the Database by Dictionary Path Name 2–2
2.1.3 Accessing the Database from a Remote Node 2–3
2.1.4 Accessing Data . 2–3
2.2 Using Transactions . 2–4
2.3 Specifying the Transaction Mode . 2–6
2.3.1 Read-Only Transactions . 2–7
2.3.2 Read/Write Transactions . 2–8
2.3.3 Batch-Update Transactions . 2–9
2.3.4 Reserving Options . 2–11
2.3.4.1 Auto-Locking . 2–13
2.3.4.2 Shared Read Reserving Option . 2–15
2.3.4.3 Shared Write Reserving Option . 2–15
2.3.4.4 Protected Read Reserving Option . 2–15
2.3.4.5 Protected Write Reserving Option 2–16
2.3.4.6 Exclusive Read Reserving Option . 2–16
2.3.4.7 Exclusive Write Reserving Option 2–16
2.3.5 Locking and Lock Conflict Resolution 2–17
2.3.6 Other START_TRANSACTION Options 2–19
2.3.6.1 Evaluating Constraints at Verb Time 2–19
2.3.6.2 Evaluating Constraints at Commit Time 2–20
2.3.6.3 Wait and Nowait Options . 2–21
2.3.6.4 Consistency and Concurrency Options 2–23
2.3.7 Indexes . 2–23
2.3.8 Transaction Scope . 2–24
2.3.9 Ending a Transaction . 2–25
2.4 The Query Optimizer . 2–28
2.5 Sample Interactive Session Using the START_TRANSACTION

Statement . 2–30

3 Using Record Selection Expressions
3.1 Forming Streams of Records . 3–1
3.2 Retrieving All the Records in a Relation . 3–2
3.3 Displaying Records in Sorted Order . 3–4
3.3.1 Indicating Ascending or Descending Sort Order 3–5
3.3.2 Using Value Expressions as Sort Keys 3–6
3.4 Restricting the Number of Records: The FIRST Clause 3–7
3.5 Specifying Conditions to Retrieve Records: Relational and Logical

Operators . 3–7
3.5.1 Retrieving Records That Satisfy a Single Condition 3–10

iv

3.5.2 Specifying Compound Conditions for Records 3–11
3.5.2.1 Retrieving Records That Satisfy Two or More Conditions:

AND Operator . 3–11
3.5.2.2 Retrieving Records That Satisfy One of Several Conditions:

OR Operator . 3–12
3.5.2.3 Retrieving Records That Do Not Satisfy a Condition: NOT

Operator . 3–13
3.5.2.4 Using the ANY and NOT ANY Operators 3–14
3.5.3 Retrieving Records That Match a Substring or Pattern 3–15
3.5.4 Using Limited Matching: STARTING WITH and

CONTAINING Operators . 3–17
3.6 Eliminating Duplicate Values: REDUCED TO Clause 3–18
3.7 Testing for a Single Record Occurrence: UNIQUE Operator 3–20
3.8 Retrieving Segmented Strings . 3–21

4 Retrieving Records and Joining Relations
4.1 Joining Relations Using the CROSS Clause 4–1
4.1.1 Joining Records from Two Relations . 4–2
4.1.1.1 One-to-One and One-to-Many Joins 4–4
4.1.1.2 Many-to-Many Joins . 4–5
4.1.2 Joining Records from More Than Two Relations 4–6
4.1.3 Joining One Relation on Itself . 4–7
4.2 Using Nested FOR Loops . 4–9

5 Defining and Using Views
5.1 Creating the View Definition . 5–2
5.2 Joining Relations in a View Definition . 5–4

6 Storing, Modifying, and Erasing Data
6.1 Storing Data in an Rdb/VMS Database . 6–1
6.1.1 Storing Values in One Relation . 6–2
6.1.2 Storing Values in Multiple Relations . 6–2
6.2 Modifying Data . 6–4
6.2.1 Changing Data in a Single Relation . 6–4
6.2.2 Changing Data in Multiple Relations . 6–6
6.3 Erasing Data Records in a Relation . 6–7
6.4 Updating by Selecting Data from the Record Stream 6–8
6.5 Using Missing Values . 6–12

v

6.5.1 Retrieving Records with a Missing Field Value 6–12
6.5.1.1 Using Nested FOR Loops, Outer Joins, and the MISSING

Clause . 6–14
6.5.2 Storing Missing Values . 6–15
6.5.3 Missing Value Contrasted with SQL Default Value 6–15
6.6 Referential Integrity and Triggers . 6–16
6.6.1 Using Constraints to Enforce Referential Integrity 6–16
6.6.2 Using Triggers . 6–17
6.7 Summary . 6–19

7 Introduction to Rdb/VMS Programming
7.1 The Programming Interfaces . 7–1
7.2 Designing a Prototype Using RDO . 7–3
7.3 Developing Your Queries with an Interactive Interface 7–3
7.3.1 Using the RDO SHOW Statements . 7–4
7.3.2 Determining Which Relations and Views to Use 7–5
7.3.3 Determining Data Types of Database Fields 7–6
7.3.3.1 Determining Data Validation Checks Defined for the

Database . 7–7
7.3.3.2 Using the RDO SET OUTPUT Statement 7–8
7.3.3.3 Statement Testing in RDO . 7–9

8 Data Type Compatibility
8.1 Rdb/VMS Data Types . 8–2
8.2 The Segmented String Data Type . 8–3
8.3 Data Type Conversions . 8–4
8.3.1 Preprocessed Program Data Type Conversions 8–5
8.3.2 Callable RDO Program Data Type Conversions 8–6
8.3.3 Statistical Expression Data Type Conversions 8–6
8.4 Host Language Equivalent Data Types . 8–7

9 Program Structure and Design
9.1 Embedding DML Statements in the Program Environment 9–2
9.2 Declaring Host Language Variables . 9–2
9.2.1 Declaring Databases . 9–3
9.2.2 Forming Record Streams . 9–5

vi

9.2.3 Retrieving Records . 9–6
9.2.3.1 Using the FOR Statement to Retrieve Records 9–6
9.2.3.2 Using Streams to Retrieve Records 9–7
9.2.3.3 Using Undeclared Streams to Retrieve Records 9–9
9.2.3.4 Using Declared Streams to Retrieve Records 9–13
9.2.4 Retrieving Segmented Strings . 9–16
9.2.4.1 Using the FOR Statement to Retrieve Segmented

Strings . 9–17
9.2.4.2 Using the START_SEGMENTED_STRING Statement to

Retrieve Segmented Strings . 9–18
9.2.5 Retrieving Field and Statistical Values 9–20
9.2.5.1 Using the GET Statement to Retrieve Field and Record

Values . 9–20
9.2.5.2 Using the GET Statement to Retrieve Statistical

Values . 9–21
9.2.6 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 9–22
9.2.6.1 Storing Records . 9–23
9.2.6.1.1 Using the CREATE_SEGMENTED_STRING Statement

to Store Segmented Strings . 9–24
9.2.6.1.2 Using the STORE Statement with Segmented Strings

to Store Segment Streams . 9–25
9.2.6.2 Modifying Records . 9–27
9.2.6.2.1 Modifying Segmented Strings in RDBPRE 9–28
9.2.6.2.2 Modifying Segmented Strings in RDML 9–29
9.2.6.3 Erasing Records . 9–29
9.2.7 Controlling the Scope of Database Keys 9–32
9.2.8 Using Transactions . 9–33
9.3 Using Structured Programming in Preprocessed Programs 9–35
9.3.1 Using Context Variables in Program Blocks 9–35
9.3.2 Using Transactions in Separately Preprocessed Modules 9–37
9.3.3 Using Handles in Structured Programming 9–37
9.3.3.1 Using Database Handles . 9–38
9.3.3.2 Using Transaction Handles . 9–40
9.3.3.3 Using Request Handles . 9–41
9.3.3.3.1 Determining When to Use User-Supplied Request

Handles . 9–41
9.3.3.3.2 Declaring and Initializing a Request Handle 9–43
9.3.3.3.3 Changing the Value Associated with a Request

Handle . 9–44
9.3.3.3.4 Determining the Scope of a Request Handle 9–45
9.3.4 Using Distributed Transaction Identifiers 9–46
9.4 Using Callable RDO in Preprocessed Programs 9–46

vii

9.4.1 Using the DATABASE Statement with Embedded Callable
RDO . 9–47

9.4.2 Using Transactions with Embedded Callable RDO 9–47

10 Handling Rdb/VMS Run-Time Errors in Preprocessed
Programs
10.1 Program Design and Error Handling . 10–1
10.2 Error Handling for Preprocessed Programs 10–3
10.2.1 Detecting and Displaying Errors—Default Condition

Handling . 10–3
10.2.2 Detecting and Handling Errors Using the ON ERROR

Clause . 10–4
10.2.3 Displaying Error Messages in Preprocessed Programs 10–7
10.2.4 Displaying User-Supplied Error Messages in Preprocessed

Programs . 10–8
10.2.5 Recovering from Errors in Preprocessed Programs 10–10
10.2.5.1 Handling Multi-User Conflicts in Preprocessed

Programs . 10–10
10.2.5.2 Handling Integrity Failures in Preprocessed Programs . . . 10–12
10.2.5.3 Handling Fatal Errors in Preprocessed Programs 10–13

11 Processing Rdb/VMS Application Programs
11.1 Using the RDBPRE Preprocessor . 11–1
11.1.1 Defining Symbols to Invoke RDBPRE 11–2
11.1.2 Using Host Language Compile Qualifiers with RDBPRE 11–3
11.1.3 Creating RDBPRE Output Files . 11–4
11.1.4 Displaying RDBPRE Preprocessor and Compiler Error

Messages . 11–6
11.2 Using the RDML Preprocessor . 11–6
11.2.1 Defining a Symbol to Invoke RDML . 11–7
11.2.2 Using RDML Qualifiers . 11–7
11.2.2.1 Using Host Language Compiler Qualifiers with RDML

Programs . 11–10
11.2.3 RDML Command Example . 11–10
11.2.4 RDML Run-Time Support and Error Handling 11–11
11.3 Using the Callable RDO Interface . 11–12
11.4 Creating an Executable Image: LINKING 11–12
11.4.1 Linking Callable RDO and RDBPRE Programs 11–12
11.4.2 Linking RDML Programs . 11–12
11.4.3 Linking RDML Modules with RDBPRE and SQL$PRE

Modules . 11–13

viii

11.5 Creating a Shareable Image with RDBPRE and RDML 11–14
11.5.1 Accessing a Database from a Shareable Image Only 11–17
11.5.2 Accessing a Database from a Shareable Image and an

Application Program . 11–20
11.6 Running the Program . 11–24
11.7 Debugging with the VMS Debugger . 11–24

12 Using the RDBPRE Program Environment
12.1 RDBPRE Program Development . 12–1
12.1.1 Differences in RDO and RDBPRE Data Manipulation

Language Syntax . 12–2
12.1.2 Using the &RDB& Statement Flag . 12–2
12.1.3 Copying Data Dictionary Definitions to Declare Host Language

Variables . 12–4
12.1.3.1 The INCLUDE Directive in BASIC 12–7
12.1.3.2 The COPY FROM DICTIONARY Statement in COBOL . . 12–8
12.1.3.3 The DICTIONARY Statement in FORTRAN 12–10

13 Using the BASIC Program Environment
13.1 The RDBPRE BASIC Preprocessor Interface 13–2
13.2 Embedding DML Statements in the RDBPRE BASIC Program

Environment . 13–3
13.2.1 Converting an RDO Prototype to the RDBPRE BASIC

Environment . 13–3
13.2.1.1 Using Host Language Variables . 13–5
13.2.1.2 Using Host Language Variables in Conditional

Expressions . 13–7
13.2.1.3 Converting DATE Data Type to TEXT 13–8
13.2.1.4 Converting ASCII DATE Strings to Binary Format 13–10
13.2.2 Using Literals . 13–11
13.2.3 Forming Record Streams . 13–12
13.2.4 Retrieving Records . 13–12
13.2.4.1 Using the FOR Statement to Retrieve Records 13–12
13.2.4.2 Using Declared Streams to Retrieve Records 13–13
13.2.5 Retrieving Segmented Strings . 13–16
13.2.5.1 Using the FOR Statement to Retrieve Segmented

Strings . 13–17
13.2.5.2 Using the START_SEGMENTED_STRING Statement to

Retrieve Segmented Strings . 13–19

ix

13.2.6 Retrieving Field Values . 13–21
13.2.6.1 Using the GET Statement to Retrieve Field Values 13–21
13.2.6.2 Using the GET * Statement to Retrieve Field Values 13–22
13.2.6.3 Using the GET Statement to Retrieve Statistical

Values . 13–23
13.2.7 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 13–23
13.2.7.1 Storing Records . 13–24
13.2.7.1.1 Using the STORE * Statement to Store Records 13–25
13.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement

to Store Segmented Strings . 13–25
13.2.7.2 Modifying Records . 13–27
13.2.7.2.1 Using the MODIFY * Statement to Modify Records . . . 13–28
13.2.7.2.2 Modifying Segmented Strings 13–29
13.2.7.3 Erasing Records . 13–30
13.3 Controlling the Scope of Database Keys . 13–31
13.4 Using Structured Programming . 13–31
13.4.1 Using Handles in Structured Programming 13–36
13.4.2 Declaring and Initializing Handles . 13–36
13.4.3 Using Distributed Transaction Identifiers 13–37
13.4.4 Declaring and Initializing Distributed Transaction

Identifiers . 13–37
13.5 Using Callable RDO . 13–37
13.5.1 Using the DATABASE Statement with Embedded Callable

RDO . 13–39
13.5.2 Embedding Data Definition Statements Using Callable

RDO . 13–40
13.6 Handling Rdb/VMS Run-Time Errors . 13–43
13.6.1 Error Handling . 13–44
13.6.2 Detecting Errors Using the ON ERROR Clause 13–44
13.6.3 Determining Which Errors Have Occurred 13–45
13.6.3.1 Using Symbolic Error Codes . 13–45
13.6.3.2 Declaring Symbolic Error Codes . 13–46
13.6.3.3 Calling LIB$MATCH_COND . 13–46
13.6.4 Displaying Error Messages . 13–51
13.6.4.1 Calling LIB$SIGNAL . 13–51
13.6.4.2 Methods of Calling LIB$SIGNAL . 13–52
13.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with

RDB$MESSAGE_VECTOR and RDB$STATUS 13–52
13.6.4.4 Calling SYS$PUTMSG . 13–53
13.6.4.5 Calling SYS$GETMSG . 13–53
13.6.5 Handling Fatal Errors . 13–55

x

14 Using the COBOL Program Environment
14.1 The RDBPRE COBOL Preprocessor Interface 14–2
14.2 Embedding DML Statements in the RDBPRE COBOL Program

Environment . 14–2
14.2.1 Converting an RDO Prototype to the RDBPRE COBOL

Program Environment . 14–2
14.2.1.1 Using Host Language Variables . 14–4
14.2.1.2 Using Host Language Variables in Conditional

Expressions . 14–5
14.2.1.3 Converting DATE Data Types to TEXT 14–9
14.2.1.4 Converting ASCII DATE Strings to Binary Format 14–11
14.2.2 Using Literals . 14–12
14.2.3 Forming Record Streams . 14–12
14.2.4 Retrieving Records . 14–12
14.2.4.1 Using the FOR Statement to Retrieve Records 14–12
14.2.4.2 Using Declared Streams to Retrieve Records 14–14
14.2.5 Retrieving Segmented Strings . 14–17
14.2.5.1 Using the FOR Statement to Retrieve Segmented

Strings . 14–17
14.2.5.2 Using the START_SEGMENTED_STRING Statement to

Retrieve Segmented Strings . 14–19
14.2.6 Retrieving Field Values . 14–21
14.2.6.1 Using the GET Statement to Retrieve Field Values 14–22
14.2.6.2 Using the GET * Statement to Retrieve Field Values 14–22
14.2.6.3 Using the GET Statement to Retrieve Statistical

Values . 14–23
14.2.7 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 14–24
14.2.7.1 Storing Records . 14–24
14.2.7.1.1 Using the STORE * Statement to Store Records 14–26
14.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement

to Store Segmented Strings . 14–27
14.2.7.2 Modifying Records . 14–28
14.2.7.2.1 Using the MODIFY * Statement to Modify Records . . . 14–29
14.2.7.2.2 Modifying Segmented Strings 14–30
14.2.7.3 Erasing Records . 14–30
14.3 Controlling the Scope of Database Keys . 14–31
14.4 Using Structured Programming . 14–32
14.4.1 Using Handles in Structured Programming 14–36
14.4.2 Declaring and Initializing Handles . 14–37
14.4.3 Using Distributed Transaction Identifiers 14–37
14.4.4 Declaring and Initializing Distributed Transaction

Identifiers . 14–38
14.5 Using Callable RDO . 14–38

xi

14.5.1 Using the DATABASE Statement with Embedded Callable
RDO . 14–39

14.5.2 Embedding Data Definition Statements Using Callable
RDO . 14–40

14.6 Handling Rdb/VMS Run-Time Errors . 14–43
14.6.1 Error Handling . 14–44
14.6.2 Detecting Errors Using the ON ERROR Clause 14–44
14.6.3 Determining Which Errors Have Occurred 14–45
14.6.3.1 Using Symbolic Error Codes . 14–45
14.6.3.2 Declaring Symbolic Error Codes . 14–46
14.6.3.3 Calling LIB$MATCH_COND . 14–46
14.6.4 Displaying Error Messages . 14–51
14.6.4.1 Calling LIB$SIGNAL . 14–51
14.6.4.2 Methods of Calling LIB$SIGNAL . 14–52
14.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with

RDB$MESSAGE_VECTOR and RDB$STATUS 14–52
14.6.4.4 Calling SYS$PUTMSG . 14–53
14.6.4.5 Calling SYS$GETMSG . 14–53
14.6.5 Handling Fatal Errors . 14–55

15 Using the FORTRAN Program Environment
15.1 The RDBPRE FORTRAN Preprocessor Interface 15–2
15.2 Embedding DML Statements in the RDBPRE FORTRAN Program

Environment . 15–2
15.2.1 Converting an RDO Prototype to the RDBPRE FORTRAN

Program Environment . 15–2
15.2.1.1 Using Host Language Variables . 15–5
15.2.1.2 Using Host Language Variables in Conditional

Expressions . 15–6
15.2.1.3 Converting DATE Data Types to TEXT 15–7
15.2.1.4 Converting ASCII DATE Strings to Binary Format 15–9
15.2.2 Using Literals . 15–10
15.2.3 Forming Record Streams . 15–11
15.2.4 Retrieving Records . 15–11
15.2.4.1 Using the FOR Statement to Retrieve Records 15–11
15.2.4.2 Using Declared Streams to Retrieve Records 15–12
15.2.5 Retrieving Segmented Strings . 15–16
15.2.5.1 Using the FOR Statement to Retrieve Segmented

Strings . 15–16
15.2.5.2 Using the START_SEGMENTED_STRING Statement to

Retrieve Segmented Strings . 15–18

xii

15.2.6 Retrieving Field Values . 15–21
15.2.6.1 Using the GET Statement to Retrieve Field Values 15–21
15.2.6.2 Using the GET * Statement to Retrieve Field Values 15–22
15.2.6.3 Using the GET Statement to Retrieve Statistical

Values . 15–23
15.2.7 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 15–24
15.2.7.1 Storing Records . 15–24
15.2.7.1.1 Using the STORE * Statement to Store Records 15–26
15.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement

to Store Segmented Strings . 15–27
15.2.7.2 Modifying Records . 15–29
15.2.7.2.1 Using the MODIFY * Statement to Modify Records . . . 15–31
15.2.7.2.2 Modifying Segmented Strings 15–32
15.2.7.3 Erasing Records . 15–32
15.3 Controlling the Scope of Database Keys . 15–33
15.4 Using Structured Programming . 15–34
15.4.1 Using Handles in Structured Programming 15–39
15.4.2 Declaring and Initializing Handles . 15–39
15.4.3 Using Distributed Transaction Identifiers 15–40
15.4.4 Declaring and Initializing Distributed Transaction

Identifiers . 15–40
15.5 Using Callable RDO . 15–40
15.5.1 Using the DATABASE Statement with Embedded Callable

RDO . 15–42
15.5.2 Embedding Data Definition Statements Using Callable

RDO . 15–43
15.6 Handling Rdb/VMS Run-Time Errors . 15–46
15.6.1 Error Handling . 15–47
15.6.2 Detecting Errors Using the ON ERROR Clause 15–47
15.6.3 Determining Which Errors Have Occurred 15–48
15.6.3.1 Using Symbolic Error Codes . 15–48
15.6.3.2 Declaring Symbolic Error Codes . 15–49
15.6.3.3 Calling LIB$MATCH_COND . 15–49
15.6.4 Displaying Error Messages . 15–53
15.6.4.1 Calling LIB$SIGNAL . 15–53
15.6.4.2 Methods of Calling LIB$SIGNAL . 15–54
15.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with

RDB$MESSAGE_VECTOR and RDB$STATUS 15–55
15.6.4.4 Calling SYS$PUTMSG . 15–55
15.6.4.5 Calling SYS$GETMSG . 15–56
15.6.5 Handling Fatal Errors . 15–57

xiii

16 Using the RDML Program Environment
16.1 RDML Program Development . 16–1
16.1.1 Differences in RDO and RDML Syntax 16–2
16.1.2 Declaring Host Language Variables . 16–2
16.1.3 The C #dictionary Control Line . 16–6
16.1.4 The Pascal %DICTIONARY Statement 16–7

17 Using the RDML/C Program Environment
17.1 The RDML/C Preprocessor Interface . 17–2
17.2 Embedding RDML Statements in RDML/C Programs 17–3
17.2.1 Converting an RDO Prototype to the RDML/C Program

Environment . 17–3
17.2.1.1 Using Host Language Variables . 17–5
17.2.1.2 Converting DATE Data Type to TEXT 17–8
17.2.1.3 Converting ASCII DATE Strings to Binary Format 17–9
17.2.2 Using Literals . 17–10
17.2.3 Forming Record Streams . 17–10
17.2.4 Retrieving Records . 17–11
17.2.4.1 Using the FOR Statement to Retrieve Records 17–11
17.2.4.2 Using Declared Streams to Retrieve Records 17–11
17.2.5 Retrieving Segmented Strings . 17–14
17.2.6 Retrieving Field Values . 17–16
17.2.6.1 Using an Assignment Statement to Retrieve Field

Values . 17–17
17.2.6.2 Using the GET * Statement to Retrieve Field Values 17–17
17.2.6.3 Using the GET Statement to Retrieve Statistical

Values . 17–18
17.2.6.4 Retrieving Field Values of the VARYING STRING Data

Type . 17–19
17.2.7 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 17–20
17.2.7.1 Storing Records . 17–21
17.2.7.1.1 Using the STORE * Statement to Store Records 17–22
17.2.7.1.2 Storing VARYING STRING Data Types in the

Database . 17–23
17.2.7.1.3 Using the STORE Statement with Segmented Strings

to Store Segmented Strings . 17–24
17.2.7.2 Modifying Records . 17–26
17.2.7.2.1 Using the MODIFY * Statement to Modify Records . . . 17–27
17.2.7.2.2 Modifying Segmented Strings 17–28
17.2.7.3 Erasing Records . 17–30
17.3 Controlling the Scope of Database Keys . 17–31
17.4 Using Structured Programming . 17–31

xiv

17.4.1 Using Handles . 17–35
17.4.2 Declaring and Initializing Handles . 17–35
17.4.3 Using Distributed Transaction Identifiers 17–36
17.4.4 Declaring and Initializing Distributed Transaction

Identifiers . 17–36
17.5 Using Callable RDO . 17–36
17.5.1 Using the DATABASE Statement with Embedded Callable

RDO . 17–38
17.5.2 Embedding Data Definition Statements Using Callable

RDO . 17–39
17.6 Handling Rdb/VMS Run-Time Errors . 17–42
17.6.1 Error Handling . 17–42
17.6.2 Detecting Errors Using the ON ERROR Clause 17–43
17.6.3 Using the RDML General Purpose Error Handler:

RDML$SIGNAL_ERROR . 17–43
17.6.4 Determining Which Errors Have Occurred 17–44
17.6.4.1 Using Symbolic Error Codes . 17–44
17.6.4.2 Declaring Symbolic Error Codes . 17–45
17.6.4.3 Calling LIB$MATCH_COND . 17–45
17.6.5 Displaying Error Messages . 17–48
17.6.5.1 Calling LIB$SIGNAL . 17–49
17.6.5.2 Methods of Calling LIB$SIGNAL . 17–49
17.6.5.3 The Format of the LIB$SIGNAL Calling Sequence with

RDB$MESSAGE_VECTOR and RDB$STATUS 17–50
17.6.5.4 Calling SYS$PUTMSG . 17–50
17.6.5.5 Calling SYS$GETMSG . 17–51
17.6.6 Handling Fatal Errors . 17–52

18 Using the RDML/Pascal Program Environment
18.1 The RDML/Pascal Preprocessor Interface 18–2
18.2 Embedding RDML Statements in RDML/Pascal Programs 18–2
18.2.1 Converting an RDO Prototype to the RDML/Pascal Program

Environment . 18–2
18.2.1.1 Using Host Language Variables . 18–5
18.2.1.2 Converting DATE Data Type to TEXT 18–8
18.2.1.3 Converting ASCII DATE Strings to Binary Format 18–8
18.2.2 Using Literals . 18–9
18.2.3 Forming Record Streams . 18–9
18.2.4 Retrieving Records . 18–10
18.2.4.1 Using the FOR Statement to Retrieve Records 18–10
18.2.4.2 Using Declared Streams to Retrieve Records 18–11
18.2.5 Retrieving Segmented Strings . 18–14

xv

18.2.6 Retrieving Field Values . 18–15
18.2.6.1 Using an Assignment Statement to Retrieve Field

Values . 18–16
18.2.6.2 Using the GET * Statement to Retrieve Records in

RDML/Pascal . 18–16
18.2.6.3 Using the GET Statement to Retrieve Statistical

Values . 18–17
18.2.7 Updating Records Using the STORE, MODIFY, and ERASE

Statements . 18–18
18.2.7.1 Storing Records . 18–19
18.2.7.2 Using the STORE * Statement to Store Records 18–21
18.2.7.3 Using the STORE Statement with Segmented Strings to

Store Segmented Strings . 18–22
18.2.7.4 Modifying Records . 18–24
18.2.7.4.1 Using the MODIFY * Statement to Modify Records . . . 18–25
18.2.7.4.2 Modifying Segmented Strings 18–26
18.2.7.5 Erasing Records . 18–28
18.3 Controlling the Scope of Database Keys . 18–29
18.4 Using Structured Programming . 18–30
18.4.1 Using Handles . 18–33
18.4.2 Declaring and Initializing Handles . 18–34
18.4.3 Using Distributed Transaction Identifiers 18–34
18.4.4 Declaring and Initializing Distributed Transaction

Identifiers . 18–35
18.5 Using Callable RDO . 18–35
18.5.1 Using the DATABASE Statement with Embedded Callable

RDO . 18–36
18.5.2 Embedding Data Definition Statements Using Callable

RDO . 18–37
18.6 Handling Rdb/VMS Run-Time Errors . 18–40
18.6.1 Error Handling . 18–41
18.6.2 Detecting Errors Using the ON ERROR Clause 18–41
18.6.3 Using the RDML General Purpose Error Handler:

RDML$SIGNAL_ERROR . 18–42
18.6.4 Determining Which Errors Have Occurred 18–42
18.6.4.1 Using Symbolic Error Codes . 18–42
18.6.4.2 Declaring Symbolic Error Codes . 18–43
18.6.4.3 Calling LIB$MATCH_COND . 18–43
18.6.5 Displaying Error Messages . 18–47
18.6.5.1 Calling LIB$SIGNAL . 18–48
18.6.5.2 Methods of Calling LIB$SIGNAL . 18–48
18.6.5.3 The Format of the LIB$SIGNAL Calling Sequence with

RDB$MESSAGE_VECTOR and RDB$STATUS 18–49

xvi

18.6.5.4 Calling SYS$PUTMSG . 18–49
18.6.5.5 Calling SYS$GETMSG . 18–50
18.6.6 Handling Fatal Errors . 18–52

19 Using the Callable RDO Program Environment
19.1 The Callable RDO Program Interface . 19–2
19.1.1 Using Rdb/VMS Data Manipulation Statements 19–3
19.1.2 Using Rdb/VMS Data Definition Statements 19–3
19.2 Converting Queries to the Program Environment 19–4
19.3 Using RDB$INTERPRET . 19–4
19.4 Using Rdb/VMS Data Manipulation Statements 19–6
19.4.1 Declaring Host Language Variables . 19–6
19.4.2 Using Host Language Variables . 19–7
19.4.3 Using Literals . 19–8
19.4.4 Retrieving Records . 19–9
19.4.5 Retrieving Segmented Strings . 19–13
19.4.6 Retrieving Field and Statistical Values 19–16
19.4.6.1 Using the GET Statement to Retrieve Field Values 19–16
19.4.6.2 Using the GET Statement to Retrieve Statistical

Values . 19–16
19.4.7 Updating Records . 19–17
19.4.7.1 Storing Records . 19–18
19.4.7.2 Modifying Records . 19–25
19.4.7.3 Modifying Segmented Strings . 19–28
19.4.7.4 Erasing Records . 19–28
19.5 Using Rdb/VMS Data Definition Statements 19–29
19.6 Mixing Preprocessed and Callable RDO Statements in a Single

Transaction . 19–32
19.7 Handling Rdb/VMS Errors . 19–34
19.7.1 Detecting Errors in Callable RDO Programs 19–36
19.7.2 Determining Which Errors Have Occurred 19–38
19.7.2.1 Using Symbolic Error Codes . 19–38
19.7.2.2 Declaring Symbolic Error Codes . 19–39
19.7.2.3 Calling LIB$MATCH_COND . 19–40
19.7.3 Displaying Error Messages in Callable RDO Programs 19–43
19.7.3.1 Calling RDB$SIGNAL . 19–43
19.7.3.2 Calling SYS$GETMSG . 19–45
19.7.4 Error Recovery . 19–46
19.7.5 Handling Fatal Errors . 19–49

xvii

A Programming Reference Tables

Index

Examples
1–1 COBOL Program Performing Store Operation 1–12
1–2 COBOL Program Retrieving Database Values 1–14
2–1 Auto-Locking Versus No Auto-Locking . 2–14
11–1 Transfer Vector Coded for a Procedure Call 11–15
13–1 Converting an RDO Prototype to RDBPRE BASIC 13–4
13–2 Using Host Language Variables to Store a Record in RDBPRE

BASIC . 13–6
13–3 Using SYS$ASCTIM System Service Routine in RDBPRE

BASIC . 13–9
13–4 Using SYS$BINTIM System Service Routine in RDBPRE

BASIC . 13–11
13–5 Using the FOR Statement in RDBPRE BASIC 13–13
13–6 Using the Declared START_STREAM and FETCH Statements in

RDBPRE BASIC . 13–14
13–7 Using the FOR Statement with Segmented Strings in RDBPRE

BASIC . 13–18
13–8 Using the START_STREAM and START_SEGMENTED_STRING

Statements in RDBPRE BASIC . 13–20
13–9 Using the FOR and GET Statements in RDBPRE BASIC 13–22
13–10 Using the GET Statement to Retrieve a Statistical Value in

RDBPRE BASIC . 13–23
13–11 Storing Records in RDBPRE BASIC . 13–24
13–12 Using the STORE * Statement in RDBPRE BASIC 13–25
13–13 Using the CREATE_SEGMENTED_STRING Statement in

RDBPRE BASIC . 13–26
13–14 Modifying Records in RDBPRE BASIC . 13–28
13–15 Using the MODIFY * Statement in RDBPRE BASIC 13–29
13–16 Erasing Records in RDBPRE BASIC . 13–30
13–17 Using Data Manipulation Statements in Structured Programming

in RDBPRE BASIC . 13–33
13–18 Embedding Data Definition Statements in RDBPRE BASIC 13–41
13–19 Using LIB$MATCH_COND in RDBPRE BASIC 13–48
14–1 Converting an RDO Prototype to RDBPRE COBOL 14–3

xviii

14–2 Using Host Language Variables to Store a Record in RDBPRE
COBOL . 14–5

14–3 Using a Flag to Delimit the End of a String in RDBPRE
COBOL . 14–7

14–4 Using SYS$ASCTIM System Service Routine in RDBPRE
COBOL . 14–10

14–5 Using SYS$BINTIM System Service Routine in RDBPRE
COBOL . 14–11

14–6 Using the FOR Statement in RDBPRE COBOL 14–13
14–7 Using the Declared START_STREAM and FETCH Statements in

RDBPRE COBOL . 14–15
14–8 Using the FOR Statement with Segmented Strings in RDBPRE

COBOL . 14–18
14–9 Using the START_STREAM and START_SEGMENTED_STRING

Statements in RDBPRE COBOL . 14–20
14–10 Using the FOR and GET Statements in RDBPRE COBOL 14–22
14–11 Using the GET Statement to Retrieve a Statistical Value in

RDBPRE COBOL . 14–23
14–12 Storing Records in RDBPRE COBOL . 14–25
14–13 Using the STORE * Statement in RDBPRE COBOL 14–27
14–14 Using the CREATE_SEGMENTED_STRING Statement in

RDBPRE COBOL . 14–27
14–15 Modifying Records in RDBPRE COBOL . 14–29
14–16 Using the MODIFY * Statement in RDBPRE COBOL 14–30
14–17 Erasing Records in RDBPRE COBOL . 14–31
14–18 Using Data Manipulation Statements in Structured Programming

in RDBPRE COBOL . 14–34
14–19 Embedding Data Definition Statements in RDBPRE COBOL 14–41
14–20 Using LIB$MATCH_COND in RDBPRE COBOL 14–48
15–1 Converting an RDO Prototype to RDBPRE FORTRAN 15–3
15–2 Using Host Language Variables to Store a Record in RDBPRE

FORTRAN . 15–6
15–3 Using SYS$ASCTIM System Service Routine in RDBPRE

FORTRAN . 15–8
15–4 Using SYS$BINTIM System Service Routine in RDBPRE

FORTRAN . 15–10
15–5 Using the FOR Statement in RDBPRE FORTRAN 15–12
15–6 Using the Declared START_STREAM and FETCH Statements in

RDBPRE FORTRAN . 15–13
15–7 Using the FOR Statement with Segmented Strings in RDBPRE

FORTRAN . 15–17

xix

15–8 Using the START_STREAM and START_SEGMENTED_STRING
Statements in RDBPRE FORTRAN . 15–19

15–9 Using the FOR and GET Statements in RDBPRE FORTRAN 15–22
15–10 Using the GET Statement to Retrieve Statistical Values in

RDBPRE FORTRAN . 15–23
15–11 Storing Records in RDBPRE FORTRAN . 15–25
15–12 Using the STORE * Statement in RDBPRE FORTRAN 15–27
15–13 Using the CREATE_SEGMENTED_STRING Statement in

RDBPRE FORTRAN . 15–27
15–14 Modifying Records in RDBPRE FORTRAN 15–30
15–15 Using the MODIFY * Statement in RDBPRE FORTRAN 15–32
15–16 Erasing Records in RDBPRE FORTRAN . 15–33
15–17 Using Data Manipulation Statements in Structured Programming

in RDBPRE FORTRAN . 15–36
15–18 Embedding Data Definition Statements in RDBPRE

FORTRAN . 15–44
15–19 Using LIB$MATCH_COND in RDBPRE FORTRAN 15–51
17–1 Converting an RDO Prototype to RDML/C 17–3
17–2 Using DECLARE_VARIABLE to Declare a Host Language Variable

in RDML/C . 17–7
17–3 Using the BASED ON Clause in RDML/C 17–8
17–4 Using SYS$ASCTIM System Service Routine in RDML/C 17–9
17–5 Using the SYS$BINTIM System Service Routine in RDML/C 17–10
17–6 Using the FOR Statement in RDML/C . 17–11
17–7 Using the Declared START_STREAM and FETCH Statements in

RDML/C . 17–12
17–8 Using the FOR Statement with Segmented Strings in RDML/C . . 17–15
17–9 Using an Assignment Statement to Retrieve Field Values in

RDML/C . 17–17
17–10 Using the GET Statement to Retrieve Statistical Values in

RDML/C . 17–19
17–11 Retrieving Field Values of the VARYING STRING Data Type in

RDML/C . 17–20
17–12 Storing Records in RDML/C . 17–22
17–13 Using the STORE * Statement in RDML/C 17–23
17–14 Storing VARYING STRING Data in RDML/C 17–24
17–15 Storing a Segmented String in RDML/C . 17–25
17–16 Modifying Records in RDML/C . 17–27
17–17 Using the MODIFY * Statement in RDML/C 17–28
17–18 Modifying Segmented String Fields in RDML/C 17–28

xx

17–19 Erasing Records in RDML/C . 17–30
17–20 Using Structured Programming in RDML/C 17–33
17–21 Embedding Data Definition Statements in RDML/C 17–40
17–22 Using LIB$MATCH_COND in RDML/C . 17–47
18–1 Converting an RDO Prototype to RDML/Pascal 18–3
18–2 Using DECLARE_VARIABLE to Declare a Host Language Variable

in RDML/Pascal . 18–7
18–3 Using the BASED ON Clause in RDML/Pascal 18–7
18–4 Using ASCTIM System Service Routine in RDML/Pascal 18–8
18–5 Using BINTIM System Service Routine in RDML/Pascal 18–9
18–6 Using the FOR Statement in RDML/Pascal 18–11
18–7 Using the Declared START_STREAM and FETCH Statements in

RDML/Pascal . 18–12
18–8 Using the FOR Statement with Segmented Strings in

RDML/Pascal . 18–15
18–9 Using an Assignment Statement to Retrieve Field Values in

RDML/Pascal . 18–16
18–10 Using the GET Statement to Retrieve Statistical Values in

RDML/Pascal . 18–18
18–11 Storing Records in RDML/Pascal . 18–20
18–12 Using the STORE * Statement in RDML/Pascal 18–21
18–13 Storing a Segmented String in RDML/Pascal 18–23
18–14 Modifying Records in RDML/Pascal . 18–25
18–15 Using the MODIFY * Statement in RDML/Pascal 18–26
18–16 Modifying Segmented String Fields in RDML/Pascal 18–26
18–17 Erasing Records in RDML/Pascal . 18–29
18–18 Using Structured Programming in RDML/Pascal 18–32
18–19 Embedding Data Definition Statements in RDML/Pascal 18–38
18–20 Using LIB$MATCH_COND in RDML/Pascal 18–45
19–1 Using RDB$INTERPRET in PL/I . 19–6
19–2 Using Host Language Variables to Retrieve a Record in Callable

RDO . 19–8
19–3 Using a Literal Value Within a Record Selection Expression in

Callable RDO . 19–9
19–4 Using the START_STREAM and FETCH Statements in Callable

RDO . 19–11
19–5 Retrieving a Segmented String with the START_STREAM and

START_SEGMENTED_STRING Statements in Callable RDO . . . 19–14
19–6 Using the GET Statement to Retrieve a Statistical Value in

Callable RDO . 19–17

xxi

19–7 Storing Records in Callable RDO . 19–18
19–8 Using the CREATE_SEGMENTED_STRING Statement in Callable

RDO . 19–23
19–9 Modifying Records in Callable RDO . 19–26
19–10 Erasing Records in Callable RDO . 19–29
19–11 Using Data Definition Statements in Callable RDO 19–30
19–12 Using Preprocessed and Callable RDO Statements in a Single

Transaction . 19–33
19–13 Error Handling in Callable RDO . 19–41
19–14 Handling a Record Stream End Condition in Callable RDO 19–47
19–15 Handling Fatal Errors in Callable RDO . 19–50
19–16 Continuing Program Execution After a Fatal Error in Callable

RDO . 19–55

Figures
1–1 A Typical Rdb/VMS Relation in Table Form 1–2
2–1 Database Access Conflicts . 2–18
2–2 Recovery-Unit Journal File During an Update Transaction 2–26
2–3 Recovery-Unit Journal File with COMMIT 2–27
2–4 Recovery-Unit Journal File with ROLLBACK 2–28
4–1 One-to-Many Joins of Relations . 4–4
4–2 Joining a Relation on Itself (Reflexive Join) 4–9
8–1 The Segmented String Data Type . 8–4
10–1 The Format of the Rdb/VMS Message Vector 10–6
11–1 Creation of an RDBPRE Object File . 11–5

Tables
1–1 Files to Create Sample Database . 1–9
3–1 RDO Relational Operators . 3–8
3–2 AND Logical Operator . 3–11
3–3 OR Logical Operator . 3–13
3–4 NOT Logical Operator . 3–13
3–5 Testing for the Existence of Records with ANY and UNIQUE

Operators . 3–21
6–1 Effects of COMMIT and ROLLBACK on Databases and

Transactions . 6–11
8–1 Rdb/VMS Data Types . 8–2

xxii

8–2 RDBPRE and RDO Statistical Expression Data Type
Conversions . 8–6

8–3 RDML Statistical Expression Data Type Conversions 8–7
8–4 Rdb/VMS Data Type Conversions for BASIC 8–8
8–5 RDML Data Type Conversions for C . 8–9
8–6 Rdb/VMS Data Type Conversions for COBOL 8–10
8–7 Rdb/VMS Data Type Conversions for FORTRAN 8–11
8–8 RDML Data Type Conversions for Pascal 8–12
9–1 Summary of Database Handle Usage in RDML and RDBPRE

Preprocessed Programs . 9–40
9–2 Summary of Database Handle Usage in Callable RDO

Programs . 9–40
11–1 RDBPRE Preprocessor Default File Types 11–2
11–2 RDML Preprocessor Default File Types . 11–6
11–3 PSECT Attributes Generated in RDBPRE and RDML Macro

Code . 11–16
19–1 Severity Levels of the Return Status Value 19–37
A–1 Commonly Used Rdb/VMS Symbolic Error Codes for Data

Manipulation . A–1
A–2 Commonly Used Rdb/VMS Symbolic Error Codes for Data

Definition . A–4

xxiii

Preface

VAX Rdb/VMS software, referred to as Rdb/VMS in this manual, is a general
purpose database management system based on the relational data model.

Purpose of This Manual
This manual describes how to access, retrieve, and update data stored in an
Rdb/VMS database, either interactively or using application programs written
in high-level programming languages such as BASIC, C, COBOL, FORTRAN,
and Pascal.

Note SQL (structured query language), an industry-standard interface, is also
included with VAX Rdb/VMS, and can be used to perform the complete range of
operations described in this manual. The VAX Rdb/VMS Guide to Using SQL
and the VAX Rdb/VMS SQL Reference Manual contain detailed information
and examples.

Intended Audience
This manual is intended for all users of Rdb/VMS who need to perform
data manipulation operations using the RDO utility or Callable RDO in
programs, and for experienced programmers who are familiar with BASIC, C,
COBOL, FORTRAN, or Pascal and who are also familiar with Rdb/VMS data
manipulation and data definition statements.

To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
VMS Run-Time Library, system services, and operating system. Specifically,
you should be familiar with the concepts and techniques described in the VAX
Rdb/VMS Introduction and Master Index, the Guide to Using VMS, and the
Guide to VMS Programming Resources.

xxv

Operating System Information
Information about the versions of the operating system and related software
that are compatible with this version of Rdb/VMS is included with the
Rdb/VMS media in the VAX Rdb/VMS Installation Guide.

For information on the compatibility of other software products with this
version of Rdb/VMS, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to
verify which versions of your operating system are compatible with this version
of Rdb/VMS.

Structure
This manual contains the following chapters and appendix:

Chapter 1 Provides an informal introduction to the concepts of data
organization and manipulation, and the relational database model.
It demonstrates how to use RDO and describes how Rdb/VMS
statements can be used in programs.

Chapter 2 Introduces Rdb/VMS data manipulation statements. It demonstrates
how to access a database and explains how to use transactions.

Chapter 3 Describes RDO and record selection expressions (RSEs).

Chapter 4 Describes the process of retrieving data from one or more relations
and joining the relations.

Chapter 5 Describes how to define views and how to use them in queries.

Chapter 6 Describes the Rdb/VMS data manipulation statements used to
update databases.

Chapter 7 Describes the programming interfaces you can use to access an
Rdb/VMS database and describes how to create a program prototype.

Chapter 8 Describes how to select and use host language data types that are
compatible with Rdb/VMS data types.

Chapter 9 Describes how to structure, design, and develop Rdb/VMS
application programs.

Chapter 10 Describes how to handle Rdb/VMS run-time errors.

Chapter 11 Describes how to preprocess, link, run, and debug Rdb/VMS
application programs.

Chapter 12 Describes how to use the RDBPRE preprocessor interface.

Chapter 13 Describes how to use Rdb/VMS statements in BASIC preprocessed
application programs.

Chapter 14 Describes how to use Rdb/VMS statements in COBOL preprocessed
application programs.

xxvi

Chapter 15 Describes how to use Rdb/VMS statements in FORTRAN
preprocessed application programs.

Chapter 16 Describes how to use the RDML preprocessor interface.

Chapter 17 Describes how to use RDML statements in C preprocessed
application programs.

Chapter 18 Describes how to use RDML statements in Pascal preprocessed
application programs.

Chapter 19 Describes how to use RDO statements in Callable RDO Rdb/VMS
application programs.

Appendix A Lists common Rdb/VMS symbolic error codes.

Related Manuals
The other manuals in the Rdb/VMS documentation set are:

VAX Rdb/VMS Introduction and Master Index

Introduces Rdb/VMS and explains major terms and concepts. Includes a
glossary, a directory of Rdb/VMS documentation, and a master index that
combines entries from all the Rdb/VMS manuals.

VAX Rdb/VMS Guide to Database Design and Definition

Explains how to design a logical database and how to translate that design
into a physical database using Rdb/VMS data definition statements.

VAX Rdb/VMS Guide to Database Maintenance and Performance

Provides guidelines for maintaining good database performance and
explains how to use the database maintenance utilities to perform backup
and recovery operations, restore journals, and analyze the database.

VAX Rdb/VMS Guide to Database Tuning

Introduces the concept of tuning, and explores how tuning the system, the
database, and the application can affect database performance. Outlines a
series of steps to follow in identifying, analyzing, isolating, and solving a
performance problem, and in monitoring the resulting solution. Includes
a set of decision trees that provide an organized approach to solving some
common database tuning problems.

VAX Rdb/VMS Guide to Using SQL

Introduces the Rdb/VMS SQL (structured query language) interface, and
shows how to retrieve, store, and update data interactively and through
application programs.

xxvii

VAX Rdb/VMS Guide to Using SQL/Services

Describes how to develop application programs that use SQL/Services,
a client/server software component of Rdb/VMS that allows programs,
from various remote computers running the Macintosh, MS-DOS, OS/2,
ULTRIX, ULTRIX for RISC, or VMS operating systems, to access Rdb/VMS
or VIDA databases on a VMS server system.

VAX Rdb/VMS Guide to Distributed Transactions

Describes the two-phase commit protocol and distributed transactions,
explains how to start and complete distributed transactions using SQL,
RDBPRE, and RDML, and how to recover from unresolved transactions
using RMU commands.

VAX Rdb/VMS SQL Reference Manual

Provides reference material and a complete description of the statements,
the interactive, dynamic, and module language interfaces, and the syntax
for SQL, the structured query language interface for Rdb/VMS.

VAX Rdb/VMS SQL Quick Reference Guide

Summarizes the information in the VAX Rdb/VMS SQL Reference Manual.

VAX Rdb/VMS RDO and RMU Reference Manual

Provides reference material and a complete description of the statements
and syntax of the Rdb/VMS Relational Database Operator (RDO) interface
and the commands of the Rdb/VMS Management Utility (RMU).

RDML Reference Manual

Describes the syntax and use of the Relational Data Manipulation
Language (RDML), which can be embedded in VAX C or VAX Pascal
programs to access Rdb/VMS or Rdb/ELN databases.

VAX Rdb/VMS Installation Guide

Describes how to install Rdb/VMS.

VAX Rdb/VMS Release Notes

Describes new features, problems and problems fixed, restrictions, and
other information related to the current release of Rdb/VMS. Contains
information about SQL and other Rdb/VMS interfaces and utilities.

xxviii

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the RETURN key at the end of a line of
input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted in order to focus full attention on the statements or commands
themselves.

This section explains the conventions used in this manual:

CTRL/x This symbol in examples tells you to press the CTRL (control) key and
hold it down while pressing the specified letter key.

RETURN This symbol in examples indicates the RETURN key.

TAB This symbol in examples indicates the TAB key.

.

.

.

A vertical ellipsis in an example means that information not directly
related to the example has been omitted.

. . . A horizontal ellipsis in statements or commands means that parts of
the statement or command not directly related to the example have
been omitted.

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

Rdb/VMS
statement

Within the context of this manual, Rdb/VMS statement is a generic
term that includes RDO, RDML, and RDBPRE statements, but does not
include SQL statements.

Color In printed manuals, color in examples shows user input.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt.
This symbol indicates that the DCL interpreter is ready for input.

References to Products
The VAX Rdb/VMS documentation set to which this manual belongs often
refers to the following Digital products by their abbreviated names:

DECdecision software is referred to as DECdecision.

DEC RdbExpert for VMS software is referred to as RdbExpert.

DECtrace for VMS software is referred to as DECtrace.

xxix

The SQL interface to VAX Rdb/VMS is referred to as SQL. The SQL
interface is Digital Equipment Corporation’s implementation of the SQL
standard ANSI X3.135-1989, ISO 9075:1989, commonly referred to as
ANSI/ISO.

VAX BASIC software is referred to as BASIC.

VAX C software is referred to as C.

VAX CDD/Plus software is referred to as CDD/Plus, the data dictionary, or
the dictionary.

VAX COBOL software is referred to as COBOL.

VAX DATATRIEVE software is referred to as DATATRIEVE.

VAX FORTRAN software is referred to as FORTRAN.

VAX Pascal software is referred to as Pascal.

VAX RALLY software is referred to as RALLY.

VAX Rdb/VMS software is referred to as Rdb/VMS. Version 4.0 of VAX
Rdb/VMS software is often referred to as V4.0.

VAX TEAMDATA software is referred to as TEAMDATA.

xxx

Technical Changes and New Features

Many of the new features available in Rdb/VMS Version 4.0 are described in
this manual. In addition, modifications to this manual have been made to
reflect technical changes or to clarify or correct the documentation. For a list
of all the new features in Rdb/VMS Version 4.0, see the VAX Rdb/VMS Release
Notes; for a list of new RDO features, see the VAX Rdb/VMS RDO and RMU
Reference Manual.

xxxi

1
Introduction to VAX Rdb/VMS Data

Manipulation

This chapter introduces Rdb/VMS concepts of data organization and data
manipulation. It provides a brief overview of the relational model, and
describes how to use Rdb/VMS statements with interactive RDO and in
application programs. This chapter is divided into the following main sections:

What Is a Relational Database?

Introduces the concepts that are the basis for relational database
management systems.

Using RDO

Explains how to use the Relational Database Operator (RDO) utility, the
interactive environment for Rdb/VMS.

Using the Sample Database

Introduces the sample personnel database that you can create in two
forms, single-file and multifile, and lists the files used in creating both
forms. The sample personnel database is used throughout the Rdb/VMS
documentation in examples.

Using Rdb/VMS Statements in Programs

Shows how to include RDO statements in high-level language programs.
Programmers can read this section as an introduction to programming
with Rdb/VMS.

Internationalization Support

Describes features that enhance the usability of Rdb/VMS in environments
where the users’ primary language is not English or where the data stored
in the database is not in English.

Introduction to VAX Rdb/VMS Data Manipulation 1–1

If you have not defined RDO as a global symbol, type the following symbol
definition. It is suggested that you include this definition in your LOGIN.COM
file.

$ RDO :== RUN SYS$SYSTEM:RDO

1.1 What Is a Relational Database?
In a relational database, data resides in two-dimensional tables known as
relations. A relation consists of rows and columns. Each row contains a
record (a set of data items). The columns, which usually have names, divide
each row into a set of fields. For a single field within a record, there is only
one data item.

Note In this manual, the terms ‘‘record’’ and ‘‘field’’ are normally used rather than
‘‘row’’ and ‘‘column,’’ because the former terms reflect the traditional RDO
terminology, whereas the latter terms reflect SQL terminology.

Figure 1–1 represents a typical Rdb/VMS relation that shows employee
information. This relation is a subset of the sample personnel database (see
Section 1.3).

Figure 1–1 A Typical Rdb/VMS Relation in Table Form

ZK−7478−GE

LAST_NAME FIRST_NAME MIDDLE_INITIALEMPLOYEE_ID

Toliver Alvin A00164
Smith Terry D00165

Rick

O

00166
00167
00168
00169
00179

Dietrich
Kilpatrick
Nash
Gray
Wood

Janet
Norman
Susan
Brian

Column (field)

Row (record)

In this relation, each field represents a particular item of data for each
employee. Each record represents the data on a single employee. To find
the data stored in any location of the relation, you need only name the relation
and specify the intersection of field and record. (Like relations, fields also have
names.)

1–2 Introduction to VAX Rdb/VMS Data Manipulation

For example, assume you wished to find the employee identification number
(employee ID) for Terry Smith and to display his first name, last name, and
ID number. You need to enter a query specifying the EMPLOYEES relation,
identifying the record you want as one where the LAST_NAME field is ‘‘Smith’’
and the FIRST_NAME field is ‘‘Terry’’, and naming the fields to be displayed.
The result of this query might be as follows:

FIRST_NAME LAST_NAME EMPLOYEE_ID
Terry Smith 00165

If you are familiar with VAX COBOL or VAX DATATRIEVE, you have probably
used a COBOL file description or a DATATRIEVE record definition. A record
definition with no group fields or OCCURS clauses is similar to a relation. An
Rdb/VMS record, however, differs from a COBOL record in two ways:

An Rdb/VMS relation cannot have repeating groups (lists). A maximum of
one data item occupies a single named field in the record.

An Rdb/VMS record cannot have group fields. A name within an Rdb/VMS
relation refers to only one field.

Without repeating groups and group fields, the structure of the database is
simplified so you may easily access each data item.

1.1.1 Single-File and Multifile Databases
A relational database can reside in a single file or in multiple files. In a single-
file database, the actual data, the metadata (information about the data, such
as relation and field definitions), and Rdb/VMS system information are all
stored in one file (the database root file), which has a default file type of RDB.
In a multifile database, the metadata and Rdb/VMS system information are
stored in the RDB file, and the actual data is stored in one or more storage
area files, which have a default file type of RDA.

Single-file databases are easier to design and define. Multifile databases
require careful design, but can increase the database capacity and offer
performance improvements. Moreover, some Rdb/VMS features, such
as hashed indexes (discussed in Chapter 2), are available only in a
multifile database. For detailed information on multifile databases, see
the VAX Rdb/VMS Guide to Database Design and Definition.

1.1.2 Using Normalization to Eliminate Data Redundancy
There is no way to represent repeating groups of data items in an Rdb/VMS
relation; only one data item can occupy an intersection of a record and field.
Therefore, if you wanted to store information about five previous jobs for an
employee, you would have to repeat the name, address, identification number,
and other employee information five times. There would no longer be a one-to-
one correspondence between the number of records in the relation and number
of employees in the company.

Introduction to VAX Rdb/VMS Data Manipulation 1–3

If you stored all the information that might be relevant to employees in one
relation, this would sometimes require that you store the same data in more
than one place. This redundancy of data has two disadvantages:

It wastes space in the database.

It makes updating information difficult. For example, if you store the
salary ranges for five previous jobs for an employee in the EMPLOYEES
relation, you must find and change all the occurrences whenever the salary
ranges change.

To illustrate: if every EMPLOYEES record contained a record for each job
the person held, and each record contained the minimum salary for that
job, then if the minimum salary for an Associate Programmer was raised to
$17,000, that information would have to be changed in the record of every
employee who is an Associate Programmer. If you miss some, the database
is no longer consistent. On the other hand, if the minimum salary for a
job is stored only in a relation called JOBS, you would have to make the
change only in the JOBS record for the Associate Programmer job.

A process known as normalization solves these two problems. Normalization
ensures that the database keeps separate concepts logically separate and
eliminates data redundancy. Thus, you store a data item only once, and you
need to perform only one update operation to change it. When you need
to bring data together from different relations (if you want an employee’s job
history, for instance), the database allows you to create temporary relationships
by joining relations together. Rdb/VMS works best with well-designed,
normalized databases.

1.2 Using RDO
You can define and access an Rdb/VMS database using the Relational Database
Operator (RDO) utility. When you run RDO and type statements at the RDO>
prompt, Rdb/VMS executes the statements immediately. This section shows
you how to start using RDO and gives a brief introduction to elements of the
RDO utility.

Note SQL (structured query language), an industry-standard interface, is also
included with VAX Rdb/VMS. Although RDO is used in the examples in this
manual, you can also perform all the operations using SQL. The VAX Rdb/VMS
Guide to Using SQL and the VAX Rdb/VMS SQL Reference Manual contain
detailed information and examples.

1–4 Introduction to VAX Rdb/VMS Data Manipulation

1.2.1 Beginning an RDO Session
To invoke RDO, type the following at the DIGITAL Command Language (DCL)
prompt, or use a command symbol that equates to the following:

$ RUN SYS$SYSTEM:RDO

RDO responds with the RDO> prompt. Prompts help you keep track of your
status during an interactive RDO session. The RDO prompts are:

RDO> RDO command level prompt. This prompt tells you that you are typing
commands to RDO and may enter any RDO statement.

cont> The statement continuation prompt. This prompt indicates that you have
not yet entered a complete statement.

RDO incorporates many features to make working with Rdb/VMS easy. These
features include:

HELP statement

Provides information about Rdb/VMS statements and concepts.

SHOW statement

Displays information about the database, including the names and
attributes of fields, the structure of relations, and the definitions of
indexes, constraints, and triggers. The SHOW statement also displays
information about the version of Rdb/VMS you are using.

SET statement

Specifies certain characteristics and defaults for an RDO session.

Command recall

Lets you recall up to the last 20 RDO statements you issued. You use the
up arrow and down arrow keys, just as with command recall at the DCL
level. You can also edit any recalled statement.

Indirect command file

Lets you store RDO statements and execute them later by using the at sign
(@). The default file type is RDO.

DCL command invocation

Lets you access DCL commands from RDO by using the dollar sign ($).
Thus, for example, you do not have to leave your RDO session to answer
mail or to see a directory listing.

Introduction to VAX Rdb/VMS Data Manipulation 1–5

EDIT

Calls a VMS editor (VAX EDT by default, although you can specify the
VAX Text Processing Utility (VAXTPU)). Type EDIT * or EDIT followed by
an integer to edit a number of your previous statements. You also can use
EDT or VAXTPU from inside RDO to insert successful RDO statements
into command files and programs.

RDOINI.RDO

A startup file that you can create. When you enter RDO, the commands
in your RDOINI.RDO file are automatically executed. You may create
RDOINI files in many directories, or define a logical name RDOINI to point
to a central startup file.

1.2.2 Getting Online Help in RDO
If you need an explanation of any RDO statement or concept while using RDO,
type HELP at the RDO> prompt to see a list of available topics, or type HELP
and the name of a topic:

RDO> HELP DEFINE_FIELD

The help function contains several levels. For example, if you type HELP
DEFINE_FIELD, you will see a brief description of the DEFINE FIELD
statement, an example, and a set of choices, including one called Format. The
Format choice shows the syntax of the DEFINE FIELD statement.

Note that many topics contain underscores (for example, those starting with
CHANGE, DEFINE, and DELETE). This means, for example, that you will
receive an ‘‘error’’ if you type HELP DEFINE FIELD; however, this design is
necessary so that all the format (syntax) diagrams will display correctly, and
it also has the advantage of including more information in the top-level help
display.

Once you have located the relevant piece of information in the help files, you
can exit from help by pressing CTRL/Z or by pressing RETURN until you come
back to the RDO> prompt.

1.2.3 Using Record Selection Expressions
The following example shows a record selection expression followed by a
request to display the selected records:

FOR E IN EMPLOYEES WITH E.LAST_NAME = ’Smith’ AND
E.FIRST_NAME = ’Terry’

PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

1–6 Introduction to VAX Rdb/VMS Data Manipulation

In this example, WITH E.LAST_NAME = ’ Smith’ AND E.FIRST_NAME =
’ Terry’ is a record selection expression.

A record selection expression (RSE) is a phrase that defines specific
conditions that individual records must meet before Rdb/VMS includes them
in a record stream. The record stream is the group of records from one or
more relations returned by Rdb/VMS to the interactive user or the application
program. The RSE in a data manipulation statement determines which
records are included in the record stream. In this case, only records in which
the employee’s last name is Smith and the first name is Terry are included
in the record stream. You can include all the records of a relation, or you can
restrict the record stream to a selected group of records.

Once you form the stream, you can enter statements to display, store, modify,
or erase the data in the stream, one record at a time. To display the results
of an RSE, use the PRINT statement. The PRINT statement uses values from
the record stream that you identify in the RSE.

The character E in the expression E IN EMPLOYEES is a context variable,
a temporary name that you choose to associate with a specific relation (in this
case, EMPLOYEES). RDO requires the use of context variables in most data
manipulation statements. You can choose almost any arbitrary string as a
context variable; however, for convenience and clarity, it is recommended that
a context variable be short. Thus, a context variable is usually a single letter
(the first letter in the relation name), or some abbreviation that is easy to
associate with the relation name.

The context variable E in the preceding example lets you refer to the
EMPLOYEES relation specifically in the RSE and in the PRINT statement.
Context variables are particularly important when you are working with more
than one relation. If two relations have fields with the same name, the context
variables enable you to specify the fields explicitly.

1.2.4 Using Multiline Statements in RDO
RDO can read enough lines in a multiline statement to detect a syntactically
complete statement. If you end each line of an RSE with a keyword that
belongs with the next line, RDO will wait for the entire sequence of statement
lines before it executes them, as in the following example:

RDO> PRINT TOTAL SH.SALARY_AMOUNT OF SH IN SALARY_HISTORY CROSS
cont> JH IN JOB_HISTORY OVER EMPLOYEE_ID WITH
cont> JH.JOB_CODE = "MENG" AND
cont> JH.JOB_END MISSING

685094.00
RDO>

In this example, which totals the salaries of all employees who currently have
MENG as their job code, RDO issues the RDO> prompt on the first line and
the cont> prompt on the remaining lines.

Introduction to VAX Rdb/VMS Data Manipulation 1–7

You can also end each line of a multiline statement with the hyphen (-)
continuation character to ensure that RDO reads the whole statement before
execution. The continuation character must be the last character on the line to
be continued. See the VAX Rdb/VMS RDO and RMU Reference Manual for a
full explanation of the input format that RDO accepts.

1.2.5 Exiting from RDO
You end an RDO session by typing EXIT or pressing CTRL/Z. Either method
ends a session and normally returns you to the DCL prompt ($). For example:

RDO> EXIT
$

If you have made updates to the database or changed data definitions without
finishing the transaction, you cannot immediately exit from RDO. If you try
to exit, RDO responds that there are uncommitted changes, and it asks if
you would like the chance to commit these changes. If you respond YES,
you are returned to the RDO> prompt, and you can then type COMMIT,
ROLLBACK, or any other RDO statement. (For an explanation of COMMIT
and ROLLBACK, see Section 2.3.9.) If you respond NO, you will leave the
RDO session and return to the DCL prompt without saving any changes you
may have made to the database.

Try the following statements to see how these features work. (The text does
not show the output.)

RDO> HELP
RDO> HELP SET
RDO> HELP RDOINI
RDO> HELP DEFINE DATABASE
(Press CTRL/Z to leave the help facility)
RDO> $ DIRECTORY
RDO> $ MAIL
(Type EXIT to leave the Mail utility)
RDO> EDIT *
(Exit from the editor, then exit from RDO)

1.3 Using the Sample Database
The examples throughout this guide use a sample personnel database that you
can build using files supplied with the Rdb/VMS installation kit; these files
are listed in Table 1–1. The database can actually be created in two forms: a
single-file form (PERSONNEL) and a multifile form (MF_PERSONNEL). The
command files to build copies of both forms of the database are located in the
directory RDM$DEMO.

1–8 Introduction to VAX Rdb/VMS Data Manipulation

Table 1–1 Files to Create Sample Database

File Name Explanation

PERSONNEL.COM Builds a single-file or multifile version of the sample
personnel database; you can use RDO or SQL definitions
and you can define the database by file name or data
dictionary path name.

For the RDO single-file version, the procedure invokes
RDO command files to define global fields, relations, views,
constraints, sorted indexes, and triggers. In addition, it
invokes programs to store most of the data.

For the RDO multifile version, the procedure invokes RDO
command files to define global fields, relations, views,
constraints, indexes (both sorted and hashed), and to spread
relations and indexes across multiple files. In addition, it
invokes programs to store most of the data.

BUILDPERS_RDO.RDO Defines global fields, relations, and views, and stores some
data.

MF_BUILDPERS_
RDO.RDO

Defines global fields, relations, hashed indexes, storage
maps, views, and one sorted index, and stores some data.

RDO_DEFINE_
STORAGE.RDO

Defines storage areas for the multifile database.

PERSONNEL_
INDEXES_RDO.RDO

Defines the indexes (sorted) for the single-file database.

MF_PERSONNEL_
INDEXES_RDO.RDO

Defines the remaining sorted indexes for the multifile
database.

CONSTRAINTS_
RDO.RDO

Defines constraints.

TRIGGERS_RDO.RDO Defines triggers.

The definitions of fields, relations, views, constraints, and triggers are the
same for the single-file and multifile databases. The definitions for the
multifile database also include hashed indexes, storage area files, and other
structures associated with the multifile implementation.

1.3.1 Creating the Sample Database
You use a single command procedure (RDM$DEMO:PERSONNEL.COM) to
create the database, and you can specify parameters when you invoke the
procedure to specify certain options, such as whether you want the single-file
or multifile version and whether you want the database created using RDO or
SQL statements. The format of the command you enter to create the sample
database is shown in the next example.

Introduction to VAX Rdb/VMS Data Manipulation 1–9

$ @RDM$DEMO:PERSONNEL interface-language database-form dictionary-use

The three parameters and their defaults are as follows:

interface-language: SQL or RDO. Default: SQL.

database-form: S (single-file) or M (multifile). Default: S.

dictionary-use: CDD (use CDD/Plus dictionary) or NOCDD (do not use
dictionary). Default: allow the user to choose.

The procedure also displays the approximate number of disk blocks that will be
used and allows the user to exit the procedure; thus, you may wish to omit the
dictionary-use parameter.

You may use upper case, lower case, or mixed case to specify the parameters.
All parameters are optional; for example, to create a single-file database using
SQL definitions and have a menu ask about dictionary use, you can simply
enter:

$ @RDM$DEMO:PERSONNEL

However, if you want to specify the second or third parameter, you must also
specify any preceding parameters. For example, to create a single-file database
using RDO definitions, you must enter:

$ @RDM$DEMO:PERSONNEL RDO S

Regardless of the interface language used, PERSONNEL.COM creates a
database named PERSONNEL.RDB if you are creating a single-file database,
and it creates a database named MF_PERSONNEL.RDB (plus related storage
area files) if you are creating a multifile database. Note also that you can use
either the SQL or the RDO interface to work with the resulting database or
databases, regardless of whether the database was created using SQL or RDO
command files. There are differences between SQL-defined and RDO-defined
databases. See the VAX Rdb/VMS Introduction and Master Index for more
information.

Note The log of the database definition statements used in creating the database is
placed in a file called PERSONNEL.LOG in the same directory as the database
files. The file is named PERSONNEL.LOG regardless of which options you
specified or accepted as defaults (for example, regardless of whether you created
a single-file or multifile database).

1–10 Introduction to VAX Rdb/VMS Data Manipulation

1.4 Using Rdb/VMS Statements in Programs
As a programming tool, Rdb/VMS has the following advantages:

The versatility of the data manipulation statements means that the
database system itself can perform many of the tasks you once needed to
code in a high-level language.

The interactive environment, RDO, lets you create a prototype of your
application before you start writing a program. With some modification,
you can include the Rdb/VMS data manipulation statements in your
programs.

Although the RSE you saw in Section 1.2.3 was processed by interactive RDO,
Rdb/VMS is intended to be used in programs. Rdb/VMS includes a set of
preprocessors that let you include data manipulation statements in programs,
as if they were part of the language. A preprocessor translates the Rdb/VMS
statements into subroutine calls and other host language constructs.

RDO provides an EDIT statement that makes developing these programs
easy. Most often, you will use RDO to test queries and other data manipulation
statements to make sure they produce the desired results. The EDIT statement
lets you modify a statement you previously entered in RDO.

Rdb/VMS saves that statement in an editing buffer, so you may use a VMS
text editor to change any portion of the editing buffer. Use the EDIT statement
to open the edit buffer. You may repeat this process as many times as you
wish, editing up to 20 of your previous statements. When you have the desired
results, save the query by issuing a WRITE or EXIT command. You may then
incorporate the query into your high-level language program.

The following examples show how RDO statements can be used in a program.
Example 1–1 is a COBOL program that performs a store operation. This
program reads the values for the database from the data file and stores them.

Introduction to VAX Rdb/VMS Data Manipulation 1–11

Example 1–1 COBOL Program Performing Store Operation
IDENTIFICATION DIVISION.
PROGRAM-ID. STORE-REC.
*
* First, identify the input data file. The program will
* read this file and store its records in the database.
*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEES-FILE ASSIGN TO "EMP.DAT"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

*
* Instead of an explicit declaration, you can declare the
* record structure by copying a definition from the
* data dictionary. Then you declare the database
* file to the COBOL preprocessor with the DATABASE
* statement.
*
DATA DIVISION.
FILE SECTION.
FD EMPLOYEES-FILE.

COPY "CDD$TOP.FORESTER.PERSONNEL.RDB$RELATIONS.EMPLOYEES"
FROM DICITONARY.

WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME ’PERSONNEL’

PROCEDURE DIVISION.
*
* The PROCEDURE DIVISION consists simply of a database
* transaction in a loop. Note the three steps:
*
* 1. Open the input file and start a transaction.
* The RESERVING clause locks other users out of the
* EMPLOYEES relation.
*
BEGIN.

OPEN INPUT EMPLOYEES-FILE.
&RDB& START_TRANSACTION READ_WRITE

- RESERVING EMPLOYEES FOR EXCLUSIVE WRITE.
*
* 2. Read the file one record at a time and store
* fields from the file into fields in the database relation:
*

(continued on next page)

1–12 Introduction to VAX Rdb/VMS Data Manipulation

Example 1–1 (Cont.) COBOL Program Performing Store Operation
READ-EMPLOYEES.

READ EMPLOYEES-FILE AT END GO TO STORE-DONE.
&RDB& STORE E IN EMPLOYEES

- USING
- E.EMPLOYEE_ID = id;
- E.LAST_NAME = LAST_NAME;
- E.FIRST_NAME = FIRST_NAME;
- E.MIDDLE_INITIAL = INITIAL;
- E.ADDRESS = ADDRESS;
- E.CITY = CITY;
- E.STATE = STATE;
- E.POSTAL_CODE = ZIP;
- END_STORE

GO TO READ-EMPLOYEES.
*
* 3. Commit the transaction. This makes the storage
* operation complete. The EXCLUSIVE share mode on the
* relation is released. The FINISH statement tells
* Rdb/VMS that you are done working with the
* database.
*
STORE-DONE.

&RDB& COMMIT
&RDB& FINISH

CLOSE EMPLOYEES-FILE.
STOP RUN.

Example 1–2 is a COBOL program fragment that retrieves database values
and assigns them to program variables. This example shows how to convert the
RDO PRINT statement into a GET statement. The GET statement retrieves a
value from the database and assigns it to a variable in the program. The GET
statement uses the same kind of RSE as the PRINT statement. VAX BASIC,
VAX COBOL and VAX FORTRAN programs use the RDBPRE preprocessor.
Languages supported by the Relational Data Manipulation Language (RDML)
preprocessor (VAX C and VAX Pascal) use a simple host language assignment
statement instead.

Introduction to VAX Rdb/VMS Data Manipulation 1–13

Example 1–2 COBOL Program Retrieving Database Values
DISPLAY "FIRST_NAME LAST_NAME id"

&RDB& FOR E IN EMPLOYEES
&RDB& GET FIRST = E.FIRST_NAME;

&RDB& LAST = E.LAST_NAME;
&RDB& id = E.EMPLOYEE_ID:

&RDB& END_GET
DISPLAY FIRST, " ", LAST, " ", id

&RDB& END_FOR

1.5 Internationalization Support
Rdb/VMS provides several options that are useful when the data in the
database is not in English or when the users’ primary language is not English.
These options fall into two categories:

Statements to control the format of data for input and display

Collating sequence specification (to control sorting and comparisons)

1.5.1 Controlling Input and Display Format
You can enter statements to modify the input and display format for the
following:

Radix point character

Date and time format

Language used for various input and displays, such as day names, month
names, and so on.

The SET and SHOW statements related to these features are documented in
the VAX Rdb/VMS RDO and RMU Reference Manual.

1.5.2 Specifying Collating Sequence
By default, Rdb/VMS uses the ASCII collating sequence for all sorting and
Boolean operations; however, you can override this default by specifying one of
the following:

One of the language-specific collating sequences supplied by the VMS
National Character Set (NCS) utility

A user-defined collating sequence using the NCS utility

1–14 Introduction to VAX Rdb/VMS Data Manipulation

You can specify collating sequences for particular global fields. The collating
sequence determines how records are sorted when the field is used as a sort
key. The collating sequence also determines the behavior of Boolean operations
that compare two fields or a field with a literal value. See Section 3.5 for
a discussion of the behavior of some specific relational operators with non-
English collating sequences.

The following list describes the RDO statements that let you specify collating
sequences. For complete reference information on these statements, including
syntax diagrams, see the VAX Rdb/VMS RDO and RMU Reference Manual.

DEFINE COLLATING_SEQUENCE

Allows you to specify a collating sequence that has been defined using the
NCS utility. You must first identify a collating sequence using the DEFINE
COLLATING_SEQUENCE statement before you use any of the remaining
statements in this list.

SHOW COLLATING_SEQUENCES

Displays the collating sequence for the invoked database.

DEFINE FIELD . . . COLLATING_SEQUENCE

Specifies a collating sequence for a new global field.

CHANGE FIELD . . . COLLATING_SEQUENCE

Specifies a new collating sequence for a global field.

DEFINE DATABASE . . . COLLATING_SEQUENCE

Specifies a collating sequence that will be used for all fields in the database.

IMPORT . . . COLLATING_SEQUENCE

Specifies a collating sequence that will be used for all fields in the database.

Note that you cannot explicitly specify a collating sequence for a local field.
You can define collating sequences only for databases and global fields, not for
local fields. If you define a local field using a global field, however, the local
field inherits any collating sequence you specify for the global field.

Introduction to VAX Rdb/VMS Data Manipulation 1–15

2
Accessing a Database and Using

Transactions

This chapter shows you how to access a database and manipulate data using
RDO. It describes how to use the:

INVOKE DATABASE statement to tell RDO which database(s) you want to
use

START_TRANSACTION statement to specify how and when transactions
affect the database

COMMIT or ROLLBACK statement to end a transaction

2.1 Invoking a Database
Before you can access data managed by Rdb/VMS, you must name the database
or databases you want to use with the INVOKE DATABASE statement.

Rdb/VMS stores definitions of database elements in the database file itself and,
optionally, in the data dictionary if VAX CDD/Plus is installed. You can invoke
the database by naming either its VMS file specification or its dictionary
path name. If you intend only to retrieve or update the data itself, access the
database by file name. If you intend to change data definitions, access the
database by using the dictionary path name. When you access the database
using the path name, any changes you make to database data definitions are
entered in both the dictionary and the database; however, when you access the
database by file name, data definition changes are made only in the database.

Accessing a Database and Using Transactions 2–1

2.1.1 Accessing the Database by File Name
You can access an Rdb/VMS database by entering a file specification. If you
omit parts of the file specification, standard VMS defaulting applies. For
example, the following statements invoke the database PERSONNEL.RDB by
file name:

RDO> INVOKE DATABASE FILENAME ’PERSONNEL’

RDO> INVOKE DATABASE FILENAME
cont> ’DISK1:[RDBDEMO.STAFF]PERSONNEL’

In the first INVOKE statement in the preceding example, the database file
PERSONNEL.RDB is assumed to be in the current process default device and
directory. In the second INVOKE statement, the user specifies a device and
directory different from the current defaults.

You can also invoke a database by specifying a logical name that translates
to a file specification. Using a logical name is especially recommended in a
production environment.

2.1.2 Accessing the Database by Dictionary Path Name
You can access an Rdb/VMS database by specifying a CDD/Plus path name.
You can enter a complete path name, or you can use a logical name for part or
all of the path name. The following example shows a database being invoked
by dictionary path name. The example also shows the use of the logical name
CDD$DEFAULT for part of the path name.

$ DEFINE CDD$DEFAULT SYS$LOGIN_DEVICE:[SMITH.CDDPLUS]SMITH
.
.
.

$ RDO
RDO> INVOKE DATABASE PATHNAME ’CDD$DEFAULT.PERSONNEL’

You can also use the SET DICTIONARY statement in RDO to change
the current dictionary for this RDO session. Note that using the SET
DICTIONARY statement in RDO does not change the equivalence name of
the logical name CDD$DEFAULT.

Note Place quotation marks around file names and dictionary path names to avoid
ambiguity. The preprocessors require either single or double quotation marks
around file names and path names. RDO accepts either quoted or unquoted file
specifications. However, if you do not use quotation marks, Rdb/VMS may not
interpret file names or path names correctly.

2–2 Accessing a Database and Using Transactions

2.1.3 Accessing the Database from a Remote Node
You can access an Rdb/VMS database from a remote node in a network using
a full file specification in your INVOKE DATABASE statement. Assume
you are logged in to node REM4 and the Rdb/VMS PERSONNEL database
is located on the network node CENT in the DISK1:[COMPANY.STAFF]
directory. The following INVOKE DATABASE statement gives you access to
the PERSONNEL database on the remote node named CENT:

RDO> INVOKE DATABASE FILENAME
cont> ’CENT::DISK1:[COMPANY.STAFF]PERSONNEL’

Note that by default, the RDB$REMOTE account (supplied by Rdb/VMS)
is used on the remote VAX node. (For details on RDB$REMOTE, see the
VAX Rdb/VMS Installation Guide.) The RDB$REMOTE account is not used,
however, if you specify an access control string in the database file specification
or if you use a proxy account.

If you are using an access control string or a proxy account, you can improve
performance over the network by modifying the LOGIN.COM procedure for
the account specified or used. For example, if you define logical names for
your databases, do so at the beginning of the LOGIN.COM file. Then include
the following DCL command to bypass any other operations not necessary for
network access:

$ IF ’F$MODE()’ .EQS. "NETWORK" THEN $EXIT

2.1.4 Accessing Data
Once you have invoked a database, you can access the data in it. With a
single-file database, there are two types of files Rdb/VMS uses. Use the
DIRECTORY command at the DCL level to look at the files created when you
typed @RDM$DEMO:PERSONNEL RDO to build the single-file form of the
sample database:

$ DIRECTORY DISK1:[RDBDEMO.STAFF]PERSONNEL.*

PERSONNEL.RDB;1 PERSONNEL.SNP;1

Note Rdb/VMS provides command files to build two sample databases:
PERSONNEL, a single-file database, and MF_PERSONNEL, a multifile
version of that database. For more information about those command files, see
Section 1.3, especially Table 1–1.

For detailed information on defining and using a multifile database, see the
VAX Rdb/VMS Guide to Database Design and Definition.

The PERSONNEL.RDB file contains the following types of information:

System information (used to maintain database integrity, locate related
files, and so on)

Accessing a Database and Using Transactions 2–3

Data definitions (metadata) that describe the fields, relations, and indexes
as they are defined in the database. You can think of metadata as a set
of templates that describe the format, structure, and characteristics of
database elements. The field, relation, and index definitions from the
PERSONNEL database are examples of metadata.

The actual data records (employee records, job history records, and so on)
that were stored in the database after it was created.

The PERSONNEL.SNP file is called a snapshot file. It contains copies of data
used for read-only transactions. (The snapshot file is not created for read-
only storage areas). The section on using transactions explains the different
transaction types, including the read-only transaction.

2.2 Using Transactions
Rdb/VMS allows many users access to a database at the same time, and it
controls that access to avoid conflicts and data inconsistencies. Rdb/VMS,
therefore, requires each user to identify a unit of database activity, called a
transaction.

A transaction is a set of operations on the database that must complete as a
unit or not complete at all. If, for example, you wanted to transfer an employee
from one department to another, you would want the changes to all records for
that employee to be made at the same time. If a software error or hardware
failure occurred before all operations in several transactions completed, the
database might show that the employee belonged to two departments or had
two salaries (or belonged to no department or had no salary); thus the database
would no longer be consistent. To avoid such inconsistencies, you include all
such update tasks in a single transaction.

Transactions can have many characteristics, which you control with the
START_TRANSACTION statement. A START_TRANSACTION statement
signals the beginning of a transaction. The START_TRANSACTION statement
options let you determine:

Whether you want to work with the snapshot of the database or with the
database itself

Whether you intend to read or modify data in the relations

What kind of access you allow other users to have to the database resources
you are using

When you want Rdb/VMS to consider specific conditions (called constraints)
that must be satisfied before a record is stored or retrieved

2–4 Accessing a Database and Using Transactions

In a START_TRANSACTION statement, you state or accept defaults for:

The transaction mode you need. For example:

Read-only—if your transaction only retrieves data values from the
database, but does not change them

Read/write—if your transaction changes values in the database

Batch-update—sometimes useful for initial loads of databases

The names of the relations you want to access. (You can retrieve records
from a single relation or from several relations joined together.)

The control you want over the access other users have to the relations you
reserve for your transactions.

When you access a specific record in a transaction, Rdb/VMS prevents other
users from having certain kinds of access to that record by locking the record.
The kind of record locking specified in a START_TRANSACTION statement
begins when you enter a query. The records identified by the record selection
expression (RSE) remain locked until you terminate your transaction. The
record locks are then released and other users may access those records. Refer
to the VAX Rdb/VMS Guide to Database Maintenance and Performance for a
complete description of how Rdb/VMS uses the locking mechanism.

The following sections explain how to use the read-only, read/write, and
batch-update transactions and their options, and how these affect database
performance.

With Rdb/VMS you can use distributed transactions, which allow you to access
multiple database handles or multiple database management systems (for
example, Rdb/VMS and VAX DBMS).

You access multiple database handles by attaching to:

More than one Rdb/VMS database

A single Rdb/VMS database more than once

Rdb/VMS uses the two-phase commit protocol, provided by DECdtm services,
to ensure that every required operation is completed before a transaction is
made permanent, even if the transaction attaches to databases that are on
remote nodes. If one operation in a transaction cannot be completed, none of
the operations is completed. This ‘‘all or nothing’’ approach guarantees that
distributed databases remain logically consistent with one another.

For more information on distributed transactions, see the VAX Rdb/VMS
Guide to Distributed Transactions.

Accessing a Database and Using Transactions 2–5

2.3 Specifying the Transaction Mode
The START_TRANSACTION statement allows different types of access to
relations in a database. You can establish restrictions on other users’ access
and declare your work intentions.

Every statement you enter with RDO must take place within the boundaries, or
context, of a transaction, and the characteristics of the transaction determine
the type of access you have to the database. Whether you plan to work with
data definitions or actual data records, and whether you plan to modify the
database or merely retrieve information, the type of statement you enter
determines how Rdb/VMS lets you do that work.

If you do not enter a START_TRANSACTION statement to begin your work
with a database, Rdb/VMS provides you with a default transaction depending
on the first statement you issue in your interactive session. (Even if a
transaction is started without a START_TRANSACTION statement, you must
enter an explicit COMMIT or ROLLBACK statement before you can start
another transaction.)

Rdb/VMS considers all statements to be one of two types and assigns a default
transaction to each, depending on its type. The two types of statements are:

Data manipulation statements

You use data manipulation statements to access data. If you do not
explicitly start a transaction, Rdb/VMS starts a read-only transaction
for you. For example, if your first query after the INVOKE DATABASE
statement displays data from the database, Rdb/VMS allows this task
to execute. If, however, the first statement modifies or updates data,
Rdb/VMS returns an error because a read/write transaction is required.

Data definition language statements

You use data definition statements to define, change, or delete database
metadata. For example, if you need to change the data type of a field, or
to define a new relation, you need update access to the database to make
these changes. By default, Rdb/VMS starts a read/write transaction when
you issue a data definition statement.

You should always issue a START_TRANSACTION statement to begin a
transaction (as opposed to letting Rdb/VMS issue one by default), to prevent
confusion or errors when you enter several statements before a COMMIT or
ROLLBACK statement. (A COMMIT or ROLLBACK statement marks the end
of the current transaction and the start of a new one. The COMMIT statement
causes any changes you specified to be made to the database; the ROLLBACK
statement returns the database to its pretransaction state—that is, no changes
are made to the database.)

2–6 Accessing a Database and Using Transactions

The format of the START_TRANSACTION statement and the meaning of the
transactions are as follows:

RDO> START_TRANSACTION <transaction-mode>

READ_ONLY

All relations are available for data retrieval (unless blocked by another
user’s EXCLUSIVE share mode specification). Data values are those of
the moment you entered your START_TRANSACTION statement. You do
not see updates committed by other users while a read-only transaction
is in effect. You may read any record in any relation to which you have
authorized access through Rdb/VMS access rights.

READ_WRITE

All relations are available for data retrieval, and for addition, deletion,
and modification of data and metadata (unless blocked by another user’s
EXCLUSIVE share mode specification). Rdb/VMS reserves each relation
as you refer to it. You may update any record in any relation to which you
have authorized access through Rdb/VMS access rights.

BATCH_UPDATE

Using a batch-update transaction reduces overhead in large load
operations. To speed update operations, Rdb/VMS does not write any
recovery-unit journal files in a batch-update transaction. Therefore, you
cannot roll back a batch-update transaction; if the load fails, the database
is corrupt, and you must create the database again. When you specify
BATCH_UPDATE in your START_TRANSACTION statement, the load
or update task has exclusive access to the entire database. It is efficient
for loading the entire database for the first time, or for batching database
updates in a data file that you intend to apply to the database at one time.

However, because of the limitations of batch-update transactions, for most
applications you should specify READ_WRITE RESERVING relation-name
FOR EXCLUSIVE WRITE for loading data instead of specifying BATCH_
UPDATE.

2.3.1 Read-Only Transactions
When you are updating values, you change them in the database file itself
(the RDB file in a single-file database, the RDA file or files in a multifile
database). If you only want to read values, however, they may be read from
the snapshot file (SNP), unless the values are stored in a read-only storage
area, in which case values are read directly from the storage area file because
there is no corresponding snapshot file. This type of access is called a read-only
transaction. When you use a read-only transaction, you read current versions
of records not locked by any other user and previous versions of records that
are locked. Because many transactions can share read locks that Rdb/VMS

Accessing a Database and Using Transactions 2–7

places on records in the snapshot file, your transaction does not conflict with
others.

In many cases, it will not matter to you whether you are reading the ‘‘old’’
or ‘‘new’’ data in a record that is in the process of being updated. (The
‘‘old’’ data in this case is sometimes referred to as a ‘‘before-image’’ of the
record.) However, if your transaction requires an absolutely current picture
of the database, do not use a read-only transaction; instead, use a read/write
transaction, and reserve the relations that you need to access by specifying
EXCLUSIVE access.

Specify READ_ONLY in your START_TRANSACTION statement when you do
not intend to add new records or to change existing values in the database,
and when it is not essential to get the latest values of volatile data. You
must specify READ_ONLY if you are accessing read-only storage areas. Note
that snapshot files are not created for read-only storage areas. A read-only
transaction minimizes Rdb/VMS overhead operations, and is thus the best
choice when creating reports and performing queries of the database.

If your application modifies data in certain relations very infrequently, or not
at all, you may improve your database performance by placing these relations
in read-only storage areas in a multifile database. For more information on
read-only storage areas, refer to the VAX Rdb/VMS RDO and RMU Reference
Manual, the VAX Rdb/VMS Guide to Database Design and Definition, and the
VAX Rdb/VMS Guide to Database Maintenance and Performance.

2.3.2 Read/Write Transactions
Specify READ_WRITE in your START_TRANSACTION statement when you
want to be able to perform additions, deletions, or changes to the database
(for example, using the STORE, ERASE, or MODIFY statements). When you
need read/write access to the database, you can use several formats of the
START_TRANSACTION statement.

In one format of the START_TRANSACTION statement, you merely specify
READ_WRITE to start the read/write transaction to allow update operations
in the database:

RDO> START_TRANSACTION READ_WRITE

This format does not name a specific relation or relations for database updates.
Rdb/VMS reserves the relations as you name them in your statements and,
depending on the type of operation you perform in your transaction, places
write locks on selected records to complete an update task.

For example, the first data manipulation statements in your transaction might
retrieve data from the EMPLOYEES relation. Rdb/VMS locks the records
necessary to make an update. Later in the transaction you might modify
values in selected records in the EMPLOYEES relation. Rdb/VMS, using only

2–8 Accessing a Database and Using Transactions

the necessary locks to complete the transaction, would promote the level of
record locking.

In another format of the START_TRANSACTION statement for a read/write
transaction, you name the relations you need to read and specify what you will
allow other users to do when they access the same relations. To get the higher
locking you need for certain read operations, specify READ_WRITE with the
correct share mode for your transaction. For example:

RDO> START_TRANSACTION READ_WRITE RESERVING JOBS FOR EXCLUSIVE WRITE

See Section 2.3.4 for information on options relating to shared, protected, and
exclusive access to data in a relation.

2.3.3 Batch-Update Transactions
You can reduce overhead in large load operations by using a batch-update
transaction. To speed update operations, Rdb/VMS does not write to any
journal files in batch-update mode. Therefore, you cannot roll back a batch-
update transaction; if the load fails, you must create the database again.
Consequently, it is usually preferable to specify READ_WRITE RESERVING
relation-name FOR EXCLUSIVE WRITE to load data instead of specifying
BATCH_UPDATE.

When you can specify BATCH_UPDATE in your START_TRANSACTION
statement, the load or update task results in access to the entire database.
Specifying BATCH_UPDATE thus requires that your transaction be the only
transaction accessing the database. It is the most efficient choice when you
are loading the entire database for the first time, or when you batch database
updates in a data file that you intend to apply to the database at one time.

Because a batch-update transaction does not create before-images of changed
records and because you cannot roll back a batch-update transaction, you
should create a backup copy of the database using the VMS Backup utility
before starting the transaction.

The following is a sample session that shows the effects of issuing a
ROLLBACK statement. First, the user backs up the database:

$BACKUP/LOG PERSONNEL.* PERSBACKUP.BCK/SAVESET
%BACKUP-S-COPIED, copied DISK1:[CORP.DBS]PERSONNEL.RDB;1
%BACKUP-S-COPIED, copied DISK1:[CORP.DBS]PERSONNEL.SNP;1

Then, the user invokes RDO.

Accessing a Database and Using Transactions 2–9

$RDO
RDO> INVOKE DATABASE FILENAME PERSONNEL
RDO> START_TRANSACTION BATCH_UPDATE
RDO> STORE E IN EMPLOYEES USING
cont> E.EMPLOYEE_ID = "15399";
cont> E.LAST_NAME = "North";
cont> E.FIRST_NAME = "Oscar";
cont> END_STORE
RDO> ! At this point, assume the user does not know that
RDO> ! rolling back a batch-update transaction will corrupt the
RDO> ! database. This user now enters a ROLLBACK statement:

RDO> ROLLBACK
%RDB-E-NOROLLBACK, no rollback is allowed with the recovery mechanism disabled

At this point, the user’s batch-update transaction is still active:

RDO> SHOW TRANSACTION
All Transactions in Database with filename PERSONNEL
a read/write transaction is in progress

- updates have been performed
- transaction sequence number (TSN) is 152
- snapshot space for TSNs less than 152 can be reclaimed
- session ID number is 55

If you receive the RDB$_NOROLLBACK error during a batch-update
transaction, you have two choices:

1 Manually undo any changes you made (or fix the problem you were having)
and then commit the transaction. For example, if you stored a record,
erase that record and then issue a COMMIT statement:

RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "15399"
cont> ERASE E
cont> END_FOR
RDO> COMMIT
RDO> FINISH
RDO> EXIT

Or, if invalid input caused a constraint to fail, enter the correct (valid) data
and then issue a COMMIT statement.

2 Exit the program or RDO session, which will corrupt the database.

The second option assumes that you made a backup copy of the database before
starting the batch-update transaction. After restoring the database files from
the backup file (default file type BCK), you can correct the situation that led to
the error and then start the update program or RDO session again.

2–10 Accessing a Database and Using Transactions

2.3.4 Reserving Options
The START_TRANSACTION statement lets you reserve different relations
in the database for different types of access. By reserving just the relations
you need and specifying the appropriate access, you can minimize system
overhead. Every lock Rdb/VMS places on a database, relation, page, or index
node reduces the lock resources available to other processes on your system,
and also increases the possibility of input/output contention and deadlock.
By specifying the relations you need and the required access in the START_
TRANSACTION statement, you lock only those database resources necessary
to complete each task. You can do this by using the RESERVING clause.

For example, you can name one relation (EMPLOYEES) from which you
intend only to retrieve data, while naming other relations (COLLEGES and
DEGREES) for update activities, as follows:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED READ,
cont> COLLEGES FOR SHARED WRITE,
cont> DEGREES FOR EXCLUSIVE WRITE

You can specify the following reserving options in the RESERVING clause of
your START_TRANSACTION statement for update transactions:

SHARED READ

SHARED WRITE

PROTECTED READ

PROTECTED WRITE

EXCLUSIVE READ

EXCLUSIVE WRITE

Some database operations in a read/write transaction may require a higher
level of record locking than the shared level. In such cases, Rdb/VMS
automatically promotes locking to a protected read or protected write level
to complete the task. Although the level of locking may often be higher than
that which you specified, it is never lower than the level specified in the
START_TRANSACTION statement.

You can access multiple databases in a single transaction and specify different
transactions for relations in the different databases. The following example
shows a read/write transaction that accesses relations in two databases; the
relation (EMPLOYEES) in the first database is reserved for protected write
access, and the relation (JOB_INFO) in the second database is reserved for
shared read access.

Accessing a Database and Using Transactions 2–11

RDO> INVOKE DATABASE DB1 = FILENAME ’PERSONAL$DISK:PERSONNEL’
RDO> INVOKE DATABASE DB2 = FILENAME ’PERSONAL$DISK:BENEFITS’
RDO> START_TRANSACTION ON DB1 USING
cont> (READ_WRITE RESERVING EMPLOYEES FOR PROT WRITE) AND
cont> ON DB2 USING (READ_WRITE RESERVING JOB_INFO FOR SHARED READ)
RDO>

If you omit the explicit reserving options, Rdb/VMS assumes the defaults.

The general form of the START_TRANSACTION RESERVING syntax is as
follows:

START_TRANSACTION READ_WRITE
RESERVING relation-name FOR share-mode lock-type
WITH [NO]AUTO_LOCKING

Share mode can be one of the following:

SHARED

Other users can work with the same relation as you do. Depending on the
option those users choose, they can have read-only, or read and write access
to the relation.

PROTECTED

Other users can read records from the same relations as you, but cannot
have write access.

EXCLUSIVE

Other users cannot even read records from your relation. If another user
tries to access the same relation, Rdb/VMS denies the request.

Lock-type can be one of the following:

READ

You plan to retrieve records from relations without changing any of those
records or storing new ones.

WRITE

You plan to retrieve and change records, or store new ones.

The WITH [NO]AUTO_LOCKING option is discussed in Section 2.3.4.1.

The effect of the reserving options you choose in your START_TRANSACTION
statement depends on the options other users currently accessing the database
have already specified. In an environment of multi-user database access, lock
conflicts can cause delays or the need for special programming to handle the
conflicts.

2–12 Accessing a Database and Using Transactions

Note that a batch-update transaction works much like a read/write transaction
with the EXCLUSIVE WRITE reserving option. However, unlike the
EXCLUSIVE WRITE reserving option, a batch-update transaction locks
the entire database rather than just specific relations; also, because there is
no recovery-unit journal (RUJ) file with a batch-update transaction, you must
be careful not to corrupt the database by issuing a ROLLBACK statement.
A BATCH_UPDATE transaction is most useful for the initial loading of the
database.

In all update cases, Rdb/VMS does not allow other transactions to read changed
records until the updating transaction executes a COMMIT or ROLLBACK
statement. Because Rdb/VMS locks your records against access by other users,
you can display the changes you have made to those records. This record
locking assures the consistency and integrity of database records.

The following sections discuss auto-locking and the specific share-mode and
lock-type combinations; they are followed by a discussion of locking and lock
conflict resolution.

2.3.4.1 Auto-Locking Auto-locking is an option that causes tables
referenced by constraints and triggers but not appearing in the RESERVING
clause to be automatically locked when accessed from a constraint or trigger.
By default, auto-locking is in effect when you specify the RESERVING
clause; however, you can choose to disable it for the transaction by specifying
NOAUTO_LOCKING.

One reason for the implementation of auto-locking is a problem that can
arise when triggers (a feature available with Rdb/VMS V3.1) are defined for
a database that had been used with Rdb/VMS V3.0 and has been converted
for use with subsequent versions of Rdb/VMS. An application that ran under
V3.0 is now run against a database that has triggers defined; however, without
auto-locking, this application will fail because the relations specified in the
trigger are not known to the START_TRANSACTION statement. Example 2–1
illustrates the behavior without and with auto-locking.

Accessing a Database and Using Transactions 2–13

Example 2–1 Auto-Locking Versus No Auto-Locking
! Because of the trigger EMPLOYEE_ID_CASCADE_DELETE, a deletion from
! the EMPLOYEES relation will cause a "cascading deletion" of associated
! records in the DEGREES, JOB_HISTORY, and SALARY_HISTORY relation.
!
RDO> START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR
cont> EXCLUSIVE WRITE WITH NOAUTO_LOCKING
!
! The following DELETE statement fails because the tables in the
! triggered action have not been reserved and because you have specified
! no auto-locking.
!
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00165" ERASE E END_FOR
%RDB-E-UNRES_REL, relation DEGREES in specified request is not a relation
reserved in specified transaction
RDO> ROLLBACK
!
! Now, permit auto-locking (the default), and the subsequent ERASE
! statement is successful (including the triggered cascading deletions).
!
RDO> START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR
cont> EXCLUSIVE WRITE ! Default = WITH AUTO_LOCKING
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00165" ERASE E END_FOR
RDO>

!
! Note, however, that you still cannot explicitly reference any of the
! other relations unless you explicitly include them in the RESERVING clause.
!
RDO> FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = "00165" PRINT JH.* END_FOR
%RDB-E-UNRES_REL, relation JOB_HISTORY in specified request is not a relation
reserved in specified transaction
RDO> ROLLBACK

Another problem resolved by auto-locking is the need (in versions of Rdb/VMS
before 3.1) to change the RESERVING clauses of START_TRANSACTION
statements after a constraint referring to another relation was added. With
auto-locking, you no longer need to change the RESERVING clauses in such
cases.

Note the following usage information about auto-locking:

In a read-only transaction, any RESERVING clause can only declare READ
locks, and auto-locking has no effect.

In a read-write transaction with auto-locking, Rdb/VMS determines the
lock specification for each table accessed by a constraint or trigger when
the table is first accessed with a data manipulation statement from a
constraint or trigger.

If auto-locking is in effect and any of the tables referenced in a trigger or
constraint definition also appears on the list of explicitly reserved tables,
the explicitly specified lock mode must not conflict with the lock mode
required by the constraint or trigger that references the table.

2–14 Accessing a Database and Using Transactions

Note SQL always uses auto-locking. There is no way to specify no auto-locking
in SQL.

2.3.4.2 Shared Read Reserving Option The shared read option lets other
users’ transactions retrieve records from the same relation you have accessed.
It also allows transactions to update records within the same relation,
except if those transactions are in an exclusive share mode. However, as you
retrieve individual records from the relation, those individual records become
unavailable for update by other users until you terminate your transaction.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED READ

2.3.4.3 Shared Write Reserving Option The shared write option lets other
transactions retrieve or update records in the same relation you have accessed,
but not the particular records you have locked. Updated versions of records
from other transactions are not available to you until both your transaction
and the other (updating) transactions terminate (with either a COMMIT
or ROLLBACK statement). Also, any updated versions of the records you
change are not available to other users until you terminate your update
transaction with a COMMIT or ROLLBACK statement and other users begin
new transactions.

Because many users can access the same relation, many records may be
locked. Such record locking can result in access conflicts that can affect the
performance and the level of concurrent access to database resources. Only
one transaction can update any given record at one time. If another user has
locked a record for update or has placed a write lock on a record for retrieval,
you cannot access that record for update until the record is released by the
locking transaction.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

2.3.4.4 Protected Read Reserving Option The protected read option lets
you read records from the same relation that other transactions are accessing.
However, this option ensures that no other users can write to the relation that
your transaction reserves in this manner. For example, assume you retrieve a
record to generate a report, and that the contents of the record must be kept
stable until the transaction is completed. The protected read option, unlike the
shared read option, prevents other users from changing any records included
in the report until the report is finished.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED READ

Accessing a Database and Using Transactions 2–15

2.3.4.5 Protected Write Reserving Option The protected write option lets
your transaction update the relation but prevents other transactions from
updating that relation. Other users can only retrieve data from the relation.
Therefore, a transaction with extensive updates may execute faster using
the protected write option as opposed to the shared write option, because
Rdb/VMS does not have to check for as many conflicting locks as in the shared
write reserving option. Wherever possible, use indexed fields in your RSE so
that only those database resources required by your transaction are locked;
otherwise, Rdb/VMS will lock the entire relation.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE

2.3.4.6 Exclusive Read Reserving Option The exclusive read option allows
only your transaction to read the specified relation; other users cannot read
or update this relation. This reserving option uses the fewest locks because
Rdb/VMS locks the resource at the relation level. Because there is no conflict
with other users, the exclusive share mode retrieves data faster than shared or
protected share modes. Specify EXCLUSIVE READ or PROTECTED READ in
the START_TRANSACTION statement if you require a current picture of the
database for retrieval, thereby ensuring that no other transaction that might
change the records can start.

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE READ

2.3.4.7 Exclusive Write Reserving Option The exclusive write option lets
only your transaction have access to the relation to read or update a record;
other transactions are prevented from reading or updating any record in the
relation. If you are doing updates to one or more relations and the transaction
is fairly short, consider specifying the EXCLUSIVE WRITE option in your
START_TRANSACTION statement. For example:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE WRITE

The exclusive write option is also the preferred method for loading data
into databases in most circumstances, as opposed to using a batch-update
transaction. (For a discussion of the batch-update transaction, including
special notes and restrictions, see Section 2.3.3.)

When your transaction includes a MODIFY or ERASE statement, Rdb/VMS
checks to see if another user has a lock on the record or records you need. If
the record has no lock, Rdb/VMS locks it by putting an exclusive share mode
lock on the record and executes the update statement. Your transaction holds
the lock on this record until you commit the change to the database with a
COMMIT statement or undo the change with a ROLLBACK statement.

2–16 Accessing a Database and Using Transactions

2.3.5 Locking and Lock Conflict Resolution
Once Rdb/VMS grants the reserving option or options specified in your START_
TRANSACTION statement, it locks records identified by the RSE according
to the kind of task, or verb, your transaction executes. For example, when
you retrieve a record to display the values for certain fields, Rdb/VMS places
read locks on them. However, when you issue a MODIFY statement, Rdb/VMS
places a more restrictive write lock on the record, or records, so that no other
transaction may intervene and change the values you intend to change.

When you lock a record for a read or write operation, you affect other users.
Figure 2–1 shows what happens when you start a transaction reserving a
relation for a specified type of access, and another user starts a transaction,
attempting to reserve that relation for a specified type of access. (This table
assumes that the WAIT option is specified.) If the other user’s access causes a
conflict, that user must either wait for record locks to be released (when WAIT
is specified) or must terminate the active transactions and begin again.

Accessing a Database and Using Transactions 2–17

Fig
ure

2–1
D

a
ta

b
a

se
A

c
c

e
ss

C
o

nflic
ts

READ_WRITE
PROTECTED
READ Has:

READ_WRITE
PROTECTED
WRITE Has: ¹

READ_ONLY
Has:

READ_WRITE
EXCLUSIVE
WRITE Has:

READ_WRITE
EXCLUSIVE
READ Has:

READ_WRITE
SHARED
WRITE Has:

If You Access
a Record Using
Transaction
Mode:

READ_WRITE
SHARED
READ Has:

Someone Else Using:

READ_ONLY

READ_WRITE
EXCLUSIVE
WRITE ³

READ_WRITE
EXCLUSIVE
READ

READ_WRITE
PROTECTED
WRITE ²

READ_WRITE
PROTECTED
READ

READ_WRITE
SHARED
WRITE ²

READ_WRITE
SHARED
READ

No conflict to
read, a wait to
update

No conflict to
read a record
not updated;
otherwise, a
wait ¹

No conflict

No conflict

No conflict

No conflict

No conflict

A wait

A wait, then a
conflict

No conflict

No conflict

No conflict

No conflict

No conflict

A wait

A wait

No conflict

A wait

A wait

A wait

A wait

No conflict

No conflict

A wait

No conflict

A wait

A wait

A wait

No conflict to
read, a wait to
update ³

A wait

No conflict ²

A wait

A wait

A wait

A wait

A wait A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

A wait

¹ If index is used. If index is not used, may lock entire relation.
² Updates are written to SNP file.
³ Updates are not written to SNP file.

ZK−1483A−GE

2–18
A

c
c

e
ssin

g
a

D
a

ta
b

a
se

a
n

d
U

sin
g

Tra
n

sa
c

tio
n

s

2.3.6 Other START_TRANSACTION Options
In addition to the reserving options of the START_TRANSACTION statement
described earlier, you can specify other options that affect how Rdb/VMS
handles your transactions:

Constraints

Evaluating at verb time

Evaluating at commit time

Options

Wait

Nowait

Consistency

Concurrency

The following sections discuss these options.

2.3.6.1 Evaluating Constraints at Verb Time You can define constraints
to check for values you want to store in the database. By default, Rdb/VMS
evaluates each user-defined constraint at the time specified in the constraint
definition with the CHECK ON clause (default is CHECK ON UPDATE).
However, you can override the CHECK ON clause by specifying the
EVALUATING clause in the START_TRANSACTION statement.

You can specify that Rdb/VMS should evaluate the constraints at verb time
(VERB_TIME) or commit time (COMMIT_TIME). By specifying VERB_TIME,
you indicate that Rdb/VMS should evaluate the constraint when the statement
to store, modify, or delete data executes. (Evaluation at commit time is
discussed in Section 2.3.6.2.)

Evaluating constraints at verb time can make it easier to isolate which record
is violating a constraint. Each time Rdb/VMS executes a STORE or MODIFY
statement, the record stream your RSE identifies may contain one record or
many records. When the record stream contains only one record, and an error
occurs, you can handle that error by displaying the offending record or writing
it to an exception file. On the other hand, if the record stream identifies more
than one record in a FOR . . . END_FOR block that contains a STORE or
MODIFY statement, and an error occurs, you want to be sure which record in
the record stream has violated the constraint definition. So, for each execution
of the STORE or MODIFY statement in the FOR . . . END_FOR block, you can
specify that Rdb/VMS check the constraint by including the EVALUATING AT
VERB_TIME clause.

Accessing a Database and Using Transactions 2–19

Additionally, when you include update tasks in a host language program,
you can handle errors with the ON ERROR clause. Specifying constraint
evaluation at verb time causes control to pass immediately to the error
handling statements. If your transaction waits until commit time to evaluate
the constraint, Rdb/VMS may not signal the error at the verb level because the
STORE or MODIFY statement will have completed. Refer to Chapter 10 for
more details on error trapping and error handling using constraints.

If your transactions contain several update operations using both STORE
and MODIFY statements, you may need to evaluate constraints at verb time
to detect which operation or constraint caused the violation. Evaluating
constraints at commit time may direct the entire transaction to roll back if
error handling is not included at the verb level.

2.3.6.2 Evaluating Constraints at Commit Time If you have access to all
referenced relations, you can evaluate constraints at commit time. You can
defer constraint evaluation until you are ready to terminate your transaction.
Rdb/VMS then checks each value against the defined constraint before allowing
the record to be stored.

The main benefits of evaluating at commit time as opposed to verb time are as
follows:

You can store or modify records that depend on other records.

If a field has a constraint requiring the existence of another record with a
matching field value, then evaluating the constraint at commit time allows
you to change the field value, make any other necessary changes, and then
commit those changes, at which time the existence-checking constraint is
evaluated. For example, assume that a database permitted department
codes to be changed, and assume that a constraint required each employee’s
assigned department code to match an existing department code. If you
evaluated constraints at verb time, changing the department code would
cause an immediate violation; however, if you evaluated at commit time,
you could change the department code, then change the code in the affected
employee records, and then commit the changes.

You can improve application performance.

When you specify constraints to be evaluated at commit time, you defer
the expense of evaluation (that is, the time required) until you enter the
COMMIT statement. For example, assume you need to modify most of
the records in a specific relation. You can start the transaction with the
exclusive write reserving option to avoid access conflicts with other users
and to reduce the use of lock resources, thus allowing your task to complete
more efficiently. If at commit time you find you have numerous constraint
violations, you can roll back the transaction, correct the erroneous values,
and try the update operation again.

2–20 Accessing a Database and Using Transactions

If your tasks include numerous changes to the database in a scheduled
production update run, there may be very little conflict with other users
accessing the database. In such cases, you can experiment with both VERB_
TIME and COMMIT_TIME constraints to see which meets your needs. You can
enhance performance by ensuring that fields used in the constraint definition
are indexed fields. Indexes allow Rdb/VMS to locate specific records efficiently.
See the VAX Rdb/VMS Guide to Database Maintenance and Performance for
information on enhanced performance with indexed fields.

The following example shows an EVALUATING clause in a START_
TRANSACTION statement overriding the CHECK ON clause in the DEFINE
CONSTRAINT statement. The DEFINE CONSTRAINT statement specifies a
constraint called SH_EMP_ID_EXISTS and specifies that this constraint is to
be evaluated for any new data stored in the database:

DEFINE CONSTRAINT SH_EMP_ID_EXISTS
FOR SH IN SALARY_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = SH.EMPLOYEE_ID
CHECK ON UPDATE.

The START_TRANSACTION statement overrides the CHECK ON UPDATE
clause by deferring evaluation to commit time. (The constraint verifies that an
EMPLOYEE_ID value exists in the EMPLOYEES relation before a SALARY_
HISTORY record can be stored.)

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR EXCLUSIVE WRITE,
cont> SALARY_HISTORY FOR EXCLUSIVE WRITE EVALUATING
cont> SH_EMP_ID_EXISTS AT COMMIT_TIME

2.3.6.3 Wait and Nowait Options You can specify how Rdb/VMS is to handle
your transactions when you attempt to retrieve or update a resource (record,
relation, or index) locked by another user. For example, you can elect to wait
for locked records to be released by specifying WAIT (the default) in your
START_TRANSACTION statement; or you can specify NOWAIT, in which case
Rdb/VMS returns an error message that a record is unavailable, and you can
then terminate the current transaction and enter your START_TRANSACTION
statement again or start another transaction. The following example specifies
the NOWAIT option:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR PROTECTED WRITE,
cont> JOB_HISTORY FOR PROTECTED WRITE,
cont> SALARY_HISTORY FOR SHARED READ NOWAIT

The nowait option can be used to program flexibility into an application, such
as when you might wish to allow the user to choose whether or not to wait, or
to allow a certain number of retries before informing the user that the record is
unavailable. For example, to permit the user to choose whether or not to wait,
your program might contain the following logic.

Accessing a Database and Using Transactions 2–21

1 Start a transaction specifying NOWAIT.

2 Start the data manipulation operation.

3 On error (that is, lock conflict), display a message to the user: ‘‘The record
you want is in use. Do you wish to wait?’’

4 If the user replies Yes, start a transaction specifying WAIT. (If the user
replies No, handle the condition as appropriate for the application.)

If you specify or accept the default of WAIT in your START_TRANSACTION
statement, you should consider the possibility of encountering incompatible
transaction modes. For example, consider the following sequence of events,
where User B must wait until User A completes a transaction. User A starts
a transaction and reserves a relation specifying EXCLUSIVE WRITE access.
This means that any other transactions cannot gain snapshot access to the
database resources held by the exclusive lock until the transaction specifying
EXCLUSIVE WRITE is terminated. User B’s snapshot request, therefore,
is not compatible with an EXCLUSIVE WRITE lock, and so Rdb/VMS
immediately causes User B to wait.

1 User A starts a read/write transaction, reserving a relation for exclusive
write access, and fetches a collection of records.

2 User B then starts a read-only transaction accessing the same relation and
includes the WAIT clause.

3 When User B attempts to access the records in a FOR . . . END_FOR block
to display certain values, Rdb/VMS causes User B to wait.

4 When User A completes its transaction with a COMMIT or ROLLBACK
statement, Rdb/VMS then returns the ‘‘lock conflict’’ error to User B and
permits User B to resume processing.

A read/write transaction that specifies EXCLUSIVE WRITE reserving option
does not write data to the snapshot file; it is always incompatible with access
requests from read-only transactions. Rdb/VMS defines read-only transactions
in such a way that all data committed to the database before the start of the
transaction must be available to the transaction that requests access to the
snapshot file. Because it is impossible for Rdb/VMS to determine whether
or not the transaction using the exclusive write reserving option may have
written data to the database, it cannot satisfy the read-only transaction’s
requirements.

2–22 Accessing a Database and Using Transactions

2.3.6.4 Consistency and Concurrency Options The consistency and
concurrency options are provided for compatibility with other Digital relational
database products, such as VAX Rdb/ELN. In Rdb/VMS, the distinction is
not meaningful. If you specify CONCURRENCY, Rdb/VMS translates that to
CONSISTENCY. Rdb/VMS always guarantees degree 3 consistency. Degree
3 consistency means that the database system guarantees that data you
have read will not be changed by another user before you issue a COMMIT
statement.

In other relational systems that you might access using the remote feature
of Rdb/VMS, the consistency option specifies the degree to which you want
to control the consistency of the database. In such systems, the concurrency
option sacrifices some consistency protection for improved performance with
many users.

2.3.7 Indexes
Rdb/VMS can use indexes to locate specific records using the database key for
those records. A database key, or dbkey, is a pointer or address that indicates
a specific record in the database. There is a separate index (B-tree) structure
for each sorted index defined (by the user or by Rdb/VMS) in the database.
Each B-tree structure is created by linking index nodes together in a balanced
hierarchical structure. These nodes are linked consecutively according to the
index definition. By default, these nodes are in ascending sequence and are
horizontally linked in low-to-high key value. If you define a descending index,
the index nodes are horizontally linked in high-to-low key value. The links
between the nodes are created by using the dbkeys. Thus, updating the index
fields of records means updating index nodes as well.

During the database design phase, the database administrator or owner of the
database should identify certain fields in each relation as primary keys and
foreign keys. Primary and foreign key fields are usually indexed.

A primary key is the field (or group of fields) that you select to be the
principal identifier of each record in a relation. It is best if the field you select
as a primary key is unique and stable, because the number of input/output
operations necessary to update an index is high, and because the likelihood of
locking contention increases. Therefore, you can use the primary key to locate
a specific record, and update other, non-indexed fields, in those records. In this
way, you benefit from the efficient access methods Rdb/VMS uses to locate the
records you need, but you do not suffer the overhead penalty of updating the
index nodes. A foreign key is a field or group of fields in one relation that has
a matching value in the primary key of another relation. You can use foreign
keys for joins, regardless of whether an index is defined for the foreign key.

Accessing a Database and Using Transactions 2–23

You should decide which fields are important to index, to reduce the number
of write locks on the records in the relation and thereby reduce the chances
of processing delays and potential deadlocks. For example, you can start a
transaction specifying the SHARED WRITE reserving option. Another user
can enter an identical START_TRANSACTION statement to read or update
records in the same relation you have accessed. If no indexes are defined for
the key field, Rdb/VMS must physically scan each record in the database itself,
placing a write lock on the entire protected relation. The other transaction
attempts to select records from the same relation and conflicts with your
transaction because your transaction has already placed locks on those records.
Your transaction may even promote the locking to the exclusive level, and
allow no other user to access any of the records in the relation. Other users
must terminate their transactions and enter the START_TRANSACTION
statement again to select the records or wait until the records in that relation
are available.

On the other hand, if the fields you use to select records for your transaction
are indexed, Rdb/VMS can refer to the index tables to locate only the records
you need. Rdb/VMS will also place read locks only on the index nodes that
contain the dbkeys to those records and thus allow other users to access the
remaining records in the relation. Thus, you should use indexes to locate
records, and to increase database concurrency by reducing possible deadlocks
and by making more resources available to other database operations. For
further information on primary and foreign keys and indexes, see the VAX
Rdb/VMS Guide to Database Maintenance and Performance.

2.3.8 Transaction Scope
Remember, a transaction is a unit of database activity you perform with one
statement or many statements. The START_TRANSACTION statement that
marks the start of a transaction and the COMMIT or ROLLBACK statement
that terminates the transaction identify the scope of the transaction.
Rdb/VMS executes either all of the statements in the scope of the transaction
or none of them. Before you begin your transaction, you should determine the
tasks you want to accomplish. Some of these tasks might be:

Data retrievals from the database

Changes you want to make to existing records in the database

Changes to the data definitions

It is usually wise to limit the scope of a transaction to a particular type of
task. If you mix tasks in a transaction, you may want to undo some tasks
and keep others. By restricting each transaction to a specific task, you can
roll back certain operations and make others permanent. Moreover, in certain
applications, attempting to do too much in a single transaction can cause the
process to exceed its quotas for locks or virtual memory.

2–24 Accessing a Database and Using Transactions

It is recommended that you perform any terminal input/output operations
outside the scope of a read/write transaction. Instead, use the following
approach:

1 Gather data from the terminal.

2 Perform the transaction.

3 Write the results to the terminal.

2.3.9 Ending a Transaction
All transactions end normally with a COMMIT or a ROLLBACK statement.
This section discusses the effect of each statement, including the impact on the
RUJ file.

An update transaction can physically change the values in the database.
In the following example, the PERSONNEL file is invoked and a START_
TRANSACTION statement reserves the EMPLOYEES relation for shared
write access for an update transaction:

RDO> INVOKE DATABASE FILENAME PERSONNEL
RDO> START_TRANSACTION READ_WRITE
cont> RESERVING EMPLOYEES FOR SHARED WRITE

Before each update is physically written to the database, the original record
is written to the recovery-unit journal file (file type RUJ). Each user who
performs an update has an RUJ file in his or her SYS$LOGIN directory (or
other location specified by the logical name RDMS$RUJ) for the life of a
transaction. After all the updated records have been written to the database,
the EMPLOYEES relation has new records added to it. Figure 2–2 shows the
effect of an update on a database.

Accessing a Database and Using Transactions 2–25

Figure 2–2 Recovery-Unit Journal File During an Update Transaction

PERSONNEL.RUJ

PERSONNEL Database

NU−2114A−RA

.

.

.

Updated Record 3
Updated Record 2

Updated Record 1

COLLEGES Relation

EMPLOYEES Relation

DEGREES Relation

Recovery−Unit
Journal File

.

.

.

Original Record 1
Original Record 2
Original Record 3

Updated Record 1
Updated Record 2
Updated Record 3

Original Record 3
Original Record 2

Original Record 1

You can terminate an Rdb/VMS transaction with either of the following
statements:

COMMIT

Use the COMMIT statement to make your changes permanent. This
causes Rdb/VMS to invalidate the RUJ file and to make it ready for further
transactions.

ROLLBACK

Use the ROLLBACK statement to undo the changes you have made to the
database within the scope of a transaction. The ROLLBACK statement
uses the RUJ file to bring the database back to its pretransaction state.

Figure 2–3 shows the effect of a COMMIT statement on a database.

2–26 Accessing a Database and Using Transactions

Figure 2–3 Recovery-Unit Journal File with COMMIT

PERSONNEL.RUJ

PERSONNEL Database

NU−2115A−RA

.

.

.

COLLEGES Relation

EMPLOYEES Relation

DEGREES Relation

Recovery−Unit
Journal File

Updated Record 1
Updated Record 2
Updated Record 3

Original records
cleared by
"COMMIT"

Accessing a Database and Using Transactions 2–27

Figure 2–4 shows the effect a ROLLBACK statement has on the database.

Figure 2–4 Recovery-Unit Journal File with ROLLBACK

PERSONNEL.RUJ

PERSONNEL Database

NU−2116A−RA

COLLEGES Relation

EMPLOYEES Relation

DEGREES Relation

Recovery−Unit
Journal File

Original Record 1
Original Record 2
Original Record 3

.

.

.

Original Record 1
Original Record 2
Original Record 3

.

.

.

Because the updates actually change the state of the database, the RUJ
file is used to return the database to its pretransaction state by writing the
original records back to the database. When the transaction terminates, the
EMPLOYEES relation is unchanged.

2.4 The Query Optimizer
Because a relational database model represents the user’s view of the data
stored in the database, determining the best way to retrieve that data can be
a very complex task. Rdb/VMS contains a query optimizer that automatically
analyzes each query to determine the most efficient method of access to the
data. Efficiency can be measured as the number of disk accesses required to
retrieve data values in the database.

The query optimizer is a sophisticated component of Rdb/VMS that uses a
combination of algorithms to evaluate the query and arrive at a low-cost
solution to retrieve the data in the database. The order in which you specify
joins and the order of the clauses in the RSE do not, in most cases, influence
the order the query optimizer uses to satisfy your query. You can, however,

2–28 Accessing a Database and Using Transactions

help the query optimizer by defining indexes for fields you use frequently in
your queries.

To evaluate a query, the query optimizer:

Develops alternative solutions for retrieving data

Associates a cost factor with each solution based on estimated input/output
requirements

Chooses the most cost-effective solution in terms of the least number of
estimated input/output operations required to fetch the record

The query optimizer evaluates every query in terms of an estimate of efficient
access, so you do not have to be overly concerned about how to construct your
queries. As a database designer, however, you can assist the query optimizer
by extending its access options. For example, if your query includes only those
fields for which indexes are defined, you are providing the query optimizer with
an option to retrieve data directly from the index without scanning the relation
sequentially.

The query optimizer may use only the index if it contains all the data necessary
to satisfy the query, or if the index provides a useful ordering of records. For
example, when a query names one field in the RSE and two other fields in the
print list, all three fields must have indexes defined for them in order for the
query optimizer to choose an access method that uses only the index. On the
other hand, the algorithms the query optimizer uses may result in its not using
the index on that field at all, if the query optimizer estimates that the data can
be retrieved directly from the relation with fewer input/output operations than
by using the index or indexes.

The following list describes some of the tasks the query optimizer performs to
find the best solution for a query that contains one or more CROSS clauses.
The query optimizer:

Breaks down a query into equivalent sequences of two relational joins

Finds the best way to perform each join based on the estimated relative
cost of each access method

Estimates cardinality (number of records to be retrieved) of each join based
on a ‘‘join predicate,’’ (the RSE supplied by the user), and the presence of
indexes for specific fields

Determines overall cost of each strategy

Selects minimum cost strategy

Accessing a Database and Using Transactions 2–29

The query optimizer chooses one of the following methods for retrieving data
from a relation:

Sequential retrieval

Accesses the database pages for a relation sequentially and searches for
the field values of the records directly on the pages.

Index retrieval

Accesses one or more index structures and retrieves the dbkey of a record.
Rdb/VMS then uses the dbkey to directly access the data record to which it
belongs.

Index-only retrieval

Accesses only the index data. If the desired data is located in an index key,
Rdb/VMS can obtain the data without going to the actual data record.

Dbkey retrieval

Accesses the relation’s data directly through the dbkey (logical location)
record pointer.

2.5 Sample Interactive Session Using the
START_TRANSACTION Statement

The following interactive session shows the read-only and read/write versions
of the basic START_TRANSACTION statement:

! The statements in the scope of the first transaction
! merely examine the database. The transaction does not
! change any values.
!
RDO> START_TRANSACTION READ_ONLY

!
! Display the number of records in
! the EMPLOYEES relation.
!
RDO> PRINT COUNT OF E IN EMPLOYEES

101

!
! How many employees live in Rochester?
!
RDO> PRINT COUNT OF E IN EMPLOYEES WITH E.CITY = "Rochester"

7

2–30 Accessing a Database and Using Transactions

!
! If you attempt to change the database by erasing all
! Rochester records with the ERASE statement:
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> ERASE E
cont> END_FOR
!
! You are attempting to update the database. RDO returns an
! error message:
!
%RDB-F-READ_ONLYTRANS, attempt to update from a READ_ONLY transaction

!
! Display information from the records
! of employees who live in Rochester.
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> PRINT
cont> E.LAST_NAME,
cont> E.FIRST_NAME,
cont> E.EMPLOYEE_ID,
cont> E.CITY
cont> END_FOR

LAST_NAME FIRST_NAME EMPLOYEE_ID CITY
Vormelker Daniel 00242 Rochester
Edwards Keith 00254 Rochester
Orlando Johanna 00269 Rochester
DuBois Alvin 00275 Rochester
Chase Stan 00336 Rochester
Boudreau Wes 00346 Rochester
Stornelli Franklin 00437 Rochester

!
! Terminate the read-only transaction scope with a
! COMMIT or ROLLBACK statement.
!
RDO> COMMIT

!
! Now start a new transaction that allows changes to be
! written to the database.
!
RDO> START_TRANSACTION READ_WRITE

!
! Display information from the records
! of employees who live in Rochester.
!

Accessing a Database and Using Transactions 2–31

RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> PRINT
cont> E.EMPLOYEE_ID,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR

EMPLOYEE_ID CITY POSTAL_CODE
00242 Rochester 03867
00269 Rochester 03867
00275 Rochester 03867
00336 Rochester 03867
00346 Rochester 03867
00437 Rochester 03867

!
! Change the value of the POSTAL_CODE field for all the
! Rochester records.
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> MODIFY E USING
cont> E.POSTAL_CODE = "03801"
cont> END_MODIFY
cont> END_FOR

!
! Verify the change.
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> PRINT
cont> E.EMPLOYEE_ID,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR

EMPLOYEE_ID CITY POSTAL_CODE
00242 Rochester 03801
00269 Rochester 03801
00275 Rochester 03801
00336 Rochester 03801
00346 Rochester 03801
00437 Rochester 03801

!
! Delete (erase) the Rochester records.
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> ERASE E
cont> END_FOR

!
! Are there any Rochester records remaining?
!
RDO> PRINT COUNT OF E IN EMPLOYEES WITH E.CITY = "Rochester"

0

2–32 Accessing a Database and Using Transactions

!
! Check to see that records are deleted.
!
RDO> FOR E IN EMPLOYEES WITH E.CITY = "Rochester"
cont> PRINT
cont> E.*
cont> END_FOR
! (No records are displayed)

!
! Add a new record.
!
RDO> STORE E IN EMPLOYEES
cont> USING
cont> E.EMPLOYEE_ID = "00502";
cont> E.LAST_NAME = "Towne";
cont> E.CITY = "Manchester";
cont> E.POSTAL_CODE = "03103"
cont> END_STORE

!
! Verify the addition of the record.
!
RDO> FOR E IN EMPLOYEES WITH E.LAST_NAME = "Towne"
cont> PRINT
cont> E.EMPLOYEE_ID,
cont> E.LAST_NAME,
cont> E.CITY,
cont> E.POSTAL_CODE
cont> END_FOR

00502 Towne Manchester 03103

!
! If you want to make the changes to the database permanent, enter
! the COMMIT statement.
!
! If you do not want the changes applied to the database,
! enter the ROLLBACK statement. If you enter ROLLBACK, the
! Rochester records are retained in the database with no
! changes and the Manchester record of the employee named
! Towne is not added.
!
RDO> COMMIT
RDO> FINISH !(optional)
RDO> EXIT

Accessing a Database and Using Transactions 2–33

3
Using Record Selection Expressions

This chapter shows you how to use record selection expressions (RSEs) to
select and display values from a database. You use an RSE to select a group
of records and then to manipulate the data from those records. Note that
Rdb/VMS lets you include database queries that use either embedded data
manipulation statements or Callable RDO in your application programs.
(Callable RDO is discussed in detail in Chapter 19.)

3.1 Forming Streams of Records
A record stream can consist of all or only some of the records in a relation. You
can form a record stream using any of the following:

A FOR statement

A DECLARE_STREAM or START_STREAM statement

In these statements, an RSE identifies the records that form the record
stream. For further information on specifying and using record streams, see
Section 6.4.

Having chosen the records you wish to retrieve, you enter a PRINT statement
in RDO to specify what fields you want displayed. The PRINT statement
displays data on the terminal so you can be certain you have selected the
correct records.

Once you have tested your query and want to include it in a program, this
display feature is no longer necessary. Later chapters in this manual provide
details about converting your RDO queries to host language application
programs.

Using Record Selection Expressions 3–1

In some cases, you may have been denied access to an entire relation or certain
fields within a relation. If you have been denied access to a field or a relation,
you will get the following error when you try to form your record stream:

%RDB-E-NO_PRIV, privilege denied by database facility

3.2 Retrieving All the Records in a Relation
One of the simplest operations in Rdb/VMS is selecting all the records in a
relation.

The following FOR statement contains an RSE that forms a record stream
consisting of all the records in the EMPLOYEES relation:

FOR E IN EMPLOYEES

The expression E IN EMPLOYEES is an RSE that selects records from the
EMPLOYEES relation. This RSE includes every record of the EMPLOYEES
relation in the record stream.

The character E in the first line of the RSE is a context variable. A context
variable is a temporary name you assign to the record stream created by the
RSE. In subsequent lines of the RSE, the context variable and a period (.)
appear before each field name. By qualifying each field name with the context
variable and a period, you indicate clearly to RDO the relation to which each
field belongs. If an RSE statement refers to more than one relation, assign a
unique context variable to each relation. (Context variables can be up to 31
characters long; however, try to choose a context variable that you can easily
associate with the relation, such as the first letter of the relation name or some
other meaningful abbreviation.)

The RDO block, FOR . . . END_FOR, includes the RSE and identifies a record
stream. Other statements included in the FOR . . . END_FOR block operate
on each record in this record stream. For example, to display data about all
employees in the EMPLOYEES relation, you use the PRINT statement. The
complete query is shown in the example that follows:

FOR E IN EMPLOYEES
PRINT

E.LAST_NAME,
E.FIRST_NAME,
E.EMPLOYEE_ID

END_FOR

The preceding example displays three fields from each record in the
EMPLOYEES relation. Note the following rules about using the RDO
PRINT statement:

Qualify each of the field names with the context variable associated with
the field’s relation.

3–2 Using Record Selection Expressions

Use commas to separate the expressions in the list.

The RSE selects records for inclusion in the record stream. The PRINT
statement retrieves one record at a time and specifies fields from those records
to be displayed. You can also display data for all the fields in the relation by
using a special format of the PRINT statement. Instead of specifying each field
name individually, substitute an asterisk (*) for the list of field names. For
example:

FOR E IN EMPLOYEES
PRINT E.*

END_FOR

RDO prints each of the field names in the relation as the first line of the
display. When a relation such as EMPLOYEES contains many fields, RDO
wraps the remainder of a long record onto the next line of your terminal. The
resulting display can be difficult to read.

For more readable and flexible displaying of data from a database, it is
suggested that you use a product designed for data selection and formatting,
such as DATATRIEVE, RALLY, DECdecision, or TEAMDATA. However, you
can still create a somewhat readable display of records with many field values
by using RDO. Create a command file with the file type RDO (for example,
REPORT1.RDO). In this file, you can include a query such as the one in
the preceding example, and specify an output file with the SET OUTPUT
statement. (Do not use both the SET VERIFY and SET OUTPUT statements;
the SET VERIFY statement will cause each statement you enter to appear
twice in the output file.) To close the output log file, type SET NOOUTPUT, or
type SET OUTPUT without specifying a destination file name.

The file REPORT1.RDO might contain the following statements:

SET NOVERIFY
SET OUTPUT REPORT1.LOG
FOR E IN EMPLOYEES

PRINT E.*
END_FOR
SET NOOUTPUT

You can execute this command file by typing an at sign (@), followed by the
name of the command file (the default file type is RDO):

RDO> @REPORT1

You can then print the file, REPORT1.LOG, that contains the results of a
command file, REPORT1.RDO, using the wide-line printer format instead
of the 80-character limit of an interactive terminal; or you can use the DCL
command SET TERMINAL/WIDTH=132 and display the file on your screen.

Using Record Selection Expressions 3–3

You can direct RDO to display special character strings or literal expressions
by using the PRINT statement and quotation marks to enclose the string. You
can combine literals with value expressions such as the statistical expression
COUNT, separating each element with a comma. See the VAX Rdb/VMS RDO
and RMU Reference Manual for a discussion of statistical expressions. The
following query displays literal expressions and value expressions:

RDO> PRINT "Number of records in EMPLOYEES = ", COUNT OF E IN EMPLOYEES
Number of records in EMPLOYEES = 101

The following example shows you how to use a command file to format and
display a simple report that shows the number of records in each relation of
the sample personnel database:

SET NOVERIFY
SET OUTPUT COUNT.LOG
PRINT " "
PRINT "Statistics for database PERSONNEL follow: "
PRINT " "
PRINT "Count of Employees -------> ", COUNT OF E IN EMPLOYEES
PRINT "Count of Jobs ------------> ", COUNT OF J IN JOBS
PRINT "Count of Degrees ---------> ", COUNT OF D IN DEGREES
PRINT "Count of Salary_History --> ", COUNT OF SH IN SALARY_HISTORY
PRINT "Count of Job_History -----> ", COUNT OF JH IN JOB_HISTORY
PRINT "Count of Work_Status -----> ", COUNT OF W IN WORK_STATUS
PRINT "Count of Departments -----> ", COUNT OF D IN DEPARTMENTS
PRINT "Count of Colleges --------> ", COUNT OF C IN COLLEGES
PRINT " "
PRINT "Statistics Complete for Database: PERSONNEL"
PRINT " "

3.3 Displaying Records in Sorted Order
Use the SORTED BY clause of the RSE to signal RDO to order the records in
a record stream. The default is ascending order.

The following example arranges EMPLOYEES records in alphabetical order by
state:

FOR E IN EMPLOYEES SORTED BY E.STATE
PRINT

E.STATE,
E.CITY,
E.EMPLOYEE_ID

END_FOR

A field name on which the sort order of records is based is called a sort key.
In the preceding example, there is one sort key (the STATE field). Because the
query in the preceding example has only one sort key, it does not specify how
RDO should arrange two or more records that have the same value for STATE.
If you want to include cities in alphabetical order (A to Z) within the same
state, use two sort keys, STATE and CITY, as in the following example:

3–4 Using Record Selection Expressions

FOR E IN EMPLOYEES SORTED BY E.STATE, E.CITY
PRINT

E.STATE,
E.CITY,
E.EMPLOYEE_ID

END_FOR

Specifying the CITY field as a second sort key ensures that Rdb/VMS arranges
records with different values for the CITY field alphabetically within the same
state. When you use more than one sort key, the first key is the major sort
key and all other keys are minor sort keys. In the preceding example, the
STATE field is the major sort key and the CITY field is a minor sort key.

Note Rdb/VMS does not guarantee the order of the records retrieved unless you
specify a sort key. You cannot assume that Rdb/VMS arranges records
according to the values for any index key field of the relation. To control the
arrangement of the records that Rdb/VMS displays, specify one or more sort
keys.

3.3.1 Indicating Ascending or Descending Sort Order
When you use a sort key, RDO normally arranges the records in ascending
order by that key according to the standard ASCII collating sequence; that is,
Rdb/VMS arranges numeric values in numerical order and character fields in
alphabetical order. To reverse the order, use the keyword DESCENDING. 1

You can sort a record stream by ascending values for one field and descending
values for another field. To arrange the records in alphabetical order for the
major sort key (STATE) and in reverse alphabetical order for the minor sort
key (CITY), specify an explicit order for each field, as in the following example:

FOR E IN EMPLOYEES
SORTED BY ASCENDING E.STATE,

DESCENDING E.CITY
PRINT

E.STATE,
E.CITY,
E.EMPLOYEE_ID

END_FOR

Now the records are in alphabetical order according to the major sort key,
STATE, and within each state’s grouping the records are in descending
alphabetical order (Z to A) according to the minor sort key, CITY.

1 Defining an index on the sort key field or fields can improve performance if the sort order
and the type of index (ascending or descending) are the same. If the sort key does not have
an index defined, or if the index cannot be used in the sort, Rdb/VMS must use the VMS
Sort utility, thus causing a possible decrease in sort speed.

Using Record Selection Expressions 3–5

Unless you explicitly specify the sort order for each minor sort key, the default
sort order of any minor key is the same as the order for the last explicit or
default sort key. For example, if the major key is in ascending sequence (by
default or explicitly specified) and the first minor key has descending sequence
specified, the default sort order for any other minor keys is descending (unless
and until a subsequent minor key has ascending sequence specified).

In the following example, because the RSE specifies a descending sort order for
the major sort key, E.CITY, RDO sorts the other two minor sort keys, E.STATE
and E.POSTAL_CODE, in descending order also:

FOR E IN EMPLOYEES
SORTED BY DESCENDING E.CITY, E.STATE, E.POSTAL_CODE

3.3.2 Using Value Expressions as Sort Keys
A sort key can also be a value expression that refers to one or more fields
in a relation. A value expression is a symbol or string of symbols used to
calculate a value. When you use a value expression in a statement, Rdb/VMS
calculates the value associated with the expression and uses that value when
executing the statement. See the VAX Rdb/VMS RDO and RMU Reference
Manual for more information on value expressions.

For example, assume that you wish to display information about job codes,
starting with the job code with the smallest salary range (difference between
maximum and minimum salary). You could specify a sort key consisting
of a value expression that calculates the salary range for each job code.
The following query sorts the records of the JOBS relation by range value,
beginning with the smallest range:

FOR J IN JOBS SORTED BY
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY)

PRINT
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY),
J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY

END_FOR

To reverse the order of displayed values, simply include the explicit sort
qualifier DESCENDING:

FOR J IN JOBS SORTED BY
DESCENDING (J.MAXIMUM_SALARY - J.MINIMUM_SALARY)

PRINT
(J.MAXIMUM_SALARY - J.MINIMUM_SALARY),
J.JOB_CODE,
J.MAXIMUM_SALARY,
J.MINIMUM_SALARY

END_FOR

3–6 Using Record Selection Expressions

3.4 Restricting the Number of Records: The FIRST Clause
RDO lets you experiment with different queries to find the ones best suited to
your programming needs. For example, you normally do not need to display all
the records of the database to see whether your queries work correctly. RDO
has a special clause, FIRST n, that limits the number of records you display.
The integer (n) in the FIRST n clause tells RDO how many records to retrieve.

Assume you must display the first ten records from the EMPLOYEES relation,
and need to look at only three fields, STATE, CITY, and EMPLOYEE_ID,
from each record. The records retrieved by RDO are not in any specific order.
As you update the contents of the EMPLOYEES relation by adding, erasing,
or modifying records, the order of records stored in the database changes.
Therefore, unless you specify to RDO the order in which you want the records
displayed, the FIRST 10 clause retrieves what might appear to be 10 random
records. See Section 3.3 for details on the SORTED BY clause.

FOR FIRST 10 E IN EMPLOYEES
PRINT

E.STATE,
E.CITY,
E.EMPLOYEE_ID

END_FOR

Note If the RSE does not specify a sort order, you cannot predict which ten records
RDO will display. When you use the SORTED BY clause in the RSE, the
FIRST n clause takes the specified number of records from the sorted records.
RDO does the sort first, then displays the number of records specified in the
FIRST n clause from this sorted order. Remember to use a SORTED BY clause
when you begin an RSE with a FIRST n clause.

3.5 Specifying Conditions to Retrieve Records: Relational
and Logical Operators

Assume you want to find all employees in the PERSONNEL database whose
last name is Toliver.

FOR E IN EMPLOYEES WITH E.LAST_NAME = "Toliver"
PRINT

E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

The clause, WITH E.LAST_NAME = ‘‘Toliver’’, is a conditional expression. It is
equivalent to:

If LAST_NAME = "Toliver"

Using Record Selection Expressions 3–7

The value of this conditional test for a record is either true or false, depending
on whether the field value in that record satisfies the condition (true), or
does not satisfy the condition (false). A conditional expression restricts
the record stream to those records that satisfy the condition. If a conditional
expression for a record is false, RDO will not include that record in the record
stream.

The equal sign (=) is a relational operator because it links a data value of
a field or other value expression to a value. The relational operator EQUAL
(=) is case sensitive. This means that RDO reads ‘‘Toliver’’ and ‘‘toliver’’ as
two different character strings. In this case, if you specify a value ‘‘toliver’’ for
an employee record stored in the database as ‘‘Toliver’’, RDO does not find the
record you want.

In a program, the following conditional expression tests the value of the
database field named LAST_NAME (in the EMPLOYEES relation) and the
value of a host language variable named LAST-NAME:

FOR E IN EMPLOYEES WITH E.LAST_NAME = LAST-NAME

Here, the value of the conditional expression depends on the current value of
the host language variable LAST-NAME. Table 3–1 summarizes most of the
relational operators.

Table 3–1 RDO Relational Operators

Permitted
Symbols Relational Operation

EQ = True if the two value expressions are equal.

NE <> True if the two value expressions are not equal.

GT > True if the first value expression is greater than the second.

GE >= True if the first value expression is greater than or equal to the
second.

LT < True if the first value expression is less than the second.

LE <= True if the first value expression is less than or equal to the second.

BETWEEN True if the first value expression is equal to or between the second
and third value expressions.

ANY True if the record stream specified by the RSE includes at least one
record. If you add NOT, the condition is true if there are no records
in the record stream.

(continued on next page)

3–8 Using Record Selection Expressions

Table 3–1 (Cont.) RDO Relational Operators

Permitted
Symbols Relational Operation

MATCHING True if the second expression matches a substring of the first value
expression. Not case sensitive. MATCHING uses these special
characters:
* Matches any string in that position

% Matches any character in that position

MISSING True if the value expression is null. See the VAX Rdb/VMS RDO
and RMU Reference Manual for information on missing values.

UNIQUE True if the record stream specified by the RSE includes only one
record. If you add NOT, the condition is true if there is more than
one record in the record stream or if the record stream is empty.

CONTAINING True if the string specified by the second string expression is found
within the string specified by the first. Not case sensitive.

STARTING
WITH

True if the first characters of the first string expression match the
second string expression. Case sensitive.

Note In all cases except the MISSING operator, if either value expression is null, the
value of the condition is null.

The collating sequence for a field determines the behavior of relational
operators in comparisons of two fields or of a field with a literal value. If you
use any collating sequence besides the standard ASCII sequence, note the
following specific behaviors:

CONTAINING relational operator

This operator is not sensitive to diacritical markings nor is it case sensitive.
Thus " a" matches " A" , " á" , " à" , " ä" , " Á" , " À" , " Â" , and so on. (Note that
in Norwegian, " ä" is treated as if it were " ae" .)

In Spanish, " ch" and " ll" are treated as if they were individual unique
single letters. Thus, CONTAINING "C" will find " C" , " c" , " ç" , and " Ç" , but
not " CH" , " ch" , " Ch" and " cH" .

MATCHING relational operator

This operator is not sensitive to diacritical markings nor is it case sensitive.
Thus, " a" matches " A" , " á" , " à" , " ä" , " Á" , " À" , " Â" , and so on. (Note
that in Norwegian, " ä" is treated as if it were " ae" .)

In Spanish, the combinations " ch" and " ll" are each treated as individual
unique single letters. If you define your collating sequence as SPANISH,
the percent sign (%) matches any single letter, including " ch" and " ll" .
" C%" and " C*" do not match " CH" , " ch" , " Ch" , or " cH" .

Using Record Selection Expressions 3–9

STARTING WITH relational operator

Because STARTING WITH is case sensitive, searches for uppercase
multinational characters will not include lowercase multinational
characters, and vice versa. For example, STARTING WITH "Ç" will retrieve a
set of records that is different from those retrieved by STARTING WITH "ç" .

In Spanish, " ch" and " ll" are treated as if they were individual unique
single letters. For example, if a domain is defined with the collating
sequence SPANISH, then STARTING WITH "c" will not retrieve the word
" char" , but it will retrieve the word " cat" .

Miscellaneous

The character " ñ" is always treated as different from the character " n" , in
keeping with the practices of the Spanish language. In a similar manner,
the character " ç" is treated the same as the character " c" , in keeping with
the practices of the French language.

The character " ü" is treated the same as the character " u" for many
languages, but is sorted between the characters " x" and " z" (with the
" y" s) for Danish, Norwegian, and Finnish languages.

You can combine several conditional expressions by using a logical operator
to form a compound conditional expression. A logical operator joins two or
more conditional expressions together. The logical operators are:

AND—Evaluates to true if all the conditions linked by the AND operator
are satisfied.

OR—Evaluates to true if at least one of the conditions linked by the OR
operator is satisfied.

NOT—Returns all other records in the record stream except those identified
by the conditional expression following the NOT operator. Therefore, you
retrieve the complement of the record stream identified by the RSE.

For information on using logical operators, see Section 3.5.2.

The WITH clause can be used in a variety of ways to limit the records returned
in the record stream. The following sections illustrate some of the more
commonly used ways.

3.5.1 Retrieving Records That Satisfy a Single Condition
To select only those records with a particular field value, specify a value for
that field by including the WITH clause in the RSE. RDO retrieves only those
records with the specified field value. For example:

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00246"

3–10 Using Record Selection Expressions

Here, the WITH clause tests whether or not there is a record with an employee
identification number (employee ID) of 00246. As another example, you could
request that RDO display the records of the EMPLOYEES relation that have
a specific value for the CITY field, and RDO would retrieve only the records of
employees living in the specified city.

3.5.2 Specifying Compound Conditions for Records
The preceding section described an RSE that includes a single conditional
expression to test records. You can include more than one conditional test in
the same RSE. The following sections show how to retrieve those records that
satisfy a compound condition.

3.5.2.1 Retrieving Records That Satisfy Two or More Conditions: AND
Operator When you want each record in the stream to satisfy two or more
conditions, you can combine conditional expressions together with the AND
logical operator. The record stream contains only those records that satisfy all
the conditions within the compound conditional expression.

For example, to retrieve all part-time employees who live in Portsmouth, New
Hampshire:

FOR E IN EMPLOYEES
WITH E.CITY = "Portsmouth"
AND E.STATE = "NH"
AND E.STATUS_CODE = "2"

PRINT
E.EMPLOYEE_ID,
E.CITY,
E.LAST_NAME,
E.STATUS_CODE

END_FOR

Table 3–2 shows how Rdb/VMS evaluates a compound conditional expression
formed with the AND logical operator. A and B stand for simple conditional
expressions that are components of the compound conditional expression, A
AND B.

Table 3–2 AND Logical Operator

A B A AND B

True False False

True True True

False False False

False True False

(continued on next page)

Using Record Selection Expressions 3–11

Table 3–2 (Cont.) AND Logical Operator

A B A AND B

True Missing Missing

False Missing Missing

Missing True Missing

Missing False Missing

Missing Missing Missing

3.5.2.2 Retrieving Records That Satisfy One of Several Conditions: OR
Operator You may want to retrieve records that meet at least one of a
series of conditions. To set up such a test, form a compound conditional
expression with the OR logical operator. If any one of the component
conditional expressions is true for a record, Rdb/VMS includes that record
in the record stream.

The following compound conditional expression that uses the OR logical
operator retrieves information about all employees who have received graduate
degrees:

FOR D IN DEGREES WITH
(D.DEGREE = "MA") OR
(D.DEGREE = "PhD")

PRINT
D.DEGREE,
D.EMPLOYEE_ID,
D.COLLEGE_CODE,
D.DEGREE_FIELD

END_FOR

To find the records for employees with either an MA degree or a PhD, specify
two conditions linked by the logical operator OR. This means that RDO
includes a record in the stream if either or both of the two conditions are true.

Note You should enclose each conditional expression in parentheses and nest them
to any level necessary to make the compound expression clear. Rdb/VMS
evaluates the innermost expressions first and the outermost expressions last.

Table 3–3 illustrates how Rdb/VMS evaluates a compound conditional
expression formed with the logical operator OR. A and B stand for simple
conditional expressions in the compound conditional expression, A OR B.

3–12 Using Record Selection Expressions

Table 3–3 OR Logical Operator

A B A OR B

True False True

True True True

False True True

False False False

True Missing Missing

False Missing Missing

Missing True Missing

Missing False Missing

Missing Missing Missing

3.5.2.3 Retrieving Records That Do Not Satisfy a Condition: NOT Operator
The third logical operator, NOT, enables you to retrieve records that are not

identified by the conditional expression. You can include the NOT operator in a
simple or compound conditional expression. RDO restricts the record stream to
those records that do not satisfy the conditional expression following the NOT
logical operator.

Table 3–4 illustrates how Rdb/VMS evaluates a compound conditional
expression formed with the logical operator NOT. In this table, the first column
represents a conditional expression A; the second column is the complement of
A, or a condition that identifies all other records not identified by A.

Table 3–4 NOT Logical Operator

A NOT A

True False

False True

Missing Missing

You cannot use the NOT operator immediately preceding the following
relational operators:

EQ (=)

NE (<>)

GT (>)

GE (>=)

Using Record Selection Expressions 3–13

LT (<)

LE (<=)

For example, you could not enter WITH S.SALARY_AMOUNT NOT = 30000.
Instead, you could express that inequality in any of the following ways:

WITH NOT (S.SALARY_AMOUNT = 30000)
WITH S.SALARY_AMOUNT NE 30000
WITH S.SALARY_AMOUNT <> 30000

3.5.2.4 Using the ANY and NOT ANY Operators The ANY relational
operator tests whether another record stream has any records (that is, is not
empty). The following example shows a situation in which the ANY relational
operator is useful:

FOR E IN EMPLOYEES WITH (ANY D IN DEGREES WITH
D.EMPLOYEE_ID = E.EMPLOYEE_ID)

PRINT
E.EMPLOYEE_ID,
E.LAST_NAME,
E.FIRST_NAME

END_FOR

The ANY relational operator lets you refer to the records of a second
relation, in this case, the DEGREES relation. Records from the first relation
(EMPLOYEES) appear in the stream only when there is at least one record in
the second relation (DEGREES) that meets the condition you specify (matching
employee IDs). In evaluating this query, Rdb/VMS examines each record of
the EMPLOYEES relation and compares the value of the EMPLOYEE_ID field
with the same field in every record of the DEGREES relation.

Combining the NOT logical operator with the ANY relational operator allows
you to specify that records from one relation appear in the record stream
only when no record in another relation meets the condition you specify. The
following example uses NOT ANY to retrieve records of employees who have no
college degree:

FOR E IN EMPLOYEES
WITH (NOT ANY D IN DEGREES

WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID)
PRINT

E.EMPLOYEE_ID,
E.LAST_NAME,
E.FIRST_NAME

END_FOR

To access data about employees without college degrees, you need to access the
EMPLOYEES and DEGREES relations. Each record from the EMPLOYEES
relation is checked against the DEGREES relation to see if that employee’s ID
appears (that is, to see if the employee has a degree from some college). If an

3–14 Using Record Selection Expressions

employee’s ID does not appear in the DEGREES relation, you want to include
the corresponding record from the EMPLOYEES relation in the stream.

In this example, the first WITH clause of the RSE in the FOR statement
contains a second WITH clause to test and restrict the stream. The first WITH
clause of the RSE is:

WITH NOT ANY D IN DEGREES

The second clause is:

WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

3.5.3 Retrieving Records That Match a Substring or Pattern
The MATCHING operator allows you to retrieve records based on a partial
match of a field value. The MATCHING operator is not case sensitive. You can
use the following wildcard characters in specifying the substring or pattern to
be matched:

* Matches any string of zero or more characters

% Matches any single character

The MATCHING operator allows for more flexible searching than simple
equality testing. For example, the following request finds all products where
the COLOR field starts with ‘‘dark’’ and contains ‘‘red’’:

FOR P IN PRODUCT WITH P.COLOR MATCHING "dark*red*"
PRINT P.NAME,P.COLOR

END_FOR

The preceding might find product records with the following COLOR values:

Dark red
dark scarlet red
dark reddish brown

The following excerpts from an RDO terminal session log file show the results
of combinations of substrings and matching characters:

!
! Find the first five names in which the letters "on" come
! last in the name. Note that the last "*" following a single
! space character is necessary because the field ends in an
! unknown number of spaces. (The REDUCED TO clause [explained
! in a later section] eliminates multiple appearances of a
! name if more than one employee has that last name.)

Using Record Selection Expressions 3–15

FOR FIRST 5 E IN EMPLOYEES WITH
E.LAST_NAME MATCHING "*on *"
REDUCED TO E.LAST_NAME

PRINT
E.LAST_NAME

END_FOR
LAST_NAME
Aaron
Burton
Clinton
Dixon
Ferguson

!
! Find the names in which the letters "on" come
! after the first character in the name.

FOR FIRST 5 E IN EMPLOYEES WITH
E.LAST_NAME MATCHING "%on*"
REDUCED TO E.LAST_NAME

PRINT
E.LAST_NAME

END_FOR
LAST_NAME
Connolly
Jones
Lonergan

!
! The MATCHING operator also works with numeric data types.
! Find the salaries that begin with the number 3. This
! is another way to find all the salaries in the
! range BETWEEN 30000 AND 39999 (if the minimum salary
! is 400 or higher, and the maximum is less than 300000).

FOR S IN SALARY_HISTORY WITH
S.SALARY_AMOUNT MATCHING "3*"

PRINT S.SALARY_AMOUNT
END_FOR

SALARY_AMOUNT
32254.00
30598.00
30880.00
32589.00
33944.00

!
! Find the salaries where the number 87 follows the
! first digit.

3–16 Using Record Selection Expressions

FOR S IN SALARY_HISTORY WITH
S.SALARY_AMOUNT MATCHING "%87*"

PRINT S.SALARY_AMOUNT
END_FOR

SALARY_AMOUNT
48797.00
18705.00
18778.00
18778.00
18746.00

3.5.4 Using Limited Matching: STARTING WITH and
CONTAINING Operators

You can search for records in which a field value contains a specific sequence of
characters. Two relational operators perform this type of search:

STARTING WITH (case sensitive)

CONTAINING (not case sensitive)

For example, assume you do not remember how to spell an employee’s name,
but you do know that the name begins with ‘‘Tol’’. To find and display the
record for that employee, you could use the following query:

FOR E IN EMPLOYEES WITH E.LAST_NAME STARTING WITH "Tol"
PRINT

E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

Use the STARTING WITH relational operator to search for records in the
EMPLOYEES relation with a last name beginning with ‘‘Tol’’. The STARTING
WITH relational operator, like EQUAL and NE, is case sensitive. If you ask
for employees whose last names start with ‘‘TOL’’, RDO does not retrieve the
record because the database stores the field value as ‘‘Tol’’, not ‘‘TOL’’.

You can use the CONTAINING relational operator for searches that are not
case sensitive. If you substitute CONTAINING for STARTING WITH in the
preceding example RDO will retrieve the Toliver record.

FOR E IN EMPLOYEES WITH E.LAST_NAME CONTAINING "TOL"
PRINT
E.FIRST_NAME,
E.LAST_NAME,
E.EMPLOYEE_ID

END_FOR

Using Record Selection Expressions 3–17

You can use the CONTAINING operator for searches on any part of a field
value, not just the beginning. Thus, the CONTAINING operator is similar
to the MATCHING operator; however, wildcard characters are not permitted
with the CONTAINING operator (the * and % characters are treated as actual
characters in the substring to be matched).

Note Rdb/VMS does not use the index tables for indexed fields to evaluate
conditional expressions that use the CONTAINING operator. If you are
searching on the initial substring of a value for a field with an index
defined, you can get better performance by using STARTING WITH instead
of CONTAINING.

3.6 Eliminating Duplicate Values: REDUCED TO Clause
Many records in a database contain fields that hold duplicate values. For
example, many records in the EMPLOYEES relation may have ‘‘MA’’ stored in
the STATE field. Some queries look for unique values for one or more fields in
a record. For example, assume you want a list of the states in which employees
live. If a state (such as Massachusetts, code MA) occurs more than once, you
want it included only once.

The RSE in the following example finds the states in which all current
employees live. Because many employees live in the same state, this query
uses the REDUCED TO clause to restrict the final output to a unique value for
the STATE field.

FOR E IN EMPLOYEES REDUCED TO E.STATE
PRINT E.STATE

END_FOR

The preceding example forms a record stream from the EMPLOYEES relation,
using an RSE with a REDUCED TO clause. The field named in the REDUCED
TO clause (E.STATE) is called the reduce key. This clause eliminates any
duplicate values for the field or combination of fields specified as reduce keys.

You can specify more than one reduce key. Assume you want to collect
information about the range of colleges from which employees received
degrees and the specific degree fields from each college. You need to display
data about each college attended and the degrees granted by that college.
If several employees attended the same college, display the college once; if
several employees received the same type of degree from a college, display the
degree data once. In other words, you want to restrict the stream to unique
combinations of values for the college code and the degree. The following
example requires two reduce keys, COLLEGE_CODE and DEGREE:

3–18 Using Record Selection Expressions

FOR D IN DEGREES REDUCED TO D.COLLEGE_CODE, D.DEGREE
PRINT

D.COLLEGE_CODE,
D.DEGREE

END_FOR

In the preceding example, if two or more employees received PhD degrees from
Stanford University, ‘‘COLLEGE_CODE = Stanford, DEGREE = PhD’’ would
appear only once.

Be cautious in using the REDUCED TO clause if you are interested in fields
other than the reduce key or keys. A query that specifies a REDUCED TO
clause restricts the record stream by excluding duplicate records. In general,
limit your display to those fields specified in the REDUCED TO clause.
Displaying values of fields not specified in the REDUCED TO clause may yield
unpredictable results. For example, if you specified CITY as a reduce key and
yet also wanted to display employee identification numbers as well, the results
can be misleading, as in the following example:

! This example shows a probable error in logic. It is not to
! be taken as a model of good coding.
FOR E IN EMPLOYEES REDUCED TO E.CITY

PRINT
E.CITY,
E.EMPLOYEE_ID

END_FOR

In the preceding example, Rdb/VMS lists the unique occurrences of the CITY
field, such as Keene, but it does not know which EMPLOYEE_ID field values
you want (for example, which of the following residents of Keene: employee
IDs 00186, 00219, 00230, or 00234). The EMPLOYEE_ID field value that RDO
displays depends on how Rdb/VMS searches the records in the relation and
selects a value for use. That search sequence can be different each time you
execute the query.

The following table shows values for just three fields (CITY, STATE, and
EMPLOYEE_ID) of a record as they actually occur in six hypothetical records
of the EMPLOYEES relation. (The actual EMPLOYEES relation in the sample
database contains 100 records, and none with these EMPLOYEE_ID values;
however, for this illustration assume that the only records in the EMPLOYEES
relation are those listed in the table.) The lists following the table show the
effect of various REDUCED TO clauses.

Using Record Selection Expressions 3–19

Field values in the database:

CITY STATE EMPLOYEE_ID

Boston MA 00123

Portsmouth NH 00124

New Bedford MA 00125

Manchester NH 00126

Boston MA 00127

Portsmouth RI 00128

Reduced to CITY:

Boston
Portsmouth
New Bedford
Manchester

Reduced to STATE:

MA
NH
RI

Reduced to CITY, STATE:

Boston, MA
Portsmouth, NH
New Bedford, MA
Manchester, NH
Portsmouth, RI

3.7 Testing for a Single Record Occurrence: UNIQUE
Operator

You can test a relation to determine the uniqueness of a record occurrence.
A record is unique if there is exactly one record that satisfies the RSE. You
can find a unique record by specifying a field whose value makes that record
unique. For example, assume that you wish to display any city in which only
one employee lives, along with the name of the employee living there:

3–20 Using Record Selection Expressions

FOR E IN EMPLOYEES
WITH UNIQUE EMP IN EMPLOYEES
WITH E.CITY = EMP.CITY

PRINT E.CITY,
E.LAST_NAME,
E.FIRST_NAME

END_FOR

Use NOT UNIQUE to find instances where more than one record satisfies the
RSE. For example, you can modify the preceding example to display only those
cities in which two or more employees live, along with the employees’ names:

FOR E IN EMPLOYEES
WITH NOT UNIQUE EMP IN EMPLOYEES
WITH E.CITY = EMP.CITY

PRINT E.CITY,
E.LAST_NAME,
E.FIRST_NAME

END_FOR

The UNIQUE operator differs from the REDUCED TO clause in one important
way. When you use the REDUCED TO clause, you should display only the
values of the fields named in that clause; displaying other field values will
produce unanticipated results. The UNIQUE operator locates an entire record
whose field value makes the record unique and allows you to display any or all
fields from the qualifying record.

Table 3–5 summarizes the effects of the ANY, NOT ANY, UNIQUE, and NOT
UNIQUE operators.

Table 3–5 Testing for the Existence of Records with ANY and UNIQUE
Operators

Operator
Preceding RSE True if:

ANY At least one record found

NOT ANY No records found

UNIQUE Only one record found

NOT UNIQUE More than one record found, or no records found

3.8 Retrieving Segmented Strings
The segmented string is a special Rdb/VMS data type designed to handle
large pieces of data with a segmented internal structure. The maximum size
of an individual string segment is 64K bytes. Except for the length of the
string’s segments, Rdb/VMS does not know anything about the type of data
contained in a segmented string. For example, in a segmented string you
might store large amounts of text, long strings of binary input from a data

Using Record Selection Expressions 3–21

collecting device, or graphic data. A program can then retrieve the data from
the database and handle it in the appropriate way.

Because Rdb/VMS does not know what kind of data is contained in a
segmented string, you cannot perform many of the standard data manipulation
functions on it. You cannot use relational operators, such as EQUAL and
CONTAINING, to compare segmented strings. Rdb/VMS does not perform any
data type conversion on data that is transferred into or out of a segmented
string.

Rdb/VMS cannot modify a segmented string; it can only read or write it.
Therefore, to modify a segmented string, you must read it, make any changes,
and then write out the new segmented string.

Rdb/VMS defines a symbol to refer to the segments of a segmented string.
This symbol is equivalent to a field name; it names the ‘‘fields’’ or segments
of the string. Furthermore, because segments can vary in length, Rdb/VMS
also defines a symbol for the length of a segment. You must use these symbols
in the value expressions that you use to retrieve the length and value of a
segment:

RDB$VALUE

The value stored in a segment of a segmented string

RDB$LENGTH

The length in bytes of a segment

Because a single segmented string field value is made up of multiple segments,
you must manipulate the segments one at a time. Therefore, segmented string
operations require an internal looping mechanism, much like the record stream
set up by a FOR or START_STREAM statement. The following example
retrieves and prints two segmented strings:

FOR R IN RESUMES WITH R.EMPLOYEE_ID = ’00164’
FOR S IN R.RESUME

PRINT S.RDB$LENGTH, S.RDB$VALUE
END_FOR

END_FOR

3–22 Using Record Selection Expressions

4
Retrieving Records and Joining Relations

You can use relational operators and conditional expressions to retrieve records
from a single relation or from several relations joined together. This chapter
illustrates how to join relations to retrieve information contained in more than
one relation.

4.1 Joining Relations Using the CROSS Clause
Sometimes you must look at two or more relations to find the information that
satisfies a query.

The need to join relations to satisfy a query is a by-product of the process
of database normalization. When you design a relational database, you try
to normalize it by dividing groups of data elements into separate relations.
Common fields in each relation link one relation with another. Normalization
helps you avoid storing redundant data. (See the VAX Rdb/VMS Guide to
Database Design and Definition for details and examples of normalization.)

For example, you need not store information about each job an employee has
held in the company with employee information. You can store employee
information in an EMPLOYEES relation and job history information in a
JOB_HISTORY relation. The relations share a common field: EMPLOYEE_ID.
When you need to retrieve information about a worker and his or her job
history, you join the two relations on the EMPLOYEE_ID field.

You can join one relation with another, or you can join one relation with itself.
The following sections describe the variations.

Retrieving Records and Joining Relations 4–1

4.1.1 Joining Records from Two Relations
The simplest type of join combines records from two relations that have a
matching value for a common field. Consider a query to find the job history
and related job information for employees.

You first look at the JOB_HISTORY relation and find that it has six fields:

EMPLOYEE_ID (the employee’s identification number)

JOB_CODE (the employee’s job code)

JOB_START (the employee’s starting date)

JOB_END (the date the employee ended the job)

DEPARTMENT_CODE (the employee’s department)

SUPERVISOR_ID (the identification number of the employee’s supervisor)

The JOB_HISTORY relation, however, does not tell you all you need to know
about an employee’s job, because you also need to know the person’s job title,
wage class, and the minimum and maximum salaries for that person’s job.
This additional information is found in a separate relation named JOBS.

You can combine information from both relations with one query, displaying
all the data as though it were one record. To do this, join a record from the
JOB_HISTORY relation with a corresponding record from the JOBS relation.
The CROSS clause of the RSE enables you to cross or join records using a field
common to both relations, JOB_CODE. The WITH clause specifies that only
those records with a JOB_CODE value in one relation that matches a JOB_
CODE value in the other relation are joined. Those records in one relation
with JOB_CODE values that do not match JOB_CODE values in the other
relation are excluded from the join. Because this clause joins related records
from two relations, it is a relational join.

The following example joins records from the JOB_HISTORY and JOBS
relations, printing the requested information for each record in the JOB_
HISTORY relation:

FOR JH IN JOB_HISTORY
CROSS J IN JOBS
WITH JH.JOB_CODE = J.JOB_CODE

PRINT
JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.JOB_CODE,
J.WAGE_CLASS,
J.JOB_TITLE,
J.MINIMUM_SALARY,
J.MAXIMUM_SALARY

END_FOR

4–2 Retrieving Records and Joining Relations

When you join two or more relations in this way, you form an expanded output
record that contains data from several associated relations.

Note that although the common field might have the same name in both
relations, it does not have to; that is, the field name in each relation will
contain the same type of information, but the field can have a different
name in each relation. For example, the sample database contains the fields
EMPLOYEE_ID, MANAGER_ID, and SUPERVISOR_ID. All of these fields
contain employee identification numbers, but some identification numbers
serve different purposes. However, any of these fields can serve as a join term
linking two relations together. The join terms contain logically identical data
that you can use to link relations in a join.

If the fields do have the same name, you can use an OVER clause with the
CROSS clause to specify the join term. In the following example, CROSS J IN
JOBS OVER JOB_CODE is equivalent to CROSS J IN JOBS WITH JH.JOB_
CODE = J.JOB_CODE in the previous example:

FOR JH IN JOB_HISTORY
CROSS J IN JOBS OVER JOB_CODE

PRINT
JH.EMPLOYEE_ID,
JH.DEPARTMENT_CODE,
JH.JOB_CODE,
J.WAGE_CLASS,
J.JOB_TITLE,
J.MINIMUM_SALARY,
J.MAXIMUM_SALARY

END_FOR

Using a WITH or OVER clause to qualify or limit a join lets you link related
records from two relations. Although Rdb/VMS can process queries without
the WITH or OVER clauses, the results are not very meaningful. You should
include either clause in every join. If you do not specify a WITH or OVER
clause, RDO joins each record of one relation with every record of the other
relation, giving you a cross product. Such a join can be disastrous to your
system’s performance.

For example, if you join the EMPLOYEES relation and the JOB_HISTORY
relation without qualifying the relationship, Rdb/VMS joins every record in
the EMPLOYEES relation with every record in the JOB_HISTORY relation. If
there were 101 records in the EMPLOYEES relation and 277 records in the
JOB_HISTORY relation, the cross product would contain 27,977 records.

Retrieving Records and Joining Relations 4–3

4.1.1.1 One-to-One and One-to-Many Joins If one relation contains
unique key values for each record, you can easily join this relation with
another relation that contains either similar unique key values for each record
or multiple records with the same key value. Such a relationship is either
one-to-one or one-to-many.

In the EMPLOYEES relation, EMPLOYEE_ID is a key field that contains
a unique value for each record in the relation. The JOB_HISTORY and
SALARY_HISTORY relations contain many records that belong to an
individual employee, because one employee can have many JOB_HISTORY
records and many SALARY_HISTORY records. You can join the EMPLOYEES
relation with the JOB_HISTORY relation to find all records that belong
to a single employee. You can also join the EMPLOYEES relation with
the SALARY_HISTORY relation to retrieve all salary history records for
that employee. The results of such joins are illustrated in Figure 4–1; you
assemble employee information with every JOB_HISTORY record or with
every SALARY_HISTORY record.

Figure 4–1 One-to-Many Joins of Relations

ZK−7379−GE

EMPLOYEES SALARY_HISTORY

JOB_HISTORY

Employee_ID

Salary_Start

Salary_End

Salary_Amount

Employee_ID

Job_Start

Job_End

Job_Code

Department_Code

EMPLOYEES

Employee_ID

Employee_ID

4–4 Retrieving Records and Joining Relations

4.1.1.2 Many-to-Many Joins The joins in Figure 4–1 (of EMPLOYEES
with SALARY_HISTORY and of EMPLOYEES with JOB_HISTORY) are
straightforward. However, joining the JOB_HISTORY relation with the
SALARY_HISTORY relation presents a special situation. Each of these
relations contains multiple records for an employee; such a relationship is
a many-to-many relationship.

When you attempt a join with a many-to-many relationship, the cross product
is likely to be meaningless. If you join the JOB_HISTORY relation with the
SALARY_HISTORY relation using the join term EMPLOYEE_ID, Rdb/VMS
joins every record from the JOB_HISTORY relation for an employee with every
record from the SALARY_HISTORY relation. Thus, every JOB_HISTORY
record is associated with every SALARY_HISTORY record for a particular
employee. But the relationship you need should be qualified further by
checking date values in these records to link a JOB_HISTORY record with
the SALARY_HISTORY record for that particular job.

To ensure that your join produces the correct results, use the AND operator
within the WITH clause to qualify the join terms precisely. The following
query contains a CROSS clause that joins the JOB_HISTORY relation with the
SALARY_HISTORY relation and qualifies the join by including several AND
operator statements in the WITH clause:

FOR JH IN JOB_HISTORY
CROSS SH IN SALARY_HISTORY

WITH JH.EMPLOYEE_ID = SH.EMPLOYEE_ID
AND JH.JOB_END MISSING
AND SH.SALARY_END MISSING
AND JH.EMPLOYEE_ID = "00164"

PRINT
JH.EMPLOYEE_ID,
JH.JOB_CODE,
JH.JOB_START,
SH.SALARY_START,
SH.SALARY_AMOUNT,
SH.SALARY_END

END_FOR

The following information is displayed:

00164 DMGR 21-SEP-1981 21-SEP-1981 50000.00 17-NOV-1858

The results of this query restrict the records retrieved from the JOB_HISTORY
and SALARY_HISTORY relations as follows:

The employee ID is 00164.

Only records from both relations belonging to employee ID 00164 are
retrieved.

Retrieving Records and Joining Relations 4–5

Only current records from the JOB_HISTORY and SALARY_HISTORY
relations are needed; that is, the fields JOB_END and SALARY_END are
missing because you are looking for employees who have not terminated
their employment.

In some instances, it may be useful to add a condition that contains obvious
information but is helpful to the Rdb/VMS query optimizer. If you added
the condition DEPARTMENT_CODE NOT MISSING to the preceding RSE,
and DEPARTMENT_CODE were an indexed field, the query optimizer would
process the query more efficiently. For more information about this process,
see the VAX Rdb/VMS Guide to Database Maintenance and Performance.

4.1.2 Joining Records from More Than Two Relations
When you join two relations at a time, you need a CROSS clause for the pair of
relations in the join. If you need to retrieve data from three relations, first join
records from two relations on one field (join term); then join one relation of the
first pair with the third relation, using either the same join term or a different
one.

Previously, you saw a query that joined two relations, JOB_HISTORY and
JOBS, to retrieve all information about a specific job. However, assume you
also need to find the full name of an employee. To associate an employee with
the full name information (first name and last name), you expand the query
with another CROSS clause to access the EMPLOYEES relation and to supply
an employee ID number, as in the following example:

FOR JH IN JOB_HISTORY
CROSS J IN JOBS OVER JOB_CODE
CROSS E IN EMPLOYEES OVER EMPLOYEE_ID

WITH E.EMPLOYEE_ID = "00164"
PRINT

JH.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME,
J.JOB_TITLE,
JH.DEPARTMENT_CODE,
J.WAGE_CLASS

END_FOR

The preceding query adds a second CROSS clause to get the necessary
information from the EMPLOYEES relation. With this query, you access the
following three relations:

JOBS (data about each type of job)

JOB_HISTORY (data about each job held by each employee)

EMPLOYEES (personal data about each employee)

4–6 Retrieving Records and Joining Relations

You join the JOB_HISTORY and JOBS relations on the JOB_CODE field to get
complete job information. Then, to include the employee data associated with
each set of job history records, you join the JOB_HISTORY relation with the
EMPLOYEES relation. To ensure that the job data corresponds to the correct
employee, you perform this second join on the EMPLOYEE_ID field. To join
related records from three relations, Rdb/VMS:

Forms a stream that combines records from the JOBS and JOB_HISTORY
relations with matching values for the JOB_CODE field.

Adds records from the EMPLOYEES relation that restrict values to that
of EMPLOYEE_ID = ‘‘00164’’ for the records in the record stream of the
first join. Now, the complete join operation includes only those records
belonging to employee 00164.

Each resulting output record has fields from the three relations: JOBS, JOB_
HISTORY, and EMPLOYEES. Each CROSS clause uses a join term common to
two relations:

JOB_CODE is the join term for the JOB_HISTORY and JOBS relations.

EMPLOYEE_ID is the join term for the EMPLOYEES and JOB_HISTORY
relations.

To improve the efficiency of complex joins, you can define an index for each
frequently used join term. See the VAX Rdb/VMS Guide to Database Design
and Definition for information on defining indexes. When your query requires
joins of two or more relations, you can include the names of the relations in the
RESERVING clause of your START_TRANSACTION statements. (If you do
not use the RESERVING clause, all of the relations are automatically reserved
when they are referenced.) For example, the query illustrated earlier in this
section refers to three relations: EMPLOYEES, JOBS, and JOB_HISTORY.
Your START_TRANSACTION statement might look like the following:

RDO> START_TRANSACTION READ_ONLY RESERVING
cont> EMPLOYEES FOR SHARED READ,
cont> JOBS FOR SHARED READ,
cont> JOB_HISTORY FOR SHARED READ

4.1.3 Joining One Relation on Itself
Another type of query, called a reflexive join, allows you to join records from
one relation with other records in the same relation. You treat the relation as
if it were actually two relations, supplying two different context variables in
the join. Perform a reflexive join when you wish to match values from fields of
the same relation.

Retrieving Records and Joining Relations 4–7

For example, you might want to list all job classifications of staff employees
whose maximum salaries are greater than the minimum salaries of company
executives. The JOBS relation contains information about jobs in all wage
classes. Staff members are identified as wage class 2 and executives as wage
class 4.

You could access the JOBS relation two separate times, first retrieving all
maximum salaries for wage class 2, and then retrieving all minimum salaries
for wage class 4; you would then compare the records to find where the salaries
overlapped. However, not all of these steps are necessary, because Rdb/VMS
lets you access the relation twice in the same query by means of a reflexive
join, as shown in the following example:

FOR EXEC IN JOBS
CROSS STAFF IN JOBS

WITH EXEC.WAGE_CLASS = "4"
AND STAFF.WAGE_CLASS = "2"
AND STAFF.MAXIMUM_SALARY > EXEC.MINIMUM_SALARY

PRINT
STAFF.JOB_CODE,
STAFF.MAXIMUM_SALARY,
EXEC.JOB_CODE,
EXEC.MINIMUM_SALARY

END_FOR

Note When you use descriptive context variables like STAFF and EXEC, you are more
likely to refer to the field names correctly. You know at a glance the stream to
which you are referring.

The preceding RDO query joins the JOBS relation on itself. The query
specifies two different context variables, STAFF and EXEC, for the same
relation, JOBS. These statements instruct RDO to form a stream that includes
records containing data on pairs of employees, STAFF and EXEC.

To process this query, Rdb/VMS:

Takes the first record in STAFF (wage class = 2) and compares the
maximum salary amount with the minimum salary amount of the first
record in EXEC (wage class = 4).

Compares the first record in STAFF with the next record of EXEC until
all EXEC records have been compared. Rdb/VMS makes one pass through
EXEC for each record in STAFF.

Takes the second record in STAFF and compares it to the first record in
EXEC.

4–8 Retrieving Records and Joining Relations

Compares the second record in STAFF with the second record of EXEC,
and so on.

Includes in the resulting record stream only those records that meet the
specified conditions.

As Figure 4–2 illustrates, the JOBS relation appears as two relations: STAFF
and EXEC.

Figure 4–2 Joining a Relation on Itself (Reflexive Join)

RSE

STAFF IN JOBS CROSS EXEC IN JOBS
WITH STAFF.MAXIMUM_SALARY > EXEC.MINIMUM_SALARY

JOBS relation

JOBS (EXEC)

CLASS MAX_SAL MIN_SAL . . .

JOBS (STAFF)

JOBS relation

CLASS MAX_SAL MIN_SAL . . .

RESULT

STAFF.JOB_CODE STAFF.MAXIMUM_SALARY EXEC.JOB_CODE EXEC.MINIMUM_SALARY

ZK−7384−GE

4.2 Using Nested FOR Loops
When you use the CROSS clause to join two relations in a one-to-many
relationship, Rdb/VMS links the record in the first relation to each record
in the second relation. All values from the first relation are present in the
resulting cross, but only the values common to both the first and second
relation are included from the second relation.

Retrieving Records and Joining Relations 4–9

The following two examples request the same information; however, the second
uses a nested FOR loop to make the display more readable:

FOR E IN EMPLOYEES
CROSS JH IN JOB_HISTORY

WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND E.EMPLOYEE_ID = "00201"

PRINT
E.EMPLOYEE_ID,
JH.JOB_CODE,
JH.JOB_START,
JH.JOB_END

END_FOR

00201 APGM 15-APR-1979 00:00:00.00 27-MAY-1980 00:00:00.00
00201 APGM 28-MAY-1980 00:00:00.00 17-NOV-1858 00:00:00.00
00201 APGM 1-JUL-1975 00:00:00.00 3-JUN-1977 00:00:00.00
00201 APGM 4-JUN-1977 00:00:00.00 14-APR-1979 00:00:00.00

Note that 17-NOV-1858 is the VMS base date, used here to indicate a missing
value for fields with a DATE data type.

The next example uses a nested FOR loop to display the employee ID only
once, rather than with each job history record for that employee. This display
is a simple example of a control break report. Note that while the format may
be more attractive, using a nested FOR loop instead of a join may limit the
query optimizer’s ability to select the most efficient retrieval strategy.

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00201"

PRINT E.EMPLOYEE_ID

FOR JH IN JOB_HISTORY
WITH JH.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
JH.JOB_CODE,
JH.JOB_START,
JH.JOB_END

END_FOR

END_FOR

00201
APGM 1-JUL-1975 00:00:00.00 3-JUN-1977 00:00:00.00
APGM 28-MAY-1980 00:00:00.00 17-NOV-1858 00:00:00.00
APGM 15-APR-1979 00:00:00.00 27-MAY-1980 00:00:00.00
APGM 4-JUN-1977 00:00:00.00 14-APR-1979 00:00:00.00

Nesting FOR loops means entering one FOR statement (the outer loop)
followed by a second FOR statement (the inner loop). The inner loop is part of
the main FOR statement that controls it. Each loop has an RSE to bring the
two record streams together in the same statement.

4–10 Retrieving Records and Joining Relations

The process in the preceding (second) example works as follows:

RDO retrieves the first record in the stream formed by the outer loop and
displays any expressions listed in the PRINT statement.

RDO then processes the inner loop for each record specified by the inner
loop’s RSE.

Control returns to the outer loop, and the cycle continues until there are no
more records in the outer loop’s stream.

With a nested FOR format, you display a value for the EMPLOYEE_ID field
only when that field’s value changes. Nested FOR loops are convenient for
this type of display because you can show a one-to-many relationship: one
EMPLOYEES record to many JOB_HISTORY records. You can also use nested
FOR loops to establish relationships for outer joins.

Retrieving Records and Joining Relations 4–11

5
Defining and Using Views

A view can be thought of as a virtual relation, a combination of fields from
one or more relations in the database, that sometimes includes an RSE. A view
does not contain actual (physical) records; rather, a view is a database element
that provides flexibility in accessing data in records from one or more relations.
A view can contain clauses limiting the record stream based on certain field
values (such as WITH E.STATUS_CODE = 1). You can treat a view as you
would a relation in creating RSEs.

If a view definition refers to a single relation, you can use it to perform the full
range of data manipulation operations (read-only and read/write). However,
if a view definition refers to multiple relations (or refers to another view that
refers to multiple relations), you are limited to read-only access to the fields in
the view definition.

Views provide the following benefits:

View definitions allow you to combine fields used in queries that are
executed frequently. This saves keystrokes and reduces the chance of error
when users enter these queries.

View definitions can prevent unauthorized users from accessing sensitive
data, while still allowing users to access the data they need. This is
done by creating different views for use by different classes of users; for
example, create one view for general user access that omits fields with
sensitive information from the view definition, and create another view for
restricted user access that includes sensitive information.

Queries that use complex selection criteria can be formalized in a view
definition to make access easy.

Defining and Using Views 5–1

5.1 Creating the View Definition
After some experience using your database, you may discover that users often
enter the same query to display certain fields. Or you may decide that certain
users, for security reasons or for reasons of job efficiency, need to see a subset
of fields or a collection of fields from separate relations. You can use the
DEFINE VIEW statement to create view definitions that meet the needs of all
these users.

For example, you may discover that you often use some fields in the
EMPLOYEES relation more than you use others. You can define a view
to create a more restricted version of the EMPLOYEES relation using fields
from that relation. The following definition creates a view that consists of
the last name, first name, and employee ID. (Because you are creating a new
definition in the database, you need to include write access to the database
in your START_TRANSACTION statement or accept the default access of
read/write.)

START_TRANSACTION READ_WRITE

DEFINE VIEW EMP_ID OF E IN EMPLOYEES.
E.LAST_NAME.
E.FIRST_NAME.
E.EMPLOYEE_ID.

END VIEW.

COMMIT

Now you can refer to the view just as you refer to a relation, using the same
field names as in the EMPLOYEES relation. For example:

FOR E IN EMP_ID
PRINT E.*

END_FOR

You can also include an RSE when you refer to a view to restrict the records
you display. For example:

FOR E IN EMP_ID WITH E.EMPLOYEE_ID = "00164"
PRINT E.*

END_FOR

The preceding example displays the fields in the EMP_ID view for the record
in which EMPLOYEE_ID = ‘‘00164’’. If you forget which fields are included in
the view definition, first use the SHOW RELATIONS statement, because views
are considered to be relations. RDO displays all relations and indicates which
definitions are views. For example:

5–2 Defining and Using Views

RDO> SHOW RELATIONS

User Relations in Database with filename personnel
CANDIDATES
COLLEGES
CURRENT_INFO A view.
CURRENT_JOB A view.
CURRENT_SALARY A view.
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS

You can then use the SHOW FIELDS statement to display the names of the
fields in the CURRENT_INFO definition:

RDO> SHOW FIELDS FOR CURRENT_INFO

Fields for relation CURRENT_INFO
LAST_NAME text size is 14
FIRST_NAME text size is 10
ID text size is 5

based on global field ID_NUMBER
DEPARTMENT text size is 30

based on global field DEPARTMENT_NAME
JOB text size is 20

based on global field JOB_TITLE
JSTART Date

based on global field STANDARD_DATE
SSTART Date

based on global field STANDARD_DATE
SALARY signed longword scale -2

You can limit the view to records that meet certain criteria based on field
values. The following example defines a view named ACTIVE_EMP, limiting
it to records where the status code is ‘‘1’’ (that is, full-time employees) and
specifying the fields to be included.

Defining and Using Views 5–3

DEFINE VIEW ACTIVE_EMP OF E IN EMPLOYEES
WITH E.STATUS-CODE = "1".

E.EMPLOYEE_ID.
E.LAST_NAME.
E.FIRST_NAME.
E.MIDDLE_INITIAL.
E.ADDRESS_DATA_1.
E.ADDRESS_DATA_2.
E.CITY.
E.STATE.
E.POSTAL_CODE.
E.SEX.
E.BIRTHDAY.
E.STATUS_CODE.

END VIEW.

5.2 Joining Relations in a View Definition
The design of the PERSONNEL database includes many relations. Some
applications may require a view of the database that combines fields from
many relations. Rdb/VMS lets you create new relationships from the basic
relations in the database by defining views using a join statement.

If you must often form the same RSE to retrieve records from several relations,
you might consider creating a view definition. A view brings together fields
from several relations based on an RSE specified in the view definition. A user
can refer to the view definition as if it were a single relation and request RDO
to display field values. Thus, a user who may not understand the syntax for
a complex join can still access data from such a join when it is contained in a
view.

The following example defines the view named EMP_HISTORY, which contains
fields from three relations (JOB_HISTORY, JOBS, and EMPLOYEES). The
view definition consists of two parts:

A record selection expression (RSE)

A list of the fields

DEFINE VIEW EMP_HISTORY
OF JH IN JOB_HISTORY

CROSS J IN JOBS
CROSS E IN EMPLOYEES
WITH J.JOB_CODE = JH.JOB_CODE AND
JH.EMPLOYEE_ID = E.EMPLOYEE_ID.

JH.EMPLOYEE_ID.
E.FIRST_NAME.
E.LAST_NAME.
J.JOB_TITLE.
JH.DEPARTMENT_CODE.
J.WAGE_CLASS.

END VIEW.

5–4 Defining and Using Views

You can now use the view definition EMP_HISTORY with an RSE to retrieve
employee history data for a particular employee, as in the following example.
You can include the name of the view in a START_TRANSACTION statement.
Rdb/VMS implicitly reserves the relations referred to in the view according to
the specified reserving option or its default.

START_TRANSACTION READ_ONLY RESERVING EMP_HISTORY FOR SHARED READ
FOR E IN EMP_HISTORY WITH E.EMPLOYEE_ID = "00164"

PRINT E.*
END_FOR

The next example shows a more complex view that joins four relations. Assume
that you need to compile a report for each employee in the EMPLOYEES
relation, and the report should include the following information:

Each employee’s ID

Each employee’s first and last name

The title of the job he or she currently holds

The code of the department where the employee works

Current salary information

The wage class of the job the employee holds

The SALARY_HISTORY relation contains current salary information as well
as the salary start date and salary amount for a particular job. The JOB_
HISTORY relation holds data about each job an employee has held, including
the department and job code. The JOBS relation contains information about
each job in the company. The EMPLOYEES relation describes each employee
in the company. Each of these relations supplies some data for the report. To
get the necessary fields from each, you must join the four relations in a view
definition, as shown in the next example.

Defining and Using Views 5–5

DEFINE VIEW EMPLOYEE_REPORT_DATA
OF SH IN SALARY_HISTORY

CROSS J IN JOBS
CROSS E IN EMPLOYEES
CROSS JH IN JOB_HISTORY

WITH SH.SALARY_END MISSING
AND SH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND JH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND JH.JOB_END MISSING
AND JH.JOB_CODE = J.JOB_CODE.
SH.EMPLOYEE_ID.
E.FIRST_NAME.
E.LAST_NAME.
J.JOB_TITLE.
JH.DEPARTMENT_CODE.
J.WAGE_CLASS.
SH.SALARY_AMOUNT.
SH.SALARY_START.

END VIEW.

The preceding view definition refers to the following relations:

JOB_HISTORY (each job ever held by each employee)

JOBS (each type of job an employee can hold)

EMPLOYEES (personal information on each employee)

SALARY_HISTORY (each salary level held by an employee for each job
held by each employee)

To define the view in the preceding example, you need to:

1 Identify the four relations with enough CROSS clauses to specify those
relations that contain the fields you want to compare or display.

2 Add the WITH clauses to link each pair of relations that share a common
field or meet a specific condition. One relation can be associated with more
than one other relation:

The JOB_HISTORY relation links with the SALARY_HISTORY
relation in the SALARY_END field.

Records with the JOB_END field containing the missing value are
current jobs. (For information on the missing value for a field,
including using the MISSING keyword to check if a field value is
missing, see Section 6.5.) The JOB_HISTORY relation also links with
the JOBS relation on the JOB_CODE field.

The SALARY_HISTORY relation links with the EMPLOYEES relation
on the EMPLOYEE_ID field, but only for those records in the SALARY_
HISTORY relation whose SALARY_END date field contains the missing
value for the job held currently.

5–6 Defining and Using Views

You can use any field in one relation that is common to any other
relations. Each WITH clause links a field in one relation with a field
in another and further restricts the records included in your record
stream.

3 Display only those fields you need. Qualify each field with its context
variable.

Defining and Using Views 5–7

6
Storing, Modifying, and Erasing Data

This chapter shows you how to use RDO to store, modify, and erase data
in an Rdb/VMS database. After you become familiar with the statements
that perform these operations, you can include them in your host language
programs: use the EDIT statement, write a series of statements to a file, and
include that file in a host language source program. (See the VAX Rdb/VMS
RDO and RMU Reference Manual for information on the EDIT statement.)

6.1 Storing Data in an Rdb/VMS Database
After you define your database and its various elements, you can store data in
each relation using one of the following methods:

Use the RDO STORE statement.

Use the SQL INSERT statement.

Embed your store operations in a host language program to load data into
your database interactively or from disk files.

Use DATATRIEVE to load data from VMS RMS files or a VAX DBMS
database.

Use a RALLY application, DECdecision, or TEAMDATA to enter data.

This section discusses only Rdb/VMS RDO storage statements.

Storing, Modifying, and Erasing Data 6–1

6.1.1 Storing Values in One Relation
Entering and maintaining data in a database is an ongoing task. For example,
every time a new employee joins a particular company, the Personnel
department adds a record to a relation such as the EMPLOYEES relation
described throughout this guide. Adding a new record to a relation in the
database does not present a record-level conflict to other users of the database
because they cannot access a record that does not yet exist. The START_
TRANSACTION statement that precedes the STORE statement should specify
the SHARED WRITE reserving option:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

Setting the share mode to SHARED ensures that you are able to store several
records in a session while other users access the same relation. However,
other users can specify transaction modes in their START_TRANSACTION
statements that conflict with your intentions; and when such conflicts occur,
RDO might not allow other users access to the relation until you terminate
your transaction. Refer to Chapter 2 for details on access conflicts.

When an employee joins the company, you should have enough information
to store values for each field in a record of the EMPLOYEES relation. In
Rdb/VMS, you use the STORE statement to insert a record into a relation.
This statement usually includes a series of assignments that specify the values
for each field of the record. For example, if the EMPLOYEES relation had only
four fields, the following example would store a new record:

RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

STORE E IN EMPLOYEES USING
E.EMPLOYEE_ID = "00502";
E.FIRST_NAME = "Paul";
E.LAST_NAME = "Chris";
E.CITY = "Boston"

END_STORE

COMMIT

6.1.2 Storing Values in Multiple Relations
You can store values in more than one relation within the same FOR statement
in RDO. However, you need a STORE statement for each relation. For
example, after you have entered all the records for new employees in the
EMPLOYEES relation, you may want to add corresponding employee records
in the JOB_HISTORY and SALARY_HISTORY relations. No field in the
EMPLOYEES relation distinguishes a new employee record from existing
employee records. You can, however, use the EMPLOYEES relation to compare
existing EMPLOYEE_ID values with those already stored in the other two
relations.

6–2 Storing, Modifying, and Erasing Data

The JOB_HISTORY and SALARY_HISTORY relations should have at least one
corresponding record for every employee currently working in the company.
Therefore, those records in the EMPLOYEES relation with no records in
the JOB_HISTORY or SALARY_HISTORY relations must be newly hired
employees. You can perform a join across these three relations to check for
the existence of corresponding records. If there are no matching records in
the history relations, you can store new records in the history relations using
values from the EMPLOYEES relation.

Before you store new values in the database, you should specify the necessary
relations in your START_TRANSACTION statement and indicate the correct
share mode and lock type. Notice you need write access to the JOB_HISTORY
and SALARY_HISTORY relations, but only read access to the EMPLOYEES
relation.

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED READ,
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE

In the following example, the use of the NOT ANY relational operator and
the AND logical operator in the WITH clause allows you to check that no
corresponding records exist in the history relations. That is, RDO executes the
STORE statement only when there is no such correspondence. This example
stores data in the JOB_HISTORY and SALARY_HISTORY relations for each
new employee and also prints out that person’s EMPLOYEE_ID value.

FOR E IN EMPLOYEES
WITH

(NOT ANY JH IN JOB_HISTORY
WITH JH.EMPLOYEE_ID = E.EMPLOYEE_ID)

AND
(NOT ANY SH IN SALARY_HISTORY

WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID)

PRINT E.EMPLOYEE_ID

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "21-AUG-1989"

END-STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARY_START = "21-AUG-1989"

END-STORE

END_FOR

You can include multiple STORE statements like these in a single transaction,
and it is in fact good practice to keep related updates together in the same
transaction.

Storing, Modifying, and Erasing Data 6–3

6.2 Modifying Data
When you update data in a relation, you first must identify the record stream
that contains the record or records you want to change. You can assign new
values, use existing values in fields from other relations, or specify value
expressions to calculate the new value for each field in the selected records of
the record stream. After you create a record stream, Rdb/VMS executes the
MODIFY statement to change the values of the specified field or fields.

You can modify data in more than one relation in a single transaction. If the
changes to records in these relations depend on the values of fields in another
relation (such as the EMPLOYEES relation), you must specify a record stream
that contains the necessary records from that other relation.

When you are modifying relations, you can choose to let other users access
those same relations. But once you select a record to change, Rdb/VMS locks
that record. Other users cannot access that record until you release it. The
lock ensures that only current data is available to all users. The changes you
make are available to other users only after you make your changes permanent
with the COMMIT statement. If you decide that the changes you make should
not apply to the database at this time, you can undo the updates with the
ROLLBACK statement.

6.2.1 Changing Data in a Single Relation
The simplest form of data modification involves changing data in a single
relation.

The following example uses an RSE that identifies all people currently
employed in the Engineering department. It finds the records of all current
employees in the JOB_HISTORY relation using the JOB_END MISSING
expression. When the records are selected, the RSE uses the MODIFY
statement to change all the supervisor identification numbers in Engineering
to 00348.

START_TRANSACTION READ_WRITE RESERVING JOB_HISTORY
FOR SHARED WRITE

FOR JH IN JOB_HISTORY
WITH JH.DEPARTMENT_CODE = "ENG "
AND JH.JOB_END MISSING

MODIFY JH USING
JH.SUPERVISOR_ID = "00348"

END_MODIFY

END_FOR
COMMIT

6–4 Storing, Modifying, and Erasing Data

You can check the effect of the changes you just made. The following example
displays information about the employees currently in the Engineering
department, including the new supervisor ID:

RDO> FOR JH IN JOB_HISTORY
cont> WITH JH.DEPARTMENT_CODE = "ENG"
cont> AND JH.JOB_END MISSING
cont> PRINT
cont> JH.EMPLOYEE_ID,
cont> JH.DEPARTMENT_CODE,
cont> JH.SUPERVISOR_ID
cont> END_FOR

EMPLOYEE_ID DEPARTMENT_CODE SUPERVISOR_ID
00171 ENG 00348
00471 ENG 00348

You can also modify values in a field by including a value expression. Any
valid arithmetic operation can be used in your value expression to assign new
values to a field or fields. You can also refer to values from other fields within
the same relation.

For example, if you define a new field in the SALARY_HISTORY relation called
WEEKLY, you can assign values to that field for every current record in the
SALARY_HISTORY relation. The current record in the SALARY_HISTORY
relation, like the current record in the JOB_HISTORY relation, is identified by
the MISSING relational operator. The following example uses the MODIFY
statement to modify the new WEEKLY field and replace missing values in the
WEEKLY field with new values:

START_TRANSACTION READ_WRITE RESERVING
SALARY_HISTORY FOR SHARED WRITE

FOR SH IN SALARY_HISTORY
WITH SH.SALARY_END MISSING

MODIFY SH
USING

SH.WEEKLY = (SH.SALARY_AMOUNT/52)
END_MODIFY

END_FOR

The MODIFY statement in the preceding example includes a reference to
another field, SALARY_AMOUNT, in the same relation and uses it in an
arithmetic operation to compute a weekly salary amount for every current
employee in the SALARY_HISTORY relation.

Storing, Modifying, and Erasing Data 6–5

6.2.2 Changing Data in Multiple Relations
You can modify data in two or more relations in a single transaction. Specify
the relations in the record stream identified by the RSE in the FOR statement,
and use a separate MODIFY statement for each relation whose records are to
be changed.

For example, assume that because information was unavailable, records
in the JOB_HISTORY and SALARY_HISTORY relations were stored with
missing values for job code, department code, and salary amount. When the
information becomes known, you can locate these records and supply valid
data, changing their field values from MISSING to actual values.

Here are the steps to modify the fields in the JOB_HISTORY and SALARY_
HISTORY relations:

1 Form an RSE that selects employee records from the EMPLOYEES
relation, records for current salaries from the SALARY_HISTORY relation,
and records for current jobs from the JOB_HISTORY relation.

2 Modify the field or fields of the record from the SALARY_HISTORY
relation.

3 Modify the fields of the record from the JOB_HISTORY relation.

4 Commit the changes to the database.

The following example modifies records in the JOB_HISTORY and SALARY_
HISTORY relations, giving each new employee (that is, with an employee ID of
00502 or higher) a job code of MENG, a department code of ENG, and a salary
of $25,000:

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED READ,
JOB_HISTORY FOR SHARED WRITE, ! Start transaction with
SALARY_HISTORY FOR SHARED WRITE ! write access

FOR E IN EMPLOYEES WITH ! Begin outer loop
E.EMPLOYEE_ID GE "00502" ! selecting new employees

FOR JH IN JOB_HISTORY ! Begin first inner loop
WITH E.EMPLOYEE_ID = JH.EMPLOYEE_ID ! selecting their current
AND JH.JOB_END MISSING ! job history records

MODIFY JH USING ! Modify two fields
JH.JOB_CODE = "MENG";
JH.DEPARTMENT_CODE = "ENG ";

END_MODIFY
END_FOR ! Terminate first inner loop

FOR SH IN SALARY_HISTORY ! Begin second inner loop
WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID ! selecting their current
AND SH.SALARY_END MISSING ! salary history records

6–6 Storing, Modifying, and Erasing Data

MODIFY SH USING ! Modify salary amount
SH.SALARY_AMOUNT = 25000

END_MODIFY

END_FOR ! Terminate second inner loop
END_FOR ! Terminate outer loop

COMMIT

Do not attempt to modify any field used in the RSE. If you attempt to modify
a join term in the RSE, Rdb/VMS cannot ensure predictable results. Changing
such a value might change the contents of the record stream. Note that in the
preceding example none of the fields in the RSE itself is modified.

Some update tasks require features, such as extensive arithmetic functions
and character manipulation, that a host language program can provide. RDO
performs limited queries of the database. It helps you to build logically and
syntactically correct statements that you can then embed in a host language
program. For extensive and complex interactive updates or reports, you
can consider using DATATRIEVE, DECdecision, TEAMDATA, or a RALLY
application.

6.3 Erasing Data Records in a Relation
You can delete (erase) one or many records in a relation identified by the
RSE using the ERASE statement. Because you are updating the database,
you begin the update transaction with a START_TRANSACTION statement
specifying READ_WRITE access. When you terminate the transaction, use the
COMMIT statement to make the deletions permanent or enter the ROLLBACK
statement to restore the database to the state it was in before you made any
modifications.

The following example erases the employee record in the EMPLOYEES
relation with the employee ID of 00502:

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED WRITE

FOR E IN EMPLOYEES
WITH E.EMPLOYEE_ID = "00502"

ERASE E
END_FOR

COMMIT

To verify that the record for the employee whose identification number is 00502
no longer exists in the EMPLOYEES relation, you can try the next query.

Storing, Modifying, and Erasing Data 6–7

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00502"
PRINT

E.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME

END_FOR

RDO does not display any data, indicating that the record with the employee
ID of 00502 has been deleted from the EMPLOYEES relation.

In the sample personnel database, deleting the record for employee ID 00502
from the EMPLOYEES relation causes a corresponding deletion of records with
that employee ID from the JOB_HISTORY, SALARY_HISTORY, DEGREES,
and RESUMES relations. These automatic deletions occur because a trigger
has been defined specifying those actions. (Section 6.6 discusses triggers.)
However, if the trigger had not been defined, there still might be records for
employee ID 00502 in the JOB_HISTORY and SALARY_HISTORY relations,
and perhaps also in other relations. In such a case, you should write similar
statements to delete these records from these relations.

Before you delete the record in the EMPLOYEES relation, you can use the
RSE to find the records that will be deleted first (or should be deleted if a
trigger has not been defined) in the other relations. After deleting all records
associated with employee ID 00502, you can verify that the employee’s record
has been deleted from the necessary relations by attempting to display records
for that employee.

6.4 Updating by Selecting Data from the Record Stream
The DECLARE_STREAM and START_STREAM statements are especially
useful for conditionally processing the records in a record stream in programs.
The DECLARE_STREAM statement allows you to specify an RSE that
will be applied each time the named stream is started. If you use DECLARE_
STREAM to specify a record stream, you can use one or more START_STREAM
statements that specify just the stream name in the program or session. As an
alternative to using DECLARE_STREAM and START_STREAM statements
together, you can specify a full RSE with a START_STREAM statement.

Thus, if you plan to use the same stream specification multiple times, it is
more convenient to use the DECLARE_STREAM statement once, and then
refer to the stream name in each START_STREAM statement. On the other
hand, if you plan to use the stream specification only once during the program
or session, it is more convenient to give the complete specification with the
START_STREAM statement and not use the DECLARE_STREAM statement.

6–8 Storing, Modifying, and Erasing Data

Unlike the FOR statement, which works with every record identified in the
RSE until all records are processed, the START_STREAM statement makes
records available but does not automatically retrieve any record in a record
stream. In order to see the records in a particular record stream, you must
retrieve each one with the FETCH statement. After fetching a record, you can
test values of fields and process some records while passing over others.

For example, you could update the JOB_HISTORY and SALARY_HISTORY
relations with records for new employees, using the following approach. (This
example uses the DECLARE_STREAM statement merely for illustration.)

1 Identify and name a group of selected records (for new employees) from the
EMPLOYEES relation using the DECLARE_STREAM statement and the
EMPLOYEE_ID value for the first new employee.

2 Start the transaction.

3 Locate the record for the first new employee using the FETCH statement.

4 For each new employee record, add a record in the JOB_HISTORY and the
SALARY_HISTORY relations.

5 Repeat steps 3 and 4 until there are no more records in the record stream.

6 Close the stream.

7 Commit the transaction to the database.

The following example illustrates the preceding logic except for step 5; that
is, the example shows how to add records for the first new employee. (A
subsequent example will show how to extend the example to add records for
the remaining new employees.)

Storing, Modifying, and Erasing Data 6–9

DECLARE_STREAM NEW_STAFF USING E IN EMPLOYEES !Stream is named NEW_STAFF
WITH E.EMPLOYEE_ID = "00502" !ID of first new employee = 00502

START_TRANSACTION READ_WRITE RESERVING
JOB_HISTORY FOR SHARED WRITE,
SALARY_HISTORY FOR SHARED WRITE,
EMPLOYEES FOR SHARED READ

START_STREAM NEW_STAFF

FETCH NEW_STAFF

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "21-AUG-1989"

END_STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARY_START = "21-AUG-1989"

END_STORE

END_STREAM NEW_STAFF

COMMIT

The preceding statements add records to the JOB_HISTORY and SALARY_
HISTORY relations only for the first new employee. However, assume you
have six additional new employee records to process. To solve the problem
of processing all six records in the stream interactively, you could repeat
the FETCH and STORE statements six times, but this would be very time-
consuming. A more efficient method would be to create a command file
containing the RDO statements for the operation that you need to perform
multiple times (in this case, fetching and storing). For example, use a VMS
text editor to create a command file called UPDATE.RDO that contains the
following statements:

FETCH NEW_STAFF

STORE JH IN JOB_HISTORY USING
JH.EMPLOYEE_ID = E.EMPLOYEE_ID;
JH.JOB_START = "21-AUG-1989"

END_STORE

STORE SH IN SALARY_HISTORY USING
SH.EMPLOYEE_ID = E.EMPLOYEE_ID;
SH.SALARY_START = "21-AUG-1989"

END_STORE

Then, at the RDO prompt, type the name of the command file preceded by the
at sign (@) and have RDO execute the statements in the command file.

Thus, to complete the update operations more efficiently, you can break the
process into three steps:

1 Form the record stream with the START_STREAM statement.

2 Execute the command file the required number of times.

6–10 Storing, Modifying, and Erasing Data

3 End the stream and commit the transactions to the database.

The following example finds out how many additional new employees need
to be processed, then starts a record stream and invokes the command
file UPDATE.RDO the required number of times. (This example does not
use the DECLARE_STREAM statement. This approach is taken merely to
illustrate the use of the START_STREAM statement with a complete stream
specification.)

RDO> PRINT COUNT OF E IN EMPLOYEES WITH !How many more new employees?
cont> E.EMPLOYEE_ID > "00502"

6

RDO> START_STREAM NEW_STAFF USING ! Start stream NEW_STAFF
cont> E IN EMPLOYEES WITH
cont> E.EMPLOYEE_ID > "00502"
RDO> @UPDATE ! Update - perform 6 times
RDO> @UPDATE
RDO> @UPDATE
RDO> @UPDATE
RDO> @UPDATE
RDO> @UPDATE
RDO> END_STREAM NEW_STAFF ! Close the stream
RDO> COMMIT ! Write changes to database

If you had attempted to execute UPDATE.RDO and there were no more records
in the record stream, Rdb/VMS would have responded with this message:

RDO> @UPDATE
%RDB-E-STREAM_EOF, attempt to fetch past end of stream.

Remember to terminate your transactions with either the COMMIT or the
ROLLBACK statement. Table 6–1 illustrates the effects of these statements on
databases and transactions.

Table 6–1 Effects of COMMIT and ROLLBACK on Databases and
Transactions

Items COMMIT ROLLBACK

Scope of statement Includes all invoked
databases

Includes all invoked databases

Database Writes to disk all changes
to a database and its data
definitions

Does not write to disk any
changes to a database and its
data definitions

Open streams Closes all open streams as in
END_STREAM

Closes all open streams as in
END_STREAM

Position in stream No record is available No record is available

Record locks Releases all locks Releases all locks

Storing, Modifying, and Erasing Data 6–11

6.5 Using Missing Values
Sometimes you may not have information for every field when you are storing
information for a record. When a field in a record is left blank, Rdb/VMS
automatically marks the field as missing and sets an internal null flag for that
occurrence of the field. You have the option to define a missing value for a
field in its field definition. If you do not define a missing value and the field
is left blank, Rdb/VMS supplies default missing values to the field in the form
of zeros for numeric fields and spaces for text fields. (Do not confuse missing
value with the SQL default value—see Section 6.5.3.)

When a field is defined as missing, Rdb/VMS marks the field and returns the
defined missing value when you include the field in display statements. You
can think of a missing field as empty. See Section 6.5.1 for more information
about retrieving missing field values using the MISSING relational operator.
To define a missing value for the field MIDDLE_INITIAL, use the MISSING_
VALUE clause as follows:

DEFINE FIELD MIDDLE_INITIAL
DESCRIPTION IS /* Employee’s middle initial */
DATATYPE IS TEXT SIZE IS 1
MISSING_VALUE IS " ".

6.5.1 Retrieving Records with a Missing Field Value
You can retrieve missing field values by using the MISSING relational
operator, or by using the PRINT statement with an asterisk (such as with
PRINT E.*) to print all the field values including the missing value. When you
retrieve a missing field, Rdb/VMS returns the missing value (even though the
missing value is not physically stored in the field).

To display the records of any employees who have no middle initial, use the
following query:

RDO> FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL MISSING
cont> PRINT E.EMPLOYEE_ID, E.FIRST_NAME, E.MIDDLE_INITIAL, E.LAST_NAME
cont> END_FOR

EMPLOYEE_ID FIRST_NAME MIDDLE_INITIAL LAST_NAME
00166 Rick Dietrich
00167 Janet Kilpatrick
00168 Norman Nash
00170 Brian Wood
00171 Aruwa D’Amico
. . .

Rdb/VMS finds all the records containing fields where no middle initial is
assigned and displays the missing value for the MIDDLE_INITIAL field (in
this instance, a space) in those records.

You can use the MISSING relational operator to retrieve a segmented string.

6–12 Storing, Modifying, and Erasing Data

When relational operators are used, Rdb/VMS does not include in the record
stream fields whose values are missing. Therefore, when using relational
operators to make comparisons of fields in the database, be sure to write the
RSE clearly to include records whose values are missing.

If a field has a specific missing value defined for it, the missing value is
included in the field values displayed. Missing values are assigned the highest
value in the ASCII collating sequence. Records sorted by a field with a defined
missing value appear first when the sort order is descending and last when the
sort order is ascending.

The following items are intended to prevent some common misconceptions
about missing values.

Because a missing value is not actually stored, you cannot retrieve
instances of the missing value by specifying the defined missing value in a
query. For example, if the missing value for MIDDLE_INITIAL is "" (that
is, a single space), the following query will not retrieve instances where the
MIDDLE_INITIAL field value is missing:

FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL = " "
PRINT E.*

END_FOR

Instead, use:

FOR E IN EMPLOYEES WITH E.MIDDLE_INITIAL MISSING
PRINT E.*

END_FOR

If you attempt to store the value defined as the missing value in a field,
that value is not actually stored; rather, that instance of the field is simply
marked as missing. As an illustration, assume that the missing value
for the field SEX has been defined as X. As the following example shows,
specifying that X be stored in the SEX field for the record with employee
ID 00164 does not result in the storage of the value X; the query asking for
records WITH E.SEX = " X" returns no records:

RDO> START_TRANSACTION READ_WRITE
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> MODIFY E USING E.SEX = "X"
cont> END_MODIFY
cont> END_FOR
RDO> FOR E IN EMPLOYEES WITH E.SEX = "X"
cont> PRINT E.EMPLOYEE_ID
cont> END_FOR
RDO> FOR E IN EMPLOYEES WITH E.SEX MISSING
cont> PRINT E.EMPLOYEE_ID
cont> END_FOR

EMPLOYEE_ID
00164

Storing, Modifying, and Erasing Data 6–13

Similarly, if you use the expression RDB$MISSING in modifying the
contents of a field, nothing is physically stored in the field. Rdb/VMS
evaluates RDB$MISSING to determine the missing value for a field. As
the following example shows, using the expression RDB$MISSING marks
the field value as missing; changing the missing value changes what RDO
displays when the field value is missing:

RDO> START_TRANSACTION READ_WRITE
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> MODIFY E USING E.SEX = RDB$MISSING(E.SEX)
cont> END_MODIFY
cont>END_FOR
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> PRINT E.EMPLOYEE_ID, E.FIRST_NAME, E.LAST_NAME, E.SEX
cont>END_FOR

EMPLOYEE_ID FIRST_NAME LAST_NAME SEX
00164 Alvin Toliver X

RDO> CHANGE FIELD SEX MISSING_VALUE IS "Z". ! Change the missing value.
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164"
cont> PRINT E.EMPLOYEE_ID, E.FIRST_NAME, E.LAST_NAME, E.SEX
cont>END_FOR

EMPLOYEE_ID FIRST_NAME LAST_NAME SEX
00164 Alvin Toliver Z

6.5.1.1 Using Nested FOR Loops, Outer Joins, and the MISSING Clause
You can use nested FOR loops to establish relationships for outer joins. In a
common type of join, such as an equijoin, Rdb/VMS matches certain values in
a field from one relation with a corresponding field value in another relation.
Values that do not match are not included in the join. An outer join also
establishes relationships between data items by matching fields, but it includes
the unmatched values by adding them to the result of the equijoin.

Note To allow Rdb/VMS to optimize queries, use nested FOR loops only when you
want to reference more than one database or to perform outer joins.

To accomplish an outer join using Rdb/VMS, you must include an
RDB$MISSING clause in the RSE so the unmatched values are added at
the end of the join. The RDB$MISSING clause denotes the value of a field
has been defined as missing. The following example shows how you use the
RDB$MISSING clause in a nested FOR loop to find all employees and show
what degrees they have. The employees’ last names are sorted in alphabetic
order.

6–14 Storing, Modifying, and Erasing Data

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
E.LAST_NAME,
E.FIRST_NAME,
D.DEGREE,
D.DEGREE_FIELD

END_FOR

FOR FIRST 1 D IN DEGREES
WITH NOT ANY D1 IN DEGREES

WITH D1.EMPLOYEE_ID = E.EMPLOYEE_ID

PRINT
E.LAST_NAME,
E.FIRST_NAME,
RDB$MISSING(D.DEGREE),
RDB$MISSING(D.DEGREE_FIELD)

END_FOR

END_FOR

This query prints information for all employees. If they have degrees, it prints
each degree they have. If an employee has no degrees, the missing value for
the degree field is printed (in this case, the value is the word ‘‘Unknown’’),
unless you created the database using the definitions specific to SQL, in which
case no missing value is defined (see Section 6.5.3). Because the outer FOR
loop sorts the employees by last name, all employees without degrees are
included along with the employees who have degrees.

6.5.2 Storing Missing Values
When a field has a defined missing value, you can store a missing value with
the STORE statement or you can store a new record and not supply a value
for the field you want to have a missing value. The following example shows
how to use the STORE statement to store a missing value in the E.MIDDLE_
INITIAL field:

STORE E IN EMPLOYEES
USING

E.MIDDLE_INITIAL = RDB$MISSING(E.MIDDLE_INITIAL)
END_STORE

6.5.3 Missing Value Contrasted with SQL Default Value
The missing value for a field is not the same as the default value for a column
(field) that you can define with the SQL interface. (The SQL statement
SHOW TABLE table-name displays the default value for a column as the ‘‘Rdb
default.’’) If a store operation does not specify a value for a column with a
default value, the default value is actually (physically) stored in the database.
If the store operation does not specify a value for a column and the column has
no default value defined, then Rdb/VMS stores nothing in that column and sets
an internal null flag.

Storing, Modifying, and Erasing Data 6–15

If you use RDO to specify a missing value for a field, then that is the value
displayed by RDO when the field has no value stored and the internal null flag
is set. SQL, however, does not recognize any missing value specified by RDO;
if the column has no value stored and the null flag is set, then SQL displays
NULL for the column, regardless of whether you specified any missing value
with RDO.

6.6 Referential Integrity and Triggers
The previous sections in this chapter explain how to store, modify, and erase
records in a relation. The examples in these sections usually affect records only
in the specified relations. However, sometimes decisions made in the design
and definition of the database can affect (a) your ability to make changes and
(b) the impact of changes you do make. Such decisions include the following:

A field in a relation can be defined as ‘‘referencing’’ a field in another
relation (often the primary key field in the other relation); such a definition
establishes a constraint that prevents you from deleting a record that has
records in another relation dependent upon it, or from adding or modifying
records without a corresponding matching record in another relation.

A trigger causes one or more actions to be performed when a specified
type of update operation (deletion, insertion, or modification) is performed.

6.6.1 Using Constraints to Enforce Referential Integrity
Constraints that are established by field references between relations help to
preserve the referential integrity of the database, ensuring that no changes are
made which would violate certain dependencies among relations. A common
use of such constraints is to preserve the integrity of relationships between a
primary key and its associated foreign keys.

For example, assume that in the sample personnel database, you wanted
to define a constraint by which the EMPLOYEE_ID field in a record in the
SALARY_HISTORY relation must match the EMPLOYEE_ID field in a record
in the EMPLOYEES relation. There are two ways to define such a constraint.
One is to define the constraint separately, as is done in the following example
from the file RDM$DEMO:CONSTRAINTS_RDO.RDO:

! The employee ID from the SALARY_HISTORY relation must exist in
! the EMPLOYEES relation before it can be stored in the SALARY_HISTORY
! relation.
!
DEFINE CONSTRAINT SH_EMP_ID_EXISTS

FOR SH IN SALARY_HISTORY
REQUIRE ANY E IN EMPLOYEES WITH

E.EMPLOYEE_ID = SH.EMPLOYEE_ID
CHECK ON COMMIT.

6–16 Storing, Modifying, and Erasing Data

Another way to specify the same constraint is to include it in the relation
definition. If you have defined the EMPLOYEE_ID field in the EMPLOYEES
relation as the primary key, you can use the REFERENCES clause in the
definition of the EMPLOYEE_ID field in the SALARY_HISTORY relation to
establish the requirement for a match. For example (illustrating only the
relevant definitions from the DEFINE RELATION statements):

DEFINE RELATION EMPLOYEES.
EMPLOYEE_ID BASED ON ID_NUMBER PRIMARY KEY.

. . .
END EMPLOYEES RELATION.

DEFINE RELATION SALARY_HISTORY.
EMPLOYEE_ID BASED ON ID_NUMBER CONSTRAINT SH_EMP_ID_EXISTS
REFERENCES EMPLOYEES EMPLOYEE_ID.

. . .
END SALARY_HISTORY RELATION.

Both methods of defining the constraint establish the requirements that any
EMPLOYEE_ID field entered in a record in the SALARY_HISTORY relation
match an existing EMPLOYEE_ID field in a record in the EMPLOYEES
relation, and that no record can be deleted from the EMPLOYEES relation
as long as there are any records in the SALARY_HISTORY relation with that
person’s employee ID. (In the trigger example later in this section, records in
the SALARY_HISTORY relation are deleted before the associated record in the
EMPLOYEES relation is deleted.) Any statement you enter that violates this
constraint will fail (at verb time or commit time, depending on when constraint
evaluation is performed—see Section 2.3.6).

For further information, see the DEFINE RELATION description in the VAX
Rdb/VMS RDO and RMU Reference Manual.

6.6.2 Using Triggers
Triggers are often defined to cause one or more actions to be taken
automatically when a particular update operation (deletion, insertion, or
modification) is performed. The particular operation causes the ‘‘triggered
action’’ to take place, affecting fields or even entire records in other relations or
in the same relation.

The following example defines a trigger that implements a cascading delete
triggered by the deletion of an employee record. The trigger ensures that
before an employee is erased from the EMPLOYEES relation, all of his or her
records in the DEGREES, JOB_HISTORY, SALARY_HISTORY, and RESUMES
relations will also be erased. This trigger also ensures that if the employee
in question is also a department manager, the MANAGER_ID field for that
department will be marked as missing. (See Section 6.5 for a discussion of
missing values.)

Storing, Modifying, and Erasing Data 6–17

!
DEFINE TRIGGER EMPLOYEE_ID_CASCADE_DELETE

BEFORE ERASE
FOR E IN EMPLOYEES EXECUTE

FOR D IN DEGREES WITH
D.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE D

END_FOR;
FOR JH IN JOB_HISTORY WITH

JH.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE JH

END_FOR;
FOR R IN RESUMES WITH

R.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE R

END_FOR;
FOR SH IN SALARY_HISTORY WITH

SH.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE SH

END_FOR;
! Also, if an employee is terminated and that employee is
! the manager of a department, set the MANAGER_ID missing for
! that department.

FOR D IN DEPARTMENTS WITH D.MANAGER_ID = E.EMPLOYEE_ID
MODIFY D USING D.MANAGER_ID = RDB$MISSING (D.MANAGER_ID)
END_MODIFY

END_FOR
FOR EACH RECORD.

For more information on triggers, see the DEFINE TRIGGER section in the
VAX Rdb/VMS RDO and RMU Reference Manual.

Note Triggers are not necessarily related to the referential integrity of a database;
however, triggers are often used conjunction with other features to ensure
referential integrity.

The execution of a trigger action is not guaranteed to occur at any specific point
within the transaction; the only guarantee is that the cumulative impact of any
trigger actions will be in effect when the transaction is committed. Thus, you
should not assume that any specific trigger action will be executed immediately
after the statement triggering it.

For example, assume that the following trigger has been defined to calculate
the next sequence number to be assigned (by adding one to the count of orders):

DEFINE TRIGGER SEQUENCE_NUM_TRIG AFTER STORE
FOR O IN ORDERS_TABLE EXECUTE
FOR S IN SEQ_TABLE
MODIFY S USING S.NUMBER = COUNT OF OT IN ORDERS_TABLE + 1
END_MODIFY
END_FOR
END_FOR

FOR EACH RECORD.

6–18 Storing, Modifying, and Erasing Data

Assume that the ORDERS_TABLE relation contains 99 records, and the value
of the SEQ_TABLE.NUMBER field is 100. Your application then stores 10
new records in the ORDERS_TABLE relation within a single transaction.
Under the current implementation, each record insertion causes the SEQ_
TABLE.NUMBER field’s value to be updated; thus, after the 100th ORDERS_
TABLE record is inserted, the NUMBER field is set to 101; after the 101st
ORDERS_TABLE record is inserted, the NUMBER field is set to 102; and so
forth.

However, this implementation may change in the future, so that the trigger
actions are performed at the end, thus causing the value of the SEQ_
TABLE.NUMBER field to increase from 100 to 110 only when the transaction
is committed (that is, after all 10 insertions). Therefore, be sure to design
applications so they do not depend on a particular timing of trigger actions
within a transaction.

6.7 Summary
The following session demonstrates a sequence of RDO statements that
update the database. Note that the STORE statements neglect to store all
information normally included in the records—this is done merely to simplify
the illustration (and your typing work if you are entering these statements),
not to depict any real application.

!
! Invoke the PERSONNEL database.
!
RDO> INVOKE DATABASE PATHNAME ’PERSONNEL’

!
! Signal your access (update) intentions to Rdb/VMS.
!
RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE

!
! Store a new employee record.
!
RDO> STORE E IN EMPLOYEES USING
cont> E.EMPLOYEE_ID = "00503";
cont> E.FIRST_NAME = "Paul";
cont> E.LAST_NAME = "Cranston"
cont> END_STORE

!
! Make the update permanent.
!
RDO> COMMIT

Storing, Modifying, and Erasing Data 6–19

!
! Store a new salary_history record.
!
RDO> START_TRANSACTION READ_WRITE RESERVING
cont> SALARY_HISTORY FOR SHARED WRITE,

RDO> STORE SH IN SALARY_HISTORY USING
cont> SH.EMPLOYEE_ID = "00503"
cont>END_STORE

!
! Make the update permanent.
!
RDO> COMMIT

!
! Start a read/write transaction so you can modify and erase
! data; reserve the necessary relations.
!
RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE,
cont> SALARY_HISTORY FOR SHARED WRITE

!
! Make the first change.
!
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00503"
cont> CROSS SH.SALARY_HISTORY OVER EMPLOYEE_ID
cont> WITH SH.SALARY_END MISSING
cont> MODIFY SH USING
cont> SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * 1.9
cont> END_MODIFY
cont> END_FOR

!
! Mistake! Percent for raise is incorrect; undo the change.
!
RDO> ROLLBACK

!
! Start the transaction again.
!
RDO> START_TRANSACTION READ_WRITE RESERVING
cont> EMPLOYEES FOR SHARED WRITE,
cont> SALARY_HISTORY FOR SHARED WRITE

!
! Specify the correct percent for the raise.
!
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00503"
cont> CROSS SALARY_HISTORY OVER EMPLOYEE_ID
cont> WITH SH.SALARY_END MISSING
cont> MODIFY SH USING
cont> SH.SALARY_AMOUNT = SH.SALARY_AMOUNT * 1.1
cont> END_MODIFY
cont> END_FOR

6–20 Storing, Modifying, and Erasing Data

!
! Erase employee and salary_history records with
! employee ID 00503.
!
RDO> FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00503"
cont> ERASE E
cont> END_FOR
RDO> FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = "00503"
cont> ERASE SH
cont> END_FOR

!
! Make the change and the deletion permanent.
!
RDO> COMMIT
RDO>

Storing, Modifying, and Erasing Data 6–21

7
Introduction to Rdb/VMS Programming

This chapter introduces Rdb/VMS programming concepts, including a
description of the programming interfaces and how to develop a program
prototype using RDO.

7.1 The Programming Interfaces
Rdb/VMS provides the following programming interfaces that let you access
one or more Rdb/VMS databases:

The RDBPRE preprocessor

This preprocessor lets you access an Rdb/VMS database from BASIC,
COBOL, or FORTRAN programs. The RDBPRE preprocessor lets you
embed Rdb/VMS statements directly in your host language program.
However, you must use the Callable RDO interface to perform data
definition tasks.

The RDML preprocessor

This preprocessor lets you access an Rdb/VMS database from C or Pascal
programs. The RDML preprocessor lets you embed RDML statements
directly in your host language program. However, RDML also requires that
you use the Callable RDO interface to perform data definition tasks.

The Callable RDO interface

This interface lets you access an Rdb/VMS database from any host
language supported by the VAX Procedure Calling Standard. You may
also use this interface, as mentioned previously, when you want to perform
Rdb/VMS data definition tasks from a program.

Introduction to Rdb/VMS Programming 7–1

The SQL precompiler

This interface lets you access an Rdb/VMS database from Ada, C, COBOL,
FORTRAN, Pascal, or PL/I programs. The SQL precompiler allows you to
embed SQL statements directly in host language modules.

The SQL module processor

This processor lets you link one or more SQL modules with one or more
host language modules. Statements in an SQL language module are in
the form of uniquely named procedures that you call from a host language
module.

Because RDBPRE and RDML support neither Ada nor PL/I, you may want
to investigate the possibility of using SQL if you want to program in these
languages. Although you can use the Callable RDO interface, your program
will be more efficient if you use the SQL precompiler or the SQL module
processor with these languages.

For more information on the SQL precompiler and the SQL module processor
refer to the VAX Rdb/VMS Guide to Using SQL.

RDBPRE and RDML check the syntax of data manipulation language (DML)
statements you use in your program. Reference material, such as syntax
diagrams, can be found in the Rdb/VMS reference manuals. Refer to the VAX
Rdb/VMS RDO and RMU Reference Manual for RDBPRE reference material.
The RDML Reference Manual contains reference material for RDML.

The Callable RDO program interface, RDB$INTERPRET, accepts Rdb/VMS
statements as strings. When your program executes, these statements are
passed to Rdb/VMS in calls to the RDB$INTERPRET function. The interactive
interface, RDO, then interprets and executes them. The VAX Rdb/VMS RDO
and RMU Reference Manual contains reference material for the RDO utility.

All VAX languages that support the VAX Procedure Calling Standard can
use the Callable RDO program interface. You must use this interface when
Rdb/VMS does not support a preprocessor for your program language or when
you want to perform Rdb/VMS data definition tasks in RDML or RDBPRE
programs.

Note that the Callable RDO program interface uses significantly more
resources than either RDBPRE or RDML. For this reason, if possible, you
should use RDBPRE or RDML when you are programming in BASIC, C,
COBOL, FORTRAN, or Pascal. However, if you need to perform data definition
tasks within these programs, keep in mind that you can use RDML or
RDBPRE statements and the Callable RDO program interface within the same
program.

7–2 Introduction to Rdb/VMS Programming

7.2 Designing a Prototype Using RDO
Before you write your application program, you need to familiarize yourself
with the database that your program will access and determine how you will
form the database queries you intend to include in your program. Designing
a transaction prototype using RDO can simplify the task of writing the
application program. Debugging your program is likely to be a tedious task if
you have not previously created a prototype for your queries.

7.3 Developing Your Queries with an Interactive Interface
There are two interactive interfaces for the development of Rdb/VMS queries:

The Relational Database Operator (RDO) utility

Interactive SQL

For information on interactive SQL, refer to the VAX Rdb/VMS Guide to Using
SQL. The rest of this chapter discusses developing a prototype using the RDO
interface. RDO lets you:

View database characteristics

You can use the RDO SHOW statement to display information about the
database. The RDO SHOW statement is discussed in the next section.

Detect and correct errors in Rdb/VMS syntax

An interactive interface is the best environment to eliminate syntax
errors in Rdb/VMS statements. You can use the RDO EDIT statement
to correct a problem when RDO indicates an error. Although the syntax
for both RDBPRE and RDML differs slightly from the RDO syntax for
some statements, you should still be able to eliminate most of the problem
areas from your program design before you actually code your application
program. You can use the RDO SET OUTPUT statement (described later
in this chapter) to write your interactive RDO session to a log file. You can
then review the errors you made and how you corrected them when you
write your application program.

Evaluate the effectiveness of your queries

Manipulating data at the relation level is very different from manipulating
data at the record level. You can use RDO to determine efficient forms for
a query. In general, you do not want to spend a lot of time optimizing every
query in your program. If you have a query that seems to run particularly
slowly, it is a good idea to investigate alternative forms for the query to
find a more efficient way of accessing the database.

Introduction to Rdb/VMS Programming 7–3

Examine the types of data that your program must handle

You can determine the data types your program must handle and test data
input and output values so that your program handles database values
intelligently. You can also determine if your program should enforce its
own input validity checks in addition to the checks that may be provided
by the database.

Anticipate Rdb/VMS run-time errors

Using RDO gives you a clearer idea of the run-time errors your program
may encounter. You can use RDO to test the conditions that produce a
particular run-time error.

7.3.1 Using the RDO SHOW Statements
You can use the RDO SHOW statements to familiarize yourself with the
database. Some of the database characteristics that you might want to see
include:

Relation and view definitions

Knowing what relations and views the database contains will have an
impact on the types of queries you can make. You should consider the type
of information your application will need to retrieve from the database and
how the relations and views can be joined to retrieve that information.

Field data types and sizes

Your program usually needs to declare host language variables that pass
values to, and accept values from, the database. You need to be aware of
the data types defined for the fields you will be using, and which of these
data types is compatible with the host language you are using. Refer to
Chapter 8 for tables that show Rdb/VMS data types and compatible data
types in BASIC, C, COBOL, FORTRAN, and Pascal.

Data validation checks

These checks can be built into the database by the database designer. They
may restrict the values that may be stored in a relation. Your application
design may want to take these restrictions into account so you can direct
your users not to attempt operations that would store the restricted data,
or so your program can handle situations when the user attempts to store
these values.

Index design and definitions

By paying attention to how indexes have been designed and defined for
your database, you can have a considerable impact on the efficiency of your
program. Taking advantage of an index can mean the difference between a
program that processes quickly and one that processes slowly. Refer to the
VAX Rdb/VMS Guide to Database Maintenance and Performance for more
information on how indexes affect query performance.

7–4 Introduction to Rdb/VMS Programming

Storage map design and definitions

If your Rdb/VMS database is a multifile database, one that is spread over
multiple physical areas in separate VMS files, you should pay attention to
how relations and indexes are distributed across files by studying storage
map design and definition.

A storage map specifies how a relation is mapped to a storage area. It tells
Rdb/VMS in which area or areas a relation can be stored, how a relation
that is to be spread across multiple storage area files will be distributed,
what storage method Rdb/VMS should use to determine the location of a
record initially being stored in a relation, and whether or not records in
a relation will be compressed. By studying the storage maps defined for
your database, you may be able to form queries that take advantage of the
database structure most efficiently.

See the VAX Rdb/VMS Guide to Database Design and Definition for
information on storage maps.

7.3.2 Determining Which Relations and Views to Use
As you develop a prototype of your program, you will need to consider how you
will retrieve information from the database. Part of this determination will
depend on how relations and views have been defined in the database. If you
do not effectively use the database attributes available to you, you could end
up with an inefficient query that looks like the following:

FOR E IN EMPLOYEES CROSS JH IN JOB_HISTORY
CROSS SE IN EMPLOYEES CROSS SJH IN JOB_HISTORY

WITH JH.JOB_END MISSING
AND JH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND E.EMPLOYEE_ID = ’00205’
AND SJH.JOB_END MISSING
AND SJH.EMPLOYEE_ID = SE.EMPLOYEE_ID
AND SE.EMPLOYEE_ID = JH.SUPERVISOR_ID

.

.

.
END_FOR

Introduction to Rdb/VMS Programming 7–5

Rdb/VMS databases store view definitions in binary language representation
(BLR). The BLR code is an efficient representation of a query. This last query
could be formed more efficiently by using the view, CURRENT_JOB. For
example:

FOR CJ IN CURRENT_JOB
CROSS CJ2 IN CURRENT_JOB

WITH CJ.EMPLOYEE_ID = ’00205’
AND CJ2.EMPLOYEE_ID = CJ.SUPERVISOR_ID

.

.

.
END_FOR

7.3.3 Determining Data Types of Database Fields
Your program variables must match their corresponding fields in the database.
The interactive RDO interface gives you the ability to determine:

Field names, data types, and sizes

Indexed fields

Valid input values for database updates

You can use the RDO SHOW statement to display database attributes on your
terminal. The SHOW statement is especially useful when you want to copy
data dictionary definitions for database relations and fields into your program.
Use the SHOW statement to determine which data dictionary definitions:

You can copy without modification

Contain data types your programming language does not support

Contain non-unique field names

The following example stores in the file SHOWDB.TXT the names of all
relations and field definitions for the EMPLOYEES, JOB_HISTORY, and
SALARY_HISTORY relations from the PERSONNEL database. Note that you
must first invoke a database before you can use the SHOW statement for that
database.

RDO> SET OUTPUT SHOWDB.TXT
RDO> INVOKE DATABASE FILENAME ’MF_PERSONNEL’
RDO> SHOW RELATIONS
RDO> SHOW FIELDS FOR RELATION EMPLOYEES,JOB_HISTORY,SALARY_HISTORY
RDO> SET NOOUTPUT

For additional information on using the SHOW statement, see the
VAX Rdb/VMS RDO and RMU Reference Manual.

7–6 Introduction to Rdb/VMS Programming

7.3.3.1 Determining Data Validation Checks Defined for the Database As
you develop your prototype, you will want to keep in mind the various ways
that Rdb/VMS performs data validation. Rdb/VMS can check validity and
enforce constraints on input values by checking for:

Constraint violations

Your database designer may use the DEFINE CONSTRAINT statement to
set conditions that restrict the values stored in a relation. For example,
a constraint could require that a department code must exist in the
DEPARTMENTS relation before a record with that department code can be
stored in the JOB_HISTORY relation.

Violation of the VALID IF clause

Your database designer may use the VALID IF clause in the DEFINE
FIELD or CHANGE FIELD statements to set conditions that restrict the
values stored in a given field. For example, a VALID IF clause can require
that an employee ID lie within a certain range of values.

Violation of the DUPLICATES ARE NOT ALLOWED clause

Your database designer may use the DUPLICATES ARE NOT ALLOWED
clause in the DEFINE INDEX statement to require that each value in
the index be unique. If this is the case, you must be certain that your
application either forces the user to choose a unique value for the field on
which the index is defined, or, handles the error should the user enter a
non-unique value.

If your database uses these validity checks, your program does not need to
check for valid input data. However, your program must detect the error
condition that Rdb/VMS returns when an integrity failure or constraint
violation occurs. Your application determines how to handle the error once it is
identified. (See Chapter 10 for more information on error handling.)

The DEFINE CONSTRAINT statements are checked at the same level at
which they are defined. Therefore, if you define constraints at the record
level, and your input data involves several fields that could violate the same
constraint, you will not know which field is invalid if you have a constraint
violation.

If you choose to design your input record so that no constraint can be violated
by more than one field, you may increase the overhead associated with
checking constraints. For example, if a relation defines constraints such that
two field values in one relation cannot exist until those two field values exist
in another relation, Rdb/VMS must do twice as much work to check those field
constraints to make sure that a record exists in one relation before it can exist
in another relation.

Alternatively, you can design your program logic to check the validity of data
before you attempt the store operation.

Introduction to Rdb/VMS Programming 7–7

Another aspect of data validation is to ensure the consistency of the data in the
database. One Rdb/VMS feature that can be used to help ensure consistency is
a trigger. Your database designer may use the DEFINE TRIGGER statement
to create a trigger for a relation. For example, a trigger could require that
when you delete an employee record from the EMPLOYEES relation, employee
records from other relations that have foreign keys referring to the primary
key in the EMPLOYEES relation are also deleted. For more information,
see the DEFINE TRIGGER statement in the VAX Rdb/VMS RDO and RMU
Reference Manual.

7.3.3.2 Using the RDO SET OUTPUT Statement The SET OUTPUT statement
creates an output file and writes an entire RDO session into this file until the
command is turned off with the SET NOOUTPUT statement. Your queries, the
data returned by Rdb/VMS, syntax error messages for invalid RDO statements
and your EDIT statements, are all included in the output file. You can store
your prototype queries in this file, and then call the file into an editing
buffer when you create your host language program. (See Section 7.3.3.3,
Statement Testing in RDO.) The following example opens an output file called
QUERY.LOG with the SET OUTPUT statement. It stores the RDO session in
QUERY.LOG until the file is closed by the SET NOOUTPUT statement.

RDO> !Open an output file.
RDO> SET OUTPUT QUERY.LOG
RDO> INVOKE DATABASE FILENAME ’PERSONNEL’
RDO> FOR D IN DEPARTMENTS CROSS E IN EMPLOYEES WITH
cont> D.MANAGER_ID = E.EMPLOYEE_ID AND D.DEPARTMENT_CODE = ’PUBL’
cont> PRINT D.MANAGER_ID, E.LAST_NAME END_FOR
RDO> !Department PUBL does not exist; RDO returns no data.
RDO>
RDO> !End read-only transaction, start read/write transaction.
RDO> COMMIT
RDO> START_TRANSACTION READ_WRITE RESERVING DEPARTMENTS FOR
cont> EXCLUSIVE WRITE, EMPLOYEES FOR SHARED WRITE,
cont> JOB_HISTORY FOR SHARED WRITE
RDO> !Store the department.
RDO> STORE D IN DEPARTMENTS USING
cont> D.DEPARTMENT_CODE = ’PUBL’;
cont> D.DEPARTMENT_NAME = ’Publicity’;
cont> D.MANAGER_ID = ’00225’ END_STORE
RDO> !see if department is stored
RDO> FOR D IN DEPARTMENTS WITH D.DEPARTMENT_CODE =
cont> ’PUBL’ PRINT D.DEPARTMENT_NAME END_FOR
RDO>

D.DEPARTMENT_NAME
’Publicity’

RDO> !Now close the output file.
RDO> SET NOOUTPUT

For additional information about using the SET OUTPUT statement, see
Section 3.2.

7–8 Introduction to Rdb/VMS Programming

7.3.3.3 Statement Testing in RDO The interactive RDO utility gives you the
opportunity to test most of your Rdb/VMS data manipulation statements before
coding and running your program. After this testing, you can be reasonably
assured that the Rdb/VMS statements in your program form the required
record streams and retrieve and update the required records.

Although you should test as many of your data manipulation statements as
possible, it is particularly important that you test those statements that form
record streams. These record streams form the sources for data retrieval and
the targets for updates. The RSE is the key element of a statement that forms
a record stream.

You should be aware of the following differences between RDO, and RDBPRE
and RDML statements when you test statements in interactive RDO:

In RDBPRE, RDML, and Callable RDO programs, you can use the GET
statement to retrieve records from a record stream. In RDML programs,
any reference to a field name will retrieve the records from a record stream;
for example, a host language print statement or an assignment statement
will return a field value to your program. In interactive RDO, you must
use the RDO PRINT statement.

In RDML, RDBPRE and Callable RDO programs, you use the
START_STREAM and FETCH statements to exercise complete control
over the retrieval of records from a record stream. You can nest these
statements within a host language loop that controls the iteration of the
FETCH retrieval operation. You can also spread these statements across
routines in a single module.

In interactive RDO there is no mechanism to create a loop, only the FOR
statement is iterative. When you want to test a
START_STREAM . . . FETCH . . . PRINT operation, you must explicitly
repeat the FETCH and PRINT statements within the stream context.

In RDML and RDBPRE programs, you use your host language
concatenation operator (if your host language supports one) to concatenate
Rdb/VMS fields you retrieve into your program.

In RDML and RDBPRE programs you can use the concatenation operator
(|) to concatenate values only within an RSE.

In interactive RDO you can use the concatenation operator (|) in all
appropriate situations (not just within an RSE).

You can only use the ON ERROR clause in preprocessed programs. You
cannot use the ON ERROR clause in interactive RDO or Callable RDO.
Be sure to test the ON ERROR clauses when you debug your preprocessed
program.

Introduction to Rdb/VMS Programming 7–9

You can create an RDO prototype using either of the following methods:

Creating an RDO test file

The recommended method is to use a text editor, such as VAX EDT or VAX
Text Processing Utility (VAXTPU), to enter the statements you want to test
into a file. After you have edited the required Rdb/VMS statements, close
the file and start an RDO session. To execute your test file, type the at
sign (@) immediately followed by the file name. For example, if your file is
named TEST.RDO, type @TEST.RDO at the RDO> prompt to run the file.
RDO executes the statements in the order they appear in the file. (If you
omit the file type, the default file type RDO is used.)

The first error causes RDO to stop executing the statements and return
an error message. Type EDIT 0 to invoke EDT within RDO. (Or you can
invoke VAXTPU if you prefer.) Include your test file in the edit buffer and
correct the invalid statement. Insert the ROLLBACK statement at the
beginning of the edit buffer, so that this new run starts fresh. When you
exit the editor with the EXIT command, RDO executes your test file.

Repeat this process until the test file gives you a clean run and yields the
desired results. When you edit your source program, include the test file
in your program file and make the necessary adaptations to the program
environment.

Creating an RDO log file

Start an RDO session and create a log file of the session by issuing the SET
OUTPUT statement with a file name. Sequentially enter and execute all of
your statements. Whenever RDO returns an error message, type EDIT n
to invoke the RDO editor and correct the invalid statement.

The value you use for n depends on how many of the previously executed
statements you want to display in the editor. You can enter, for example,
EDIT, EDIT 2, or EDIT * to edit the last statement, the last two
statements, or all the statements in the current RDO session. You can
use the RDO statement SET EDIT KEEP n to specify the number of
statements RDO includes in the editor when you type EDIT * (by default
this number is 20).

When you exit the editor with the EXIT command, RDO continues
execution, beginning with the first statement in the edit buffer. Repeat this
process until you get a clean run that yields the desired results. Then exit
RDO and edit the log file by deleting all but the final set of statements that
gave a clean run. Now you can include this file in your source program file
and make the necessary adaptations to the program environment.

7–10 Introduction to Rdb/VMS Programming

The following example is a simple prototype of a query in RDO. This prototype
merely stores a record in the CANDIDATES relation. Example 13–1,
Example 14–1, Example 15–1, Example 17–1, and Example 18–1 show how you
might code this query in your host language of BASIC, COBOL, FORTRAN, C,
or Pascal, respectively.

! Set verify.
!
! Store new candidate relation.
!
!
START_TRANSACTION READ_WRITE RESERVING

CANDIDATES FOR SHARED WRITE

STORE C IN CANDIDATES USING
C.LAST_NAME = Stewart;
C.FIRST_NAME = Allyn;
C.MIDDLE_INITIAL = I;
C.CANDIDATE_STATUS = "Available July 1, 1989";

END_STORE

!
!Repeat STORE statement for any additional candidates.
!
COMMIT

Note If you are using an active database when you test and you are testing any
of the update statements (STORE, MODIFY, or ERASE), be sure to end all
transactions with a ROLLBACK statement. Failure to roll back will change the
values in the database permanently.

The language-specific chapters contain examples of converting an RDO
prototype to a host language program.

Introduction to Rdb/VMS Programming 7–11

8
Data Type Compatibility

This chapter describes how to select host language data types that are
compatible with Rdb/VMS data types. Rdb/VMS supports nine VMS data
types, and a special Rdb/VMS data type. These data types are:

SIGNED BYTE

SIGNED WORD

SIGNED LONGWORD

SIGNED QUADWORD

F_FLOATING

G_FLOATING

DATE

TEXT

VARYING STRING

The special data type is SEGMENTED STRING.

This chapter discusses the nine data types and the Rdb/VMS segmented string,
and which ones are acceptable to use in host language programs that access an
Rdb/VMS database.

For information on the methods you can use to declare these data types in an
RDBPRE or RDML program, refer to Chapter 12 and Chapter 16.

Data Type Compatibility 8–1

8.1 Rdb/VMS Data Types
When you choose a data type for a host language variable that receives or
sends data to an Rdb/VMS database, it should match the Rdb/VMS data type
wherever possible. In some instances, however, you may be able to use host
language data types that Rdb/VMS does not support.

For example, because Rdb/VMS does not store data in the form of the PACKED
DECIMAL data type, it is not considered one of the Rdb/VMS data types.
However, Rdb/VMS can accept PACKED DECIMAL data from a BASIC or
COBOL variable, and can return data to a PACKED DECIMAL variable in
a host language program. Thus, you can use this particular data type in
programs that access an Rdb/VMS database (although it incurs additional
overhead).

In some instances, the host language preprocessor may attempt to assign a
host language data type that is compatible with the data type declared by
the Rdb/VMS preprocessor. Whether or not your host programming language
performs such data conversions depends on the flexibility of the individual
language. Refer to your host language user’s guide for additional information
on data type conversions.

Table 8–1 is a summary of the data types supported by Rdb/VMS and the
comparable VMS data types.

Table 8–1 Rdb/VMS Data Types

Rdb/VMS
Data Type

Comparable
VMS Data Type VMS Name Size Range/Precision

SIGNED
BYTE

Signed byte
integer

DSC$K_DTYPE_B 8 bits integer range
of –128 to 127

SIGNED
WORD

Signed word
integer

DSC$K_DTYPE_W 16 bits integer range
of –32768 to 32767

SIGNED
LONGWORD

Signed longword
integer

DSC$K_DTYPE_L 32 bits integer range of –2**31
to (2**31)–1

SIGNED
QUADWORD

Signed quadword
integer

DSC$K_DTYPE_Q 64 bits integer range of –2**63
to (2**63)–1

F_FLOATING F_FLOATING
Single precision,
floating-point
number

DSC$K_DTYPE_F 32 bits 0.29 x 10**(–38) to
1.7 x 10**38
Approximately 7 decimal
digits

(continued on next page)

8–2 Data Type Compatibility

Table 8–1 (Cont.) Rdb/VMS Data Types

Rdb/VMS
Data Type

Comparable
VMS Data Type VMS Name Size Range/Precision

G_FLOATING G_FLOATING
Extended
precision,
floating-point
number

DSC$K_DTYPE_G 64 bits 0.56 x 10**(–308)
to 0.9 x 10**308
Approximately 15 decimal
digits

DATE Absolute date and
time

DSC$K_DTYPE_ADT 64 bits Not applicable

TEXT ASCII text DSC$K_DTYPE_T n bytes1 0 to 16383 characters

VARYING_
STRING

ASCII text DSC$K_DTYPE_VT n + 2
bytes2

0 to 32767 characters

SEGMENTED
STRING

None Rdb/VMS specific Varies 0 to 64K bytes per
segment

1The ‘‘n’’ is an unsigned integer that represents the number of characters.
2The extra 2 bytes added for the VARYING STRING data type is a word used to hold the count of characters
in the varying string.

8.2 The Segmented String Data Type
You can use the Rdb/VMS SEGMENTED STRING data type to store large
blocks of data in a database. The SEGMENTED STRING data type lets you
store unstructured data such as text, graphics, voice, telemetry, or bit streams.
Any data type can be stored in and retrieved from a segmented string. The
data is stored in unstructured bytes. For example, you can store character
data into a segmented string and then interpret it as hexadecimal data.

A segmented string data type is a linked list of vectors (one or more segments
that comprise the segmented string). (A vector is a one-dimensional array.)
Each segment can be up to 65,522 bytes long, except for the first segment of the
string, which has a maximum length of 65,508 bytes. The first segment uses
an additional 14 bytes for the overhead involved in maintaining a segmented
string. The first 8 bytes of each segment is a pointer to the next segment.

The Rdb/VMS preprocessors require that you supply a static class string
descriptor when you pass segmented strings between the database and your
host language variables. You cannot use a dynamic class descriptor.

A segmented string is stored in a field in a relation. In fact, you actually store
a segmented string identifier in the field with the segmented string data type.
Because you store a pointer to the segmented string record, rather than the
string itself, the segmented string is not constrained by the Rdb/VMS record
size limit. Note that because the segmented string itself is not actually stored

Data Type Compatibility 8–3

in a field of the record, you cannot use the RDML data declaration statement,
DECLARE_VARIABLE, to declare a variable to hold a segmented string. See
Chapter 16 for details. Figure 8–1 illustrates the structure of the segmented
string data type.

Figure 8–1 The Segmented String Data Type

pointer segment

8−byte*
pointer
to next
segment

14−byte*
segmented
string
information

segment
(can be 65,508 bytes maximum)

pointer

RESUMES Relation

Emp_id Res_seq

segmented
string
pointer

NU−2119A−RA
* Size not guaranteed to remain stable in future versions.

segment

8.3 Data Type Conversions
When your host language program accesses an Rdb/VMS data type that is
not supported by your host language, or requests the result of a statistical
expression, Rdb/VMS attempts to perform data type conversions where

8–4 Data Type Compatibility

possible, and then pass the database values to your host language variables.
Rdb/VMS converts data types for:

RDBPRE programs

RDML programs

Callable RDO programs

Statistical expressions

The segmented string data type has no corresponding VMS data type. For that
reason, Rdb/VMS does not convert the segmented string data type. Instead,
your program must explicitly process each segment of the segmented string.
See the language-specific chapters for an explanation of how to access and
manipulate a segmented string in your programming language.

8.3.1 Preprocessed Program Data Type Conversions
The RDML and RDBPRE preprocessors declare variables that act as
intermediaries between your host language variables and the database values.
The data type assigned to an intermediate variable depends on the data type
of the database field you access and the preprocessor you use.

When a host language data type is the same as the data type of the database
value, the preprocessor declares a variable of that data type and no data type
conversion takes place. However, when your host language does not support
the Rdb/VMS data type, the preprocessor declares an intermediate variable
that is supported by the host language. Rdb/VMS converts the database
value to or from this intermediate data type when it passes the value to or
receives the value from the host language program. When you declare your
host language variables, choose the same or an equivalent data type to the
Rdb/VMS data type. In RDML, the DECLARE_VARIABLE clause and the
BASED_ON clause will make these declarations for you. For more information
on using the DECLARE_VARIABLE and BASED_ON clauses see Chapter 16.

Table 8–4, Table 8–5, Table 8–6, Table 8–7, and Table 8–8 list the Rdb/VMS
data types you should use to pass values to and from your host language
program. Note that the data dictionary, CDD/Plus, does not create an
acceptable data type for those data types that are marked with a dagger
(†). These data types require that you perform an appropriate data type
conversion or manipulation in your host language program.

For example, neither RDBPRE nor RDML converts segmented strings. Instead,
you must construct and manipulate fields of the SEGMENTED STRING data
type within your program.

Data Type Compatibility 8–5

8.3.2 Callable RDO Program Data Type Conversions
If you are embedding Callable RDO in a language supported by one of the
preprocessors, use the table associated with that language to select host
language variable data types for data declarations. If you are embedding
Callable RDO in a language that is not supported by a preprocessor, you need
to work out acceptable data types by referring to Table 8–1 and your host
language documentation. You may find it helpful to generate a table similar to
the ones shown here for whatever language you are using.

Callable RDO programs access RDO through the function RDB$INTERPRET.
You pass the RDO command string and host language variables to the database
as parameters of RDB$INTERPRET. Keep in mind that the RDB$INTERPRET
function requires all parameters to be passed by descriptor.

8.3.3 Statistical Expression Data Type Conversions
When passing the result of a statistical expression, RDBPRE or RDML may
assign a data type to the result that is different from the data type of the field
referred to in the expression. If the result data type is not supported by your
host language, RDBPRE or RDML performs the data conversions listed in
Table 8–2 and Table 8–3.

Table 8–2 RDBPRE and RDO Statistical Expression Data Type Conversions

Statistical
Function Field Data Type Result Data Type

MIN, MAX Any Same as field

COUNT Any LONGWORD

AVERAGE WORD,
F_FLOATING

F_FLOATING (G_FLOATING for larger fields)

TOTAL F_FLOATING,
G_FLOATING
Other numeric

QUADWORD

8–6 Data Type Compatibility

Table 8–3 RDML Statistical Expression Data Type Conversions

Statistical
Function

Field
Data Type

Result
Data Type

C
Equivalent

Pascal
Equivalent

EPascal
Equivalent

MIN, MAX Any Same
as field

Same
as field

Same
as field

Same
as field

COUNT Any Longword int, long INTEGER INTEGER

AVERAGE Any F_FLOATING float SINGLE,
REAL

REAL

TOTAL Any G_FLOATING double DOUBLE DOUBLE

8.4 Host Language Equivalent Data Types
Table 8–4, Table 8–5, Table 8–6, Table 8–7, and Table 8–8 list the C, BASIC,
COBOL, FORTRAN, and Pascal data types that can be used to declare
variables to hold database field values in RDBPRE and RDML programs.

Note that the Rdb/VMS DATE data type is in the 64-bit VMS system time
format. Rdb/VMS stores the DATE data type in:

An 8-byte character data in BASIC, C, and FORTRAN

An 8-byte record in Pascal

An 8-byte computational data in COBOL

You can use the VMS system service routine SYS$ASCTIM to convert this
8-byte data into an ASCII string when you want to display a DATE data type
field. Use the VMS system service routine SYS$BINTIM to convert an ASCII
string into the 64-bit system time format when you want to store a DATE data
type field. See the host language chapters for examples of using these system
services.

RDBPRE and RDML let you store the DATE data type in either an Rdb/VMS
DATE data type field or an Rdb/VMS TEXT data type field. You can, for
instance, change an Rdb/VMS DATE field to TEXT without affecting the DATE
data type records stored in that field. If you change the data type of the field,
you must preprocess the programs that use that field again. Furthermore,
when you retrieve a DATE data type field from a TEXT field, the text string
retrieved will be in the form: yyyymmddhhmmsshh (year, month, day, hour,
minutes, seconds, hundredths of a second).

Data Type Compatibility 8–7

Table 8–4 Rdb/VMS Data Type Conversions for BASIC

If the Rdb/VMS
Data Type Is:

Declare Your
BASIC Variable as:

SIGNED BYTE BYTE

SIGNED BYTE
SCALE n†1

DECIMAL
or any data type

SIGNED BYTE
SCALE –n†2

DECIMAL
or any data type

SIGNED WORD WORD

SIGNED WORD
SCALE n†1

DECIMAL
or any data type

SIGNED WORD
SCALE –n†2

DECIMAL
or any data type

SIGNED LONGWORD LONG

SIGNED LONGWORD
SCALE n†

DECIMAL
or any data type

SIGNED LONGWORD
SCALE –n†

DECIMAL
or any data type

SIGNED QUADWORD† G_FLOATING

SIGNED QUADWORD
SCALE n†

DECIMAL
or any data type

SIGNED QUADWORD
SCALE –n†

DECIMAL
or any data type

F_FLOATING SINGLE

G_FLOATING G_FLOATING

DATE† STRING 8

TEXT n† STRING n

VARYING STRING n† STRING n

SEGMENTED STRING † Unsupported†

1The ‘‘n’’ stands for an integer value.
2If a data type is flagged by a dagger, † you cannot copy that definition into your program from the
data dictionary.

The SEGMENTED STRING data type is not supported in BASIC. However,
you can still use segmented strings in RDBPRE BASIC programs. See
Chapter 13 for details.

8–8 Data Type Compatibility

Table 8–5 RDML Data Type Conversions for C

If the Rdb/VMS
Data Type Is:

Declare Your
C Variable as:

SIGNED BYTE char

SIGNED BYTE
SCALE n†1

int n (when 1< = n => 4)
char[8](when n>4)

SIGNED BYTE
SCALE –n†2

float

SIGNED WORD short

SIGNED WORD
SCALE n†1

int n (when 1< = n => 4)
char[8](when n>4)

SIGNED WORD
SCALE –n†2

float

SIGNED LONGWORD int

SIGNED LONGWORD
SCALE n†

char[8]

SIGNED LONGWORD
SCALE –n†

double

SIGNED QUADWORD† char[8]

SIGNED QUADWORD
SCALE n†

char[8]

SIGNED QUADWORD
SCALE –n†

double

F_FLOATING float

G_FLOATING double

DATE char[8]

TEXT n char [n+1]

VARYING STRING n† Unsupported

SEGMENTED STRING † char[8]

1The ‘‘n’’ stands for an integer value.
2If you want to copy this definition into your program from the data dictionary, you should check
the conversion performed by the data dictionary and make sure that it is appropriate for your
application.

The SEGMENTED STRING data type is not supported in C. However, you can
still use segmented strings in RDML/C programs. See Chapter 17 for details.

Data Type Compatibility 8–9

Table 8–6 Rdb/VMS Data Type Conversions for COBOL

If the Rdb/VMS
Data Type Is:

Declare Your
COBOL Variable as:

SIGNED BYTE Unsupported

SIGNED WORD PIC S9(1-4) COMP

SIGNED WORD
SCALE n1

PIC S9(n)P(n) COMP

SIGNED WORD
SCALE –n

PIC S9(1-4)V9(n) COMP

SIGNED LONGWORD PIC S9(5-9) COMP

SIGNED LONGWORD
SCALE n

PIC S9(5-9)P9(n) COMP

SIGNED LONGWORD
SCALE –n

PIC S9(5-9)V9(n) COMP

SIGNED QUADWORD PIC S9(10-18) COMP

SIGNED QUADWORD
SCALE n

PIC S9(10-18)P(n) COMP

SIGNED QUADWORD
SCALE –n

PIC S9(10-18)V9(n) COMP

F_FLOATING COMP-1

G_FLOATING† PIC 9(10-18) COMP

DATE PIC S9(11)V9(7) COMP

TEXT n PIC X(n)

VARYING STRING n† PIC X(n)

SEGMENTED STRING † Unsupported†

1The ‘‘n’’ stands for an integer value.

Note that you should choose a value within the given range, where a range
is indicated in Table 8–6. For example, a SIGNED WORD can be declared in
COBOL as PIC S9(1) COMP, or PIC S9(2) COMP, and so on. Rdb/VMS will
accept any value within the range given. You should decide which value to use
on the basis of your COBOL needs.

The SEGMENTED STRING data type is not supported in COBOL. However,
you can still use segmented strings in RDBPRE COBOL programs. See
Chapter 14 for details.

8–10 Data Type Compatibility

Table 8–7 Rdb/VMS Data Type Conversions for FORTRAN

If the Rdb/VMS
Data Type Is:

Declare Your
FORTRAN Variable as:

SIGNED BYTE BYTE or LOGICAL*1

SIGNED BYTE
SCALE n†1

REAL*4

SIGNED BYTE
SCALE –n†2

REAL*4

SIGNED WORD INTEGER*2

SIGNED WORD
SCALE n†1

REAL*4

SIGNED WORD
SCALE –n†2

REAL*4

SIGNED LONGWORD INTEGER or
INTEGER*4

SIGNED LONGWORD
SCALE n†

REAL*8

SIGNED LONGWORD
SCALE –n†

REAL*8

SIGNED QUADWORD† G_FLOATING

SIGNED QUADWORD
SCALE n†

REAL*8

SIGNED QUADWORD
SCALE –n†

REAL*8

F_FLOATING REAL or
REAL*4

G_FLOATING REAL*8

DATE† CHARACTER*8

TEXT n CHARACTER*n

VARYING STRING n† CHARACTER*n

SEGMENTED STRING † Unsupported†

1The ‘‘n’’ stands for an integer value.
2If you want to copy this definition into your program from the data dictionary, you should check
the conversion performed by the data dictionary and make sure that it is appropriate for your
application.

The SEGMENTED STRING data type is not supported in FORTRAN. However,
you can still use segmented strings in RDBPRE FORTRAN programs. See
Chapter 15 for details.

Data Type Compatibility 8–11

Table 8–8 RDML Data Type Conversions for Pascal

If the Rdb/VMS
Data Type Is:

Declare Your
Pascal Variable as:

SIGNED BYTE [BYTE] –128 . . . 127

SIGNED BYTE
SCALE n†1

n=1,2:[WORD]–32768 . . . 32767
n=3,4,5,6,7:INTEGER
n>8:RECORD
L0:UNSIGNED;
L1:INTEGER;
END

SIGNED BYTE
SCALE –n†2

REAL

SIGNED WORD [WORD]–32768 . . . 32767

SIGNED WORD
SCALE n†1

INTEGER(n=1,2,3,4)
RECORD
L0:UNSIGNED;
L1:INTEGER;END(n>4)

SIGNED WORD
SCALE –n†2

REAL

SIGNED LONGWORD INTEGER

SIGNED LONGWORD
SCALE n†

RECORD
L0:UNSIGNED;
L1: INTEGER;
END

SIGNED LONGWORD
SCALE –n†

DOUBLE

SIGNED QUADWORD† RECORD
L0:UNSIGNED;
L1: INTEGER;
END

SIGNED QUADWORD
SCALE n†

RECORD
L0:UNSIGNED;
L1: INTEGER;
END

1The ‘‘n’’ stands for an integer value.
2If you want to copy this definition into your program from the data dictionary, you should check
the conversion performed by the data dictionary and make sure that it is appropriate for your
application.

(continued on next page)

8–12 Data Type Compatibility

Table 8–8 (Cont.) RDML Data Type Conversions for Pascal

If the Rdb/VMS
Data Type Is:

Declare Your
Pascal Variable as:

SIGNED QUADWORD
SCALE –n†

DOUBLE

F_FLOATING REAL

G_FLOATING DOUBLE

DATE [BYTE(8)]RECORD END

TEXT n CHAR(n=1)
PACKED ARRAY [1 . . . n] OF CHAR (n>1)

VARYING STRING n VARYING[n] OF CHAR

SEGMENTED STRING † RECORD
L0:UNSIGNED;
L1: INTEGER;
END

The SEGMENTED STRING data type is not supported in Pascal. However,
you can still use segmented strings in RDML/Pascal programs. See Chapter 18
for details.

Data Type Compatibility 8–13

9
Program Structure and Design

The basic structure for an Rdb/VMS program is the same regardless of
whether you use the RDML or the RDBPRE preprocessor, or the Callable
RDO interface. Each program must attach to a database and start a
transaction before performing any data manipulation or data definition tasks.
Each transaction must be either committed or rolled back. Each program
must detach from the database (with a FINISH statement) before it ends.
Furthermore, as with any programming language, you need to pay attention to
design aspects to ensure that your program executes quickly and accurately.

Performing data manipulation and data definition tasks may involve some or
all of the following functions:

Using host language variables to pass values between your program and
Rdb/VMS

Accessing one or more databases

Starting a transaction

Designing a transaction that will fit your needs and minimize contention
for the database (locking considerations)

Forming record streams so that you can:

Retrieve records

Update records

Store records

Erase records

Using structured programming techniques

Using database handles, transaction handles, and request handles

Handling Rdb/VMS run-time errors

Program Structure and Design 9–1

Rolling back transactions

Committing transactions

Detaching from the database

See the VAX Rdb/VMS Guide to Database Maintenance and Performance for
information on locking. For information on handling Rdb/VMS run-time errors,
see Chapter 10. The other topics are discussed in this chapter.

Note If you create an Rdb/VMS application that runs as a detached process,
you must define permanent logical names for the process (in particular,
SYS$LOGIN and SYS$SCRATCH), at the system or group level by using the
DCL DEFINE command or defining them within your program. Permanent
logical names are not defined by default for detached processes. SYS$LOGIN is
used typically for recovery-unit journal files and bugchecks; SYS$SCRATCH is
used for the temporary files created by the VMS Sort utility.

9.1 Embedding DML Statements in the Program Environment
The rest of this chapter discusses how to use data manipulation language
(DML) statements in the RDBPRE and RDML programming environment.
The purpose of this section is to explain the design implications of using the
RDBPRE languages (BASIC, COBOL, or FORTRAN) and the RDML languages
(C and Pascal). All examples are pseudocode; however, the language-specific
chapters demonstrate how to use the concepts explained in this chapter in your
host language program.

Note that error handling is not covered in this chapter. Keep in mind that all
the executable DML statements and clauses permit the use of the ON ERROR
clause to trap error conditions that occur during the execution of an RDML or
RDBPRE statement or clause.

Error handling is discussed in general in Chapter 10. Language-specific error
handling issues are discussed in the language-specific chapters.

9.2 Declaring Host Language Variables
A host language variable is a program variable that you use to communicate
with Rdb/VMS. A host language variable can contain the values that update
the database; it can also receive values that Rdb/VMS retrieves from the
database. You can use host language variables as value expressions in data
manipulation statements, as well as for any other program function.

When you declare host language variables, simply follow the naming rules for
your language. Ensure that host language variable data types and sizes are
compatible with the corresponding database field data types and sizes. You can
declare variables by:

9–2 Program Structure and Design

Using the methods that you usually use to declare host language variables
in your host language

Using the DECLARE_VARIABLE and BASED ON clauses in RDML
programs

These clauses declare variables for you with data types and sizes that are
compatible with the corresponding database field data types and sizes.

Copying database definitions from the CDD/Plus data dictionary

You can copy relation definitions, which include all the fields within the
relation. However, you must be careful to copy only those relation and field
definitions with data types that are supported by your host language.

See Chapter 8 for information on how to select host language data types that
are compatible with Rdb/VMS data types.

See Chapter 16 for information on the DECLARE_VARIABLE and BASED ON
clauses in RDML programs.

For more information on using the data dictionary see Chapter 12 and
Chapter 16.

You can use host language variables in:

Any data manipulation statement that can include an RSE

Any of the update statements

The GET statement

Note The RDBPRE preprocessor and Callable RDO interpret a hyphen between two
variables or strings (with no intervening spaces) as an underscore. For example,
A-B is interpreted as A_B. When you want a hyphen to be interpreted as a
hyphen, leave a blank space on each side of it. For example, A - B.

For more information on using host language variables, see the language-
specific chapter for the host language you are using.

9.2.1 Declaring Databases
The first Rdb/VMS statement in your program must be the DATABASE
statement. The DATABASE statement is a nonexecutable statement that
declares the database to your program.

Note that the DATABASE statement does not cause an attach to the database
in RDBPRE or RDML programs. However, it does cause an attach to the
database in Callable RDO programs. (For more information on Callable RDO,
see Chapter 19.)

Program Structure and Design 9–3

Additionally, the DATABASE statement lets you specify a variable to identify
the database; this is called a database handle. If you do not explicitly supply
a database handle, Rdb/VMS uses the default database handle. The chosen
handle can be seen in the output from the RDML or RDBPRE preprocessor.
Rdb/VMS uses the database handle to identify the particular database that is
referred to by a database request. Your program must not alter the database
handle.

Both RDML and RDBPRE programs attach to the database at the READY
statement. If a READY statement is not specified, both RDML and RDBPRE
will start a transaction at the first executable statement after the DATABASE
statement. However, Digital recommends that you always use the READY
statement. The READY statement makes your intentions obvious to others
who might use your program, and in RDML, can reduce program overhead
when used in conjunction with the /NODEFAULT_TRANSACTIONS qualifier
on the RDML command line. (For more information on the /NODEFAULT_
TRANSACTIONS qualifier, see Chapter 11.)

If your program invokes multiple databases, use database handles in each
DATABASE statement. Using database handles lets you attach to the same
database more than once, invoke multiple databases in the same program, and
refer to each database attach.

When your program accesses a single database you do not have to include a
database handle in the DATABASE statement. Use either the file name or the
path name to specify the location of the database. Enclose the file name or
path name in single or double quotation marks.

See Section 9.3.3 for more information on database handles and scope. In
Callable RDO programs, you must pass the database handle as a parameter to
the RDB$INTERPRET function in the FINISH statement.

When you no longer need the resources for a particular database, use the
FINISH statement. The FINISH statement causes Rdb/VMS to detach from
the database, and all variables connected to that database become undefined.
However, when Rdb/VMS attaches to a database, it loads metadata for that
database into memory. Be careful about detaching and reattaching to a
database too frequently; reattaching incurs significant overhead because the
metadata must be loaded again.

To detach from a particular database when multiple databases have been
declared, use the same database handle in the FINISH statement that you
used in the DATABASE statement for that database, as shown in the following
example:

9–4 Program Structure and Design

DATABASE PERSONNEL = FILENAME ’MF_PERSONNEL’
DATABASE PAYROLL = PATHNAME ’PAYROLL’

READY PAYROLL
.
.
.

READY PERSONNEL
.
.
.

FINISH PERSONNEL
.
.
.

FINISH PAYROLL

9.2.2 Forming Record Streams
Rdb/VMS data manipulation statements use context variables to form a record
stream of selected records in one or more relations. The RSE may be as simple
as FOR E IN EMPLOYEES, or as complex as:

FOR E IN EMPLOYEES CROSS JH IN JOB_HISTORY
CROSS SE IN EMPLOYEES CROSS SJH IN JOB_HISTORY

WITH JH.JOB_END MISSING
AND JH.EMPLOYEE_ID = E.EMPLOYEE_ID
AND E.EMPLOYEE_ID = ’00205’
AND SJH.JOB_END MISSING
AND SJH.EMPLOYEE_ID = SE.EMPLOYEE_ID
AND SE.EMPLOYEE_ID = JH.SUPERVISOR_ID

The better RSE is generally the more efficient one. Rdb/VMS lets you define
views, which save preprocessing time and assist in the optimization of the
query. When you define a view, the database stores the view definition in BLR.
This last query could be formed more efficiently by using the view CURRENT_
JOB. For example:

FOR CJ IN CURRENT_JOB
CROSS CJ2 IN CURRENT_JOB

WITH CJ.EMPLOYEE_ID = ’00205’
AND CJ2.EMPLOYEE_ID = CJ.SUPERVISOR_ID

The maximum number of subqueries or relation references in an Rdb/VMS
statement is 32. A subquery is a nested FOR statement. A relation reference
can be any of the entities in the following list:

A relation in an RSE

A global aggregate

A relation in a view

Program Structure and Design 9–5

9.2.3 Retrieving Records
Rdb/VMS provides you with two ways to form record streams for retrieving
records:

Using the FOR statement

The FOR statement forms a record stream and provides automatic iteration
for any Rdb/VMS and host language statements included within the
FOR . . . END_FOR block. The FOR statement always includes an RSE
with at least one context variable.

Using one of the START_STREAM statements

The START_STREAM statements also form record streams, but do not
provide automatic iteration of any Rdb/VMS or host language statements.
The START_STREAM statements give you total control of program
iteration. Your host language statements must provide all the control logic
for processing the stream.

Rdb/VMS provides two kinds of streams:

Declared streams

Undeclared streams

The following sections describe how to form record streams using the FOR and
the two START_STREAM statements.

9.2.3.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any DML and host
language statements included within the FOR . . . END_FOR block. The FOR
statement always includes an RSE with at least one context variable.

The scope of the context variable begins with the FOR statement and ends
with the END_FOR statement. A context variable is meaningless outside its
scope; thus, you need to consider the scope of context variables when designing
structured programs.

If Rdb/VMS does not find any record that satisfies the conditions of the RSE in
the FOR statement, the FOR loop is not executed. Rdb/VMS does not treat this
as an exception condition. Therefore, if you want to detect this condition, set
a flag within the FOR block. Your program can evaluate the flag immediately
after the END_FOR statement to determine if the RSE has been satisfied and
the loop executed.

In the following example, the uppercase statements are DML statements.
Lowercase statements must be converted to your host language. If you code
this example into your host language, you would want your program to:

Set the host language variable, record_found, to false.

Begin a FOR . . . END_FOR statement.

9–6 Program Structure and Design

Set the host language variable, record_found, to true and modify the record
if a record is found that matches the RSE.

Display a message to the user if a record is not found that meets the
requirements of the RSE. If no record is found, the host language variable
remains false and no modification of an employee record takes place.

record_found = false
FOR E IN EMPLOYEES CROSS JH IN JOB_HISTORY

WITH JH.JOB_END MISSING
AND JH.EMPLOYEE_ID = E.EMPLOYEE_ID

MODIFY JH USING
JH.DEPARTMENT_CODE = new_dept_code

END_MODIFY
record_found = true

END_FOR
if record_found = false then

print "No record found on modify"

You can include host language statements within the FOR . . . END_FOR block
to process the records within the stream. However, there are some important
exceptions to the type of statement you can include:

Do not transfer control out of the FOR . . . END_FOR block unless you do
not want to return to the FOR loop. It is impossible to enter the loop again
while it is executing.

You may call a procedure within a FOR loop because such a procedure
executes within the FOR loop context. However, do not use a context
variable defined in the FOR block in any statement outside the context of
the FOR block.

9.2.3.2 Using Streams to Retrieve Records Rdb/VMS provides two kinds of
streams that are opened with a START_STREAM statement; a declared stream
and an undeclared stream. A declared stream is one that you explicitly
declare in your program with the DECLARE_STREAM statement. The
DECLARE_STREAM statement includes an RSE (and transaction and request
handles, or both, if you choose to use them). Therefore the START_STREAM
statement for a declared stream does not include an RSE, a transaction handle,
or a request handle. However, it must be preceded by the DECLARE_STREAM
statement. For example:

DECLARE_STREAM cands USING
CA IN CANDIDATES SORTED BY CA.LAST_NAME;

.

.

.
START_STREAM cands;

Program Structure and Design 9–7

An undeclared stream does not use the DECLARE_STREAM statement.
Instead, you specify the RSE (and transaction and request handles, or both, if
you choose to use them) on the START_STREAM statement. For example:

START_STREAM cand USING CA IN CANDIDATES SORTED BY CA.LAST_NAME;
.
.
.

END_STREAM cand;

Which kind of stream you use in your program will have an impact on how
your program must be structured and how the streams can be manipulated.
When you use a declared stream, the declaration of your stream made with the
DECLARE_STREAM statement is valid for the duration of your program. This
means that:

The location of the START_STREAM, FETCH, GET, and END_STREAM
statements in your program is flexible.

You can place these statements in any order within your source program
as long as they are preceded by the DECLARE_STREAM statement and
execute in a logical order. That order is:

1 START_STREAM statement

2 FETCH statement

3 GET statement or a host language assignment to a variable in RDML

4 END_STREAM statement

The context variables you use in the DECLARE_STREAM statement are
meaningful only at preprocessing time and endure until the end of the
module being processed. You cannot use a context variable referred to in a
DECLARE_STREAM statement in a FOR statement, for example.

You can issue several START_STREAM statements, and as long as you use
the declared stream name, they will all manipulate the same stream.

An undeclared stream does not offer the flexibility of a declared stream. When
you use an undeclared stream, the context variables specified in the START_
STREAM statement are only valid for code that physically appears between
the START_STREAM and END_STREAM statements in your source program.

This means that stream manipulation statements must appear in the source
program in exactly this order:

1 START_STREAM statement

2 FETCH statement

9–8 Program Structure and Design

3 GET statement or a host language assignment to a variable in RDML

4 END_STREAM statement

Because declared streams offer all the functionality of undeclared streams, and
allow you more flexibility in programming, Digital recommends that you use
declared streams rather than undeclared streams.

9.2.3.3 Using Undeclared Streams to Retrieve Records You can use an
undeclared stream to retrieve all or some of the records from a record stream;
you have total control of program iteration. With an undeclared START_
STREAM statement you can conditionally terminate processing the record
stream at any time, a feature not available with the FOR statement.

When you use an undeclared stream, you must name the stream and specify an
RSE with at least one context variable. The RSE operates in exactly the same
way as it does in the FOR loop; it determines which records and which fields
from those records are included in the record stream. For detailed information
about forming RSEs, refer to Chapter 3, and to the VAX Rdb/VMS RDO and
RMU Reference Manual and the RDML Reference Manual.

When you issue an undeclared START_STREAM statement that contains host
language variables in the RSE, Rdb/VMS examines the host language variables
at the time it executes the statement. Any changes you make to the host
language variables after execution of the START_STREAM statement have no
effect on the records included in the stream.

After starting a record stream with the START_STREAM statement, use the
FETCH statement to step through the stream and a GET statement (or in
RDML, a host language assignment statement) to transfer the database value
to a host language variable. Use host language statements to process the
record retrieved by the GET statement.

Your program does not have to detect the end-of-stream condition explicitly.
The FETCH statement includes an optional AT END clause to detect this
condition. If the end-of-stream condition is detected, control passes to the host
language statements within the AT END . . . END_FETCH block.

The ON ERROR clause in the FETCH statement can handle errors or exception
conditions other than end-of-stream. When an error occurs, program control is
transferred to the statements you include in the ON ERROR clause.

You can process a record stream only from the beginning. To return to a record
you have already processed, you must first end the stream and then start it
again. To end a stream, issue an END_STREAM statement that includes the
same stream name used to start the stream. Do not issue an END_STREAM
statement after a COMMIT or ROLLBACK statement. The COMMIT and
ROLLBACK statements automatically end all streams opened during that
transaction.

Program Structure and Design 9–9

The START_STREAM statement always includes at least one context variable
in its RSE. This context variable is valid starting with the START_STREAM
statement and ending with the END_STREAM statement. The context
variable associated with an undeclared stream is meaningless when you refer
to it outside of the block of code enclosed by the START_STREAM and END_
STREAM statements in your source program.

If you do not include an END_STREAM statement for a particular record
stream, the context variable is valid to the end of the transaction. You should
consider this when you design structured programs.

Host language statements within the START_STREAM . . . END_STREAM
block can process the records within the stream.

You can call procedures from within a START_STREAM . . . END_STREAM
block; these procedures can also form streams. However, if the calling
procedure has an open stream, and the procedure uses any of the same
context variables in its RSE, you will receive an error. You will receive the
error at preprocessing time if the calling procedure and the called procedure
are in the same module. If the calling procedure and the called procedure are
in separately preprocessed modules, you will receive an error at run time.

You may use the START_STREAM statement within a FOR loop. However, in
RDBPRE programs only, you will receive the error RDB$_REQ_SYNC if you
attempt to fetch a field defined in the FOR statement RSE more than once
inside the stream. The following example generates the RDB$_REQ_SYNC
error because it attempts to retrieve the variable P.CITY (used in the FOR loop
RSE) more than once inside the stream named S:

MOVE ’N’ TO FOUND_END
&RDB& FOR P IN PORT WITH P.CITY MATCHING ’*D*’
&RDB& START_STREAM S USING E IN EXPORTER WITH
&RDB& E.PORT_NUM = P.PORT_NUM

PERFORM UNTIL FOUND_END IS EQUAL ’Y’
&RDB& FETCH S
&RDB& AT END

DISPLAY " End of stream found "
MOVE ’Y’ TO FOUND_END

&RDB& END_FETCH
*
* Need conditional statement to branch around
* this code at stream end.
*

9–10 Program Structure and Design

IF FOUND_END IS EQUAL TO ’N’ THEN
*
* Keep retrieving the field value of P.CITY until
* the end of stream is reached. The second attempt
* to retrieve this field will result in an error.
*
&RDB& GET
&RDB& CITY = P.CITY;
&RDB& NAM = E.EXP_NAME; END_GET

DISPLAY "City ",CITY," Exporter ",NAM
END-IF

END-PERFORM

MOVE ’N’ TO FOUND_END
&RDB& END_STREAM S
&RDB& END_FOR

Instead, retrieve the variable used in the FOR loop RSE outside the
START_STREAM . . . END_STREAM block. For example:

MOVE ’N’ TO FOUND_END
&RDB& FOR P IN PORT WITH P.CITY MATCHING ’*D*’
&RDB& GET
&RDB& CITY = P.CITY;
&RDB& END_GET

&RDB& START_STREAM S USING E IN EXPORTER WITH
&RDB& E.PORT_NUM = P.PORT_NUM

PERFORM UNTIL FOUND_END IS EQUAL ’Y’
&RDB& FETCH S
&RDB& AT END

DISPLAY " End of stream found "
MOVE ’Y’ TO FOUND_END

&RDB& END_FETCH

*
* Need conditional statement to branch around
* this code at stream end.
*

IF FOUND_END IS EQUAL TO ’N’ THEN
&RDB& GET
&RDB& NAM = E.EXP_NAME;
&RDB& END_GET

DISPLAY "City ",CITY," Exporter ",NAM
END-IF

END-PERFORM

MOVE ’N’ TO FOUND_END
&RDB& END_STREAM S
&RDB& END_FOR

Program Structure and Design 9–11

The following example shows the use of an undeclared stream in pseudocode.
Uppercase statements are DML statements. Lowercase text describes the logic
you should code in your host language. The example:

Creates a stream of all EMPLOYEES records sorted by the LAST_NAME
field

Creates a stream of all EMPLOYEES records sorted by the FIRST_NAME
field

Uses the FETCH statement to step through the LAST_NAME stream,
record by record

Uses the FETCH statement to step through the FIRST_NAME stream,
record by record

Uses a GET statement to retrieve a record from the LAST_NAME stream,
then a record from the FIRST_NAME stream so that a host language
display statement can be used to list the stream sorted by LAST_NAME in
the left columns and the stream sorted by FIRST_NAME in the righthand
columns.

START_STREAM BY_LAST_NAME USING
E1 IN EMPLOYEES SORTED BY E1.LAST_NAME, E1.FIRST_NAME;

START_STREAM BY_FIRST_NAME USING
E2 IN EMPLOYEES SORTED BY E2.FIRST_NAME, E2.LAST_NAME;

set flag for end-of-stream to false

FETCH BY_LAST_NAME
AT END

set end-of-stream flag to true
END_FETCH;

if not end-of-stream then
FETCH BY_FIRST_NAME

while end-of-stream = false
begin loop

GET
last_name = E1.LAST_NAME;
first_name = E2.FIRST_NAME;
print E1.LAST_NAME and E1.FIRST_NAME
then skip 20 spaces

END_GET

FETCH BY_LAST_NAME
AT END

set end-of-stream flag to true
END_FETCH;

if not end-of-stream then
FETCH BY_FIRST_NAME;

end loop

9–12 Program Structure and Design

END_STREAM BY_LAST_NAME;
END_STREAM BY_FIRST_NAME;

9.2.3.4 Using Declared Streams to Retrieve Records As with an undeclared
stream, a declared stream allows you total control of program iteration. That
is, you can conditionally terminate processing of the record stream at any time,
a feature not available with the FOR statement.

However, when you use a declared stream, you must also use a DECLARE_
STREAM statement. In the DECLARE_STREAM statement, you must name
the stream and specify an RSE with at least one context variable. Then, when
you start the stream with the START_STREAM statement, you must use the
same name to refer to the stream as you specified in the DECLARE_STREAM
statement.

In a declared stream (as with the undeclared stream) the RSE operates in
exactly the same way as it does in the FOR loop; it determines which records
your program processes. For detailed information about forming RSEs, refer to
Chapter 3, and to the VAX Rdb/VMS RDO and RMU Reference Manual and
the RDML Reference Manual.

When you use a DECLARE_STREAM statement that contains host language
variables in the RSE, Rdb/VMS examines the host language variables at
the time it executes the declared START_STREAM statement. Any changes
you make to the host language variables after the execution of the declared
START_STREAM statement have no effect on the records included in the
stream formed by the DECLARE_STREAM statement.

After opening a record stream with the START_STREAM statement, use the
FETCH statement to step through the stream and a GET statement, (or in
RDML, a host language assignment statement) to transfer the database value
to a host language variable. Use host language statements to process the
record retrieved by the GET statement.

Your program does not have to detect the end-of-stream condition explicitly.
The FETCH statement includes an optional AT END clause to detect this
condition. If the end-of-stream condition is detected, control passes to the host
language statements within the AT END . . . END_FETCH block. If you use
the AT END clause, you must use the END_FETCH clause to terminate the
FETCH statement.

The ON ERROR clause in the FETCH statement can handle errors or exception
conditions other than end-of-stream. When an error occurs, program control is
transferred to the statements you include in the ON ERROR clause.

To end a declared stream, issue the END_STREAM statement, which must
include the same stream name used to start the stream. You do not need to
issue an END_STREAM statement after a COMMIT or ROLLBACK statement.
The COMMIT and ROLLBACK statements automatically close all streams
opened during that transaction.

Program Structure and Design 9–13

The DECLARE_STREAM statement always includes at least one context
variable in its RSE. This context variable is valid starting with the DECLARE_
STREAM statement to the end of the module. Note that this differs from an
undeclared stream, in which the validity of a context variable begins with the
START_STREAM statement and ends with the END_STREAM statement.

Note that a declared stream name cannot be passed between separately
preprocessed modules. Although the DECLARE_STREAM, START_STREAM,
FETCH, GET, and END_STREAM statements may appear within different
procedures of a module, the modules must appear within the same source file.

The following example shows the use of a declared stream in pseudocode.
Uppercase statements are DML statements. Lowercase text describes the logic
you should code in your host language. The example:

Declares and specifies an RSE for the cands stream using the DECLARE_
STREAM statement

Declares and specifies an RSE for the emps stream using the DECLARE_
STREAM statement

Uses declared START_STREAM statements to open the cands and emps
streams

Uses a FETCH statement to place a pointer at the first record in the cands
record stream

If a record exists in the cands stream, uses the GET statement to place the
values from the LAST_NAME, FIRST_NAME, and CANDIDATE_STATUS
fields into host language variables

Uses a FETCH statement to place a pointer at the first record in the emps
record stream

If a record exists in the emps stream, uses the GET statement to place the
values from the LAST_NAME, FIRST_NAME, and EMPLOYEE_ID fields
into host language variables

Displays all the values that the GET statement placed in the host language
variables

Continues to fetch, get, and display records until there are no more records
in the cands record stream

DECLARE_STREAM cands USING CA IN CANDIDATES
SORTED BY CA.LAST_NAME

DECLARE_STREAM emps USING EM IN EMPLOYEES
SORTED BY EM.FIRST_NAME

START_TRANSACTION READ_ONLY

START_STREAM cands
START_STREAM emps

9–14 Program Structure and Design

set flag for end of emps stream (emps_end) to false
set flag for end of cands stream (cands_end) to false

FETCH cands
AT END

set flag for end of the cands stream to true
END_FETCH

if it is not the end of the cands stream then

GET
cand_last_name = CA.LAST_NAME;
cand_first_name = CA.FIRST_NAME;
cand_status = CA.CANDIDATE_STATUS;

END_GET

end of if statement block

FETCH emps
AT END

set flag for end of the emps stream to true
END_FETCH

if it is not the end of the emps stream then

GET
last_name = EM.LAST_NAME;
first_name = EM.FIRST_NAME;
employee_id = EM.EMPLOYEE_ID;

END_GET

end of if statement block

execute the following loop as long as it is not
the end of the cands stream

begin loop
display last_name,first_name,

cand_last_name,cand_first_name
FETCH cands

AT END
set flag for end of
the cands stream to true

END_FETCH

if the flag for the end of the cands stream
is set to false then do the following:

begin loop
GET

cand_last_name = CA.LAST_NAME;
cand_first_name = CA.FIRST_NAME;
cand_status = CA.CANDIDATE_STATUS;

END_GET

end of if statement block

if the flag for the end of the emps stream
is set to false, then do the following:

Program Structure and Design 9–15

FETCH emps
AT END

set flag for end of emps
stream to true

END_FETCH

if the flag for the end of the emps stream
is set to false then do the following:

GET
last_name = em.last_name;
first_name = em.first_name;
employee_id = em.employee_id;

END_GET
end of inner if statement block

end of outer if statement block
end loop

END_STREAM emps
END_STREAM cands

COMMIT

9.2.4 Retrieving Segmented Strings
The Rdb/VMS segmented string data type allows you to store blocks of
unstructured data such as text, graphics, or voice. You store segmented string
records in a field of a relation. Each record can hold any number of segmented
strings, up to the physical limits of the storage unit. Each segment can be up
to 65,522 bytes long, except for the first segment of the string, which has a
maximum length of 65,508 bytes. See Chapter 8 for more information on the
segmented string data type.

The Rdb/VMS segmented string data type requires a special use of RSEs. The
first RSE forms an outer stream of records. It determines the field and the
relation that will contain the segmented string records. A second RSE forms
the inner stream of segments. It identifies the segmented string field that
contains the individual segments.

The RDBPRE preprocessor lets you use either the START_SEGMENTED_
STRING statement or a FOR statement with segmented strings to form a
stream of segmented string records.

RDML allows only the FOR statement with segmented strings; RDML does not
support the START_SEGMENTED_STRING statement.

9–16 Program Structure and Design

9.2.4.1 Using the FOR Statement to Retrieve Segmented Strings You must
use either two nested FOR statements or an outer START_STREAM statement
with an inner FOR statement to create two streams when retrieving segmented
string records. The inner RSE identifies the segments contained in the field
specified by the outer RSE. Use a different context variable in the inner and
outer FOR or START_STREAM statements.

The inner RSE is not an RSE in the sense that it can select records. The
segmented string behaves like a sequential record file. You must begin at the
first segment and retrieve segments in the order that they are stored. For
this reason, the inner RSE does not include selection clauses. Note that the
inner FOR statement uses a segmented string variable in place of the context
variable, and that the field name is qualified by the context variable specified
in the outer FOR statement.

There are two special variables recognized by the preprocessors: RDB$VALUE
and RDB$LENGTH. The RDB$VALUE variable contains the segmented string
segment just retrieved. The RDB$LENGTH variable is a signed word integer
that contains the length of this segment. Within the inner loop, the GET
statement automatically fetches the contents of the segment, RDB$VALUE.
Note that you can have only one GET . . . END_GET block within the inner
loop.

The following pseudocode demonstrates the logic you should use to retrieve
a segmented string. The DML statements are in uppercase. Statements that
appear in lowercase must be translated into your host language. This example:

Starts a read-only transaction

Uses a FOR statement to start an outer stream of records that will include
all records for the employee with the employee ID specified by a host
language variable, employee_id

Uses a second FOR statement to start a stream of segments that form a
segmented string

Uses a GET statement to retrieve the value of the segmented string,
segment by segment

Prints each segment of the segmented string with a host language print
statement

Ends the inner FOR statement

Program Structure and Design 9–17

Ends the outer FOR statement

Commits the transaction

START_TRANSACTION READ_ONLY
FOR R IN RESUMES WITH
R.EMPLOYEE_ID = employee_id
set flag employee_found to true

FOR RR IN R.RESUME
GET

resume_segment = RR.RDB$VALUE;
segment_length = RR.RDB$LENGTH;

END_GET

print resume_segment
END_FOR !Ends inner FOR statement

END_FOR !Ends outer FOR statement
COMMIT

if flag employee_found is set to false then
display "Employee has no resume on file"

9.2.4.2 Using the START_SEGMENTED_STRING Statement to Retrieve
Segmented Strings When you want to maintain program control of a
stream of segments that comprise the segmented string field, use the START_
SEGMENTED_STRING statement instead of using the FOR statement.

Note This statement is only available in RDBPRE. Do not attempt to use it in RDML
programs.

You must start two streams when processing segmented strings with the
START_SEGMENTED_STRING statement. One stream (the outer stream)
retrieves the records that you specify; the other stream (the inner stream) is
comprised of the segments that form the segmented string.

Form an outer stream of records with the FOR or START_STREAM statement,
then use the START_SEGMENTED_STRING statement to form an inner
stream of segments. The inner stream identifies the segments that are
contained in the field specified by the FOR or START_STREAM statement.
Use different context variables for the outer record stream and the inner record
stream.

The inner stream is not a stream in the sense that you can control its record
selection. The segmented string behaves like a sequential record file. You must
begin at the first segment and retrieve segments in the order that they are
stored. For this reason, the inner stream does not include selection clauses.
Note that the START_SEGMENTED_STRING statement uses a segmented
string variable in place of the context variable, and that the field name is
qualified by the context variable specified in the outer record stream.

9–18 Program Structure and Design

When you use the START_STREAM statement, use the FETCH statement
to advance the pointer in the outer record stream. (The outer record stream
advances automatically with the FOR statement.) Use the GET statement in
the inner stream to retrieve each segment, RDB$VALUE, in the segmented
string. Within the START_SEGMENTED_STRING statement, the GET
statement automatically retrieves the segmented string, segment by segment.

The following example uses the START_STREAM statement to form a stream
of resumes records that have an EMPLOYEE_ID field value of 12345. Then,
an inner START_SEGMENTED_STRING statement is used to form the
stream of segments that form the segmented string. A host language loop
is used to control the processing of the segmented strings. In this example,
the stream is processed until the last segment has been retrieved from the
database. Each segment of the segmented string is printed until the end-of-
segmented-string condition is met (SEGSTR_EOF). When this condition is
met, the stream created by the START_SEGMENTED_STRING statement is
closed, and if there are no more records with the EMPLOYEE_ID of 12345, the
stream formed by the START_STREAM statement is closed also. (Remember
that when you use the START_SEGMENTED_STRING statement, any host
language conditional statement can be used to determine when the program
should stop processing the segmented string stream; you do not have to use the
RDB$_SEGSTR_EOF condition as the terminating condition.)

DATABASE pers = FILENAME ’MF_PERSONNEL’

set flag for end of segmented string stream to false

START_TRANSACTION READ_ONLY
START_STREAM RESSTR USING

R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
FETCH RESSTR
END_FETCH

START_SEGMENTED_STRING RINFO USING STRN IN R.RESUME
loop until end of segmented strings

GET
ON ERROR

call error handler
END_ERROR
resume_segment = STRN.RDB$VALUE;
segment_length = STRN.RDB$LENGTH;

END_GET

trap status of GET statement.

if status is success print resume_segment

Program Structure and Design 9–19

if status equals RDB$_SEGSTR_EOF then
set end_of_seg flag to true

end loop
END_SEGMENTED_STRING RINFO

END_STREAM RESSTR
COMMIT

9.2.5 Retrieving Field and Statistical Values
Use the GET statement to retrieve one, several, or all the fields in a database
record. You can also use a GET statement that contains a statistical function
to retrieve the following statistical values from the database:

Total value of the selected fields (TOTAL)

Minimum value of the selected fields (MIN)

Maximum value of the selected fields (MAX)

Average value of the selected fields (AVERAGE)

Count of the selected fields (COUNT)

The next two sections discuss retrieving field and record values, and retrieving
statistical values.

9.2.5.1 Using the GET Statement to Retrieve Field and Record Values
When you form a record stream using the FOR statement, you include the GET
statement within the FOR . . . END_FOR block to place the database values
in host language variables. In RDBPRE programs, the GET statement is the
only way to place field values into host language variables. In RDML, you can
either use the GET statement or a host language assignment statement to
place field values in host language variables.

When you use an undeclared stream, you must use the GET statement to
retrieve field values in RDBPRE programs (or in RDML, you can also use a
host language assignment statement). However, the GET statement (or host
language assignment statement) must appear in your source program after the
FETCH statement and before the END_STREAM statements.

When you use a declared stream, the GET statement (or host language
assignment statement) may appear anywhere within your source program, as
long as it executes after the FETCH statement and before the END_STREAM
statement.

Note that in RDML programs, use of the GET statement to retrieve the results
of statistical and Boolean functions is recommended but not required. You can
use a host language assignment statement in place of the GET statement. This
is discussed in more detail in Chapter 17 and Chapter 18.

9–20 Program Structure and Design

A special form of the GET statement is the GET * statement, which lets you
retrieve all fields in a record. You can retrieve all the fields in the records of
a relation with the GET * statement. To use the GET * statement, you must
first declare a record structure that contains all the fields in the records of a
relation, with record field names that match the database field names. You
can create such a record structure by copying data definitions from the data
dictionary. (See Chapter 12 and Chapter 16 for more information on copying
record and field definitions from the data dictionary.) The following GET *
statement retrieves all of the fields from the records of the JOB_HISTORY
relation and places their values in the JOB_HISTORY record structure:

FOR FIRST 1 J IN JOB_HISTORY WITH
J.JOB_CODE = JOB_CODE IN JOB_HISTORY
AND J.JOB_END MISSING

GET
JOB_HISTORY = J.*

END_GET
END_FOR

9.2.5.2 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly, without processing each
record in the record stream. Statistical expressions are sometimes called
aggregate expressions because they calculate a single value for a collection
of records. RDBPRE or RDML may assign a data type to the result that is
different from the data type of the field referred to in the expression. See
Chapter 8 for information on the data type conversions performed by statistical
expressions.

The following example uses the COUNT statistical function to find the total
number of employees in the EMPLOYEES relation. To use this code in a host
language program you need to convert the statements that appear in lowercase
into your host language. Statements that appear in uppercase type are DML
statements.

START_TRANSACTION READ_ONLY

GET
number_employees = COUNT OF E IN EMPLOYEES

END_GET

display number_employees
COMMIT

Program Structure and Design 9–21

9.2.6 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The Rdb/VMS update statements can only be used in a read/write transaction.
(You may, of course, include any valid Rdb/VMS statement within a read/write
transaction.) The update statements that require a read/write transaction are:

STORE

MODIFY

ERASE

Note You may not use a view to update records if that view refers to more than one
relation.

If your program prompts for data from a terminal, consider nesting a complete
transaction within the data input loop. For example, you could use the
following algorithm:

Start a host language loop

Request data input from user

Start a transaction

Perform data manipulation tasks

Commit the transaction

End the host language loop

If the transaction fails, the user needs to enter again only the last input data.
However, do not place requests for input from the user within the scope of the
transaction.

Keep in mind that the transaction should be short and, at the same time, the
logic should ensure that all updates that logically go together are included
in the same transaction. For example, if you want to delete an employee’s
records from the entire database, do not erase all of this employee’s records
from one relation during one transaction, and the rest of his or her records in
the database during another transaction.

Examples of prompting for data from a terminal are in the language-specific
chapters.

The following sections describe how to update records using the STORE,
MODIFY, and ERASE statements.

9–22 Program Structure and Design

9.2.6.1 Storing Records You can insert values into one or more fields in one
record using a single STORE statement. To store more than one record in a
relation, assign values in the STORE statement with host language variables
and include the STORE statement within a program loop that assigns values
again to host language variables before the STORE statement is issued.

The following example demonstrates the use of the STORE statement to add
a new employee to the database. In this example, lowercase values are host
language variables. This example starts a read/write transaction, the only
type of transaction in which you can use a STORE operation. The STORE
statement inserts a record with the values specified in the host language
variables into the EMPLOYEES relation.

START_TRANSACTION READ_WRITE NOWAIT RESERVING
EMPLOYEES FOR SHARED WRITE

STORE E IN EMPLOYEES USING
E.EMPLOYEE_ID = employee_id;
E.LAST_NAME = last_name;
E.FIRST_NAME = first_name;
E.MIDDLE_INITIAL = middle_initial;
E.ADDRESS_DATA_1 = address_data_1;
E.ADDRESS_DATA_2 = address_data_2;
E.CITY = city;
E.STATE = state;
E.POSTAL_CODE = postal_code;
E.BIRTHDAY = birthday;

END_STORE
COMMIT

A special form of the STORE statement is the STORE * statement, which
lets you manipulate database values at the record level rather than the field
level. You can store all the fields in the records of a relation with the STORE *
statement. To use the STORE * statement, you must first declare a record
structure that contains all the fields in the relation, with record field names
that match the database field names. You can copy record definitions from
the data dictionary to create such a record structure. (See Chapter 12 and
Chapter 16 for more information on copying record and field definitions from
the data dictionary.) Then, put the field values you want to store in the record
fields and store the entire record using the STORE * statement. The following
example shows the use of the STORE * statement to store the values in the
host language record, job_log, in the JOB_HISTORY relation of the PERS
database:

STORE J IN PERS.JOB_HISTORY USING
J.* = job_log

END_STORE

Program Structure and Design 9–23

9.2.6.1.1 Using the CREATE_SEGMENTED_STRING Statement to Store
Segmented Strings Use the CREATE_SEGMENTED_STRING statement
and the STORE statement to store segmented strings in a relation. You must
use two operations when you store segmented strings. When you store a
segmented string field, you are not actually storing the individual segments
that comprise the segmented string into the field. The value that is stored in
the segmented string field is an identifier, or logical pointer, to the location of
the actual segmented string.

Note The CREATE_SEGMENTED_STRING statement is available only in RDBPRE.
To store a segmented string in RDML programs, use the STORE statement with
segmented strings.

First, use the CREATE_SEGMENTED_STRING statement to form the inner
string of segments. Store the segments in this inner string with the STORE
statement. Your program must explicitly repeat the STORE statement to
store each segment, or iterate the STORE statement by a program loop. You
cannot selectively store individual segments and you must store the segmented
string in its entirety. For example, if you attempted to store first segment-1,
next segment-3, next segment-5, and finally segment-2, your segmented string
would contain: segment-1, segment-3, segment-5, and segment-2, in that order.

When all the segments are stored in a segmented string, use an outer STORE
statement to store the segmented string identifier in a relation. (You can
store other fields in the relation with the same STORE statement.) Once
the outer STORE operation is complete, close the segmented string with the
END_SEGMENTED_STRING statement.

You can close the segmented string before you perform the outer store operation
that stores the segmented string identifier in a relation. However, do not use
that segmented string identifier again until you have stored it in a relation.

The following pseudocode shows the logic involved in transferring a resume
from a sequential file to a segmented string field in the sample personnel
database. The uppercase statements are data manipulation statements. The
lowercase text indicates the logic you must code in your host language. This
example:

Starts an outer loop with the CREATE_SEGMENTED_STRING statement.
(Resume_handle represents the name you give to the segmented string
stream.)

Opens a file from which to read the resume information.

Starts a loop that will be terminated at the end of the file that contains the
resume.

Reads a line from this file.

Stores this line in the segmented string field of the RESUMES relation.

9–24 Program Structure and Design

Continues to read and store each line of the resume until the loop condition
(end of file) is met.

Closes the file that contained the resume.

Stores the entire resume record in the database.

CREATE_SEGMENTED_STRING resume_handle
open file from which you want to read resume
information

loop until end of file
read line of file
STORE R IN resume_handle USING

R.RDB$VALUE = resume_line
END_STORE

end_loop

if end_of_file then close file

END_SEGMENTED_STRING resume_handle

STORE R IN RESUMES USING
R.EMPLOYEE_ID = employee_id;
R.RESUME = resume_handle;

END_STORE
COMMIT

9.2.6.1.2 Using the STORE Statement with Segmented Strings to Store
Segment Streams In RDML, use the STORE statement with segmented
strings to create and store a segmented string field. Storing a segmented
string involves two store operations; one STORE statement embedded within
another.

Use the outer STORE statement to store all the fields in the record that
are not SEGMENTED STRING data type. Specify a context variable and
the relation into which you want to store all the fields in the outer STORE
statement. Specify a second context variable and the field name (qualified by
the context variable used in the outer STORE statement) in the inner STORE
statement (the STORE statement with segmented strings). Use the inner
STORE statement to store the segments.

RDML defines a special name to refer to the segments of a segmented string.
This value expression is equivalent to the field name; it names the ‘‘fields’’
or segments of a segmented string. Furthermore, because the segments can
vary in length, RDML also defines a name for the length of the segment. You
must use these value expressions to retrieve or store the length and value of a
segment. These names are:

RDB$VALUE or VALUE

The value stored in a segment of a segmented string.

Program Structure and Design 9–25

RDB$LENGTH or LENGTH

The length of a segment in bytes.

When using the RDML and RDBPRE precompilers, be sure to define a
sufficiently large value for the RDMS$BIND_SEGMENTED_STRING_
BUFFER logical name. An adequate buffer size is needed to store large
segmented strings (using segmented string storage maps), in storage areas
other than the default RDB$SYSTEM storage area. The minimum acceptable
value for the RDMS$BIND_SEGMENTED_STRING_BUFFER logical name
must be equal to the sum of the length of the segments of the segmented
string. For example, if you know that the sum of the length of the segments
is one megabyte, then 1,048,576 bytes is an acceptable value for this logical
name.

You must specify the logical name value because when RDML and RDBPRE
precompilers store segmented strings, Rdb/VMS does not know which table
contains the string until after the entire string is stored. Rdb/VMS buffers
the entire segmented string, if possible, and does not store it until the STORE
statement executes.

If the segmented string remains buffered, it is stored in the appropriate storage
area. If the string is not buffered (because it is larger than the defined value
for the logical name or the default value of 10,000 bytes), it is not stored in the
default storage area and the following exception message is displayed:

%RDB-F-IMP_EXC, facility-specific limit exceeded
-RDMS-E-SEGSTR_AREA_INC, segmented string was stored incorrectly

To avoid this error, set the value of the RDMS$BIND_SEGMENTED_STRING_
BUFFER logical name to a sufficiently large value. Note that a value of up to
500 MB can be specified for this logical name. See the VAX Rdb/VMS RDO
and RMU Reference Manual for more information on defining storage areas.

Note The SQL interface for lists (segmented strings) does not require you to define
the value for this logical name. Before the list is brought into the buffer, SQL
knows the column that the list is associated with and the table it is stored in.
However, for large lists, defining this logical name with a value large enough to
hold the entire list may improve the handling performance of storing the list.

If the relation into which you are storing a record contains two segmented
string fields, you must use two STORE statements with segmented strings in a
series, within the outer STORE statement.

The following pseudocode demonstrates how to store a segmented string field
using RDML. See Chapter 17 and Chapter 18 for RDML/C and RDML/Pascal
examples. All lowercase words are host language variables. All uppercase
statements are data manipulation statements.

9–26 Program Structure and Design

open file from which you want to read resume
information

STORE R IN RESUMES USING
R.EMPLOYEE_ID = 12345

loop until end of file
read line of file
STORE RR IN R.RESUME USING

RR.VALUE = first_line_of_resume
RR.LENGTH = length_of_segment

END_STORE
end_of_loop

END_STORE

9.2.6.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of one, many, or all the records in one
relation. When you list the fields in the MODIFY statement, list only those
fields that you want to change. If you replace a field value with an identical
field value you are needlessly adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Use the FOR statement when you want to modify all the records in your record
stream. You can take advantage of the automatic iteration of the FOR loop
without having to use a program loop to step through the records. Use the
START_STREAM statement when you want to conditionally modify the records
in the record stream. You can use host language variables within your RSE
so that your program logic can alter a record stream for each new FOR or
START_STREAM statement.

The following example modifies the record of the employee with an employee
ID that matches the value stored in the host language variable, employee_id.
All lowercase words are host language variables. All uppercase statements are
data manipulation statements.

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED WRITE

FOR E IN EMPLOYEES WITH
E.EMPLOYEE_ID = employee_id

MODIFY E USING
E.ADDRESS_DATA_1 = address_data_1;
E.ADDRESS_DATA_2 = address_data_2;
E.CITY = city;
E.STATE = state;
E.POSTAL_CODE = postal_code;

END_MODIFY
END_FOR

COMMIT

Program Structure and Design 9–27

A special form of the MODIFY statement is the MODIFY * statement, which
lets you manipulate database values at the record level rather than the field
level. You can modify all the fields in a record with the MODIFY * statement.
To use the MODIFY * statement, you must first declare a record structure
that contains all the fields in the record, with record field names that match
the database field names. You can copy definitions from the data dictionary
to create such a record structure. (See Chapter 12 and Chapter 16 for more
information on copying record and field definitions from the data dictionary.)
Then, put the field values you want to replace into the record fields and modify
the entire database record using the MODIFY * statement. The following
example replaces the field values of an employee record in the JOB_HISTORY
relation with the field values in the JOB_HISTORY record structure:

FOR J IN JOB_HISTORY WITH
J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
AND J.JOB_END MISSING

MODIFY J USING
J.* = JOB_HISTORY

END_MODIFY
END_FOR

9.2.6.2.1 Modifying Segmented Strings in RDBPRE You can modify a record
that contains a segmented string field, but you cannot modify the individual
segments that comprise the segmented string field. The methods used to
modify a segmented string differ for RDML and RDBPRE.

In RDBPRE, create a segmented string handle with the CREATE_
SEGMENTED_STRING and STORE statements. Then modify the record
that contains the segmented string with a MODIFY statement. Supply the
resume_id name used in the CREATE_SEGMENTED_STRING statement as
the new value for the segmented string field in the MODIFY statement. An
example of this statement follows.

CREATE_SEGMENTED_STRING resume_id
STORE R IN resume_id USING

R.RDB$VALUE = resume_line
END_STORE

END_SEGMENTED_STRING resume_id

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id
MODIFY R USING

R.RESUME = resume_id
END_MODIFY

END_FOR

9–28 Program Structure and Design

9.2.6.2.2 Modifying Segmented Strings in RDML You can modify a record
that contains a segmented string field, but you cannot modify the individual
segments that comprise the segmented string field. The methods used to
modify a segmented string differ for RDML and RDBPRE.

In RDML, use a STORE statement with segmented strings within a MODIFY
statement to change the value of a segmented string field. For example:

FOR R IN RESUMES
WITH R.EMPLOYEE_ID = employee_id

MODIFY R USING
STORE RR IN R.RESUME USING

RR.VALUE = first_line_of_resume
RR.LENGTH = length_of_segment

END_STORE
END_MODIFY;

END_FOR;

9.2.6.3 Erasing Records You can delete one, many, or all the records from
a relation using a single ERASE operation. Before erasing records, you must
start a read/write transaction and form a record stream that contains the
records you wish to erase. Depending on how you form your RSE, you can
erase many or all the records from a relation with a single ERASE statement
embedded in a FOR statement or within a stream formed by a START_
STREAM statement.

The ERASE statement can be an extremely expensive operation, using almost
as many system resources as a load operation. In shared and protected share
modes, each record erased generates a record in both the recovery-unit journal
and the after-image journal. Thus, large-scale erasing of database records may
exceed the enqueue limit (ENQLM). See the VAX Rdb/VMS Guide to Database
Maintenance and Performance for information on modifying system resources.

Use the FOR statement when you want to erase all the records in your record
stream. You can take advantage of the automatic iteration of the FOR loop
without having to use a program loop to step through the records. Use the
START_STREAM statement when you want more control over erasing the
records in the record stream. For example, when you want to branch to
different procedures to perform stream manipulation tasks.

You can use host language variables within your RSE so that your program
logic can alter a record stream for each new FOR or START_STREAM
statement.

You can erase records from more than one relation by forming a record stream
with a CROSS clause that joins several relations. However, if you use the
ERASE statement with a CROSS clause that joins one record to many, you
must be careful to erase only unique records.

Program Structure and Design 9–29

For example, when you cross the EMPLOYEES relation with the
DEPARTMENTS relation over the DEPARTMENT_CODE field, you form
a record stream that contains one record for each employee ID. However,
because a number of employees work in each department, this record stream
contains a number of records that include the same department code field.

You can erase all the records in this stream using a context variable that
points to unique EMPLOYEES records. However, if you want to erase the
records in this stream using a context variable that points to the multiple
DEPARTMENTS records, you must first use the REDUCED TO clause to make
the DEPARTMENTS records unique. The following ERASE statement uses the
context variable E to erase each record in the stream:

FOR D IN DEPARTMENTS CROSS E IN EMPLOYEES OVER DEPARTMENT_CODE
ERASE E

END_FOR

To erase records in this record stream using the context variable D, you must
first use the REDUCED TO clause to reduce the records in the stream so only
unique DEPARTMENT_CODE fields will be included in the stream. If you
attempt to erase multiple DEPARTMENTS records, the query will fail with
the error RDMS-F-NODBK. The following RSE correctly uses the REDUCED
TO clause to reduce the stream to only those records that contain unique
DEPARTMENT_CODE field values before the stream is erased:

FOR D IN DEPARTMENTS CROSS E IN EMPLOYEES OVER DEPARTMENT_CODE
REDUCED TO D.DEPARTMENT_CODE

ERASE D
END_FOR

If you want to erase all department code records that contain duplicate values
in the record stream, you should use nested FOR statements to create two
separate streams for the DEPARTMENTS and EMPLOYEES relations. The
following example erases the department FOO and all associated employees in
that department.

FOR D IN DEPARTMENTS WITH D.DEPARTMENT_CODE = ’FOO’
FOR E IN EMPLOYEES

WITH D.DEPARTMENT_CODE = E.DEPARTMENT_CODE
ERASE E

END_FOR
ERASE D

END_FOR

The following example demonstrates how you might erase a record from the
sample personnel database. Because a record from the EMPLOYEES relation
is being erased, it is a good idea to erase all the records that refer to the same
employee ID, namely, those records in the JOB_HISTORY, SALARY_HISTORY,
DEGREES, and RESUMES relations. Not only is this a good idea, but in
the case of the sample personnel database, JOB_HISTORY and SALARY_
HISTORY records for this employee must be deleted when the EMPLOYEES

9–30 Program Structure and Design

record that has the same value for EMPLOYEE_ID is deleted. If they are
not, an error will be returned that indicates that constraints have been
violated. The JOB_HISTORY and SALARY_HISTORY relations are defined
with constraints that specify that an EMPLOYEES record must exist before an
associated record (one with the same EMPLOYEE_ID field value) can be stored
in either of these relations.

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES, SALARY_HISTORY, JOB_HISTORY,
DEPARTMENTS, DEGREES,
RESUMES FOR SHARED WRITE

FOR E IN EMPLOYEES WITH
E.EMPLOYEE_ID = "00167"

FOR JH in JOB_HISTORY WITH
JH.EMPLOYEE_ID = e.employee_id
ERASE JH

END_FOR

FOR SH IN SALARY_HISTORY WITH
SH.EMPLOYEE_ID = e.employee_id
ERASE SH

END_FOR

FOR D IN DEGREES WITH
D.EMPLOYEE_ID = e.employee_id
ERASE D

END_FOR

FOR R IN RESUMES WITH
R.EMPLOYEE_ID = e.employee_id
ERASE R

END_FOR
ERASE E

END_FOR
COMMIT

The next example performs the same erase operations as in the previous
example. However, there would have to be a trigger definition as part of the
database metadata that would implement a cascading delete. The cascading
delete is triggered by the deletion of an EMPLOYEES record:

START_TRANSACTION READ_WRITE RESERVING
EMPLOYEES FOR SHARED WRITE

FOR E IN EMPLOYEES WITH
E.EMPLOYEE_ID = "00167"
ERASE E

END_FOR
COMMIT

Program Structure and Design 9–31

The trigger definition that enables this cascading delete is as follows:

DEFINE TRIGGER EMPLOYEE_ID_CASCADE_DELETE
BEFORE ERASE
FOR E IN EMPLOYEES EXECUTE
FOR D IN DEGREES WITH

D.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE D

END_FOR;
FOR JH IN JOB_HISTORY WITH

JH.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE JH

END_FOR;
FOR R IN RESUMES WITH

R.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE R

END_FOR;
FOR SH IN SALARY_HISTORY WITH

SH.EMPLOYEE_ID = E.EMPLOYEE_ID
ERASE SH

END_FOR.

9.2.7 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer or address that has a one-to-one
relationship with a record in the database. Each record has a unique dbkey
that points to it. You can retrieve this dbkey as though it were a field in a
record. For relations, the dbkey is 8 bytes. For views, you can calculate the
size by multiplying the number of relations referred to in the view by 8 bytes.
If your view refers to only one relation, the dbkey is 8 bytes; if your view refers
to two relations, it is 16 bytes, and so on. Once you have retrieved a dbkey, you
can use it to retrieve its associated record directly, within the RSE of a FOR or
START_STREAM statement.

By default, a dbkey is valid until you commit your transaction. That is,
a dbkey is guaranteed to point to the same record only for the life of the
transaction in which it is retrieved. In this case, the dbkey scope ends with the
COMMIT statement.

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

See the description of these statements in the VAX Rdb/VMS RDO and RMU
Reference Manual and RDML Reference Manual for details on the syntax of the
DATABASE statement.

One way of taking advantage of the dbkey scope qualifier is when you want to
perform a large modify or erase operation. If you set the dbkey scope to end
with the FINISH statement, you can start a read-only transaction to retrieve
the dbkey for the subset of database records in which you are interested. You

9–32 Program Structure and Design

can then commit this transaction and begin a read/write transaction to perform
the updates.

Because you have set the dbkey scope to end with the FINISH statement,
you can be assured that the dbkeys you have retrieved will point to the same
record they pointed to during the read-only transaction. However, another user
can modify or erase the records to which these dbkeys point. Also, if you use
this technique, be aware that other users may store records between the time
you commit the read-only transaction and begin the read/write transaction.
Before you use this technique, be certain that these issues do not affect the
logical integrity of your data for your application.

If you can use this technique, you may find that by locating each record
you want to update with the dbkeys retrieved in the read-only transaction,
you do not subject the database to an excessive amount of locking. Dbkeys
provide direct access to a record. If you do not use a dbkey to locate a record,
Rdb/VMS might have to search through a relation or index to find the desired
record. This search process may prohibit other users from accessing records
involved in the search, until you have committed your transaction. For more
information on locking see the VAX Rdb/VMS Guide to Database Maintenance
and Performance.

Another effective use of dbkeys is to obtain the dbkey of a record that a
program has just stored by placing a GET . . . RDB$DB_KEY expression in
a STORE . . . END_STORE block. In this way, while the dbkey value is still
valid, the program can make subsequent queries and use this value to access
the record directly (instead of having to go through a search process for the
record just stored).

9.2.8 Using Transactions
A transaction is an operation on the database that must complete as a unit
or it will not complete at all. A transaction is bordered by a set of statements
that begin with the START_TRANSACTION statement and end with either
the ROLLBACK or COMMIT statement.

Between these borders can be any number of Rdb/VMS and host language
statements. Transactions help to ensure that your application never partially
updates a database. If your program terminates unexpectedly, active
transactions are rolled back automatically by the database monitor. If you
have designed your transactions properly, unexpected program termination will
not leave the database in an inconsistent state.

Transactions are the core of a consistent multi-user, high-contention data
processing environment. Often, a user insists that the state of the database
remain unchanged (a high level of consistency) during the time the application
runs. For example, when a ticket agent accesses a database and finds only one
ticket left for tomorrow’s flight to New York, that agent wants a guarantee that
another agent cannot sell the ticket. Such a guarantee requires that the first

Program Structure and Design 9–33

application deny write access (the ability to sell and erase that last ticket) to
the second application. In fact, the first application may not even want to grant
read access to the second application. Such a high level of resource locking,
while at times absolutely necessary, forces other concurrent applications to
wait until the current transaction completes.

Applications in a much less restricted multi-user environment might be
concerned only with what the database looks like at a particular point in time.
When you start a transaction with the READ_ONLY qualifier, you access a
snapshot of the database. No matter what updates other users might perform,
you still see the state of the data at the time your transaction began. Thus,
you can read while other transactions write, with minimum locking conflict.

Note Rdb/VMS provides a transaction environment for applications running at a
high level of consistency as well as for applications running at a high level of
concurrency. See Chapter 2 for a full discussion of transactions.

The length of a transaction may affect both the performance of the application
and the consistency of the data in the database. In high-contention, interactive
situations, you should strive for short transactions that lock the least number
of records. On the other hand, each transaction must include all the data
manipulation operations required to complete an update. For example, if a
transaction updates a field, it must update that field in all the relations where
the field exists. Otherwise, unexpected program termination could result in
some of the values you intended to change remaining the same.

You should explicitly start a transaction before you execute any Rdb/VMS data
manipulation statement. However, when a program module calls a submodule
that includes data manipulation statements, you may not need to start a
new transaction in the submodule. Before Rdb/VMS executes the submodule
statements at run time, it checks to see if there is an active transaction of the
appropriate type. If there is, the submodule data manipulation statements
execute normally. If there is no active transaction, or if the transaction is
read-only and the data manipulation statements perform data update, you will
receive a run-time error.

Note By default in RDML, and always in RDBPRE, if you do not explicitly start
a transaction, or if you do explicitly start a transaction but do not specify
the type of transaction you want, a read-only transaction is started for you.
Furthermore, if your program accesses several databases and you do not specify
the ON clause in a START_TRANSACTION statement, your program will
attach to all the databases named in DATABASE statements within your
program.

Refer to Section 11.2.2 for information on how to override the default in RDML
using the /NODEFAULT_TRANSACTIONS qualifier.

9–34 Program Structure and Design

Language-specific examples of using the START_TRANSACTION statement
are in the language-specific chapters.

9.3 Using Structured Programming in Preprocessed
Programs

You should use structured programming concepts when you design your
RDML and RDBPRE programs. Calls to routines or calls to subprograms and
subroutines require special attention to:

The use of context variables

The DATABASE statement

The use of transactions

The START_STREAM statement

This next section discusses the scope of context variables in program blocks,
and the use of the DATABASE statement and transactions in functions,
subroutines, and submodules.

9.3.1 Using Context Variables in Program Blocks
Programs and modules that pass through one of the Rdb/VMS preprocessors,
RDBPRE or RDML, do not have unlimited freedom in structure. Many data
manipulation statements, in particular those that use context variables,
execute in the context of other data manipulation statements. These
statements are:

DECLARE_STREAM

FOR

GET

START_STREAM

END_STREAM

FETCH

STORE

MODIFY

ERASE

CREATE_SEGMENTED_STRING (available only in RDBPRE)

START_SEGMENTED_STRING (available only in RDBPRE)

END_SEGMENTED_STRING (available only in RDBPRE)

Program Structure and Design 9–35

These individual data manipulation statements each form only part of a
complex call to the database. The preprocessor may generate one call to the
database using more than one data manipulation statement. For example,
a MODIFY statement executes within the context of a stream created by
a FOR or START_STREAM statement. The call to the database can only
be made using both the FOR and MODIFY statements. For this reason,
the preprocessor requires such data manipulation statements to be lexically
sequential, that is, in the order they appear in the program source code.

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This
order may be entirely different from the order of actual program execution.
In general, the preprocessor is unaware of the intended run-time order of
program block execution. It generates code in the order that data manipulation
statements appear in the source code. Keep this in mind when writing your
application.

However, the declared START_STREAM statement lets you place the stream
manipulation statements in an order that deviates from the order of actual
program execution. When you want to use structured programming and you
do not need the automatic iteration provided by the FOR statement, use the
declared START_STREAM statement.

Remember that a context variable is meaningful only within its scope. In other
words, the context variable defined in a FOR statement is meaningless after
the END_FOR statement and a context variable defined in an undeclared
START_STREAM statement is meaningless after the END_STREAM
statement. However, the context variable defined in a DECLARE_STREAM
statement is meaningful throughout the module in which the statement is
issued.

Data manipulation statements that stand alone as independent calls to the
database may appear in any order in the source file. These statements are:

READY

START_TRANSACTION

END_STREAM (only when used with a declared stream)

FETCH (only when used with a declared stream)

GET (with statistical expressions or when used with a declared stream)

COMMIT

ROLLBACK

FINISH

Declared START_STREAM

9–36 Program Structure and Design

Remember that you must issue the DECLARE_STREAM statement before you
issue a declared START_STREAM statement and the DATABASE statement
must appear in the data declaration section of your program.

9.3.2 Using Transactions in Separately Preprocessed Modules
If you treat each module as one or several separate transactions, start and
end each transaction as you would normally. However, at times, program logic
requires that a module execute in the context of a transaction that was started
in another module.

For example, suppose your program uses two modules, MOD1 and MOD2,
and MOD1 calls MOD2. If you start one transaction in MOD1 and a separate
transaction in MOD2, you first have to end the transaction in MOD1 before
you can call MOD2. Rdb/VMS permits only one active transaction per database
attach. But suppose you do not want to commit the transaction in MOD1, and
if you roll it back, you will lose the database values MOD2 intends to print.

This is not a problem because the default transaction handle is global to all the
modules called by the program that starts the transaction. In other words, if
you start a transaction in MOD1 and then call MOD2, the transaction started
in MOD1 is available to MOD2.

In this scenario, do not use a START_TRANSACTION statement in MOD2. If
you do not use transaction handles in the DML code used in MOD2, the default
transaction handle will be available to MOD2. As your single executable image
runs, Rdb/VMS will start a transaction in MOD1. When MOD1 calls MOD2,
the transaction started in MOD1 is still open, and if the transaction declared
in MOD1 allows the required operations in MOD2, Rdb/VMS will execute the
statements in MOD2. If the transaction in MOD1 is not active, or does not
permit the execution of the statements in MOD2, you will receive a run-time
error.

9.3.3 Using Handles in Structured Programming
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Requests

If you do not supply an identifier for these database objects, Rdb/VMS assigns
default identifiers for you. In general, unless you need to make explicit
references to one of the preceding database objects, it is not necessary for you
to supply identifiers. Programmer-supplied handles are most often necessary
when you attach to multiple databases (or attach to the same database more
than once) within the same program.

Program Structure and Design 9–37

As mentioned in the preceding paragraph, more than one handle can refer to
the same object; for example, you can invoke the MF_PERSONNEL database
twice within the same program and specify the database handle as ‘‘mypers’’ on
the first DATABASE statement and as ‘‘pers’’ on the second DATABASE
statement. Even though each handle is referring to the same physical
database, Rdb/VMS will treat each attach to the database independently.

Note The values of request handles and transaction handles must be zero the first
time your program refers to a particular object. If any of these handles is
not zero the first time your program refers to a particular object, Rdb/VMS
will return an error that indicates that the handle was bad. If your program
changes the assigned value in any way, later attempts to use that handle will
generate the same error.

RDBPRE and RDML supply two qualifiers: /INITIALIZE_HANDLES, the
default, and /NOINITIALIZE_HANDLES. These qualifiers let you determine
whether or not the preprocessor will automatically initialize database,
transaction, and request handles. These qualifiers have no effect on if or when
handles are initialized in the generated code; they only control initialization
of handles in declaration statements. Furthermore, they only affect database,
transaction, and request handles that the preprocessor declares; user-specified
transaction and request handles will not be initialized when you use the
/INITIALIZE_HANDLES qualifier.

RDML will initialize database handles supplied by the user and by RDML
when their scope is GLOBAL or LOCAL. Database handles with EXTERNAL
scope are never initialized. For details on how to specify these qualifiers on the
RDML command line see Chapter 11.

Note In RDBPRE when you use the /NOINITIALIZE_HANDLES qualifier, any
handle you specify in your application program must also be specified in the
shareable image if your application is built using a shareable image.

9.3.3.1 Using Database Handles A database handle is a variable name
you use to refer to a database. Database handles are used to distinguish
between two different active databases referred to in the same program or to
distinguish between two different attachments to the same database. You can
refer to more than one database in any single RSE; however, you cannot cross
relations from different database attaches.

If you specify a database handle explicitly, you do so in the DATABASE
statement. You can then use the database handle in several statements and
clauses in order to identify the database which you are accessing, among them:

CREATE_SEGMENTED_STRING (RDBPRE statement)

FINISH

START_TRANSACTION

9–38 Program Structure and Design

Any RSE

READY

In addition to specifying database handles, you can specify the scope of
database handles in RDBPRE and RDML programs. (You cannot specify the
scope of database handles in Callable RDO programs or statements.) The scope
of a database handle can be GLOBAL, LOCAL, or EXTERNAL. If you do not
explicitly state the scope of the database handle, both RDML and RDBPRE
default to a GLOBAL scope. If your RDML or RDBPRE program invokes
multiple databases, use database handles in each DATABASE statement.

When you access multiple databases and your program includes multiple
modules:

Include in the main module DATABASE statement a database handle for
each database accessed.

Use the GLOBAL database handle scope for any database handle that
is also invoked in a submodule.

Use the LOCAL database handle scope for any database handle that is
only invoked in the main module.

Include in each submodule DATABASE statement a database handle for
the database accessed.

Use identical database handles for the same database attachment.

Use the EXTERNAL database handle scope for any database handle
that resides outside the submodule.

Use the LOCAL database handle scope for any database handle that is
only accessed in the submodule.

Your format for the DATABASE statement depends on how many databases
you access and how many separately preprocessed modules make up your
program image. If you use subprogram or function modules that access
the same database as the main module (the first module that invokes the
database), you must:

Include database handles

Include a database handle scope in preprocessed programs

Not include a database handle scope in Callable RDO programs

When Rdb/VMS performs the DATABASE statement, it returns a value to the
database handle. Rdb/VMS will use the same value for each time the database
is invoked with the same database handle.

Program Structure and Design 9–39

Table 9–1 summarizes the use of database handles in RDBPRE and RDML
preprocessed programs. Table 9–2 summarizes the use of database handles in
Callable RDO programs.

Table 9–1 Summary of Database Handle Usage in RDML and RDBPRE
Preprocessed Programs

Number of
Databases

Number of
Modules

Handle Scope
in Main Module

Handle Scope
in Second
Module

Handle Scope
in Additional
Modules

One One Not required Not applicable Not applicable

One Multiple GLOBAL EXTERNAL EXTERNAL

One Multiple EXTERNAL GLOBAL EXTERNAL

Multiple One LOCAL Not applicable Not applicable

Multiple Multiple GLOBAL EXTERNAL EXTERNAL

Multiple Multiple EXTERNAL GLOBAL EXTERNAL

Table 9–2 Summary of Database Handle Usage in Callable RDO Programs

Number of Databases Number of Submodules
Database Handles
Required?

One None No

One One or multiple No

Multiple None Yes

Multiple One or multiple Yes

9.3.3.2 Using Transaction Handles A transaction handle is a host
language variable that identifies a particular transaction. If you do not declare
the transaction handle explicitly, the preprocessor uses the default transaction
handle.

Because Rdb/VMS permits only one active transaction per database
attachment, it is usually not necessary to use transaction handles in Rdb/VMS
programs.

However, you can attach to the same database twice and start a single
transaction against each database attachment within the same program. This
requires the use of both database and transaction handles. Details of how to
use request handles are supplied in Section 9.3.3.3.

Information on how to declare transaction handles in a given language is
contained in the language-specific chapters.

9–40 Program Structure and Design

9.3.3.3 Using Request Handles A request handle is an integer longword
that points to the location of a compiled Rdb/VMS request. A request handle
serves as a pointer to the internal representation of a query. By using a
request handle, the preprocessors can cause the database system to use
this internal representation again, thus reducing the overhead associated with
repeatedly executing a query. This happens whether you specify request handles
explicitly or not. You should consider the need to supply request handles as
the exception rather than the rule. Usually, it is unnecessary for you to supply
request handles. Incorrect use of user-supplied request handles can make your
program needlessly complicated and difficult to debug. Specific guidelines of
when you should and should not use request handles are in Section 9.3.3.3.1.

The following example demonstrates how a request handle is used by RDBPRE
or RDML. Assume you write code in your host language program based on the
following pseudocode:

define necessary variables and invoke database;

solicit COLLEGE_NAME value from user;

start read_only transaction;

FOR C IN COLLEGES WITH C.COLLEGE_NAME = host_variable
print location of the college with the host_variable name

END_FOR

commit transaction
end program.

RDBPRE and RDML each create a request handle to identify the query for
searching the database for a COLLEGE_NAME value equal to the value of the
host language variable.

If the host language code for the preceding query were executed twice in the
same program (with no intervening FINISH statement), the second execution
of the query would not be compiled; Rdb/VMS would assign the request handle
used in the first request to the ‘‘twin’’ request that occurs later in the program,
thus saving the resources associated with compiling a request.

9.3.3.3.1 Determining When to Use User-Supplied Request Handles In
most instances you should not supply request handles, because they are
unnecessary and add needlessly to the program’s complexity. In particular, do
not supply request handle names if:

You are accessing only one database (regardless of the number of modules)
and you are not using a FINISH statement between calls to the modules.
You can accept the handles that Rdb/VMS supplies by default with no loss
in performance.

You are using multiple databases and issuing separate queries for each
database (each query refers to its own database using database handles).

Program Structure and Design 9–41

There are two main reasons for you to supply request handles:

You need explicit control over resource allocation.

If you need to conserve virtual memory, you can use the RDB$RELEASE_
REQUEST procedure to release the resources allocated to a request, as
long as you are certain that your program will never use that query again.
However, if you find that your program consumes large amounts of virtual
memory, find out why this is happening. Improper use of user-supplied
request handles can result in excessive use of virtual memory.

You are using multiple modules that attach and reattach to the database
and you want to use the request handles again.

If you are using separately compiled modules, the submodules must use
request handles and must provide a means for initializing them when the
FINISH statement is executed (that is, before a new database attachment
occurs).

For example, suppose you have a main module named MYPROGRAM
that issues a READY statement for the MF_PERSONNEL database.
You also have a module named PROG2 that contains a database query.
MYPROGRAM and PROG2 are separately processed modules.

The following pseudocode demonstrates how you could use request handles
to successfully call PROG2 from MYPROGRAM:

MYPROGRAM:

DATABASE GLOBAL PERS = FILENAME MF_PERSONNEL
.
.
.

READY PERS
.
.
.

CALL PROG2
.
.
.

FINISH PERS
.
.
.

reinitialize request handle, req1, to zero
.
.
.

READY PERS
CALL PROG2

.

.

.

9–42 Program Structure and Design

PROG2:

DATABASE EXTERNAL PERS = FILENAME MF_PERSONNEL
.
.
.

FOR (REQUEST_HANDLE req1) E IN EMPLOYEES
WITH E.EMPLOYEE_ID = ’00125’

.

.

.
END_FOR;

Note that in the preceding example, the compiled request is not used again
(even though the request handle and the associated query are.) The request is
compiled again each time PROG2 is called. If you did not initialize the request
handle to zero after the database PERS was finished, you would receive a
RDB$_BAD_REQ_HANDLE error message. This is because an invalid request
handle value would be accessed after the first call to PROG2.

9.3.3.3.2 Declaring and Initializing a Request Handle A request handle is
created when:

You embed DML statements to form a query in your program.

In this case, RDBPRE and RDML translate your query into a request to
the database, declare a unique name for this request, and initialize the
value of the name to zero. In other words, the preprocessors create and use
request handles regardless of whether you supply the name for them or
not.

You embed DML statements to form a query and supply your own request
handle name.

In this case, RDBPRE and RDML translate your query into a request to
the database and assign a value to the name you supply for the request
handle. However, you must initialize the request handle to zero before you
refer to it in a query.

The preprocessors initialize the request handle or handles that they create
before the handle is first used. When your program issues a FINISH
statement:

RDBPRE does not reinitialize any request handles compiled under the
finished database.

When a database is finished, Rdb/VMS releases the resources allocated
to the compiled request and the value of the request handle becomes
meaningless. Therefore, an attempt to finish a database, then attach to the
same database and continue to use the request associated with the finished
database, will result in a RDB$_BAD_REQ_HAND error at run time.

Program Structure and Design 9–43

RDML reinitializes to zero all request handles that it declares in the same
module in which the FINISH statement appears. Therefore, an attempt
to finish a database, then attach to the same database and continue to
use the internal request associated with the finished database will work.
However, the compiled request will not be used again. In this case, RDML
will compile the query twice.

When you supply the request handle name, you are responsible for
declaring it and initializing the handle to zero before you use it and
initializing it again after you issue a FINISH statement.

Note By default, RDML initializes handles that it declares. However, when you
specify the /NODEFAULT_TRANSACTIONS qualifier on the RDML command
line, RDML does not initialize the handles it declares. See Chapter 11 for a
discussion of how the /NODEFAULT_TRANSACTIONS qualifier affects RDML
request handles.

9.3.3.3.3 Changing the Value Associated with a Request Handle You
should change the value of a user-supplied request handle only when you
initialize it before it is first used, and initialize it again when it is no longer
needed. You should never attempt to change the value of a request handle
generated by RDML or RDBPRE.

When the code generated by a preprocessor encounters a request, it checks the
value of the request handle. If this value is zero, the preprocessor compiles
the request. If it is not zero, the preprocessor assumes the request has already
been compiled and will use the compiled request again, as is required.

However, if you change the value of the request handle to zero and then
attempt to use it again, you will be using the same variable associated with
the request handle, but you will not be using the same compiled request. Your
program will begin to unnecessarily consume system resources which may lead
to a EXQUOTA error message. Do not change the value of a request handle to
zero if you want to continue using the compiled request to which the request
handle points.

If you change the value of the request handle to a number other than zero and
then attempt to use it again, you may receive the error message RDB$_BAD_
REQ_HANDLE, or you may get incorrect results, or a REQSYNC error because
you may assign a value that refers to another request.

You can, (but should not), assign a non-zero value to a request handle explicitly
by using a host language assignment statement.

You render a request handle invalid by issuing a FINISH statement that
detaches from the database against which the request was compiled. Therefore
if you need to use it again, you must initialize it again after the FINISH
statement is issued.

9–44 Program Structure and Design

9.3.3.3.4 Determining the Scope of a Request Handle The value of a
request handle is valid from the point a query is first made until the request
handle is explicitly released (with RDB$RELEASE_REQUEST), or until the
database associated with that query is detached using a FINISH statement.
When you release a request handle, you are releasing the compiled request and
the resources associated with it, and thus reducing your use of virtual memory.

A request handle should be global to the routines that use it. If a request is
compiled in a subroutine, the value of the request handle must be passed back
to the calling module. If the value of the request handle is not passed back to
the calling module, the query will be compiled again each time the subroutine
is called and the resources associated with multiple compilations of the same
query will not be released until the application detaches from the database.
Note that applications that use request handles incorrectly usually run out of
virtual memory after a while.

A given request handle is valid only when used with the database handle under
which the request was compiled. This means that a compiled request can only
be used to access one database attachment; it cannot be used to access multiple
databases. An attempt to use a compiled request with a different database
handle, even if it refers to a different attachment to the same database, will
result in an error. A FINISH statement releases the resources allocated to
a database handle; therefore, if you specify a request handle for a query and
then issue a FINISH statement, the value of the request handle is no longer
valid. For example, a program that is based on the following pseudocode will
generate the RDB$_BAD_REQ_HANDLE error message:

invoke database
declare request handle and initialize to zero

ready
start transaction

.

.

.
FOR (REQUEST_HANDLE handle1) E IN EMPLOYEES

print EMPLOYEE_ID
END_FOR;

.

.

.
COMMIT;
FINISH;

FOR (REQUEST_HANDLE handle1) E IN EMPLOYEES
print EMPLOYEE_ID

END_FOR;

Program Structure and Design 9–45

You will not receive an error message if you revise the preceding pseudocode
such that the request handle is initialized to zero before it is used for the
second query. However, this will result in the same query being compiled
twice, unnecessarily.

invoke database
declare request handle and initialize to zero
start transaction

.

.

.
FOR (REQUEST_HANDLE handle1) E IN EMPLOYEES

print EMPLOYEE_ID
END_FOR;

.

.

.
COMMIT;
FINISH;

reinitialize request handle to zero

FOR (REQUEST_HANDLE handle1) E IN EMPLOYEES
print EMPLOYEE_ID

END_FOR;

9.3.4 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference. See the VAX
Rdb/VMS Guide to Distributed Transactions for information on coordinating a
distributed transaction.

9.4 Using Callable RDO in Preprocessed Programs
The RDBPRE and RDML preprocessors do not support data definition
statements. If you want to perform data definition within your preprocessed
program you must use the Callable RDO program interface. For example,
during a batch job, or when no one else is using the database, your
program may define a temporary index on a field to facilitate Rdb/VMS
performance during your program execution. When using Callable RDO,
your program communicates with Rdb/VMS using a callable function, named
RDB$INTERPRET. Callable RDO program development is explained in detail
in Chapter 19.

9–46 Program Structure and Design

You can also use Callable RDO when your program needs the ability to
form dynamic queries; that is, when your program will not know what a
query is until run time. Otherwise, you should use the RDBPRE or RDML
preprocessor when possible for all data manipulation operations. Preprocessed
Rdb/VMS statements execute significantly faster than calls using the function
RDB$INTERPRET.

This section discusses the use of the DATABASE statement and the scope of
transactions in preprocessed programs that use Callable RDO.

9.4.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use a DATABASE statement in your preprocessed program and
a separate RDO DATABASE statement in the embedded Callable RDO.
To ensure that the preprocessor invokes the identical database for the
preprocessed Callable RDO portions of the program, use the same database
handle in each DATABASE statement. Invoke the database:

In the preprocessed programs using a GLOBAL or EXTERNAL database
handle.

In Callable RDO programs, pass the database handle to the
RDB$INTERPRET function.

In Callable RDO, you must pass the database handle to the RDB$INTERPRET
function as a !VAL parameter. See Chapter 19 for an example of passing
database handles in Callable RDO.

You may include both preprocessed and Callable RDO DATABASE statements
in the same program module. You may also call a function or subroutine to
perform the data definition. In that case, use a preprocessed DATABASE
statement in the main module and the Callable RDO DATABASE statement in
the submodule.

9.4.2 Using Transactions with Embedded Callable RDO
Data definition statements require a read/write transaction. When an
Rdb/VMS program statement executes, whether it is preprocessed or
Callable RDO, Rdb/VMS checks for an active transaction. If there is an active
transaction that allows the intended operations, the statement is executed.

You must perform Callable RDO data definition statements within a read/write
transaction. However, if you start a read/write transaction in the Callable
RDO portion of your program, make sure that you commit or roll back any
active transactions you started in the preprocessed portion of your program
first. If a transaction is active in your program when you issue the START_
TRANSACTION statement with a Callable RDO statement, your Callable RDO
statement will return a run-time RDO error.

Program Structure and Design 9–47

Note that if you call the RDB$INTERPRET function for data definition, do
not attempt to use database or transaction handles in your data definition
statements. Rdb/VMS does not support the use of database or transaction
handles in data definition statements.

Do not define, change, or delete a field, relation, or view using Callable RDO
within a preprocessed program and then refer to it in the preprocessed portion
of the program. At preprocess time, the field, relation, or view does not yet
exist. The preprocessor will generate errors for those statements that refer to
nonexistent fields, relations, or views. However, you can define indexes and
constraints in Callable RDO statements that are embedded in preprocessed
programs and any other database element that is not referred to in the
preprocessed code.

You can perform any valid preprocessed data retrieval or update operation
within any Callable RDO transaction. You can omit the START_
TRANSACTION statement from the preprocessed portion of the program
and rely upon the transaction started in the Callable RDO portion. However,
it is better practice to begin an explicit transaction whenever possible rather
than to rely on implicit START_TRANSACTION declarations.

9–48 Program Structure and Design

10
Handling Rdb/VMS Run-Time Errors in

Preprocessed Programs

This chapter is a general description of how to detect and handle Rdb/VMS
errors that occur at run time in preprocessed programs. This chapter discusses
Rdb/VMS run-time errors only and does not tell you how to handle host
language or system run-time errors. Refer to your programming language
user’s guide for such information. Refer to the language-specific chapters for
information on how to implement the error handling routines described in
this chapter. Refer to Chapter 19 for specific information on error handling in
Callable RDO.

10.1 Program Design and Error Handling
All programs are subject to run-time errors, both expected and unexpected. You
can handle expected errors in a predictable manner. Some expected ‘‘errors’’
are not errors in the true sense but rather expected exception conditions.
For example, when you use the START_STREAM statement to form a record
stream, you can detect and handle the end-of-stream condition. In most
instances, you want to detect expected errors using an error handler that tests
the error and conditionally allows your program to continue execution. Some
examples of expected errors are:

Normal end of record stream and end of segmented string

Deadlock and lock conflict

Validation, constraint, and duplicate value violations

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–1

Other errors are unexpected in the sense that your program fails to detect
and handle them. Frequently, unexpected errors are entirely unpredictable.
In some instances, you want to display the error message and terminate the
program so you can determine the cause of the error and correct it. Some
examples of unexpected errors are:

Access violations

Arithmetic exceptions

Invoking the wrong database

Obsolete metadata

Corrupt database

The distinction between expected and unexpected errors largely depends upon
your application. You should anticipate and handle as many errors as is
reasonable within the context of your application. Your program can recover
from almost any error, even if it is fatal, with the proper program design.
Recovery might include trying an operation again or writing an error to an
error log and continuing to the next operation.

If you fail to include a handler for Rdb/VMS errors in your preprocessed
program and an Rdb/VMS error occurs, the preprocessors generate code to
call the VMS Run-Time Library routine, LIB$STOP. The LIB$STOP routine
forces the severity level of the error to fatal, causing the program to terminate,
and displays the error message on your terminal. In Callable RDO programs,
if you do not handle an unsuccessful call, your program will continue in an
unpredictable manner.

A well-designed program includes one or more error handlers that process
Rdb/VMS errors in a predictable manner. These error handlers would:

Detect all Rdb/VMS errors

Handle all anticipated errors:

By error message display

By a recovery procedure or orderly program termination

Handle all unanticipated errors:

By error message display

By orderly program termination

Regardless of the type of error you are handling, your error handlers should
include one or more of the following functions:

Error detection

10–2 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

Error message display (user-supplied, Rdb/VMS, or a lower-level facility
such as VMS)

Error detection and conditional branching

Error recovery

The error handling routines and strategies that you use in RDBPRE and
RDML preprocessed languages differ from those you use in Callable RDO. In
Callable RDO, every statement must be checked for successful execution with
a conditional host language statement. In RDBPRE and RDML preprocessed
languages, the ON ERROR clause of each DML statement checks the success
of statement execution for you. Callable RDO and the preprocessed languages
also differ in the manner in which they use system service and run-time
library routines. For more information on handling errors in Callable RDO,
see Chapter 19.

If you choose to combine Callable RDO and preprocessed Rdb, use separate
error handling routines for Callable RDO and preprocessed DML statements.

10.2 Error Handling for Preprocessed Programs
Preprocessed programs allow you to detect Rdb/VMS errors with the ON
ERROR clause. If an error occurs in a data manipulation statement, control
passes to the ON ERROR clause. Your program must then handle the error.

This section describes:

Detecting and displaying errors using the default VMS condition handler

Detecting and handling errors using the ON ERROR clause

Determining which error has occurred using symbolic error codes

Displaying error messages using VMS system services and Run-Time
Library routines

Displaying user-supplied messages

Error recovery

10.2.1 Detecting and Displaying Errors—Default Condition
Handling

If you do not supply an error handler, Rdb/VMS uses the two VMS operating
system default condition handlers: the traceback and catchall handlers. By
default, the traceback handler is included when you link your program. Once
you have completed program development, you generally link your program
with the /NOTRACEBACK qualifier and use the catchall handler instead.

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–3

The traceback handler displays the message associated with the signaled
condition code, the traceback message, the program unit name and line
number of the statement that signaled the condition code, and the relative
and absolute program counter values. (On a warning or error, the line number
of the next statement to be executed is displayed.) In addition, the traceback
handler displays the names of the program units in the calling hierarchy and
the line numbers of the invocation statements. After displaying the error
information, the traceback handler continues program execution or, if the error
is severe, terminates program execution.

The catchall handler displays the message associated with the condition code
and then continues program execution or, if the error is severe, terminates
execution. The catchall handler is not invoked if the traceback handler is
enabled.

For example, if you start a read-only transaction and attempt an update
operation, the following text is displayed at run time (assuming you have
linked your program without the /NOTRACEBACK qualifier).

%RDB-F-READ_ONLY_TRANS, attempt to update from a read_only transaction
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

00017940 00017940
RDML_SIGNAL_ERR RDML$SIGNAL_ERROR 651 00000015 0000093E
MULTIPLY MULTIPLY 542 00000235 00000871

Although these messages are helpful when you are debugging your program,
you probably want errors to be displayed and handled in a different manner
when an end user runs your program.

10.2.2 Detecting and Handling Errors Using the ON ERROR
Clause

Instead of having your application terminate as previously shown, you should
use the ON ERROR clause to help your program to determine that an error
detected by Rdb/VMS has occurred. Your program error handler can then take
the correct action for recovery or orderly program termination. You can use the
ON ERROR clause only in preprocessed programs. All of the executable data
manipulation statements offer the optional ON ERROR clause. Within the
ON ERROR . . . END_ERROR block you include one or more host language or
DML statements or both. These statements can handle the error directly, but
more often they will call an error handler routine that determines the nature
of the error and starts appropriate recovery or cleanup procedures.

Note that the ON ERROR clause detects only Rdb/VMS errors. It does not
detect other kinds of errors, such as access violations, divide-by-zero errors in
the host language, and out-of-bounds arrays.

10–4 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

When using the ON ERROR clause for error detection, you do not have to
detect an error explicitly. All communication with Rdb/VMS is done through
procedure calls; the preprocessor generates a conditional statement that tests
the return status value of each call to the database. When an error occurs, the
return status indicates that the call failed. Control passes to the ON ERROR
clause and the statements within the ON ERROR block are executed. If, on
the other hand, the return status indicates success, the ON ERROR block is
ignored.

Error handling with the ON ERROR clause may require special program
design. When an error occurs and control passes to the ON ERROR clause,
you may not want to continue processing the record stream in which the error
occurred. For example, if you encounter an integrity failure during a modify
operation, you must exit the record stream to handle the error. Do not attempt
to handle the error within the ON ERROR clause and continue processing the
record stream. You may call a separate procedure or function to handle the
error from the ON ERROR block, but when you return to the ON ERROR block
from the module, you should use an appropriate host language statement to
exit the FOR loop. You can then start the query again if you choose.

You may use the ROLLBACK statement within an ON ERROR block.
However, do not attempt to start the transaction again by using a START_
TRANSACTION statement within the ON ERROR block. Instead, exit the
record stream by using a host language GOTO statement in the ON ERROR
block. Then issue the START_TRANSACTION statement.

If you do not use the ON ERROR clause and an Rdb/VMS error occurs, the
code generated by the preprocessors passes the error to LIB$STOP, which sets
the severity level to fatal and forces program termination.

Language-specific restrictions and examples of using the ON ERROR clause
appear in each language-specific chapter.

Once you have determined that an error has occurred by using the ON ERROR
clause, you need to determine which error has occurred by examining the error
code.

As previously stated, all communication with Rdb/VMS is done through
procedure calls. In preprocessed programs, the preprocessor converts Rdb/VMS
statements to host language calls to Rdb/VMS procedures. Every procedure
returns a return status value to a program variable, RDB$STATUS, that
is declared by the preprocessor. The return status value is a longword that
identifies a unique message in the system message file. The message vector
that contains RDB$STATUS is called RDB$MESSAGE_VECTOR. Figure 10–1
illustrates the format of the message vector.

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–5

Figure 10–1 The Format of the Rdb/VMS Message Vector

default message flags argument count

message identification

new message flags FAO count

FAO arguments

31 16 15 0

ZK−7018−GE

Descriptions

First
Message
Description

2nd, 3rd, ...
Message

The return status value returns a condition that may indicate success, in which
case data manipulation continues uninterrupted. Or this value may signal an
error, in which case control passes to the error handler.

An Rdb/VMS symbolic error code is associated with each unique return status
value. For example, RDB$_STREAM_EOF is the symbolic error code for the
end-of-stream condition. See Table A–1 in Appendix A for a list of commonly
used Rdb/VMS symbolic error codes for data manipulation statements.
Table A–1 is not an exhaustive list; you might want to create a list of likely
and less likely errors for your particular application or programming facility.
The VAX Rdb/VMS RDO and RMU Reference Manual contains pointers to the
online Rdb/VMS error message explanation files.

You can use these symbolic error codes to control program logic for specific
errors. When the ON ERROR clause detects an error, your error handler can
evaluate the symbolic error code by:

Calling LIB$MATCH_COND, a VMS Run-Time Library routine that
compares the signaled condition code to a list of expected condition codes
(error codes).

Using a local host language equality test, for example, a case statement
or nested ‘‘if’’ statements that test to see if the signaled condition code
matches one in a series of expected condition codes.

Then your error handler can direct program logic with a host language
multipath statement, such as the Pascal CASE statement or the COBOL
EVALUATE statement.

10–6 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

Although symbolic names, such as RDB$_DEADLOCK, symbolize actual
values, you should use the symbolic names in your programs (rather than their
value) for the following reasons:

The symbolic error codes themselves are mnemonic. You can assign your
own mnemonic names in some programming languages.

The VMS Linker automatically assigns the numeric values to the symbolic
names for you.

If the numeric value of a symbolic error code ever changes, all you have to
do is link your program again. If you have coded values into your program,
you have to search for and change each occurrence of the value in the
source files and preprocess the files again.

For information on declaring symbolic error codes and calling the LIB$MATCH_
COND routine in preprocessed programs, see the language-specific chapters or
your programming language user’s guide.

10.2.3 Displaying Error Messages in Preprocessed Programs
The method you choose to determine which errors have occurred and to display
error messages depends on several factors. If you want to:

Determine which of several possible errors has invoked your error handler,
you can use the VMS Run-Time Library routine, LIB$MATCH_COND

Display an error message generated by Rdb/VMS and (optionally)
terminate your program, you can call the LIB$SIGNAL routine

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system service

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system services with a user-defined error code

For more information on how to make these calls, see the language-specific
chapter for the host language you are using. If your host language is not
supported by a preprocessor, see Chapter 19.

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–7

10.2.4 Displaying User-Supplied Error Messages in
Preprocessed Programs

After detecting expected errors, you may want to display your own error
messages. In this way you can format the messages as you wish and include
more specific information about error recovery than that supplied by the
Rdb/VMS error messages. To display user-supplied error messages, you may
include literal error messages (error messages in quoted strings) within your
program’s error handler. However, Digital recommends that you use the VMS
Message utility (MESSAGE) to define your own error messages. Your error
handler can then use SYS$GETMSG and SYS$PUTMSG system services to
retrieve and display these user-defined messages.

Create a source message file (file type MSG) with MESSAGE or use a text
editor to create a standard file with the MESSAGE format. The following is a
short (two-message) user-defined message file called COBOLMSG.MSG:

.TITLE ADMINMSG ’Sample Error Messages’

.FACILITY ADMSAMPLE,27/PREFIX=ADM_

.SEVERITY FATAL
NODUEMP <No duplicate employee ids permitted>
EMPLOCKED <The employee record requested is currently locked>/FATAL
.END

When users attempt to store two employees with the same ID, they see the
following error message:

%ADM-E-NODUPEMP, No duplicate employee ids permitted

To access this file from your program:

1 Compile the message source, COBOLMSG.MSG, by itself with the
command:

$ MESSAGE/NOSYMBOLS COBOLMSG

2 Create a nonexecutable message file by linking the object module,
COBOLMSG.OBJ, with itself. For example:

$ LINK/SHAREABLE = COBOLMF COBOLMSG.OBJ

3 Create a pointer object module, MESPNTR.OBJ, that will point to the
nonexecutable message file, COBOLMF.EXE. The /NOTEXT qualifier
indicates that what follows contains only the symbolic error codes and no
text. Use the command:

$ MESSAGE/FILE_NAME=COBOLMF /NOTEXT/OBJECT=MESPNTR COBOLMSG

10–8 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

4 Link the pointer object module, MESPNTR.OBJ, with the COBOL program
object module, COBOLCODE.OBJ, with the command:

$ LINK COBOLCODE, MESPNTR

5 Execute the program with the command:

$ RUN COBOLCODE

Once a reference to the message file is created in the program’s executable
image, you can edit and link the message text and pointer files again without
linking the program again.

Note that if you customize Rdb/VMS error messages to create new messages
for your application, you should not retrieve an RDB, RDMS, or RDO message
text string (with Formatted ASCII Output (FAO) arguments included) and then
parse the characters in the text string to locate and retrieve the substitution
value for the FAO arguments if the following is true:

You are creating an application that retrieves information returned by the
VMS message vector for error conditions.

Your application returns messages customized for the user of your
application.

Your application’s message text includes FAO arguments included in RDB,
RDMS, and RDO facility error messages.

Message text supplied by Digital products is subject to change from one version
of a product to another. Text changes may be made to improve message clarity
or make corrections to text that is misleading. If your application parses RDB,
RDMS, or RDO facility message text (for example, expecting the number of
characters before and between FAO substitution values to remain constant), a
future release of Rdb/VMS software may cause your application to fail.

To retrieve formatted values for FAO arguments to be used in text that you
supply, follow the instructions provided in the system routines volume of the
VMS documentation set. These instructions explain the strategy supported by
Digital products that use VMS message vectors.

Please note that to ensure compatibility of your application from one version of
Rdb/VMS to a new one, any future changes to RDB, RDMS, or RDO message
text will not affect:

The ordinal position of error messages in the message files

The number of FAO substitution arguments embedded in the text of a
message

The order in which FAO substitution arguments occur in the text of a
message

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–9

10.2.5 Recovering from Errors in Preprocessed Programs
Error recovery is specific to the program in which the error occurs. Frequently,
the individual program logic requires an individual error routine. However,
there are several categories of Rdb/VMS errors that preprocessed programs
share in common:

Multi-user conflicts

Deadlock and lock conflict are likely to occur in high-contention, multi-user
applications, particularly those that access the database in protected or
exclusive share modes. In single-user databases, or databases that are
accessed solely by using the shared read-only reserving option, deadlock
and lock conflict are rare, but not impossible, occurrences.

Integrity and constraint failures

If your database has requirements for unique indexes, or validity and
constraint checking, program input data may be rejected. In an interactive
program, invalid input is normally handled by rolling back the transaction,
requesting valid data from the user, and trying again. Programs that are
not interactive might write the error to a file and continue with the next
input record. The exact strategy for handling invalid input depends upon
the individual logic of the program.

Fatal or unexpected errors

Some fatal errors are entirely unanticipated, and therefore difficult to
handle during the execution of the program. In this case, you may choose
to display an error message and terminate the program in an orderly
manner.

Other fatal errors can be anticipated. In this case, you may wish to direct
program logic to continue program operation after an anticipated fatal
error occurs. To handle this case, your error handler can call a VMS Run-
Time Library routine or a system service to display the error message, and
then allow the program to branch to alternative program code.

10.2.5.1 Handling Multi-User Conflicts in Preprocessed Programs If
your program runs in an environment where other users are accessing the
database using protected or exclusive read or write reserving options, you
can encounter deadlock and lock-conflict error conditions. Lock-conflict and
deadlock conditions are described as follows:

Lock conflict occurs when you have specified the NOWAIT option in your
START_TRANSACTION statement and the data your program needs is
locked by another user’s protected or exclusive transaction. Lock conflict
can also occur in some read-only transactions, even if the WAIT option is
specified.

10–10 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

Your program should detect and handle lock conflict even if you specify
the default, WAIT, in your START_TRANSACTION statement. Rdb/VMS
considers the exclusive share mode and the read-only lock type to be
incompatible. If a user has started a transaction in the exclusive share
mode, and you attempt to open a read-only transaction with the wait
option, Rdb/VMS converts your transaction to nowait and issues a lock-
conflict error to your program. Thus, it is good practice to anticipate lock
conflict even when it seems extremely remote.

Deadlock occurs when the data you need is locked by another user and you
have locked the data the other user needs; neither of you can continue.

Deadlock is a relatively rare situation, but when it occurs, the VMS
Lock Manager picks one user and returns the deadlock error condition to
that user. (See the VAX Rdb/VMS Guide to Database Maintenance and
Performance for information on lock management.) If you do not detect and
handle that condition, your program will terminate abruptly.

To handle multi-user conflicts in preprocessed programs:

Detect deadlock by looking for the RDB$_DEADLOCK error code

Detect lock conflict by looking for the RDB$_LOCK_CONFLICT error code

When you detect a lock-conflict condition, you have the choice of rolling back
the transaction and:

Trying again one or more times

Trying again after a set period of time

Starting the transaction again and specifying the WAIT option

Terminating the program and running it at another time

When you detect a deadlock condition, you have the choice of rolling back the
transaction and:

Trying again one or more times

Trying again after a set period of time

Terminating the program and running it at another time

Note that the START_TRANSACTION, ROLLBACK, and FINISH statements
require a differently designed ON ERROR clause. If a START_TRANSACTION
statement returns a deadlock or lock conflict, you cannot roll back because
there is no active transaction. Simply attempt to start the transaction again in
one of the ways previously listed. The ROLLBACK and FINISH statements do
not encounter deadlock and lock-conflict conditions, and so are not rolled back.

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–11

10.2.5.2 Handling Integrity Failures in Preprocessed Programs Integrity
failures are caused by the following:

A constraint violation

The DEFINE CONSTRAINT statement sets conditions that restrict the
values stored in a relation. For example, a constraint can require that a
department must exist before the corresponding department code can be
stored in the JOB_HISTORY relation.

A violation of the VALID IF clause

The VALID IF clause in the DEFINE FIELD and CHANGE FIELD
statements sets conditions that restrict the values stored in a field. For
example, a VALID IF clause can require that an employee ID lie within a
certain range of values.

A violation of the DUPLICATES ARE NOT ALLOWED clause

The DUPLICATES ARE NOT ALLOWED clause in the DEFINE INDEX
statement requires that each value in the index be unique.

The way that you handle integrity and constraint failures depends on whether
your program is interactive or is running in batch mode. If your program is:

In interactive mode

Your error handler typically displays an error message that indicates
the type of failure and how to correct it. Your program rolls back the
transaction, requests new input, and issues the START_TRANSACTION
statement again.

When you design interactive data input programs, consider the amount
of data that will have to be entered again if the program must be rolled
back. It is a good idea to nest the START_TRANSACTION . . . COMMIT
statement block within the data input loop, so that in the event of a
rollback, only the last data item will have to be entered again.

In batch mode

Your error handler typically writes the record to an error file, reads the
next input record, and continues program execution.

The DUPLICATES ARE NOT ALLOWED and VALID IF clauses are checked
when the data is stored or modified. Constraints are evaluated either when
the statement is executed or when the transaction is committed. The START_
TRANSACTION statement EVALUATE clause allows you to specify when
a constraint is to be checked. Specify VERB_TIME to detect a constraint
violation while the invalid record is being processed. Specify COMMIT_TIME
if the constraint depends on more than one update operation, or if immediate
constraint evaluation is not critical.

10–12 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

The DEFINE CONSTRAINT statements are checked at the same level at
which they were defined. For example, if you define constraints at the record
level, and your input data involves several fields that could violate the same
constraint, you will not know which field is invalid if you detect a constraint
violation.

If you choose to design your input record so that no constraint can be violated
by more than one field, you may increase the overhead associated with
checking constraints. For example, if a relation defines constraints such that
two field values in one relation cannot exist until those same field values exist
in another relation, Rdb/VMS must do twice as much work to check two field
constraints as to make sure one record exists in a relation before it can exist in
another relation.

Alternatively you can design your program logic to check the validity of input
data before you attempt the store operation.

In preprocessed and Callable RDO programs:

To detect a violation of a constraint definition, look for the RDB$_INTEG_
FAIL error code (integrity failure).

To detect a violation of a VALID IF clause on a field definition, look for the
RDB$_NOT_VALID error code.

To detect a violation of a DUPLICATES ARE NOT ALLOWED clause of an
index definition, look for the RDB$_NO_DUP error code.

10.2.5.3 Handling Fatal Errors in Preprocessed Programs In some
instances, the cause of fatal errors is located in the database, not the program.
For example, your program may attempt to access a relation that has been
deleted by the database administrator, or the process that runs the program
may not have sufficient privilege to modify a particular relation. There is little
that your program can do to correct this type of error. However, your program
can determine which fatal error has occurred, perform cleanup functions,
display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error with the LIB$MATCH_COND routine or host language
statements to make sure it is the fatal error you expected.

Call the SYS$PUTMSG, SYS$GETMSG system services, or the
LIB$SIGNAL routine to output an error message.

(The effect of the LIB$SIGNAL routine is unpredictable in some
programming languages; see the following text.)

Perform any necessary database cleanup.

Handling Rdb/VMS Run-Time Errors in Preprocessed Programs 10–13

Continue program execution along the alternate path.

In any language that does define its own error handler (such as BASIC
and COBOL), use of the LIB$SIGNAL routine is unpredictable. You must
call the LIB$ESTABLISH, or in C, VAXC$ESTABLISH routine to create a
condition handler that will permit your program to continue after the call
to LIB$SIGNAL. However, the LIB$ESTABLISH routine replaces the host
language error handler in some languages. Thus, for the remainder of program
execution, the host language program errors are no longer handled by the
host language error handler. This means that you must explicitly handle
host language errors in your condition handler. For this reason, use of the
LIB$ESTABLISH routine is not recommended in host languages that have
their own error handler.

In any language that does not define its own condition handler (such as
FORTRAN and Pascal), you can call the LIB$SIGNAL routine to display an
error message, but you must use the LIB$ESTABLISH routine (or in Pascal,
the ESTABLISH function) to create a condition handler that will permit your
program to continue after the call to LIB$SIGNAL.

See the VMS Run-Time Library Routines Volume for a more complete
description of the use of LIB$ESTABLISH with LIB$SIGNAL.

If you call the LIB$SIGNAL routine without establishing a condition handler,
the catchall handler or the traceback handler displays the error message and
terminates your program. Perform any cleanup before making the call to this
routine. However, if your cleanup includes any Rdb/VMS statements, these
new calls to the database will change the return status value contained in
RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in that case the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling
LIB$SIGNAL without any cleanup operations is not recommended.

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary. The
following is a list of typical cleanup operations:

End streams

Roll back transactions

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

10–14 Handling Rdb/VMS Run-Time Errors in Preprocessed Programs

11
Processing Rdb/VMS Application

Programs

This chapter describes how to preprocess, compile, link, and run Rdb/VMS
application programs. The steps you must follow to create an executable image
depend on if you want to create a shareable image and on which preprocessor
you are using:

RDBPRE

RDML

Callable RDO

11.1 Using the RDBPRE Preprocessor
RDBPRE is the preprocessor for BASIC, COBOL, and FORTRAN programs
that contain embedded Rdb/VMS DML statements. Each DML statement is
flagged by the special &RDB& flag, as described in Chapter 12. Following
successful RDBPRE preprocessing, the resulting file is submitted automatically
to the host language compiler.

Note The RDBPRE preprocessor submits your source program to the appropriate
host language compiler and creates an object file. You should never submit the
output from the RDBPRE preprocessor to a host language compiler.

When you create the source BASIC, COBOL, or FORTRAN program files, use
the RDBPRE preprocessor default input file types listed in Table 11–1. You
cannot use your host language default input file types. For example, do not
use the COB file type for a COBOL program source file; use the preprocessor
default file type RCO.

Processing Rdb/VMS Application Programs 11–1

Table 11–1 shows the RDBPRE default input file types and the output file
types.

Table 11–1 RDBPRE Preprocessor Default File Types

Language

RDBPRE
Default Input
File Type

Preprocessor
Output
Source File Type

List
File Type

BASIC RBA BAS LIS and
RDBERR.LOG

COBOL RCO COB LIS and
RDBERR.LOG

FORTRAN RFO FOR LIS and
RDBERR.LOG

The LIS file is generated by the host language compiler, not by the RDBPRE
preprocessor.

11.1.1 Defining Symbols to Invoke RDBPRE
You may find it easier to invoke the different RDBPRE preprocessors if you
define symbols for them. For example:

$ RBAS :== $RDBPRE/BASIC
$ RCOB :== $RDBPRE/COBOL
$ RFOR :== $RDBPRE/FORTRAN

Then, use the appropriate symbol to preprocess and compile the program. In
the following example, SAMPLE.RCO is an RDBPRE COBOL program that
contains Rdb/VMS DML statements:

$ RCOB SAMPLE.RCO

In the preceding example, RDBPRE automatically submits the resulting
SAMPLE.COB file to the COBOL compiler, which produces the SAMPLE.OBJ
object module following a successful compilation.

If you do not specify the program file name, RDBPRE issues a prompt. For
example:

$ RCOB
INPUT FILE> SAMPLE.RCO

In either case, the RCO file type is optional. For each language supported
by RDBPRE, the RDBPRE preprocessor expects the input file type listed in
Table 11–1.

11–2 Processing Rdb/VMS Application Programs

You can invoke RDBPRE with the DCL RUN command, but using a defined
symbol is the recommended method. An example of the RUN command is:

$ RUN SYS$SYSTEM:RDBPRE
INPUT FILE> SAMPLE
%RDO-F-NOPRECOMPSEL, no preprocessor selected
INPUT FILE> SAMPLE/COBOL

11.1.2 Using Host Language Compile Qualifiers with RDBPRE
You can add host language compile qualifiers on the command line or at the
INPUT> prompt. Precede every compile qualifier with a slash (/). If you enter
the compile qualifiers on the command line, you can include compile qualifiers
ahead of the input file specification as well as after it. Leave at least one space
between the last qualifier and the input file specification. RDBPRE does not
prompt for compile qualifiers.

For example, to always preprocess BASIC programs with the /DEBUG and
/LIST compile qualifiers, enter:

$ RBAS :== $RDBPRE/BASIC/DEBUG/LIST
$ RBAS COLLEGES.RBA

Note that the RDBPRE preprocessor always runs the FORTRAN compiler
with the /G_FLOATING qualifier and the BASIC compiler with the /REAL_
SIZE=GFLOAT qualifier. Wrong data values will be returned by the program
when all of the following conditions are true:

A double-precision, floating-point variable is used in multiple modules.

One module containing the variable is compiled with the G-floating size in
effect (as results from being processed by the preprocessor for BASIC or
FORTRAN).

Another module containing the variable is compiled without G-floating
size in effect (the default when a module is processed through a VMS host
language compiler; if you do not specify G-floating, D-floating is used).

The two modules are linked together (no error results) and pass data
between each other.

No error messages are ever seen; however, wrong data answers are returned
because one module passes a G-floating representation of the variable and
the receiving module acts on the data as if it were D-floating. To correct this
problem, always compile host language program modules specifying G-floating
representation.

Processing Rdb/VMS Application Programs 11–3

11.1.3 Creating RDBPRE Output Files
The RDBPRE preprocessor creates four files in your default directory when you
submit a source program:

A host language source file

The preprocessor assigns the language default file type to the host language
source file. For example, if you submitted the file PROGRAM.RCO to the
RDBPRE preprocessor, it would produce the source file PROGRAM.COB.

Two intermediate files

The preprocessor creates a MAR file that contains macro assembly code
that is needed by your program. The preprocessor automatically assembles
this file to create an object file with the file type MOB. For example, if
you submitted the file PROGRAM.RCO to the RDBPRE preprocessor, it
would produce the files PROGRAM.MAR and PROGRAM.MOB. By default,
both of these files are deleted from your directory when RDBPRE finishes
preprocessing your source file.

An object file from the host language source file

This object file is the result of RDBPRE submitting your source file to the
host language compiler. For example, if your source file is PROGRAM.RCO,
RDBPRE would create a file called PROGRAM.OBJ.

RDBPRE creates the final object file by copying the MOB file and the
intermediate object (OBJ) file into a final object file. For example, if your
source file is PROGRAM.RCO, RDBPRE would append PROGRAM.MOB
to PROGRAM.OBJ and the final name of this final object file would be
PROGRAM.OBJ. Figure 11–1 shows this process.

11–4 Processing Rdb/VMS Application Programs

Figure 11–1 Creation of an RDBPRE Object File
 Language Default

File Type

 (source code file)

Compile

.COB, .RBA, .RFO

Macro
assembly

Preprocess together
Copy files

NU−2117A−RA

Files deleted when preprocessing is finished.

.RCO, .RBA, .RFO

Intermediate
Object File

.OBJ

Final Object
File

.OBJ

Macro Object
File

.MOB

Macro Assembly
Code File

.MAR

Host Language
Source File

Object files have an OBJ file type. Using a compiler qualifier, you can instruct
RDBPRE to write the object file and the source file to another directory. For
example, define the following symbol:

$ RCOB :== $RDBPRE/COBOL

Now, instruct RDBPRE to write the object and source files to the PAYROLL
directory:

$ RCOB PROGRAMC/OBJECT=DISK3:[PAYROLL]PROGRAMC

RDBPRE lists the following information in the host language source file:

Date and time the program was preprocessed

Version of the preprocessor used

Underlying versions of Rdb/VMS

Command line used to preprocess the program

Preprocessing errors, if any

Note When changes to your program are necessary, do not edit the host language
source file (BAS, COB, or FOR file type) that results from a successful RDBPRE
preprocessing. As described previously, your host language source file and the
intermediate files are merged in the final stages of preprocessing. If you attempt
to edit the host language source file and submit it to the host language compiler,
the required macro code will not be available to your program. Instead, if you
need to make changes, edit the RBA, RCO, or RFO source file, then reprocess
the program.

Processing Rdb/VMS Application Programs 11–5

By default, RDBPRE deletes the intermediate files (MAR and MOB) that it
generates. If you wish to retain these files, enter the following command at the
DCL level prompt:

$ DEFINE RDMS$KEEP_PREP_FILES YES

Do not alter the intermediate files and then attempt to produce an executable
image. You should only use the intermediate files when you want to see how
code has been processed by RDBPRE.

11.1.4 Displaying RDBPRE Preprocessor and Compiler Error
Messages

If an error occurs during preprocessing, RDBPRE displays the error on your
terminal and writes the error to the host language source file (BAS, COB, or
FOR).

If an error occurs during compiling, the host language compiler displays
the error on your terminal and writes the error to an error log named
RDBERR.LOG. If you have used the /LIST compile qualifier, the compiler
also writes the error to the list file with a LIS file extension.

11.2 Using the RDML Preprocessor
RDML statements can be embedded in C, Pascal, and VAXELN Pascal
programs. These programs can be processed by the RDML preprocessor.
Following a successful preprocessing, you can submit the resulting source code
to the host language compiler.

You must preprocess any programs that contain RDML statements before
processing them with the C or Pascal compiler. Unlike the RDBPRE
preprocessor, you do not have to flag RDML statements with the &RDB&
characters.

When you create the source C or Pascal program files, use the RDML
preprocessor default input file types listed in Table 11–2. Table 11–2 shows the
RDML default input file types and the output file types.

Table 11–2 RDML Preprocessor Default File Types

Language
RDML Default Input File
Type

Preprocessor Output
Source File Type List File Type

C RC C LC

Pascal RPA PAS LPA

The RDML preprocessor generates a list file only if you specify the /LISTING
qualifier. This is a separate list file from that produced by the host language
compiler. You may find it helpful to inspect this file to see the RDML error

11–6 Processing Rdb/VMS Application Programs

messages that are displayed there. This can be especially helpful when you are
trying to find the source of an error.

11.2.1 Defining a Symbol to Invoke RDML
Define a symbol to invoke the RDML preprocessor. For example:

$ RDML :== $RDML

or

$ RDML :== $RDML/PASCAL

or

$ RDML :== $RDML/C

If you do not use the /C or /PASCAL qualifier, you must specify the file type:

RPA for Pascal programs

RC for C programs

RDML will prompt for an input file if none is specified on the command line.
For example:

$ RDML :== $RDML
$ RDML
_Source file: INVENTORY.RPA

An error results if you use neither a language-type qualifier nor include the
default input language file type. For example:

$ RDML
_Source file: INVENTORY
%RDML-F-NO_LANGUAGE, No Language has been specified on the command

line or input file

11.2.2 Using RDML Qualifiers
The qualifiers for the RDML preprocessor let you control how RDML processes
your files and the type of output files it produces. The format for specifying
RDML qualifiers is:

$ RDML[qualifiers] filename

The RDML qualifiers are:

/C

Specifies that you want to preprocess a C source file that has embedded RDML
statements.

Processing Rdb/VMS Application Programs 11–7

/PASCAL

Specifies that you want to preprocess a Pascal source file that has embedded
RDML statements.

/DEFAULT_TRANSACTIONS
/NODEFAULT_TRANSACTIONS

Specifies whether or not you want RDML to generate code to check the state
of the database when each executable statement is executed. If you use the
/DEFAULT_TRANSACTIONS qualifier (the default), RDML will generate code
to attach to the database and start a read-only transaction for you when it
encounters the first DML statement. Furthermore, RDML will allow you to
detach from the database (issue a FINISH statement) without first closing any
transaction that is attached to the database from which you are detaching (by
issuing a COMMIT or ROLLBACK statement).

Use of the /DEFAULT_TRANSACTIONS qualifier can incur a significant
amount of overhead; at run time, the code generated by RDML must check the
state of the database and transactions as each DML statement is processed.

Use of the /NODEFAULT_TRANSACTIONS qualifier eliminates this overhead
by requiring you to explicitly ready a database and start and end transactions.
When you use the /NODEFAULT_TRANSACTIONS qualifier, RDML does not
check the state of the database and transactions as each RDML statement is
processed. In fact, if you do not close a transaction prior to issuing a FINISH
statement for the database with which the transaction is associated, RDML
will issue the error message: %RDB-F-OPEN_TRANS.

The default for this qualifier is /DEFAULT_TRANSACTIONS, as this
maintains the behavior that RDML has always exhibited. However, Digital
recommends that you always use the /NODEFAULT_TRANSACTIONS
qualifier to reduce overhead and thus maximize performance.

/LISTING [=list-file-spec]
/NOLISTING

Produces a list file when you use the /LISTING qualifier. You can specify
a name for the list file. If you specify the /LISTING qualifier with no file
specification, the default list file specification shown in Table 11–2 is used.
When you use the /NOLISTING qualifier, a list file is not produced. The
/NOLISTING qualifier is the RDML default.

/OUTPUT [=output-file-spec]
/NOOUTPUT

Specifies a file for the RDML output when you use the /OUTPUT qualifier.
If you specify an output file, the RDML preprocessor produces the specified
output file if the source file can be preprocessed. If you use the /NOOUTPUT

11–8 Processing Rdb/VMS Application Programs

qualifier, no output file is produced. If you specify /OUTPUT with no file
specification, the default file specification shown in Table 11–2 is used.

/LINKAGE = PROGRAM_SECTIONS

Directs RDML to communicate among separate modules using program
sections when you use the /LINKAGE = PROGRAM_SECTIONS qualifier. By
using this qualifier, you will be able to link your RDML modules with SQL and
RDBPRE modules. The /LINKAGE = PROGRAM_SECTIONS qualifier is the
RDML default.

/LINKAGE = GLOBAL_SYMBOLS

Directs RDML to generate code that communicates among separate modules
using global symbols when you use the /LINKAGE = GLOBAL_SYMBOLS
qualifier. Digital recommends that you use this qualifier only if you have
problems linking with program sections.

/INITIALIZE_HANDLES
/NOINITIALIZE_HANDLES

Instructs RDML to generate code that automatically initializes declared
database and request handles generated by RDML. This qualifier has no effect
on whether or when handles are cleared in the generated code; it only controls
initialization of handles in declarations. The /INITIALIZE_HANDLES qualifier
is the RDML default.

Note that RDML initializes database handles (when the /INITIALIZE_
HANDLES qualifier is specified or defaulted) for GLOBAL and LOCAL
scope. RDML never initializes EXTERNAL scope database handles. The
/INITIALIZE_HANDLES qualifier has no effect on user-declared handles. You
must explicitly declare and initialize transaction and request handles that you
name. When you specify the /NOINITIALIZE_HANDLES qualifier, RDML does
not initialize any of the handles that RDML declares. You must initialize these
handles yourself.

See Section 11.5.2 for information on when it is useful to specify the
/NOINITIALIZE_HANDLES qualifier.

The RDML command defaults are /NOLISTING, /OUTPUT, /LINKAGE
= PROGRAM_SECTIONS, /INITIALIZE_HANDLES, and /DEFAULT_
TRANSACTIONS.

Processing Rdb/VMS Application Programs 11–9

11.2.2.1 Using Host Language Compiler Qualifiers with RDML Programs
You can use any of the C and Pascal compiler qualifiers with a program that
has been processed by the RDML preprocessor.

Digital recommends you always use the /G_FLOATING qualifier when you
invoke the C and Pascal compilers to process source files generated by RDML.
Define symbols to accomplish this. For example:

$ CC :== CC/G_FLOATING
$ PASCAL :== PASCAL/G_FLOATING

Furthermore, if the VAX C programs you generate may someday be
used in other than a VMS environment, you should consider using
the /STANDARD=PORTABLE qualifier with the CC command. The
/STANDARD=PORTABLE qualifier causes the C compiler to generate any
appropriate warning messages that flag:

Constructs specific to C

Deviations in your C code from conventional C constructs and rules

11.2.3 RDML Command Example
The following sequence preprocesses a program. The example assumes you
have defined RDML as a foreign command, such as:

$ RDML :== $RDML

1 Create the program source file using a text editor such as VAX EDT or
VAXTPU.

2 Preprocess the program with RDML:

In Pascal:

$ RDML/LIST SALARY.RPA

or

$ RDML/PASCAL/LIST SALARY

In C:

$ RDML/LIST INVENT.RC

or

$ RDML/C/LIST INVENT

3 Process RDML applications

The source files produced by the RDML preprocessor must be compiled
by the appropriate programming language compiler. Because the RDML
preprocessor generates G-floating data types when representing floating-
point data, Digital recommends that the /G_FLOATING qualifier be used
for all modules associated with RDML preprocessed source code. This
qualifier must be used when your source program contains G-floating data

11–10 Processing Rdb/VMS Application Programs

types. When the RDML preprocessor detects a G-floating data type, the
preprocessor will issue the following reminder that the /G_FLOATING
qualifier is required:

%RDML-I-GFLOATING, G_Floating datatypes detected in this module;
use /G_FLOATING qualifier when compiling

In some cases, it is necessary that code not be compiled with the /G_
FLOATING qualifier. This is generally only due to restrictions beyond the
control of the programmer. In those rare cases, data from fields defined in
the database of data type G-floating should not be accessed in the program.
Mixing RDML files compiled one way with any file compiled the other way
is not supported by Digital.

Compile the preprocessed program:

In Pascal:

$ PASCAL/G_FLOATING SALARY

In C:

$ CC/G_FLOATING INVENT

11.2.4 RDML Run-Time Support and Error Handling
The RDML Run-Time Library provides procedures that are used by code
generated by RDML. A majority of the routines performs very low-level
functions such as building argument lists, internal data transfer, and error
handling. None of the present routines is of any real use to application
programmers except the general purpose error handler RDML$SIGNAL_
ERROR.

Digital recommends that RDML applications that require a general purpose
error handler use RDML$SIGNAL_ERROR in place of other documented
methods (such as RDB$SIGNAL for Rdb/VMS or RDBB$SIGNAL for
Rdb/ELN). Use of RDB$SIGNAL and RDBB$SIGNAL as error handling
routines will inhibit the portability of an application program on VMS systems.

The RDML$SIGNAL_ERROR routine takes a single argument, a message
vector. For example:

RDML$SIGNAL_ERROR (RDB$MESSAGE_VECTOR);

The RDML$SIGNAL_ERROR routine calls the LIB$STOP routine and passes
the message vector to it. If you do not specify the ON ERROR clause and an
error occurs, RDML will call RDML$SIGNAL_ERROR automatically, which
in turn will display all the error messages associated with the error and
terminate program execution.

Processing Rdb/VMS Application Programs 11–11

11.3 Using the Callable RDO Interface
Compile your source program file just as you would compile any program
source file. Invoke the appropriate VAX language compiler and specify the
input file specification and any compile qualifiers you want to use. For
example:

$ COBOL/LIST/DEBUG/NOOPT TEST2

11.4 Creating an Executable Image: LINKING
After you have object modules for each source file, you use the LINK command
to create an executable image. Your LINK command specifies all the object
files you need to include in your program image.

Section 11.4.1 describes how to link Callable RDO and RDBPRE programs.

Section 11.4.2 describes how to link RDML programs.

Section 11.4.3 discusses how to link modules that were created by the RDML
or RDBPRE preprocessor, the Callable RDO interface, or a combination of the
three.

11.4.1 Linking Callable RDO and RDBPRE Programs
You link the object files for Callable RDO and RDBPRE programs just as you
would link any program object file. Invoke the VMS Linker, and specify one or
more object file specifications and any link switches you want to use.

Use a command file if you want to link in batch mode. You can use the batch
job log to record any errors or warnings that occur during the link.

If your RDBPRE program uses an object library, the file name of each module
in the library must be unique in the first 27 characters. Because most
object file names are derived from the source file name, make sure that the
conventions for naming your source files also observe this rule.

11.4.2 Linking RDML Programs
All applications generated by RDML must be linked with the RDML Run-
Time Library (SYS$LIBRARY:RDMLRTL.OLB). This library contains code for
various functions and procedures needed by the code generated by RDML.

To link RDML applications, use the following two lines in an options file or
command file:

SYS$LIBRARY:RDMLRTL.OLB/LIBRARY
SYS$SHARE:VAXCRTLG.EXE/SHARE

11–12 Processing Rdb/VMS Application Programs

For example, using an options file, type the following at the DCL prompt:

$ TYPE RDMLOPT.OPT
SYS$LIBRARY:RDMLRTL.OLB/LIBRARY
SYS$SHARE:VAXCRTLG.EXE/SHARE
$

To link an application named SALARY, type the following at the DCL prompt:

$ LINK SALARY,RDMLOPT/OPT

In a command file, enter:

$ TYPE MYLINK.COM
$ LINK ’P1’,SYS$INPUT:/OPT
SYS$LIBRARY:RDMLRTL.OLB/LIBRARY
SYS$SHARE:VAXCRTLG.EXE/SHARE
$ EXIT
$

To link an application named INVENT, run the command procedure:

$ @MYLINK INVENT

11.4.3 Linking RDML Modules with RDBPRE and SQL$PRE
Modules

You can link RDML, RDBPRE, and SQL$PRE modules. By specifying
the /LINKAGE = PROGRAM_SECTIONS qualifier on your RDML/C or
RDML/Pascal command line, you permit RDML modules to be linked with
RDBPRE and SQL$PRE modules. For example, suppose you want to link an
RDML/Pascal module called MY_MOD.RPA with an RDBPRE BASIC module
called YOUR_MOD.RBA. You could enter the following sequence of commands
to preprocess and link these two files to create an executable image:

$ RDML/PASCAL/LINKAGE=PROGRAM_SECTIONS MY_MOD
$ PASCAL MY_MOD.PAS
$ RDBPRE YOUR_MOD.RBA
$ LINK MY_MOD, YOUR_MOD, RDMLOPT/OPT

Because the /LINKAGE=PROGRAM_SECTIONS qualifier is the RDML
default, it is not necessary to include it in the RDML command line. However,
note that when you link RDML and RDBPRE modules you must specify the
RDML options file on the LINK command line (as discussed in the section on
linking RDML programs).

Note If you have created RDML modules prior to Rdb/VMS V3.0, you must
preprocess them again before you can link the object modules with RDBPRE or
SQL$PRE modules. Prior to Rdb/VMS V3.0, RDML communicated between
separate modules using global symbols, rather than program sections that are
necessary for communication with RDBPRE and SQL$PRE modules.

Processing Rdb/VMS Application Programs 11–13

11.5 Creating a Shareable Image with RDBPRE and RDML
A shareable image file is the product of a previous linking operation. It is
an image that is part of a complete program and is therefore not directly
executable; that is, it is not intended to be directly executed by means of the
DCL RUN command. To be used, a shareable image must be included as input
in a linking operation that produces an executable image. Then, when the
executable image is run, the shareable image can execute.

If you intend to have multiple releases of your applications, in which you
change the application between releases to your end user, you probably want
your program to be a shared image. A shared image:

Lets you modify and enhance the contents of the shared image without
requiring your end user to link his programs that attach to the shareable
image each time you issue an update of your application.

Lets the user place a single copy of the shareable image on a given node
that lets all users on the node access the code contained in the shareable
image. This reduces the amount of memory used on the system.

Two ways that you might want to implement shareable images in an Rdb/VMS
environment are when:

You only want the code in the shareable image to access the database.

You want the code in the shareable image and the code in the programs
that are linked against the shareable image to be able to access the
database.

These two implementations are described in detail in the next two sections.

To avoid linking user programs attached to a shareable image every time you
change routines in the shareable image, you should:

Create and assemble a macro file that defines transfer vectors for your
shareable image procedure entry points.

When you link your shareable image with the /SHARE qualifier, you must
place the code from this macro object file first in the shareable image.
Transfer vectors provide your program with the relative address of a given
routine. Example 11–1 is a simple transfer vector.

Not rearrange or remove transfer vectors.

If a routine is deleted from a shareable image for any reason, its transfer
vector should point to a dummy routine to ensure that user programs
attached to the shareable image do not fail in unforeseen ways.

11–14 Processing Rdb/VMS Application Programs

Always add new transfer vectors at the end of your transfer vector module.

It is a good idea to allow for the addition of future transfer vectors by
reserving extra space at the end of your transfer vector module. Never
insert new transfer vectors between existing transfer vectors.

Example 11–1 Transfer Vector Coded for a Procedure Call
.TITLE TRANSFER_VECTORS
.IDENT /V1.0-001/

.PSECT $$$TRANSVEC,PIC,USR,CON,REL,LCL,SHR,NOEXE,RD,NOWRT,NOVEC

.TRANSFER PROCEDURE_1 ;Begin transfer vector to PROCEDURE_1

.MASK PROCEDURE_1 ;Store register save mask
JMP L^PROCEDURE_1+2 ;Jump to routine, beyond the register

;save mask

.TRANSFER PROCEDURE_2 ;Begin transfer vector to PROCEDURE_2

.MASK PROCEDURE_2 ;Store register save mask
JMP L^PROCEDURE_2+2 ;Jump to routine, beyond the register

;save mask

.TRANSFER PROCEDURE_3 ;Begin transfer vector to PROCEDURE_3

.MASK PROCEDURE_3 ;Store register save mask
JMP L^PROCEDURE_3+2 ;Jump to routine, beyond the register

;save mask

.END

For more information and examples of creating transfer vectors and linking
the object file that contains them, refer to the extended VMS documentation
set. The information you need is in the transfer vector section of the reference
documentation for the VMS Linker utility.

To support DML statements in programs, you implicitly or explicitly specify
names to identify databases, transactions, requests, declared streams, message
vectors, and so forth. Names you supply explicitly are names that you supply
in host language source files. Names that you supply implicitly are those
that are declared by the preprocessor after your program is processed by
RDBPRE or RDML. Table 11–3 shows the PSECT attributes given to the
various database objects in the code generated by the RDBPRE or RDML
preprocessor.

Processing Rdb/VMS Application Programs 11–15

Table 11–3 PSECT Attributes Generated in RDBPRE and RDML Macro Code

Database Object PSECT Name
PSECT Attributes
Generated

Message vectors RDB$MESSAGE_VECTOR PIC, USR, OVR, REL,
GBL, SHR, NOEXE,
RD, WRT, NOVEC

LOCAL database handle
User specified or default

None No PSECT generated

GLOBAL database
handle
User specified or default

Same as
database handle name

LONG, PIC, OVR, REL,
GBL, SHR, NOEXE,
RD, WRT

EXTERNAL database
handle
User specified or default

Same as
database handle name

LONG, PIC, OVR, REL,
GBL, SHR, NOEXE,
RD, WRT

Default transaction
handle

RDB$TRANSACTION_HANDLE NOEXE, GBL, OVR,
SHR, LONG, PIC

Preprocessor generated
request handle

RDB$VARIABLES† NOEXE, GBL, CON,
SHR, LONG, PIC

†RDML does not use RDB$VARIABLES.

If you specify either a transaction or request handle, the generated macro
code does not refer to it at all. You must declare it appropriately in the host
language code.

You can see the PSECT attributes generated in any RDBPRE application by
looking in the MAR file. Use the logical RDMS$KEEP_PREP_FILES to direct
the RDBPRE preprocessor to retain the intermediate MAR files generated by
the RDBPRE preprocessor. Use the DCL DEFINE command to specify that
you want to retain these files:

$ DEFINE RDMS$KEEP_PREP_FILES YES

Do not alter the MAR files for any reason. If you need to make changes, make
them only in your RDBPRE source file.

You can also view the PSECT attributes generated by both RDBPRE and
RDML by inspecting the map file created when you link your program with the
/MAP qualifier. For example, in RDBPRE:

$ LINK MYFILE/MAP/FULL

Or, in RDML:

$ LINK MYFILE, RDMLOPT/OPT/MAP/FULL

11–16 Processing Rdb/VMS Application Programs

Each of these LINK commands generates a file called MYFILE.MAP that
shows PSECT names and attributes.

Note that when a name is specified as global, either implicitly or explicitly,
RDBPRE and RDML create overlaid PSECTs with the SHR and GBL
attributes. Overlaid PSECTs with SHR and GBL attributes are appropriate for
executable, but not always shareable, images. Therefore, when you link object
files to create a shareable image, your LINK command should override those
program sections that Rdb/VMS creates for global names. Methods of doing
this are described in Section 11.5.1 and Section 11.5.2.

11.5.1 Accessing a Database from a Shareable Image Only
When you want only the code in the shareable image to access the database,
you should create the code by following these steps:

1 Write the code that will be in the shareable image. This includes modules
that access the database (or databases), and perhaps modules that do not.

2 Preprocess all of these modules that access the database or databases. If
you are accessing a single database with a single database attach, there is
no need for you to specify either transaction or database handles. If there
is more than one module that accesses the database (or databases) then
you must use database and transaction handles appropriately.

3 Write a transfer vector module that provides an entry point for all the
routines that the shareable image provides.

4 Compile or assemble all of the modules that make up the shareable image.

5 Link the shareable image from the resulting object modules.

6 Write the code that will call the routines in the shareable image.

7 Compile or assemble the modules that make up the user’s program.

8 Link these modules together against the shareable image, to produce an
executable image.

9 Run the program to test it.

10 Once the shareable image has been debugged, then install it as shared
(using the VMS Install utility) to make it truly shareable.

For example, suppose you write the following simple code in a file, IMAGE.RC,
for use in a shareable image.

Processing Rdb/VMS Application Programs 11–17

DATABASE FILENAME "MF_PERSONNEL";
query()
{
FOR E IN EMPLOYEES CROSS SH IN SALARY_HISTORY

WITH E.LAST_NAME STARTING WITH "T"
REDUCED TO E.LAST_NAME

printf("%s, $%f\n", E.LAST_NAME, SH.SALARY_AMOUNT);
END_FOR;
}

To create the shareable image, you must preprocess and compile it using the
following commands:

$ RDML IMAGE.RC
$ CC IMAGE

The following transfer vector module, TRANSVEC.MAR, which must be
written in MACRO code, will allow an entry point into the shareable image:

.TITLE TRANSFER_VECTORS

.IDENT /V1.0-001/

.PSECT $$$TRANSVEC, PIC,USR,CON,REL,LCL,SHR,NOEXE,RD,NOWRT,NOVEC

.TRANSFER query

.MASK query

.JMP L^query+2

.END

Assemble it using the following command:

$ MACRO TRANSVEC

You can link these two modules, together with the necessary support routines,
into a shareable image using the following DCL procedure:

$ LINK/SHARE=IMAGE.EXE/MAP=IMAGE.MAP/FULL TRANSVEC, IMAGE, SYS$INPUT/OPT
SYS$LIBRARY:RDMLRTL/LIBRARY
SYS$SHARE:VAXCRTLG/SHARE
PSECT_ATTR=RDB$DBHANDLE, NOSHR, LCL
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR, LCL
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR, LCL

In addition, if any global database or transaction handles are used in the
subprograms in the shared image, you will need another line:

PSECT_ATTR=<db_handle_name>,NOSHR,LCL

or

PSECT_ATTR=<transaction_handle_name>,NOSHR,LCL

Include a line using these formats for each database handle or transaction
handle, where db_handle_name is the name of the global database handle and
transaction_handle_name is the name of the transaction handle.

11–18 Processing Rdb/VMS Application Programs

Note the PSECT_ATTR options. These are necessary for the message vector
and for every database and transaction handle used. Here, only the default
database and transaction handles are used. The NOSHR option for these
handles and the message vector must be specified so that these variables are
specific to each process, and not shared among processes. If they are shared
among processes, then the processes will interfere with each other in their use
of handles and error codes. The LCL attribute ensures that the PSECTs can
only be used in the shareable image. (This attribute should only be used when
you do not want to access the database from both the shareable image and the
main images.)

Note that the transfer vector PSECT must be the first PSECT in the shareable
image because its location must not change in subsequent versions of the
application. The previous example relies on the name and attributes of the
PSECTs for placing the PSECT in the image; it could also use the CLUSTER
and COLLECT options in the LINKER options file.

When you create a shareable image, all Rdb/VMS shared information, such
as transaction handles, database handles, and message vectors, should be
set to NOSHR. In addition, host language compilers may also create overlaid
program sections for global names. You may need to specify additional PSECT_
ATTR lines to set to NOSHR other parameters you define as global or external
in your program. For example, you may need to specify PSECT_ATTR lines
for common areas. (Common areas are created by FORTRAN COMMON
statements, BASIC MAP and COMMON declarations, COBOL EXTERNAL
working storage variables, and PASCAL variables with the [COMMON]
attribute.

To check that the attributes are set correctly, you can look at the linker map of
the image. The following example links MYPROG and produces a .MAP file:

$ LINK/MAP=TEST.MAP/NOEXEC MYPROG

Then, search the .MAP file for elements that have the program section
attributes of GLB and SHR, as shown in the following example (note that there
are two spaces between GBL and SHR):

$ search test.map "GBL, SHR"

RDB$DBHANDLE 00000608 0000061C 00000015 (21.)
2

PIC,USR,OVR,REL,GBL, SHR,NOEXE, RD, WRT,NOVEC
RDB$MESSAGE_VECTOR 00000620 0000066F 00000050 (80.)
2

PIC,USR,OVR,REL,GBL, SHR,NOEXE, RD, WRT,NOVEC
RDB$TRANSACTION_HANDLE 00000670 00000677 00000008 (8.)
2

PIC,USR,OVR,REL,GBL, SHR,NOEXE, RD, WRT,NOVEC

If Rdb/VMS shared information and common areas used by your application
have the SHR attribute, change them to NOSHR using the PSECT_ATTR
options for the LINK command.

Processing Rdb/VMS Application Programs 11–19

Once the shareable image has been created, a simple program can be written
to call it. For example:

extern void query();

main()
{

query();
}

Suppose you name the file that contains this code MAIN.C. Compile the file
using the command:

$ CC MAIN

Link it against the shareable image with this command (assuming that
IMAGE.EXE is in your default directory):

$ LINK/DEB/MAP=MAIN.MAP/FULL MAIN.OBJ, SYS$INPUT/OPT
IMAGE/SHARE

Note that the program has no need to look at any handles or message vectors.
They are hidden from it by the shareable image interface.

In order to run the program, for debugging purposes, you must define a logical
name, IMAGE, to point to the shareable image you built. Otherwise the image
activator will search SYS$SHARE for an IMAGE.EXE file:

$ DEFINE IMAGE SYS$DISK:[]IMAGE

Now you can run the program with the following command:

$ RUN MAIN

Once you have debugged your shareable image, you can place the working
version of IMAGE.EXE in SYS$SHARE (install it as shared using the VMS
Install utility), and can deassign your IMAGE logical name. Your users can
then link against it as follows:

$ LINK/DEB/MAP=MAIN.MAP/FULL MAIN.OBJ, SYS$INPUT/OPT
SYS$SHARE:IMAGE/SHARE

11.5.2 Accessing a Database from a Shareable Image and an
Application Program

If you want both the shareable image and the program that is linked against
the shareable image to access the database, you must take a slightly different
approach from that mentioned in Section 11.5.1. RDBPRE and RDML provide
the /NOINITIALIZE_HANDLES qualifier that lets you alter the method used
in Section 11.5.1 so that the shareable image and the program that calls it can
access the database.

11–20 Processing Rdb/VMS Application Programs

Note In RDBPRE when you use the /NOINITIALIZE_HANDLES qualifier, any
handle you specify in your application program must also be specified in the
shareable image.

The steps involved in accessing a database from a shareable image and an
application program are:

1 Write the code that will be in the shareable image. This includes modules
that access the database (or databases), and perhaps modules that do not.

2 Preprocess all of these modules that access the database (or databases). If
you are accessing a single database with a single database attach, there is
no need for you to specify either transaction or database handles. If there
is more than one module that accesses the database (or databases), then
you must use database and transaction handles appropriately.

3 Write a transfer vector module that provides an entry point for all the
routines that the shareable image provides.

4 Compile or assemble all of the modules that make up the shareable image.

5 Link the shareable image from the resulting object modules.

6 Write the code that will call the routines in the shareable image. This
consists of a number of modules, some that access the database directly,
and some that do not.

7 Preprocess the modules that access the database.

8 Compile or assemble the modules that make up the user’s program.

9 Link these modules together against the shareable image, to produce an
executable image.

10 Run the program to test it.

11 Once the shareable image has been debugged, then install it as shared
(using the VMS Install utility) to make it truly shareable.

Assume you are going to use the same code in the shareable image as that
developed in Section 11.5.1 for the logical name IMAGE. For use with a
program module that also accesses the database, you need to preprocess and
compile the code that you plan to use in the shareable image, just as was done
in Section 11.5.1. You can also use the same transfer vector. However, in this
case, when you link the code for the shareable image do not specify LCL for
the PSECT attributes because you want the shareable image and the program
that uses the shareable image to share the PSECTs. See the following RDML
example.

Processing Rdb/VMS Application Programs 11–21

$ LINK/SHARE=IMAGE.EXE/MAP=IMAGE.MAP/FULL TRANSVEC, IMAGE, SYS$INPUT/OPT
SYS$LIBRARY:RDMLRTL/LIBRARY
SYS$SHARE:VAXCRTLG/SHARE
PSECT_ATTR=RDB$DBHANDLE, NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR

In addition, if any global database or transaction handles are used in the
subprograms in the shared image, you will need another line:

PSECT_ATTR=<db_handle_name>,NOSHR

or

PSECT_ATTR=<transaction_handle_name>,NOSHR

Include a line using these formats for each database handle or transaction
handle, where db_handle_name is the name of the global database handle and
transaction_handle_name is the name of the transaction handle.

Now that you have created a shareable image, you need to write the program
that will call the shareable image. In RDML programs, you can begin the
process of creating a shareable image that will let both the shareable image
and the calling RDML program access a database by adding a small amount of
code to the MAIN.RC module (discussed in Section 11.5.1).

DATABASE FILENAME "PERSONNEL";

extern void query();

main()
{

/* Call code in the shareable image to do a query. */

query();

/* Now do a query in this module. */

FOR FIRST 5 E IN EMPLOYEES CROSS D IN DEGREES
WITH D.DEGREE STARTING WITH "B"

printf("%s, %s : %s\n", E.LAST_NAME, E.FIRST_NAME, D.DEGREE);
END_FOR;

}

The program is still using the default database and transaction handles, only.
Preprocess it with the following command:

$ RDML/NOINITIALIZE_HANDLES MAIN.RC

Note the /NOINITIALIZE_HANDLES qualifier. It stops RDML from
initializing handles to zero, which is normally done when you preprocess
code with RDML. Because the program will be using the default handles that
were defined (as PSECTs) in the shareable image, an attempt to initialize them
to zero would result in a LINKER error because the PSECT does not exist
in the image you are going to build. If you fail to use the /NOINITIALIZE_

11–22 Processing Rdb/VMS Application Programs

HANDLES qualifier, you will receive an error similar to the following when
you attempt to link the program with the shareable image:

%LINK-E-OUTSIMG, attempted store location %X00000000 is outside
image binary (%X00000000 to %X00000000)
in psect DBH module RDB$DMTST FILE DISK4:[SHAREDIR.TEMP]TEST.OBJ;7
-LINK-E-NOIMGFIL, image file not created

Compile MAIN.RC with this command:

$ CC MAIN

Link it with this command:

$ LINK/DEB/MAP=MAIN.MAP/FULL MAIN.OBJ, SYS$INPUT/OPT
SYS$LIBRARY:RDMLRTL/LIBRARY
IMAGE/SHARE
PSECT_ATTR=RDB$DBHANDLE, NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR

In addition, if any global database or transaction handles are used in the
subprograms in the shared image, you will need another line:

PSECT_ATTR=<db_handle_name>,NOSHR

or

PSECT_ATTR=<transaction_handle_name>,NOSHR

Include a line using these formats for each database handle or transaction
handle, where db_handle_name is the name of the global database handle and
transaction_handle_name is the name of the transaction handle.

Note the NOSHR attribute specified in the PSECTs. This is done so that the
PSECT attributes match those of the shareable image. Also, it is not necessary
to link against SYS$LIBRARY:VAXCRTLG.EXE because the shareable image is
already linked against that. Do not change the GBL attributes of the PSECTs
to LCL in this case, because you want the PSECTs to be shared across images.

Now you can run the new MAIN program (remembering the IMAGE logical
name again) with the following command:

$ RUN MAIN

If you use your own transaction or database handles, then you must
declare them to produce a PSECT of matching name and attributes, as
RDB$TRANSACTION_HANDLE was declared in the previous example.
You can look at the declaration of RDB$TRANSACTION_HANDLE in the
RDMLVAXC.H or RDMLVPAS.PAS files in SYS$LIBRARY for how to do this in
C or Pascal.

Processing Rdb/VMS Application Programs 11–23

11.6 Running the Program
Execute the EXE program created by either of the preprocessors or Callable
RDO with the DCL RUN command. For example:

$ RUN JOBHIST.EXE

11.7 Debugging with the VMS Debugger
The VMS Debugger provides a convenient way for you to monitor the execution
of your program at run time. With the debugger you can:

Step through the program one statement at a time

Examine and modify statements and data values

Stop program execution at specified points

Display messages at specified points in the program

Use the /NOOPTIMIZE compile qualifier when you use the /DEBUG compile
qualifier. The default for many VMS compilers, /OPTIMIZE, causes the
compiler to optimize the compiled program to generate more efficient code.
Thus, unless you specify the /NOOPTIMIZE qualifier, the code you try to debug
may be different from your original code.

To use the VMS Debugger with RDBPRE programs you must specify the
/DEBUG qualifier:

On the preprocess command line

For example:

$ RDBPRE/BASIC PROGRAM.RBA/DEBUG

On the LINK command line

For example:

$ LINK PROGRAM/DEBUG

To use the VMS Debugger with RDML programs you must specify the /DEBUG
qualifier:

On the compiler command line

For example:

$ RDML/PASCAL PROGRAM.RPA
$ Pascal PROGRAM/DEBUG

11–24 Processing Rdb/VMS Application Programs

On the LINK command line

For example:

$ LINK PROGRAM,RDMLOPT/OPT/DEBUG

For detailed information about using the debugger, refer to the VMS Debugger
Manual or to the chapter in your particular language user’s guide that
describes how to use the debugger.

Processing Rdb/VMS Application Programs 11–25

12
Using the RDBPRE Program Environment

This chapter describes how to develop applications using RDBPRE
preprocessed programs. The chapter presents the following topics:

Differences in syntax between RDO and RDBPRE

Using data manipulation statements in the program environment

Copying CDD/Plus definitions to declare host language variables

Most of the information you need to develop an RDBPRE program is contained
in Chapter 9 and Chapter 13 through Chapter 15. This chapter serves to
provide you with information that is specific to RDBPRE and applies to all the
RDBPRE programming languages.

12.1 RDBPRE Program Development
To ensure effective program development you should:

Develop your queries in RDO

You need to know which databases, relations, and fields your program
accesses. Special characteristics of the relations, views, and field definitions
in the database will determine the most efficient form for a query. A
discussion about developing query prototypes in RDO is provided in
Chapter 7.

Determine host language variables

Your program usually needs to declare host language variables that pass
values to and accept values from the database. You need to be aware of the
existing data types, data restrictions, and input constraints that are part
of the design of the databases you access. A discussion of determining host
language variables is provided in Chapter 7. Data type conversions for the
RDBPRE preprocessor languages are provided in Chapter 8.

Using the RDBPRE Program Environment 12–1

Convert your query to the program environment

In a typical application, the database is the source of records for reports
and calculations and the target for updates. The host language provides
logic for operations such as loops, conditional processing, numeric
manipulation, and input/output operations. The next section discusses
how to convert a prototype to a host language program.

12.1.1 Differences in RDO and RDBPRE Data Manipulation
Language Syntax

The RDBPRE data manipulation statements are a subset of the RDO
statements. With the RDBPRE statements you can access a database, update
records, retrieve selected records, and handle Rdb/VMS exception conditions.
However, no RDBPRE statements exist to perform data definition tasks.
Refer to the VAX Rdb/VMS RDO and RMU Reference Manual for a complete
description of the Rdb/VMS data manipulation statements.

The syntax you use for preprocessed Rdb/VMS statements is not identical
to the statement syntax you use in RDO. When you convert RDO syntax to
RDBPRE syntax, be aware that you:

Use the GET statement instead of the PRINT statement

Can nest FETCH and GET operations within a host language loop

Can use the ON ERROR and AT END clauses to identify Rdb/VMS errors

Examples of how to use these statements are contained in Chapter 13 through
Chapter 15.

12.1.2 Using the &RDB& Statement Flag
The preprocessor must be able to distinguish between Rdb/VMS data
manipulation statements and host language statements. The Rdb/VMS
statement flag signals Rdb/VMS data manipulation statements. A statement
flag consists of the letters RDB between two ampersands (&RDB&). The flag
must be the first nonblank character on the program line. Leading and trailing
spaces and tabs are optional unless your host language requires otherwise.

All lines in a multiple-line Rdb/VMS statement should be flagged. The
preprocessor will accept the host language continuation character to continue
Rdb/VMS statements to new lines, but use of host language continuation
characters instead of Rdb/VMS statement flags can create confusing code.
When every line of a multiple-line Rdb/VMS statement is flagged, the Rdb/VMS
statement is clearly distinguishable from the surrounding host language
statements.

12–2 Using the RDBPRE Program Environment

Your RDBPRE program cannot mix Rdb/VMS statements and host language
statements on the same program line. Thus you cannot use an Rdb/VMS
statement flag on any program line that also includes a host language
statement. The only host language element that can appear on the same
line as an Rdb/VMS statement is a host language variable. The proper position
of the host language variable is governed by Rdb/VMS syntax. You will receive
one or more preprocessor errors if you place a BASIC line number, COBOL
label, or FORTRAN statement label on the same line as the &RDB& statement
flag. For example, if you place a BASIC line number between the flag and the
DATABASE statement, you may receive errors such as the following:

&RDB& 20 DATABASE GLOBAL pers = FILENAME "PERSONNEL" DBKEY SCOPE IS FINISH
* ^
* *** ERROR, one of the following symbols was expected:
; FOR GET ERASE FETCH PSECT READY STORE COMMIT FINISH INVOKE

MODIFY PREPARE DATABASE ROLLBACK END_STREAM START_STREAM
; START_TRANSACTION END_SEGMENTED_STRING START_SEGMENTED_STRING

CREATE_SEGMENTED_STRING _|_

If you omit the &RDB& statement flag from any Rdb/VMS statement that
ends a block of statements, such as END_FOR, END_GET, END_STORE, or
END_MODIFY, the preprocessor issues the error message: ‘‘**** ERROR,
statement is syntactically incomplete’’. It is a good idea to check the placement
of &RDB& statement flags first when locating preprocessing errors.

The following example shows the format and location of the statement flag
within an Rdb/VMS statement. The statements preceded by the &RDB&
statement flag can be embedded in your host language as they appear here.
The statements that appear in lowercase must be converted to your host
language. This will be true for all the examples in the BASIC, COBOL, and
FORTRAN language chapters.

!print supervisor ID, name, department code

&RDB& FOR C IN CURRENT_JOB CROSS SC IN CURRENT_JOB
&RDB& WITH C.EMPLOYEE_ID = Id
&RDB& AND C.SUPERVISOR_ID = SC.EMPLOYEE_ID
&RDB& ON ERROR

error handling statements
&RDB& END_ERROR
&RDB& GET
&RDB& ON ERROR

error handling statements
&RDB& END_ERROR
&RDB& Super_id = C.SUPERVISOR_ID;
&RDB& Last_name = SC.LAST_NAME;
&RDB& Super_dept = SC.DEPARTMENT_CODE
&RDB& END_GET

if (Super_id <> Id)
then

print Super_dept, Super_id, Last_name
&RDB& END_FOR

Using the RDBPRE Program Environment 12–3

12.1.3 Copying Data Dictionary Definitions to Declare Host
Language Variables

A convenient way to declare host language variables is to copy database
definitions from the data dictionary, CDD/Plus. You can copy field and relation
definitions, which include all the fields within the relation. However, you must
be careful to copy only those relation and field definitions whose data types are
supported by your host language.

You can use the data dictionary to copy the data definitions of database fields
and relations into your program. Using the data dictionary:

Simplifies the task of program data definition

Automatically defines all the fields within a relation

Ensures that all programs that use the database define the same field
consistently

Provides your program with the correct host language data type, unless the
database data type is unsupported by your host language

BASIC, COBOL, and FORTRAN let you copy data dictionary definitions into
your program. However, copying from the data dictionary is not a completely
automatic process for the programmer. Be careful to avoid the following:

Naming conflicts

You must ensure that relation and field names copied into your program
do not conflict with the BASIC, COBOL, or FORTRAN naming rules and
are not BASIC, COBOL, or FORTRAN reserved words. If there are any
naming conflicts, you must change the name in the appropriate database
definition before copying the data dictionary definition. For information
about changing database attribute definitions, see the VAX Rdb/VMS RDO
and RMU Reference Manual.

Field names that are not unique

Field definitions copied from the data dictionary are likely to contain field
names that are not unique. Be sure to qualify any of these field names
by the relation name that contains it. If you do not qualify field names
that are not unique, you will get compile-time errors indicating ambiguous
references. You can use the appropriate compiler qualifier to print out the
copied definition or definitions in your list (LIS) file and then you can check
for ambiguous field names.

12–4 Using the RDBPRE Program Environment

Data type conflicts

The BASIC, COBOL, and FORTRAN processors translate copied data
dictionary data types into equivalent host language data types where
possible. The BASIC, COBOL, and FORTRAN processors, however, do
not perform the data type conversions that the Rdb/VMS preprocessor
performs. If an Rdb/VMS data type is flagged with a dagger in Table 8–4,
Table 8–6, or Table 8–7, you should check the conversion performed by the
data dictionary and make sure that the data type is appropriate for your
application.

As stated previously, you can copy field and relation definitions (and the
definitions for the fields contained within the relation) from the data dictionary.
Relation definitions are stored in the data dictionary as objects under the
directory RDB$RELATIONS. Field definitions are stored in the data dictionary
as objects under the directory RDB$FIELDS. To copy a relation into your
program, specify the location of your database dictionary, then specify the
database and the dictionary path name of the relation that you want to copy.

For example, to copy the relation EMPLOYEES from an MF_PERSONNEL
database, specify:

DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES

The data dictionary is organized as a hierarchy of directories and objects. You
can use the Common Dictionary Operator utility (CDO) to display on your
terminal all the data dictionary objects for a particular database. By observing
the display, you can identify the data dictionary path name you need to include
in the copy statement. For additional information about the data dictionary
structure, see the VAX Common Data Dictionary Utilities Reference Manual.

To list field definitions on your terminal, you must first use the CDO ENTER
command to assign CDO directory names to relation definitions within a
CDD$DATABASE definition. Then enter the CDO SHOW ALL/FULL command
to see the field definitions for all the relations that you have assigned CDO
directory names with the ENTER command.

Using the RDBPRE Program Environment 12–5

For example, if you want to see the field definitions for the EMPLOYEES
relation in the MF_PERSONNEL database, enter the following commands:

$ DICTIONARY OPERATOR
CDO> ENTER RECORD EMPLOYEES FROM DATABASE MF_PERSONNEL
CDO> SHOW ALL/FULL
Definition of record EMPLOYEES
| Contains field EMPLOYEE_ID
| | Based on ID_NUMBER
| | | Description ’ Generic employee ID ’
| | | Datatype text size is 5 characters
| Contains field LAST_NAME
| | Description ’ Generic last name ’
| | Datatype text size is 14 characters
| Contains field FIRST_NAME
| | Description ’ Generic first name ’
| | Datatype text size is 10 characters
| Contains field MIDDLE_INITIAL
| | Description ’ Generic middle initial ’
| | Datatype text size is 1 characters
| | Missing_value " "
| | DTR Edit_string X.
| Contains field ADDRESS_DATA_1
| | Description ’ Street name ’
| | Datatype text size is 25 characters
| | Missing_value " "
| Contains field ADDRESS_DATA_2
| | Description ’ Mail stops, suite addresses, street
| | numbers, and so forth.’
| | Datatype text size is 25 characters
| | Missing_value " "
| Contains field CITY
| | Description ’ City name ’
| | Datatype text size is 20 characters
| | Missing_value " "
| Contains field STATE
| | Description ’ State abbreviation (or DISTRICT) ’
| | Datatype text size is 2 characters
| | Missing_value " "
| Contains field POSTAL_CODE
| | Description ’ Postal code (in US = ZIP)’
| | Datatype text size is 5 characters
| | Missing_value " "
| Contains field SEX
| | Description ’ M, F ’
| | Datatype text size is 1 characters
| | Missing_value "?"
| | Valid if (((SEX EQ "M") OR (SEX EQ "F")) OR
| | (SEX MISSING))
| Contains field BIRTHDAY
| | Based on STANDARD_DATE
| | | Description ’ Generic date field ’
| | | Datatype date
| | | Missing_value 17-NOV-1858 00:00:00.00
| | | DTR Edit_string DD-MMM-YYYY

12–6 Using the RDBPRE Program Environment

| Contains field STATUS_CODE
| | Description ’ A number ’
| | Datatype text size is 1 characters
| | Missing_value "N"
| | Valid if ((((STATUS_CODE EQ "0") OR

(STATUS_CODE EQ "1")) OR
(STATUS_CODE EQ "2")) OR
(STATUS_CODE MISSING))

Definition of database MF_PERSONNEL
| database uses RDB database MF_PERSONNEL
| database in file MF_PERSONNEL
| | fully qualified file DISK:[MYDATABASE]MF_PERSONNEL.RDB;
CDO>

12.1.3.1 The INCLUDE Directive in BASIC After identifying the data
dictionary path name of the relation you want to copy, use the BASIC
%INCLUDE %FROM %CDD directive to copy the definitions into your
program. To copy multiple definitions, repeat the %INCLUDE directive as
needed.

The format of the INCLUDE directive is:

%INCLUDE %FROM %CDD ’dictionary-path-name’

The argument for the INCLUDE directive is dictionary-path-name.

The full or relative data dictionary path name that identifies the location
in the data dictionary of the object definition you want to copy. Enclose
the path name in single quotation marks. You can use a logical name for
dictionary-path-name.

The following program segment shows you how to copy a data dictionary
definition into a BASIC program. Note that BASIC translates the data
dictionary definition into a record structure and subordinate fields. The BASIC
RECORD statement is only a structure and does not assign memory. To
allocate memory to the fields of the record, you must declare a variable of that
record type. Line 10 of the following example declares the record and line 20
defines the record structure by copying the definition from the data dictionary:

!
!Declare the record.
!

10 DECLARE EMPLOYEES EMP_REC
!
!Copy VAX CDD/Plus data definition.
!

20 %INCLUDE %FROM %CDD ’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’

You can obtain a processed program list (LIS) file that includes the translated
definition using the /LIST and /SHOW = CDD_DEFINITIONS qualifiers in the
process command line. Include these qualifiers when you invoke the Rdb/VMS
preprocessor, RDBPRE; or define the preprocess command to include these and
other qualifiers, as shown in the next example.

Using the RDBPRE Program Environment 12–7

$ RDBPRE/BASIC PROG2/LIST/SHOW=CDD_DEFINITIONS

The following list segment from the LIS file shows the BASIC translated text
of the EMPLOYEES relation definition (with control characters removed to
improve readability). Note the data type conversion for the DATE data type
of the field BIRTHDAY. See Chapter 13 for information on using DATE data
types in RDBPRE BASIC programs.

15 DECLARE EMPLOYEE EMP_REC
20 %INCLUDE %FROM %CDD ’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’

C1 RECORD EMPLOYEES ! UNSPECIFIED
C1 STRING EMPLOYEE_ID = 5 ! TEXT
C1 ! Generic employee ID
C1 STRING LAST_NAME = 14 ! TEXT
C1 ! Generic last name
C1 STRING FIRST_NAME = 10 ! TEXT
C1 ! Generic first name
C1 STRING MIDDLE_INITIAL = 1 ! TEXT
C1 ! Generic middle initial
C1 STRING ADDRESS_DATA_1 = 25 ! TEXT
C1 ! Street name
C1 STRING ADDRESS_DATA_2 = 25 ! TEXT
C1 ! Mail stops, suite addresses, street

C1 ! numbers, and so forth.
C1 STRING CITY = 20 ! TEXT
C1 ! City name
C1 STRING STATE = 2 ! TEXT
C1 ! State abbreviation (or DISTRICT)
C1 STRING POSTAL_CODE = 5 ! TEXT
C1 ! Postal code (in US = ZIP)
C1 STRING SEX = 1 ! TEXT
C1 ! M, F
C1 GROUP BIRTHDAY ! DATE
C1 ! Generic date field
C1 STRING STRING_VALUE = 8
C1 END GROUP
C1 STRING STATUS_CODE = 1 ! TEXT
C1 ! A number
C1 END RECORD

...................1

%BASIC-I-CDDSUBGRO, 1: data type in CDD not supported, substituted group
for: EMPLOYEES::BIRTHDAY.

12.1.3.2 The COPY FROM DICTIONARY Statement in COBOL After
identifying the data dictionary path name of the relation you want to copy,
use the COBOL COPY FROM DICTIONARY statement to copy the definitions
into the WORKING-STORAGE section of your program. Repeat the COPY
FROM DICTIONARY statement as needed.

You can replace a field name in the definition by using the REPLACING clause
in the COPY FROM DICTIONARY statement. When you copy a field definition
from the data dictionary, the field appears in your program as a level 01
declaration. If the data dictionary field name is not unique, replace it with a
unique level 01 field name.

12–8 Using the RDBPRE Program Environment

The format of the COPY FROM DICTIONARY statement is:

COPY "dictionary-path-name" FROM DICTIONARY
[REPLACING dictionary-field-name BY new-field-name, ...].

The arguments from the COPY FROM DICTIONARY statement are:

dictionary-path-name

The full or relative data dictionary path name that identifies the location
in the data dictionary of the object definition you want to copy. Enclose
the path name in pairs of single or double quotation marks. You can use a
logical name for dictionary-path-name.

dictionary-field-name

The CDD/Plus field name you want to replace with a new name.

new-field-name

The field name you want to substitute for the CDD/Plus field name. Use
the REPLACING clause to provide unique field names when you do not
want to qualify the field name or when the field is a level 01 declaration.

The following program segment copies the data dictionary definitions for
the EMPLOYEES relation within the MF_PERSONNEL database. Note
that COBOL translates the data dictionary relation definition into a level
01 record with level 02 fields.

WORKING-STORAGE SECTION.
*
*Copy data dictionary relation definitions.
*

COPY "DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES"
FROM DICTIONARY.

You can obtain a processed program list (LIS) file that includes the
translated definition using the /LIST and /COPY_LIST qualifiers in the
process command line. Include these qualifiers when you invoke the
Rdb/VMS preprocessor, RDBPRE; or define the preprocess command to
include these and other qualifiers. For example:

$ RDBPRE :== $RDBPRE
$ RDBPRE/COBOL PROG2/LIST/COPY_LIST

The following list segment from the LIS file shows the COBOL translated
text of the EMPLOYEES relation definition. Note the data type conversion
for the DATE data type of the field BIRTHDAY. See Chapter 14 for
information on using DATE data types in RDBPRE COBOL programs.

Using the RDBPRE Program Environment 12–9

324 DATA DIVISION.
325 WORKING-STORAGE SECTION.
326 * copy VAX CDD/Plus definitions in COBOL
327
328 COPY "DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES"
329 FROM DICTIONARY.
330L *
331L * DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES
332L *
333L 01 EMPLOYEES.
334L * Generic employee ID
335L 02 EMPLOYEE_ID PIC X(5).
336L * Generic last name
337L 02 LAST_NAME PIC X(14).
338L * Generic first name
339L 02 FIRST_NAME PIC X(10).
340L * Generic middle initial
341L 02 MIDDLE_INITIAL PIC X.
342L * Street name
343L 02 ADDRESS_DATA_1 PIC X(25).
344L * Mail stops, suite addresses, street numbers, and so forth.
345L 02 ADDRESS_DATA_2 PIC X(25).
346L * City name
347L 02 CITY PIC X(20).
348L * State abbreviation (or DISTRICT)
349L 02 STATE PIC X(2).
350L * Postal code (in US = ZIP)
351L 02 POSTAL_CODE PIC X(5).
352L * M, F
353L 02 SEX PIC X.
354L * Generic date field
355L 02 BIRTHDAY PIC S9(11)V9(7) COMP.

1
%COBOL-W-ERROR 405, (1) Absolute date and time datatype represented in

one second units - PIC S9(11)V9(7) COMP assumed
356L * A number
357L 02 STATUS_CODE PIC X.
358

12.1.3.3 The DICTIONARY Statement in FORTRAN FORTRAN lets you
copy database data definitions from the data dictionary into your FORTRAN
program. After identifying the data dictionary path name of the relation
you want to copy, use the FORTRAN DICTIONARY statement to copy the
definitions into your program. Repeat the DICTIONARY statement as needed.

The format of the DICTIONARY statement is:

DICTIONARY ’dictionary-path-name’

The argument for the DICTIONARY statement is dictionary-path-name.

Dictionary-path-name refers to the full or relative data dictionary path name
that identifies the location in the data dictionary of the object definition you
want to copy. Enclose the path name in pairs of single quotation marks. You
can use a logical name for dictionary-path-name.

12–10 Using the RDBPRE Program Environment

The following program segment shows you how to copy a data dictionary
definition into a FORTRAN program. Note that FORTRAN translates the
data dictionary definition into a record structure and subordinate fields. To
allocate memory to the fields of the record, you must declare the record with
the RECORD statement.

C Declare record

RECORD /EMPLOYEES/EM

C Copy VAX CDD/Plus definition

DICTIONARY
1 ’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’

You can obtain a processed program list (LIS) file that includes the translated
definition using the /LIST and /SHOW=DICTIONARY qualifiers in the process
command line. Include these qualifiers when you invoke the Rdb/VMS
preprocessor, RDBPRE; or define the RDBPRE command to include these
and other qualifiers (see Chapter 11). For example:

$ RDBPRE/FORTRAN PROG2/LIST/SHOW=DICTIONARY

The following list segment from the LIS file shows the FORTRAN translated
text of the EMPLOYEES relation definition. Note the data type conversion for
the DATE data type of the field BIRTHDAY. See Chapter 15 for information on
using DATE data types in RDBPRE FORTRAN programs.

0003 C Copy data dictionary definition
0004
0005 DICTIONARY ’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’
0006 1 ! CDD Path Name "DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPL
0007 1 ! OYEES"
0008 1 STRUCTURE /EMPLOYEES/
0009 1 ! Generic employee ID
0010 1 CHARACTER*5 EMPLOYEE_ID
0011 1 ! Generic last name
0012 1 CHARACTER*14 LAST_NAME
0013 1 ! Generic first name
0014 1 CHARACTER*10 FIRST_NAME
0015 1 ! Generic middle initial
0016 1 CHARACTER*1 MIDDLE_INITIAL
0017 1 ! Street name
0018 1 CHARACTER*25 ADDRESS_DATA_1
0019 1 ! Mail stops, suite addresses, street numbers, and so forth.
0020 1 CHARACTER*25 ADDRESS_DATA_2
0021 1 ! City name
0022 1 CHARACTER*20 CITY
0023 1 ! State abbreviation (or DISTRICT)
0024 1 CHARACTER*2 STATE
0025 1 ! Postal code (in US = ZIP)
0026 1 CHARACTER*5 POSTAL_CODE
0027 1 ! M, F
0028 1 CHARACTER*1 SEX
0029 1 ! Generic date field
0030 1 STRUCTURE BIRTHDAY
%FORT-I-UNSUPPTYPE, CDD description specifies an unsupported datatype.

in module F_SAMPLE$MAIN at line 30

Using the RDBPRE Program Environment 12–11

0031 1 LOGICAL*1 %FILL (8)
0032 1 END STRUCTURE
0033 1 ! A number
0034 1 CHARACTER*1 STATUS_CODE
0035 1 END STRUCTURE
0036
0037 C Declare record
0038
0039 RECORD / EMPLOYEES/EM
0040

12–12 Using the RDBPRE Program Environment

13
Using the BASIC Program Environment

This chapter describes how to access an Rdb/VMS database using BASIC and
the Rdb/VMS preprocessor, RDBPRE. This chapter presents the following main
topics:

Using Rdb/VMS data manipulation statements

Using Rdb/VMS data definition statements

Error handling in RDBPRE BASIC

Most examples in this chapter are available on line. The
Rdb/VMS installation procedure writes the sample programs to
SYS$COMMON:[SYSHLP.EXAMPLES.RDBVMS]. The file names for
these programs are: B_SAMPLE.RBA, B_CALL_OTHER.RBA, B_CALLABLE_
ERROR_HANDLER.BAS and B_ERROR_HANDLER.BAS. The sample
program B_SAMPLE.RBA contains most of the procedures referred to in this
chapter.

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

Note Before reading this chapter, you should be familiar with the information
contained in Chapter 9. The main purpose of this chapter is to provide
information and examples specific to VAX BASIC.

Using the BASIC Program Environment 13–1

13.1 The RDBPRE BASIC Preprocessor Interface
When you use the RDBPRE BASIC preprocessor interface, you simply include
Rdb/VMS data manipulation statements directly in your program wherever
you need them. You must use the special statement flag (&RDB&) with
each Rdb/VMS data manipulation statement you include in your BASIC
program. When you preprocess the source program, the preprocessor converts
the Rdb/VMS data manipulation statements to a series of BASIC calls to
Rdb/VMS. At run time, Rdb/VMS executes the calls and returns any retrieved
data to the program.

The first line of an RDBPRE BASIC program cannot be a blank line or a line
that continues to the second line. When RDBPRE creates a BASIC (BAS)
source file from your input file (RBA), a header is printed on the second line
of the BAS file that states the file name, time stamp, and the preprocessor
version number. Forcing this text on the second line will cause BASIC compile-
time errors when the first line is blank or continued. You can use a comment
character as the first line of the program.

You cannot preprocess a program that attempts to access a non-existent
database, unless your database refers to the data dictionary, CDD/Plus, and
refers only to the definitions stored there. That is, if you specify a compile-time
file name in the DATABASE statement, the database must exist at preprocess
time. If you specify a compile-time path name in the DATABASE statement,
the path name element must exist in the data dictionary at preprocess time.
This is because the preprocessor must be able to validate relation and field
definitions in the programs that refer to the database.

Use the exclamation point (!) as the comment character to put comments
within Rdb/VMS data manipulation statements. Because the BASIC REM
statement does not terminate the comment until the next line number, do not
use the REM statement within Rdb/VMS data manipulation statements.

The preprocessor converts all Rdb/VMS data manipulation statements to
comments in the BASIC program source file, replacing them with BASIC
code. Therefore, if an Rdb/VMS data manipulation statement contains an
exclamation point, the preprocessor doubles the exclamation point. For
example, the statement &RDB& STORE P IN PORT USING P.CITY = ‘‘MY_
CITY!’’ becomes:

!&RDB& STORE P IN PORT USING P.CITY = "MY_CITY!!" END_STORE

If the preprocessor did not double the exclamation point, the statement would
look like the following in the BAS file:

!&RDB& STORE P IN PORT USING P.CITY = "MY_CITY!" END_STORE

13–2 Using the BASIC Program Environment

The BASIC processor would interpret the following part of the text as a
comment:

!&RDB& STORE P IN PORT USING P.CITY = "MY_CITY!

The remainder of the example, then, would be interpreted as a BASIC
statement, and an error would result:

" END_STORE

13.2 Embedding DML Statements in the RDBPRE BASIC
Program Environment
The Rdb/VMS data manipulation statements are a subset of the Relational
Database Operator (RDO) utility statements. With the Rdb/VMS data
manipulation statements, you can access a database, update records, retrieve
selected records, and handle Rdb/VMS exception conditions. Refer to the VAX
Rdb/VMS RDO and RMU Reference Manual for a complete description of the
Rdb/VMS data manipulation statements.

13.2.1 Converting an RDO Prototype to the RDBPRE BASIC
Environment

Once you have created a prototype of your queries in the interactive RDO
facility, you are ready to convert these RDO statements to the BASIC program
environment. See Chapter 7 for a full discussion of creating a prototype in
RDO and for examples.

Example 13–1 is a BASIC subroutine based on the RDO prototype examples in
Chapter 7.

Using the BASIC Program Environment 13–3

Example 13–1 Converting an RDO Prototype to RDBPRE BASIC
Store_cand:
!!!
! This subroutine stores a record in the CANDIDATES !
! relation. It shows how to store a value in a field !
! of data type VARYING STRING. !
!!!

PRINT FOR loop_cnt = 1% TO 24%
PRINT "Store Candidates"
PRINT
want_to_exit = 0%

Store_cand_1:

! Prompt user for data to store in the CANDIDATES relation.

UNTIL want_to_exit
WHEN ERROR IN

PRINT "Please enter the first name "+ &
"of the candidate or press CTRL/Z: ";

INPUT candidates::first_name
USE

want_to_exit = -1% IF ERR = 11%
END WHEN
EXIT STORE_CAND_1 IF want_to_exit
confirm = 0%
UNTIL confirm

PRINT "Please enter the middle initial of the candidate: ";
INPUT candidates::middle_initial
PRINT "Please enter the last name of the candidate: ";
INPUT candidates::last_name
PRINT "Please enter candidate status information: ";
INPUT candidates::candidate_status::string_value
PRINT "Have you entered the candidate"+ &

" information correctly(Y/N): ";
INPUT answer
confirm = -1% IF EDIT$(answer,32%) = "Y"

NEXT
&RDB& START_TRANSACTION READ_WRITE RESERVING CANDIDATES FOR SHARED WRITE

success_flag = -1%

! Store the values specified by the user in the CANDIDATES
! relation. Identify errors and inform user of the success or
! failure of the STORE operation.

(continued on next page)

13–4 Using the BASIC Program Environment

Example 13–1 (Cont.) Converting an RDO Prototype to RDBPRE BASIC
&RDB& STORE C IN CANDIDATES USING
&RDB& ON ERROR

success_flag = 0%
CALL Error_handler(RDB$STATUS, retry_count, &

success_flag, lock_error)
&RDB& END_ERROR
&RDB& C.LAST_NAME = candidates::last_name;
&RDB& C.FIRST_NAME = candidates::first_name;
&RDB& C.MIDDLE_INITIAL = candidates::middle_initial;
&RDB& C.CANDIDATE_STATUS = candidates::candidate_status::string_value
&RDB& END_STORE

IF success_flag
THEN

PRINT "Update operation succeeded"
&RDB& COMMIT

ELSE
PRINT "Update operation failed"

&RDB& ROLLBACK
END IF

NEXT
RETURN ! To main module

The syntax you use for preprocessed Rdb/VMS data manipulation statements
is not identical to the statement syntax you use in RDO. When you incorporate
your prototype RDO statements into a program, you need to consider these
areas:

Use of host language variables

Use of Rdb/VMS statement flags, described in Chapter 12.

Differences in syntax

Using the GET statement instead of the PRINT statement

Nesting FETCH and GET operations within a host language loop

Using the ON ERROR and AT END clauses to detect error conditions

Effects on structured programming

Handling Rdb/VMS errors

13.2.1.1 Using Host Language Variables A host language variable is a
program variable that you use to communicate with Rdb/VMS. A host language
variable can contain the values that update the database; it can also receive
values that Rdb/VMS retrieves from the database. You can use host language
variables as value expressions in data manipulation statements, as well as for
any other program function. The following statements allow the use of host
language variables:

Any data manipulation statement that permits the use of an RSE

GET

Using the BASIC Program Environment 13–5

DATABASE (you can specify a database handle)

READY

FINISH

When you declare host language variables, simply follow the naming rules for
BASIC. Ensure that host language variable data types and sizes are compatible
with the corresponding database field data types and sizes. Refer to Chapter 8
for the list of equivalent BASIC data types.

Note that you cannot use the name of a database field (a context variable and
a field name) as a subscript of an array.

Example 13–2 shows the use of host language variables to store a record. The
host language variables appear in lowercase.

Example 13–2 Using Host Language Variables to Store a Record in
RDBPRE BASIC

&RDB& STORE J IN JOBS USING
&RDB& J.JOB_CODE = job_code;
&RDB& J.JOB_TITLE = job_title;
&RDB& J.MAXIMUM_SALARY = max_sal;
&RDB& J.MINIMUM_SALARY = min_sal;
&RDB& J.WAGE_CLASS = wage_class;
&RDB& END_STORE

A convenient way to declare host language variables is to copy database
definitions from the data dictionary, CDD/Plus. You can copy field and relation
definitions, which include all the fields within the relation. However, you must
be careful to copy only those field and relation definitions with data types that
are supported by BASIC. See Chapter 12 for more information about using
data dictionary definitions.

If your preprocessed BASIC program requires numeric data that is stored in
the Rdb/VMS database as scaled values, you can place these scaled values in
BASIC host language variables of any data type.

For example, suppose the following variables are defined in an Rdb/VMS
database:

FIELD1 signed longword scale -2
FIELD2 signed longword

And suppose your BASIC program defines host language variables, HOST_
VAR_1 and HOST_VAR_2, as packed decimal. In the following example,
Rdb/VMS converts scaled numeric data to packed decimal when it places
FIELD1 in HOST_VAR_1:

13–6 Using the BASIC Program Environment

&RDB& FOR R IN RELATION_X
&RDB& GET
&RDB& HOST_VAR_1 = R.FIELD1;
&RDB& HOST_VAR_2 = R.FIELD2
&RDB& END_GET
&RDB& END_FOR

You can then use these host language variables to perform arithmetic
operations in your BASIC program:

HOST_VAR = HOST_VAR_1 + HOST_VAR_2

However, you cannot perform arithmetic operations on scaled numeric data
within an Rdb/VMS GET statement in BASIC programs. For example, if
R.FIELD1 and R.FIELD2 are scaled numeric data, the following operation will
fail:

&RDB& FOR R IN RELATION_X
&RDB& GET
&RDB& HOST_VAR = R.FIELD1 + R.FIELD2
&RDB& END_GET
&RDB& END_FOR

Instead, to perform calculations on scaled numeric data, you must first put
each database field value in a BASIC host language variable of any numeric
data type. You can then use these host language variables in BASIC arithmetic
expressions to perform the necessary calculations. In other words, store data
in host language variables as scaled words, longwords, or quadwords, but
manipulate them as if they were packed decimals.

13.2.1.2 Using Host Language Variables in Conditional Expressions You
can use conditional expressions to limit the records included in a record stream.
Conditional expressions contain one or more relational operators (see Table 3–1
in Section 3.5) and optionally logical operators (AND, OR, NOT).

In a programming environment, you probably do not want to code a specific
value for the comparison string, as in:

FOR E IN EMPLOYEES WITH E.STATE MATCHING ’NH’

It is more likely that you want the user to supply the comparison string at run
time. In this case, you need to declare a host language variable to hold the
comparison string. For example:

FOR E IN EMPLOYEES WITH E.STATE MATCHING state_code

For the STARTING_WITH, MATCHING, and CONTAINING conditional
expressions, you must declare your host language variable in such a way that
the preprocessor can determine the correct length of the comparison string.

Using the BASIC Program Environment 13–7

In BASIC, declare your host language variable as a string. The preprocessor
will use the BASIC function LEN to determine the length of the varying string
that is passed to the database. For example:

100 DECLARE STRING state_code, name, city

! Program statements
! Rdb/VMS statements: invoke database, start_transaction,
! and so on.

.

.

.
&RDB& FOR E IN EMPLOYEES WITH
&RDB& E.STATE MATCHING state_code
&RDB& GET
&RDB& name = E.LAST_NAME;
&RDB& city = E.CITY;
&RDB& END_GET

13.2.1.3 Converting DATE Data Type to TEXT DATE data types are stored
in Rdb/VMS databases in encoded binary format. To display a date, you need
to use the VMS system service routine, SYS$ASCTIM, to perform a conversion
from encoded binary format to an ASCII string. First, place the binary value
into a STRING host language variable that is mapped as two longwords. This
gives you the required QUADWORD data type that the SYS$ASCTIM routine
needs. Once you put the binary value into a host variable, you can convert it
with SYS$ASCTIM to an ASCII string.

See the VMS System Services Volume for more information on using
SYS$ASCTIM.

Note that RDBPRE uses the run-time library routine LIB$MOVC3 to move the
value from the DATE data type to the host language variable. The preprocessor
declares LIB$MOVC3 as external for you; do not declare it again in your
program or you may receive a fatal compile-time error.

Example 13–3 is a code fragment from the ADD_EMPLOYEES subroutine
that demonstrates how to display a date. In this example, the date is passed
back and forth to Rdb/VMS with a string field in a RECORD structure. This
method is used because this is the format you will get if you include the record
definition from the data dictionary. This string is then moved into the WORK_
DATE host language variable (an 8-byte string) that is also mapped as two
longwords, WORK1 and WORK2. The WORK1 variable is then passed as the
argument to SYS$ASCTIM.

13–8 Using the BASIC Program Environment

Example 13–3 Using SYS$ASCTIM System Service Routine in RDBPRE BASIC
! Declare variables
EXTERNAL LONG FUNCTION SYS$ASCTIM,SYS$BINTIM

MAP (DATES) STRING work_date = 8%
MAP (DATES) LONG work1,work2

RECORD EMPLOYEE
STRING employee_id = 5
STRING last_name = 14
STRING first_name = 10
STRING middle_initial = 1
STRING address_data_1 = 25
STRING address_data_2 = 25
STRING city = 20
STRING state = 2
STRING postal_code = 5
STRING sex = 1
GROUP birthday

STRING string_value = 8
END GROUP
STRING status_code = 1

END RECORD
.
.
.

FOR i = 1 TO number_employees_added
&RDB& FOR E IN EMPLOYEES WITH e.RDB$DB_KEY = database_key(i)
&RDB& ON ERROR

success_flag = 0%
CALL Error_handler(RDB$STATUS, &
retry_count, success_flag, lock_error)

&RDB& END_ERROR
&RDB& GET
&RDB& ON ERROR

success_flag = 0%
&RDB& END_ERROR
&RDB& employees::employee_id = E.EMPLOYEE_ID;
&RDB& employees::last_name = E.LAST_NAME;
&RDB& employees::first_name = E.FIRST_NAME;
&RDB& employees::middle_initial = E.MIDDLE_INITIAL;
&RDB& employees::address_data_1 = E.ADDRESS_DATA_1;
&RDB& employees::address_data_2 = E.ADDRESS_DATA_2;
&RDB& employees::city = E.CITY;
&RDB& employees::state = E.STATE;
&RDB& employees::postal_code = E.POSTAL_CODE;
&RDB& employees::birthday::string_value = E.BIRTHDAY
&RDB& END_GET
&RDB& END_FOR

(continued on next page)

Using the BASIC Program Environment 13–9

Example 13–3 (Cont.) Using SYS$ASCTIM System Service Routine in
RDBPRE BASIC

! If the field values were successfully retrieved, then convert
! the date field from binary to a printable (ASCII) format.
! The first and last arguments to the call SYS$ASCTIM are not
! required arguments.

GOSUB Display_employee IF success_flag
success_flag = -1%
NEXT I

.

.

.
Display_employee:

PRINT
PRINT "Employee id: "+employees::employee_id
PRINT "Last name: "+employees::last_name
PRINT "First name: "+employees::first_name
PRINT "Middle init: "+employees::middle_initial
PRINT "Address: "+employees::address_data_1+" "+ &

employees::address_data_2
PRINT "City: "+employees::city
PRINT "State: "+employees::state
PRINT "Postal code: "+employees::postal_code

! Convert binary date to ASCII format.

work_date = employees::birthday::string_value
return_status = SYS$ASCTIM(,ascii_date,work1,)

PRINT "Birthday: "+ascii_date
PRINT
RETURN

13.2.1.4 Converting ASCII DATE Strings to Binary Format Use the VMS
system service routine, SYS$BINTIM, to convert ASCII DATE strings into a
binary representation so the DATE fields can be stored in the database.

See the VMS System Services Volume for more information on using
SYS$BINTIM.

Example 13–4 is a code fragment from the ADD_EMPLOYEES subroutine
that demonstrates how to use SYS$BINTIM in an RDBPRE BASIC program.
In this example, the date is passed back and forth to Rdb/VMS with a string
field in a RECORD structure. This method is used because this is the format
you will get if you include the record definition from the data dictionary. This
string is then moved into the WORK_DATE host language variable (an 8-byte
string) that is also mapped as two longwords, WORK1 and WORK2. The
WORK1 variable is then passed as the argument to SYS$BINTIM.

13–10 Using the BASIC Program Environment

Example 13–4 Using SYS$BINTIM System Service Routine in RDBPRE BASIC
! Declare variables
EXTERNAL LONG FUNCTION SYS$ASCTIM,SYS$BINTIM

MAP (DATES) STRING work_date = 8%
MAP (DATES) LONG work1,work2

RECORD EMPLOYEE
STRING employee_id = 5
STRING last_name = 14
STRING first_name = 10
STRING middle_initial = 1
STRING address_data_1 = 25
STRING address_data_2 = 25
STRING city = 20
STRING state = 2
STRING postal_code = 5
STRING sex = 1
GROUP birthday

STRING string_value = 8
END GROUP
STRING status_code = 1

END RECORD
.
.
.

! Prompt user to input date, keep prompting until user
! enters date in proper format.

UNTIL valid_date
PRINT "Enter the Employee’s birthday (dd-MMM-yyyy):";

INPUT ascii_date
ascii_date = EDIT$(ascii_date,32%)

! Use SYS$BINTIM to convert ASCII input to binary format.

return_status = SYS$BINTIM(ascii_date,work1)
IF (return_status AND 1%) <> 1%
THEN

PRINT "Invalid date format"
ELSE

valid_date = -1%
END IF

NEXT

13.2.2 Using Literals
Use literal values to replace variables in the same way you would in any
BASIC program. Literal values can be either numerics, character strings, or
the generalized BASIC literal format (for example, B’ 01101’ W, which indicates
that the user wants a binary literal that is to be stored in a WORD). String
literals must be quoted in double (" ") or single (’ ’) quotation marks in
BASIC. You may use any literal in any Rdb/VMS data manipulation statement
that accepts a host language variable.

Using the BASIC Program Environment 13–11

&RDB& FOR D IN DEPARTMENTS WITH
&RDB& D.DEPARTMENT_CODE = "ADMN"
&RDB& GET
&RDB& DEP_NAME = D.DEPARTMENT_NAME
&RDB& END_GET
&RDB& END_FOR

13.2.3 Forming Record Streams
In BASIC, and any language that you use to access an Rdb/VMS database,
you select the records you are interested in manipulating by gathering these
records into a stream. You create this stream using the Rdb/VMS data
manipulation statements. These statements use context variables to name the
stream of records that you select from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

13.2.4 Retrieving Records
Rdb/VMS provides you with three statements to retrieve records:

FOR

Two START_STREAM statements:

Declared START_STREAM

Undeclared START_STREAM

The following sections provide BASIC examples of how to form record streams
and retrieve records using the FOR and START_STREAM statements.

13.2.4.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any Rdb/VMS and
host language statements included within the FOR . . . END_FOR block. The
FOR statement always includes an RSE with at least one context variable.

Example 13–5 shows a FOR statement from the DISPLAY_CAND subroutine.
It uses the flag ‘‘found_candidate_flag’’ to determine if the RSE has been
satisfied. If a candidate record is found with field values that match the
values in the host language variables, the success flag is set to true. If no
record matches the values in the host language variables, then the success flag
remains set to false.

13–12 Using the BASIC Program Environment

Example 13–5 Using the FOR Statement in RDBPRE BASIC
found_candidate_flag = 0%

&RDB& FOR C IN CANDIDATES WITH
&RDB& C.FIRST_NAME = candidates::first_name
&RDB& AND
&RDB& C.MIDDLE_INITIAL = candidates::middle_initial
&RDB& AND
&RDB& C.LAST_NAME = candidates::last_name

! Retrieve and display the VARYING STRING field if a record exists
! for the specified candidate. If no record exists for this person,
! inform the user.

&RDB& GET
&RDB& candidates::candidate_status::string_value
&RDB& = C.CANDIDATE_STATUS
&RDB& END_GET

found_candidate_flag = -1%
PRINT candidates::first_name+" "+ &

candidates::middle_initial+" "+ &
candidates::last_name+ &
" has the following status:"

PRINT
PRINT candidates::candidate_status::string_value

&RDB& END_FOR

You can include host language statements within the FOR . . . END_FOR
block to process the records within the stream. However, there is an important
exception to the type of statement you can include. Do not transfer control
out of the FOR . . . END_FOR block unless you do not want to return. It is
impossible to enter the loop again once you have exited.

You may call a module from within a FOR loop because these subroutines
execute within the FOR loop context. However, you cannot use a context
variable defined in the FOR block in any subroutine that is preprocessed
outside the FOR block.

13.2.4.2 Using Declared Streams to Retrieve Records Rdb/VMS supports
two forms of the START_STREAM statement. The declared START_STREAM
statement and the undeclared START_STREAM statement. Declared streams
provide all the features of the undeclared streams and more. Most importantly,
undeclared streams require that the statements you use to manipulate the
stream be enclosed by the START_STREAM and END_STREAM statements
in your source program. Declared streams do not impose this restriction. The
statements you use to manipulate the stream may appear in any order within
your program as long as the DECLARE_STREAM statement appears first and
the statements execute in a logical order (START_STREAM, FETCH, GET,
END_STREAM).

Using the BASIC Program Environment 13–13

Digital recommends that all new applications use the declared START_
STREAM statement. For this reason, only the declared START_STREAM
statement is discussed in this section. Complete details on the differences
between declared and undeclared START_STREAM statements are provided in
Chapter 9.

Note If you use the AT END clause in a FETCH statement, you must use the END_
FETCH clause to terminate the FETCH statement. Do not use the BASIC REM
statement or the BASIC line number within an AT END clause. These BASIC
statements inadvertently terminate code generated by RDBPRE in the AT
END clause. (Likewise, avoid these statements within FOR loops, ON ERROR
statements, and nested constructs.)

Example 13–6, from the sample program RDM$DEMO:B_SAMPLE.RBA,
shows the use of the declared START_STREAM and FETCH statements. The
example pairs a CANDIDATES record with an EMPLOYEES record at random.
This could not be achieved with a FOR statement. You could not conditionally
end a FOR loop when all the CANDIDATES records have been paired with
EMPLOYEES records. A START_STREAM statement lets you do this.

Example 13–6 Using the Declared START_STREAM and FETCH Statements
in RDBPRE BASIC

.

.

.
! Declare streams used in the PAIR procedure

&RDB& DECLARE_STREAM cands USING CA IN CANDIDATES SORTED BY CA.LAST_NAME
&RDB& DECLARE_STREAM emps USING EM IN EMPLOYEES SORTED BY EM.FIRST_NAME

.

.

.
Pair:

!!!
! This subroutine demonstrates the use of the declared !
! START_STREAM statement. The output of this program !
! is merely a random matching of each CANDIDATES record !
! with an EMPLOYEES record. !
!!!

&RDB& START_TRANSACTION READ_ONLY

! Open both streams and set a flag for the end of stream
! condition to false.

GOSUB Open_candidates
GOSUB Open_employees
end_of_emps = 0%
end_of_cands = 0%

(continued on next page)

13–14 Using the BASIC Program Environment

Example 13–6 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE BASIC

! Fetch a record from the CANDIDATES and EMPLOYEES relations.

GOSUB Read_a_candidate
GOSUB Read_an_employee

! Print the employee and candidate names until the end-of-stream
! condition is met for the stream of CANDIDATES records.

UNTIL end_of_cands
PRINT employees::last_name+" "+employees::first_name+ &

’ ’+ &
candidates::last_name+" "+ &
candidates::first_name

GOSUB Read_a_candidate
IF NOT end_of_emps
THEN

GOSUB Read_an_employee
END IF

NEXT

! Close both streams.

GOSUB Close_employees
GOSUB Close_candidates

&RDB& COMMIT.

PRINT "Press RETURN to continue ";
INPUT answer

RETURN ! To main module

! These subroutines control a stream. Note that the statements
! do not appear in the order that they will be executed. This
! is a feature that declared streams have and undeclared streams
! do not have.

Close_employees:

! Close the EMPLOYEES stream.

&RDB& END_STREAM emps.
RETURN

Close_candidates:

! Close the CANDIDATES stream.

&RDB& END_STREAM cands.
RETURN

Open_candidates:

! Open the CANDIDATES stream.

&RDB& START_STREAM cands.
RETURN

Open_employees:

! Open the EMPLOYEES stream.

(continued on next page)

Using the BASIC Program Environment 13–15

Example 13–6 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE BASIC

&RDB& START_STREAM emps.
RETURN

Read_a_candidate:

! Fetch a CANDIDATES record.

&RDB& FETCH cands
&RDB& AT END

end_of_cands = -1%
&RDB& END_FETCH

IF NOT end_of_cands
THEN

&RDB& GET
&RDB& candidates::last_name = CA.LAST_NAME;
&RDB& candidates::first_name = CA.FIRST_NAME;
&RDB& candidates::candidate_status::string_value
&RDB& = CA.CANDIDATE_STATUS
&RDB& END_GET

END IF
RETURN

Read_an_employee:

! Fetch an EMPLOYEES record.

&RDB& FETCH emps
&RDB& AT END

end_of_emps = -1%
&RDB& END_FETCH

IF NOT end_of_emps
THEN

&RDB& GET
&RDB& employees::last_name = EM.LAST_NAME;
&RDB& employees::first_name = EM.FIRST_NAME;
&RDB& employees::employee_id = EM.EMPLOYEE_ID
&RDB& END_GET

END IF
RETURN ! To main module

13.2.5 Retrieving Segmented Strings
Retrieving segmented strings is a two-step process. First, you must retrieve
the record that contains the segmented string field; then, you must retrieve the
individual segments that comprise the segmented string field.

You may find it easier to picture a segmented string by referring to Figure 8–1
in Chapter 8.

Rdb/VMS provides you with two statements to retrieve segmented string fields:

FOR

START_SEGMENTED_STRING

13–16 Using the BASIC Program Environment

When you retrieve segmented strings in RDBPRE BASIC programs, you must
use a static string descriptor to receive the segmented string segments, rather
than accept the BASIC default dynamic class descriptor. If you accept the
dynamic class descriptor, Rdb/VMS may write over portions of your program’s
data.

13.2.5.1 Using the FOR Statement to Retrieve Segmented Strings You must
use two streams when processing segmented string streams. Use the first
FOR or START_STREAM statement to form an outer stream of records, and
then use the second FOR statement to form an inner stream of segments. This
inner stream formed by the second RSE identifies the segments contained in
the field specified by the outer stream formed by the first RSE. Use different
context variables in the inner and outer streams.

Remember that to retrieve the segmented string, you must begin at the first
segment and retrieve segments in the order that they are stored, that is,
sequentially.

Example 13–7, from the DISPLAY_RESUME subroutine:

Uses a FOR statement to search the database for a record with a value
for the EMPLOYEE_ID field that matches the host language variable,
employees::employee_id

Uses a second FOR statement to loop through the segments of the
segmented string field for the EMPLOYEES record

Uses the GET statement to retrieve the individual segments that comprise
a segmented string

Displays these values on the terminal

Using the BASIC Program Environment 13–17

Example 13–7 Using the FOR Statement with Segmented Strings in RDBPRE
BASIC

&RDB& START_TRANSACTION READ_ONLY
found_employee_flag = 0%

! Start an outer FOR loop to retrieve the employee record(s)
! with the specified ID.

&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = employees::employee_id
found_employee_flag = -1%

! Start an inner FOR loop to retrieve the segments
! of the segmented string that comprise the employee’s
! resume.

&RDB& FOR RR IN R.RESUME
&RDB& GET
&RDB& resume_segment = RR.RDB$VALUE;
&RDB& segment_length = RR.RDB$LENGTH
&RDB& END_GET
! Display each segment as it is retrieved from the database.

PRINT LEFT(resume_segment,segment_length)
&RDB& END_FOR
&RDB& END_FOR
&RDB& COMMIT

! If a record with the specified ID was not found then inform
! the user.

IF NOT found_employee_flag
THEN

PRINT ’Employee: ’, employees::employee_id, &
’ has no resume on file’

END IF

The GET statement fetches only as much of the stored segment as the host
language variable that receives the segment can hold. The next GET statement
fetches the next piece of the segment. Suppose the segmented string segment
size in the previous example was declared as 80 characters and the actual
length of the stored segment was 100 characters. The first GET statement
would fetch 80 characters of the first segment and the next GET statement
would fetch the remaining 20 characters. The third GET statement would
fetch 80 characters of the second segment, the next GET statement would fetch
the remaining 20, and so on.

13–18 Using the BASIC Program Environment

13.2.5.2 Using the START_SEGMENTED_STRING Statement to Retrieve
Segmented Strings When you want to maintain program control of loop
iteration, use the START_SEGMENTED_STRING statement with a record
stream formed by a FOR or START_STREAM statement. You must start
two streams when processing segmented string streams with the START_
SEGMENTED_STRING statement.

Form an outer stream of records with a FOR or START_STREAM statement,
then use the START_SEGMENTED_STRING statement to form an inner
stream of segments. This inner stream identifies the segment stream that
is contained in the field specified by the outer FOR or START_STREAM
statement. When you name the segment stream, use a different name from the
name used in the outer stream. Also, use different context variables for the
outer stream and the inner segmented string stream.

The program shown in Example 13–8:

Uses an undeclared START_STREAM statement to find all the records in
the RESUMES relation with an employee ID of 12345.

Uses a START_SEGMENTED_STRING statement to retrieve the resume
of each employee record found by the first stream.

Uses the GET statement to retrieve the segments that comprise the
segmented string.

Checks the return status value of the GET statement after each segment is
retrieved to make sure the end-of-segmented-string condition has not been
met. If this condition has not been met, the value of the current segment is
printed.

Stops processing the segmented string field when the preceding condition is
met.

Fetches the next employee record with an employee ID of 12345, if one
exists.

Closes both streams when both the START_STREAM and START_
SEGMENTED_STRING end conditions have been met.

Commits the transaction.

Using the BASIC Program Environment 13–19

Example 13–8 Using the START_STREAM and START_SEGMENTED_STRING
Statements in RDBPRE BASIC

MAP(RESUMES) STRING resume_segment = 80%
EXTERNAL LONG CONSTANT RDB$_SEGSTR_EOF

&RDB& DATABASE pers = FILENAME ’MF_PERSONNEL’

&RDB& START_TRANSACTION READ_ONLY

! Find all the records in the RESUMES relation
! with an employee ID of 12345.

&RDB& START_STREAM RESSTR USING
&RDB& R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
&RDB& FETCH RESSTR
&RDB& END_FETCH

! Retrieve the segments that comprise the segmented string field.

&RDB& START_SEGMENTED_STRING RINFO USING STRN IN R.RESUME
end_of_stream = -1%

WHILE end_of_stream

&RDB& GET
&RDB& ON ERROR
&RDB& END_ERROR
&RDB& resume_segment = STRN.RDB$VALUE;
&RDB& segment_length = STRN.RDB$LENGTH
&RDB& END_GET

! Check the return status of the GET statement after each segment
! is retrieved to make certain that the end-of-segmented-string
! condition has not been met. If this condition has not been met,
! print the value of the current segment. Otherwise, stop processing
! the stream of segments.

IF RDB$LU_STATUS <> RDB$_SEGSTR_EOF
THEN

PRINT LEFT(resume_segment,segment_length)
ELSE

end_of_stream = 0%
END IF

NEXT

! Close both streams.

&RDB& END_SEGMENTED_STRING RINFO
&RDB& END_STREAM RESSTR
&RDB& COMMIT

&RDB& FINISH
EXIT PROGRAM

13–20 Using the BASIC Program Environment

13.2.6 Retrieving Field Values
Use the GET statement to retrieve one, several, or all the field values from a
database record. You can also use the GET statement to retrieve statistical
values from the database.

Do not use the RDBPRE concatenation operator (|) in a GET statement.
Doing so causes a preprocessing error. To concatenate fields in preprocessed
programs, first use the GET statement to retrieve the individual fields and
store them in separate BASIC variables. Then concatenate the BASIC
variables in a BASIC statement using the BASIC concatenation operator,
the plus sign (+).

Section 13.2.6.1 and Section 13.2.6.2 provide examples of retrieving field and
record values. Section 13.2.6.3 provides an example of retrieving statistical
values.

13.2.6.1 Using the GET Statement to Retrieve Field Values When you form a
record stream using the FOR statement, you include the GET statement within
the FOR . . . END_FOR block to retrieve field values from the record stream.
When you form a record stream using the undeclared START_STREAM
statement, you include the GET statement between the START_STREAM
and END_STREAM statements. When you use the declared form of the
START_STREAM statement, the GET statement must execute within the
START_STREAM . . . END_STREAM block, however, it does not have to
appear within this block in your program.

Example 13–9, from the LIST_RECORD subroutine, shows the use of the FOR
and GET statements in RDBPRE BASIC.

Using the BASIC Program Environment 13–21

Example 13–9 Using the FOR and GET Statements in RDBPRE BASIC
&RDB& FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
&RDB& FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& GET
&RDB& employees::first_name = E.FIRST_NAME;
&RDB& employees::last_name = E.LAST_NAME;
&RDB& degrees::degree = D.DEGREE;
&RDB& degrees::degree_field = D.DEGREE_FIELD
&RDB& END_GET

PRINT "Name is: "+employees::first_name+" "+ &
employees::last_name+" "+ &

"Degree is: "+degrees::degree+" "+ &
"Degree field is: "+degrees::degree_field

&RDB& END_FOR
.
.
.

&RDB&END_FOR

See Example 13–6 for a demonstration of how to use the START_STREAM,
FETCH, and GET statements.

13.2.6.2 Using the GET * Statement to Retrieve Field Values A special form
of the GET statement is the GET * statement, which lets you retrieve database
values at the record level rather than the field level. You can retrieve all the
fields in a record with the GET * statement. To use the GET * statement,
you must first declare a record structure that contains all the fields in the
records of a relation, with record field names that match the database field
names. You can use the BASIC %INCLUDE %FROM %CDD directive to create
such a record structure. (See Chapter 12 for more information on copying
record and field definitions from the data dictionary.) The GET * statement
in the following example retrieves all the fields from the records of the JOB_
HISTORY relation and places their values in the job_history host language
record structure:

&RDB& FOR FIRST 1 J IN JOB_HISTORY WITH
&RDB& J.JOB_CODE = JOB_CODE IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& GET
&RDB& job_history = J.*
&RDB& END_GET
&RDB& END_FOR

13–22 Using the BASIC Program Environment

13.2.6.3 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly, without processing each
record in the record stream. RDBPRE may assign a data type to the result
that is different from the data type of the field referred to in the expression.
See Chapter 8 for information on the data type conversions performed by
statistical expressions.

Example 13–10, from the STATS subroutine, uses the COUNT statistical
function to find the total number of records in the EMPLOYEES relation.

Example 13–10 Using the GET Statement to Retrieve a Statistical Value in
RDBPRE BASIC

Stats:

!!
! This subroutine displays the total number of records stored in the !
! EMPLOYEES relation. !
!!

PRINT FOR loop_cnt = 1% TO 24%
PRINT "Statistics"
PRINT
&RDB& START_TRANSACTION READ_ONLY

PRINT "The number of employees in the Corporation is: ";

! Use the GET statement with a statistical function to calculate
! the total number of records in the EMPLOYEES relation.

&RDB& GET number_of_employees = COUNT OF E IN EMPLOYEES END_GET

! Display the value.

PRINT number_of_employees
&RDB& COMMIT

PRINT
PRINT "Press RETURN to continue ";
INPUT answer

13.2.7 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The Rdb/VMS update statements can only be used in a read/write transaction.
(You may, of course, include any valid Rdb/VMS statement within a read/write
transaction.) The update statements that require a read/write transaction are:

STORE

MODIFY

ERASE

Using the BASIC Program Environment 13–23

If you update a record and triggered actions have been defined for the relation
containing the record, the update operation (STORE, MODIFY, or ERASE) will
have the specified effect on all the relations in the database that have a foreign
key relationship with the record you want to update.

If a relation-specific constraint has been defined, your ability to perform
update operations may depend on the presence of matching field values in
other relations. For more information on relation-specific constraints, see
Section 6.6.

Include the GET statement in a read/write transaction if you intend to update
any of the fields returned by the GET statement.

Note You may not use a view to update records if that view refers to more than one
relation.

13.2.7.1 Storing Records You can insert values in one or more fields in one
record using a single STORE statement. To store more than one record in a
relation, include the STORE statement within a program loop.

Example 13–11, from the ADD_EMPLOYEES subroutine, stores an employee
record in the EMPLOYEES relation.

Example 13–11 Storing Records in RDBPRE BASIC
.
.
.

! User entered the values to be stored in the database earlier
! in program.

&RDB& STORE E IN EMPLOYEES USING
&RDB& ON ERROR

success_flag = 0%
CALL ERROR_HANDLER(RDB$STATUS, &

retry_count, &
success_flag, &
lock_error)

&RDB& END_ERROR

! Store the values that the user entered in an EMPLOYEES record.

(continued on next page)

13–24 Using the BASIC Program Environment

Example 13–11 (Cont.) Storing Records in RDBPRE BASIC

&RDB& E.EMPLOYEE_ID = employees::employee_id;
&RDB& E.LAST_NAME = employees::last_name;
&RDB& E.FIRST_NAME = employees::first_name;
&RDB& E.MIDDLE_INITIAL = employees::middle_initial;
&RDB& E.ADDRESS_DATA_1 = employees::address_data_1;
&RDB& E.ADDRESS_DATA_2 = employees::address_data_2;
&RDB& E.CITY = employees::city;
&RDB& E.STATE = employees::state;
&RDB& E.POSTAL_CODE = employees::postal_code;
&RDB& E.BIRTHDAY = employees::birthday::string_value

.

.

.
&RDB& END_STORE

13.2.7.1.1 Using the STORE * Statement to Store Records A special form of
the STORE statement is the STORE * statement, which lets you manipulate
database values at the record level rather than the field level. You can store
all the fields in a record with the STORE * statement. To use the STORE *
statement, you must first declare a record structure that contains all the fields
in the relation, with record field names that match the database field names.
You can use the BASIC %INCLUDE %FROM %CDD directive to create such a
record structure. (See Chapter 12 for more information on copying record and
field definitions from the data dictionary.) Then, put the field values you want
to store in the record fields and store the entire record using the STORE *
statement. Example 13–12 shows the use of the STORE * statement to store a
host language record, job_history in the JOB_HISTORY relation.

Example 13–12 Using the STORE * Statement in RDBPRE BASIC
&RDB& STORE J IN PERS.JOB_HISTORY USING
&RDB& J.* = job_history
&RDB& END_STORE

13.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement to Store
Segmented Strings Use the CREATE_SEGMENTED_STRING statement
and the STORE statement to store segmented strings in a relation. You must
use two operations to store segmented strings.

Note See Section 9.2.6.1.2 for information about defining the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name with an appropriate value
for storing your segmented strings.

Using the BASIC Program Environment 13–25

Note Segmented strings cannot be updated (ERASE, MODIFY, or STORE) as part of
a triggered action. For more information, see the DEFINE TRIGGER statement
in the VAX Rdb/VMS RDO and RMU Reference Manual.

Example 13–13, from the MOD_RESUME subroutine, demonstrates how to
read and store a resume into a segmented string from a sequential file; then it
shows how to use the segmented string handle to modify an existing database
record.

Example 13–13 Using the CREATE_SEGMENTED_STRING Statement in
RDBPRE BASIC

Mod_resume:

!!!
! This subroutine demonstrates how to modify a !
! field of data type SEGMENTED STRING. !
!!!

PRINT FOR loop_cnt = 1% TO 24%
PRINT "Modify a resume"
PRINT

want_to_exit = 0%
Mod_resume_1:

! Prompt user for the employee ID of the RESUMES record
! he or she wants to modify.

UNTIL want_to_exit
WHEN ERROR IN

PRINT "Please enter the ID of the employee or press CTRL/Z: ";
INPUT employees::employee_id

USE
want_to_exit = -1%

END WHEN
EXIT Mod_resume_1 IF want_to_exit

! Prompt user for the file name of the resume that will replace
! the old resume.

PRINT "To modify a resume, you must supply a new resume"
PRINT " to replace the old resume"
PRINT
file_ok = 0%
UNTIL file_ok

file_ok = -1%
PRINT "Please enter file name of new resume: ";
INPUT resume_file
WHEN ERROR IN

OPEN resume_file FOR INPUT AS FILE 1%
USE

PRINT "File - ";resume_file;" - not found"
file_ok = 0%

END WHEN
NEXT

(continued on next page)

13–26 Using the BASIC Program Environment

Example 13–13 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in RDBPRE BASIC

&RDB& START_TRANSACTION READ_WRITE RESERVING RESUMES FOR SHARED WRITE

! Create a new segmented string that will hold the value
! of the new resume.

&RDB& CREATE_SEGMENTED_STRING resume_handle

eof_flag = 0%

Resume_read:

UNTIL eof_flag
resume_line = ""
WHEN ERROR IN

INPUT LINE #1%, resume_line
USE

eof_flag = -1%
END WHEN
EXIT Resume_read IF eof_flag
resume_line = EDIT$(resume_line,4%)

&RDB& STORE R IN resume_handle USING R.RDB$VALUE =
&RDB& resume_line END_STORE

NEXT

CLOSE #1%
&RDB& END_SEGMENTED_STRING resume_handle

! Modify the old resume by supplying the segmented
! string handle from the CREATE_SEGMENTED_STRING
! statement as the object of the segmented string
! assignment statement.

&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = employees::employee_id
&RDB& MODIFY R USING
&RDB& R.RESUME = resume_handle
&RDB& END_MODIFY
&RDB& END_FOR
&RDB& COMMIT

NEXT
RETURN ! to main module

13.2.7.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of a record in a relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Using the BASIC Program Environment 13–27

Example 13–14, a BASIC program segment from the MODIFY_ADDRESS
subroutine, modifies a record in the EMPLOYEES relation. The values used to
modify the record were requested earlier in the program.

Example 13–14 Modifying Records in RDBPRE BASIC
.
.
.

&RDB& START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR SHARED WRITE

! Modify the address fields for the specified EMPLOYEES record.

&RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employees::employee_id
&RDB& MODIFY E USING
&RDB& ON ERROR

success_flag = 0%
CALL Error_handler (RDB$STATUS, &

retry_count, &
success_flag, &
lock_error)

&RDB& END_ERROR
&RDB& E.ADDRESS_DATA_1 = employees::address_data_1;
&RDB& E.ADDRESS_DATA_2 = employees::address_data_2;
&RDB& E.CITY = employees::city;
&RDB& E.STATE = employees::state;
&RDB& E.POSTAL_CODE = employees::postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

IF success_flag

! Notify the user of the success or failure of the modify operation.

THEN
PRINT "Update operation succeeded"

&RDB& COMMIT
ELSE

PRINT "Update operation failed"
&RDB& ROLLBACK

END IF

13.2.7.2.1 Using the MODIFY * Statement to Modify Records A special
form of the MODIFY statement is the MODIFY * statement, which lets you
manipulate database values at the record level rather than the field level. You
can modify all the fields in a record with the MODIFY * statement. To use the
MODIFY * statement, you must first declare a record structure that contains
all the fields in the record, with record field names that match the database
field names. You can use the BASIC %INCLUDE %FROM %CDD statement
to create such a record structure. (See Chapter 12 for more information on
copying record and field definitions from the data dictionary.) Then, put the
field values you want to replace into the record fields and modify the entire
database record using the MODIFY * statement.

13–28 Using the BASIC Program Environment

Only use the MODIFY * statement if you need to modify every field value
in a record. Modifying a field by replacing one value with an identical value
needlessly adds overhead to your program. For example, your program may
check constraints on a field value that you know is valid because it is the same
value that the field presently holds.

Example 13–15 replaces the field values of an employee record in the JOB_
HISTORY relation with the values in the job_history host language record
structure.

Example 13–15 Using the MODIFY * Statement in RDBPRE BASIC
&RDB& FOR J IN JOB_HISTORY WITH
&RDB& J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& MODIFY J USING
&RDB& J.* = job_history
&RDB& END_MODIFY
&RDB& END_FOR

13.2.7.2.2 Modifying Segmented Strings To modify a segmented string, you
must first create a new segmented string with the CREATE_SEGMENTED_
STRING statement and then modify the existing record by replacing the
logical pointer to the old segmented string with the logical pointer to the new
segmented string. You accomplish this by using the segmented string handle
in an assignment statement. As Chapter 8 explains in more detail, when
you store a segmented string field, you do not actually store segments into a
record—you store a logical pointer to the first segment in the segmented string.
Thus, by creating a new segmented string and a new segmented string id
associated with it, you can modify the field in a database record that ‘‘contains’’
a segmented string merely by replacing the old segmented string id with a
new segmented string id. When you use the segmented string handle in an
assignment statement, RDBPRE understands that it is the segmented string
id which is to be assigned to the record.

Note Although you use a MODIFY statement to modify segmented strings, you are
not actually modifying the individual segments that comprise the segmented
string field. You are actually replacing the entire segmented string with a new
segmented string.

See an earlier example, Example 13–13, for an illustration of how this is done
in BASIC.

Using the BASIC Program Environment 13–29

13.2.7.3 Erasing Records You can delete one, many, or all the records from
a relation using a single ERASE operation. Before erasing records, you must
start a read/write transaction and form a record stream that contains the
records you wish to erase.

Example 13–16, from the DELETE_RECORD subroutine, demonstrates how to
ERASE records in BASIC programs.

Note The definition of the sample personnel database includes the trigger
EMPLOYEE_ID_CASCADE_DELETE, which performs an automatic deletion
of records in the relations named in ERASE statements in Example 13–16
(except for RESUMES) when the record with the matching employee ID is
deleted from the EMPLOYEES relation. Thus, you would not need to include
‘‘cascading deletion’’ logic in your programs if it were already included in a
trigger definition.

Example 13–16 Erasing Records in RDBPRE BASIC
! Earlier in the subroutine DELETE_RECORD, an employee was retrieved
! to make certain that the user wants to delete this employee’s
! records. Having made that determination, the program will now
! delete all records associated with that employee. When the
! employee record was retrieved, the database key associated with
! that record was also retrieved. It can be used here to quickly
! locate that employee’s EMPLOYEES record again, so that records for
! this employee can be erased from all the relations in which he or
! she has a record.

&RDB& START_TRANSACTION READ_WRITE RESERVING EMPLOYEES,
&RDB& SALARY_HISTORY, JOB_HISTORY, DEPARTMENTS,
&RDB& DEGREES, WORK_STATUS, RESUMES FOR SHARED WRITE

&RDB& FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = db_key
&RDB& FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE JH
&RDB& END_FOR
&RDB& FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE SH
&RDB& END_FOR
&RDB& FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE D
&RDB& END_FOR
&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE R
&RDB& END_FOR
&RDB& ERASE E

PRINT "Employee id: "+employees::employee_id+ &
" deleted successfully"

&RDB& END_FOR

13–30 Using the BASIC Program Environment

13.3 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer or address that has a one-to-one
relationship with a record in the database. Each record has a unique dbkey
that points to it. You can retrieve this key as though it were a field in a record.
For relations, the dbkey is 8 bytes. For views, you can calculate the size by
multiplying the number of relations referred to in the view by 8 bytes. If your
view refers to only one relation, the dbkey is 8 bytes; if your view refers to two
relations, it is 16 bytes, and so on. Once you have retrieved a dbkey, you can
use it to retrieve its associated record directly, within the RSE of a FOR or
START_STREAM statement.

By default, the scope of a dbkey ends with the COMMIT statement. That is, a
dbkey is guaranteed to point to the same record for the life of the transaction
in which it is retrieved.

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

The following example demonstrates how to specify the dbkey scope in an
RDBPRE BASIC program:

&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

Suggestions on how you can take advantage of the dbkey scope are contained
in Section 9.2.7.

13.4 Using Structured Programming
Programs and modules that pass through the RDBPRE preprocessor do not
have unlimited freedom in structure. Calls to routines, such as the BASIC
GOSUB block, or calls to subprograms and subroutines require that you pay
special attention to the context from which they are called.

Many data manipulation statements, in particular those that use context
variables, execute in the context of other data manipulation statements. These
statements are:

DECLARE_STREAM

FOR

GET

START_STREAM

END_STREAM

FETCH

STORE

Using the BASIC Program Environment 13–31

MODIFY

ERASE

CREATE_SEGMENTED_STRING

START_SEGMENTED_STRING

END_SEGMENTED_STRING

These individual data manipulation statements each form only part of a
complex call to the database. The preprocessor generates one call to the
database, using more than one data manipulation statement. For example, a
MODIFY statement executes within the context of a FOR or START_STREAM
statement. The call to the database can only be made using both the FOR and
MODIFY statements. For this reason, the preprocessor requires such data
manipulation statements to be lexically sequential, that is, in the order they
appear in the program source code.

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This order
may be entirely different from the order of actual program execution. However,
the preprocessor is unaware of the intended run-time order of program block
execution. It generates code in the order that data manipulation statements
appear in the source code. Keep this in mind when writing your application.

Also keep in mind that a context variable is meaningful only within its
scope. In other words, the context variable defined in a FOR statement is
meaningless after the END_FOR statement, and a context variable defined
in an undeclared START_STREAM statement is meaningless after the END_
STREAM statement. However, the context variable defined in a DECLARE_
STREAM statement is meaningful throughout the module in which it is issued.

A stream declared with the DECLARE_STREAM statement lets you place the
stream of manipulation statements in an order that deviates from the order of
actual program execution. When you want to use structured programming and
you do not need the automatic iteration provided by the FOR statement, use
the declared START_STREAM statement.

For more information on the declared and undeclared START_STREAM
statement, see Section 9.2.3.2. Data manipulation statements that stand alone
as independent calls to the database may appear in any order in the source
file. These statements are:

DATABASE

READY

START_TRANSACTION

GET

13–32 Using the BASIC Program Environment

COMMIT

ROLLBACK

FINISH

DECLARE_STREAM

Remember that you must issue the DECLARE_STREAM statement before
you can issue a declared START_STREAM statement, and the DATABASE
statement must appear in the data declaration section of your program.

Example 13–17, from the DELETE_RECORD and CALL_OTHER subroutines,
demonstrates structured programming in a preprocessed BASIC program. The
DELETE_RECORD module and the CALL_OTHER subroutine are separately
preprocessed and compiled. They are linked with the LINK command. The
DELETE_RECORD module passes the value of the dbkey to the CALL_
OTHER subroutine. This subroutine finds the record associated with the
dbkey and displays this record on the terminal. Although it is not necessary to
program this query in two modules, it is done here to demonstrate how to pass
variables between separately processed modules.

Example 13–17 Using Data Manipulation Statements in Structured
Programming in RDBPRE BASIC

Subroutine DELETE_RECORD:
.
.
.

confirm = 0%
success_flag = -1%
until confirm OR want_to_exit
trans1 = 0%

&RDB& START_TRANSACTION (TRANSACTION_HANDLE trans1)
&RDB& READ_WRITE RESERVING EMPLOYEES FOR SHARED READ

found_employee_flag = 0%

! Find the employee record that the user wants to delete. If
! an error occurs during the FOR operation, call an error handler.

&RDB& FOR (TRANSACTION_HANDLE trans1)
&RDB& E IN EMPLOYEES WITH
&RDB& E.EMPLOYEE_ID = employees::employee_id
&RDB& ON ERROR

success_flag = 0%
CALL Error_handler(RDB$STATUS, &

retry_count, &
success_flag, &
lock_error)

&RDB& END_ERROR

(continued on next page)

Using the BASIC Program Environment 13–33

Example 13–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE BASIC

! Get the dbkey of the EMPLOYEES record that the user wants to delete.

&RDB& GET
&RDB& ON ERROR

success_flag = 0%
&RDB& END_ERROR
&RDB& db_key = E.RDB$DB_KEY
&RDB& END_GET

found_employee_flag = -1%
&RDB& END_FOR

IF NOT found_employee_flag
THEN

PRINT "No employee with id: "+ &
employees::employee_id+" on file"

ELSE
! Pass the dbkey to an external routine CALL_OTHER to
! print out the record to which the dbkey points. Note
! that using an external routine is neither necessary nor recommended
! for performing this task. It is done in this example only to show
! how values are passed between routines in an RDBPRE BASIC program.

IF success_flag
THEN CALL Call_other(db_key, trans1)

END IF
END IF

&RDB& COMMIT (TRANSACTION_HANDLE trans1)

! Ask user for confirmation that this is the EMPLOYEES
! record he or she wants to delete.

PRINT
IF found_employee_flag
THEN

PRINT "Is this the employee you want to delete (Y/N): ";
INPUT answer
confirm = -1% IF EDIT$(answer,32%) = "Y"

END IF

IF NOT confirm
THEN

PRINT "Employee with employee id: "+ &
employees::employee_id+" not deleted"
PRINT

END IF
.
.
.

(continued on next page)

13–34 Using the BASIC Program Environment

Example 13–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE BASIC

Subroutine CALL_OTHER:
SUB CALL_OTHER(STRING db_key, LONG trans_1)

!!!
! This subroutine is passed the dbkey and transaction handle !
! from the DELETE_RECORD subroutine in the program B_SAMPLE.RBA. !
! With this information, the program can find and display !
! the employee record associated with an employee_id specified in !
! DELETE_RECORD and then return program control to the DELETE_RECORD !
! subroutine. !
!!!
RECORD EMPLOYEE

STRING employee_id = 5
STRING last_name = 14
STRING first_name = 10
STRING middle_initial = 1
STRING address_data_1 = 25
STRING address_data_2 = 25
STRING city = 20
STRING state = 2
STRING postal_code = 5
STRING sex = 1
GROUP birthday

STRING string_value = 8
END GROUP
STRING status_code = 1

END RECORD

MAP (RECORDS) employee employees

! Because the database was invoked in the main program
! with GLOBAL attributes, refer to it here as EXTERNAL.

&RDB& DATABASE EXTERNAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

! The transaction was started in the DELETE_RECORD subroutine,
! so there is no need to start a transaction here. Use the
! transaction handle to identify the request with the transaction
! started in the DELETE_RECORD subroutine. Use the dbkey found in
! DELETE_RECORD to locate the correct employee record.

&RDB& FOR (TRANSACTION_HANDLE trans_1) E IN EMPLOYEES WITH
&RDB& E.RDB$DB_KEY = db_key
&RDB& GET
&RDB& employees::employee_id = E.EMPLOYEE_ID;
&RDB& employees::last_name = E.LAST_NAME;
&RDB& employees::first_name = E.FIRST_NAME;
&RDB& employees::middle_initial = E.MIDDLE_INITIAL;
&RDB& employees::address_data_1 = E.ADDRESS_DATA_1;
&RDB& employees::address_data_2 = E.ADDRESS_DATA_2;
&RDB& employees::city = E.CITY;
&RDB& employees::state = E.STATE;
&RDB& employees::postal_code = E.POSTAL_CODE;
&RDB& employees::birthday::string_value = E.BIRTHDAY
&RDB& END_GET

(continued on next page)

Using the BASIC Program Environment 13–35

Example 13–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE BASIC

! Display the EMPLOYEES record.
PRINT
PRINT "Employee id: ", employees::employee_id
PRINT "Last name: ", employees::last_name
PRINT "First name:", employees::first_name
PRINT "Middle init: ", employees::middle_initial
PRINT "Address: ", employees::address_data_1, employees::address_data_2
PRINT "City:", employees::city
PRINT "State:", employees::state
PRINT "Postal code: ", employees::postal_code

&RDB& END_FOR
END SUB

13.4.1 Using Handles in Structured Programming
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Requests

Information on when and how to use request handles is supplied in Chapter 9.
Section 13.4.2 and Section 13.4.4 discuss how to declare handles in an
RDBPRE BASIC program.

13.4.2 Declaring and Initializing Handles
With the exception of the database handle, declaring handles in RDBPRE
BASIC is similar to declaring any other program variable. The declaration and
initialization of a database handle is done simply by specifying the handle in
the DATABASE statement. You do not declare a database handle in the data
declaration portion of your BASIC program. RDBPRE initializes the handle for
you. You should not assign a value to a database handle with an assignment
statement (or any other way).

User-specified request and transaction handles must be declared in the data
declaration portion of your program. In BASIC, declare user-specified request
and transaction handles as longwords and initialize them to zero.

If you want to release the resources associated with a request handle, you can
do so by issuing a FINISH statement, or, if you do not want to detach from the
database, you can release the request by issuing a call to the RDB$RELEASE_
REQUEST procedure with the following statement (where req1 is a user-
supplied request handle):

13–36 Using the BASIC Program Environment

return_stat = (RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, req1)
IF (return_stat AND 1%) = 0% THEN

CALL SYS$PUTMSG(RDB$MESSAGE_VECTOR)
END IF

Declare the variable that holds the return status value as LONG and
RDB$RELEASE_REQUEST as EXTERNAL LONG.

13.4.3 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference.

See the VAX Rdb/VMS Guide to Distributed Transactions for information on
coordinating a distributed transaction.

13.4.4 Declaring and Initializing Distributed Transaction
Identifiers

Declaring distributed transaction identifiers in RDBPRE BASIC is similar to
declaring any other program variable. Distributed transaction identifiers must
be declared in the data declaration portion of your BASIC program. Declare
a distributed transaction identifier as two longwords and initialize it to zero.
You should not assign a value to a distributed transaction identifier with an
assignment statement.

13.5 Using Callable RDO
The RDBPRE preprocessor statements do not include data definition
statements. If you want to perform data definition within your preprocessed
program, you must use the Callable RDO program interface. For example,
during a batch process, or when others are not using the database, your
program may define a temporary index on a field to facilitate Rdb/VMS
performance during your program execution.

You can also use Callable RDO when your program needs the ability to form
dynamic queries. That is, when your program will not know what a query
is until run time. Otherwise, you should use the RDBPRE preprocessor
when possible for all BASIC data manipulation operations. Preprocessed
Rdb/VMS statements execute significantly faster than calls using the function
RDB$INTERPRET.

Using the BASIC Program Environment 13–37

When using Callable RDO, your program communicates with Rdb/VMS
using the RDB$INTERPRET function. You call RDB$INTERPRET to pass
your data manipulation or data definition statement to Rdb/VMS. Declare
RDB$INTERPRET as an integer (longword) function. The RDB$INTERPRET
function returns a status value that indicates the success or failure of the
function. The return status value is a systemwide condition value that
indicates either success or a unique Rdb/VMS symbolic error code. Your
program declares a longword variable to hold the return status value so
you can test the success or failure of the call. (Refer to Chapter 10 and
Section 13.6 in this chapter for further information on handling Rdb/VMS
run-time exception conditions.)

The BASIC format of the RDB$INTERPRET calling sequence is:

ret-stat = RDB$INTERPRET(’rdb-statement’[, host-var [BY DESC] ,...])

The arguments for the RDB$INTERPRET function are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

rdb-statement

The Rdb/VMS statement you pass to Rdb/VMS. Handle rdb-statement
according to your language’s rules for handling string literals or string
variables.

host-var

A host language variable you pass to Rdb/VMS as part of a data
manipulation statement. You do not include host language variables
within the Rdb/VMS statement string literal, but pass them, in order, after
the string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor. You
must include a by-descriptor passing mechanism when your language’s
default passing mechanism for the host language variable data type is not
by descriptor. Refer to the BASIC language reference manual for the specific
format of the passing mechanism.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some Rdb/VMS statements may produce
unwieldy code in the call to the RDB$INTERPRET function. Instead, assign
the Rdb/VMS statement string literal to a string variable. Then pass the string
variable in the calling sequence. Assigning Rdb/VMS statements to a string
variable lets you separate your Rdb/VMS data manipulation statements from
the mechanics of using the RDB$INTERPRET function.

13–38 Using the BASIC Program Environment

Callable RDO program development is explained in detail in Chapter 19.

The following section discusses the use of the DATABASE statement and the
visibility of transactions in preprocessed programs that use Callable RDO.

13.5.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use an INVOKE DATABASE statement in your preprocessed
RDBPRE program and a separate RDO INVOKE DATABASE statement in the
embedded Callable RDO statements. To ensure that the preprocessor invokes
the identical database for the preprocessed and the Callable RDO portions
of the program, use the same database handle in each INVOKE DATABASE
statement. Invoke the database:

In the preprocessed program, using a GLOBAL or EXTERNAL database
handle.

In the Callable RDO program, by passing the database handle to the
RDB$INTERPRET function.

For more information on database handles, see the section on handles in
Chapter 9.

In Callable RDO, you must pass the database handle to RDB$INTERPRET as
a !VAL parameter. See Chapter 19 for an example of passing database handles
in Callable RDO.

You may include both RDBPRE and Callable RDO INVOKE DATABASE
statements in the same program module. The preprocessor ignores any
statement that is not preceded by the Rdb/VMS statement flag (&RDB&).
You may also call a function or subroutine to perform the data definition
with Callable RDO. In that case, use a preprocessed INVOKE DATABASE
statement in the main module and the Callable RDO INVOKE DATABASE
statement in the submodule.

For example, in the sample program for BASIC, the database is invoked with
the GLOBAL attribute in the main program:

&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

This program calls the CALLABLE subroutine. The CALLABLE subroutine
invokes the database using the RDB$INTERPRET function:

return_status = RDB$INTERPRET(&
’DATABASE !VAL = FILENAME "MF_PERSONNEL" ’ BY DESC,&

dbhandle BY DESC)
IF (return_status AND 1%) <> 1%
THEN

CALL Callable_error_handler(return_status, retry_count,lock_error)
success_flag = 0%

END IF

Using the BASIC Program Environment 13–39

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the Callable RDO sections of the same
program. The preprocessor will not be able to refer to metadata that has not
yet been defined.

13.5.2 Embedding Data Definition Statements Using Callable
RDO

Data definition statements require a read/write transaction. When an
Rdb/VMS program statement executes, whether it is preprocessed or
Callable RDO, Rdb/VMS checks for an active transaction. If there is an active
transaction that allows the intended operations, the statement is executed.

You must perform Callable RDO data definition statements within a read/write
transaction. However, if you start a read/write transaction in the Callable
RDO portion of your program, make sure that you commit or roll back any
active transactions you started in the preprocessed portion of your program
first. If a transaction is active in your program when you issue the START_
TRANSACTION statement with a Callable RDO statement, your Callable RDO
statement will return a run-time RDO error.

If you call the RDB$INTERPRET function for data definition, do not attempt
to use database or transaction handles in your data definition statements.
Rdb/VMS does not support the use of database or transaction handles in data
definition statements.

Do not define, change, or delete a field, relation, or view in Callable RDO and
then refer to it in the preprocessed portion of the program. At preprocess time,
the field, relation, or view does not yet exist, and the preprocessor generates
errors for those statements that refer to either the field, relation, or view. You
can define indexes and constraints and any other database elements that are
not referred to in the preprocessed code.

You can perform any preprocessed data retrieval or update operation within
any Callable RDO transaction. You can omit the START_TRANSACTION
statement from the preprocessed portion of the program and rely upon the
transaction started in the Callable RDO portion. However, it is better practice
to begin an explicit transaction whenever possible rather than relying on
implicit START_TRANSACTION declarations.

Example 13–18, from the DDL_STMNT subroutine, shows how to perform data
definition tasks in RDBPRE BASIC programs.

13–40 Using the BASIC Program Environment

Example 13–18 Embedding Data Definition Statements in RDBPRE BASIC
Ddl_stmnt:

!!
! This subroutine demonstrates how to perform data definition tasks !
! from an RDBPRE BASIC program. You must use the Callable RDO !
! interface, RDB$INTERPRET, to perform data definition tasks in !
! preprocessed programs. !
!!

PRINT FOR loop_cnt = 1% TO 24%
PRINT "Execute a DDL statement "
PRINT
! Invoke the database to make it known to Callable RDO.

return_status = RDB$INTERPRET(&
’DATABASE !VAL = FILENAME "MF_PERSONNEL" ’ BY DESC,&

dbhandle BY DESC)
IF (return_status AND 1%) <> 1%
THEN

CALL Callable_error_handler(return_status, retry_count,lock_error)
success_flag = 0%

END IF

no_more_ddl_statements = 0%
Ddl_stmnt_1:

! Prompt user for input. Ordinarily, it would not be likely that
! you would ask a user to define an index for the database.
! This example serves only to show you how this type of task can be
! done from within a BASIC environment.

UNTIL no_more_ddl_statements
GOSUB Enter_ddl_statement
EXIT ddl_stmnt_1 IF no_more_ddl_statements
confirm = 0%

UNTIL confirm OR no_more_ddl_statements
PRINT "Did you enter the definition correctly (Y/N): ";
INPUT answer
confirm = -1% IF EDIT$(answer,32%) = "Y"
IF NOT confirm
THEN

GOSUB Enter_ddl_statement
END IF
IF no_more_ddl_statements
THEN

return_status = RDB$INTERPRET("FINISH" BY DESC)
RETURN

END IF
NEXT
transaction_started = 0%
retry_count = 0%

(continued on next page)

Using the BASIC Program Environment 13–41

Example 13–18 (Cont.) Embedding Data Definition Statements in RDBPRE
BASIC

! Start a READ_WRITE transaction.

UNTIL transaction_started OR retry_count > 5
transaction_started = -1%
return_status = RDB$INTERPRET(&

"START_TRANSACTION READ_WRITE" BY DESC)
IF (return_status AND 1%) <> 1%
THEN

CALL Callable_error_handler(return_status, &
retry_count,&
lock_error)

success_flag = 0%
transaction_started = 0%

END IF
NEXT
IF transaction_started
THEN

success_flag = 0%
retry_count = 0%
lock_error = -1%
UNTIL success_flag OR &

(lock_error AND retry_count > 5) &
OR (NOT lock_error)
lock_error = 0%
success_flag = -1%

! Pass the data definition statement specified by the user
! to RDB$INTERPRET.

return_status = RDB$INTERPRET(ddl_statement BY DESC)

IF (return_status AND 1%) <> 1%
THEN

CALL Callable_error_handler(return_status,&
retry_count, &
lock_error)

success_flag = 0%
END IF

NEXT
! Inform the user of the success or failure of the data definition task.

IF success_flag
THEN

PRINT "Transaction successful"
return_status = RDB$INTERPRET("COMMIT" BY DESC)

ELSE
PRINT "Transaction failed"
return_status = RDB$INTERPRET("ROLLBACK" BY DESC)

END IF
END IF

NEXT
return_status = RDB$INTERPRET("FINISH" BY DESC)
RETURN

(continued on next page)

13–42 Using the BASIC Program Environment

Example 13–18 (Cont.) Embedding Data Definition Statements in RDBPRE
BASIC

Enter_ddl_statement:

! This subroutine is used to prompt user for data definition statement.

PRINT ’Please enter the data definition statement to define’
PRINT ’or delete a temporary index, or press CTRL/Z’
PRINT
PRINT ’For example, to define an index for EMPLOYEES based’
PRINT ’on EMPLOYEE_ID, you might enter: ’
PRINT
PRINT ’DEFINE INDEX EMP_EMPLOYEE_ID FOR EMPLOYEES DUPLICATES ARE ALLOWED.’
PRINT ’EMPLOYEE_ID. END EMP_EMPLOYEE_ID INDEX.’
PRINT
PRINT ’To delete this index, you might enter: ’
PRINT
PRINT ’DELETE INDEX EMP_EMPLOYEE_ID.’
PRINT
WHEN ERROR IN

INPUT ddl_statement
USE

no_more_ddl_statements = -1%
END WHEN
RETURN

13.6 Handling Rdb/VMS Run-Time Errors
Before reading this section, you should be familiar with the information
contained in Chapter 10 of this manual. Chapter 10 discusses error handling
concepts; this section contains information that, for the most part, is specific to
error handling in RDBPRE BASIC.

This section describes how to detect Rdb/VMS errors that occur at run time,
how to display the accompanying messages, and how to recover from errors.
In most cases, this section assumes that you have debugged the program for
errors in both Rdb/VMS and host language statements. This section discusses
Rdb/VMS run-time errors only and does not tell you how to handle host
language or system run-time errors. Refer to your BASIC user’s guide for such
information.

If you choose to combine Callable RDO and RDBPRE DML statements, use
separate error handling routines for each one. See Chapter 19 for information
on handling Callable RDO errors.

Using the BASIC Program Environment 13–43

13.6.1 Error Handling
RDBPRE BASIC enables you to detect errors with the ON ERROR clause. If
an error occurs in an Rdb/VMS data manipulation statement, control passes to
the ON ERROR clause. Your program must then handle the error.

This section describes:

The ON ERROR clause

Determining which error has occurred using the LIB$MATCH_COND
run-time library routine

Error message display using the SYS$GETMSG, SYS$PUTMSG, and
LIB$SIGNAL routines

Information on creating user-supplied error messages is contained in
Chapter 10.

13.6.2 Detecting Errors Using the ON ERROR Clause
You can use the ON ERROR clause only in preprocessed programs. All
Rdb/VMS data manipulation statements except the INVOKE DATABASE
and DECLARE_STREAM statements offer the optional ON ERROR clause.
Within the ON ERROR . . . END_ERROR block you can include one or more
host language or Rdb/VMS statements, or both. These statements can handle
the error directly, but more often they will call an error handler routine that
determines the nature of the error and starts appropriate recovery or cleanup
procedures.

Note Do not use the BASIC REM or line number, or the START_TRANSACTION
statement within the ON ERROR . . . END_ERROR block.

If you do not use the ON ERROR clause and an Rdb/VMS error occurs,
Rdb/VMS passes the error to the VMS Run-Time Library routine, LIB$STOP,
which sets the severity level to 4 (FATAL) and forces program termination.

See Chapter 10 for a more complete description of the ON ERROR clause.

The following BASIC code fragment shows the placement of the ON ERROR
clause and host language statements within a MODIFY operation:

13–44 Using the BASIC Program Environment

&RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employees::employee_id
&RDB& MODIFY E USING
&RDB& ON ERROR

success_flag = 0%
CALL Error_handler (RDB$STATUS, &

retry_count, &
success_flag, &
lock_error)

&RDB& END_ERROR
&RDB& E.ADDRESS_DATA_1 = employees::address_data_1;
&RDB& E.ADDRESS_DATA_2 = employees::address_data_2;
&RDB& E.CITY = employees::city;
&RDB& E.STATE = employees::state;
&RDB& E.POSTAL_CODE = employees::postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

13.6.3 Determining Which Errors Have Occurred
After detecting an error, you want to determine which error has occurred. Your
program error handler can then take the correct action for recovery or orderly
program termination. Recovery might include trying an operation again or
writing an error to an error log and continuing to the next operation. You
determine which error has occurred by evaluating the symbolic error code of
the error.

13.6.3.1 Using Symbolic Error Codes All communication with Rdb/VMS is
done through procedure calls. In preprocessed programs, the preprocessor
converts Rdb/VMS statements to host language calls to Rdb/VMS
procedures. Every procedure returns a status value into a program variable,
RDB$STATUS, that is declared by the preprocessor. The return status value
is a longword that identifies a unique message in the system message file. The
return status value may indicate success, in which case data manipulation
continues uninterrupted. Or this value may signal an error, in which case
control passes to the error handler.

In RDBPRE BASIC programs, the preprocessor names this variable
RDB$STATUS and declares it to be a longword. The return status value
is the second element of a 20-longword array, RDB$MESSAGE_VECTOR. (The
RDB$MESSAGE_VECTOR array is the message vector that Rdb/VMS uses to
pass information to and from BASIC programs.)

Each error generated by an RDBPRE statement is represented as a symbolic
error code. You can use these symbolic error codes to control program logic for
specific errors. When the Rdb/VMS ON ERROR clause detects an error, your
error handler should:

Evaluate the symbolic error code either by calling the LIB$MATCH_COND
routine or using a BASIC equality test

Using the BASIC Program Environment 13–45

Direct program logic with a BASIC host language statement such as the
SELECT statement

Although symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. Chapter 10
explains why this is recommended.

13.6.3.2 Declaring Symbolic Error Codes Rdb/VMS symbolic error codes
are longword values. In BASIC programs, you must declare symbolic error
codes as external constants. For example:

! possible errors to look for:
EXTERNAL INTEGER CONSTANT RDB$_LOCK_CONFLICT !lock conflict
EXTERNAL INTEGER CONSTANT RDB$_DEADLOCK !deadlock
EXTERNAL INTEGER CONSTANT RDB$_INTEG_FAIL !constraint failed

13.6.3.3 Calling LIB$MATCH_COND When you want to determine which of
several possible errors has invoked your error handler, you can use the VMS
Run-Time Library routine, LIB$MATCH_COND.

You also can evaluate the return status value directly with host language
statement or statements, without calling the LIB$MATCH_COND routine.
Generally, host language statements will use fewer resources than
LIB$MATCH_COND. However, future versions of Rdb/VMS may change
the severity levels or facility names of certain symbolic error codes. You must
then link your program again under the new version so that the program will
detect the correct error codes. The LIB$MATCH_COND routine matches only
the condition ID of the return status value and is unaffected by changes in
severity levels or facility names.

The LIB$MATCH_COND routine compares the first parameter to each of the
remaining parameters in its parameter list. If a match is found, it returns
the position in the parameter list of the matching parameter. If no match is
found, the LIB$MATCH_COND routine returns a zero. You should pass the
return status value to the LIB$MATCH_COND routine as the first parameter
in the parameter list. In the remaining part of the parameter list, pass the
error codes you wish to compare to the return status value. If one of these
error codes matches the return status value, the LIB$MATCH_COND routine
returns the position of the matching parameter in the parameter list.

For example, suppose you want to determine if RDB$_STREAM_EOF,
RDB$_DEADLOCK, or RDB$_NOT_VALID is the return status value.
Pass to the LIB$MATCH_COND routine the parameter list that contains
RDB$STATUS, RDB$_STREAM_EOF, RDB$_DEADLOCK, and RDB$_NOT_
VALID. If RDB$STATUS equals RDB$_DEADLOCK, then the LIB$MATCH_
COND routine returns a value of 2 because RDB$_DEADLOCK is the second
parameter in the parameter list.

13–46 Using the BASIC Program Environment

Next, use the value that the LIB$MATCH_COND routine returns to determine
the path of your error handler’s conditional statement. To continue our
example, assume you use a SELECT statement as the error handler’s
conditional statement. In this example, your SELECT statement evaluates
the value returned by the LIB$MATCH_COND routine and your program falls
through to the second case of the SELECT statement. Your program performs
the statement or statements associated with the CASE statement. These
statements might print a message to the terminal, roll back the transaction,
and return program control to a point before the transaction was opened. Or
they might call a more complex routine to perform these and other actions.

The BASIC format of the call to the LIB$MATCH_COND routine is:

err-match = LIB$MATCH_COND(ret-stat [BY REF], symb-name [BY REF]
[...symb-name BY REF])

The arguments for this BASIC call are:

err-match

A numeric variable that holds the integer that identifies the symbol
matched.

ret-stat

A program variable (RDB$STATUS) that holds the return status value of
the last call to the database.

symb-name

One or more symbolic error codes, (or the variable names you have assigned
to them) that you want to match against ret-stat. The symbolic error codes
are longwords and are passed by reference.

Declare the LIB$MATCH_COND routine as an external integer function.

Example 13–19 demonstrates the use of the LIB$MATCH_COND routine in a
BASIC error handling routine. This error handler could be called from another
program that:

Detects errors with an ON ERROR clause

Includes a statement within the ON ERROR . . . END_ERROR block that
sets the value of a success flag to FALSE when the ON ERROR clause is
executed

This error handling routine:

Receives the return status and the success flag values

Opens a file to record the error messages

Uses the LIB$MATCH_COND routine to determine which error has
occurred

Using the BASIC Program Environment 13–47

Uses a SELECT statement to take different actions depending on which
error has occurred

Sets the success flag to true if corrective error handling could take place

Closes the file that records the error messages

Example 13–19 Using LIB$MATCH_COND in RDBPRE BASIC
SUB ERROR_HANDLER(LONG RDB$STATUS, retry_count, success_flag, lock_error_flag)

!!
! This subroutine handles run-time errors identified by !
! the ON ERROR clause in the sample RDBPRE BASIC programs. !
!!

OPTION TYPE = EXPLICIT

DECLARE LONG return_status, &
seconds_to_wait

DECLARE STRING error_record

! Declare variables, symbolic error codes, and system
! service library routines.
EXTERNAL LONG CONSTANT RDB$_STREAM_EOF, &

RDB$_DEADLOCK, &
RDB$_LOCK_CONFLICT, &
RDB$_INTEG_FAIL, &
RDB$_NO_DUP, &
RDO$_INDNOTDEF, &
RDB$_NO_RECORD, &
RDB$_NOT_VALID

EXTERNAL LONG FUNCTION RDB$SIGNAL, &
LIB$MATCH_COND, &
LIB$SIGNAL, &
LIB$CALLG, &
LIB$SYS_GETMSG

COMMON (Rdb$MESSAGE_VECTOR) INTEGER Rdb$MESSAGE_VECTOR, &
Rdb$LU_STATUS, &
Rdb$ALU_ARGUMENTS(17)

MAP(getmsgvars) LONG msg_id, &
msg_len, &

STRING msg_txt = 132, &
LONG mask, &
STRING out_array = 4

seconds_to_wait = 5%
mask = 5%

(continued on next page)

13–48 Using the BASIC Program Environment

Example 13–19 (Cont.) Using LIB$MATCH_COND in RDBPRE BASIC
Check_error:

! Use LIB$MATCH_COND to determine which of a series of errors
! might have occurred.

return_status = Lib$match_cond(RDB$STATUS, &
RDB$_LOCK_CONFLICT, &
RDB$_DEADLOCK, &
RDB$_NO_DUP, &
RDB$_NOT_VALID, &
RDB$_INTEG_FAIL, &
RDB$_NO_RECORD)

! The CASE statement directs the program to appropriate statements
! to execute depending on the error that was detected.

SELECT return_status
CASE 0

GOSUB Unexpected_error
CASE 1 to 2

GOSUB Lock_problem
CASE 3

GOSUB Duplicate_not_allowed
CASE 4

GOSUB Invalid_data
CASE 5

GOSUB Integrity_failure
CASE 6

GOSUB Record_deleted
END SELECT
EXIT SUB

Unexpected_error:

PRINT "Unexpected error - terminating program"
OPEN "error.log" AS FILE 1%, ACCESS APPEND

return_status = LIB$SYS_GETMSG(rdb$status BY REF, &
msg_len BY REF, &
msg_txt BY DESC, &
mask BY REF, &
out_array BY REF)

PRINT msg_txt
PRINT #1%,msg_txt
CLOSE #1%
return_status = LIB$CALLG(rdb$message_vector by ref,LOC(LIB$SIGNAL) by value)
RETURN

(continued on next page)

Using the BASIC Program Environment 13–49

Example 13–19 (Cont.) Using LIB$MATCH_COND in RDBPRE BASIC

Lock_problem:

! Invoked on lock conflict or deadlock.
! Retry 5 times before rolling back.

lock_error_flag = -1%
IF (retry_count > 5)
THEN

PRINT "Another user is accessing data you attempted to access"
success_flag = 0%

ELSE
SLEEP seconds_to_wait
retry_count = retry_count + 1%

END IF
RETURN

Duplicate_not_allowed:

PRINT "You attempted to insert a record with a value already on file"
PRINT
PRINT "Please choose a new value and try again"

! Display the error message to see what index violated the
! duplicate clause.

CALL SYS$PUTMSG(RDB$MESSAGE_VECTOR)

RETURN

Invalid_data:

PRINT "In the data you entered, you specified an invalid value"
PRINT

! Display the error message to see what data was invalid

CALL SYS$PUTMSG(Rdb$MESSAGE_VECTOR)

PRINT "Please correct the error and try again"
RETURN

Integrity_failure:

PRINT "In the data you entered, you violated a constraint"
PRINT

! Display error message to see cause the integrity failure.

CALL SYS$PUTMSG(Rdb$MESSAGE_VECTOR)

PRINT "Please correct the error and try again"
RETURN

Record_deleted:

PRINT "Record entered has been deleted"
RETURN

END SUB

13–50 Using the BASIC Program Environment

13.6.4 Displaying Error Messages
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and terminate your
program, you can call the LIB$SIGNAL routine

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system service

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code

Information on creating user-supplied error messages is contained in
Chapter 10.

13.6.4.1 Calling LIB$SIGNAL Call the LIB$SIGNAL routine when you want
to display an error message generated by Rdb/VMS and terminate program
execution. When you call LIB$SIGNAL with LIB$CALLG, the LIB$SIGNAL
routine:

Receives the signal argument list from the signaling procedure

This list is made up of the return status value and a set of optional
arguments that provide information to condition handlers.

Copies this signal argument list and uses it to create a signal argument
vector

The signal argument vector serves as part of the input to the user-
established handlers and the system default handlers.

Causes a signal condition which causes the appropriate catchall condition
handler to pass the signal argument vector to the SYS$PUTMSG system
service

The SYS$PUTMSG system service calls SYS$GETMSG to retrieve the
message from the error messages file, and then formats and displays the
error message on your terminal.

Resignals the error

If the error is not fatal, program execution continues. If the error is fatal,
the host language error handler signals the error to the VMS default
condition handler, which terminates program execution.

In BASIC, you cannot continue program execution after the call to the
LIB$SIGNAL routine when the error is fatal. See Section 13.6.5 for
information on how to continue program execution after a fatal error.

Using the BASIC Program Environment 13–51

13.6.4.2 Methods of Calling LIB$SIGNAL The recommended method of
calling LIB$SIGNAL in RDBPRE programs is to pass the message vector,
RDB$MESSAGE_VECTOR, and the LIB$SIGNAL routine to the function,
LIB$CALLG.

This method ensures that any FAO arguments that exist in the message
vector will be formatted correctly. In addition, this method ensures that any
additional error messages that clarify the nature of the program error will be
returned to your program. For these reasons, Digital recommends that you
always call LIB$SIGNAL with LIB$CALLG.

You can also pass the return status value, RDB$STATUS, to the LIB$SIGNAL
routine. However, this method is not recommended. If you pass RDB$STATUS
to the LIB$SIGNAL routine and FAO arguments exist in the Rdb/VMS error
message, LIB$SIGNAL may be unable to format the Rdb/VMS error message
correctly. In this case, your program may terminate abruptly or may return an
incompletely formatted error message.

If your application requires that you call LIB$SIGNAL without LIB$CALLG,
be certain that the error message does not contain FAO arguments.
Figure 10–1 in Chapter 10 illustrates the format of the message vector.

13.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with
RDB$MESSAGE_VECTOR and RDB$STATUS The BASIC format of the
LIB$SIGNAL calling sequence with the message vector (RDB$MESSAGE_
VECTOR) is:

CALL LIB$CALLG(RDB$MESSAGE_VECTOR[BY REF], LIB$SIGNAL BY VALUE)

The LIB$SIGNAL argument is the run-time library routine that will receive
RDB$MESSAGE_VECTOR. This argument is passed by reference in BASIC.

When using the LIB$CALLG routine to pass the message vector, you must
declare LIB$CALLG as an external integer function in BASIC. When using
this routine, you must declare LIB$SIGNAL as:

EXTERNAL INTEGER FUNCTION LIB$SIGNAL

An earlier example, Example 13–19, demonstrates how to call LIB$SIGNAL
with LIB$CALLG. The BASIC format of the LIB$SIGNAL calling sequence
with RDB$STATUS is:

CALL LIB$SIGNAL ([BY VALUE]RDB$STATUS)

13–52 Using the BASIC Program Environment

13.6.4.4 Calling SYS$PUTMSG Call the SYS$PUTMSG system service when
you want to display an error message generated by Rdb/VMS and continue
program execution. The SYS$PUTMSG system service displays the error
message on the terminal and writes it to the error file designated by the logical
name SYS$ERROR. You can define SYS$ERROR at the DCL level to be your
program error file when you want the SYS$PUTMSG system service to write
an Rdb/VMS error message to it.

The first parameter in the call to the SYS$PUTMSG system service is the
message vector, RDB$MESSAGE_VECTOR. Figure 10–1 in Chapter 10
illustrates the format of the message vector. The SYS$PUTMSG system
service can accept other optional parameters that specify a routine that
receives control during message processing, and the facility name to be used in
displaying the message (if you want the facility to be different from the default
facility prefix that is associated with the message). The message vector is
required; you may omit the optional parameters. See the VMS System Services
Volume for a complete description of the SYS$PUTMSG system service.

The BASIC format of the SYS$PUTMSG calling sequence is:

status = SYS$PUTMSG ([BY REF] RDB$MESSAGE_VECTOR)

Declare the SYS$PUTMSG system service as an external integer function in
BASIC. See an earlier example, Example 13–19, for a demonstration of the use
of the SYS$PUTMSG system service.

13.6.4.5 Calling SYS$GETMSG Call the SYS$GETMSG system service when
you want to use an error message generated by Rdb/VMS within your program
and continue program execution.

Because BASIC uses dynamic strings, you should use the VMS Run-Time
Library routine, LIB$SYS_GETMSG, to call SYS$GETMSG. The LIB$SYS_
GETMSG routine calls SYS$GETMSG and returns a message string using the
semantics of the caller’s string; in this case, a dynamic string.

The first parameter in the call to the LIB$SYS_GETMSG routine is the
Rdb/VMS return status value, the unique identification for the Rdb/VMS error
message. The SYS$GETMSG system service locates the error message and
returns it to your program as the second parameter of the call. You must
declare a string to receive the message. Your program can then manipulate
this string in any way it chooses. Your program can:

Display the string

Write the string to a file

You can also evaluate character substrings within the string, but Digital
recommends that you do not use this method. The message text may change
from one version of Rdb/VMS to the next.

Using the BASIC Program Environment 13–53

The SYS$GETMSG system service requires a parameter to receive the length
of the message string. You may omit the actual parameter, but you must
include a comma to signify the argument. The SYS$GETMSG system service
accepts other optional parameters that define what is included in the returned
message and receives the FAO count of the message. You may omit these
parameters; if you do, all components of the message are returned. See the
VMS System Services Volume for further information on the SYS$GETMSG
system service.

The SYS$GETMSG system service does not format the FAO arguments in the
error message; instead, it returns the error message with format parameters
embedded in it. If your error message contains a view name, for example,
SYS$GETMSG will return the message:

<View !AC can not be updated>

You can call the SYS$FAO system service to format the FAO arguments in
the message the SYS$GETMSG system service returns to your program.
However, when the error message contains FAO arguments, it is preferable
to call the SYS$PUTMSG system service rather than SYS$GETMSG. The
optional parameters that you can specify with the LIB$SYS_GETMSG routine
are not shown below. For more information on LIB$SYS_GETMSG, see the
VMS System Services Volume.

The BASIC format of the LIB$SYS_GETMSG calling sequence is:

ret-stat = LIB$SYS_GETMSG(RDB$STATUS [BY REF],[msg-len BY REF],msg-string,,)

The arguments of this calling sequence are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

msg-len

The number of characters written into msg-string, not counting padding
in the case of a fixed-length string. The msg-len argument contains the
address of a signed word integer that is this number.

If the input string is truncated to the size specified in the msg-string
descriptor, msg-len is set to this size. Therefore, msg-len can always be
used by the calling program to access a valid substring of msg-string.

msg-string

The address of a descriptor that points to the message string. The
LIB$SYS_GETMSG routine writes the message that has been returned by
SYS$GETMSG into msg-string.

13–54 Using the BASIC Program Environment

Declare the LIB$SYS_GETMSG routine as an external integer function.
See an earlier example, Example 13–19, for a demonstration of the use of
LIB$SYS_GETMSG.

13.6.5 Handling Fatal Errors
In some instances, the cause of fatal errors is located in the database, not the
program. For example, your program may attempt to access a relation that
has been deleted by the database administrator, or the process that runs the
program may not be authorized to modify a particular relation. There is little
that your program can do to correct this type of error. However, your program
can determine which fatal error has occurred, perform cleanup functions,
display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error using the LIB$MATCH_COND routine or host language
statement or statements to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or LIB$SYS_GETMSG routine to output an error
message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

In other programming languages, you can also call the LIB$SIGNAL routine
to display a fatal error message, but you must then use the LIB$ESTABLISH
routine to create a condition handler that will permit your program to continue
after the call to LIB$SIGNAL.

In BASIC, the use of a condition handler is unpredictable. If you want to
create your own error handler, your handler replaces the BASIC error handler.
Thus, BASIC program errors are no longer handled by the host language error
handler for the remainder of program execution. Instead, you must explicitly
handle host language errors in your condition handler. For this reason, use of
the LIB$ESTABLISH routine is not recommended in BASIC.

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary
before calling the LIB$SIGNAL routine. The following is a list of typical
cleanup operations:

End streams

Roll back transactions

Using the BASIC Program Environment 13–55

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the LIB$SIGNAL routine without establishing a condition handler,
LIB$SIGNAL displays the error message and terminates your program.
Perform any cleanup before making the call to LIB$SIGNAL. However, if
your cleanup includes any Rdb/VMS statements (such as ROLLBACK), these
new calls to the database will change the return status value contained in
RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in this case, the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling
the LIB$SIGNAL routine without performing any cleanup operations is not
recommended.

13–56 Using the BASIC Program Environment

14
Using the COBOL Program Environment

This chapter describes how to access an Rdb/VMS database using COBOL
and the Rdb/VMS preprocessor interface, RDBPRE. This chapter presents the
following main topics:

Using Rdb/VMS data manipulation statements

Using Rdb/VMS data definition statements

Error handling in RDBPRE COBOL

Most examples in this chapter are available on line. The
Rdb/VMS installation procedure writes the sample programs to
SYS$COMMON:[SYSHLP.EXAMPLES.RDBVMS]. The file names for
these programs are: COB_SAMPLE.RCO, COB_CALL_OTHER.RCO and
COB_CALLABLE_ERROR_HANDLER.RCO. The sample program COB_
SAMPLE.RCO contains most of the procedures referred to in this chapter,
including an error handler for the data manipulation statements.

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

Note Before reading this chapter, you should be familiar with the information
contained in Chapter 9. The main purpose of this chapter is to provide
information and examples specific to VAX COBOL.

Using the COBOL Program Environment 14–1

14.1 The RDBPRE COBOL Preprocessor Interface
When you use the RDBPRE COBOL preprocessor interface, you simply include
Rdb/VMS data manipulation statements directly in your program wherever
you need them. You must use the special statement flag (&RDB&) with
each Rdb/VMS data manipulation statement you include in your COBOL
program. When you preprocess the source program, the preprocessor converts
the Rdb/VMS data manipulation statements to a series of COBOL calls to
Rdb/VMS. At run time, Rdb/VMS executes the calls and returns any retrieved
data to the program.

Note RDBPRE supports COBOL programs in terminal format only. Do not use ANSI
format for Rdb/VMS programs.

You cannot preprocess a program that attempts to access a non-existent
database, unless your database refers to the data dictionary, CDD/Plus, and
refers only to the definitions stored there. That is, if you specify a compile-time
file name in the DATABASE statement, the database must exist at preprocess
time. If you specify a compile-time path name in the DATABASE statement,
the path name element must exist in the data dictionary at preprocess time.
This is because the preprocessor must be able to validate relation and field
definitions in the programs that refer to the database.

14.2 Embedding DML Statements in the RDBPRE COBOL
Program Environment
The Rdb/VMS data manipulation statements are a subset of the Relational
Database Operator (RDO) utility statements. With the Rdb/VMS data
manipulation statements, you can access a database, update records, retrieve
selected records, and handle Rdb/VMS exception conditions. Refer to the VAX
Rdb/VMS RDO and RMU Reference Manual for a complete description of the
Rdb/VMS data manipulation statements.

14.2.1 Converting an RDO Prototype to the RDBPRE COBOL
Program Environment

Once you have created a prototype of your queries in the interactive RDO
facility, you are ready to convert these RDO statements to the COBOL program
environment. See Chapter 7 for a full discussion of creating a prototype in
RDO and for examples. Example 14–1 is a COBOL program based on the RDO
prototype examples in Chapter 7.

14–2 Using the COBOL Program Environment

Example 14–1 Converting an RDO Prototype to RDBPRE COBOL
Store_cand.

**
* This procedure stores a record in the CANDIDATES relation. It shows how *
* to store a value in a field of data type VARYING STRING. *
**

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Store Candidates" LINE 1 COLUMN 20
DISPLAY "" LINE 2 COLUMN 1

* Prompt the user for data to store in the CANDIDATES relation.

DISPLAY "Please enter the first name of the candidate or type exit: " NO
ACCEPT candidate_first_name PROTECTED REVERSED
PERFORM UNTIL candidate_first_name = "EXIT" OR "exit"

INITIALIZE confirm_flag
PERFORM until confirm

DISPLAY "Please enter the candidates middle initial: " NO ADVANCING
ACCEPT candidate_middle_initial PROTECTED REVERSED
DISPLAY "Please enter the last name of the candidate: "NO ADVANCING
ACCEPT candidate_last_name PROTECTED REVERSED
DISPLAY "Please enter candidate status information: " NO ADVANCING
ACCEPT candidate_status
DISPLAY "Have you entered the candidate

- " information correctly(Y/N): " NO ADVANCING
ACCEPT confirm_flag PROTECTED REVERSED

END-PERFORM

&RDB& START_TRANSACTION READ_WRITE RESERVING CANDIDATES FOR SHARED WRITE
MOVE ’Y’ TO success_flag

* Store the values specified by the user in the CANDIDATES relation.
* Check for errors and inform the user of the success or failure of
* the STORE operation.

&RDB& STORE C IN CANDIDATES USING
&RDB& ON ERROR

MOVE "N" TO success_flag
CALL "Error_handler" USING RDB$STATUS, retry_count,

success_flag, lock_error_flag
&RDB& END_ERROR
&RDB& C.LAST_NAME = candidate_last_name;
&RDB& C.FIRST_NAME = candidate_first_name;
&RDB& C.MIDDLE_INITIAL = candidate_middle_initial;
&RDB& C.CANDIDATE_STATUS = candidate_status
&RDB& END_STORE

IF successful
THEN

DISPLAY "Update operation succeeded"
&RDB& COMMIT

ELSE
DISPLAY "Update operation failed"

&RDB& ROLLBACK
END-IF
DISPLAY "Please enter the first name of the candidate or type exit: " NO
ACCEPT candidate_first_name PROTECTED REVERSED

END-PERFORM.

Using the COBOL Program Environment 14–3

The syntax you use for preprocessed Rdb/VMS data manipulation statements
is not identical to the statement syntax you use in RDO. When you incorporate
your prototype RDO statements into a program, you need to consider these
areas:

Use of host language variables

Use of Rdb/VMS statement flags, described in Chapter 12

Differences in syntax

Using the GET statement instead of the PRINT statement

Nesting FETCH and GET operations within a host language loop

Using the ON ERROR and AT END clauses to detect error conditions

Effects on structured programming

Handling Rdb/VMS errors

Additionally, if you are using multiple databases and you use the COBOL line
terminator, a period (.), at the end of a DATABASE statement, it should only
appear in the last DATABASE statement in a series. For example:

&RDB& INVOKE DATABASE AA = FILENAME "MF_PERSONNEL".
&RDB& INVOKE DATABASE BB = FILENAME "SHIPPING".

The preceding statements will fail, but the following will succeed:

&RDB& INVOKE DATABASE AA = FILENAME "MF_PERSONNEL"
&RDB& INVOKE DATABASE BB = FILENAME "SHIPPING".

Or:

&RDB& INVOKE DATABASE AA = FILENAME "MF_PERSONNEL"
&RDB& INVOKE DATABASE BB = FILENAME "SHIPPING"

14.2.1.1 Using Host Language Variables A host language variable is a
program variable that you use to communicate with Rdb/VMS. A host language
variable can contain the values that update the database; it can also receive
values that Rdb/VMS retrieves from the database. You can use host language
variables as value expressions in data manipulation statements, as well as for
any other program function. The following statements allow the use of host
language variables:

Any data manipulation statement that permits the use of an RSE

GET

DATABASE (you can specify a database handle)

READY

FINISH

14–4 Using the COBOL Program Environment

When you declare host language variables, simply follow the naming rules
for COBOL. Ensure that host language variable data types and sizes are
compatible with the corresponding database field data types and sizes. Refer to
Chapter 8 for the list of equivalent COBOL data types.

Note that you cannot use the name of a database field (a context variable and
a field name) as a subscript of an array.

Example 14–2 shows the use of host language variables to store a record. The
host language variables appear in lowercase.

Example 14–2 Using Host Language Variables to Store a Record in
RDBPRE COBOL

&RDB& STORE J IN JOBS USING
&RDB& J.JOB_CODE = job_code;
&RDB& J.JOB_TITLE = job_title;
&RDB& J.MAXIMUM_SALARY = max_sal;
&RDB& J.MINIMUM_SALARY = min_sal;
&RDB& J.WAGE_CLASS = wage_class
&RDB& END_STORE

A convenient way to declare host language variables is to copy database
definitions from the data dictionary, CDD/Plus. You can copy relation
definitions, which include all the fields within the relation. However, you
must be careful to copy only those field and relation definitions with data types
that are supported by COBOL. See Chapter 12 for more information about
using data dictionary definitions.

Note You must use the COBOL keyword IN (not OF) to qualify variables used
in Rdb/VMS data manipulation statements in COBOL. The preprocessor
RDBPRE returns a syntax error if you use the keyword OF.

14.2.1.2 Using Host Language Variables in Conditional Expressions You
can use conditional expressions to limit the records included in a record stream.
Conditional expressions contain one or more relational operators (see Table 3–1
in Section 3.5) and optionally logical operators (AND, OR, NOT).

In a programming environment, you probably do not want to code a specific
value for the comparison string, as in:

FOR E IN EMPLOYEES WITH E.STATE MATCHING ’NH’

It is more likely that you want the user to supply the comparison string at run
time. In this case, you need to declare a host language variable to hold the
comparison string. For example:

FOR E IN EMPLOYEES WITH E.STATE MATCHING state_code

Using the COBOL Program Environment 14–5

For the STARTING_WITH, MATCHING, and CONTAINING conditional
expressions, you must declare your host language variable in such a way that
the preprocessor can determine the correct length of the comparison string.

In COBOL, the declaration of the varying string host language variable is
complex. Incorrect coding can lead to serious errors which might not be readily
apparent. Because COBOL does not have a function to determine the length
of a string, you must provide a numeric field to contain the length of the
comparison string.

The length of the comparison string must be passed to the program either
directly by the end user, or you must put code in your program that will
determine the length of the comparison string. If the correct length of the
comparison string is not passed to the program, two problems can result.

The first problem arises if the length of the comparison string is not passed
to the program at all. In this case, the length of the comparison string will be
null. As a result, all the records in the relation will be included in a record
stream that is formed with the CONTAINING clause. This is because every
value ‘‘contains’’ the null value. This can be a serious problem if you are using
the CONTAINING clause to MODIFY or ERASE records. You will update
every record in the relation, rather than the selected few you probably expect.

The second problem that can arise from improper COBOL coding occurs when
the value passed as the length of the comparison string is too small. For
example, if the value passed for the comparison string is eight or less, and
you use the following RSE to form a stream of records from a database that
contains the following field values, all the records will be included in the
stream because the first eight characters of all the field values are the same
(namely, ‘‘OPTION R’’):

RSE:

&RDB& FOR T IN TEST_INFO WITH
&RDB& T.FEATURE-NAME CONTAINING F-NAME IN WS-INPUT-TE AND
&RDB& T.FEATURE-TYPE = F-TYPE
&RDB& MODIFY T USING
&RDB& T.TIME_EST = TIME-EST IN WS-INPUT-TE
&RDB& END_MODIFY
&RDB& END_FOR

Value in field FEATURE_NAME:

OPTION RR
OPTION RE
OPTION RT

14–6 Using the COBOL Program Environment

You can require the user to enter a flag to delimit the end of a string to ensure
that the length of the comparison string is passed correctly. For example,
Example 14–3 requires that the user terminate his or her string with a
colon (:). The INSPECT verb counts the number of characters before the colon,
and places that number in LEN-PART OF WS-INPUT-TE, so that Rdb/VMS
has the correct length of the comparison string. Rdb/VMS assumes that the
field specified in a CONTAINING expression is a varying string data type even
though the field definition in the database may not be a varying string data
type. The INSPECT verb then replaces the colon with a space so that the colon
is not written to the database.

Example 14–3 Using a Flag to Delimit the End of a String in RDBPRE
COBOL

*INPUT RECORD
*
* to modify time_est.
*
* 01 is record level.
01 WS-INPUT-TE.
* 03 is group level.

03 F-NAME.
* 05 is elementary item.

05 LEN-PART PIC 9(4) USAGE COMP.
05 STRING-PART PIC X(25).

03 TIME_EST PIC X(2).

* used by any modify
*
01 F-TYPE PIC X(3).
**

&RDB& DATABASE FILENAME ’FT_INFO.RDB’
**
**
* *
* M A I N S U B P R O G R A M L O G I C *
* *
**
PROCEDURE DIVISION GIVING STATUS-RESULT.
**
MAIN SECTION.
BEGIN-MOD-OPT.

SET STATUS-RESULT TO SUCCESS.
INITIALIZE OPTION.
INITIALIZE WS-INPUT-TE.

*
* Get info to be modified.

(continued on next page)

Using the COBOL Program Environment 14–7

Example 14–3 (Cont.) Using a Flag to Delimit the End of a String in
RDBPRE COBOL

DISPLAY "ENTER CHOICE FOR MODIFICATION".
DISPLAY "1 = MODIFY EC CLASS STATUS".
DISPLAY "2 = MODIFY TEST STATUS".
DISPLAY "3 = MODIFY END-DATE".
DISPLAY "4 = MODIFY TEST WRITERS".
DISPLAY "5 = MODIFY TIME_ESTIMATE".
DISPLAY "6 = EXIT THIS PROGRAM".

DISPLAY "ENTER OPTION".
ACCEPT OPTION.

GO TO OPT_ONE,
OPT_TWO,
OPT_THREE,
OPT_FOUR,
OPT_FIVE,
OPT_SIX,

DEPENDING ON OPTION.
OPT_FIVE.

DISPLAY "What is the existing feature name?"
ACCEPT STRING-PART OF WS-INPUT-TE.

* At this prompt, the user must enter a string in the form NAME:, for
* instance SHOW POOL:. The colon is used to delimit the comparison
* string. You might choose to code this differently; if you are using
* forms, you can code it to include the colon in the form so the user
* does not have to enter it. Or, you can code it as a constant in
* working storage in such a way that it will be appended to the field
* with the UNSTRING verb.
*
* The following INSPECT verb counts the number of characters before
* the colon (:), and places that number in LEN-PART OF WS-INPUT-TE,
* so that Rdb/VMS will have the correct length of the comparison
* string. The INSPECT verb then replaces the colon with a space so
* that the colon is not written to the database.

INSPECT STRING-PART OF WS-INPUT-TE TALLYING
LEN-PART OF WS-INPUT-TE FOR CHARACTERS BEFORE ":"
REPLACING ALL ":" BY " ".

DISPLAY "TIME ESTIMATE (2 DIGIT NUMBER)".
ACCEPT TIME_EST OF WS-INPUT-TE.

DISPLAY "ENTER FEATURE-TYPE, RT, SYN OR BO".
ACCEPT F-TYPE.

GO TO MODIFY-TE.

MODIFY-TE.

&RDB& START_TRANSACTION READ_WRITE RESERVING
&RDB& TEST-INFO FOR SHARED WRITE

&RDB& FOR T IN TEST-INFO WITH
&RDB& T.FEATURE-NAME CONTAINING F-NAME IN WS-INPUT-TE AND

(continued on next page)

14–8 Using the COBOL Program Environment

Example 14–3 (Cont.) Using a Flag to Delimit the End of a String in
RDBPRE COBOL

* The RSE must state the COBOL Group Level
* name to ensure that all of F-NAME is passed. However, both LEN-PART
* and STRING-PART of F-NAME are part of the CONTAINING clause. First
* the length (LEN-PART) is passed, then the string (STRING-PART). If the
* user does not pass the character count (by ending the comparison string
* with a colon), LEN-PART will be zero.
* Rdb/VMS treats this as null and because all records contain
* null, all records are modified.

&RDB& T.FEATURE-TYPE = F-TYPE
&RDB& MODIFY T USING
&RDB& T.TIME_EST = TIME_EST IN WS-INPUT-TE
&RDB& END_MODIFY
&RDB& END_FOR

&RDB& COMMIT

GO TO 900-EXIT.

**
* *
* THE *
* END *
* *
**
900-EXIT.
* Return to USERMAIN.

EXIT PROGRAM.

14.2.1.3 Converting DATE Data Types to TEXT DATE data types are stored
in Rdb/VMS databases in encoded binary format. To display a date, your
program must first retrieve the binary value and convert it to an ASCII string.
This is done by using the VMS system service routine, SYS$ASCTIM, to
perform the conversion.

See the VMS System Services Volume for more information on using
SYS$ASCTIM.

Note that RDBPRE uses the run-time library routine LIB$MOVC3 to move the
value from the DATE data type to the host language variable. The preprocessor
declares LIB$MOVC3 as external for you; do not declare it again in your
program or you may receive a fatal compile-time error.

Example 14–4 is a code fragment from the ADD_EMPLOYEES procedure that
demonstrates how to display a date.

Using the COBOL Program Environment 14–9

Example 14–4 Using SYS$ASCTIM System Service Routine in RDBPRE
COBOL

WORKING-STORAGE SECTION.
&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

.

.

.
01 ascii_date PIC X(23).
01 size_of_ascii_date PIC S9(4) COMP VALUE 23.

.

.

.

&RDB& FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = database_key(i)
&RDB& ON ERROR

MOVE ’N’ TO success_flag
CALL "Error_handler" USING RDB$STATUS,

retry_count, success_flag, lock_error_flag
&RDB& END_ERROR
&RDB& GET
&RDB& ON ERROR

MOVE ’N’ TO success_flag
&RDB& END_ERROR
&RDB& employee_id = E.EMPLOYEE_ID;
&RDB& last_name = E.LAST_NAME;
&RDB& first_name = E.FIRST_NAME;
&RDB& middle_initial = E.MIDDLE_INITIAL;
&RDB& address_data_1 = E.ADDRESS_DATA_1;
&RDB& address_data_2 = E.ADDRESS_DATA_2;
&RDB& city = E.CITY;
&RDB& state = E.STATE;
&RDB& postal_code = E.POSTAL_CODE;
&RDB& birthday = E.BIRTHDAY
&RDB& END_GET
&RDB& END_FOR

* If the field values were successfully retrieved, then
* convert the date field from binary to a printable (ASCII) format.
* The first and last arguments to the call to SYS$ASCTIM are not
* required arguments.

IF successful THEN PERFORM Display_employee END-IF
MOVE ’Y’ TO success_flag

.

.

.
Display_employee.

DISPLAY SPACE
DISPLAY "Employee id: " employee_id
DISPLAY "Last name: " last_name
DISPLAY "First name: " first_name
DISPLAY "Middle init: " middle_initial
DISPLAY "Address: " address_data_1, SPACE address_data_2
DISPLAY "City: " city
DISPLAY "State: " state
DISPLAY "Postal code: " postal_code

(continued on next page)

14–10 Using the COBOL Program Environment

Example 14–4 (Cont.) Using SYS$ASCTIM System Service Routine in
RDBPRE COBOL

* Convert binary date to ASCII format.

CALL "SYS$ASCTIM" USING
BY REFERENCE size_of_ascii_date
BY DESCRIPTOR ascii_date
BY REFERENCE birthday

DISPLAY "Birthday: " ascii_date(1:11)
DISPLAY SPACE.

14.2.1.4 Converting ASCII DATE Strings to Binary Format Use the VMS
system service routine, SYS$BINTIM, to convert ASCII DATE strings into a
binary representation so the DATE fields can be stored in the database.

See the VMS System Services Volume for more information on using
SYS$BINTIM.

Example 14–5 is a code fragment from the ADD_EMPLOYEES procedure that
demonstrates how to use SYS$BINTIM in an RDBPRE COBOL program.

Example 14–5 Using SYS$BINTIM System Service Routine in RDBPRE
COBOL

PERFORM UNTIL valid_date
DISPLAY "Please enter the Employee’s birthday (dd-MMM-yyyy):"

WITH NO ADVANCING
ACCEPT ascii_date PROTECTED REVERSED

* Use SYS$BINTIM to convert ASCII input to binary format.

CALL "SYS$BINTIM"
USING BY DESCRIPTOR ascii_date

BY REFERENCE birthday
GIVING return_status

IF return_status IS FAILURE
THEN DISPLAY "Invalid date format"
ELSE MOVE "YES" TO valid_date_flag
END-IF

END-PERFORM

Using the COBOL Program Environment 14–11

14.2.2 Using Literals
Use literal values to replace variables in the same way you would in any
COBOL program. Literal values can be either numeric or character strings.
String literals must be quoted in either double (" ") or single (’ ’) quotation
marks in COBOL. You may use a literal in any Rdb/VMS data manipulation
statement that accepts a host language variable.

&RDB& FOR D IN DEPARTMENTS WITH
&RDB& D.DEPARTMENT_CODE = ’ADMN’
&RDB& GET
&RDB& DEP_NAME = D.DEPARTMENT_NAME
&RDB& END_GET
&RDB& END_FOR

14.2.3 Forming Record Streams
In COBOL, and any language that you use to access an Rdb/VMS database,
you select the records you are interested in manipulating by gathering these
records into a stream. You create this stream using the Rdb/VMS data
manipulation statements. These statements use context variables to name the
stream of records that you select from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

14.2.4 Retrieving Records
Rdb/VMS provides you with three statements to retrieve records:

FOR

Two START_STREAM statements:

Declared START_STREAM

Undeclared START_STREAM

The following sections provide COBOL examples of how to form record streams
and retrieve records using the FOR and START_STREAM statements.

14.2.4.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any Rdb/VMS and
host language statements included within the FOR . . . END_FOR block. The
FOR statement always includes an RSE with at least one context variable.

You should avoid using the COBOL line terminator period (.) within an
RDBPRE FOR loop or at the end of an AT END . . . END_FETCH or
ON ERROR . . . END_ERROR statement block.

14–12 Using the COBOL Program Environment

Furthermore, the COBOL preprocessor translates an Rdb/VMS FOR loop into
an inline COBOL PERFORM loop. You can use an ON ERROR clause that
contains a GO TO statement to transfer program control out of this PERFORM
loop when an error occurs in the execution of the FOR statement. However, if
you then use the /CHECK=PERFORM compiler qualifier, the system generates
a run-time error and the program aborts. Do not use the /CHECK qualifier if
your program uses a GO TO statement to transfer control out of an Rdb/VMS
FOR loop.

Example 14–6 shows a FOR statement from the DISPLAY_CAND procedure.
It uses the flag ‘‘found_candidate_flag’’ to determine if the RSE has been
satisfied. If a candidate record is found whose fields match the values in the
host language variables, the success flag is set to true. If no record matches
the values in the host language variables, then the success flag remains set to
false.

Example 14–6 Using the FOR Statement in RDBPRE COBOL
&RDB& START_TRANSACTION READ_ONLY

INITIALIZE found_candidate_flag
&RDB& FOR C IN CANDIDATES WITH C.FIRST_NAME = candidate_first_name
&RDB& AND C.MIDDLE_INITIAL = candidate_middle_initial
&RDB& AND C.LAST_NAME = candidate_last_name

* Retrieve and display the VARYING STRING field if a record exists
* for the specified candidate. If no record exists for this person,
* inform the user.

&RDB& GET candidate_status = C.CANDIDATE_STATUS END_GET
MOVE "Y" TO found_candidate_flag
DISPLAY candidate_first_name SPACE candidate_middle_initial

SPACE candidate_last_name "has the following status:"
DISPLAY SPACE
DISPLAY candidate_status

&RDB& END_FOR
&RDB& COMMIT

IF NOT found_candidate
THEN DISPLAY "No such candidate on file"
END-IF

DISPLAY "Please enter the first name of the candidate
- " or type exit: " NO ADVANCING

ACCEPT candidate_first_name PROTECTED REVERSED
END-IF

END-PERFORM.

You can include host language statements within the FOR . . . END_FOR
block to process the records within the stream. However, there is an important
exception to the type of statement you can include. Do not transfer control
out of the FOR . . . END_FOR block unless you do not want to return. It is
impossible to enter the loop again once you have exited.

Using the COBOL Program Environment 14–13

You may call a module from within a FOR loop because these subroutines
execute within the FOR loop context. However, you cannot use a context
variable defined in the FOR block in any subroutine that is preprocessed
outside the FOR block.

14.2.4.2 Using Declared Streams to Retrieve Records Rdb/VMS supports
two forms of the START_STREAM statement. The declared START_STREAM
statement and the undeclared START_STREAM statement. Declared streams
provide all the features of the undeclared streams and more. Most importantly,
undeclared streams require that the statements you use to manipulate the
stream be enclosed by the START_STREAM and END_STREAM statements
in your source program. Declared streams do not impose this restriction. The
statements you use to manipulate the stream may appear in any order within
your program as long as the DECLARE_STREAM statement appears first and
the statements execute in a logical order (START_STREAM, FETCH, GET,
END_STREAM).

Digital recommends that all new applications use the declared START_
STREAM statement. For this reason, only the declared START_STREAM
statement is discussed in this section. Complete details on the differences
between declared and undeclared START_STREAM statements are provided in
Chapter 9.

Note If you use the AT END clause in a FETCH statement, you must use the END_
FETCH clause to terminate the FETCH statement. Do not use the COBOL
statement terminator within the AT END clause. This COBOL statement
terminator inadvertently terminates code generated by RDBPRE in the AT END
clause.

Example 14–7, from the PAIR procedure, shows the use of the declared
START_STREAM and FETCH statements. The example pairs a CANDIDATES
record with an EMPLOYEES record at random. This could not be achieved
with a FOR statement. You could not conditionally end a FOR loop when all
the CANDIDATES records have been paired with EMPLOYEES records. A
START_STREAM statement lets you do this.

14–14 Using the COBOL Program Environment

Example 14–7 Using the Declared START_STREAM and FETCH Statements
in RDBPRE COBOL

* Declare two streams: one for the CANDIDATES relation and the other
* for the EMPLOYEES relation.

&RDB& DECLARE_STREAM cands USING CA IN CANDIDATES SORTED BY CA.LAST_NAME
&RDB& DECLARE_STREAM emps USING EM IN EMPLOYEES SORTED BY EM.FIRST_NAME

Pair.

* This procedure demonstrates the use of the declared START_STREAM *
* statement. The output of this procedure is merely a random *
* matching of each CANDIDATES record with an EMPLOYEES record. *

&RDB& START_TRANSACTION READ_ONLY

* Open both streams and set a flag for the end-of-stream condition
* to false.

PERFORM Open_candidates
PERFORM Open_employees
INITIALIZE end_of_emps_flag, end_of_cands_flag

* Fetch a record from the CANDIDATES and EMPLOYEES relations.

PERFORM Read_a_candidate
PERFORM Read_an_employee

* Print the employees and candidates names until the end-of-stream
* condition is met for the stream of CANDIDATES records.

PERFORM UNTIL end_of_cands
DISPLAY last_name, first_name, ’ ’,

candidate_last_name, candidate_first_name
PERFORM Read_a_candidate
IF NOT end_of_emps
THEN PERFORM Read_an_employee
END-IF

END-PERFORM

* Close both streams.

PERFORM Close_employees
PERFORM Close_candidates

&RDB& COMMIT.
DISPLAY "Press any key to continue " NO ADVANCING
ACCEPT continue_key.

(continued on next page)

Using the COBOL Program Environment 14–15

Example 14–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE COBOL

* Set of procedures to control streams. Note that the statements
* do not appear in the order that they will be executed. This is
* a feature that declared streams have and undeclared streams do
* not have.

Open_candidates.

* Open the CANDIDATES stream.

&RDB& START_STREAM cands.

Open_employees.

* Open the EMPLOYEES stream.

&RDB& START_STREAM emps.

Read_a_candidate.

* Fetch a CANDIDATES record.

&RDB& FETCH cands
&RDB& AT END

MOVE ’Y’ TO end_of_cands_flag
&RDB& END_FETCH

IF NOT end_of_cands
THEN

&RDB& GET
&RDB& candidate_last_name = CA.LAST_NAME;
&RDB& candidate_first_name= CA.FIRST_NAME;
&RDB& candidate_status = CA.CANDIDATE_STATUS
&RDB& END_GET.

Read_an_employee.

* Fetch an EMPLOYEES record.

&RDB& FETCH emps
&RDB& AT END

MOVE ’Y’ TO end_of_emps_flag
&RDB& END_FETCH

IF NOT end_of_emps
THEN

&RDB& GET
&RDB& last_name = EM.LAST_NAME;
&RDB& first_name = EM.FIRST_NAME;
&RDB& employee_id = EM.EMPLOYEE_ID
&RDB& END_GET.

(continued on next page)

14–16 Using the COBOL Program Environment

Example 14–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE COBOL

Close_employees.

* Close the EMPLOYEES stream.

&RDB& END_STREAM emps.

Close_candidates.

* Close the CANDIDATES stream.

&RDB& END_STREAM cands.

14.2.5 Retrieving Segmented Strings
Retrieving segmented strings is a two-step process. First, you must retrieve
the record that contains the segmented string field; then, you must retrieve the
individual segments that comprise the segmented string field.

You may find it easier to picture a segmented string by referring to Figure 8–1
in Chapter 8.

Rdb/VMS provides you with two statements to retrieve segmented string fields:

FOR

START_SEGMENTED_STRING

14.2.5.1 Using the FOR Statement to Retrieve Segmented Strings You must
use two streams when processing segmented string streams. Use the first
FOR or START_STREAM statement to form an outer stream of records, and
then use the second FOR statement to form an inner stream of segments. This
inner stream formed by the second RSE identifies the segments contained in
the field specified by the outer stream formed by the first RSE. Use different
context variables in the inner and outer streams.

Remember that to retrieve the segmented string, you must begin at the first
segment and retrieve segments in the order that they are stored, that is,
sequentially.

Example 14–8 from the DISPLAY_RESUME procedure:

Uses a FOR statement to search the database for a record with a value
for the EMPLOYEE_ID field that matches the host language variable,
employee_id

Uses a second FOR statement to loop through the segments of the
segmented string field for the EMPLOYEES record

Using the COBOL Program Environment 14–17

Uses the GET statement to retrieve the individual segments that comprise
a segmented string

Displays these values on the terminal

Example 14–8 Using the FOR Statement with Segmented Strings in RDBPRE
COBOL

Display_resume.

* This procedure demonstrates how to retrieve a field of *
* data type SEGMENTED STRING. *

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Display Resume " LINE 1 COLUMN 5
DISPLAY "" LINE 2 COLUMN 1

* Prompt use to enter the ID of the employee
* resume that he or she wants to view. If user
* enters ’exit’ then exit the procedure.

DISPLAY "Please enter the ID of the employee whose resume "
DISPLAY "you want to display or type exit: " NO ADVANCING
ACCEPT employee_id PROTECTED REVERSED
PERFORM UNTIL employee_id = "EXIT" OR "exit"

&RDB& START_TRANSACTION READ_ONLY
INITIALIZE found_employee_flag

* Start an outer FOR loop to retrieve the employees record(s)
* with the specified ID.

&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id
MOVE ’Y’ TO found_employee_flag

* Start an inner FOR loop to retrieve the segments
* of the segmented string that comprise the employee’s
* resume.

&RDB& FOR RR IN R.RESUME
&RDB& GET
&RDB& resume_segment = RR.RDB$VALUE;
&RDB& segment_length = RR.RDB$LENGTH
&RDB& END_GET

* Display each segment as it is retrieved from the database.

DISPLAY resume_segment(1:segment_length)
&RDB& END_FOR
&RDB& END_FOR
&RDB& COMMIT

(continued on next page)

14–18 Using the COBOL Program Environment

Example 14–8 (Cont.) Using the FOR Statement with Segmented Strings
in RDBPRE COBOL

* If a record with the specified ID was not found then inform
* the user.

IF NOT found_employee
THEN DISPLAY ’Employee: ’, employee_id, ’ has no resume on file’
END-IF
DISPLAY SPACE

DISPLAY "Please enter the ID of the employee whose resume "
DISPLAY "you want to display or type exit: " NO ADVANCING
ACCEPT employee_id PROTECTED REVERSED

END-PERFORM.

The GET statement fetches only as much of the stored segment as the host
language variable that receives the segment can hold. The next GET fetches
the next piece of the segment. Suppose the segmented string segment size in
the previous example was declared as 80 characters and the actual length of
the stored segment was 100 characters. The first GET statement would fetch
80 characters of the first segment and the next GET statement would fetch the
remaining 20 characters. The third GET statement would fetch 80 characters
of the second segment, the next GET statement would fetch the remaining 20,
and so on.

14.2.5.2 Using the START_SEGMENTED_STRING Statement to Retrieve
Segmented Strings When you want to maintain program control of loop
iteration, use the START_SEGMENTED_STRING statement with a record
stream formed by a FOR or START_STREAM statement. You must start
two streams when processing segmented string streams with the START_
SEGMENTED_STRING statement.

Form an outer stream of records with a FOR or START_STREAM statement,
then use the START_SEGMENTED_STRING statement to form an inner
stream of segments. This inner stream identifies the segment stream that is
contained in the field specified by the FOR or START_STREAM statement.
When you name the segment stream, use a different name from the one you
used for the outer stream name. Also, use different context variables for the
outer stream and the inner segmented string stream.

The program shown in Example 14–9:

Uses an undeclared START_STREAM statement to find all the records in
the RESUMES relation with an employee ID of 12345.

Uses a START_SEGMENTED_STRING statement to retrieve the resume
of each EMPLOYEES record found by the first stream.

Uses the GET statement to retrieve the segments that comprise the
segmented string.

Using the COBOL Program Environment 14–19

Checks the return status value of the GET statement after each segment is
retrieved to make sure the end-of-segmented-string condition has not been
met. If this condition has not been met, the value of the current segment is
printed.

Stops processing the segmented string field when the preceding condition is
met.

Fetches the next employee record with an employee ID of 12345, if one
exists.

Closes both streams when both the START_STREAM and START_
SEGMENTED_STRING end conditions have been met.

Commits the transaction.

Example 14–9 Using the START_STREAM and START_SEGMENTED_STRING
Statements in RDBPRE COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. show_resume
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

&RDB& DATABASE pers = FILENAME ’MF_PERSONNEL’

01 end_of_stream PIC X.

01 resume_segment PIC X(80).
01 segment_length PIC S9(4) COMP.
01 RDB$SIGNAL PIC S9(9) COMP VALUE IS EXTERNAL RDB$SIGNAL.

01 RDB$_SEGSTR_EOF PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_SEGSTR_EOF.

PROCEDURE DIVISION.
resume_example.

&RDB& START_TRANSACTION READ_ONLY
* Find all the records in the RESUMES relation
* with an employee ID of 12345.

&RDB& START_STREAM RESSTR USING
&RDB& R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
&RDB& FETCH RESSTR
&RDB& END_FETCH

(continued on next page)

14–20 Using the COBOL Program Environment

Example 14–9 (Cont.) Using the START_STREAM and START_SEGMENTED_
STRING Statements in RDBPRE COBOL

* Retrieve the resume of each employee found
* with the START_STREAM statement.

&RDB& START_SEGMENTED_STRING RINFO USING STRN IN R.RESUME
MOVE ’N’ TO end_of_stream
PERFORM UNTIL end_of_stream = ’Y’

* Retrieve the segments that comprise the segmented string
* field.

&RDB& GET
- resume_segment = STRN.RDB$VALUE;
- segment_length = STRN.RDB$LENGTH
&RDB& END_GET

* Check the return status of the GET statement after each
* segment is retrieved to make sure that the end-of-
* segmented-string condition has not been met. If this
* condition has not been met, print the value of the current segment.
* Otherwise, stop processing the stream of segments.

IF RDB$LU_STATUS IS NOT EQUAL TO RDB$_SEGSTR_EOF
THEN

DISPLAY resume_segment(1:segment_length)
ELSE

MOVE ’Y’ TO end_of_stream
END-IF

END-PERFORM

* Close both streams.

&RDB& END_SEGMENTED_STRING RINFO
&RDB& END_STREAM RESSTR

&RDB& COMMIT
&RDB& FINISH

STOP RUN.

14.2.6 Retrieving Field Values
Use the GET statement to retrieve one, several, or all the field values from a
database record. You can also use the GET statement to retrieve statistical
values from the database.

Do not use the RDBPRE concatenation operator (|) in a GET statement.
Doing so causes a preprocessing error. To concatenate fields in preprocessed
programs, first use the GET statement to retrieve the individual fields and
store them in separate COBOL variables. Then concatenate the COBOL
variables in a COBOL statement using the COBOL STRING statement.

Using the COBOL Program Environment 14–21

Section 14.2.6.1 and Section 14.2.6.2 provide examples of retrieving field and
record values. Section 14.2.6.3 provides an example of retrieving statistical
values.

14.2.6.1 Using the GET Statement to Retrieve Field Values When you form
a record stream using the FOR statement, you include the GET statement
within the FOR . . . END_FOR block to retrieve field values from the record
stream. When you form a record stream using the undeclared START_
STREAM statement, you include the GET statement between the START_
STREAM and END_STREAM statements. When you use the declared form
of the START_STREAM statement, the GET statement must execute within
the START_STREAM . . . END_STREAM block, however, it does not have to
appear within this block in your program.

Example 14–10, from the LIST_RECORD procedure, shows the use of the FOR
and GET statements in RDBPRE COBOL.

Example 14–10 Using the FOR and GET Statements in RDBPRE COBOL
* For each EMPLOYEES record that has a corresponding record in
* DEGREES, print the DEGREES record.

&RDB& FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
&RDB& FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& GET
&RDB& first_name = E.FIRST_NAME;
&RDB& last_name = E.LAST_NAME;
&RDB& degree = D.DEGREE;
&RDB& degree_field = D.DEGREE_FIELD
&RDB& END_GET

DISPLAY "Name is: ", first_name, SPACE, last_name
"Degree is: ", degree
"Degree field is: ", degree_field

&RDB& END_FOR
.
.
.

&RDB& END_FOR

See an earlier example, Example 14–7, for a demonstration of how to use the
START_STREAM, FETCH, and GET statements.

14.2.6.2 Using the GET * Statement to Retrieve Field Values A special form
of the GET statement is the GET * statement, which lets you retrieve database
values at the record level rather than the field level. You can retrieve all the
fields in a record with the GET * statement. To use the GET * statement, you
must first declare a record structure that contains all the fields in the records
of a relation, with record field names that match the database field names.
You can use the COBOL COPY FROM DICTIONARY statement to create
such a record structure. (See Chapter 12 for more information on copying
record and field definitions from the data dictionary.) The GET * statement in

14–22 Using the COBOL Program Environment

the following example retrieves all of the fields from the records of the JOB_
HISTORY relation and places their values in the job_history host language
record structure:

&RDB& FOR FIRST 1 J IN JOB_HISTORY WITH
&RDB& J.JOB_CODE = JOB_CODE IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& GET
&RDB& job_history = J.*
&RDB& END_GET
&RDB& END_FOR

14.2.6.3 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly, without processing each
record in the record stream. RDBPRE may assign a data type to the result
that is different from the data type of the field referred to in the expression.
See Chapter 8 for information on the data type conversions performed by
statistical expressions.

Example 14–11, from the STATS procedure, uses the statistical function
COUNT to find the total number of records in the EMPLOYEES relation.

Example 14–11 Using the GET Statement to Retrieve a Statistical Value in
RDBPRE COBOL

Stats.

**
* This procedure displays the total number of records stored in the *
* EMPLOYEES relation. *
**

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Statistics" LINE 1 COLUMN 20
DISPLAY "" LINE 2 COLUMN 1

&RDB& START_TRANSACTION READ_ONLY

DISPLAY "The number of employees in the Corporation are: " NO ADVANCING

* Use the GET statement with a statistical function to calculate the
* total number of records in the EMPLOYEES relation.

&RDB& GET number_of_employees = COUNT OF E IN EMPLOYEES END_GET

* Display the value.

DISPLAY number_of_employees
&RDB& COMMIT

DISPLAY SPACE
DISPLAY "Press any key to continue " NO ADVANCING
ACCEPT continue_key.

Using the COBOL Program Environment 14–23

14.2.7 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The Rdb/VMS update statements can only be used in a read/write transaction.
(You may, of course, include any valid Rdb/VMS statement within a read/write
transaction.) The update statements that require a read/write transaction are:

STORE

MODIFY

ERASE

If you update a record and triggered actions have been defined for the relation
containing the record, the update operation (STORE, MODIFY, or ERASE) will
have the specified effect on all the relations in the database that have a foreign
key relationship with the record you want to update.

If a relation-specific constraint has been defined, your ability to perform
update operations may depend on the presence of matching field values in
other relations. For more information on relation-specific constraints, see
Section 6.6.

Include the GET statement in a read/write transaction if you intend to update
any of the fields returned by the GET statement.

Note You may not use a view to update records if that view refers to more than one
relation.

14.2.7.1 Storing Records You can insert values into one or more fields in
one relation using a single STORE statement. To store more than one record
in a relation, include the STORE statement within a program loop.

Example 14–12, from the ADD_EMPLOYEES procedure, stores an employee
record in the EMPLOYEES relation.

14–24 Using the COBOL Program Environment

Example 14–12 Storing Records in RDBPRE COBOL
Store_cand.

* This procedure stores a record in the CANDIDATES relation. It *
* shows how to store a value in a field of data type VARYING STRING.*

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Store Candidates" LINE 1 COLUMN 20
DISPLAY "" LINE 2 COLUMN 1

* Prompt the user for data to store in the CANDIDATES relation.

DISPLAY "Please enter the first name of the candidate"
DISPLAY "or type exit: " NO
ACCEPT candidate_first_name PROTECTED REVERSED
PERFORM UNTIL candidate_first_name = "EXIT" OR "exit"

INITIALIZE confirm_flag
PERFORM until confirm

DISPLAY "Please enter the candidates "
- middle initial: " NO ADVANCING

ACCEPT candidate_middle_initial PROTECTED REVERSED
DISPLAY "Please enter the last name of "

- the candidate: "NO ADVANCING
ACCEPT candidate_last_name PROTECTED REVERSED
DISPLAY "Please enter candidate status "

_ information: " NO ADVANCING
ACCEPT candidate_status
DISPLAY "Have you entered the candidate

- " information correctly(Y/N): " NO ADVANCING
ACCEPT confirm_flag PROTECTED REVERSED

END-PERFORM
&RDB& START_TRANSACTION READ_WRITE
&RDB& RESERVING CANDIDATES FOR SHARED WRITE

MOVE ’Y’ TO success_flag

* Store the values specified by the user in the CANDIDATES relation.
* Check for errors and inform the user of the success or failure of
* the STORE operation.

(continued on next page)

Using the COBOL Program Environment 14–25

Example 14–12 (Cont.) Storing Records in RDBPRE COBOL

&RDB& STORE C IN CANDIDATES USING
&RDB& ON ERROR

MOVE "N" TO success_flag
CALL "Error_handler" USING RDB$STATUS, retry_count,

success_flag, lock_error_flag
&RDB& END_ERROR
&RDB& C.LAST_NAME = candidate_last_name;
&RDB& C.FIRST_NAME = candidate_first_name;
&RDB& C.MIDDLE_INITIAL = candidate_middle_initial;
&RDB& C.CANDIDATE_STATUS = candidate_status
&RDB& END_STORE

IF successful
THEN

DISPLAY "Update operation succeeded"
&RDB& COMMIT

ELSE
DISPLAY "Update operation failed"

&RDB& ROLLBACK
END-IF
DISPLAY "Please enter the first name "

- of the candidate or type exit: " NO
ACCEPT candidate_first_name PROTECTED REVERSED

END-PERFORM.

14.2.7.1.1 Using the STORE * Statement to Store Records A special form of
the STORE statement is the STORE * statement, which lets you manipulate
database values at the record level rather than the field level. You can store
all the fields in a record with the STORE * statement. To use the STORE *
statement, you must first declare a record structure that contains all the fields
in the relation, with record field names that match the database field names.
You can use the COBOL COPY FROM DICTIONARY statement to create such
a record structure. (See Chapter 12 for more information on copying record and
field definitions from the data dictionary.) Then, put the field values you want
to store in the record fields and store the entire record using the STORE *
statement. Example 14–13 shows the use of the STORE * statement to store
job_history, a host language record structure, in the JOB_HISTORY relation.

14–26 Using the COBOL Program Environment

Example 14–13 Using the STORE * Statement in RDBPRE COBOL
&RDB& STORE J IN PERS.JOB_HISTORY USING
&RDB& J.* = job_history
&RDB& END_STORE

14.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement to Store
Segmented Strings Use the CREATE_SEGMENTED_STRING statement
and the STORE statement to store segmented strings in a relation. You must
use two operations to store segmented strings.

Note See Section 9.2.6.1.2 for information about defining the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name with an appropriate value
for storing your segmented strings.

Note Segmented strings cannot be updated (ERASE, MODIFY, or STORE) as part of
a triggered action. For more information, see the DEFINE TRIGGER statement
in the VAX Rdb/VMS RDO and RMU Reference Manual.

Example 14–14, from the MOD_RESUME procedure, demonstrates how to
read and store a resume into a segmented string from a sequential file then it
shows how to use the segmented string handle to modify an existing database
record.

Example 14–14 Using the CREATE_SEGMENTED_STRING Statement in
RDBPRE COBOL

Mod_resume.

* This procedure demonstrates how to modify a field of data *
* type SEGMENTED_STRING. *

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Modify a resume" LINE 1 COLUMN 5
DISPLAY "" LINE 2 COLUMN 1

DISPLAY "Please enter the ID of the employee or type exit: " NO
ACCEPT employee_id PROTECTED REVERSED
PERFORM UNTIL employee_id = "EXIT" OR "exit"

DISPLAY "To modify a resume, you must supply a new "
DISPLAY " resume to replace the old resume"
DISPLAY SPACE

* Prompt the user for the file name of the resume that will replace
* the old resume.

DISPLAY "Please enter file name of new resume: " NO ADVANCING
ACCEPT file-name PROTECTED REVERSED

(continued on next page)

Using the COBOL Program Environment 14–27

Example 14–14 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in RDBPRE COBOL

&RDB& START_TRANSACTION READ_WRITE RESERVING RESUMES FOR SHARED WRITE

* Create a new segmented string that will hold the value
* of the new resume.

&RDB& CREATE_SEGMENTED_STRING resume_handle
OPEN INPUT resume_file
INITIALIZE eof_flag
MOVE SPACES TO resume_line
READ resume_file

AT END MOVE "Y" TO eof_flag
END-READ
PERFORM UNTIL end_of_file

&RDB& STORE R IN resume_handle
&RDB& USING R.RDB$VALUE = resume_line END_STORE

MOVE SPACES TO resume_line
READ resume_file

AT END MOVE "Y" TO eof_flag
END-READ

END-PERFORM
CLOSE resume_file

&RDB& END_SEGMENTED_STRING resume_handle

* Modify the old resume by supplying the segmented string handle
* from the CREATE_SEGMENTED_STRING statement as the object
* of the segmented string assignment statement.

&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id
&RDB& MODIFY R USING
&RDB& R.RESUME = resume_handle
&RDB& END_MODIFY
&RDB& END_FOR
&RDB& COMMIT

DISPLAY "Please enter the ID of the employee "
- or type exit: " NO

ACCEPT employee_id PROTECTED REVERSED
END-PERFORM.

14.2.7.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of a record in one relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

14–28 Using the COBOL Program Environment

Example 14–15, a COBOL program segment from the MODIFY_ADDRESS
procedure, modifies a record in the EMPLOYEES relation.

Example 14–15 Modifying Records in RDBPRE COBOL
.
.
.

&RDB& START_TRANSACTION READ_WRITE
&RDB& RESERVING EMPLOYEES FOR SHARED WRITE

* Modify the address fields for the specified EMPLOYEES record.

&RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
&RDB& MODIFY E USING
&RDB& ON ERROR

MOVE "N" TO success_flag
CALL "Error_handler" USING RDB$STATUS, retry_count,

success_flag, lock_error_flag
&RDB& END_ERROR
&RDB& E.ADDRESS_DATA_1 = address_data_1;
&RDB& E.ADDRESS_DATA_2 = address_data_2;
&RDB& E.CITY = city;
&RDB& E.STATE = state;
&RDB& E.POSTAL_CODE = postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

* Notify the user of the success or failure of the modify operation.

IF successful
THEN DISPLAY "Update operation succeeded"

&RDB& COMMIT
ELSE

DISPLAY "Update operation failed"
&RDB& ROLLBACK

END-IF

14.2.7.2.1 Using the MODIFY * Statement to Modify Records A special
form of the MODIFY statement is the MODIFY * statement, which lets you
manipulate database values at the record level rather than the field level. You
can modify all the fields in a record with the MODIFY * statement. To use the
MODIFY * statement, you must first declare a record structure that contains
all the fields in the record, with record field names that match the database
field names. You can use the COBOL COPY FROM DICTIONARY statement
to create such a record structure. (See Chapter 12 for more information on
copying record and field definitions from the data dictionary.) Then, put the
field values you want to replace into the record fields and modify the entire
database record using the MODIFY * statement.

Only use the MODIFY * statement if you need to modify every field value
in a record. Modifying a field by replacing one value with an identical value
needlessly adds overhead to your program.. For example, your program may
check constraints on a field value that you know is valid because it is the same
value that the field presently holds.

Using the COBOL Program Environment 14–29

Example 14–16 replaces the field values of an employee record in the JOB_
HISTORY relation with the values in the job_history host language record
structure.

Example 14–16 Using the MODIFY * Statement in RDBPRE COBOL
&RDB& FOR J IN JOB_HISTORY WITH
&RDB& J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& MODIFY J USING
&RDB& J.* = job_history
&RDB& END_MODIFY
&RDB& END_FOR

14.2.7.2.2 Modifying Segmented Strings To modify a segmented string, you
must first create a new segmented string with the CREATE_SEGMENTED_
STRING statement and then modify the existing record by replacing the
logical pointer to the old segmented string with the logical pointer to the new
segmented string. You accomplish this by using the segmented string handle
in an assignment statement. As Chapter 8 explains in more detail, when
you store a segmented string field, you do not actually store segments into a
record—you store a logical pointer to the first segment in the segmented string.
Thus, by creating a new segmented string and a new segmented string id
associated with it, you can modify the field in a database record that ‘‘contains’’
a segmented string merely by replacing the old segmented string id with a
new segmented string id. When you use the segmented string handle in an
assignment statement, RDBPRE understands that it is the segmented string
id which is to be assigned to the record.

Note Although you use a MODIFY statement to modify segmented strings, you are
not actually modifying the individual segments that comprise the segmented
string field. You are actually replacing the entire segmented string with a new
segmented string.

See an earlier example, Example 14–14, for an illustration of how this is done
in COBOL.

14.2.7.3 Erasing Records You can delete one, many, or all the records from
a relation using a single ERASE operation. Before erasing records, you must
start a read/write transaction and form a record stream that contains the
records you wish to erase.

Example 14–17, from the DELETE_RECORD procedure, demonstrates how to
ERASE records in COBOL programs.

Note The definition of the sample personnel database includes the trigger
EMPLOYEE_ID_CASCADE_DELETE, which performs an automatic deletion
of records in the relations named in ERASE statements in Example 14–17
(except for RESUMES) when the record with the matching employee ID is

14–30 Using the COBOL Program Environment

deleted from the EMPLOYEES relation. Thus, you would not need to include
‘‘cascading deletion’’ logic in your programs if it were already included in a
trigger definition.

Example 14–17 Erasing Records in RDBPRE COBOL
&RDB& START_TRANSACTION READ_WRITE RESERVING EMPLOYEES,
&RDB& SALARY_HISTORY, JOB_HISTORY, DEPARTMENTS,
&RDB& DEGREES, WORK_STATUS, RESUMES FOR SHARED WRITE

&RDB& FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = db_key
&RDB& FOR JH IN JOB_HISTORY
&RDB& WITH JH.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE JH
&RDB& END_FOR
&RDB& FOR SH IN SALARY_HISTORY
&RDB& WITH SH.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE SH
&RDB& END_FOR
&RDB& FOR D IN degrees WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE D
&RDB& END_FOR
&RDB& FOR R IN RESUMES WITH R.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE R
&RDB& END_FOR
&RDB& ERASE E

DISPLAY "Employee id: ", employee_id, " deleted successfully"
&RDB& END_FOR
&RDB& COMMIT

14.3 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer or address that has a one-to-one
relationship with a record in the database. Each record has a unique dbkey
that points to it. You can retrieve this key as though it were a field in a record.
For relations, the dbkey is 8 bytes. For views, you can calculate the size by
multiplying the number of relations referred to in the view by 8 bytes. If your
view refers to only one relation, the dbkey is 8 bytes; if your view refers to two
relations, it is 16 bytes, and so on. Once you have retrieved a dbkey, you can
use it to retrieve its associated record directly, within the RSE of a FOR or
START_STREAM statement.

By default, the scope of a dbkey ends with the COMMIT statement. That is, a
dbkey is guaranteed to point to the same record for the life of the transaction
in which it is retrieved.

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

Using the COBOL Program Environment 14–31

The following example demonstrates how to specify the scope of the dbkey in
an RDBPRE COBOL program:

&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

Suggestions on how you can take advantage of the dbkey scope are contained
in Section 9.2.7.

14.4 Using Structured Programming
Programs and modules that pass through the RDBPRE preprocessor do not
have unlimited freedom in structure. Calls to routines, such as the COBOL
PERFORM block, or calls to subprograms and subroutines, require that you
pay special attention to the context from which they are called.

Many data manipulation statements, in particular those that use context
variables, execute in the context of other data manipulation statements. These
statements are:

DECLARE_STREAM

FOR

GET

START_STREAM

END_STREAM

FETCH

STORE

MODIFY

ERASE

CREATE_SEGMENTED_STRING

START_SEGMENTED_STRING

END_SEGMENTED_STRING

These individual data manipulation statements each form only part of a
complex call to the database. The preprocessor generates one call to the
database, using more than one data manipulation statement. For example, a
MODIFY statement executes within the context of a FOR or START_STREAM
statement. The call to the database can only be made using both the FOR and
MODIFY statements. For this reason, the preprocessor requires such data
manipulation statements to be lexically sequential, that is, in the order they
appear in the program source code.

14–32 Using the COBOL Program Environment

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This order
may be entirely different from the order of actual program execution. However,
the preprocessor is unaware of the intended run-time order of program block
execution. It generates code in the order that data manipulation statements
appear in the source code. Keep this in mind when writing your application.

Also keep in mind that a context variable is meaningful only within its
scope. In other words, the context variable defined in a FOR statement is
meaningless after the END_FOR statement, and a context variable defined
in an undeclared START_STREAM statement is meaningless after the END_
STREAM statement. However, the context variable defined in a DECLARE_
STREAM statement is meaningful throughout the module in which it is issued.

A stream declared with the DECLARE_STREAM statement lets you place the
stream of manipulation statements in an order that deviates from the order of
actual program execution. When you want to use structured programming and
you do not need the automatic iteration provided by the FOR statement, use
the declared START_STREAM statement.

For more information on the declared and undeclared START_STREAM
statement, see Section 9.2.3.2. Data manipulation statements that stand alone
as independent calls to the database may appear in any order in the source
file. These statements are:

DATABASE

READY

START_TRANSACTION

GET

COMMIT

ROLLBACK

FINISH

DECLARE_STREAM

Remember that you must issue the DECLARE_STREAM statement before
you can issue a declared START_STREAM statement, and the DATABASE
statement must appear in the data declaration section of your program.

Example 14–18, from the DELETE_RECORD and CALL_OTHER procedures,
demonstrates structured programming in a preprocessed COBOL program.
The DELETE_RECORD procedure and the CALL_OTHER procedure are
separately preprocessed and compiled. They are linked with the LINK
command. The DELETE_RECORD procedure passes the value of the dbkey
to the CALL_OTHER procedure. This procedure finds the record associated
with the dbkey and displays this record on the terminal. Although it is not

Using the COBOL Program Environment 14–33

necessary to program this query in two modules, it is done here to demonstrate
how to pass variables between separately preprocessed modules.

Example 14–18 Using Data Manipulation Statements in Structured
Programming in RDBPRE COBOL

* Procedure DELETE_RECORD: *
* *
* This procedure passes the value of the dbkey and transaction *
* handle to the CALL_OTHER procedure. The CALL_OTHER procedure *
* finds and displays the employee record associated with an *
* employee_id specified in DELETE_RECORD and then return program *
* control to the DELETE_RECORD procedure. *

MOVE "Y" TO success_flag
&RDB& START_TRANSACTION (TRANSACTION_HANDLE trans1)
&RDB& READ_WRITE RESERVING EMPLOYEES FOR SHARED READ

* Find the employee record that the user wants to delete. If
* an error occurs during the FOR operation, call an error handler.

INITIALIZE found_employee_flag
&RDB& FOR (TRANSACTION_HANDLE trans1)
&RDB& E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
&RDB& ON ERROR

MOVE "N" TO success_flag
CALL "Error_handler" USING RDB$STATUS, retry_count,

success_flag, lock_error_flag
&RDB& END_ERROR

* Get the dbkey of the EMPLOYEES record that the user wants to delete.

&RDB& GET
&RDB& ON ERROR

MOVE "N" TO success_flag
&RDB& END_ERROR
&RDB& db_key = E.RDB$DB_KEY
&RDB& END_GET

MOVE "Y" TO found_employee_flag
&RDB& END_FOR

IF NOT found_employee
THEN DISPLAY "No employee with id: ", employee_id " on file"
ELSE IF successful

* Pass the dbkey to an external procedure, CALL_OTHER, to print
* out the record to which the dbkey points. Note that using
* an external procedure is neither necessary nor recommended for
* performing this task. It is done in this example only to show
* how values are passed between routines in an RDBPRE COBOL program.

THEN CALL "Call_other" USING db_key, trans1
END-IF

END-IF
&RDB& COMMIT (TRANSACTION_HANDLE trans1)

DISPLAY SPACE

(continued on next page)

14–34 Using the COBOL Program Environment

Example 14–18 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE COBOL

* Ask user for confirmation that this is the EMPLOYEES
* record he or she wants to delete.

IF found_employee
THEN DISPLAY "Is this the employee you want to delete (Y/N): " NO

ACCEPT confirm_flag PROTECTED REVERSED
END-IF

.

.

.

IDENTIFICATION DIVISION.
PROGRAM-ID. Call_other.

* Procedure CALL_OTHER: *
* *
* This procedure is passed the dbkey and transaction handle *
* from the DELETE_RECORD procedure. With this information, the *
* CALL_OTHER procedure can find and display the employee record *
* associated with an employee_id specified in DELETE_RECORD and *
* then return program control to the DELETE_RECORD procedure. *

DATA DIVISION.
WORKING-STORAGE SECTION.

* Because the database was invoked in the main program with
* GLOBAL attributes, refer to it here as EXTERNAL.

&RDB& DATABASE EXTERNAL pers = FILENAME "MF_PERSONNEL"
&RDB& DBKEY SCOPE IS FINISH
01 employees.

02 employee_id PIC X(5).
02 last_name PIC X(14).
02 first_name PIC X(10).
02 middle_initial PIC X.
02 address_data_1 PIC X(25).
02 address_data_2 PIC X(25).
02 city PIC X(20).
02 state PIC X(2).
02 postal_code PIC X(5).
02 birthday PIC S9(11)V9(7) COMP.

LINKAGE SECTION.
01 db_key PIC X(8).
01 trans_1 PIC S9(9) COMP.

(continued on next page)

Using the COBOL Program Environment 14–35

Example 14–18 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE COBOL

PROCEDURE DIVISION USING db_key, trans_1.
Begin.

* The transaction was started in the DELETE_RECORD subroutine,
* so there is no need to start a transaction here. Use the
* transaction handle to identify this request with the transaction
* started in DELETE_RECORD. Use the dbkey found in the DELETE_RECORD
* subroutine to locate the correct employee record.

&RDB& FOR (TRANSACTION_HANDLE trans_1) E IN EMPLOYEES WITH
&RDB& E.RDB$DB_KEY = db_key
&RDB& GET
&RDB& employee_id = E.EMPLOYEE_ID;
&RDB& last_name = E.LAST_NAME;
&RDB& first_name = E.FIRST_NAME;
&RDB& middle_initial = E.MIDDLE_INITIAL;
&RDB& address_data_1 = E.ADDRESS_DATA_1;
&RDB& address_data_2 = E.ADDRESS_DATA_2;
&RDB& city = E.CITY;
&RDB& state = E.STATE;
&RDB& postal_code = E.POSTAL_CODE;
&RDB& birthday = E.BIRTHDAY
&RDB& END_GET

* Display the EMPLOYEES record. Use SYS$ASCTIM to convert
* the data stored in the database in binary format to
* ASCII format.

DISPLAY SPACE
DISPLAY "Employee id: " employee_id
DISPLAY "Last name: " last_name
DISPLAY "First name: " first_name
DISPLAY "Middle init: " middle_initial
DISPLAY "Address: " address_data_1, SPACE address_data_2
DISPLAY "City: " city
DISPLAY "State: " state
DISPLAY "Postal code: " postal_code

&RDB& END_FOR
EXIT PROGRAM.

* Return program control to the DELETE_RECORD subroutine.

END PROGRAM Call_other.

14.4.1 Using Handles in Structured Programming
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Requests

14–36 Using the COBOL Program Environment

Information on when and how to use request handles is supplied in Chapter 9.
The following sections discuss how to declare handles in an RDBPRE COBOL
program.

14.4.2 Declaring and Initializing Handles
With the exception of the database handle, declaring handles in RDBPRE
COBOL is similar to declaring any other program variable. The declaration
and initialization of a database handle is done simply by specifying the handle
in the DATABASE statement. You do not declare a database handle in the
data declaration portion of your COBOL program. RDBPRE initializes the
handle for you. You should not assign a value to a database handle with an
assignment statement (or any other way).

User-specified request and transaction handles must be declared in the data
declaration portion of your program. In COBOL, declare user-specified request
and transaction handles as PICS9(9) COMP and initialize them to zero.

If you want to release the resources associated with a request handle, you can
do so by issuing a FINISH statement, or, if you do not want to detach from the
database, you can release the request by issuing a call to the RDB$RELEASE_
REQUEST procedure with the following statement (where req1 is a user-
supplied request handle):

CALL "rdb$release_request"
USING rdb$message_vector,req_handle
GIVING return_stat.
IF return_stat is FAILURE
THEN CALL "SYS$PUTMSG" USING rdb$message_vector
END-IF

Declare the variable that holds the return status value as PIC S9(9) COMP.

14.4.3 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference.

See the VAX Rdb/VMS Guide to Distributed Transactions for information on
coordinating a distributed transaction.

Using the COBOL Program Environment 14–37

14.4.4 Declaring and Initializing Distributed Transaction
Identifiers

Declaring distributed transaction identifiers in RDBPRE COBOL is similar to
declaring any other program variable. Distributed transaction identifiers must
be declared in the data declaration portion of your COBOL program. Declare
a distributed transaction identifier as two longwords and initialize it to zero.
You should not assign a value to a distributed transaction identifier with an
assignment statement.

14.5 Using Callable RDO
The RDBPRE preprocessor statements do not include data definition
statements. If you want to perform data definition within your preprocessed
program, you must use the Callable RDO program interface. For example,
during a batch process, or when others are not using the database, your
program may define a temporary index on a field to facilitate Rdb/VMS
performance during your program execution.

You can also use Callable RDO when your program needs the ability to form
dynamic queries. That is, when your program will not know what a query
is until run time. Otherwise, you should use the RDBPRE preprocessor
when possible for all COBOL data manipulation operations. Preprocessed
Rdb/VMS statements execute significantly faster than calls using the function
RDB$INTERPRET.

When using Callable RDO, your program communicates with Rdb/VMS
using the RDB$INTERPRET function. You call RDB$INTERPRET to
pass your data manipulation or data definition statement to Rdb/VMS.
Declare RDB$INTERPRET as an external integer (longword) function. The
RDB$INTERPRET function returns a status value that indicates the success
or failure of the function. The return status value is a systemwide condition
value that indicates either success or a unique Rdb/VMS symbolic error code.
Your program declares a longword variable to hold the return status value
so you can test the success or failure of the call. (Refer to Chapter 10 and
Section 14.6 in this chapter for further information on handling Rdb/VMS
run-time exception conditions.)

The COBOL format of the RDB$INTERPRET sequence is:

CALL "RDB$INTERPRET" USING BY DESCRIPTOR’rdb-statement’
[, [BY DESCRIPTOR] host-var,...] GIVING ret-stat.

The arguments for the RDB$INTERPRET function are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

14–38 Using the COBOL Program Environment

rdb-statement

The Rdb/VMS statement you pass to Rdb/VMS. Handle rdb-statement
according to your language’s rules for handling string literals or string
variables.

host-var

A host language variable you pass to Rdb/VMS as part of a data
manipulation statement. You do not include host language variables
within the Rdb/VMS statement string literal, but pass them, in order, after
the string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor. You
must include a by-descriptor passing mechanism when your language’s
default passing mechanism for the host language variable data type is not by
descriptor. Refer to your COBOL reference manual for the specific format of
the passing mechanism.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some Rdb/VMS statements may produce
unwieldy code in the call to the RDB$INTERPRET function. Instead, assign
the Rdb/VMS statement string literal to a string variable. Then pass the string
variable in the calling sequence. Assigning Rdb/VMS statements to a string
variable lets you separate your Rdb/VMS data manipulation statements from
the mechanics of using the RDB$INTERPRET function.

Callable RDO program development is explained in detail in Chapter 19.

The following section discusses the use of the INVOKE DATABASE statement
and the scope of transactions in preprocessed programs that use Callable RDO.

14.5.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use an INVOKE DATABASE statement in your preprocessed
RDBPRE program and a separate RDO INVOKE DATABASE statement in the
embedded Callable RDO statements. To ensure that the preprocessor invokes
the identical database for the preprocessed and the Callable RDO portions
of the program, use the same database handle in each INVOKE DATABASE
statement. Invoke the database:

In the preprocessed program, using a GLOBAL or EXTERNAL database
handle.

In the Callable RDO program, by passing the database handle to the
RDB$INTERPRET function.

For more information on database handles, see the section on handles in
Chapter 9.

Using the COBOL Program Environment 14–39

In Callable RDO, you must pass the database handle to the RDB$INTERPRET
function as a !VAL parameter. See Chapter 19 for an example of passing
database handles in Callable RDO.

You may include both RDBPRE and Callable RDO DATABASE statements in
the same program module. The preprocessor ignores any statement that is
not preceded by the Rdb/VMS statement flag (&RDB&). You may also call a
function or subroutine to perform data definition with Callable RDO. In that
case, use a preprocessed INVOKE DATABASE statement in the main module
and the Callable RDO INVOKE DATABASE statement in the submodule.

For example, in the sample program for COBOL, the database is invoked with
the GLOBAL attribute in the main program:

&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH

This program calls the procedure named CALLABLE. The CALLABLE
procedure invokes the database using the RDB$INTERPRET function:

* Invoke the database in Callable RDO. The INVOKE DATABASE
* statement issued at the beginning of the program (using RDBPRE)
* is unknown to Callable RDO. If an error occurs when you invoke
* the database, call an error handler.

CALL "RDB$INTERPRET" USING
BY DESCRIPTOR ’DATABASE !VAL = FILENAME "MF_PERSONNEL" ’,
BY DESCRIPTOR dbhandle
GIVING return_status

IF return_status IS FAILURE
THEN CALL "Callable_error_handler" USING return_status,

retry_count, lock_error_flag
MOVE ’N’ TO success_flag

END-IF

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the Callable RDO sections of the same
program. The preprocessor will not be able to refer to metadata that has not
yet been defined.

14.5.2 Embedding Data Definition Statements Using Callable
RDO

Data definition statements require a read/write transaction. When an
Rdb/VMS program statement executes, whether it is preprocessed or
Callable RDO, Rdb/VMS checks for an active transaction. If there is an active
transaction that allows the intended operations, the statement is executed.

You must perform Callable RDO data definition statements within a read
/write transaction. However, if you start a read/write transaction in the
Callable RDO portion of your program, make sure that you commit or roll
back any active transactions you started in the preprocessed portion of your
program first. If a transaction is active in your program when you issue the

14–40 Using the COBOL Program Environment

START_TRANSACTION statement with a Callable RDO statement, your
Callable RDO statement will return a run-time RDO error.

If you call the RDB$INTERPRET function for data definition, do not attempt
to use database or transaction handles in your data definition statements.
Rdb/VMS does not support the use of database or transaction handles in data
definition statements.

Do not define, change, or delete a field, relation, or view in Callable RDO and
then refer to it in the preprocessed portion of the program. At preprocess time,
the field, relation, or view does not yet exist, and the preprocessor generates
errors for those statements that refer to either the field, relation, or view. You
can define indexes and constraints and any other database elements that are
not referred to in the preprocessed code.

You can perform any preprocessed data retrieval or update operation within
any Callable RDO transaction. You can omit the START_TRANSACTION
statement from the preprocessed portion of the program and rely upon the
transaction started in the Callable RDO portion. However, it is better practice
to begin an explicit transaction whenever possible rather than relying on
implicit START_TRANSACTION declarations.

Example 14–19, from the DDL_STMNT procedure, shows how to perform data
definition tasks in RDBPRE COBOL programs.

Example 14–19 Embedding Data Definition Statements in RDBPRE COBOL
Ddl_stmnt.

**
* This procedure demonstrates how to perform data definition tasks *
* from an RDBPRE COBOL program. You must use the Callable RDO *
* function, RDB$INTERPRET, to perform data definition tasks in *
* preprocessed programs. *
**

DISPLAY SPACE LINE 1 COLUMN 1 ERASE TO END OF SCREEN
DISPLAY "Execute a DDL statement " LINE 1 COLUMN 5
DISPLAY "" LINE 2 COLUMN 1

* Invoke the database to make it known to Callable RDO.

CALL "RDB$INTERPRET" USING
BY DESCRIPTOR ’DATABASE !VAL = FILENAME "MF_PERSONNEL" ’,
BY DESCRIPTOR dbhandle
GIVING return_status

IF return_status IS FAILURE
THEN CALL "Callable_error_handler" USING return_status,

retry_count, lock_error_flag
MOVE ’N’ TO success_flag

END-IF

(continued on next page)

Using the COBOL Program Environment 14–41

Example 14–19 (Cont.) Embedding Data Definition Statements in RDBPRE
COBOL

* Perform procedure to prompt user for input.

PERFORM Enter_ddl_statement
PERFORM UNTIL no_more_ddl_statements
INITIALIZE confirm_flag

PERFORM UNTIL confirm OR no_more_ddl_statements
DISPLAY "Did you enter the definition "

- correctly (Y/N): " NO ADVANCING
ACCEPT confirm_flag PROTECTED REVERSED
IF NOT confirm
THEN PERFORM Enter_ddl_statement
END-IF

END-PERFORM
INITIALIZE transaction_started_flag, retry_count
PERFORM UNTIL transaction_started OR retry_count > 5

MOVE ’Y’ TO transaction_started_flag

* Start a READ_WRITE transaction.

CALL "RDB$INTERPRET"
USING BY DESCRIPTOR "START_TRANSACTION READ_WRITE"
GIVING return_status

IF return_status IS FAILURE
THEN CALL "Callable_error_handler" USING return_status,

retry_count, lock_error_flag
MOVE ’N’ TO success_flag, transaction_started_flag

END-IF
END-PERFORM
IF transaction_started
THEN INITIALIZE success_flag, retry_count, lock_error_flag

PERFORM WITH TEST AFTER UNTIL successful OR
(lock_error AND retry_count > 5) OR (NOT lock_error)
MOVE ’Y’ TO success_flag

* Pass the data definition statement specified by the user to
* RDB$INTERPRET.

CALL "RDB$INTERPRET" USING BY DESCRIPTOR ddl_statement
GIVING return_status

IF return_status IS FAILURE
THEN CALL "Callable_error_handler"

USING return_status, retry_count, lock_error_flag
MOVE ’N’ TO success_flag

END-IF
END-PERFORM

(continued on next page)

14–42 Using the COBOL Program Environment

Example 14–19 (Cont.) Embedding Data Definition Statements in RDBPRE
COBOL

* Inform the user of the success or failure of the data definition
* task.

IF successful
THEN DISPLAY "Transaction successful"

CALL "RDB$INTERPRET" USING BY DESCRIPTOR "COMMIT"
GIVING return_status

ELSE DISPLAY "Transaction failed"
CALL "RDB$INTERPRET" USING BY DESCRIPTOR "ROLLBACK"

GIVING return_status
END-IF

END-IF
PERFORM Enter_ddl_statement

END-PERFORM
CALL "RDB$INTERPRET" USING BY DESCRIPTOR "FINISH"

GIVING return_status.

Enter_ddl_statement.

* Prompt user for input. Ordinarily, it would not be likely that
* you would ask a user to define an index for the database.
* This example serves only to show you how this type of task can
* be done within a COBOL environment.

DISPLAY ’Please enter the data definition statement to define’
DISPLAY ’or delete a temporary index, or type "exit"’
DISPLAY SPACE
DISPLAY ’For example, to define an index for EMPLOYEES based’
DISPLAY ’on EMPLOYEE_ID, you might enter: ’
DISPLAY SPACE
DISPLAY ’define index emp_employee_id for ’

_ employees duplicates are allowed.’
REVERSED

DISPLAY ’employee_id. end emp_employee_id index.’ REVERSED
DISPLAY SPACE
DISPLAY ’To delete this index, you might enter: ’
DISPLAY SPACE
DISPLAY ’delete index emp_employee_id.’ REVERSED
DISPLAY SPACE
ACCEPT ddl_statement REVERSED.

14.6 Handling Rdb/VMS Run-Time Errors
Before reading this section you should be familiar with the information
contained in Chapter 10 of this manual. Chapter 10 discusses error handling
concepts; this section contains information that, for the most part, is specific to
error handling in RDBPRE COBOL.

This section describes how to detect Rdb/VMS errors that occur at run time,
how to display the accompanying messages, and how to recover from errors.
In most cases, this section assumes that you have debugged the executing
program for errors in both Rdb/VMS and host language statements. This

Using the COBOL Program Environment 14–43

section discusses Rdb/VMS run-time errors only and does not tell you how to
handle host language or system run-time errors. Refer to your COBOL user’s
guide for such information.

If you choose to combine Callable RDO and RDBPRE DML statements, use
separate error handling routines for each one. See Chapter 19 for information
on handling Callable RDO errors.

14.6.1 Error Handling
RDBPRE COBOL enables you to detect errors with the ON ERROR clause. If
an error occurs in an Rdb/VMS data manipulation statement, control passes to
the ON ERROR clause. Your program must then handle the error.

This section describes:

The ON ERROR clause

Determining which error has occurred using the LIB$MATCH_COND
run-time library routine

Error message display using the SYS$GETMSG, SYS$PUTMSG, and
LIB$SIGNAL routines

Information on creating user-supplied error messages is contained in
Chapter 10.

14.6.2 Detecting Errors Using the ON ERROR Clause
You can use the ON ERROR clause only in preprocessed programs. All
Rdb/VMS data manipulation statements except the INVOKE DATABASE
and DECLARE_STREAM statements offer the optional ON ERROR clause.
Within the ON ERROR . . . END_ERROR block you can include one or more
host language or Rdb/VMS statements, or both. These statements can handle
the error directly, but more often they will call an error handler routine that
determines the nature of the error and starts appropriate recovery or cleanup
procedures.

Note Do not use the COBOL statement terminator or the START_TRANSACTION
statement within the ON ERROR . . . END_ERROR block.

Note that the COBOL preprocessor translates an Rdb/VMS FOR loop into
an inline COBOL PERFORM loop. You can use an ON ERROR clause that
contains a GO TO statement to transfer program control out of this PERFORM
loop when an error occurs in the execution of the FOR statement. However, if
you then use the /CHECK=PERFORM compiler qualifier, the system generates
a run-time error and the program aborts. Do not use the /CHECK qualifier if
your program uses a GO TO statement to transfer control out of an Rdb/VMS
FOR loop.

14–44 Using the COBOL Program Environment

If you do not use the ON ERROR clause and an Rdb/VMS error occurs,
Rdb/VMS passes the error to the VMS Run-Time Library routine, LIB$STOP,
which sets the severity level to 4 (FATAL) and forces program termination.

See Chapter 10 for a more complete description of the ON ERROR clause.

The following COBOL code fragment shows the placement of the ON ERROR
clause and host language statements within a MODIFY operation:

&RDB& FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
&RDB& MODIFY E USING
&RDB& ON ERROR

MOVE "N" TO success_flag
CALL "Error_handler" USING RDB$STATUS, retry_count,

success_flag, lock_error_flag
&RDB& END_ERROR
&RDB& E.ADDRESS_DATA_1 = address_data_1;
&RDB& E.ADDRESS_DATA_2 = address_data_2;
&RDB& E.CITY = city;
&RDB& E.STATE = state;
&RDB& E.POSTAL_CODE = postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

14.6.3 Determining Which Errors Have Occurred
After detecting an error, you want to determine which error has occurred. Your
program error handler can then take the correct action for recovery or orderly
program termination. Recovery might include trying an operation again or
writing an error to an error log and continuing to the next operation. You
determine which error has occurred by evaluating the symbolic error code of
the error.

14.6.3.1 Using Symbolic Error Codes All communication with an Rdb/VMS
database is done through procedure calls. In preprocessed programs, the
preprocessor converts Rdb/VMS statements to host language calls to Rdb/VMS
procedures. Every procedure returns a status value into a program variable,
RDB$STATUS, that is declared by the preprocessor. The return status value
is a longword that identifies a unique message in the system message file. The
return status value may indicate success, in which case data manipulation
continues uninterrupted. Or this value may signal an error, in which case
control passes to the error handler.

In RDBPRE COBOL programs, the preprocessor names this variable
RDB$STATUS and declares it to be a longword. The return status value
is the second element of a 20-longword array, RDB$MESSAGE_VECTOR. (The
RDB$MESSAGE_VECTOR array is the message vector that Rdb/VMS uses to
pass information to and from COBOL programs.)

Using the COBOL Program Environment 14–45

Each error generated by an RDBPRE statement is represented as a symbolic
error code. You can use these symbolic error codes to control program logic for
specific errors. When the Rdb/VMS ON ERROR clause detects an error, your
error handler should:

Evaluate the symbolic error code either by calling the LIB$MATCH_COND
routine or using a COBOL equality test

Direct program logic with a COBOL host language statement such as the
EVALUATE statement

Although symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. Chapter 10
explains why this is recommended.

14.6.3.2 Declaring Symbolic Error Codes Rdb/VMS symbolic error codes
are longword values. In COBOL programs, you can declare symbolic error
codes as elementary data items. For example:

WORKING-STORAGE SECTION.
* Rdb/VMS Message Symbols.
01 RDB$_DEADLOCK PIC S9(9) COMP VALUE EXTERNAL RDB$_DEADLOCK.
01 RDB$_LOCK_CONFLICT PIC S9(9) COMP VALUE EXTERNAL RDB$_LOCK_CONFLICT.

14.6.3.3 Calling LIB$MATCH_COND When you want to determine which of
several possible errors has invoked your error handler, you can use the VMS
Run-Time Library routine, LIB$MATCH_COND.

You also can evaluate the return status value directly with host language
statement or statements, without calling the LIB$MATCH_COND routine.
Generally, host language statements will use fewer resources than
LIB$MATCH_COND. However, future versions of Rdb/VMS may change
the severity levels or facility names of certain symbolic error codes. You must
then link your program again under the new version so that the program will
detect the correct error codes. The LIB$MATCH_COND routine matches only
the condition ID of the return status value and is unaffected by changes in
severity levels or facility names.

The LIB$MATCH_COND routine compares the first parameter to each of the
remaining parameters in its parameter list. If a match is found, it returns
the position in the parameter list of the matching parameter. If no match is
found, the LIB$MATCH_COND routine returns a zero. You should pass the
return status value to the LIB$MATCH_COND routine as the first parameter
in the parameter list. In the remaining part of the parameter list, pass the
error codes you wish to compare to the return status value. If one of these
error codes matches the return status value, the LIB$MATCH_COND routine
returns the position of the matching parameter in the parameter list.

14–46 Using the COBOL Program Environment

For example, suppose you want to determine if RDB$_STREAM_EOF,
RDB$_DEADLOCK, or RDB$_NOT_VALID is the return status value.
Pass to the LIB$MATCH_COND routine the parameter list that contains
RDB$STATUS, RDB$_STREAM_EOF, RDB$_DEADLOCK, and RDB$_NOT_
VALID. If RDB$STATUS equals RDB$_DEADLOCK, then the LIB$MATCH_
COND routine returns a value of 2 because RDB$_DEADLOCK is the second
parameter in the parameter list.

Next, use the value that the LIB$MATCH_COND routine returns to determine
the path of your error handler’s conditional statement. To continue our
example, assume you use an EVALUATE statement as the error handler’s
conditional statement. In this example, your EVALUATE statement evaluates
the value returned by the LIB$MATCH_COND routine and your program
falls through to the second label of the statement. Your program performs
the statement or statements associated with the WHEN statement. These
statements might print a message to the terminal, roll back the transaction,
and return program control to a point before the transaction was opened. Or
they might call a more complex routine to perform these and other actions.

The COBOL format of the call to the LIB$MATCH_COND routine is:

CALL "LIB$MATCH_COND" USING [BY REFERENCE] ret-stat, symb-name[...]
GIVING err-match.

The arguments for this COBOL call are:

ret-stat

A program variable (RDB$STATUS) that holds the return status value of
the last call to the database.

symb-name

One or more symbolic error codes, (or the variable names you have assigned
to them) that you want to match against ret-stat. The symbolic error codes
are longwords and are passed by reference.

err-match

A numeric variable that holds the integer that identifies the symbol
matched.

It is not necessary to declare the LIB$MATCH_COND routine in COBOL.

Example 14–20 demonstrates the use of the LIB$MATCH_COND routine in
a COBOL error handling routine. This error handler could be called from
another program that:

Detects errors with an ON ERROR clause

Using the COBOL Program Environment 14–47

Includes a statement within the ON ERROR . . . END_ERROR block that
sets the value of a success flag to FALSE when the ON ERROR clause is
executed

This error handling routine:

Receives the return status and the success flag values

Opens a file to record the error messages

Uses the LIB$MATCH_COND routine to determine which error has
occurred

Uses an EVALUATE statement to take different actions depending on
which error has occurred

Sets the success flag to true if corrective error handling could take place

Closes the file that records the error messages

Example 14–20 Using LIB$MATCH_COND in RDBPRE COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. Error_handler.

* This program handles run-time errors identified by the *
* ON ERROR clause in preprocessed RDBPRE COBOL programs. *

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT error_file ASSIGN ’error_log’.
DATA DIVISION.
FILE SECTION.
FD error_file.
01 error_record PIC X(132).

* Declare variables, including symbolic error codes and system
* service and library routines.

WORKING-STORAGE SECTION.
01 LIB$SIGNAL PIC S9(9) COMP VALUE IS EXTERNAL LIB$SIGNAL.
01 exception_codes.

05 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

05 RDB$_DEADLOCK PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_DEADLOCK.

05 RDB$_NO_DUP PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_NO_DUP.

(continued on next page)

14–48 Using the COBOL Program Environment

Example 14–20 (Cont.) Using LIB$MATCH_COND in RDBPRE COBOL
05 RDB$_NOT_VALID PIC S9(9) COMP

VALUE IS EXTERNAL RDB$_NOT_VALID.

05 RDB$_INTEG_FAIL PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_INTEG_FAIL.

05 RDB$_STREAM_EOF PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_STREAM_EOF.

05 RDB$_NO_RECORD PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_NO_RECORD.

01 return_status PIC S9(9) COMP.
01 RDB$MESSAGE_VECTOR EXTERNAL.

03 Rdb$LU_NUM_ARGUMENTS PIC S9(9) COMP.
03 Rdb$LU_STATUS PIC S9(9) COMP.
03 Rdb$ALU_ARGUMENTS OCCURS 18 TIMES.

05 Rdb$LU_ARGUMENTS PIC S9(9) COMP.
01 seconds_to_wait COMP-1 VALUE 5.

01 getmsgvars.
05 msg_id PIC 9(9) COMP.
05 msg_len PIC 9(9) COMP.
05 msg_txt PIC X(132).
05 mask PIC 9(9) COMP VALUE 15.
05 out_array PIC X(4).

LINKAGE SECTION.
01 RDB$STATUS PIC S9(9) COMP.
01 retry-count PIC S9(4) COMP.
01 success_flag PIC X.
01 lock_error_flag PIC X.

PROCEDURE DIVISION USING RDB$STATUS, retry_count, success_flag, lock_error_flag.
Check_error.

* Use LIB$MATCH_COND to determine which of a series of
* errors might have occurred.

CALL "Lib$match_cond" USING RDB$STATUS,
RDB$_LOCK_CONFLICT
RDB$_DEADLOCK,
RDB$_NO_DUP,
RDB$_NOT_VALID,
RDB$_INTEG_FAIL
RDB$_NO_RECORD

GIVING return_status

(continued on next page)

Using the COBOL Program Environment 14–49

Example 14–20 (Cont.) Using LIB$MATCH_COND in RDBPRE COBOL
* The COBOL EVALUATE statement directs program to appropriate
* statements to execute depending on the error that
* was identified.

EVALUATE return_status
WHEN 0 PERFORM Unexpected_error
WHEN 1 THRU 2 PERFORM Lock_problem
WHEN 3 PERFORM Duplicate_not_allowed
WHEN 4 PERFORM Invalid_data
WHEN 5 PERFORM Integrity_failure
WHEN 6 PERFORM Record_deleted

END-EVALUATE
DISPLAY SPACE
EXIT PROGRAM.

Unexpected_error.
DISPLAY "Unexpected error - terminating program"
OPEN EXTEND error_file
CALL "SYS$GETMSG" USING BY VALUE rdb$status

BY REFERENCE msg_len
BY DESCRIPTOR msg_txt
BY VALUE mask
BY REFERENCE out_array

GIVING return_status
MOVE msg_txt(1:msg_len) TO error_record
DISPLAY error_record
WRITE error_record
CLOSE error_file
CALL "LIB$CALLG" USING BY REFERENCE Rdb$MESSAGE_VECTOR

BY VALUE LIB$SIGNAL.

Lock_problem.

* Invoked on lock conflict or deadlock.
* Retry 5 times before rolling back.

MOVE ’Y’ TO lock_error_flag
IF (retry-count > 5)
THEN DISPLAY "Another user is accessing data you attempted to access"

MOVE "N" TO success_flag
ELSE CALL "LIB$WAIT" USING seconds_to_wait

ADD 1 TO retry-count
END-IF.

Duplicate_not_allowed.
DISPLAY "You attempted to insert a record with a value already on file"
DISPLAY SPACES

* Display the error message to see
* what index violated duplicate clause.

CALL "SYS$PUTMSG" USING BY REFERENCE Rdb$MESSAGE_VECTOR
DISPLAY "Please choose a new value and try again".

Invalid_data.
DISPLAY "In the data you entered, you specified an invalid value"
DISPLAY SPACES.

* Display the error message to see what data was invalid.

(continued on next page)

14–50 Using the COBOL Program Environment

Example 14–20 (Cont.) Using LIB$MATCH_COND in RDBPRE COBOL
CALL "SYS$PUTMSG" USING BY REFERENCE Rdb$MESSAGE_VECTOR
DISPLAY "Please correct the error and try again".

Integrity_failure.
DISPLAY "In the data you entered, you violated a constraint"
DISPLAY SPACES.

* Display the error message to see what constraint was violated.

CALL "SYS$PUTMSG" USING BY REFERENCE Rdb$MESSAGE_VECTOR
DISPLAY "Please correct the error and try again".

Record_deleted.
DISPLAY "Record entered has been deleted".

END PROGRAM Error_handler.

14.6.4 Displaying Error Messages
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and terminate your
program, you can call the LIB$SIGNAL routine

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system service

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code

Information on creating user-supplied error messages is contained in
Chapter 10.

14.6.4.1 Calling LIB$SIGNAL Call the LIB$SIGNAL routine when you want
to display an error message generated by Rdb/VMS and terminate program
execution. When you call LIB$SIGNAL with LIB$CALLG, the LIB$SIGNAL
routine:

Receives the signal argument list from the signaling procedure

This list is made up of the return status value and a set of optional
arguments that provide information to error handlers.

Copies this signal argument list and uses it to create a signal argument
vector

The signal argument vector serves as part of the input to the user-
established handlers and the system default handlers.

Using the COBOL Program Environment 14–51

Causes a signal condition which causes the appropriate catchall condition
handler to pass the signal argument vector to the SYS$PUTMSG system
service

The SYS$PUTMSG system service calls SYS$GETMSG to retrieve the
message from the error messages file, and then formats and displays the
error message on your terminal.

Resignals the error

If the error is not fatal, program execution continues. If the error is fatal,
the host language error handler signals the error to the VMS default
condition handler, which terminates program execution.

In COBOL, you cannot continue program execution after the call to the
LIB$SIGNAL routine when the error is fatal. See the section on handling fatal
errors in preprocessed COBOL programs in this chapter for information on
how to continue program execution after a fatal error.

14.6.4.2 Methods of Calling LIB$SIGNAL The recommended method of
calling LIB$SIGNAL in RDBPRE programs is to pass the message vector,
RDB$MESSAGE_VECTOR, and the LIB$SIGNAL routine to the run-time
library routine, LIB$CALLG.

This method ensures that any FAO arguments that exist in the message
vector will be formatted correctly. In addition, this method ensures that any
additional error messages that clarify the nature of the program error will be
returned to your program. For these reasons, Digital recommends that you
always call LIB$SIGNAL with LIB$CALLG.

You can also pass the return status value, RDB$STATUS, to the LIB$SIGNAL
routine. However, this method is not recommended. If you pass RDB$STATUS
to the LIB$SIGNAL routine and FAO arguments exist in the Rdb/VMS error
message, LIB$SIGNAL may be unable to format the Rdb/VMS error message
correctly. In this case, your program may terminate abruptly or may return an
incompletely formatted error message.

If your application requires that you call LIB$SIGNAL without LIB$CALLG,
be certain that the error message does not contain FAO arguments.
Figure 10–1 in Chapter 10 illustrates the format of the message vector.

14.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with
RDB$MESSAGE_VECTOR and RDB$STATUS The COBOL format of the
LIB$SIGNAL calling sequence with the message vector (RDB$MESSAGE_
VECTOR) is:

CALL "LIB$CALLG" USING [BY REFERENCE] RDB$MESSAGE_VECTOR,
BY VALUE LIB$SIGNAL.

The LIB$SIGNAL argument is the run-time library routine that will receive
RDB$MESSAGE_VECTOR. This argument is passed by reference in COBOL.

14–52 Using the COBOL Program Environment

It is not necessary to declare LIB$CALLG in COBOL. However, when using
LIB$CALLG, you must declare LIB$SIGNAL as:

01 LIB$SIGNAL PIC S9(9) COMP VALUE EXTERNAL LIB$SIGNAL.

An earlier example, Example 14–20, demonstrates how to call LIB$SIGNAL
with LIB$CALLG. The COBOL format of the LIB$SIGNAL calling sequence
with the return status value is:

CALL "LIB$SIGNAL" USING [BY VALUE] RDB$STATUS.

14.6.4.4 Calling SYS$PUTMSG Call the SYS$PUTMSG routine when
you want to display an error message generated by Rdb/VMS and continue
program execution. The SYS$PUTMSG system service displays the error
message on the terminal and writes it to the error file designated by the logical
name SYS$ERROR. You can define SYS$ERROR at the DCL level to be your
program error file when you want the SYS$PUTMSG system service to write
an Rdb/VMS error message to it.

The first parameter in the call to the SYS$PUTMSG system service is the
message vector RDB$MESSAGE_VECTOR. Figure 10–1 in Chapter 10
illustrates the format of the signal message argument vector. The
SYS$PUTMSG system service can accept other optional parameters that
specify a routine that receives control during message processing, and the
facility name to be used in displaying the message (if you want the facility
to be different from the default facility prefix that is associated with the
message). The signal message vector is required; you may omit the optional
parameters. See the VMS System Services Volume for a complete description of
the SYS$PUTMSG system service.

The COBOL format of the SYS$PUTMSG calling sequence is:

CALL SYS$PUTMSG" USING BY REFERENCE RDB$MESSAGE_VECTOR.

It is not necessary to declare SYS$PUTMSG in COBOL. See an earlier
example, Example 14–20, for a demonstration of the use of the SYS$PUTMSG
system service.

14.6.4.5 Calling SYS$GETMSG Call the SYS$GETMSG system service when
you want to use an error message generated by Rdb/VMS within your program
and continue program execution.

Using the COBOL Program Environment 14–53

The first parameter in the call to the SYS$GETMSG system service is the
Rdb/VMS return status value, the unique identification for the Rdb/VMS error
message. The SYS$GETMSG system service locates the error message and
returns it to your program as the second parameter of the call. You must
declare a string to receive the message. Your program can then manipulate
this string in any way it chooses. Your program can:

Display the string

Write the string to a file

You can also evaluate character substrings within the string, but Digital
recommends that you do not use this method. The message text may change
from one version of Rdb/VMS to the next.

The SYS$GETMSG system service requires a parameter to receive the length
of the message string. You may omit the actual parameter, but you must
include a comma or a COBOL placemarker to signify the argument. The
SYS$GETMSG system service accepts other optional parameters that define
what is included in the returned message and receives the FAO count of
the message. You may omit these parameters; if you do, all components of
the message are returned. See the VMS System Services Volume for further
information on the SYS$GETMSG system service.

The SYS$GETMSG system service does not format the FAO arguments in the
error message; instead, it returns the error message with format parameters
embedded in it. If your error message contains a view name, for example,
SYS$GETMSG will return the message:

<View !AC can not be updated>

You can call the SYS$FAO system service to format the FAO arguments in the
message SYS$GETMSG returns to your program. However, when the error
message contains FAO arguments, it is preferable to call the SYS$PUTMSG
system service rather than SYS$GETMSG. The optional parameters that you
can specify with the SYS$GETMSG system service are not shown below. For
more information on SYS$GETMSG, see the VMS System Services Volume.

The COBOL format of the SYS$GETMSG calling sequence is:

CALL "SYS$GETMSG" USING [BY VALUE] RDB$STATUS,
[BY REFERENCE msg-len], [BY DESCRIPTOR]msg-string

GIVING ret-stat.

The arguments of this calling sequence are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

14–54 Using the COBOL Program Environment

msg-len

A word that holds the number of characters written into msg-string. This
is not an optional parameter; if you omit it, you must use a comma or one
of the COBOL placemarkers, OMITTED or VALUE IS 0. This is passed by
reference.

msg-string

A string variable that holds the returned error message. The maximum
length of any message that can be returned is 256 bytes. This is passed by
descriptor.

It is not necessary to declare SYS$GETMSG in COBOL. See an earlier
example, Example 14–20, for a demonstration of the use of SYS$GETMSG.

14.6.5 Handling Fatal Errors
In many instances, the cause of fatal errors is located in the database, not
the program. For example, your program may attempt to access a relation
that has been deleted by the database administrator, or the process that runs
the program may not have sufficient privilege to modify a particular relation.
There is little that your program can do to correct this type of error. However,
your program can determine which fatal error has occurred, perform cleanup
functions, display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error using the LIB$MATCH_COND routine or host language
statement or statements to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or SYS$GETMSG system service to output an
error message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

In other programming languages, you can also call the LIB$SIGNAL routine to
display a fatal error message, but you must use the LIB$ESTABLISH routine
to create a condition handler that will permit your program to continue after
the call to LIB$SIGNAL.

In COBOL, the use of a condition handler is unpredictable. If you want to
create your own error handler, your handler replaces the COBOL condition
handler. Thus, COBOL program errors are no longer handled by the host
language error handler for the remainder of program execution. Instead, you
must explicitly handle host language errors in your condition handler. For this
reason, use of the LIB$ESTABLISH routine is not recommended in COBOL.

Using the COBOL Program Environment 14–55

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary
before calling the LIB$SIGNAL routine. The following is a list of typical
cleanup operations:

End streams

Roll back transactions

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the LIB$SIGNAL routine without establishing a condition handler,
LIB$SIGNAL displays the error message and terminates your program.
Perform any cleanup before making the call to LIB$SIGNAL. However, if
your cleanup includes any Rdb/VMS statements (such as ROLLBACK), these
new calls to the database will change the return status value contained in
RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in this case, the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling
the LIB$SIGNAL routine without performing any cleanup operations is not
recommended.

14–56 Using the COBOL Program Environment

15
Using the FORTRAN Program Environment

This chapter describes how to access an Rdb/VMS database using FORTRAN
and the Rdb/VMS FORTRAN preprocessor interface, RDBPRE. This chapter
presents the following main topics:

Using Rdb/VMS data manipulation statements

Using Rdb/VMS data definition statements

Error handling in RDBPRE FORTRAN

Most examples in this chapter are available on line. The Rdb/VMS installation
procedure writes the sample programs to the directory identified by the
logical name RDM$DEMO. The file names for these programs are F_
SAMPLE.RFO, F_CALLABLE.FOR, F_CALLABLE_ERROR_HANDLER.FOR
and F_DDL_STMNT.FOR. The sample program F_SAMPLE.RFO calls many
other programs; these programs are listed in the first commented section of
F_SAMPLE.RFO.

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

Note Before reading this chapter, you should be familiar with the information
contained in Chapter 9. The main purpose of this chapter is to provide
information and examples specific to VAX FORTRAN.

Using the FORTRAN Program Environment 15–1

15.1 The RDBPRE FORTRAN Preprocessor Interface
When you use the RDBPRE FORTRAN preprocessor interface, you simply
include Rdb/VMS data manipulation statements directly in your program
wherever you need them. You must use the special statement flag (&RDB&)
with each Rdb/VMS data manipulation statement you include in your
FORTRAN program. When you preprocess the source program, the
preprocessor converts the Rdb/VMS data manipulation statements to a
series of FORTRAN calls to Rdb/VMS. At run time, Rdb/VMS executes the
calls and returns any requested data to the program.

You cannot preprocess a program that attempts to access a non-existent
database, unless your database refers to the data dictionary, CDD/Plus, and
refers only to the definitions stored there. That is, if you specify a compile-time
file name in the DATABASE statement, the database must exist at preprocess
time. If you specify a compile-time path name in the DATABASE statement,
the path name element must exist in the data dictionary at preprocess time.
This is because the preprocessor must be able to validate relation and field
definitions in the programs that refer to the database.

15.2 Embedding DML Statements in the RDBPRE FORTRAN
Program Environment
The Rdb/VMS data manipulation statements are a subset of the Relational
Database Operator (RDO) utility statements. With the Rdb/VMS data
manipulation statements you can access a database, update records, retrieve
selected records, and handle Rdb/VMS exception conditions. Refer to the VAX
Rdb/VMS RDO and RMU Reference Manual for a complete description of the
Rdb/VMS data manipulation statements.

15.2.1 Converting an RDO Prototype to the RDBPRE FORTRAN
Program Environment

Once you have created a prototype of your queries in the interactive RDO
facility, you are ready to convert these RDO statements to the FORTRAN
program environment. See Chapter 7 for a full discussion of creating a
prototype in RDO and for examples.

You cannot use the FORTRAN /EXTEND_SOURCE qualifier in embedded data
manipulation statements. Text must be between columns 7 and 72 inclusive.
The use of tabs will change the ‘‘apparent’’ value of column 72. When you use
the FORTRAN continuation character to continue an Rdb/VMS statement, do
not mix tab and space characters in columns 1 to 7. For example, the word
‘‘this’’ starts in ‘‘apparent’’ column 7 in each of the following lines:

15–2 Using the FORTRAN Program Environment

this (starts with 6 spaces)
this (starts with a tab)
1this (starts with tab-number, the number 1 in the apparent

column 6 is a continuation character)

Example 15–1 is a FORTRAN subroutine based on the RDO prototype
examples in Chapter 7.

Example 15–1 Converting an RDO Prototype to RDBPRE FORTRAN
SUBROUTINE store_cand

C---
C This subroutine stores a record in the
C CANDIDATES relation. It shows how to store
C a value in a field of data type VARYING STRING.
C---

IMPLICIT NONE
LOGICAL success
INTEGER retry_count

C--
C Declare variables to hold user input. Declare the
C field that will hold the value for the field of
C data type VARYING STRING as a character string.
C--

CHARACTER candidate_lname*14,candidate_name*10,candidate_mi
CHARACTER candidate_status*256,confirm

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

WRITE (6,90)
90 FORMAT (’1’,T25,’**** STORE CANDIDATE ****’///)
C--
C Prompt user for data to store in the CANDIDATES
C relation.
C--

100 TYPE 110
110 FORMAT (’$’,’ Please enter the first name of the

1candidate or type exit: ’)
ACCEPT 120, candidate_name

120 FORMAT (A)

DO WHILE ((candidate_name.NE.’EXIT ’) .AND.
1 (candidate_name.NE.’exit ’))

confirm = ’N’
DO WHILE (confirm .EQ. ’N’)

TYPE 1000
1000 FORMAT (’$’,’ Please enter the candidate middle initial: ’)

ACCEPT 1010, candidate_mi
1010 FORMAT (A)

(continued on next page)

Using the FORTRAN Program Environment 15–3

Example 15–1 (Cont.) Converting an RDO Prototype to RDBPRE FORTRAN

TYPE 2000
2000 FORMAT (’$’,’ Please enter the candidate last name: ’)

ACCEPT 2010, candidate_lname
2010 FORMAT (A)

TYPE 3000
3000 FORMAT (’$’,’ Please enter the candidate status info: ’)

ACCEPT 3010, candidate_status
3010 FORMAT (A)

PRINT *, ’ ’
TYPE 10000

10000 FORMAT (’$’,’ Have you entered all data correctly? (Y/N): ’)
ACCEPT 10010, confirm

10010 FORMAT (A)
END DO

success = .TRUE.

&RDB& START_TRANSACTION READ_WRITE RESERVING
&RDB& CANDIDATES FOR SHARED WRITE

C--
C Store the values specified by the user in the
C CANDIDATES relation. Inform user of the success
C or failure of the store operation.
C--

&RDB& STORE C IN CANDIDATES USING
&RDB& ON ERROR

success = .FALSE.
retry_count = retry_count + 1
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR
&RDB& C.LAST_NAME = candidate_lname;
&RDB& C.FIRST_NAME = candidate_name;
&RDB& C.MIDDLE_INITIAL = candidate_mi;
&RDB& C.CANDIDATE_STATUS = candidate_status;
&RDB& END_STORE

IF (success) THEN
PRINT *, ’ Update operation successful’

&RDB& COMMIT
ELSE

PRINT *, ’ Update operation failed’
&RDB& ROLLBACK

END IF

PRINT *, ’ ’
TYPE 110
ACCEPT 120, candidate_name

END DO

(continued on next page)

15–4 Using the FORTRAN Program Environment

Example 15–1 (Cont.) Converting an RDO Prototype to RDBPRE FORTRAN

RETURN
END

The syntax you use for preprocessed Rdb/VMS data manipulation statements
is not identical to the statement syntax you use in RDO. When you incorporate
your prototype RDO statements into a program, you need to consider these
areas:

Use of host language variables

Use of Rdb/VMS statement flags, described in Chapter 12

Differences in syntax

Using the GET statement instead of the PRINT statement

Nesting FETCH and GET operations within a host language loop

Using the ON ERROR and AT END clauses to detect error conditions

Effects on structured programming

Handling Rdb/VMS errors

15.2.1.1 Using Host Language Variables A host language variable is a
program variable that you use to communicate with Rdb/VMS. A host language
variable can contain the values that update the database; it can also receive
values that Rdb/VMS retrieves from the database. You can use host language
variables as value expressions in data manipulation statements, as well as for
any other program function. The following statements allow the use of host
language variables:

Any data manipulation statement that permits the use of an RSE

GET

DATABASE (you can specify a database handle)

READY

FINISH

When you declare host language variables, follow the naming rules for
FORTRAN. Ensure that host language variable data types and sizes are
compatible with the corresponding database field data types and sizes. Refer to
Chapter 8 for the list of equivalent FORTRAN data types.

Note that you cannot use the name of a database field (a context variable and
a field name) as a subscript of an array.

Using the FORTRAN Program Environment 15–5

Example 15–2 shows the use of host language variables to store a record. The
host language variables appear in lowercase.

Example 15–2 Using Host Language Variables to Store a Record in
RDBPRE FORTRAN

&RDB& STORE J IN JOBS USING
&RDB& J.JOB_CODE = job_code;
&RDB& J.JOB_TITLE = job_title;
&RDB& J.MAXIMUM_SALARY = max_sal;
&RDB& J.MINIMUM_SALARY = min_sal;
&RDB& J.WAGE_CLASS = wage_class;
&RDB& END_STORE

A convenient way to declare host language variables is to copy database
definitions from the data dictionary, CDD/Plus. You can copy relation
definitions, which include all the fields within the relation. However, you
must be careful to copy only those field and relation definitions with data types
that are supported by FORTRAN. See Chapter 12 for more information about
using data dictionary definitions.

15.2.1.2 Using Host Language Variables in Conditional Expressions You
can use conditional expressions to limit the records included in a record stream.
Conditional expressions contain one or more relational operators (see Table 3–1
in Section 3.5) and optionally logical operators (AND, OR, NOT).

In a programming environment, you probably do not want to code a specific
value for the comparison string, as in:

FOR E IN EMPLOYEES WITH E.STATE MATCHING ’NH’

It is more likely that you want the user to supply the comparison string at run
time. In this case, you need to declare a host language variable to hold the
comparison string. For example:

FOR E IN EMPLOYEES WITH E.STATE MATCHING state_code

For the STARTING_WITH, MATCHING, and CONTAINING conditional
expressions, you must declare your host language variable in such a way that
the preprocessor can determine the correct length of the comparison string.

In FORTRAN, declare the host language variable as a string, and then use the
substring feature (stat_code(1:2), for example) in your RSE. The substring will
permit the preprocessor, using the FORTRAN function LEN, to determine the
length of the string. For example:

15–6 Using the FORTRAN Program Environment

IMPLICIT NONE
CHARACTER*15 name, city
CHARACTER*4 state_code
C---
C Program statements
C Rdb/VMS statements:
C invoke database, start_transaction,
C and so on
C---

.

.

.
&RDB& FOR E IN EMPLOYEES WITH
&RDB& E.STATE MATCHING state_code(1:2)
&RDB& GET
&RDB& name = E.LAST_NAME;
&RDB& city = E.CITY;
&RDB& END_GET

15.2.1.3 Converting DATE Data Types to TEXT DATE data types are stored
in Rdb/VMS databases in encoded binary format. To display a date, your
program must first retrieve the binary value and convert it to an ASCII string.
This is done by using the VMS system service routine, SYS$ASCTIM, to
perform the conversion.

Note that RDBPRE uses the run-time library routine LIB$MOVC3 to move the
value from the DATE data type to the host language variable. The preprocessor
declares LIB$MOVC3 as external for you; do not declare it again in your
program or you may receive a fatal compile-time error.

See the VMS System Services Volume for more information on using
SYS$ASCTIM.

Example 15–3 is a code fragment from the F_ADD_EMPLOYEES.RFO
subroutine that demonstrates how to display a date.

Using the FORTRAN Program Environment 15–7

Example 15–3 Using SYS$ASCTIM System Service Routine in RDBPRE
FORTRAN

SUBROUTINE add_employees

C--
C This subroutine adds a new employee to the
C EMPLOYEES relation.
C--

IMPLICIT NONE
LOGICAL valid_date,success
INTEGER retry_count,number_employees_added,i
INTEGER*4 STATUS,birthday(2),SYS$BINTIM,SYS$ASCTIM
CHARACTER employee_id*5,last_name*14,first_name*10,middle_initial
CHARACTER city*20,state*2,postal_code*5,ascii_date*23,confirm
CHARACTER*25 address_data_1,address_data_2
CHARACTER see_all
CHARACTER*8 data_base_key,database_key(20)

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

.

.

.
&RDB& FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = database_key(i)

.

.

.
&RDB& GET
&RDB& ON ERROR

success = .FALSE.
&RDB& END_ERROR
&RDB& employee_id = E.EMPLOYEE_ID;
&RDB& last_name = E.LAST_NAME;
&RDB& first_name = E.FIRST_NAME;
&RDB& middle_initial = E.MIDDLE_INITIAL;
&RDB& address_data_1 = E.ADDRESS_DATA_1;
&RDB& address_data_2 = E.ADDRESS_DATA_2;
&RDB& city = E.CITY;
&RDB& state = E.STATE;
&RDB& postal_code = E.POSTAL_CODE;
&RDB& birthday = E.BIRTHDAY;
&RDB& END_GET
&RDB& END_FOR

IF (success) THEN
C--
C If the field values were successfully retrieved,
C then convert the date field from binary to ASCII format.
C The first and last arguments to the call to SYS$ASCTIM are not
C required arguments.
C---

(continued on next page)

15–8 Using the FORTRAN Program Environment

Example 15–3 (Cont.) Using SYS$ASCTIM System Service Routine in
RDBPRE FORTRAN

CALL SYS$ASCTIM (, ascii_date, birthday,)
TYPE 12000, employee_id, last_name, first_name,

1 middle_initial, address_data_1,
1 address_data_2, city, state,
1 postal_code, ascii_date

12000 FORMAT (// ’ Employee_id: ’,A/
1 ’ Last name: ’,A/
1 ’ First name: ’,A/
1 ’ Middle initial: ’,A/
1 ’ Address: ’,A,’ ’,A/
1 ’ City: ’,A/
1 ’ State: ’,A/
1 ’ Postal code: ’,A/
1 ’ Birthday: ’,A//)

success = .TRUE.
END IF

15.2.1.4 Converting ASCII DATE Strings to Binary Format Use the VMS
system service routine, SYS$BINTIM, to convert ASCII DATE strings into a
binary representation so the DATE fields can be stored in the database.

See the VMS System Services Volume for more information on using
SYS$BINTIM.

Example 15–4 is a code fragment from the F_ADD_EMPLOYEES.RFO
subroutine that demonstrates how to use SYS$BINTIM in an RDBPRE
FORTRAN program.

Using the FORTRAN Program Environment 15–9

Example 15–4 Using SYS$BINTIM System Service Routine in RDBPRE
FORTRAN

.

.

.
C--
C Prompt user to input date, keep prompting
C until user enters date in proper format.
C--

DO WHILE (.NOT.(valid_date))
TYPE 4000

4000 FORMAT (’$’,’ Please enter the Employees
1birthday (dd-MMM-yyyy): ’)

ACCEPT 4010, ascii_date
4010 FORMAT (A)

C--
C Use SYS$BINTIM to convert ASCII input to binary
C format.
C--

STATUS = SYS$BINTIM (ascii_date, birthday)
IF (.NOT. STATUS) THEN

WRITE (6,*) ’Invalid date format’
ELSE

valid_date = .TRUE.

END IF
END DO

15.2.2 Using Literals
Use literal values to replace variables in the same way you would in any
FORTRAN program. Literal values can be either numeric or character
strings. String literals must be quoted in single quotation marks (’ ’) or
double quotation marks (" ") in FORTRAN (although they are always printed
as single quotation marks). You may use a literal in any Rdb/VMS data
manipulation statement that accepts a host language variable.

&RDB& FOR D IN DEPARTMENTS WITH
&RDB& D.DEPARTMENT_CODE = ’ADMN’
&RDB& GET
&RDB& DEP_NAME = D.DEPARTMENT_NAME
&RDB& END_GET
&RDB& END_FOR

15–10 Using the FORTRAN Program Environment

15.2.3 Forming Record Streams
In FORTRAN, and any language that you use to access an Rdb/VMS database,
you select the records you are interested in manipulating by gathering these
records into a stream. You create this stream using the Rdb/VMS data
manipulation statements. These statements use context variables to name the
stream of records that you select from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

15.2.4 Retrieving Records
Rdb/VMS provides you with three statements to retrieve records:

FOR

Two START_STREAM statements:

Declared START_STREAM

Undeclared START_STREAM

The following sections provide FORTRAN examples of how to form record
streams and retrieve records using the FOR and START_STREAM statements.

15.2.4.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any Rdb/VMS and
FORTRAN statements included within the FOR . . . END_FOR block. The
FOR statement always includes an RSE with at least one context variable.

Example 15–5 shows a FOR statement from the F_DISPLAY_CAND.RFO
subroutine. It uses the flag ‘‘success’’ to determine if the RSE has been
satisfied. If a candidate record is found with field values that match the
values in the host language variables, the success flag is set to true. If no
record matches the values in the host language variables, then the success flag
remains set to false.

Using the FORTRAN Program Environment 15–11

Example 15–5 Using the FOR Statement in RDBPRE FORTRAN
success = .FALSE.

&RDB& START_TRANSACTION READ_ONLY
&RDB& FOR C IN CANDIDATES WITH
&RDB& C.FIRST_NAME = candidate_name AND
&RDB& C.MIDDLE_INITIAL = candidate_mi AND
&RDB& C.LAST_NAME = candidate_lname

&RDB& GET candidate_status = C.CANDIDATE_STATUS
&RDB& END_GET

success = .TRUE.
TYPE 4000,candidate_name,

1 candidate_mi,candidate_lname
4000 FORMAT(’/’,A,’ ’,A,’ ’,A,’ has the

1following status: ’)
TYPE *, candidate_status

&RDB& END_FOR

You can include host language statements within the FOR . . . END_FOR
block to process the records within the stream. However, there is an important
exception to the type of statement you can include. Do not transfer control
out of the FOR . . . END_FOR block unless you do not want to return. It is
impossible to enter the loop again while it is executing.

You may call a module from within a FOR loop, because these subroutines
execute within the FOR loop context. However, you cannot use a context
variable defined in the FOR block in any subroutine that is preprocessed
outside the FOR block.

15.2.4.2 Using Declared Streams to Retrieve Records Rdb/VMS supports
two forms of the START_STREAM statement. The declared START_STREAM
statement and the undeclared START_STREAM statement. Declared streams
provide all the features of the undeclared streams and more. Most importantly,
undeclared streams require that the statements you use to manipulate the
stream be enclosed by the START_STREAM and END_STREAM statements
in your source program. Declared streams do not impose this restriction. The
statements you use to manipulate the stream may appear in any order within
your program as long as the DECLARE_STREAM statement appears first and
the statements execute in a logical order (START_STREAM, FETCH, GET,
END_STREAM).

Digital recommends that all new applications use the declared START_
STREAM statement. For this reason, only the declared START_STREAM
statement is discussed in this section. Complete details on the differences
between declared and undeclared START_STREAM statements are provided in
Chapter 9.

Note If you use the AT END clause with a FETCH clause, you must use the END_
FETCH clause to terminate the FETCH statement.

15–12 Using the FORTRAN Program Environment

Example 15–6, from the F_PAIR.RFO subroutine, shows the use of the declared
START_STREAM and FETCH statements. The example pairs a CANDIDATES
record with an EMPLOYEES record at random. This could not be achieved
with a FOR statement. You could not conditionally end a FOR loop when all
the CANDIDATES records have been paired with EMPLOYEES records. A
START_STREAM statement lets you do this.

Example 15–6 Using the Declared START_STREAM and FETCH Statements
in RDBPRE FORTRAN

SUBROUTINE pair
C--
C This subroutine demonstrates the use of the declared
C START_STREAM statement. The output of this
C subroutine is merely a random matching of each CANDIDATES
C record with an EMPLOYEES record.
C---

IMPLICIT NONE
LOGICAL emps_end,cands_end
CHARACTER employee_id*5,last_name*14,first_name*10,confirm
CHARACTER cand_last_name*14,cand_first_name*10,cand_status*257

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

WRITE (6,90)
90 FORMAT (’1’,T25,’**** EMPLOYEES/CANDIDATES ****’///)

C---
C Declare the streams that will be used to process the
C EMPLOYEES and CANDIDATES records.
C---

&RDB& DECLARE_STREAM cands USING ca IN candidates
&RDB& SORTED BY ca.last_name
&RDB& DECLARE_STREAM emps USING em IN employees
&RDB& SORTED BY em.first_name

&RDB& START_TRANSACTION READ_ONLY
C--
C Open both streams and set a flag for the
C end-of-stream condition to false.
C--

&RDB& START_STREAM cands
&RDB& START_STREAM emps

emps_end = .FALSE.
cands_end = .FALSE.

C---
C Fetch a record from the CANDIDATES relation. If there
C are no records to retrieve, set the end-of-stream flag
C to true. Otherwise, retrieve the record.
C---

(continued on next page)

Using the FORTRAN Program Environment 15–13

Example 15–6 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE FORTRAN

&RDB& FETCH cands
&RDB& AT END

cands_end = .TRUE.
&RDB& END_FETCH

IF (.NOT.(cands_end)) THEN
&RDB& GET
&RDB& cand_last_name = ca.last_name;
&RDB& cand_first_name = ca.first_name;
&RDB& cand_status = ca.candidate_status;
&RDB& END_GET

END IF

C--
C Fetch a record from the EMPLOYEES relation. If there
C are no records to retrieve, set the end-of-stream flag
C to true. Otherwise, retrieve the record.
C--

&RDB& FETCH emps
&RDB& AT END

emps_end = .TRUE.
&RDB& END_FETCH

IF (.NOT.(emps_end)) THEN
&RDB& GET
&RDB& last_name = EM.LAST_NAME;
&RDB& first_name = EM.FIRST_NAME;
&RDB& employee_id = EM.EMPLOYEE_ID;
&RDB& END_GET

END IF
C---
C If a record exists in both relations then print a
C report.
C---

(continued on next page)

15–14 Using the FORTRAN Program Environment

Example 15–6 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDBPRE FORTRAN

PRINT *,’ Employees: Candidates:’
PRINT *,’------------------------- -------------------------’
DO WHILE (.NOT.(cands_end))

TYPE 100,last_name,first_name,
1 cand_last_name,cand_first_name

100 FORMAT(’/’,’ ’,A,’ ’,A,T31,A,’ ’,A)
&RDB& FETCH cands
&RDB& AT END

cands_end = .TRUE.
&RDB& END_FETCH

IF (.NOT.(cands_end)) THEN
&RDB& GET
&RDB& cand_last_name = CA.LAST_NAME;
&RDB& cand_first_name = CA.FIRST_NAME;
&RDB& cand_status = CA.CANDIDATE_STATUS;
&RDB& END_GET

END IF
IF (.NOT.(emps_end)) THEN

&RDB& FETCH emps
&RDB& AT END

emps_end = .TRUE.
&RDB& END_FETCH

IF (.NOT.(emps_end)) THEN
&RDB& GET
&RDB& last_name = EM.LAST_NAME;
&RDB& first_name = EM.FIRST_NAME;
&RDB& employee_id = EM.EMPLOYEE_ID;
&RDB& END_GET

END IF
END IF

END DO

C--
C Close both streams.
C--

&RDB& END_STREAM emps
&RDB& END_STREAM cands

&RDB& COMMIT

PRINT *, ’ ’
TYPE 300

300 FORMAT (’$’,’ Press RETURN to continue’)
ACCEPT 400, confirm

400 FORMAT (A)

RETURN
END

Using the FORTRAN Program Environment 15–15

15.2.5 Retrieving Segmented Strings
Retrieving segmented strings is a two-step process. First, you must retrieve
the record that contains the segmented string field; then, you must retrieve the
individual segments that comprise the segmented string field.

You may find it easier to picture a segmented string by referring to Figure 8–1
in Chapter 8.

Rdb/VMS provides you with two statements to retrieve segmented string fields:

FOR

START_SEGMENTED_STRING

15.2.5.1 Using the FOR Statement to Retrieve Segmented Strings You must
use two streams when processing segmented string streams. Use the first FOR
or START_STREAM statement to form an outer stream of records, and then
use the second FOR statement to form an inner stream of segments. The inner
stream formed by the second RSE identifies the segments contained in the field
specified by the outer stream formed by the first RSE. Use different context
variables in the inner and outer streams.

Remember that to retrieve the segmented string, you must begin at the first
segment and retrieve segments in the order that they are stored, that is,
sequentially.

Example 15–7 from the F_DISPLAY_RESUME.RFO subroutine:

Uses a FOR statement to search the database for a record with a value
for the EMPLOYEE_ID field that matches the host language variable,
employee_id

Uses a second FOR statement to loop through the segments of the
segmented string field for the EMPLOYEES record

Uses the GET statement to retrieve the individual segments that comprise
a segmented string

Displays these values on the terminal

15–16 Using the FORTRAN Program Environment

Example 15–7 Using the FOR Statement with Segmented Strings in RDBPRE
FORTRAN

SUBROUTINE display_resume

C---
C This subroutine demonstrates how to retrieve a
C field of data type SEGMENTED STRING.
C---

IMPLICIT NONE
LOGICAL employee_found
INTEGER*4 segment_length
CHARACTER employee_id*5,resume_segment*80

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

WRITE (6,90)
90 FORMAT (’1’,T25,’**** DISPLAY RESUME ****’///)

C---
C Prompt user to enter the ID of the employee
C resume that he or she wants to view. If user
C enters ’exit’ then exit subroutine.
C---

TYPE 110
110 FORMAT (’$’,’ Please enter the ID of the

1 Employee or type exit: ’)
ACCEPT 120, employee_id

120 FORMAT (A)

DO WHILE ((employee_id.NE.’EXIT ’).AND.(employee_id.NE.’exit ’))

employee_found = .FALSE.
&RDB& START_TRANSACTION READ_ONLY

C--
C Start an outer FOR loop to retrieve the employee
C record(s) with the specified ID.
C---

&RDB& FOR R IN RESUMES WITH
&RDB& R.EMPLOYEE_ID = employee_id

employee_found = .TRUE.

C--
C Start an inner FOR loop to retrieve the segments
C of the segmented string that comprise the employee’s
C resume.
C--

&RDB& FOR RR IN R.RESUME
&RDB& GET
&RDB& resume_segment = RR.RDB$VALUE;
&RDB& segment_length = RR.RDB$LENGTH;
&RDB& END_GET

(continued on next page)

Using the FORTRAN Program Environment 15–17

Example 15–7 (Cont.) Using the FOR Statement with Segmented Strings
in RDBPRE FORTRAN

C---
C Display each segment as it is retrieved from
C the database.
C---

TYPE 1000, resume_segment
1000 FORMAT (’ ’,A)
&RDB& END_FOR
&RDB& END_FOR
&RDB& COMMIT

C---
C If a record with the specified ID was not found
C then inform the user.
C---

IF (.NOT.(employee_found)) THEN
TYPE 2000, employee_id

2000 FORMAT(’ Employee ’,A,’ has no resume on file’)
END IF

PRINT *, ’ ’
TYPE 110
ACCEPT 120, employee_id

END DO

RETURN
END

The GET statement fetches only as much of the stored segment as the host
language variable that receives the segment can hold. The next GET statement
fetches the next piece of the segment. Suppose the segmented string segment
size in the previous example was declared as 80 characters and the actual
length of the stored segment was 100 characters. The first GET statement
would fetch 80 characters of the first segment and the next GET statement
would fetch the remaining 20 characters. The third GET statement would
fetch 80 characters of the second segment, the next GET statement would fetch
the remaining 20, and so on.

15.2.5.2 Using the START_SEGMENTED_STRING Statement to Retrieve
Segmented Strings When you want to maintain program control of loop
iteration through the segments that form a segmented string, use the START_
SEGMENTED_STRING statement with a record stream formed by a FOR or
START_STREAM statement. You must start two streams when processing
segmented string streams with the START_SEGMENTED_STRING statement.

Form an outer stream of records with a FOR or START_STREAM statement,
then use the START_SEGMENTED_STRING statement to form an inner
stream of segments. This inner stream identifies the segment stream that is
contained in the field specified by the FOR or START_STREAM statement.
When you name the segment stream, use a different name from the outer

15–18 Using the FORTRAN Program Environment

stream name. Use different context variables for the outer stream and the
inner segmented string stream.

The program shown in Example 15–8:

Uses an undeclared START_STREAM statement to find all the records in
the RESUMES relation with an employee ID of 12345.

Uses a START_SEGMENTED_STRING statement to retrieve the resume
of each EMPLOYEES record found by the first stream.

Uses the GET statement to retrieve the segments that comprise the
segmented string.

Checks the return status value of the GET statement after each segment is
retrieved to make sure the end-of-segmented-string condition has not been
met. If this condition has not been met, the value of the current segment is
printed.

Stops processing the segmented string field when the preceding condition is
met.

Fetches the next employee record with an employee ID of 12345, if one
exists.

Closes both streams when both the START_STREAM and START_
SEGMENTED_STRING end conditions have been met.

Commits the transaction.

Example 15–8 Using the START_STREAM and START_SEGMENTED_STRING
Statements in RDBPRE FORTRAN

PROGRAM show_resume

IMPLICIT NONE
LOGICAL end_of_stream
INTEGER*4 segment_length,status
CHARACTER resume_segment*80
INTEGER*4 RDB$_SEGSTR_EOF
EXTERNAL RDB$_SEGSTR_EOF
EXTERNAL RDB$SIGNAL

&RDB& DATABASE pers=FILENAME ’MF_PERSONNEL’
end_of_stream = .FALSE.

&RDB& START_TRANSACTION READ_ONLY

(continued on next page)

Using the FORTRAN Program Environment 15–19

Example 15–8 (Cont.) Using the START_STREAM and START_SEGMENTED_
STRING Statements in RDBPRE FORTRAN

C---
C Find all the records in the RESUMES relation
C with an employee ID of 12345.
C---

&RDB& START_STREAM RESSTR USING
&RDB& R IN RESUMES WITH R.EMPLOYEE_ID = ’12345’
&RDB& FETCH RESSTR

&RDB& END_FETCH
C--
C Retrieve the resume of each employee found
C with the START_STREAM statement.
C--

&RDB& START_SEGMENTED_STRING RINFO USING STRN IN R.RESUME
DO WHILE (.NOT. (end_of_stream))

C---
C Retrieve the segments that comprise the segmented
C string field.
C---

&RDB& GET
&RDB& ON ERROR

CALL RDB$SIGNAL()
&RDB& END_ERROR
&RDB& resume_segment = STRN.RDB$VALUE;
&RDB& segment_length = STRN.RDB$LENGTH;
&RDB& END_GET

C---
C Check the return status value of the GET statement
C after each segment is retrieved to make sure that
C the end-of-segmented-string condition has not
C been met. If this condition has not been met,
C print the value of the current segment. Otherwise,
C stop processing the stream of segments.
C---

status = RDB$MESSAGE_VECTOR(2)

IF (status .NE. (%LOC(RDB$_SEGSTR_EOF))) THEN
TYPE 2000, resume_segment

2000 FORMAT (’ ’,A)
ELSE

end_of_stream = .TRUE.
END IF

END DO

(continued on next page)

15–20 Using the FORTRAN Program Environment

Example 15–8 (Cont.) Using the START_STREAM and START_SEGMENTED_
STRING Statements in RDBPRE FORTRAN

C---
C Close both streams.
C---

&RDB& END_SEGMENTED_STRING RINFO
&RDB& END_STREAM RESSTR
&RDB& COMMIT

STOP
END

15.2.6 Retrieving Field Values
Use the GET statement to retrieve one, several, or all the field values from a
database record. You can also use the GET statement to retrieve statistical
values from the database.

Do not use the RDBPRE concatenation operator (|) in a GET statement.
Doing so causes a preprocessing error. To concatenate fields in preprocessed
programs, first use the GET statement to retrieve the individual fields and
store them in separate FORTRAN variables. Then concatenate the FORTRAN
variables in a FORTRAN statement using the FORTRAN concatenation
operator, double slashes (//).

Section 15.2.6.1 and Section 15.2.6.2 provide examples of retrieving field and
record values. Section 15.2.6.3 provides an example of retrieving statistical
values.

15.2.6.1 Using the GET Statement to Retrieve Field Values When you form a
record stream using the FOR statement, you include the GET statement within
the FOR . . . END_FOR block to retrieve field values from the record stream.
When you form a record stream using the undeclared START_STREAM
statement, you include the GET statement between the START_STREAM
and END_STREAM statements. When you use the declared form of the
START_STREAM statement, the GET statement must execute within the
START_STREAM . . . END_STREAM block; however, it does not have to
appear within this block in your program.

Example 15–9, from the F_LIST_RECORD.RFO subroutine, shows the use of
the FOR and GET statements in RDBPRE FORTRAN.

Using the FORTRAN Program Environment 15–21

Example 15–9 Using the FOR and GET Statements in RDBPRE FORTRAN
C--
C For each EMPLOYEES record that has a corresponding
C record in DEGREES, print the DEGREES record.
C--

&RDB& FOR E IN EMPLOYEES SORTED BY E.LAST_name
&RDB& FOR D IN DEGREES WITH
&RDB& D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& GET
&RDB& last_name = E.LAST_NAME;
&RDB& first_name = E.FIRST_NAME;
&RDB& degree = D.DEGREE;
&RDB& degree_field = D.DEGREE_FIELD;
&RDB& END_GET

TYPE 100,first_name,last_name,degree,degree_field
100 FORMAT(’/’,’ Name is: ’,A,’ ’,A,/,’ Degree

1is: ’,A,’ Degree field is: ’,A/)
&RDB& END_FOR

.

.

.
&RDB& END_FOR

See an earlier example, Example 15–6, for a demonstration of how to use the
START_STREAM, FETCH, and GET statements.

15.2.6.2 Using the GET * Statement to Retrieve Field Values A special form
of the GET statement is the GET * statement, which lets you retrieve database
values at the record level rather than the field level. You can retrieve all the
fields in a record with the GET * statement. To use the GET * statement, you
must first declare a record structure that contains all the fields in the records
of a relation, with record field names that match the database field names.
You can use the FORTRAN DICTIONARY statement to create such a record
structure. (See Chapter 12 for more information on copying record and field
definitions from the data dictionary.) The GET * statement in the following
example retrieves all the fields from the records of the JOB_HISTORY relation
and places their values in the job_history host language record structure:

&RDB& FOR FIRST 1 J IN JOB_HISTORY WITH
&RDB& J.JOB_CODE = JOB_CODE IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& GET
&RDB& job_history = J.*
&RDB& END_GET
&RDB& END_FOR

15–22 Using the FORTRAN Program Environment

15.2.6.3 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly, without processing each
record in the record stream. RDBPRE may assign a data type to the result
that is different from the data type of the field referred to in the expression.
See Chapter 8 for information on the data type conversions performed by
statistical expressions.

Example 15–10, from the F_STATS.RFO subroutine, uses the statistical
function COUNT to find the total number of records in the EMPLOYEES
relation.

Example 15–10 Using the GET Statement to Retrieve Statistical Values in
RDBPRE FORTRAN

SUBROUTINE stats
C---
C This subroutine displays the total
C number of records stored in the EMPLOYEES
C relation.
C---

IMPLICIT NONE
INTEGER number_employees
CHARACTER confirm

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

WRITE (6,90)
90 FORMAT (’1’,T25,’**** STATISTICS ****’///)

C--
C Use the GET statement with a statistical function
C to calculate the total number of records in the
C EMPLOYEES relation.
C--

&RDB& START_TRANSACTION READ_ONLY
&RDB& GET number_employees = COUNT OF e IN employees END_GET
C--
C Display the value.
C--

TYPE 100, number_employees
100 FORMAT (’/’,’ Number of employees in the

1Corporation are: ’,I5,/)
&RDB& COMMIT

(continued on next page)

Using the FORTRAN Program Environment 15–23

Example 15–10 (Cont.) Using the GET Statement to Retrieve Statistical
Values in RDBPRE FORTRAN

PRINT *, ’ ’
TYPE 300

300 FORMAT (’$’,’ Press RETURN to continue’)
ACCEPT 400, confirm

400 FORMAT (A)

RETURN
END

15.2.7 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The Rdb/VMS update statements can only be used in a read/write transaction.
(You may, of course, include any valid Rdb/VMS statement within a read/write
transaction.) The update statements that require a read/write transaction are:

STORE

MODIFY

ERASE

If you update a record and triggered actions have been defined for the relation
containing the record, the update operation (STORE, MODIFY, or ERASE) will
have the specified effect on all the relations in the database that have a foreign
key relationship with the record you want to update.

If a relation-specific constraint has been defined, your ability to perform
update operations may depend on the presence of matching field values in
other relations. For more information on relation-specific constraints, see
Section 6.6.

Include the GET statement in a read/write transaction if you intend to update
any of the fields returned by the GET statement.

Note You may not use a view to update records if that view refers to more than one
relation.

15.2.7.1 Storing Records You can insert values into one or more fields in
one relation using a single STORE statement. To store more than one record
in a relation, include the STORE statement within a program loop.

Example 15–11, from the F_ADD_EMPLOYEES.RFO subroutine, stores an
employee record in the EMPLOYEES relation.

15–24 Using the FORTRAN Program Environment

Example 15–11 Storing Records in RDBPRE FORTRAN
.
.
.

success = .FALSE.
retry_count = 0

DO WHILE ((retry_count .LT. 5) .AND. (.NOT. (success)))
success = .TRUE.

&RDB& START_TRANSACTION READ_WRITE NOWAIT RESERVING
&RDB& EMPLOYEES FOR SHARED WRITE
&RDB& ON ERROR

success = .FALSE.
retry_count = retry_count + 1
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR
END DO

success = .FALSE.
retry_count = 0

C---
C The following loop will execute at least once, because
C ’success’ has just been set to false, and ’retry_count’ to
C zero. If an error occurs during the STORE operation, the
C program will retry STORE operation up to 5 times.
C--

DO WHILE ((retry_count .LT. 5) .AND. (.NOT. (success)))
success = .TRUE.

&RDB& STORE E IN EMPLOYEES USING
&RDB& ON ERROR

success = .FALSE.
retry_count = retry_count + 1
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR

(continued on next page)

Using the FORTRAN Program Environment 15–25

Example 15–11 (Cont.) Storing Records in RDBPRE FORTRAN

C--
C Store the values that the user entered in an
C EMPLOYEES record.
C--

&RDB& E.EMPLOYEE_ID = employee_id;
&RDB& E.LAST_NAME = last_name;
&RDB& E.FIRST_NAME = first_name;
&RDB& E.MIDDLE_INITIAL = middle_initial;
&RDB& E.ADDRESS_DATA_1 = address_data_1;
&RDB& E.ADDRESS_DATA_2 = address_data_2;
&RDB& E.CITY = city;
&RDB& E.STATE = state;
&RDB& E.POSTAL_CODE = postal_code;
&RDB& E.BIRTHDAY = birthday;

.

.

.
&RDB& END_STORE

END DO

15.2.7.1.1 Using the STORE * Statement to Store Records A special form of
the STORE statement is the STORE * statement, which lets you manipulate
database values at the record level rather than the field level. You can store
all the fields in a record with the STORE * statement. To use the STORE *
statement, you must first declare a record structure that contains all the fields
in the relation, with record field names that match the database field names.
You can use the FORTRAN DICTIONARY statement to create such a record
structure. (See Chapter 12 for more information on copying record and field
definitions from the data dictionary.) Then, put the field values you want
to store in the record fields and store the entire record using the STORE *
statement. Example 15–12 shows the use of the STORE * statement to store
job_history, a host language record structure, in the JOB_HISTORY relation.

15–26 Using the FORTRAN Program Environment

Example 15–12 Using the STORE * Statement in RDBPRE FORTRAN
&RDB& STORE J IN PERS.JOB_HISTORY USING
&RDB& J.* = job_history;
&RDB& END_STORE

15.2.7.1.2 Using the CREATE_SEGMENTED_STRING Statement to Store
Segmented Strings Use the CREATE_SEGMENTED_STRING statement
and the STORE statement to store segmented strings in a relation. You must
use two operations to store segmented strings.

Note See Section 9.2.6.1.2 for information about defining the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name with an appropriate value
for storing your segmented strings.

Note Segmented strings cannot be updated (ERASE, MODIFY, or STORE) as part of
a triggered action. For more information, see the DEFINE TRIGGER statement
in the VAX Rdb/VMS RDO and RMU Reference Manual.

Example 15–13, from the F_MOD_RESUME.RFO subroutine, demonstrates
how to read and store a resume into a segmented string from a sequential file;
then it shows how to use the segmented string handle to modify an existing
database record.

Example 15–13 Using the CREATE_SEGMENTED_STRING Statement in
RDBPRE FORTRAN

SUBROUTINE store_res
C--
C This subroutine demonstrates how to store a record with a
C field of data type SEGMENTED STRING.
C--

IMPLICIT NONE
LOGICAL end_of_file
CHARACTER employee_id*5,resume_line*80,resume_file*30

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

WRITE (6,90)
90 FORMAT (’1’,T25,’**** MODIFY RESUME ****’///)

(continued on next page)

Using the FORTRAN Program Environment 15–27

Example 15–13 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in RDBPRE FORTRAN

C---
C Prompt user for the employee ID of the employee
C resume that he or she wants to store.
C---

100 TYPE 110
110 FORMAT (’$’,’ Please enter the ID of the

1Employee or type exit: ’)
ACCEPT 120, employee_id

120 FORMAT (A)

DO WHILE ((employee_id.NE.’EXIT ’).AND.(employee_id.NE.’exit ’))

PRINT *, ’ ’
C--
C Prompt user for the file name of the resume to be stored.
C--

TYPE 1006
1006 FORMAT (’$’,’ Please enter filename of new resume: ’)

ACCEPT 1010, resume_file
1010 FORMAT (A)

&RDB& START_TRANSACTION READ_WRITE
&RDB& RESERVING RESUMES FOR SHARED WRITE

C---
C Create a segmented string to hold the values from the
C specified file.
C---

&RDB& CREATE_SEGMENTED_STRING resume_handle

end_of_file = .FALSE.
OPEN (UNIT=1, FILE=resume_file, STATUS=’old’)

DO WHILE (.NOT.(end_of_file))
READ (1, 2000, END=3000) resume_line

2000 FORMAT (A80)
&RDB& STORE R IN resume_handle USING
&RDB& R.RDB$VALUE = resume_line
&RDB& END_STORE

END DO

3000 end_of_file = .TRUE.
CLOSE (UNIT=1)

&RDB& END_SEGMENTED_STRING resume_handle

(continued on next page)

15–28 Using the FORTRAN Program Environment

Example 15–13 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in RDBPRE FORTRAN

C---
C Store the new record by supplying the segmented string handle from
C the CREATE_SEGMENTED_STRING statement as the object of the segmented
C string assignment statement.
C---

&RDB& STORE R IN RESUMES USING
&RDB& R.EMPLOYEE_ID = employee_id;
&RDB& R.RESUME = resume_handle;
&RDB& END_STORE
&RDB& COMMIT

PRINT *, ’ ’
TYPE 110
ACCEPT 120, employee_id

END DO

RETURN
END

15.2.7.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of a record in a relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Example 15–14, a FORTRAN program segment from the F_MODIFY_
ADDRESS.RFO subroutine, modifies a record in the EMPLOYEES relation.

Using the FORTRAN Program Environment 15–29

Example 15–14 Modifying Records in RDBPRE FORTRAN
.
.
.

&RDB& START_TRANSACTION READ_WRITE RESERVING
&RDB& EMPLOYEES FOR SHARED WRITE

C---
C Start a record stream containing records
C with an employee identification number equal
C to the host language variable ’employee_id’.
C---

&RDB& FOR E IN EMPLOYEES WITH
&RDB& E.EMPLOYEE_ID = employee_id

C---
C Modify the records in the record stream. If an
C error occurs during the MODIFY operation, call an
C error handler.
C---

&RDB& MODIFY E USING
&RDB& ON ERROR

success = .FALSE.
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR

C--
C If no error has occurred, change the value of the following
C fields to the values in the host language variables.
C Host language variables are in lowercase.
C--

&RDB& E.ADDRESS_DATA_1 = address_data_1;
&RDB& E.ADDRESS_DATA_2 = address_data_2;
&RDB& E.CITY = city;
&RDB& E.STATE = state;
&RDB& E.POSTAL_CODE = postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

(continued on next page)

15–30 Using the FORTRAN Program Environment

Example 15–14 (Cont.) Modifying Records in RDBPRE FORTRAN

C--
C If the value of the success flag is TRUE, the
C modify operation was successful, so commit the
C transaction. Otherwise the modify operation was
C not successful, so roll back the active
C transaction.
C---

IF (success) THEN
PRINT *, ’ Update operation successful’

&RDB& COMMIT
ELSE

PRINT *, ’ Update operation failed’
&RDB& ROLLBACK

END IF

15.2.7.2.1 Using the MODIFY * Statement to Modify Records A special
form of the MODIFY statement is the MODIFY * statement, which lets you
manipulate database values at the record level rather than the field level. You
can modify all the fields in a record with the MODIFY * statement. To use the
MODIFY * statement, you must first declare a record structure that contains
all the fields in the record, with record field names that match the database
field names. You can use the FORTRAN DICTIONARY statement to create
such a record structure. (See Chapter 12 for more information on copying
record and field definitions from the data dictionary.) Then, put the field values
you want to replace into the record fields and modify the entire database record
using the MODIFY * statement.

Only use the MODIFY * statement if you need to modify every field value
in a record. Modifying a field by replacing one value with an identical value
needlessly adds overhead to your program. For example, your program may
check constraints on a field value that you know is valid because it is the same
value that the field presently holds.

Example 15–15 replaces the field values of an employee record in the JOB_
HISTORY relation with the values in the job_history host language record
structure.

Using the FORTRAN Program Environment 15–31

Example 15–15 Using the MODIFY * Statement in RDBPRE FORTRAN
&RDB& FOR J IN JOB_HISTORY WITH
&RDB& J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
&RDB& AND J.JOB_END MISSING
&RDB& MODIFY J USING
&RDB& J.* = job_history;
&RDB& END_MODIFY
&RDB& END_FOR

15.2.7.2.2 Modifying Segmented Strings To modify a segmented string, you
must first create a new segmented string with the CREATE_SEGMENTED_
STRING statement and then modify the existing record by replacing the
logical pointer to the old segmented string with the logical pointer to the new
segmented string. You accomplish this by using the segmented string handle
in an assignment statement. As Chapter 8 explains in more detail, when you
store a segmented string field, you do not actually store segments into a record;
rather, you store a logical pointer to the first segment in the segmented string.
Thus, by creating a new segmented string and a new segmented string id
associated with it, you can modify the field in a database record that ‘‘contains’’
a segmented string merely by replacing the old segmented string id with a
new segmented string id. When you use the segmented string handle in an
assignment statement, RDBPRE understands that it is the segmented string
id that is to be assigned to the record.

Note Although you use a MODIFY statement to modify segmented strings, you are
not actually modifying the individual segments that comprise the segmented
string field. You are actually replacing the entire segmented string with a new
segmented string.

See an earlier example, Example 15–13, for an illustration of how this is done
in FORTRAN.

15.2.7.3 Erasing Records You can delete one, many, or all the records from
a relation using a single ERASE operation. Before erasing records, you must
start a read/write transaction and form a record stream that contains the
records you wish to erase.

Example 15–16, from the F_DELETE_RECORD.RFO subroutine, demonstrates
how to ERASE records in FORTRAN programs.

Note The definition of the sample personnel database includes the trigger
EMPLOYEE_ID_CASCADE_DELETE, which performs an automatic deletion
of records in the relations named in ERASE statements in Example 15–16
(except for RESUMES) when the record with the matching employee ID is
deleted from the EMPLOYEES relation. Thus, you would not need to include
‘‘cascading deletion’’ logic in your programs if it were already included in a
trigger definition.

15–32 Using the FORTRAN Program Environment

Example 15–16 Erasing Records in RDBPRE FORTRAN
&RDB& START_TRANSACTION READ_WRITE RESERVING
&RDB& EMPLOYEES, SALARY_HISTORY, JOB_HISTORY,
&RDB& DEPARTMENTS, DEGREES, WORK_STATUS,
&RDB& RESUMES FOR SHARED WRITE
&RDB& FOR E IN EMPLOYEES WITH
&RDB& E.RDB$DB_KEY = data_base_key
&RDB& FOR JH IN JOB_HISTORY WITH
&RDB& JH.EMPLOYEE_ID = e.employee_id
&RDB& ERASE JH
&RDB& END_FOR
&RDB& FOR SH IN SALARY_HISTORY WITH
&RDB& SH.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE SH
&RDB& END_FOR
&RDB& FOR D IN DEGREES WITH
&RDB& D.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE D
&RDB& END_FOR
&RDB& FOR R IN RESUMES WITH
&RDB& R.EMPLOYEE_ID = E.EMPLOYEE_ID
&RDB& ERASE R
&RDB& END_FOR
&RDB& ERASE E
&RDB& END_FOR
&RDB& COMMIT

15.3 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer or address that has a one-to-one
relationship with a record in the database. Each record has a unique dbkey
that points to it. You can retrieve this key as though it were a field in a record.
For relations, the dbkey is 8 bytes. For views, you can calculate the size by
multiplying the number of relations referred to in the view by 8 bytes. If your
view refers to only one relation, the dbkey is 8 bytes; if your view refers to two
relations, it is 16 bytes, and so on. Once you have retrieved a dbkey, you can
use it to retrieve its associated record directly, within the RSE of a FOR or
START_STREAM statement.

By default, the scope of a dbkey ends with a COMMIT statement. That is, a
dbkey is guaranteed to point to the same record for the life of the transaction
in which it is retrieved.

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

Using the FORTRAN Program Environment 15–33

The following example demonstrates how to specify the scope of the dbkey in
an RDBPRE FORTRAN program:

&RDB& DATABASE GLOBAL pers = FILENAME ’MF_PERSONNEL’

C--
C Extend the scope of the database key so that
C it will be valid across transactions.
C--

&RDB& DBKEY SCOPE IS FINISH

Suggestions on how you can take advantage of the dbkey scope are contained
in Section 9.2.7.

15.4 Using Structured Programming
Programs and modules that pass through the RDBPRE preprocessor do not
have unlimited freedom in structure.

Many data manipulation statements, in particular those that use context
variables, execute in the context of other data manipulation statements. These
statements are:

DECLARE_STREAM

FOR

GET

START_STREAM

END_STREAM

FETCH

STORE

MODIFY

ERASE

CREATE_SEGMENTED_STRING

START_SEGMENTED_STRING

END_SEGMENTED_STRING

Each of these individual data manipulation statements forms only part of
a complex call to the database. The preprocessor generates one call to the
database, using more than one data manipulation statement. For example, a
MODIFY statement executes within the context of a FOR or START_STREAM
statement. The call to the database can only be made using both the FOR and
MODIFY statements. For this reason, the preprocessor requires such data

15–34 Using the FORTRAN Program Environment

manipulation statements to be lexically sequential, that is, in the order they
appear in the program source code.

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This order
may be entirely different from the order of actual program execution. However,
the preprocessor is unaware of the intended run-time order of program block
execution. It generates code in the order that data manipulation statements
appear in the source code. Keep this in mind when writing your application.

Also keep in mind that a context variable is meaningful only within its
scope. In other words, the context variable defined in a FOR statement
is meaningless after the END_FOR statement, and a context variable
defined in an undeclared START_STREAM statement is meaningless after
the END_STREAM statement. However, the context variable defined in a
DECLARE_STREAM statement is meaningful throughout the module in which
it is issued.

A stream declared with the DECLARE_STREAM statement lets you place the
stream of manipulation statements in an order that deviates from the order of
actual program execution. When you want to use structured programming and
you do not need the automatic iteration provided by the FOR statement, use
the declared START_STREAM statement.

For more information on the declared and undeclared START_STREAM
statement, see Section 9.2.3.2. Data manipulation statements that stand alone
as independent calls to the database may appear in any order in the source
file. These statements are:

DATABASE

READY

START_TRANSACTION

GET

COMMIT

ROLLBACK

FINISH

DECLARE_STREAM

Remember that you must issue the DECLARE_STREAM statement before
you can issue a declared START_STREAM statement, and the DATABASE
statement must appear in the data declaration section of your program.

Note You must preprocess FORTRAN functions, subroutines, or submodules in
separate files. Once the individual files have been successfully preprocessed, you
can easily obtain a single executable image. Link the submodule object (OBJ)

Using the FORTRAN Program Environment 15–35

file or files with the main object module to create one executable (EXE) program
image.

Example 15–17, from the F_DELETE_RECORD.RFO and the F_CALL_
OTHER.RFO subroutines, demonstrates structured programming in a
preprocessed FORTRAN program. The F_DELETE_RECORD.RFO module and
the F_CALL_OTHER subroutine are separately preprocessed and compiled.
They are linked with the LINK command. The F_DELETE_RECORD module
passes the value of the dbkey to the F_CALL_OTHER subroutine. This
subroutine finds the record associated with the dbkey and displays this
record on the terminal. Although it is not necessary to program this query in
two modules, it is done here to demonstrate how to pass variables between
separately compiled modules.

Example 15–17 Using Data Manipulation Statements in Structured
Programming in RDBPRE FORTRAN

MODULE: F_DELETE_RECORD:

&RDB& START_TRANSACTION (TRANSACTION_HANDLE trans1)
&RDB& READ_WRITE RESERVING EMPLOYEES FOR SHARED READ

found_employee = .FALSE.
success = .TRUE.

C--
C Find the employee record that the user wants to
C delete. If an error occurs during the FOR operation,
C call an error handler.
C--

&RDB& FOR (TRANSACTION_HANDLE trans1)
&RDB& E IN EMPLOYEES WITH
&RDB& E.EMPLOYEE_ID = employee_id
&RDB& ON ERROR

success = .FALSE.
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR

(continued on next page)

15–36 Using the FORTRAN Program Environment

Example 15–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE FORTRAN

C--
C Get the database key of the EMPLOYEES record that the
C user wants to delete.
C--

&RDB& GET
&RDB& ON ERROR

success = .FALSE.
&RDB& END_ERROR
&RDB& data_base_key = E.RDB$DB_KEY
&RDB& END_GET

found_employee = .TRUE.
&RDB& END_FOR

IF (.NOT.(found_employee)) THEN
TYPE 2020, employee_id

2020 FORMAT (’ Employee id: ’,A,’ is
1 not on file’)

C--
C Pass the dbkey to an external routine CALL_OTHER
C to print out the record to which the dbkey points.
C Note that using an external routine is neither necessary
C nor recommended for performing this task. It is done in this
C example only to show how values are passed between routines
C in an RDBPRE FORTRAN program.
C---

ELSE IF (success) THEN
CALL call_other(data_base_key,trans1)

END IF
&RDB& COMMIT (TRANSACTION_HANDLE trans1)

Subroutine CALL_OTHER:

SUBROUTINE call_other(data_base_key,trans1)

C--
C This subroutine is passed the dbkey and transaction
C handle from the DELETE_RECORD subroutine.
C With this information, it can find and display the
C employee record associated with an employee_id specified
C in DELETE_RECORD and then return program control to the
C DELETE_RECORD subroutine.
C--

IMPLICIT NONE
INTEGER*4 birthday(2),SYS$ASCTIM,trans1
CHARACTER employee_id*5,last_name*14,first_name*10,middle_initial
CHARACTER city*20,state*2,postal_code*5,ascii_date*23
CHARACTER*8 data_base_key
CHARACTER*25 address_data_1,address_data_2

(continued on next page)

Using the FORTRAN Program Environment 15–37

Example 15–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE FORTRAN

C---
C Because the database was invoked in the main program
C with GLOBAL attributes, refer to it here as EXTERNAL.
C---

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

C---
C The transaction was started in the DELETE_RECORD subroutine,
C so there is no need to start a transaction here. Use the
C transaction handle to identify this request with the
C transaction started in DELETE_RECORD. Use the dbkey found
C in DELETE_RECORD to locate the correct employee record.
C--

&RDB& FOR (TRANSACTION_HANDLE trans1) E IN EMPLOYEES WITH
&RDB& E.RDB$DB_KEY = data_base_key
&RDB& GET
&RDB& employee_id = E.EMPLOYEE_ID;
&RDB& last_name = E.LAST_NAME;
&RDB& first_name = E.FIRST_NAME;
&RDB& middle_initial = E.MIDDLE_INITIAL;
&RDB& address_data_1 = E.ADDRESS_DATA_1;
&RDB& address_data_2 = E.ADDRESS_DATA_2;
&RDB& city = E.CITY;
&RDB& state = E.STATE;
&RDB& postal_code = E.POSTAL_CODE;
&RDB& birthday = E.BIRTHDAY;
&RDB& END_GET
&RDB& END_FOR

C---
C Display the EMPLOYEES record. Use SYS$ASCTIM
C to convert the date stored in the database in
C binary to ASCII format.
C---

CALL SYS$ASCTIM (, ascii_date, birthday,)
TYPE 12000, employee_id, last_name, first_name,
1 middle_initial, address_data_1,
1 address_data_2, city, state,
1 postal_code, ascii_date

12000 FORMAT (// ’ Employee_id: ’,A/
1 ’ Last name: ’,A/
1 ’ First name: ’,A/
1 ’ Middle initial: ’,A/
1 ’ Address: ’,A,’ ’,A/
1 ’ City: ’,A/
1 ’ State: ’,A/
1 ’ Postal code: ’,A/
1 ’ Birthday: ’,A//)

(continued on next page)

15–38 Using the FORTRAN Program Environment

Example 15–17 (Cont.) Using Data Manipulation Statements in Structured
Programming in RDBPRE FORTRAN

C---
C Return program control to the DELETE_RECORD subroutine.
C---

RETURN
END

15.4.1 Using Handles in Structured Programming
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Requests

Information on when and how to use request handles is supplied in Chapter 9.
Section 15.4.2 and Section 15.4.4 discuss how to declare handles in an
RDBPRE FORTRAN program.

15.4.2 Declaring and Initializing Handles
With the exception of the database handle, declaring handles in RDBPRE
FORTRAN is similar to declaring any other program variable. The declaration
and initialization of a database handle is done simply by specifying the handle
in the DATABASE statement. You do not declare a database handle in the
data declaration portion of your FORTRAN program. RDBPRE initializes the
handle for you. You should not assign a value to a database handle with an
assignment statement (or any other way).

User-specified request and transaction handles must be declared in the data
declaration portion of your program. In FORTRAN, declare user-specified
request and transaction handles as longwords (INTEGER*4) and initialize
them to zero.

If you want to release the resources associated with a request handle, you can
do so by issuing a FINISH statement, or, if you do not want to detach from the
database, you can release the request by issuing a call to the RDB$RELEASE_
REQUEST procedure with the following statement (where req1 is a user-
supplied request handle):

status = (RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, req1))

IF ((status .AND. 1) .EQ. 0) THEN
CALL SYS$PUTMSG(%REF(RDB$MESSAGE_VECTOR))

END IF

Using the FORTRAN Program Environment 15–39

Declare the variable that holds the return status value as INTEGER*4.

Declare RDB$RELEASE_REQUEST as:

INTEGER*4 RDB$RELEASE_REQUEST
EXTERNAL RDB$RELEASE_REQUEST

15.4.3 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference.

See the VAX Rdb/VMS Guide to Distributed Transactions for information on
coordinating a distributed transaction.

15.4.4 Declaring and Initializing Distributed Transaction
Identifiers

Declaring distributed transaction identifiers in RDBPRE FORTRAN is similar
to declaring any other program variable. Distributed transaction identifiers
must be declared in the data declaration portion of your FORTRAN program.
Declare a distributed transaction identifier as two longwords and initialize it to
zero. You should not assign a value to a distributed transaction identifier with
an assignment statement.

15.5 Using Callable RDO
The RDBPRE preprocessor statements do not include data definition
statements. If you want to perform data definition within your preprocessed
program, you must use the Callable RDO program interface. For example,
during a batch process, or when others are not using the database, your
program may define a temporary index on a field to facilitate Rdb/VMS
performance during your program execution.

You can also use Callable RDO when your program needs the ability to form
dynamic queries. That is, when your program will not know what a query
is until run time. Otherwise, you should use the RDBPRE preprocessor
when possible for all FORTRAN data manipulation operations. Preprocessed
Rdb/VMS statements execute significantly faster than calls using the function
RDB$INTERPRET.

15–40 Using the FORTRAN Program Environment

When using Callable RDO, your program communicates with Rdb/VMS
using the RDB$INTERPRET function. You call RDB$INTERPRET to
pass your data manipulation or data definition statement to Rdb/VMS.
Declare RDB$INTERPRET as an external integer (longword) function. The
RDB$INTERPRET function returns a status value that indicates the success
or failure of the function. The return status value is a systemwide condition
value that indicates either success or a unique Rdb/VMS symbolic error code.
Your program declares a longword variable to hold the return status value
so you can test the success or failure of the call. (Refer to Chapter 10 and
Section 15.6 in this chapter for further information on handling Rdb/VMS
run-time exception conditions.)

The FORTRAN format of the RDB$INTERPRET calling sequence is:

ret-stat = RDB$INTERPRET(’rdb-statement’[, [%DESCR(] host-var [)],...])

The arguments for the RDB$INTERPRET function are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

rdb-statement

The Rdb/VMS statement you pass to Rdb/VMS. Handle rdb-statement
according to your language’s rules for handling string literals or string
variables.

host-var

A host language variable you pass to Rdb/VMS as part of a data
manipulation statement. You do not include host language variables
within the Rdb/VMS statement string literal, but pass them, in order, after
the string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor. You
must include a by-descriptor passing mechanism when your language’s
default passing mechanism for the host language variable data type is not by
descriptor. Refer to your FORTRAN language reference manual for the specific
format of the passing mechanism.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some Rdb/VMS statements may produce
unwieldy code in the call to the RDB$INTERPRET function. Instead, assign
the Rdb/VMS statement string literal to a string variable. Then pass the string
variable in the calling sequence. Assigning Rdb/VMS statements to a string
variable lets you separate your Rdb/VMS data manipulation statements from
the mechanics of using the RDB$INTERPRET function.

Using the FORTRAN Program Environment 15–41

Callable RDO program development is explained in detail in Chapter 19.

The following section discusses the use of the INVOKE DATABASE statement
and the scope of transactions in preprocessed programs that use Callable RDO.

15.5.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use an INVOKE DATABASE statement in your preprocessed
RDBPRE program and a separate RDO INVOKE DATABASE statement in the
embedded Callable RDO statements. To ensure that the preprocessor invokes
the identical database for the preprocessed and the Callable RDO portions
of the program, use the same database handle in each INVOKE DATABASE
statement. Invoke the database:

In the preprocessed program using a GLOBAL or EXTERNAL database
handle.

In the Callable RDO program by passing the database handle to the
RDB$INTERPRET function.

For more information on database handles, see the section on handles in
Chapter 9.

In Callable RDO, you must pass the database handle to RDB$INTERPRET as
a !VAL parameter. See Chapter 19 for an example of passing database handles
in Callable RDO.

You may include both preprocessed and Callable RDO INVOKE DATABASE
statements in the same program module. The preprocessor ignores any
statement that is not preceded by the Rdb/VMS statement flag (&RDB&).
You may also call a function or subroutine to perform the data definition
with Callable RDO. In that case, use a preprocessed INVOKE DATABASE
statement in the main module and the Callable RDO INVOKE DATABASE
statement in the submodule.

For example, in the sample program for FORTRAN, the database is invoked
with the GLOBAL attribute in the main program:

&RDB& DATABASE GLOBAL pers = FILENAME ’MF_PERSONNEL’ DBKEY SCOPE IS FINISH

This program calls the subroutine named F_CALLABLE.FOR. The
F_CALLABLE.FOR subroutine invokes the database using the
RDB$INTERPRET function:

rdb_invoke = ’DATABASE !VAL = FILENAME MF_PERSONNEL’
STATUS = RDB$INTERPRET (rdb_invoke, %DESCR(db_handle))
IF ((STATUS .AND. 1) .NE. 0) THEN

CALL callable_error_handler(STATUS)
success = .FALSE.

END IF

15–42 Using the FORTRAN Program Environment

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the Callable RDO sections of the same
program. The preprocessor will not be able to refer to metadata that has not
yet been defined.

15.5.2 Embedding Data Definition Statements Using Callable
RDO

Data definition statements require a read/write transaction. When an
Rdb/VMS program statement executes, whether it is preprocessed or
Callable RDO, Rdb/VMS checks for an active transaction. If there is an active
transaction that allows the intended operations, the statement is executed.

You must perform Callable RDO data definition statements within a read/write
transaction. However, if you start a read/write transaction in the Callable
RDO portion of your program, make sure that you commit or roll back any
active transactions you started in the preprocessed portion of your program
first. If a transaction is active in your program when you issue the START_
TRANSACTION statement with a Callable RDO statement, your Callable RDO
statement will return a run-time RDO error.

If you call the RDB$INTERPRET function for data definition, do not attempt
to use database or transaction handles in your data definition statements.
Rdb/VMS does not support the use of database or transaction handles in data
definition statements.

Do not define, change, or delete a field, relation, or view in Callable RDO and
then refer to it in the preprocessed portion of the program. At preprocess time,
the field, relation, or view does not yet exist, and the preprocessor generates
errors for those statements that refer to either the field, relation, or view. You
can define indexes and constraints and any other database elements that are
not referred to in the preprocessed code.

You can perform any preprocessed data retrieval or update operation within
any Callable RDO transaction. You can omit the START_TRANSACTION
statement from the preprocessed portion of the program and rely upon the
transaction started in the Callable RDO portion. However, it is better practice
to begin an explicit transaction whenever possible rather than relying on
implicit START_TRANSACTION declarations.

Example 15–18, from the F_DDL_STMNT.FOR subroutine, shows how to
perform data definition tasks in RDBPRE FORTRAN programs.

Using the FORTRAN Program Environment 15–43

Example 15–18 Embedding Data Definition Statements in RDBPRE
FORTRAN

SUBROUTINE ddl_stmnt

C--
C This subroutine demonstrates how to perform
C data definition tasks from an RDBPRE FORTRAN program.
C You must use the Callable RDO function, RDB$INTERPRET,
C to perform data definition tasks in preprocessed programs.
C---

IMPLICIT NONE
LOGICAL success
INTEGER retry_count
INTEGER*4 STATUS,RDB$INTERPRET,db_handle
CHARACTER confirm,rdb_invoke*50,rdb_start*50,ddl_statement*256

C--
C Invoke the database to make it known to Callable RDO.
C--

rdb_invoke = ’DATABASE !VAL = FILENAME MF_PERSONNEL’
STATUS = RDB$INTERPRET (rdb_invoke, %DESCR(db_handle))
IF ((STATUS .AND. 1) .NE. 0) THEN

CALL callable_error_handler(STATUS)
success = .FALSE.

END IF

WRITE (6,90)
90 FORMAT (’1’,T25,’**** EXECUTE DDL ****’///)

C--
C Prompt user for input. Ordinarily, it would not be likely
C that you would ask a user to define an index for the database.
C This example serves only to show you how this type of task could be
C done within a FORTRAN environment.
C--

PRINT *,’ Please enter the data definition statement to define’
PRINT *,’ or delete a temporary index, or type exit: ’
PRINT *,’ ’
PRINT *,’ For example, to define an index for EMPLOYEES based’
PRINT *,’ on EMPLOYEE_ID, you might enter: ’
PRINT *,’ ’
PRINT *,’ define index emp_employee_id for employees duplicates
1 are allowed.’
PRINT *,’ employee_id.’
PRINT *,’ end emp_employee_id index.’
PRINT *,’ ’
PRINT *,’ To delete this index, you might enter: ’
PRINT *,’ ’
PRINT *,’ delete index emp_employee_id.’
PRINT *,’ ’
ACCEPT 130, ddl_statement

130 FORMAT (A256)

(continued on next page)

15–44 Using the FORTRAN Program Environment

Example 15–18 (Cont.) Embedding Data Definition Statements in RDBPRE
FORTRAN

DO WHILE ((ddl_statement.NE.’EXIT ’).AND.(ddl_statement.NE.’exit ’))
confirm = ’N’

DO WHILE (confirm .EQ. ’N’)
PRINT *, ’ ’
TYPE 1000

1000 FORMAT (’$’,’ Have you entered all data correctly? (Y/N): ’)
ACCEPT 1010, confirm

1010 FORMAT (A)
END DO

success = .FALSE.
retry_count = 0

C---
C Start a READ_WRITE transaction.
C---

DO WHILE ((retry_count .LT. 5) .AND. (.NOT. (success)))
success = .TRUE.
rdb_start = ’START_TRANSACTION READ_WRITE’
STATUS = RDB$INTERPRET(%DESCR(RDB_START))
IF ((STATUS .AND. 1) .NE. 0) THEN

success = .FALSE.
retry_count = retry_count + 1
CALL callable_error_handler(STATUS)

END IF
END DO

success = .FALSE.
retry_count = 0

C---
C Pass the data definition statement specified by the
C user to RDB$INTERPRET.
C--

DO WHILE ((retry_count .LT. 5) .AND. (.NOT. (success)))
success = .TRUE.
STATUS = RDB$INTERPRET(%DESCR(ddl_statement))
IF ((STATUS .AND. 1) .NE. 0) THEN

success = .FALSE.
retry_count = retry_count + 1
CALL callable_error_handler(STATUS)

END IF
END DO

(continued on next page)

Using the FORTRAN Program Environment 15–45

Example 15–18 (Cont.) Embedding Data Definition Statements in RDBPRE
FORTRAN

C--
C Inform user of success or failure of data definition task.
C--

IF (success) THEN
PRINT *,’ Transaction Successful’
CALL RDB$INTERPRET(%DESCR(’COMMIT’))

ELSE
PRINT *,’ Transaction failed’
CALL RDB$INTERPRET(%DESCR(’ROLLBACK’))

END IF

C--
C Ask user if he or she wants to define or delete another index.
C--

PRINT *,’ ’
PRINT *,’ Please enter the data definition statement to define’
PRINT *,’ or delete a temporary index, or type exit: ’
PRINT *,’ ’
PRINT *,’ For example, to define an index for EMPLOYEES based’
PRINT *,’ on EMPLOYEE_ID, you might enter: ’
PRINT *,’ ’
PRINT *,’ define index emp_employee_id for employees duplicates

1 are allowed.’
PRINT *,’ employee_id.’
PRINT *,’ end emp_employee_id index.’
PRINT *,’ ’
PRINT *,’ To delete this index, you might enter: ’
PRINT *,’ ’
PRINT *,’ delete index emp_employee_id.’
PRINT *,’ ’
ACCEPT 130, ddl_statement

END DO

RETURN
END

15.6 Handling Rdb/VMS Run-Time Errors
Before reading this section, you should be familiar with the information
contained in Chapter 10 of this manual. Chapter 10 discusses error handling
concepts; this section contains information that, for the most part, is specific to
error handling in RDBPRE FORTRAN.

This section describes how to detect Rdb/VMS errors that occur at run time,
how to display the accompanying messages, and how to recover from errors.
In most cases, this section assumes that you have debugged the program for
errors in both Rdb/VMS and host language statements. This section discusses
Rdb/VMS run-time errors only and does not tell you how to handle host

15–46 Using the FORTRAN Program Environment

language or system run-time errors. Refer to your FORTRAN user’s guide for
such information.

If you choose to combine Callable RDO and RDBPRE DML statements, use
separate error handling routines for each one. See Chapter 19 for information
on handling Callable RDO errors.

15.6.1 Error Handling
RDBPRE FORTRAN enables you to detect errors with the ON ERROR clause.
If an error occurs in an Rdb/VMS data manipulation statement, control passes
to the ON ERROR clause. Your program must then handle the error.

This section describes:

The ON ERROR clause

Determining which error has occurred using the LIB$MATCH_COND
run-time library routine

Error message display using the SYS$GETMSG, SYS$PUTMSG and
LIB$SIGNAL routines

Information on creating user-supplied error messages is contained in
Chapter 10.

15.6.2 Detecting Errors Using the ON ERROR Clause
You can use the ON ERROR clause only in preprocessed programs.
All data manipulation statements except INVOKE DATABASE and
DECLARE_STREAM offer the optional ON ERROR clause. Within the
ON ERROR . . . END_ERROR block you can include one or more host
language or Rdb/VMS statements, or both. These statements can handle
the error directly, but more often they will call an error handler routine that
determines the nature of the error and starts appropriate recovery or cleanup
procedures.

Note Do not use the START_TRANSACTION statement within the
ON ERROR . . . END_ERROR block.

If you do not use the ON ERROR clause and an Rdb/VMS error occurs,
Rdb/VMS passes the error to the VMS run-time library routine, LIB$STOP,
which sets the severity level to 4 (FATAL) and forces program termination.

See Chapter 10 for a more complete description of the ON ERROR clause.

The FORTRAN code fragment in the example that follows shows the placement
of the ON ERROR clause and host language statements within a MODIFY
operation.

Using the FORTRAN Program Environment 15–47

&RDB& FOR E IN EMPLOYEES WITH
&RDB& E.EMPLOYEE_ID = employee_id
&RDB& MODIFY E USING
&RDB& ON ERROR

success = .FALSE.
CALL error_handler(RDB$STATUS,success)
IF (success) THEN

retry_count = 5
END IF

&RDB& END_ERROR
&RDB& E.ADDRESS_DATA_1 = address_data_1;
&RDB& E.ADDRESS_DATA_2 = address_data_2;
&RDB& E.CITY = city;
&RDB& E.STATE = state;
&RDB& E.POSTAL_CODE = postal_code;
&RDB& END_MODIFY
&RDB& END_FOR

15.6.3 Determining Which Errors Have Occurred
After detecting an error, you want to determine which error has occurred. Your
program error handler can then take the correct action for recovery or orderly
program termination. Recovery might include trying an operation again or
writing an error to an error log and continuing to the next operation. You
determine which error has occurred by evaluating the symbolic value of the
error code.

15.6.3.1 Using Symbolic Error Codes All communication with Rdb/VMS is
done through procedure calls. In preprocessed programs, the preprocessor
converts Rdb/VMS statements to host language calls to Rdb/VMS
procedures. Every procedure returns a status value into a program variable,
RDB$STATUS, that is declared by the preprocessor. The return status value
is a longword that identifies a unique message in the system message file. The
return status value may indicate success, in which case data manipulation
continues uninterrupted. Or this value may signal an error, in which case
control passes to the error handler.

In RDBPRE FORTRAN programs, the preprocessor names this variable
RDB$STATUS and declares it to be a longword. The return status value is
the second element of a 20-longword array, RDB$MESSAGE_VECTOR. (The
RDB$MESSAGE_VECTOR array is the message vector that Rdb/VMS uses to
pass information to and from FORTRAN programs.)

Each error generated by an RDBPRE statement is represented as a symbolic
error code. You can use these symbolic error codes to control program logic for
specific errors. When the Rdb/VMS ON ERROR clause detects an error, your
error handler should:

Evaluate the symbolic error code either by calling the LIB$MATCH_COND
routine or by using a FORTRAN equality test

15–48 Using the FORTRAN Program Environment

Direct program logic with one or more FORTRAN host language
statements, such as the Block IF, Arithmetic IF, Computed GO TO, or
Assigned GO TO statements

Although symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. Chapter 10
explains why this is recommended.

15.6.3.2 Declaring Symbolic Error Codes Rdb/VMS symbolic error codes
are longword values. In FORTRAN programs, they should be declared
separately as external variables and as integer longword variables. For
example:

INTEGER*4 RDB$_LOCK_CONFLICT
INTEGER*4 RDB$_DEADLOCK

EXTERNAL RDB$_LOCK_CONFLICT
EXTERNAL RDB$_DEADLOCK

15.6.3.3 Calling LIB$MATCH_COND When you want to determine which of
several possible errors has invoked your error handler, you can use the VMS
Run-Time Library routine, LIB$MATCH_COND.

You also can evaluate the return status value directly with host language
statement or statements, without calling the LIB$MATCH_COND routine.
Generally, host language statements will use fewer resources than
LIB$MATCH_COND. However, future versions of Rdb/VMS may change
the severity levels or facility names of certain symbolic error codes. You must
then link your program again under the new version so that the program will
detect the correct error codes. The LIB$MATCH_COND routine matches only
the condition ID of the return status value and is unaffected by changes in
severity levels or facility names.

The LIB$MATCH_COND routine compares the first parameter to each of the
remaining parameters in its parameter list. If a match is found, it returns
the position in the parameter list of the matching parameter. If no match is
found, the LIB$MATCH_COND routine returns a zero. You should pass the
return status value to the LIB$MATCH_COND routine as the first parameter
in the parameter list. In the remaining part of the parameter list, pass the
error codes you wish to compare to the return status value. If one of these
error codes matches the return status value, the LIB$MATCH_COND routine
returns the position of the matching parameter in the parameter list.

For example, suppose you want to determine if RDB$STREAM_EOF, RDB$_
DEADLOCK, or RDB$NOT_VALID is the return status value. Pass to the
LIB$MATCH_COND routine the parameter list that contains RDB$STATUS,
RDB$_STREAM_EOF, RDB$_DEADLOCK, and RDB$_NOT_VALID. If
RDB$STATUS equals RDB$_DEADLOCK, then the LIB$MATCH_COND
routine returns a value of 2 because RDB$_DEADLOCK is the second
parameter in the parameter list.

Using the FORTRAN Program Environment 15–49

Next, use the value that the LIB$MATCH_COND routine returns to determine
the path of your error handler’s conditional statement. To continue our
example, assume you use a computed GO TO statement as the error handler’s
conditional statement. In this example, your computed GO TO statement
evaluates the value returned by the LIB$MATCH_COND routine, and your
program falls through to the second label of the GO TO statement. Your
program performs the statement(s) associated with the label statement. These
statements might print a message to the terminal, roll back the transaction,
and return program control to a point before the transaction was opened. Or
they might call a more complex routine to perform these and other actions.

The FORTRAN format of the call to the LIB$MATCH_COND routine is:

err-match = LIB$MATCH_COND([%REF(]ret-stat[)],%LOC(symb_name)[,...])

The arguments for this FORTRAN call are:

err-match

A numeric variable that holds the integer that identifies the symbol
matched.

ret-stat

A program variable (RDB$STATUS) that holds the return status value of
the last call to the database.

symb-name

One or more symbolic error codes, (or the variable names you have assigned
to them) that you want to match against ret-stat. The symbolic error codes
are longwords and are passed by reference.

Declare the LIB$MATCH_COND routine as EXTERNAL in FORTRAN
programs.

Example 15–19 demonstrates the use of the LIB$MATCH_COND routine in
a FORTRAN error handling routine. This error handler could be called from
another program that:

Detects errors with an ON ERROR clause

Includes a statement within the ON ERROR . . . END_ERROR block that
sets the value of a success flag to FALSE when the ON ERROR clause is
executed

This error handling routine:

Receives the return status and the success flag values

Opens a file to record the error messages

Uses the LIB$MATCH_COND routine to determine which error has
occurred

15–50 Using the FORTRAN Program Environment

Uses a computed GO TO statement to take different actions depending on
which error has occurred

Sets the success flag to true if corrective error handling could take place

Closes the file that records the error messages

Example 15–19 Using LIB$MATCH_COND in RDBPRE FORTRAN
SUBROUTINE error_handler(RDB$STATUS,success)

C--
C This subroutine handles run-time errors identified by
C the ON ERROR clause in the sample FORTRAN programs.
C--

IMPLICIT NONE
LOGICAL success

C---
C Declare variables and symbolic error codes and system
C service library routines.
C---

CHARACTER*80 msg_txt
INTEGER*4 RDB$_LOCK_CONFLICT,RDB$_DEADLOCK,RDB$_NO_DUP
INTEGER*4 RDB$_NOT_VALID,RDB$_INTEG_FAIL,RDB$_NO_RECORD
INTEGER*4 RDB$STATUS,LIB$CALLG,SYS$GETMSG,LIB$SIGNAL
INTEGER*4 LIB$MATCH_COND,SYS$PUTMSG,error_match
EXTERNAL RDB$_LOCK_CONFLICT,RDB$_DEADLOCK,RDB$_NO_DUP
EXTERNAL RDB$_NOT_VALID,RDB$_INTEG_FAIL,RDB$_NO_RECORD
EXTERNAL LIB$MATCH_COND

&RDB& DATABASE EXTERNAL pers=FILENAME ’MF_PERSONNEL’
&RDB& DBKEY SCOPE IS FINISH

OPEN (UNIT=3, FILE=’error_file.log’, STATUS=’new’)

C---
C Use LIB$MATCH_COND to determine which of a series
C of errors might have occurred.
C---

error_match = LIB$MATCH_COND(%REF(RDB$STATUS),
1 %LOC(RDB$_LOCK_CONFLICT),
1 %LOC(RDB$_DEADLOCK),
1 %LOC(RDB$_NO_DUP),
1 %LOC(RDB$_NOT_VALID),
1 %LOC(RDB$_INTEG_FAIL),
1 %LOC(RDB$_NO_RECORD))

(continued on next page)

Using the FORTRAN Program Environment 15–51

Example 15–19 (Cont.) Using LIB$MATCH_COND in RDBPRE FORTRAN
C--
C The GO TO statement directs program to appropriate
C statements to execute depending on the error
C that was identified.
C--

GO TO (10,10,20,30,40,50) error_match

C Unexpected error
WRITE (5,90)
WRITE (3,90)
CALL SYS$GETMSG(%VAL(Rdb$STATUS),,%DESCR(msg_txt))
WRITE (5,95) msg_txt
WRITE (3,95) msg_txt
CALL LIB$CALLG(%REF(Rdb$MESSAGE_VECTOR),
1 %VAL(LIB$SIGNAL))
RETURN

C Lock Conflict and deadlock
10 CALL SYS$PUTMSG(%REF(Rdb$MESSAGE_VECTOR))

WRITE (5,100)
WRITE (3,100)
RETURN

C No duplicates allowed
20 CALL SYS$PUTMSG(%REF(Rdb$MESSAGE_VECTOR))

WRITE (5,200)
WRITE (3,200)
success = .TRUE.
RETURN

C Invalid data
30 CALL SYS$PUTMSG(%REF(Rdb$MESSAGE_VECTOR))

WRITE (5,300)
WRITE (3,300)
success = .TRUE.
RETURN

C Integrity failure
40 CALL SYS$PUTMSG(%REF(Rdb$MESSAGE_VECTOR))

WRITE (5,400)
WRITE (3,400)
success = .TRUE.
RETURN

C Record deleted
50 WRITE (5,500)

WRITE (3,500)
success = .TRUE.
RETURN

(continued on next page)

15–52 Using the FORTRAN Program Environment

Example 15–19 (Cont.) Using LIB$MATCH_COND in RDBPRE FORTRAN

90 FORMAT (’ ’,’ Unexpected error - terminating program’/)

95 FORMAT (’ ’,A80)

100 FORMAT (’ ’,’ Another user is accessing data you
1attempted to access’,/,’ Please choose a new value
1and try again’/)

200 FORMAT (’ ’,’ You attempted to insert a record with a
1value already on file’/)

300 FORMAT (’ ’,’ In the data you entered, you specified
1 an invalid value’,/,’ Please correct the error and
1try again’)

400 FORMAT (’ ’,’ In the data you entered, you violated
1a constraint’,/,’ Please correct the error and try
1again’/)

500 FORMAT (’ ’,’ Record entered has already been deleted’/)

END

15.6.4 Displaying Error Messages
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and terminate your
program, you can call the LIB$SIGNAL routine

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system service

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code

Information on creating user-supplied error messages is contained in
Chapter 10.

15.6.4.1 Calling LIB$SIGNAL Call the LIB$SIGNAL routine when you
want to display an error message generated by Rdb/VMS and either continue
program execution, or terminate program execution. LIB$SIGNAL is a VMS
Run-Time Library routine that:

Receives the signal argument list from the signaling procedure

This list is made up of the return status value and a set of optional
arguments that provide information to condition handlers.

Using the FORTRAN Program Environment 15–53

Copies this signal argument list and uses it to create a signal argument
vector

The signal argument vector serves as part of the input to the user-
established handlers and the system default handlers.

Causes a signal condition which causes the appropriate catchall condition
handler to pass the signal argument vector to the SYS$PUTMSG system
service

The SYS$PUTMSG system service calls SYS$GETMSG to retrieve the
message from the error messages file and then formats and displays the
error message on your terminal.

Resignals the error

If the error is not fatal, program execution continues. If the error is fatal,
the host language error handler signals the error to the VMS default
condition handler, which terminates program execution.

In FORTRAN, you can continue program execution after the call to the
LIB$SIGNAL routine even when the error is fatal. See Section 15.6.5 for
information on how to continue program execution after a call to LIB$SIGNAL.

15.6.4.2 Methods of Calling LIB$SIGNAL The recommended method of
calling LIB$SIGNAL in RDBPRE programs is to pass the message vector,
RDB$MESSAGE_VECTOR, and the LIB$SIGNAL routine to the run-time
library function, LIB$CALLG.

This method ensures that any FAO arguments that exist in the message
vector will be formatted correctly. In addition, this method ensures that any
additional error messages that clarify the nature of the program error will be
returned to your program. For these reasons, Digital recommends that you
always call LIB$SIGNAL with LIB$CALLG.

You can also pass the return status value, RDB$STATUS, to the LIB$SIGNAL
routine. However, this method is not recommended. If you pass RDB$STATUS
to the LIB$SIGNAL routine and FAO arguments exist in the Rdb/VMS error
message, LIB$SIGNAL may be unable to format the Rdb/VMS error message
correctly. In this case, your program may terminate abruptly or may provide
incompletely formatted error messages.

If your application requires that you call LIB$SIGNAL without LIB$CALLG,
be certain that the error message does not contain FAO arguments.
Figure 10–1 in Chapter 10 illustrates the format of the message vector.

15–54 Using the FORTRAN Program Environment

15.6.4.3 The Format of the LIB$SIGNAL Calling Sequence with
RDB$MESSAGE_VECTOR and RDB$STATUS The FORTRAN format of the
LIB$SIGNAL calling sequence with the message vector (RDB$MESSAGE_
VECTOR) is:

CALL LIB$CALLG([%REF(]RDB$MESSAGE_VECTOR[)],[%VAL(]LIB$SIGNAL[)])

The LIB$SIGNAL argument is the run-time library routine that will receive
RDB$MESSAGE_VECTOR. This argument is passed by value in FORTRAN.

When using the LIB$CALLG routine to pass the message vector, you must
declare LIB$CALLG as an external integer function and LIB$SIGNAL as
either an external function or an intrinsic function in FORTRAN.

An earlier example, Example 15–19, demonstrates how to call LIB$SIGNAL
with LIB$CALLG. The FORTRAN format of the LIB$SIGNAL calling sequence
with the return status value is:

CALL LIB$SIGNAL([%VAL(]RDB$STATUS[)])

When using the LIB$SIGNAL routine to pass the return status value, you
must declare LIB$SIGNAL as an external integer function.

15.6.4.4 Calling SYS$PUTMSG Call the SYS$PUTMSG system service when
you want to display an error message generated by Rdb/VMS and continue
program execution. The SYS$PUTMSG system service displays the error
message on the terminal and writes it to the error file designated by the logical
name SYS$ERROR. You can define SYS$ERROR at the DCL level to be your
program error file when you want the SYS$PUTMSG system service to write
an Rdb/VMS error message to it.

The first parameter in the call to the SYS$PUTMSG system service is the
message vector RDB$MESSAGE_VECTOR. Figure 10–1 in Chapter 10
illustrates the format of the message vector. The SYS$PUTMSG system
service can accept other optional parameters that specify a routine that
receives control during message processing, and the facility name to be used in
displaying the message (if you want the facility to be different from the default
facility prefix that is associated with the message). The message vector is
required; you may omit the optional parameters. See the VMS System Services
Volume for a complete description of the SYS$PUTMSG system service.

The FORTRAN format of the SYS$PUTMSG calling sequence is:

CALL SYS$PUTMSG([%REF(] RDB$MESSAGE_VECTOR[)])

Declare the SYS$PUTMSG system service as an external integer function.
See an earlier example, Example 15–19, for a demonstration of the use of the
SYS$PUTMSG system service.

Using the FORTRAN Program Environment 15–55

15.6.4.5 Calling SYS$GETMSG Call the SYS$GETMSG system service when
you want to use an error message message generated by Rdb/VMS within your
program and continue program execution.

The first parameter in the call to the SYS$GETMSG system service is the
Rdb/VMS return status value, the unique identification for the Rdb/VMS error
message. The SYS$GETMSG system service locates the error message and
returns it to your program as the second parameter of the call. You must
declare a string to receive the message. Your program can then manipulate
this string in any way it chooses. Your program can:

Display the string

Write the string to a file

You can also evaluate character substrings within the string, but Digital
recommends that you do not use this method. The message text may change
from one version of Rdb/VMS to the next.

The SYS$GETMSG system service requires a parameter to receive the length
of the message string. You may omit the actual parameter, but you must
include a comma to signify the argument. The SYS$GETMSG system service
accepts other optional parameters that define what is included in the returned
message and receives the FAO count of the message. You may omit these
parameters; if you do, all components of the message are returned. See the
VMS System Services Volume for further information on the SYS$GETMSG
system service.

The SYS$GETMSG system service does not format the FAO arguments in the
error message; instead, it returns the error message with format parameters
embedded in it. If your error message contains a view name, for example,
SYS$GETMSG will return the message:

<View !AC can not be updated>

You can call the SYS$FAO system service to format the FAO arguments in the
message SYS$GETMSG returns to your program. However, when the error
message contains FAO arguments, it is preferable to call the SYS$PUTMSG
system service rather than SYS$GETMSG. The optional parameters that you
can specify with the SYS$GETMSG system service are not shown below. For
more information on SYS$GETMSG, see the VMS System Services Volume.

The FORTRAN format of the SYS$GETMSG calling sequence is:

CALL SYS$GETMSG([%VAL(]RDB$STATUS[)],[%REF(msg-len)],[%DESCR(]msg-string[)])

15–56 Using the FORTRAN Program Environment

The arguments of this calling sequence are:

msg-len

A word that holds the number of characters written into msg-string. This
is not an optional parameter; if you omit it, you must use a comma. This is
passed by reference.

msg-string

A string variable that holds the returned error message. The maximum
length of any message that can be returned is 256 bytes. This is passed by
descriptor.

Declare SYS$GETMSG as an external integer function in FORTRAN. See
an earlier example, Example 15–19, for a demonstration of the use of the
SYS$GETMSG system service.

15.6.5 Handling Fatal Errors
In many instances, the cause of fatal errors is located in the database, not
the program. For example, your program may attempt to access a relation
that has been deleted by the database administrator, or the process that runs
the program may not have sufficient privilege to modify a particular relation.
There is little that your program can do to correct this type of error. However,
your program can determine which fatal error has occurred, perform cleanup
functions, display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error with the LIB$MATCH_COND routine or host language
statement or statements to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or SYS$GETMSG system services to output an
error message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

In FORTRAN you can also call the LIB$SIGNAL routine to display the
error message, but you must use the LIB$ESTABLISH routine to create a
condition handler that will permit your program to continue after the call to
LIB$SIGNAL.

Using the FORTRAN Program Environment 15–57

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary
before calling the LIB$SIGNAL routine. The following is a list of typical
cleanup operations:

End streams

Roll back transactions

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the LIB$SIGNAL routine without establishing a condition handler,
LIB$SIGNAL displays the error message and terminates your program.
Perform any cleanup before making the call to LIB$SIGNAL. However, if
your cleanup includes any Rdb/VMS statements (such as ROLLBACK), these
new calls to the database will change the return status value contained in
RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in this case, the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling the
LIB$SIGNAL routine without any cleanup operations is not recommended.

15–58 Using the FORTRAN Program Environment

16
Using the RDML Program Environment

This chapter describes how to develop application programs that access an
Rdb/VMS database using Relational Data Manipulation Language (RDML)
preprocessed programs. The chapter presents the following topics:

Differences in syntax between RDO and RDML

Using the DECLARE_VARIABLE clause to declare host language variables

Copying VAX CDD/Plus definitions to declare host language variables

Most of the information you need to develop an RDML program is contained
in Chapter 9, Chapter 17, and Chapter 18. This chapter provides you with
information that is specific to RDML and applies to both of the RDML
programming languages, C and Pascal.

16.1 RDML Program Development
To ensure effective program development, you should:

Develop your queries in RDO

You need to know which databases, relations, and fields your program
accesses. Special characteristics of the relations, views, and field definitions
in the database will determine the most efficient form for a query.

Determine host language variables

Your program usually needs to declare host language variables that pass
values to and accept values from the database. You need to be aware of
the existing data types, data restrictions, input constraints, and trigger
definitions that are part of the design of the databases you access.

Using the RDML Program Environment 16–1

Convert your query to the program environment

In a typical application, the database is the source of records for reports
and calculations, as well as the target for updates. The host language
provides logic for operations such as flow control, error handling,
conditional processing, numeric manipulation, and input/output.

16.1.1 Differences in RDO and RDML Syntax
The RDML data manipulation statements are similar to RDO statements.
With these statements you can access a database, update records, retrieve
selected records, and handle Rdb/VMS exception conditions. Refer to the
RDML Reference Manual for a complete description of the RDML data
manipulation statements.

The syntax you use for RDML statements is not identical to the statement
syntax you use in RDO. When you incorporate tested RDO statements into an
RDML program, you need to consider these areas:

Using a host language display statement instead of the PRINT statement

Placing field data into host language variables

Nesting a FETCH operation within a host language loop

Using the FOR with segmented strings statement instead of the START_
SEGMENTED_STRING statement

Using the STORE segmented string statement instead of the CREATE_
SEGMENTED_STRING statement

Using the semicolon, the Pascal statement separator, and C statement
terminator

Using the ON ERROR and AT END clauses to detect Rdb/VMS errors

Examples of how to use these statements are contained in Chapter 17 and
Chapter 18.

16.1.2 Declaring Host Language Variables
An easy way to declare host language variables in RDML is to use the RDML
DECLARE_VARIABLE clause. The DECLARE_VARIABLE clause lets you
declare a host language variable by referring to a database field. The variable
inherits the data type and size attributes associated with the field. You can use
the DECLARE_VARIABLE clause to declare data types for most fields. The
exceptions are described in Chapter 17 and Chapter 18.

The RDML BASED ON clause extracts the data type and size of fields from
the database and allows you to declare Pascal TYPE(s) and C typedef(s) based
on these fields. When you preprocess your program, the RDML preprocessor
assigns the data type and size attributes associated with the field to the

16–2 Using the RDML Program Environment

variable or function you declare using the BASED ON clause. The data types
that the BASED ON clause generates for a variable (when it is different
from the data type of the database field) are discussed in Chapter 17 and
Chapter 18.

Another way to declare host language variables is to copy database definitions
from the data dictionary, CDD/Plus. You can copy field and relation definitions
(which include all the fields within the relation). However, you must be careful
to copy only those relation and field definitions with data types that are
supported by your host language. If an Rdb/VMS data type is flagged with a
dagger in Table 8–5 or Table 8–8, you should check the conversion performed
by the data dictionary and make sure that the data type is appropriate for your
application.

You can copy data definitions into your program from the data dictionary if
you are using VAX C V2.4 or higher, or VAX Pascal V3.6 or higher. However,
copying from the data dictionary is not a completely automatic process for you.
Be careful to avoid the following:

Naming conflicts

You must ensure that relation and field names copied into your program
do not conflict with the Pascal or C naming rules and are not Pascal or
C reserved words. If there are any naming conflicts, you must change
the name in the appropriate database definition before copying the data
dictionary definition. For information about changing database attribute
definitions, see the VAX Rdb/VMS RDO and RMU Reference Manual.

Field names that are not unique

Field definitions copied from the data dictionary are likely to contain
names that are not unique. Be sure to qualify any non-unique field name
by the relation name that contains it. If you do not qualify field names
that are not unique, you will get compile-time errors indicating ambiguous
reference. You can use the appropriate compile qualifier to print out the
copied definition or definitions into your listing (LIS) file and then check
for field names that are not unique.

Data type conflicts

The RDML preprocessor translates copied data dictionary data types
into equivalent host language data types where possible. The Pascal
and C compilers, however, do not perform the data type conversions
that the RDML preprocessor performs. If an RDML data type is flagged
with a dagger (†) in Table 8–5 or Table 8–8 as ‘‘unsupported’’ by your
host language, you cannot copy that definition into your program. For
example, you cannot use the %DICTIONARY statement to extract the
data dictionary definition for a field that is a SCALED INTEGER data
type. RDML/Pascal uses different host language data types for scaled
integers than does the Pascal %DICTIONARY statement. Pascal ignores

Using the RDML Program Environment 16–3

the scaled attribute. However, RDML uses a data type that can still
represent the values stored in the database. For this reason, you should
use the DECLARE_VARIABLE clause to declare a variable for a field that
is a SCALED INTEGER data type.

If you must copy the definition, change the affected Rdb/VMS field
definition to a data type that your host language does support.

Furthermore, when you use the #dictionary control line in VAX C to
declare a variable for a TEXT field, be aware that you cannot use a
strcpy or similar function to copy strings into the variable. The variable
declared by the #dictionary control line does not leave space for the null
terminator that is conventionally used to terminate strings in C programs.
However, if you use the RDML DECLARE_VARIABLE clause instead of
the #dictionary control line you do not need to be concerned with this issue.
The DECLARE_VARIABLE clause declares the variable for a TEXT field
with an extra space provided for the null terminator.

You can copy field and relation definitions (and the definitions for the fields
contained within the relation) from the data dictionary. Relation definitions
are stored in the data dictionary as objects under the RDB$RELATIONS
directory. Field definitions are stored in the data dictionary as objects under
the RDB$FIELDS directory. To copy a relation into your program, specify
the location of your dictionary database, then specify the database and the
dictionary path name of the relation that you want to copy.

For example, to copy the EMPLOYEES relation from an MF_PERSONNEL
database, specify the following in your host language statement to copy from
the dictionary:

DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES

The data dictionary is organized as a hierarchy of directories and objects.
You can use the Common Dictionary Operator utility (CDO) to display on your
terminal all the data dictionary entities for a particular database. By observing
the display, you can identify the data dictionary path name you need to include
in the copy statement. For additional information about the data dictionary
structure, see the VAX Common Data Dictionary Utilities Reference Manual.

To list field definitions on your terminal, you must first use the CDO ENTER
command to assign CDO directory names to record definitions within a
CDD$DATABASE definition. Then enter the CDO SHOW ALL/FULL command
to see the field definitions for all the records that you have assigned CDO
directory names with the ENTER command.

For example, if you want to see the field definitions for the EMPLOYEES
relation in the MF_PERSONNEL database, enter the following commands:

16–4 Using the RDML Program Environment

$ DICTIONARY OPERATOR
CDO> ENTER RECORD EMPLOYEES FROM DATABASE MF_PERSONNEL
CDO> SHOW ALL/FULL
Definition of record EMPLOYEES
| Contains field EMPLOYEE_ID
| | Based on ID_NUMBER
| | | Description ’ Generic employee ID ’
| | | Datatype text size is 5 characters
| Contains field LAST_NAME
| | Description ’ Generic last name ’
| | Datatype text size is 14 characters
| Contains field FIRST_NAME
| | Description ’ Generic first name ’
| | Datatype text size is 10 characters
| Contains field MIDDLE_INITIAL
| | Description ’ Generic middle initial ’
| | Datatype text size is 1 characters
| | Missing_value " "
| | DTR Edit_string X.
| Contains field ADDRESS_DATA_1
| | Description ’ Street name ’
| | Datatype text size is 25 characters
| | Missing_value " "
| Contains field ADDRESS_DATA_2
| | Description ’ Mail stops, suite addresses,
| | street numbers . . . ’
| | Datatype text size is 25 characters
| | Missing_value " "
| Contains field CITY
| | Description ’ City name ’
| | Datatype text size is 20 characters
| | Missing_value " "
| Contains field STATE
| | Description ’ State abbreviation (or DISTRICT) ’
| | Datatype text size is 2 characters
| | Missing_value " "
| Contains field POSTAL_CODE
| | Description ’ Postal code (in US = ZIP)’
| | Datatype text size is 5 characters
| | Missing_value " "
| Contains field SEX
| | Description ’ M, F ’
| | Datatype text size is 1 characters
| | Missing_value "?"
| | Valid if (((SEX EQ "M") OR (SEX EQ "F"))
| | OR (SEX MISSING))
| Contains field BIRTHDAY
| | Based on STANDARD_DATE
| | | Description ’ Generic date field ’
| | | Datatype date
| | | Missing_value 17-NOV-1858 00:00:00.00
| | | DTR Edit_string DD-MMM-YYYY
| Contains field STATUS_CODE
| | Description ’ A number ’
| | Datatype text size is 1 characters
| | Missing_value "N"
| | Valid if ((((STATUS_CODE EQ "0") OR

(STATUS_CODE EQ "1")) OR
(STATUS_CODE EQ "2")) OR
(STATUS_CODE MISSING))

Using the RDML Program Environment 16–5

Definition of database MF_PERSONNEL
| database uses RDB database MF_PERSONNEL
| database in file MF_PERSONNEL
| | fully qualified file DISK:[MYDATABASE]MF_PERSONNEL.RDB;
CDO>

16.1.3 The C #dictionary Control Line
The #dictionary control line is specific to C, and lets you extract data
definitions and include these definitions in your program.

The format of the #dictionary control line is:

#dictionary dictionary-path-name

The dictionary-path-name argument specifies the full or relative data
dictionary path name that identifies the location in the data dictionary of
the object definition you want to copy. Enclose the path name in pairs of
double quotation marks. You can use a logical name for dictionary-path-name.

For example, to extract the definition of the EMPLOYEES relation, place
the following statement after the database statement, but before the main C
function:

#dictionary "disk:[myfiles]mf_personnel.rdb$relations.employees"

If you specify the /LISTING qualifier and either the /SHOW=DICTIONARY or
/SHOW=ALL qualifier in the compile command line, the translation of the data
dictionary record description into C is included in the LIS file and marked with
the letter D in the margin.

The following segment from a LIS file (edited slightly to improve readability)
shows the C translated text of the EMPLOYEES relation definition. Note the
data type conversions for the DATE data type of the BIRTHDAY field.

457 /* 7 */ typedef
458
459 #dictionary "disk:[myfiles]mf_personnel.rdb$relations.employees"

D /* CDD Path Name is "disk:[my_files]mf_personnel.
rdb$relations.employees" */

D struct employees
D {
D /* Generic employee ID */
D char employee_id [5];

/* text */
D /* Generic last name */
D char last_name [14];

/* text */
D /* Generic first name */
D char first_name [10];

/* text */
D /* Generic middle initial */
D char middle_initial;

/* text */

16–6 Using the RDML Program Environment

D /* Street name */
D char address_data_1 [25];

/* text */
D /* Mail stops, suite addresses, ... */
D char address_data_2 [25];

/* text */
D /* City name */
D char city [20];

/* text */
D /* State abbreviation (or DISTRICT) */
D char state [2];

/* text */
D /* Postal code (in US = ZIP) */
D char postal_code [5];

/* text */
D /* M, F */
D char sex;

/* text */
D /* Generic date field */
D struct { char cc_cdd$_unsupported_#1 [8]; } birthday;

/* absolute date and time */
D /* A number */
D char status_code;

/* text */
D };

%CC-I-UNSUPPTYPE, The CDD description for "birthday"
specifies a data type not supported in C.

See the chapter on preprocessor control lines in Programming in VAX C for
more information.

16.1.4 The Pascal %DICTIONARY Statement
Pascal lets you use the data dictionary to define a TYPE record structure
for database relations in your Pascal program. After identifying the data
dictionary path name of the relation definition you want to copy, use the
Pascal %DICTIONARY statement to create a record structure in the TYPE
section of your program. Then use the record structure from the TYPE section
of your program to declare host language variables in the VAR section. To
copy multiple definitions, use the %DICTIONARY statement to define record
structures as needed.

The format for the %DICTIONARY statement is:

TYPE
%DICTIONARY ’dictionary-path-name’

The dictionary-path-name argument specifies the full or relative data
dictionary path name that identifies the location in the data dictionary of
the object definition you want to copy. Enclose the path name in pairs of single
quotation marks. You can use a logical name for dictionary-path-name.

Using the RDML Program Environment 16–7

The following program segment shows you how to copy a dictionary definition
into a Pascal program. Note that Pascal translates the dictionary definition
into a record structure and subordinate fields. To allocate memory to the fields
of the record, you must declare a host language variable in the VAR section
using the record structure you declared in the TYPE section.

TYPE
(* copy employees relation from CDD/Plus *)

%DICTIONARY ’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’

VAR
EMP : EMPLOYEES; (* declare employees record *)

. . . .

You can obtain a compiled program LIS file that includes the translated
definition using the /LISTING and /SHOW=DICTIONARY qualifiers in the
compile command line. For example:

$ PASCAL PROG2/LIST/SHOW=DICTIONARY

The following segment from the LIS file shows the Pascal translated text of the
EMPLOYEES relation definition. Note the data type conversions for the DATE
data type of the BIRTHDAY field.

00479 0 0 (* 6 *)TYPE
00480 0 0 (* 7 *)%DICTIONARY

’DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES’
00481 DC 0 0 { CDD Path Name =>

DISK:[MYFILES]MF_PERSONNEL.RDB$RELATIONS.EMPLOYEES }
00482 D 0 0 EMPLOYEES = PACKED RECORD
00483 DC 0 0 { Generic employee ID }
00484 D 0 0 EMPLOYEE_ID : PACKED ARRAY [1..5] OF CHAR;
00485 DC 0 0 { Generic last name }
00486 D 0 0 LAST_NAME : PACKED ARRAY [1..14] OF CHAR;
00487 DC 0 0 { Generic first name }
00488 D 0 0 FIRST_NAME : PACKED ARRAY [1..10] OF CHAR;
00489 DC 0 0 { Generic middle initial }
00490 D 0 0 MIDDLE_INITIAL : CHAR;
00491 DC 0 0 { Street name }
00492 D 0 0 ADDRESS_DATA_1 : PACKED ARRAY [1..25] OF CHAR;
00493 DC 0 0 { Mail stops, suite addresses, street numbers . . . }
00494 D 0 0 ADDRESS_DATA_2 : PACKED ARRAY [1..25] OF CHAR;
00495 DC 0 0 { City name }
00496 D 0 0 CITY : PACKED ARRAY [1..20] OF CHAR;
00497 DC 0 0 { State abbreviation (or DISTRICT) }
00498 D 0 0 STATE : PACKED ARRAY [1..2] OF CHAR;
00499 DC 0 0 { Postal code (in US = ZIP) }
00500 D 0 0 POSTAL_CODE : PACKED ARRAY [1..5] OF CHAR;
00501 DC 0 0 { M, F }
00502 D 0 0 SEX : CHAR;
00503 DC 0 0 { Generic date field }
00504 D 0 0 BIRTHDAY : [BYTE(8)] RECORD END; { absolute date/time }

1

16–8 Using the RDML Program Environment

%Pascal-I-CDDUNSTYP, (1) Unsupported CDD datatype ’absolute date/time’
00505 DC 0 0 { A number }
00506 D 0 0 STATUS_CODE : CHAR;
00507 D 0 0 END; { record EMPLOYEES }
00508 C 0 0 (* 8 *)
00509 0 0 (* 9 *) var
00510 0 0 (* 10 *) EMP:EMPLOYEES;
00511 0 1 (* 11 *) begin

Using the RDML Program Environment 16–9

17
Using the RDML/C Program Environment

This chapter describes how to access an Rdb/VMS database using VAX C
programs and the RDML preprocessor interface. This chapter presents the
following main topics:

Using Relational Data Manipulation Language (RDML) statements

Using Rdb/VMS data definition statements

Error handling in RDML/C

Most examples in this chapter are available on line. The Rdb/VMS installation
procedure writes the sample programs to the directory identified by the logical
name RDM$DEMO. The file names for these programs are C_SAMPLE.RC,
C_CALL_OTHER.RC, and C_ERROR.RC. The sample program C_SAMPLE.RC
contains most of the functions referred to in this chapter.

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

Additionally, simple methods (contained on line in the module C_CIO.C)
are used to manipulate character strings and text files. These methods are
used only to make the programs functional. They are not provided as the
recommended way of performing user input in your C programs. You should
examine the needs of your application carefully and use a method that is best
suited to your particular needs.

Note Before reading this chapter, you should be familiar with the information
contained in Chapter 9. The main purpose of this chapter is to provide
information and examples specific to VAX C.

Using the RDML/C Program Environment 17–1

17.1 The RDML/C Preprocessor Interface
When you use the RDML/C preprocessor interface, you simply include
Rdb/VMS data manipulation statements directly in your program wherever
you need them. When you preprocess the source program, the preprocessor
converts the Rdb/VMS data manipulation statements to a series of C calls to
Rdb/VMS. At run time, Rdb/VMS executes the calls and returns any retrieved
data to the program.

You cannot preprocess a program that attempts to access a non-existent
database, unless your database refers to the data dictionary, CDD/Plus, and
refers only to the definitions stored there. That is, if you specify a compile-time
file name in the DATABASE statement, the database must exist at preprocess
time. If you specify a compile-time path name in the DATABASE statement,
the path name element must exist in the data dictionary at preprocess time.
This is because the preprocessor must be able to validate relation and field
definitions in the programs that refer to the database.

Note When you use RDML/C do not use the C string continuation character, a
backslash (\), to continue text to a new line. RDML/C generates an error if it
finds a string constant (within quotation marks) that does not begin and end on
the same line. For example, the following C lines will cause a syntax error:

printf ("abcdefg\
hijklmnopqrstuvwxyz");

Refer to Chapter 11 for information about:

The RDML preprocessor and its command qualifiers

C compile qualifiers like /G_FLOATING and /STANDARD=PORTABLE

The user-defined option file that is required at the link step

Keep the following in mind when developing your programs:

RDML does not expand or read #include files (header files). Therefore, you
should not embed RDML statements in header files.

Because you invoke the C compiler after the RDML preprocessor, you
cannot define RDML statements with macros.

The RDML/C statements are case sensitive, as is C. You must use
uppercase type for the RDML statements and lowercase type for the C
statements.

RDML statement syntax is described in the RDML Reference Manual.

17–2 Using the RDML/C Program Environment

17.2 Embedding RDML Statements in RDML/C Programs
RDML statements are equivalent to the Rdb/VMS data manipulation
statements, which are a subset of Relational Database Operator (RDO)
utility statements. With these statements you can access a database, update
records, retrieve selected records, and handle Rdb/VMS exception conditions.
For more information on the RDML statements and syntax, see the RDML
Reference Manual.

17.2.1 Converting an RDO Prototype to the RDML/C Program
Environment

Once you have created a prototype of your queries with the interactive RDO
utility, you are ready to convert these RDO statements to the RDML/C program
environment. See Chapter 7 for a discussion of creating an RDO prototype.

Example 17–1 is an RDML/C program based on the RDO prototype examples
in Chapter 7.

Example 17–1 Converting an RDO Prototype to RDML/C
store_cand()

/* --- */
/* This function stores a record in the CANDIDATES relation. */
/* It shows how to store a value in a field of VARYING STRING */
/* data type. */
/* --- */
{
DECLARE_VARIABLE first_name SAME AS PERS.CANDIDATES.FIRST_NAME;
DECLARE_VARIABLE last_name SAME AS PERS.CANDIDATES.LAST_NAME;
DECLARE_VARIABLE middle_init SAME AS PERS.CANDIDATES.MIDDLE_INITIAL;

char status_info[255];

char response[80]; /* User’s response from read_string() */
int succeed; /* Success flag */
int transaction_started; /* Transaction started flag */

first_name[0] = EOS; /* EOS is the null terminator */

/* Prompt user for data to store in the CANDIDATES relation */

(continued on next page)

Using the RDML/C Program Environment 17–3

Example 17–1 (Cont.) Converting an RDO Prototype to RDML/C
while (TRUE)

{
succeed = TRUE;
response[0] = EOS;
while (check_response (response, "Y") != 0)

{
printf (" \n");
printf ("Please enter the first name of the candidate or\n");
read_string (" type exit: ",

first_name, sizeof (first_name)-1);
if (check_response (first_name, "EXIT") == 0)

return;

read_string ("Please enter the middle initial of the candidate: ",
middle_init, sizeof (middle_init)-1);

read_string ("Please enter the last name of the candidate: ",
last_name, sizeof (last_name)-1);

read_string ("Please enter the candidate status information: ",
status_info, 254);

printf ("Have you entered the Candidate information \n");
read_string ("correctly? (Y,N): ",

response, sizeof (response)-1);
}

/* Start transaction */

transaction_started = FALSE;
retry = 0;
while (!transaction_started && retry <= 5)

{
transaction_started = TRUE;
START_TRANSACTION READ_WRITE RESERVING CANDIDATES

FOR SHARED WRITE NOWAIT
ON ERROR

handle_error();
transaction_started = FALSE;
retry++;

END_ERROR;
}

if (!transaction_started)
break;

/* Store the values specified by the user in the CANDIDATES */
/* relation. Check for errors and inform the user of the success */
/* or failure of the STORE operation. */

STORE C IN CANDIDATES USING
strcpy (C.FIRST_NAME, first_name);
strcpy (C.LAST_NAME, last_name);
strcpy (C.MIDDLE_INITIAL, middle_init);
RDB$CSTRING_TO_VARYING (status_info, C.CANDIDATE_STATUS);

END_STORE;

(continued on next page)

17–4 Using the RDML/C Program Environment

Example 17–1 (Cont.) Converting an RDO Prototype to RDML/C

if (succeed == TRUE)
{

printf (" \n");
printf ("Update operation succeeded\n\n");
COMMIT;

}
else
{

printf ("Update operation failed\n\n");
ROLLBACK;

}

response[0] = EOS;
}

} /* End store_cand */

The syntax of RDML statements is not identical to the Rdb/VMS DML
statements you may be accustomed to using in RDO and RDBPRE. When
you incorporate your RDO prototype into your program, you need to remember
several differences. In RDML:

The FOR segmented string statement is used instead of the Rdb/VMS
START_SEGMENTED_STRING statement to retrieve segmented strings.

The STORE segmented string statement is used instead of the Rdb/VMS
CREATE_SEGMENTED_STRING statement to store segmented strings.

The BASED ON clause can be used to declare host language types. RDO
has no equivalent statement.

The DECLARE_VARIABLE clause can be used to declare host language
variables. RDO has no equivalent clause.

See Chapter 7 for a full discussion of using prototypes in RDO and for examples
of prototype queries.

17.2.1.1 Using Host Language Variables A host language variable is a
program variable that you use to communicate with Rdb/VMS. A host language
variable can contain the values that update the database; it can also receive
values that Rdb/VMS retrieves from the database. You can use host language
variables as value expressions in data manipulation statements, as well as for
any other program function. The following statements allow the use of host
language variables:

Any statement that permits the use of an RSE

DATABASE (you can specify a database handle)

GET

Using the RDML/C Program Environment 17–5

READY

FINISH

When you declare host language variables, follow the C naming rules.
Ensure that the data type and size of each host language variable and its
corresponding database field are compatible. Refer to Chapter 8 for the lists of
equivalent C data types.

However, if you use host language variables in the form *host_variable
immediately after another host language variable in an RSE, use braces
around the host language statements or parentheses around the WITH clause.
For example:

FOR D IN DEGREES WITH D.EMPLOYEE_ID = emp_id
{
*year_ptr = D.YEAR_GIVEN;
}

END_FOR;

FOR D IN DEGREES WITH (D.EMPLOYEE_ID = emp_id)
*year_ptr = D.YEAR_GIVEN;

END_FOR;

Host language variables within parentheses are not permitted in RDML
statements (even though they are permitted in statements other than RDML
statements). For example, the following syntax is not permitted in an RDML
statement:

FOR E IN EMPLOYEES
WITH E.LAST_NAME = (name)[offset].element
.
.
.

END_FOR;

However, the following syntax is permitted in an RDML statement:

FOR E IN EMPLOYEES
WITH E.LAST_NAME = name[offset].element

.

.

.
END_FOR;

You can use the RDML DECLARE_VARIABLE clause to declare host language
variables to ensure that the host language variable has the correct data type
and size. The DECLARE_VARIABLE clause causes the RDML preprocessor to
refer to a database field definition and assign the attributes of that field to the
host language variable.

17–6 Using the RDML/C Program Environment

When you use the DECLARE_VARIABLE clause and wish to store a value in
a field, be certain that text string variables are the same length as the text
field in which you are storing them. Pad strings that are shorter than the text
field with blank spaces; truncate strings that are longer than the text field.
Strings that do not match the field in which they are stored will not be stored
as expected.

Note that you should not use the DECLARE_VARIABLE clause to declare a
variable to hold a segmented string field. The DECLARE_VARIABLE clause
does not generate a data type for a segmented string field that is equivalent
to the length of the segmented string segment; instead, the DECLARE_
VARIABLE clause generates a data type that is equivalent to the logical
identifier that points to a segmented string field.

The DECLARE_VARIABLE clause provides an extra character for null
termination of character string variables, therefore you can terminate text
string variables with the null character. For example, if the field is defined
as ‘‘DATATYPE IS TEXT SIZE IS 10’’, then the first ten characters of the text
string variable must be valid data, and the eleventh can be the null character.

Example 17–2 shows the format of the DECLARE_VARIABLE clause in
RDML/C.

Example 17–2 Using DECLARE_VARIABLE to Declare a Host Language
Variable in RDML/C

DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

For more information on the DECLARE_VARIABLE clause, see Chapter 16
and the RDML Reference Manual.

You can use the RDML BASED ON clause to declare C typedefs and function
variables, as shown in Example 17–3. The RDML BASED ON clause extracts
the data type and size of a field and declares a function with the same
attributes. However, in the case of TEXT or DATE fields, the BASED ON
clause in RDML/C returns a pointer to a character.

Using the RDML/C Program Environment 17–7

Example 17–3 Using the BASED ON Clause in RDML/C
typedef BASED ON JOBS.JOB_CODE job_code_type;
typedef BASED ON JOBS.JOB_TITLE job_title_type;

Also, you can declare host language variables by copying database definitions
from the data dictionary, CDD/Plus, using the C #dictionary statement.

When you use the #dictionary control line in C to declare a variable for a TEXT
field, be aware that you cannot use a strcpy or similar function to copy strings
into the variable. The variable declared by the #dictionary control line does
not leave space for the null terminator that is conventionally used to terminate
strings in C programs. However, if you use the RDML DECLARE_VARIABLE
clause instead of the #dictionary control line, you do not need to be concerned
with this issue. The DECLARE_VARIABLE clause declares the variable for a
TEXT field with an extra space provided for the null terminator.

See Chapter 16 for more information on using the data dictionary to declare
host language variables in RDML/C programs.

You can use simple and complex C host language variables, such as arrays or
typedefs, in an RSE. However, do not use functions or procedures within the
RSE. For example, the following RDML/C code does not preprocess:

/* bad code, won’t preprocess correctly! */
FOR FIRST 5 E IN EMPLOYEES WITH E.LAST_NAME = strcat("Black", "-Smith");
printf ("%s/n",E.LAST_NAME);
END_FOR;

However, you can assign the result of a function to a variable and use the
variable within the RSE.

17.2.1.2 Converting DATE Data Type to TEXT DATE data types are stored in
Rdb/VMS databases in encoded binary format. To display a date, your program
must first retrieve the binary value and convert it to an ASCII string. This is
done by using the VMS system service routine, SYS$ASCTIM, to perform the
conversion.

See the VMS System Services Volume for more information on using
SYS$ASCTIM.

Example 17–4, a code fragment from the ADD_EMPLOYEES function,
demonstrates how to display a date:

17–8 Using the RDML/C Program Environment

Example 17–4 Using SYS$ASCTIM System Service Routine in RDML/C
FOR E IN EMPLOYEES

WITH E.RDB$DB_KEY = rdb_key_array[x]
ON ERROR

handle_error();
END_ERROR
printf ("%s %s. ", E.FIRST_NAME, E.MIDDLE_INITIAL);
printf ("%s\n", E.LAST_NAME);
printf ("%s", E.ADDRESS_DATA_1);
printf ("%s\n", E.ADDRESS_DATA_2);
printf ("%s %s\n", E.CITY, E.STATE);
printf ("%s\n", E.POSTAL_CODE);

/* Convert binary date to ascii date */

stat = SYS$ASCTIM(&ascii_birthday.dsc$w_length,
&ascii_birthday,
employee_record.birthday,

0);
if ((stat & 1) != 1)

printf ("Data conversion failed");
else

{
ascii_birthday.dsc$a_pointer[ascii_birthday.
dsc$w_length] =’\0’;
puts (ascii_birthday.dsc$a_pointer);
}

END_FOR;

17.2.1.3 Converting ASCII DATE Strings to Binary Format Use the VMS
system service routine, SYS$BINTIM, to convert ASCII DATE strings into
a binary representation so the DATE data type fields can be stored in the
database.

See the VMS System Services Volume for more information on using
SYS$BINTIM.

Example 17–5, a code fragment from the ADD_EMPLOYEES function,
demonstrates how to use SYS$BINTIM in an RDML/C program.

Using the RDML/C Program Environment 17–9

Example 17–5 Using the SYS$BINTIM System Service Routine in RDML/C
printf ("Please enter the Employee’s birthday\n");
read_string ("In the format: dd-MMM-yyyy :",

ascii_birthday.dsc$a_pointer,
strlen(ascii_birthday.dsc$a_pointer));

/* Convert ASCII date to binary date. */

stat = SYS$BINTIM(&ascii_birthday, employee_record.birthday);
if ((stat & 1) == 1)

break;
else

{
ascii_birthday.dsc$a_pointer[ascii_birthday.dsc$w_length] = ’\0’;

printf ("***Invalid date ’%s’ ****\n",
ascii_birthday.dsc$a_pointer);

}

17.2.2 Using Literals
Use literal values to replace variables in the same way you would in any
high-level language. Literal values can be either numeric or character strings.
A string literal must be quoted in double quotation marks (" ") in C and, if you
use it to replace a field value, or make a comparison to a field value, it must be
padded with blanks to fit the defined size of the field to which it refers.

Notice in the following example that the literal ‘‘Typist’’ is padded with blanks
to fit the defined size of the JOB_TITLE field. You must pad strings this way,
or by using a function, to ensure that string values are stored in the database
correctly.

STORE J IN JOBS USING
strcpy (J.JOB_CODE, "TYPS");
strcpy (J.JOB_TITLE, "Typist ");
J.MAXIMUM_SALARY = 15000;
J.MINIMUM_SALARY = 20000;
strcpy (J.WAGE_CLASS, "3");

END_STORE;

17.2.3 Forming Record Streams
In C, and any language that you use to access an Rdb/VMS database, you
select the records you are interested in manipulating by gathering records
into a stream. You create this stream using the RDML statements. These
statements use context variables to name the stream of records that you select
from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

17–10 Using the RDML/C Program Environment

17.2.4 Retrieving Records
RDML provides you with three statements to retrieve records:

FOR

Two START_STREAM statements:

Declared START_STREAM

Undeclared START_STREAM

17.2.4.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any RDML and
host language statements included within the FOR . . . END_FOR block. The
FOR statement always includes an RSE with at least one context variable.

Example 17–6 shows a FOR statement from the DISPLAY_CAND function.
It uses the flag ‘‘succeed’’ to determine if the RSE has been satisfied. If a
candidate record is found with field values that match the values in the host
language variables, the succeed flag is set to true. If no record matches the
values in the host language variables, then the succeed flag remains set to
false. In C, you must use the RDB$VARYING_TO_CSTRING macro to retrieve
a field of VARYING STRING data type. See Section 17.2.6.4 for information on
using the VARYING STRING data type in C programs.

Example 17–6 Using the FOR Statement in RDML/C
succeed = FALSE;
FOR C IN CANDIDATES WITH C.FIRST_NAME = first_name

AND C.MIDDLE_INITIAL = middle_init
AND C.LAST_NAME = last_name

RDB$VARYING_TO_CSTRING (C.CANDIDATE_STATUS, status_info);
printf ("%s %s\n",

C.FIRST_NAME, C.LAST_NAME);
printf ("has the following status: %s\n\n", status_info);

succeed = TRUE;
END_FOR;

17.2.4.2 Using Declared Streams to Retrieve Records RDML provides two
forms of the START_STREAM statement, the declared and the undeclared
START_STREAM statements. Declared streams provide all the features of
the undeclared streams and more. Most importantly, undeclared streams
require that the statements you use to manipulate the stream be enclosed by
the START_STREAM and END_STREAM statements in your source program.
Declared streams do not impose this restriction. The statements you use
to manipulate the stream may appear in any order within your program as
long as the DECLARE_STREAM statement appears first and the statements
execute in a logical order (START_STREAM, FETCH, GET, END_STREAM).

Using the RDML/C Program Environment 17–11

Digital recommends that all new applications use the declared START_
STREAM statement. For this reason, only the declared START_STREAM
statement is discussed in this section. Complete details on the differences
between declared and undeclared START_STREAM statements are provided in
Chapter 9.

Example 17–7, from the PAIR function, shows the use of the declared
START_STREAM statement and the FETCH statement. The example pairs a
CANDIDATES record with an EMPLOYEES record at random.

Example 17–7 Using the Declared START_STREAM and FETCH Statements
in RDML/C

/* Declarations for the function named PAIR */
/* Declare two streams: one for the CANDIDATES relation and */
/* the other for the EMPLOYEES relation. */

DECLARE_STREAM emps USING EM IN EMPLOYEES SORTED BY EM.FIRST_NAME;
DECLARE_STREAM cands USING CA IN CANDIDATES SORTED BY CA.LAST_NAME;

/* Flags for end-of-stream condition */

globaldef int end_of_emps = FALSE;
globaldef int end_of_cands = FALSE;

.

.

.
pair()

/* ---*/
/* This function demonstrates the use of the declared START_STREAM */
/* statement. The output of this program is merely a random */
/* matching of each CANDIDATES record with an EMPLOYEES record. */
/* The functions called in this function appear just after this one.*/
/* ---*/

{
char response[80]; /* User’s Response from read_string() */

START_TRANSACTION READ_ONLY;

/* Open both streams and set flags for the end-of-stream condition */
/* to false. */

open_candidates();
open_employees();
end_of_emps = FALSE;
end_of_cands = FALSE;

/* Fetch a record from the CANDIDATES and EMPLOYEES relations. */

read_a_candidate();
read_an_employee();

/* Print the employee and candidate names until the end-of-stream */
/* condition is met for the stream of CANDIDATES records. */

(continued on next page)

17–12 Using the RDML/C Program Environment

Example 17–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDML/C

while (!end_of_cands)
{

printf ("%s %s %s %s\n", EM.LAST_NAME, EM.FIRST_NAME,
CA.LAST_NAME, CA.FIRST_NAME);

read_a_candidate();
if (!end_of_cands)

{
read_an_employee();
}

}

printf (" \n");
read_string("Press RETURN to continue",

response, sizeof (response)-1);

/* Close both streams. */

close_employees();
close_candidates();
COMMIT;

} /* End pair */

/* These functions control streams in the PAIR function. */
/* Of course, a simple program such as this does not require the */
/* use of functions to separate the RDML statements. It is done */
/* here to demonstrate what you can do. Note that the statements do */
/* not appear in the order that they will be executed. This is a */
/* feature that declared streams have and undeclared streams do */
/* not have. */

read_a_candidate()
{

FETCH cands
AT END

end_of_cands = TRUE;
END_FETCH;

}

open_candidates()
{
START_STREAM cands;
}

open_employees()
{
START_STREAM emps;
}

read_an_employee()
{
FETCH emps

AT END
end_of_emps = TRUE;

END_FETCH;
}

(continued on next page)

Using the RDML/C Program Environment 17–13

Example 17–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDML/C

close_employees()
{
END_STREAM emps;
}

close_candidates()
{
END_STREAM cands;
}

17.2.5 Retrieving Segmented Strings
Retrieving segmented strings is a two-step process. First, you must retrieve
the record that contains the segmented string field; then, you must retrieve the
individual segments that make up the segmented string field.

You may find it easier to picture a segmented string by referring to Figure 8–1
in Chapter 8.

RDML provides you with the FOR statement with segmented strings to
retrieve segmented strings. You must use two streams when processing
segmented string streams. Use the first FOR (or START_STREAM) statement
to form an outer stream of records, and then use a second FOR statement to
form an inner stream of segments. This inner stream identifies the segments
contained in the field specified by the first RSE. Use different context variables
for the inner and outer streams.

Remember that to retrieve a segmented string, you must begin at the first
segment and retrieve segments in the order in which they are stored, that is,
sequentially.

Example 17–8 from the DISPLAY_RESUME function:

Uses a FOR statement to search the database for a record with a value
for the EMPLOYEE_ID field that matches the host language variable,
employee_id

Uses a second FOR statement to loop through the segments of the
segmented string field for the selected EMPLOYEES record

Uses a printf statement to retrieve field values, the individual segments
that make up the segmented string

Displays these values on the terminal

17–14 Using the RDML/C Program Environment

Example 17–8 Using the FOR Statement with Segmented Strings in
RDML/C

display_resume()

/* ---*/
/* This function demonstrates how to retrieve a field of data */
/* type SEGMENTED STRING. */
/* ---*/

{
DECLARE_VARIABLE employee_id SAME AS RESUMES.EMPLOYEE_ID;

char response[80]; /* User’s response from read_string() */
int succeed;
employee_id[0]= EOS; /* EOS is the null terminator */

/* Prompt the user to enter the ID of the employee resume that */
/* he or she wants to view. If user enters ’exit’ then exit */
/* function. */

while (TRUE)
{
response[0] = EOS;
while (check_response (response, "Y") != 0)

{
printf (" \n");
printf ("Please enter the ID number of the Employee whose\n");
read_string (" resume you want to display or type exit: ",

employee_id, sizeof (employee_id)-1);
if (check_response (employee_id, "EXIT") == 0)

return;

read_string ("Have you entered all the data correctly? (Y,N) ",
response, sizeof (response)-1);

}
START_TRANSACTION READ_ONLY RESERVING RESUMES FOR SHARED READ;

/* Start an outer FOR loop to retrieve the employee record(s) */
/* with the specified ID. */

succeed = FALSE;
FOR R2 IN RESUMES WITH R2.EMPLOYEE_ID = employee_id

succeed = TRUE;

/* Start an inner FOR loop to retrieve the segments of */
/* the segmented string that make up the employee’s */
/* resume. Display each segment as it is retrieved */
/* from the database. */

FOR TEXT IN R2.RESUME
printf ("%.*s\n", TEXT.LENGTH,TEXT.VALUE);

END_FOR;
END_FOR;

(continued on next page)

Using the RDML/C Program Environment 17–15

Example 17–8 (Cont.) Using the FOR Statement with Segmented Strings
in RDML/C

/* If a record with the specified ID was not found */
/* then inform the user. */

if (succeed == FALSE)
{
printf("Employee: %s%s",employee_id,"has no resume on file");
}

COMMIT;
employee_id[0] = EOS;
}

} /* End display_resume */

17.2.6 Retrieving Field Values
RDML lets you use several methods to retrieve field values, as outlined in the
following list:

Use the GET statement to retrieve any value including statistical values
and the results of conditional expressions from the database.

Use the C assignment statement or a C function to retrieve one, several, or
all the fields in a database record and assign those values to one or more
host language variables.

Refer to a field as a parameter of a function.

Use the printf or other input/output function to print out database values.

Although you can use an assignment statement to retrieve statistical
values and the results of conditional expressions from the database, Digital
recommends that you always use the GET statement in these cases. The GET
statement lets you perform error checking with the ON ERROR clause, a
clause that is not available in statistical functions and conditional expressions.
Furthermore, a function call is generated by an assignment statement that is
not generated when you use the GET statement. Therefore, the GET statement
is more efficient than an assignment statement in the context of statistical and
conditional expressions.

Section 17.2.6.1, Section 17.2.6.2, and Section 17.2.6.4 discuss retrieving field
values. Section 17.2.6.3 discusses retrieving statistical values.

17–16 Using the RDML/C Program Environment

17.2.6.1 Using an Assignment Statement to Retrieve Field Values When
you form a record stream using the FOR statement, you can assign database
values to host language variables within the FOR . . . END_FOR block. You
can also write these values using the printf statement.

Example 17–9, from the LIST_RECORD function, demonstrates how to use the
C printf statement to retrieve database values in C.

Example 17–9 Using an Assignment Statement to Retrieve Field Values in
RDML/C

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

printf ("Name is: %s %s\n", E.FIRST_NAME, E.LAST_NAME);
printf ("Degree is: %s\n", D.DEGREE);
printf ("Degree field is: %s\n\n", D.DEGREE_FIELD);

END_FOR;
.
.
.

END_FOR;

When you form a record stream using the START_STREAM statement,
you include the FETCH and GET or assignment statements within the
START_STREAM . . . END_STREAM block.

See Example 17–7 for an example of using the FETCH and assignment
statements within a START_STREAM . . . END_STREAM block.

17.2.6.2 Using the GET * Statement to Retrieve Field Values A special
form of the GET statement is the GET * statement, which lets you retrieve
database values at the record level rather than the field level. You can retrieve
all the fields in a record from a relation with the GET * statement. To use
the GET * statement, you must first declare a record structure that contains
all the fields in the database relation, with record field names that match the
relation field names. The GET * statement in the following example (from the
ADD_EMPLOYEES function) retrieves all of the fields in an EMPLOYEES
record and places their values in the employee_record host language record
structure.

Using the RDML/C Program Environment 17–17

static struct
{

DECLARE_VARIABLE OF employee_id SAME AS PERS.EMPLOYEES.EMPLOYEE_ID;
DECLARE_VARIABLE OF last_name SAME AS PERS.EMPLOYEES.LAST_NAME;
DECLARE_VARIABLE OF first_name SAME AS PERS.EMPLOYEES.FIRST_NAME;
DECLARE_VARIABLE OF middle_initial SAME AS PERS.EMPLOYEES.MIDDLE_INITIAL;
DECLARE_VARIABLE OF address_data_1 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_1;
DECLARE_VARIABLE OF address_data_2 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_2;
DECLARE_VARIABLE OF city SAME AS PERS.EMPLOYEES.CITY;
DECLARE_VARIABLE OF state SAME AS PERS.EMPLOYEES.STATE;
DECLARE_VARIABLE OF postal_code SAME AS PERS.EMPLOYEES.POSTAL_CODE;
DECLARE_VARIABLE OF sex SAME AS PERS.EMPLOYEES.SEX;
DECLARE_VARIABLE OF status_code SAME AS PERS.EMPLOYEES.STATUS_CODE;
DECLARE_VARIABLE OF birthday SAME AS PERS.EMPLOYEES.BIRTHDAY;

} employee_record;
.
.
.

FOR FIRST 1 E IN EMPLOYEES
GET

employee_record = E.*;
END_GET;

END_FOR;

17.2.6.3 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly without processing
each record in the record stream. The result of a statistical expression is
an aggregate, and the data type of the result is often not the same data type
as the field on which the statistical expression is performed. See Chapter 8 for
information on the data type conversions performed by statistical expressions.

There are two advantages to using a GET rather than an assignment
statement. First, the GET statement supports the ON ERROR . . . END_
ERROR clause, which allows you to detect errors that occur during the
statistical or Boolean function. Second, using the GET statement results
in more efficient code than an assignment statement when it is used with
statistical and Boolean functions.

Example 17–10, from the STATS function, uses the COUNT statistical function
to find the total number of records in the EMPLOYEES relation.

17–18 Using the RDML/C Program Environment

Example 17–10 Using the GET Statement to Retrieve Statistical Values in
RDML/C

stats()

/* --- */
/* This function displays the total number of records stored */
/* in the EMPLOYEES relation. */
/* --- */

{
char response[80]; /* User’s response from read_string() */
int atotal; /* Total */

START_TRANSACTION READ_ONLY;

/* Use the GET statement with a statistical expression to */
/* calculate the total number of records in the EMPLOYEES */
/* relation. */

printf ("\n\n");
printf ("The number of employees in the Corporation is: ");

GET
atotal = (COUNT OF E IN EMPLOYEES);

END_GET;

printf ("%d\n",atotal);
read_string ("Press RETURN to continue",

response, sizeof (response)-1);
COMMIT;

} /* End stats */

17.2.6.4 Retrieving Field Values of the VARYING STRING Data Type To
retrieve the value of a VARYING STRING database field, you must use the
C macro RDB$VARYING_TO_CSTRING (supplied by Rdb/VMS) within the
FOR or START_STREAM statement.

Example 17–11 shows a program that uses the RDB$VARYING_TO_CSTRING
macro to retrieve the VARYING STRING value stored in the CANDIDATE_
STATUS field of the CANDIDATES relation.

Using the RDML/C Program Environment 17–19

Example 17–11 Retrieving Field Values of the VARYING STRING Data Type
in RDML/C

#include <stdio.h>
DATABASE PERS = FILENAME "MF_PERSONNEL";

main()
{
char candidate_status[255];

READY PERS;
START_TRANSACTION READ_ONLY;

FOR C IN CANDIDATES
printf("%s %s %s\n", C.FIRST_NAME, C.MIDDLE_INITIAL, C.LAST_NAME);
RDB$VARYING_TO_CSTRING(C.CANDIDATE_STATUS,candidate_status);
printf("%s\n\n", candidate_status);

END_FOR;

COMMIT;
FINISH;
}

17.2.7 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The RDML update statements can only be used within a read/write
transaction. (You may, of course, include any valid RDML statement within
a read/write transaction.) The update statements that require a read/write
transaction are:

STORE

MODIFY

ERASE

If you update a record and triggered actions have been defined for the relation
containing the record, the update operation (STORE, MODIFY, or ERASE) will
have the specified effect on all the relations in the database that have a foreign
key relationship with the record you want to update.

If a relation-specific constraint has been defined, your ability to perform
update operations may depend on the presence of matching field values in
other relations. For more information on relation-specific constraints, see
Section 6.6.

Note You may not use a view to update records if that view refers to more than one
relation.

17–20 Using the RDML/C Program Environment

17.2.7.1 Storing Records You can insert values into one or more fields in
one record using a single STORE statement. To store more than one record in
a relation, include the STORE statement within a program loop.

Note that RDML may return unpredictable results when a C multipath
statement, such as the C switch statement, is embedded in an RDML STORE
statement. The problem occurs when a field is referred to but not used at
run time. This is because RDML assumes that any field mentioned within a
STORE . . . END_STORE block is going to be updated.

In the following example, if the program falls through to case 2 at run time,
a value will be stored in the FIRST_NAME field even though FIRST_NAME
is not referred to in case 2. Upon seeing the field referred to in case 1, RDML
sets up a buffer for both the FIRST_NAME and LAST_NAME fields. Because
case 2 does not supply data for the FIRST_NAME field, RDML sends to the
database whatever happens to be in the buffer for the FIRST_NAME field.

The following code will cause unpredictable results:

STORE E IN EMPLOYEES USING
switch (i){

case ’1’:
strcpy (E.LAST_NAME,"Smith ");
strcpy (E.FIRST_NAME,"Andrew ");
break;

case ’2’:
strcpy (E.LAST_NAME, "Jones ");

break;
}

END_STORE;

When different fields are referred to in a multipath statement, the RDML
statement should be embedded in the host language multipath statement as
shown in the following example:

switch(i) {
case ’1’:

STORE E IN EMPLOYEES USING
strcpy (E.LAST_NAME,"Smith ");
strcpy (E.FIRST_NAME,"Andrew ");

END_STORE;
break;
case ’2’:

STORE E IN EMPLOYEES USING
strcpy (E.LAST_NAME, "Jones ");

END_STORE;
break;
}

END_FOR;

Using the RDML/C Program Environment 17–21

Example 17–12, from the STORE_CAND function, stores a candidate’s record
in the CANDIDATES relation.

Example 17–12 Storing Records in RDML/C
transaction_started = FALSE;
retry = 0;
while (!transaction_started && retry <= 5)

{
transaction_started = TRUE;
START_TRANSACTION READ_WRITE RESERVING CANDIDATES

FOR SHARED WRITE NOWAIT
ON ERROR

handle_error();
transaction_started = FALSE;
retry++;

END_ERROR;
}

if (!transaction_started)
break;

/* Store the values specified by the user in the CANDIDATES */
/* relation. Check for errors and inform the user of the success */
/* or failure of the STORE operation. */

STORE C IN CANDIDATES USING
strcpy (C.FIRST_NAME, first_name);
strcpy (C.LAST_NAME, last_name);
strcpy (C.MIDDLE_INITIAL, middle_init);
RDB$CSTRING_TO_VARYING (status_info, C.CANDIDATE_STATUS);

END_STORE;

if (succeed == TRUE)
{
printf (" \n");
printf ("Update operation succeeded\n\n");
COMMIT;
}

else
{
printf ("Update operation failed\n\n");
ROLLBACK;
}

17.2.7.1.1 Using the STORE * Statement to Store Records A special form of
the STORE statement is the STORE * statement, which lets you manipulate
database values at the record level rather than the field level. You can store
all the fields in a record with the STORE * statement. To use the STORE *
statement, you must first declare a record structure that specifies all the fields
in the relation definition, with C record field names that match the database
field names exactly. Then, put the values you want to store in the database
record fields into the C program record and store the entire C record using the

17–22 Using the RDML/C Program Environment

STORE * statement. Example 17–13 shows the use of the STORE * statement
to store the fields in the employee_record record structure that in turn is stored
in the EMPLOYEES relation of the MF_PERSONNEL database.

Example 17–13 Using the STORE * Statement in RDML/C
/* Declare a C record structure. */

static struct
{

DECLARE_VARIABLE OF employee_id SAME AS PERS.EMPLOYEES.EMPLOYEE_ID;
DECLARE_VARIABLE OF last_name SAME AS PERS.EMPLOYEES.LAST_NAME;
DECLARE_VARIABLE OF first_name SAME AS PERS.EMPLOYEES.FIRST_NAME;
DECLARE_VARIABLE OF middle_initial SAME AS PERS.EMPLOYEES.MIDDLE_INITIAL;
DECLARE_VARIABLE OF address_data_1 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_1;
DECLARE_VARIABLE OF address_data_2 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_2;
DECLARE_VARIABLE OF city SAME AS PERS.EMPLOYEES.CITY;
DECLARE_VARIABLE OF state SAME AS PERS.EMPLOYEES.STATE;
DECLARE_VARIABLE OF postal_code SAME AS PERS.EMPLOYEES.POSTAL_CODE;
DECLARE_VARIABLE OF sex SAME AS PERS.EMPLOYEES.SEX;
DECLARE_VARIABLE OF status_code SAME AS PERS.EMPLOYEES.STATUS_CODE;
DECLARE_VARIABLE OF birthday SAME AS PERS.EMPLOYEES.BIRTHDAY;

} employee_record;
. . .

/* Assign values to the host language variables. */

read_string ("Please enter the Employee’s last name: ",
employee_record.last_name,
sizeof (employee_record.last_name)-1);

read_string ("Please enter the Employee’s first name: ",
employee_record.first_name,
sizeof (employee_record.first_name)-1);

. . .

/* Store these values using the STORE * syntax. */

STORE E IN EMPLOYEES USING
ON ERROR

succeed = FALSE;
handle_error();

END_ERROR;
E.* = employee_record;

. . .
END_STORE;

17.2.7.1.2 Storing VARYING STRING Data Types in the Database
You must use the C macro RDB$CSTRING_TO_VARYING (supplied by
Rdb/VMS) to store values for VARYING STRING fields in the database.
Example 17–14 shows a fragment from the STORE_CAND function that
uses the RDB$CSTRING_TO_VARYING macro to store VARYING STRING
data in the CANDIDATES relation.

Using the RDML/C Program Environment 17–23

Example 17–14 Storing VARYING STRING Data in RDML/C
STORE C IN CANDIDATES USING

strcpy (C.FIRST_NAME, first_name);
strcpy (C.LAST_NAME, last_name);
strcpy (C.MIDDLE_INITIAL, middle_init);
RDB$CSTRING_TO_VARYING (status_info, C.CANDIDATE_STATUS);

END_STORE;

17.2.7.1.3 Using the STORE Statement with Segmented Strings to Store
Segmented Strings The STORE segmented string statement behaves in a
similar manner to the FOR segmented string statement. You must use two
streams when you process segmented string streams. Use the first STORE
statement to form an outer stream of records, and then use the second STORE
statement to form an inner stream of segments. This second STORE statement
identifies the segments that are contained in the field specified by the first
STORE statement. Use a different context variable in each of the two STORE
statements.

Note that the inner STORE statement uses a segmented string variable in
place of the context variable, and that the field name is qualified by the context
variable specified in the outer STORE statement. Your program must explicitly
repeat the inner STORE statement to store individual segments, or provide
iteration for an inner STORE loop.

Note See Section 9.2.6.1.2 for information about defining the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name with an appropriate value
for storing your segmented strings.

Note Segmented strings cannot be updated (ERASE, MODIFY, or STORE) as part of
a triggered action. For more information, see the DEFINE TRIGGER statement
in the VAX Rdb/VMS RDO and RMU Reference Manual.

Example 17–15, from the STORE_RES function, demonstrates how to store a
segmented string in C.

17–24 Using the RDML/C Program Environment

Example 17–15 Storing a Segmented String in RDML/C
store_res()

/**/
/* This function demonstrates how to store a record with */
/* a field of data type SEGMENTED STRING. */
/**/

{
DECLARE_VARIABLE employee_id SAME AS RESUMES.EMPLOYEE_ID;

char response[80]; /* User’s response from read_string() */
char my_file[21]; /* Resume file */
char buffer[80]; /* Temporary buffer for fgets */
FILE *fopen(), *fp; /* File pointer */

employee_id[0] = EOS; /* EOS is the null terminator */
while (TRUE)

{
response[0] = EOS;
while (check_response (response, "Y") != 0)

{
printf (" \n");

/* Prompt user for employee ID of the EMPLOYEES */
/* record that he or she wants to store. */

printf ("Please enter the ID number of the Employee\n");
read_string (" or type exit: ",

employee_id, sizeof (employee_id)-1);
if (check_response (employee_id, "EXIT") == 0)

return;
/* Prompt user for the file name of the resume */
/* to be stored. */

read_string ("Please enter file name of the resume: ",
my_file, sizeof (my_file)-1);

read_string ("Have you entered all the data correctly? (Y,N) ",
response, sizeof (response)-1);

}
fp = fopen(my_file, "r");

START_TRANSACTION READ_WRITE RESERVING RESUMES
FOR SHARED WRITE;

/* Use the STORE statement with segmented strings to store the */
/* record. The outer STORE statement creates the new RESUMES */
/* record. The inner STORE stores the individual segments of */
/* the SEGMENTED STRING field. */

(continued on next page)

Using the RDML/C Program Environment 17–25

Example 17–15 (Cont.) Storing a Segmented String in RDML/C

STORE R IN RESUMES USING
ON ERROR

handle_error();
END_ERROR

strcpy (R.EMPLOYEE_ID, employee_id);
while (fgets (buffer, 132, fp) != NULL)

{
STORE LINE IN R.RESUME

strcpy (LINE.VALUE, buffer);
LINE.LENGTH = strlen (buffer)-1;

END_STORE;
}

END_STORE;
fclose (fp);

COMMIT;
response[0] = EOS;

}

} /* End store_res */

17.2.7.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of a record in a relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Example 17–16, from the MODIFY_ADDRESS function, modifies a record
in the EMPLOYEES relation. The values used to modify the record were
requested earlier in the program.

17–26 Using the RDML/C Program Environment

Example 17–16 Modifying Records in RDML/C
.
.
.

START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR SHARED WRITE;

/* Modify the address fields for the specified EMPLOYEES record. */

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
MODIFY E USING

ON ERROR
succeed = FALSE;
handle_error();

END_ERROR

strcpy (E.ADDRESS_DATA_1, street);
strcpy (E.ADDRESS_DATA_2, address_data);
strcpy (E.CITY, town);
strcpy (E.STATE, state);
strcpy (E.POSTAL_CODE, postal_code);

END_MODIFY;
END_FOR;

17.2.7.2.1 Using the MODIFY * Statement to Modify Records A special
form of the MODIFY statement is the MODIFY * statement, which lets you
manipulate database values at the record level rather than the field level. You
can modify all the fields in a record with the MODIFY * statement. To use the
MODIFY * statement, you must first declare a record structure that contains
all the fields in the record, with record field names that match the database
field names. Then, put the field values you want to replace into the record
fields and modify the entire database record using the MODIFY * statement.

Only use the MODIFY * statement if you need to modify every field value in
a record. Modifying a field by replacing one value with an identical value,
needlessly adds overhead to your program. For example, your program may
check constraints on a field value that you know is valid because it is the same
value that the field presently holds.

Example 17–17 replaces the field values of an employee record in the JOB_
HISTORY relation with the values in the job_history host language record
structure.

Using the RDML/C Program Environment 17–27

Example 17–17 Using the MODIFY * Statement in RDML/C
FOR J IN JOB_HISTORY WITH

J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
AND J.JOB_END MISSING

MODIFY J USING
J.* = job_history;

END_MODIFY
END_FOR

17.2.7.2.2 Modifying Segmented Strings The method you use to modify a
segmented string involves two RDML statements: the MODIFY statement and
the STORE statement with segmented strings. The MODIFY statement selects
the records for which you want to modify the segmented string field. An inner
STORE statement with segmented strings deletes the existing segmented
string and writes over the existing segmented string handle with a new
segmented string handle. Note that you cannot modify the individual segments
that make up the segmented string; you must replace the entire segmented
string.

Example 17–18 demonstrates how to modify a segmented string in RDML/C.

Example 17–18 Modifying Segmented String Fields in RDML/C
mod_resume()

/* --*/
/* This function demonstrates how to modify a field of data */
/* type SEGMENTED STRING. */
/* --*/

{
DECLARE_VARIABLE employee_id SAME AS RESUMES.EMPLOYEE_ID;

char response[80]; /* User’s response from read_string() */
char my_file[21]; /* Resume file */
char buffer[80]; /* Temporary buffer for fgets */
FILE *fopen(), *fp; /* File pointer */

employee_id[0] = EOS; /* EOS is the null terminator */

/* Prompt user for the employee ID of the RESUMES record he */
/* or she wants to modify. */

while (TRUE)
{
response[0] = EOS;
while (check_response (response, "Y") != 0)

{
printf (" \n");
printf ("Please enter the ID number of the Employee\n");
read_string (" or type exit: ",

employee_id, sizeof (employee_id)-1);
if (check_response (employee_id, "EXIT") == 0)

return;

(continued on next page)

17–28 Using the RDML/C Program Environment

Example 17–18 (Cont.) Modifying Segmented String Fields in RDML/C

/* Prompt user for the file name of the resume that will replace */
/* the old resume. */

printf ("To modify a resume, you must supply a new file");
printf ("name that contains the new resume.\n");
printf (" resume and replace it with a new resume\n");
read_string ("Please enter file name of new resume: ",

my_file, sizeof (my_file)-1);
read_string ("Have you entered all the data correctly? (Y,N) ",

response, sizeof (response)-1);
}

fp = fopen(my_file, "r");

START_TRANSACTION READ_WRITE RESERVING RESUMES
FOR SHARED WRITE;

/* Start an outer FOR loop to retrieve the employee record(s) */
/* with the specified ID. */

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id

/* Use a MODIFY statement to change the value of the segmented */
/* string field. */

MODIFY R USING
ON ERROR

handle_error();
END_ERROR;

/* Read in the new resume and use a STORE operation to store */
/* a new segmented string handle in the RESUMES relation. */

while (fgets (buffer, 132, fp) != NULL)
{
/* fgets reads a carriage return if it exists */
/* in the file into the buffer - therefore */
/* subtract 1. */

STORE SEG IN R.RESUME
strcpy(SEG.VALUE, buffer);
SEG.LENGTH = strlen(buffer) - 1;

END_STORE;
}

END_MODIFY;
END_FOR;
fclose (fp);

COMMIT;
response[0] = EOS;

}

} /* End mod_resume */

Using the RDML/C Program Environment 17–29

17.2.7.3 Erasing Records You can delete one, many, or all the records from
a relation using the ERASE operation. Before erasing records, you must start
a read/write transaction and form a record stream containing the records you
wish to erase.

Example 17–19, from the DELETE_RECORD function, demonstrates how to
erase records in RDML/C programs.

Note The definition of the sample personnel database includes the trigger
EMPLOYEE_ID_CASCADE_DELETE, which performs an automatic deletion
of records in the relations named in ERASE statements in Example 17–19
(except for RESUMES) when the record with the matching employee ID is
deleted from the EMPLOYEES relation. Thus, you would not need to include
‘‘cascading deletion’’ logic in your programs if it were already included in a
trigger definition.

Example 17–19 Erasing Records in RDML/C
/* Earlier in the function DELETE_RECORD, an employee record was */
/* retrieved to make certain that the user wants to delete this */
/* employee’s records. Having made that determination, the program */
/* will now delete all records associated with that employee. When */
/* the employee record was retrieved, the database key associated */
/* with that record was also retrieved. It can be used here to */
/* quickly locate that employee’s EMPLOYEES record again, so that */
/* records for this employee can be erased from all the relations */
/* in which he or she has a record. */

START_TRANSACTION READ_WRITE RESERVING EMPLOYEES,
SALARY_HISTORY, JOB_HISTORY, DEGREES, RESUMES FOR
SHARED WRITE;

FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = db_key
ERASE E;

END_FOR;

FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = employee_id
ERASE JH;

END_FOR;

FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = employee_id
ERASE SH;

END_FOR;

FOR D IN DEGREES WITH D.EMPLOYEE_ID = employee_id
ERASE D;

END_FOR;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id
ERASE R;

END_FOR;

17–30 Using the RDML/C Program Environment

17.3 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer or address that has a one-to-one
relationship with a record in the database. Each record has a unique dbkey
that points to it. You can retrieve this key as though it were a field in a record.
For relations, the dbkey is 8 bytes. For views, you can calculate the size by
multiplying the number of relations referred to in the view by 8 bytes. If your
view refers to only one relation, the dbkey is 8 bytes; if your view refers to two
relations, it is 16 bytes, and so on. Once you have retrieved a dbkey, you can
use it to retrieve its associated record directly, within the RSE of a FOR or
START_STREAM statement.

By default, the scope of a dbkey ends with a COMMIT statement. That is, a
dbkey is guaranteed to point to the same record for the life of the transaction
in which it is retrieved.

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

The following example demonstrates how to specify the dbkey scope in an
RDML/C program.

DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH;

Suggestions on how you can take advantage of the dbkey scope are contained
in Section 9.2.7.

17.4 Using Structured Programming
Programs and modules that pass through the RDML preprocessor do not have
unlimited freedom in structure. Calls to routines, subprograms, and functions
require that you pay special attention to the context from which they are
called.

Many data manipulation statements, in particular those that use context
variables, execute in the context of other data manipulation statements. These
statements are:

FOR

GET

DECLARE_STREAM

START_STREAM

END_STREAM

FETCH

STORE

Using the RDML/C Program Environment 17–31

MODIFY

ERASE

STORE statement with segmented strings

FOR statement with segmented strings

These individual data manipulation statements each form only part of a
complex call to the database. The preprocessor generates one call to the
database, using more than one data manipulation statement. For example,
MODIFY statements execute within the context of a FOR statement or an
undeclared START_STREAM statement. The database update can be made
only by using both the FOR or undeclared START_STREAM statement and
the MODIFY statements. For this reason, the preprocessor requires such data
manipulation statements to be lexically sequential, that is, in the order they
appear in the program source code.

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This order
may be entirely different from the order of actual program execution. However,
the preprocessor is unaware of the intended run-time order of program block
execution. It generates code in the order that data manipulation statements
appear in the source code. Keep this in mind when writing your application.

Also keep in mind that a context variable is meaningful only within its
scope. In other words, the context variable defined in a FOR statement
is meaningless after the END_FOR statement, and a context variable
defined in an undeclared START_STREAM statement is meaningless after
the END_STREAM statement. However, the context variable defined in a
DECLARE_STREAM statement is meaningful throughout the module in which
it is issued.

A stream declared with the DECLARE_STREAM statement lets you place the
stream manipulation statements in an order that deviates from the order of
actual program execution. When you want to use structured programming and
you do not need the automatic iteration provided by the FOR statement, use
the declared START_STREAM statement.

For more information on the declared and undeclared START_STREAM
statement, see Section 9.2.3.2. Data manipulation statements that stand alone
as independent calls to the database may appear in any order in the source
file. These statements are:

DATABASE

READY

START_TRANSACTION

GET

17–32 Using the RDML/C Program Environment

COMMIT

ROLLBACK

FINISH

DECLARE_STREAM

Remember that you must issue the DECLARE_STREAM statement before
you can issue a declared START_STREAM statement, and the DATABASE
statement must appear in the data declaration section of your program.

Example 17–20, from the DELETE_RECORD and CALL_OTHER functions,
demonstrates structured programming in an RDML/C program. The DELETE_
RECORD and CALL_OTHER functions are in modules that are separately
preprocessed and processed. They are linked with the LINK command. The
DELETE_RECORD function passes the value of a dbkey to the CALL_OTHER
function. This function finds the record associated with the dbkey and displays
this record on the terminal. Although it is not necessary to program this query
in two modules, it is done here to demonstrate how to pass variables between
separately processed modules.

Example 17–20 Using Structured Programming in RDML/C
Function DELETE_RECORD:

START_TRANSACTION (TRANSACTION_HANDLE trans_1) READ_WRITE;

/* Find the employee record that the user wants to delete. If */
/* an error occurs during the FOR operation, call an error handler. */

FOR (TRANSACTION_HANDLE trans_1)
E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id

ON ERROR
handle_error();

END_ERROR

/* Get the dbkey of the EMPLOYEES record */
/* that the user wants to delete. */
found_emp = TRUE;
db_key = E.RDB$DB_KEY;

/* Pass the dbkey to an external function CALL_OTHER to print */
/* out the record to which the dbkey points. Note that using */
/* an external function is neither necessary nor recommended */
/* for performing this task. It is done in this example only */
/* to show how values are passed between functions in an RDML/C */
/* program. */

(continued on next page)

Using the RDML/C Program Environment 17–33

Example 17–20 (Cont.) Using Structured Programming in RDML/C
call_other (db_key, req_1);

END_FOR;

if (found_emp != TRUE)
printf (" No employee with %s on file\n", employee_id);

else

/* Ask user for confirmation that this is the */
/* EMPLOYEES record he or she wants to delete. */

read_string ("Is this the employee you want to delete? (Y,N): ",
response, sizeof (response)-1);

COMMIT (TRANSACTION_HANDLE trans_1);

Function CALL_OTHER:

#include <stdio.h>

/* This function is passed the dbkey and transaction handle */
/* from the DELETE_RECORD function within program C_SAMPLE.RC. */
/* With this information, the function can find and display the */
/* employee record associated with an employee_id specified in */
/* DELETE_RECORD and then return program control to the */
/* DELETE_RECORD function. */

/* Because the database was invoked in the main program with */
/* GLOBAL attributes, refer to it here as EXTERNAL. */

DATABASE PERS = [EXTERNAL] FILENAME "MF_PERSONNEL";
typedef BASED ON EMPLOYEES.RDB$DB_KEY db_key_type;
globalref int trans_1;

call_other (dbkey, req_1)
db_key_type dbkey;
int req_1;
{

/* The transaction was started in the DELETE_RECORD function, */
/* so there is no need to start a transaction here. Use the */
/* transaction handle to identify this request with the */
/* transaction started in DELETE_RECORD. Use the dbkey found */
/* in the DELETE_RECORD function to locate the correct employee */
/* record. */

(continued on next page)

17–34 Using the RDML/C Program Environment

Example 17–20 (Cont.) Using Structured Programming in RDML/C

FOR (TRANSACTION_HANDLE trans_1, REQUEST_HANDLE req_1)
E IN EMPLOYEES WITH E.RDB$DB_KEY = dbkey

/* Display the EMPLOYEES record. */

printf (" \n");
printf ("Last Name: %s\n", E.LAST_NAME);
printf ("First Name: %s\n", E.FIRST_NAME);
printf ("Street: %s\n", E.ADDRESS_DATA_1);
printf ("Apartment: %s\n", E.ADDRESS_DATA_2);
printf ("City: %s\n", E.CITY);
printf ("State: %s\n", E.STATE);
printf ("Zip Code: %s\n", E.POSTAL_CODE);
printf ("Sex: %s\n\n", E.SEX);

END_FOR;
}

/* Return program control to the DELETE_RECORD function. */

17.4.1 Using Handles
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Requests

Information on when and how to use request handles is supplied in Chapter 9.
Section 17.4.2 and Section 17.4.4 discuss how to declare handles in an RDML/C
program.

17.4.2 Declaring and Initializing Handles
With the exception of the database handle, declaring handles in RDML/C
is similar to declaring any other program variable. The declaration and
initialization of a database handle is done simply by specifying the handle
in the DATABASE statement. You do not declare a database handle in the
data declaration portion of your RDML/C program. RDML/C initializes the
handle for you. You should not assign a value to a database handle with an
assignment statement.

User-specified request and transaction handles must be declared in the data
declaration portion of your program. In RDML/C, declare user-specified
request and transaction handles as RDML$HANDLE_TYPE and initialize
them to zero.

Using the RDML/C Program Environment 17–35

If you want to release the resources associated with a request handle, you can
do so by issuing a FINISH statement, or, if you do not want to detach from the
database, you can release the request by issuing a call to the RDB$RELEASE_
REQUEST procedure with the following statement (where req1 is a user-
supplied request handle):

if ((RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, &req1) & 1) == 0)
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

Declare RDB$RELEASE_REQUEST as:

extern long RDB$RELEASE_REQUEST();

17.4.3 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference.

See the VAX Rdb/VMS Guide to Distributed Transactions for information on
coordinating a distributed transaction.

17.4.4 Declaring and Initializing Distributed Transaction
Identifiers

Declaring distributed transaction identifiers in RDML/C is similar to declaring
any other program variable. Distributed transaction identifiers must be
declared in the data declaration portion of your C program. Declare a
distributed transaction identifier as two longwords and initialize it to zero.
You should not assign a value to a distributed transaction identifier with an
assignment statement.

17.5 Using Callable RDO
You must use the Callable RDO interface to do either of the following in your
RDML application:

Perform data definition operations within the program.

The RDML statement set does not include data definition statements. If
you want to perform data definition within your RDML/C program, you
must use the Callable RDO program interface. For example, your program
may define a temporary index on a field to facilitate Rdb/VMS performance
during program execution.

Form dynamic queries.

17–36 Using the RDML/C Program Environment

A dynamic query is one that is not known until run time, and thus is
constructed by the application at run time. If you know what the query
is before run time, you should use RDML preprocessed statements,
because these statements execute significantly faster than Callable RDO
statements.

When using Callable RDO, your program communicates with Rdb/VMS using
a callable function named RDB$INTERPRET. You call RDB$INTERPRET
as you would call a system service. You call RDB$INTERPRET to pass
your data manipulation or data definition statements to Rdb/VMS. Declare
RDB$INTERPRET as an integer (longword) function. The RDB$INTERPRET
function returns a status value that describes the success or failure of the
procedure execution. The return status value is a condition value that
indicates either success or a unique Rdb/VMS symbolic error code. Your
program declares a longword variable to hold the return status value so you
can test the success or failure of the call.

Callable RDO program development is explained in detail in Chapter 19.

The C format of the RDB$INTERPRET calling sequence is:

ret-stat = RDB$INTERPRET(rdb-statement-desc[,host-var-des,...]);

The arguments for the RDB$INTERPRET function are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

rdb-statement-desc

A pointer to a descriptor that describes the Rdb/VMS statement you are
passing to Rdb/VMS. Handle rdb-statement_desc according to the C rules
for handling string literals or string variables.

host-var-desc

A pointer to a descriptor that describes a host language variable that you
pass to Rdb/VMS as part of a data manipulation statement. You do not
include host language variables within the Rdb/VMS statement string
literal, but pass them, in order, after the string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some Rdb/VMS statements may produce
unwieldy code in the call to RDB$INTERPRET. Instead, assign the Rdb/VMS
statement string literal to a string variable. Then, pass the string variable in
the calling sequence. Assigning Rdb/VMS statements to a string variable lets

Using the RDML/C Program Environment 17–37

you separate your Rdb/VMS data definition and data manipulation statements
from the mechanics of using the Callable RDO interface.

Callable RDO program development is explained in detail in Chapter 19.

The following section discusses the use of the DATABASE statement and the
scope of transactions in preprocessed programs that use Callable RDO.

17.5.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use a DATABASE statement in your preprocessed program and
a separate INVOKE DATABASE statement in the embedded Callable RDO
statements. To ensure that RDML invokes the identical database for the
preprocessed and Callable RDO portions of the program, use the same database
handle in each INVOKE DATABASE statement. Invoke the database:

In the preprocessed program by using a GLOBAL or EXTERNAL database
handle

In the Callable RDO program by passing the database handle to the
RDB$INTERPRET function

For more information on database handles, see the section on handles in
Chapter 9.

In Callable RDO, you must pass the database handle to the RDB$INTERPRET
function as a !VAL parameter. See Chapter 19 for an example of passing
database handles in Callable RDO.

You may include both RDML and Callable RDO INVOKE DATABASE
statements in the same program module. You may also call a function or
subroutine to perform data definition with Callable RDO. In that case, use
a preprocessed INVOKE DATABASE statement in the main module and the
Callable RDO INVOKE DATABASE statement in the submodule.

For example, in RDM$DEMO:C_SAMPLE.RC, the sample program for C, the
database is invoked with the GLOBAL attribute in the main program:

&RDB& DATABASE GLOBAL pers = FILENAME "MF_PERSONNEL" DBKEY SCOPE IS FINISH;

This program calls the callable function. This function invokes the database
using the RDB$INTERPRET function:

strcpy(literal1, "invoke database !val = filename ’mf_personnel’");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret(&command_buf1, &pers);

if ((status & 1) == 0)
callable_error(status);

17–38 Using the RDML/C Program Environment

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the Callable RDO sections of the same
program. The preprocessor will not be able to refer to metadata that has not
yet been defined.

17.5.2 Embedding Data Definition Statements Using Callable
RDO

Data definition statements require a read/write transaction. When an RDML
program statement executes, whether it is preprocessed or Callable RDO,
Rdb/VMS checks for an active transaction. If there is an active transaction
that allows the intended operations, the statement is executed.

You can perform Callable RDO data definition within any active read/write
transaction in your preprocessed program. See Section 19.6 for information
on using Callable RDO statements and preprocessed statements in a single
transaction.

If you call RDB$INTERPRET for data definition, do not attempt to use
database or transaction handles in your data definition statements. Rdb/VMS
does not support the use of database or transaction handles in data definition
statements.

Do not define, change, or delete a field, relation, or view in Callable RDO and
then refer to it in the preprocessed portion of the program. At preprocess time,
the field, relation, or view does not yet exist, and the preprocessor generates
errors for those statements that refer to either the field, relation, or view. You
can define indexes, constraints, and any other database elements that are not
referred to in the preprocessed code.

You can perform any preprocessed data retrieval or update operation within
any Callable RDO transaction. You can omit the START_TRANSACTION
statement from the preprocessed portion of the program and rely upon the
transaction started in the Callable RDO portion. However, it is better practice
to begin an explicit transaction whenever possible rather than to rely on
implicit START_TRANSACTION declarations.

Example 17–21, from the C function DDL_STMNT, shows how to perform data
definition tasks in RDML/C programs.

Using the RDML/C Program Environment 17–39

Example 17–21 Embedding Data Definition Statements in RDML/C
ddl_stmnt ()

/* --- */
/* This function demonstrates how to perform data definition */
/* tasks from an RDML/C program. You must use the Callable */
/* RDO interface, RDB$INTERPRET, to perform data definition */
/* tasks in preprocessed programs. */
/* --- */

{
char literal [255]; /* RDO command buffer */
char literal1 [255]; /* RDO command buffer1 */
char response[80]; /* User’s response from read_string() */
long status; /* Status returned from RDB$INTERPRET */
long db_handle; /* Database handle */
int succeed;

/* Declare descriptors. */

struct dsc$descriptor pers;
$DESCRIPTOR (command_buf, literal);
$DESCRIPTOR (command_buf1, literal1);
/* Set up database handle. */

pers.dsc$a_pointer = &db_handle;
pers.dsc$b_dtype = DSC$K_DTYPE_L;
pers.dsc$b_class = DSC$K_CLASS_S;

status = 0;
/* Prompt user for input. Ordinarily, it would not be likely that */
/* you would ask a user to define an index for the database. This */
/* example serves only to show you how this type of task can be done */
/* from within an RDML/C environment. */

while (TRUE)
{

response[0] = EOS;
while (check_response (response, "Y") != 0)

{
printf(" \n");
printf("Please enter the data definition statement to define\n");
printf(" or delete a temporary index, or type ’exit’\n");
printf(" on EMPLOYEE_ID, you might enter:\n");
printf("Define index emp_employee_id for employees. employee_id.\n");
printf(" end index.\n");
printf("To delete this index, you might enter:\n");
read_string(" Delete index emp_employee_id. :",

literal, sizeof (literal)-1);

if (check_response (literal, "EXIT") == 0)
return;

read_string("Did you enter the definition correctly? (Y,N): ",
response, sizeof (response)-1);

}

(continued on next page)

17–40 Using the RDML/C Program Environment

Example 17–21 (Cont.) Embedding Data Definition Statements in RDML/C

/* Invoke the database to make it known to Callable RDO. */

strcpy(literal1, "invoke database !val = filename ’mf_personnel’");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret(&command_buf1, &pers);

if ((status & 1) == 0)
callable_error(status);

/* Start a READ_WRITE transaction. */

strcpy(literal1, "START_TRANSACTION READ_WRITE");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret (&command_buf1);

if ((status & 1) == 0)
callable_error(&status);

/* Pass the data definition statement specified by the user */
/* to RDB$INTERPRET. */

command_buf.dsc$w_length = strlen(literal);
status = rdb$interpret (&command_buf);

succeed = TRUE;
if ((status & 1) == 0)

{
callable_error(&status);
succeed = FALSE;
}

if (succeed == TRUE)
{

printf ("Transaction successful");

/* Commit */

strcpy(literal1, "COMMIT");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret (&command_buf1);

if ((status & 1) == 0)
callable_error(&status);

}
else

{
printf ("Transaction failed");

/* Roll back. */

strcpy(literal1, "ROLLBACK");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret (&command_buf1);

if ((status & 1) == 0)
callable_error(&status);

}

(continued on next page)

Using the RDML/C Program Environment 17–41

Example 17–21 (Cont.) Embedding Data Definition Statements in RDML/C
/* Finish database. */

strcpy(literal1, "FINISH");
command_buf1.dsc$w_length = strlen(literal1);
status = rdb$interpret(&command_buf1, &pers);

response[0] = EOS;
}

}/* End ddl_stmnt */

17.6 Handling Rdb/VMS Run-Time Errors
Before reading this section, you should be familiar with the information
contained in Chapter 10 of this manual. Chapter 10 discusses error handling
concepts; this section contains information that, for the most part, is specific to
error handling in RDML/C.

This section describes how to detect RDML errors that occur at run time, how
to display the accompanying messages, and how to recover from the errors.
In most cases, this section assumes that you have debugged the executing
program for errors in both RDML and host language statements. This section
discusses Rdb/VMS run-time errors only and does not tell you how to handle
host language or system run-time errors. Refer to your C user’s guide for such
information.

If you choose to combine Callable RDO and RDML, use separate error handling
routines for each one. See Chapter 19 for information on handling Callable
RDO errors.

17.6.1 Error Handling
RDML/C enables you to detect errors with the ON ERROR clause. If an error
occurs in an RDML statement, control passes to the ON ERROR clause. Your
program must then handle the error.

This section describes:

The ON ERROR clause

Determining which error has occurred, using the LIB$MATCH_COND
run-time library routine

Error message display, using the SYS$GETMSG and SYS$PUTMSG
system services and the LIB$SIGNAL routine

Information on creating user-supplied error messages is contained in
Chapter 10.

17–42 Using the RDML/C Program Environment

17.6.2 Detecting Errors Using the ON ERROR Clause
You can use the ON ERROR clause only in preprocessed programs. All RDML
statements except the DATABASE and DECLARE_STREAM statements offer
the optional ON ERROR clause. Within the ON ERROR . . . END_ERROR
block you can include one or more host language or Rdb/VMS statements, or
both. These statements can handle the error directly, but more often they will
call an error handler routine that determines the nature of the error and starts
appropriate recovery or cleanup procedures.

If you do not use the ON ERROR clause and an Rdb/VMS error occurs, the
code generated by calling the RDML$SIGNAL_ERROR error handler passes
the error to the VMS Run-Time Library routine, LIB$STOP, which sets the
severity level to 4 (FATAL) and forces program termination.

See Chapter 10 for a more complete description of the ON ERROR clause.

The following C code fragment shows the placement of the ON ERROR clause
and host language statements within a MODIFY operation:

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
MODIFY E USING

ON ERROR
succeed = FALSE;
handle_error();

END_ERROR

strcpy (E.ADDRESS_DATA_1, street);
strcpy (E.ADDRESS_DATA_2, address_data);
strcpy (E.CITY, town);
strcpy (E.STATE, state);
strcpy (E.POSTAL_CODE, postal_code);

END_MODIFY;
END_FOR;

17.6.3 Using the RDML General Purpose Error Handler:
RDML$SIGNAL_ERROR

The RDML run-time library provides procedures that are used by code
generated by RDML. A majority of the routines perform very low-level
functions such as building argument lists, internal data transfer, and error
handling. None of the present routines is of any real use to application
programmers except the general purpose error handler RDML$SIGNAL_
ERROR. If an error occurs and you do not use the ON ERROR clause to
provide an error handler, RDML uses RDML$SIGNAL_ERROR to call the
LIB$STOP routine and your application terminates.

The RDML$SIGNAL_ERROR routine takes a single argument,
RDB$MESSAGE_VECTOR. See the next example (in both Pascal and C).

Using the RDML/C Program Environment 17–43

READY MINE
ON ERROR

RDML$SIGNAL_ERROR (RDB$MESSAGE_VECTOR);
END_ERROR;

Note that in both cases, the ON ERROR clause performs the same error
handling task that would be performed by RDML if there were no ON ERROR
clause.

If you have decided to use RDML$SIGNAL_ERROR as your error handling
routine, there is no need to read the rest of this chapter; it discusses how to
use system service routines.

17.6.4 Determining Which Errors Have Occurred
After detecting an error, you want to determine which error has occurred. Your
program error handler can then take the correct action for recovery or orderly
program termination. Recovery might include trying an operation again or
writing an error to an error log and continuing to the next operation. You
determine which error has occurred by evaluating the symbolic value of the
error code.

17.6.4.1 Using Symbolic Error Codes All communication with an Rdb/VMS
database is done through procedure calls. In preprocessed programs, RDML/C
converts RDML statements to host language calls to Rdb/VMS procedures.
Every procedure returns a status value into a program variable that is declared
by the preprocessor. The return status value is a longword value that identifies
a unique message in the system message file. The return status value may
indicate success, in which case data manipulation continues uninterrupted.
Or this value may indicate an error, in which case control passes to the error
handler.

In RDML/C programs, the preprocessor names this variable RDB$STATUS and
declares it to be a longword. The return status value is the same as the value
of the second element of a 20-longword array, RDB$MESSAGE_VECTOR. (The
RDB$MESSAGE_VECTOR array is the message vector that Rdb/VMS uses to
pass information to and from C programs.)

Each error generated by an RDML statement is represented as a symbolic
error code. You can use these symbolic error codes to control program logic for
specific errors. When the Rdb/VMS ON ERROR clause detects an error, your
error handler should do the following:

Evaluate the symbolic error code either by calling the LIB$MATCH_COND
routine or by using a C equality test

Direct program logic with a C host language statement, such as the switch
statement

17–44 Using the RDML/C Program Environment

Although symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. Chapter 10
explains why this is recommended.

17.6.4.2 Declaring Symbolic Error Codes Rdb/VMS symbolic error codes
are longword values. The C declaration is:

globalvalue long RDB$_LOCK_CONFLICT;
globalvalue long RDB$_INTEG_FAIL;

17.6.4.3 Calling LIB$MATCH_COND When you want to determine which of
several possible errors has invoked your error handler, you can use the VMS
Run-Time Library routine LIB$MATCH_COND.

You also can evaluate the return status condition code directly with one or
more host language statements, without calling the LIB$MATCH_COND
routine. Generally, host language statements will use fewer resources than a
call to LIB$MATCH_COND. However, future versions of Rdb/VMS may change
the severity levels or facility names of certain symbolic error codes. You must
then link your program again under the new version so the program will detect
the correct error codes. The LIB$MATCH_COND routine matches only the
condition ID of the return status code and is unaffected by changes in severity
levels or facility names.

The LIB$MATCH_COND routine compares the first parameter to each of the
remaining parameters in its parameter list. If a match is found, it returns the
position in the parameter list of the matching parameter; if no match is found,
it returns a zero. You should pass the return status value to the LIB$MATCH_
COND routine as the first parameter in the parameter list. In the remaining
part of the parameter list, pass the error codes you wish to compare to the
return status value. If one of these error codes matches the return status
value, the LIB$MATCH_COND routine returns the position of the matching
parameter in the order of the remaining part of the parameter list.

For example, suppose you want to determine if RDB$_STREAM_EOF, RDB$_
DEADLOCK, or RDB$_NOT_VALID is the return status value. Pass to the
LIB$MATCH_COND routine the parameter list that contains the values
RDB$STATUS, RDB$_STREAM_EOF, RDB$_DEADLOCK, and RDB$_NOT_
VALID. If the value of RDB$STATUS equals the value of RDB$_DEADLOCK,
then the LIB$MATCH_COND routine returns a value of 2, because RDB$_
DEADLOCK is the second parameter in the remaining part of the parameter
list.

Next, use the value that the LIB$MATCH_COND routine returns to determine
the path of your error handler’s conditional statement. To continue our
example, assume you use a C switch statement as the error handler’s
conditional statement. In this example, your switch statement evaluates
the value returned by the LIB$MATCH_COND routine, and you execute the
second case of the switch statement. Your program performs the statement

Using the RDML/C Program Environment 17–45

or statements associated with the case statement. These statements might
print a message to the terminal, roll back the transaction, and return program
control to a point before the transaction was started. Or they might call a more
complex routine to perform these and other actions.

The C format of the call to the LIB$MATCH_COND routine is:

err-match = LIB$MATCH_COND(ret-stat, symb-name[,...]);

The arguments for this C call are:

err-match

A numeric variable that holds the integer that identifies the symbol
matched.

ret-stat

A pointer to a program variable that holds the return status value
(RDB$STATUS) of the last call to the database.

symb-name

A pointer to a symbolic error code (or the variable name you have assigned
to it) that you want to match against ret-stat. Specify one or more symb-
name values, as appropriate. The symbolic error codes are longwords, and
are passed by reference.

Declare LIB$MATCH_COND as an external integer function.

Example 17–22 demonstrates the use of the LIB$MATCH_COND routine in
a C error handling routine. This error handler could be called from another
program that detects errors with an ON ERROR clause and that includes a
statement within the ON ERROR . . . END_ERROR block that sets the value
of a success flag to FALSE when the ON ERROR clause is executed. This error
handler does the following:

Receives the return status value and the success flag

Opens a file to record the error messages

Uses the LIB$MATCH_COND routine to determine which error has
occurred

Uses a switch statement to take different actions depending on which error
has occurred

Sets the success flag to true if corrective error handling could take place

Closes the file that records the error messages

17–46 Using the RDML/C Program Environment

Example 17–22 Using LIB$MATCH_COND in RDML/C
handle_error()
/* ---*/
/* This function handles run-time errors detected by the ON ERROR */
/* clause in preprocessed RDML/C programs. */
/* ---*/
{
char msg_string[256];
char string[133];
int error;

FILE open(), fp;
$DESCRIPTOR (msgstr, msg_string);

/* Use LIB$MATCH_COND to determine which of a series of errors */
/* might have occurred. */

error = LIB$MATCH_COND (&RDB$MESSAGE_VECTOR[1],
&RDB$_DEADLOCK,
&RDB$_LOCK_CONFLICT,
&RDB$_NO_DUP,
&RDB$_NOT_VALID,
&RDB$_INTEG_FAIL,
&RDB$_STREAM_EOF,
&RDB$_NO_RECORD);

printf (" \n");

/* The switch statement directs program logic to appropriate */
/* statements to execute depending on the error. */

switch (error)
{

case 0:
printf("Unexpected error - terminating program\n");
fp = fopen("error_log", "w");
error = SYS$GETMSG(RDB$MESSAGE_VECTOR[1], &msgstr.dsc$w_length,

&msgstr, 0, 0);
msg_string[msgstr.dsc$w_length] = EOS;
fputs(msg_string, fp);
fclose (fp);
error = LIB$CALLG (&RDB$MESSAGE_VECTOR, LIB$SIGNAL);
break;

case 1:
case 2:

if (retry <= 4)
{
printf("Deadlock or Lock conflict error");
printf("Others are using the data that you want to access\n");
error = LIB$WAIT(SECONDS_TO_WAIT);
}

else
printf("Sorry resources are not available, please retry later\n");

break;

(continued on next page)

Using the RDML/C Program Environment 17–47

Example 17–22 (Cont.) Using LIB$MATCH_COND in RDML/C

case 3:
printf("Duplicates are not allowed\n");
SYS$PUTMSG(RDB$MESSAGE_VECTOR);
break;

case 4:
printf("Invalid data\n");
SYS$PUTMSG(RDB$MESSAGE_VECTOR);
break;

case 5:
printf("Integrity failure");
SYS$PUTMSG(RDB$MESSAGE_VECTOR);
break;

case 6:
printf("There are no colleges with that code\n");
break;

case 7:
printf("A record entered during this session has been deleted\n");
break;

}
}
/* End handle_error */

17.6.5 Displaying Error Messages
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and terminate your
program, you can call the LIB$SIGNAL routine.

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service.

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system
service.

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code.

Information on creating user-supplied error messages is contained in
Chapter 10.

17–48 Using the RDML/C Program Environment

17.6.5.1 Calling LIB$SIGNAL Call the LIB$SIGNAL routine when you want
to display an error message generated by Rdb/VMS and terminate program
execution. When you call LIB$SIGNAL with LIB$CALLG, the LIB$SIGNAL
routine:

Receives the signal argument list from the signaling procedure

This list is made up of the return status value and a set of optional
arguments that provide information to condition handlers.

Copies this signal argument list and uses it to create a signal argument
vector

The signal argument vector serves as part of the input to the user-
established handlers and the system default handlers.

Causes a signal condition which causes the appropriate catchall condition
handler to pass the signal argument vector to SYS$PUTMSG

The SYS$PUTMSG system service calls the SYS$GETMSG system service
to retrieve the message from the system error messages, and then formats
and displays the error messages on your terminal.

Resignals the error

If the error is not fatal, program execution continues. If the error is fatal,
the program error handler signals the error to the VMS default condition
handler, which terminates program execution.

In C, you can continue program execution after the call to the LIB$SIGNAL
routine even when the error is fatal. See Section 17.6.6 for information on how
to continue program execution after a fatal error.

17.6.5.2 Methods of Calling LIB$SIGNAL The recommended method of
calling LIB$SIGNAL in RDML programs is to pass the message vector,
RDB$MESSAGE_VECTOR, and LIB$SIGNAL to the run-time library function,
LIB$CALLG.

This method ensures that any Formatted ASCII Output (FAO) arguments
that exist in the message vector will be formatted correctly. In addition, this
method ensures that any additional error messages that clarify the nature of
the program error will be returned to your program. For these reasons, Digital
recommends that you always call LIB$SIGNAL with LIB$CALLG.

You can also pass the return status value (RDB$STATUS) to LIB$SIGNAL.
However, this method is not recommended. If you pass RDB$STATUS to
the LIB$SIGNAL routine and FAO arguments exist in the Rdb/VMS error
message, LIB$SIGNAL may be unable to format the Rdb/VMS error message
correctly. In this case, your program may terminate abruptly or may provide
an incompletely formatted error message.

Using the RDML/C Program Environment 17–49

If your application requires that you call LIB$SIGNAL without LIB$CALLG,
be certain that the error message does not contain FAO arguments.
Figure 10–1 in Chapter 10 illustrates the format of the message vector.

17.6.5.3 The Format of the LIB$SIGNAL Calling Sequence with
RDB$MESSAGE_VECTOR and RDB$STATUS The C format of the LIB$SIGNAL
calling sequence with the message vector (RDB$MESSAGE_VECTOR) is:

status = LIB$CALLG(RDB$MESSAGE_VECTOR, LIB$SIGNAL);

The LIB$SIGNAL argument is the name of the run-time library routine that
will receive RDB$MESSAGE_VECTOR. The LIB$SIGNAL argument is passed
by reference in C.

When using the LIB$CALLG routine to pass the message vector, declare
LIB$CALLG as:

extern long LIB$CALLG();

Declare LIB$SIGNAL as:

extern long LIB$SIGNAL();

An earlier example, Example 17–22, demonstrates how to call LIB$SIGNAL
with LIB$CALLG. The C format of the LIB$SIGNAL calling sequence with
only the return status value is:

LIB$SIGNAL(RDB$STATUS);

17.6.5.4 Calling SYS$PUTMSG Call the SYS$PUTMSG system service
when you want to display an error message generated by Rdb/VMS and
continue program execution. The SYS$PUTMSG system service writes the
error message to the terminal and to the error file designated by the logical
name SYS$ERROR. You can define SYS$ERROR at the DCL level to be your
program error file when you want the SYS$PUTMSG system service to write
an Rdb/VMS error message to it.

The first parameter in the call to the SYS$PUTMSG system service is the
message vector RDB$MESSAGE_VECTOR. Figure 10–1 in Chapter 10
illustrates the format of the message vector. The SYS$PUTMSG system
service can accept other optional parameters that specify an action routine to
receive control during message processing, and the facility name to be used in
displaying the message (if you want the facility to be different from the default
facility prefix that is associated with the message). The message vector is
required; you may omit the optional parameters. See the VMS System Services
Volume for a complete description of the SYS$PUTMSG system service.

The C format of the SYS$PUTMSG calling sequence is:

SYS$PUTMSG(RDB$MESSAGE_VECTOR,NULL,NULL,0);

Declare SYS$PUTMSG as an external unsigned function in C.

17–50 Using the RDML/C Program Environment

See an earlier example, Example 17–22, for a demonstration of the use of the
SYS$PUTMSG system service.

17.6.5.5 Calling SYS$GETMSG Call the SYS$GETMSG system service when
you want to use an error message generated by Rdb/VMS within your program
and continue program execution.

The first parameter in the call to the SYS$GETMSG system service is the
Rdb/VMS return status value, which is the unique identification for the
Rdb/VMS error message. The SYS$GETMSG system service locates the error
message and returns it to your program as the second parameter of the call.
You must declare a string to receive the message. Your program can then
manipulate this string in any way it chooses. Your program can:

Display the string

Write the string to a file

You can also evaluate character substrings within the string, but Digital
recommends that you do not use this method. The message text may change
from one release to the next.

The SYS$GETMSG system service requires a parameter to receive the length
of the message string. You may omit the actual parameter, but you must
include a comma to signify the argument. The SYS$GETMSG system service
accepts other optional parameters that define what is included in the returned
message and receives the FAO count of the message. You may omit these
parameters; if you do, all components of the message are returned. See the
VMS System Services Volume for further information on the SYS$GETMSG
system service.

The SYS$GETMSG system service does not format the FAO arguments in the
error message; instead, it returns the error message with format parameters
embedded in it. If your error message contains a view name, for example, the
SYS$GETMSG system service will return the message:

<View !AC can not be updated>

You can call the SYS$FAO system service to format the FAO arguments in
the message that the SYS$GETMSG system service returns to your program.
However, when the error message contains FAO arguments, you should call
SYS$PUTMSG rather than the SYS$GETMSG system service.

The C format of the SYS$GETMSG calling sequence is:

ret-stat = SYS$GETMSG(status, msg-len, msg-string,0,0);

Using the RDML/C Program Environment 17–51

The arguments of this calling sequence are:

ret-stat

A program variable that holds the longword integer that describes the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

status

A pointer to RDB$STATUS, to a condition code that may be contained in
RDB$STATUS, or to one of the RDB$MESSAGE_VECTOR condition codes.
This is passed by reference.

msg-len

A pointer to a word that holds the number of characters written into
msg-string. This is not an optional parameter; if you omit it, you must use
a comma in its place. This is passed by reference.

msg-string

A pointer to the string variable that holds the returned error message. The
maximum length of any message that can be returned is 256 bytes.

Declare SYS$GETMSG as an external integer function.

See an earlier example, Example 17–22, for a demonstration of the use of
SYS$GETMSG.

17.6.6 Handling Fatal Errors
In some instances, the cause of fatal errors is located in the database, not
the program. For example, your program may attempt to access a relation
that has been deleted by the database administrator, or the process that runs
the program may not have sufficient privilege to modify a particular relation.
There is little that your program can do to correct this type of error. However,
your program can determine which fatal error has occurred, perform cleanup
functions, display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error using the LIB$MATCH_COND routine or one or more
host language statements, to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or SYS$GETMSG system service to generate an
error message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

17–52 Using the RDML/C Program Environment

In C, you can also call the LIB$SIGNAL routine to display the error message,
but you must use VAXC$ESTABLISH to establish a condition handler that will
permit your program to continue after the call to LIB$SIGNAL.

See the VMS Run-Time Library Routines Volume for a complete description of
the use of LIB$ESTABLISH with LIB$SIGNAL.

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary
before calling the LIB$SIGNAL routine. The following is a list of typical
cleanup operations:

End streams

Roll back transactions

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the LIB$SIGNAL routine without establishing a condition handler,
LIB$SIGNAL displays the error message and terminates your program.
Perform any cleanup before making the call to LIB$SIGNAL. However, if
your cleanup includes any Rdb/VMS statements (such as ROLLBACK), these
new calls to the database will change the return status value contained in
RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in this case, the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling
the LIB$SIGNAL routine without performing any cleanup operations is not
recommended.

Using the RDML/C Program Environment 17–53

18
Using the RDML/Pascal Program

Environment

This chapter describes how to access an Rdb/VMS database using Pascal and
the RDML preprocessor interface.

This chapter presents the following main topics:

Using Relational Data Manipulation Language (RDML) statements

Using Rdb/VMS data definition statements

Error handling in RDML/Pascal

Most examples in this chapter are available on line. The Rdb/VMS installation
procedure writes the sample programs to the directory identified by the
logical name RDM$DEMO. The file names for these programs are: P_
SAMPLE.RPA, P_CALL_OTHER.RPA, and P_ERROR.RPA. The sample
program P_SAMPLE.RPA contains most of the procedures referred to in this
chapter.

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

Note Before reading this chapter, you should be familiar with the information
contained in Chapter 9. The main purpose of this chapter is to provide
information and examples specific to VAX Pascal.

Using the RDML/Pascal Program Environment 18–1

18.1 The RDML/Pascal Preprocessor Interface
When you use the RDML/Pascal preprocessor interface, you simply include
Rdb/VMS data manipulation statements directly in your program wherever
you need them. When you preprocess the source program, the preprocessor
converts the Rdb/VMS data manipulation statements to a series of Pascal
calls to Rdb/VMS. At run time, Rdb/VMS executes the calls and returns any
retrieved data to the program.

You cannot preprocess a program that attempts to access a non-existent
database, unless your database refers to the data dictionary, CDD/Plus, and
refers only to the definitions stored there. That is, if you specify a compile-time
file name in the DATABASE statement, the database must exist at preprocess
time. If you specify a compile-time path name in the DATABASE statement,
the path name element must exist in the data dictionary at preprocess time.
This is because the preprocessor must be able to validate relation and field
definitions in the programs that refer to the database.

Refer to Chapter 11 for information about:

The RDML preprocessor and its command qualifiers

Pascal compile qualifiers like /G_FLOATING

The user-defined option file that is required at the link step

18.2 Embedding RDML Statements in RDML/Pascal Programs
RDML statements are equivalent to the Rdb/VMS data manipulation
statements, which are a subset of Relational Database Operator (RDO)
utility statements. With these statements you can access a database, update
records, retrieve selected records, and handle RDML exception conditions.
Refer to the RDML Reference Manual for a complete description of the RDML
statements.

18.2.1 Converting an RDO Prototype to the RDML/Pascal
Program Environment

Once you have created a prototype of your queries in the interactive RDO
utility, you are ready to convert these RDO statements to the RDML/Pascal
program environment. See Chapter 7 for a discussion of creating an RDO
prototype.

Example 18–1 is an RDML/Pascal program based on the RDO prototype
examples in Chapter 7.

18–2 Using the RDML/Pascal Program Environment

Example 18–1 Converting an RDO Prototype to RDML/Pascal
Procedure Store_cand;

(*--*)
(* This procedure stores a record in the CANDIDATES relation. In *)
(* RDML/Pascal, no special work is needed to store VARYING STRING *)
(* data. *)
(*--*)

label test,10;
var

DECLARE_VARIABLE first_name SAME AS PERS.CANDIDATES.FIRST_NAME;
DECLARE_VARIABLE last_name SAME AS PERS.CANDIDATES.LAST_NAME;
DECLARE_VARIABLE middle_init SAME AS PERS.CANDIDATES.MIDDLE_INITIAL;
DECLARE_VARIABLE status_info SAME AS PERS.CANDIDATES.CANDIDATE_STATUS;

continue : char; (* Continue in module *)
succeed : boolean; (* DML success flag *)
transaction_started : boolean; (* Transaction started flag *)
err: integer; (* Error status *)

begin
succeed := true;
first_name := ’00000’;
continue := ’n’;

(* Prompt user for data to store in the CANDIDATES relation. *)

while (first_name <> ’exit’) or (first_name <> ’EXIT’) do
begin
while ((continue = ’N’) or (continue = ’n’)) do

begin
write (’Please enter the first name of the candidate or type ’);
writeln (’exit’);
readln (First_name);

test: if (first_name = ’exit’) or (first_name = ’EXIT’)
then goto 10;

writeln (’Please enter the middle initial of the candidate’);
readln (middle_init);
writeln (’Please enter the last name of the candidate’);
readln (last_name);
writeln (’Please enter candidate status information’);
readln (status_info);
write (’Have you entered the Candidate information’);
writeln (’correctly? (Y,N)’);
readln (continue);
end;

(continued on next page)

Using the RDML/Pascal Program Environment 18–3

Example 18–1 (Cont.) Converting an RDO Prototype to RDML/Pascal
(* Start transaction *)

transaction_started := false;
lock_error := false;
retry := 0;
while (not transaction_started) and (retry < 5) DO

begin
transaction_started := true;
lock_error := false;
START_TRANSACTION READ_WRITE RESERVING

CANDIDATES FOR SHARED WRITE NOWAIT
ON ERROR

Handle_error;
transaction_started := false;
succeed := false;

END_ERROR;
if lock_error then retry := retry + 1;

end; (* of while *)

if transaction_started
then

begin
succeed := false;
retry := 0;
lock_error := false;
repeat

succeed := true;
lock_error := false;

(* Store the values specified by the user in the CANDIDATES *)
(* relation. Check for errors and inform the user of the success *)
(* or failure of the STORE operation. *)

STORE C IN CANDIDATES USING
ON ERROR

Handle_error;
succeed := false;

END_ERROR;
C.FIRST_NAME := first_name;
C.LAST_NAME := last_name;
C.MIDDLE_INITIAL := middle_init;
C.CANDIDATE_STATUS := status_info;

END_STORE;
until (succeed) OR ((lock_error) AND (retry > 4)) OR

(NOT succeed AND NOT lock_error);

end; (* if transaction_started *)

(continued on next page)

18–4 Using the RDML/Pascal Program Environment

Example 18–1 (Cont.) Converting an RDO Prototype to RDML/Pascal

if succeed
then

begin
writeln (’Update operation succeeded’);
COMMIT;

end
else

begin
writeln (’Update operation failed’);
if transaction_started then ROLLBACK;

end;

continue := ’n’;
end;

10: writeln;
end; (* End of store_cand *)

The syntax of RDML statements is not identical to the Rdb/VMS DML
statements you may be accustomed to using in RDO and RDBPRE. When
you incorporate your RDO prototype into your program, you need to remember
several differences. In RDML:

The FOR segmented string statement is used instead of the Rdb/VMS
START_SEGMENTED_STRING statement to retrieve segmented strings.

The STORE segmented string statement is used instead of the Rdb/VMS
CREATE_SEGMENTED_STRING statement to store segmented strings.

The BASED ON clause can be used to declare host language types. RDO
has no equivalent statement.

The DECLARE_VARIABLE clause can be used to declare host language
variables. RDO has no equivalent clause.

See Chapter 7 for a full discussion of using prototypes in RDO and for examples
of prototype queries.

18.2.1.1 Using Host Language Variables A host language variable is a
program variable that you use to communicate with Rdb/VMS. A host language
variable can contain the values that update the database; it can also receive
the values that Rdb/VMS retrieves from the database. Use host language
variables as value expressions in data manipulation statements, as well as for
any other program function. The following data manipulation statements allow
the use of host language variables:

Any statement that permits the use of an RSE

DATABASE (you can specify a database handle)

GET

Using the RDML/Pascal Program Environment 18–5

READY

FINISH

When you declare host language variables, follow the Pascal naming rules.
Ensure that the data type and size of each host language variable and its
corresponding database field are compatible. Refer to Chapter 8 for the lists of
equivalent Pascal data types.

You can use the RDML DECLARE_VARIABLE clause to declare host language
variables to ensure that the host language variable has the correct data type
and size. The DECLARE_VARIABLE clause causes the RDML preprocessor to
refer to a database field definition and assign the attributes of that field to the
host language variable.

Note that you should not use the DECLARE_VARIABLE clause to declare a
variable to hold a segmented string field. The DECLARE_VARIABLE clause
does not generate a data type for a segmented string field that is equivalent
to the length of the segmented string segment; instead, the DECLARE_
VARIABLE clause generates a data type that is equivalent to the logical
identifier that points to a segmented string field.

Do not use the DECLARE_VARIABLE clause in RDML/Pascal programs
to declare a host language variable for a TEXT field that is referred to in
a conditional expression that includes a CONTAINING, MATCHING, or
STARTING WITH relational operator. The DECLARE_VARIABLE clause
generates a PACKED ARRAY data type for field values of TEXT data type. The
CONTAINING, MATCHING, and STARTING WITH relational operators do
not execute properly when the comparison value for the conditional expression
is a host language variable of PACKED ARRAY data type. When you declare
a host language variable that will be compared to a field value of TEXT data
type in one of these expressions, use a Pascal expression to declare a VARYING
STRING variable to hold the comparison value.

Example 18–2 shows the use of the DECLARE_VARIABLE clause in
RDML/Pascal.

18–6 Using the RDML/Pascal Program Environment

Example 18–2 Using DECLARE_VARIABLE to Declare a Host Language
Variable in RDML/Pascal

DECLARE_VARIABLE badge SAME AS EMPLOYEES.EMPLOYEE_ID;

For more information on the DECLARE_VARIABLE clause, see Chapter 16
and the RDML Reference Manual.

You can use the RDML BASED ON clause to declare host language types,
as shown in Example 18–3. The RDML BASED ON clause extracts the data
type and size of a field and declares a function with the same attributes. Like
the DECLARE_VARIABLE clause, the BASED ON clause should not be used
to declare host language variables that are the targets of the CONTAINING,
MATCHING, and STARTING WITH conditional expressions in RDML/Pascal
programs. The BASED ON clause will also declare types that are based on
TEXT fields as a PACKED ARRAY data type.

Example 18–3 Using the BASED ON Clause in RDML/Pascal
JOB_CODE_TYPE = BASED ON JOBS.JOB_CODE;
JOB_TITLE_TYPE = BASED ON JOBS.JOB_TITLE;

You can also declare host language variables by copying database definitions
from the data dictionary, CDD/Plus. You can copy relation definitions, which
include all the fields within the relation. Copying definitions from the data
dictionary ensures consistency and accuracy because you include the database
definitions directly in your program’s data declaration section. However, you
must be careful to copy only those relation and field definitions with data
types that are supported by your host language. See Chapter 16 for more
information about using CDD/Plus data definitions.

You can use simple and complex Pascal host language variables, such as arrays
or records, in an RSE. However, do not use functions or procedures within the
RSE. For example, the following Pascal code does not preprocess:

(* bad code, won’t preprocess! *)
BEGIN

FOR FIRST 5 E IN EMPLOYEES WITH E.LAST_NAME = SUBSTR(STRING, 1, 24)
WRITELN (E.LAST_NAME);
END_FOR;

END.

However, you can assign the result of a function to a variable and use the
variable within the RSE.

Using the RDML/Pascal Program Environment 18–7

18.2.1.2 Converting DATE Data Type to TEXT DATE data types are stored in
Rdb/VMS databases in encoded binary format. To display a date, your program
must first retrieve the binary value and convert it into an ASCII string. This is
done by using the VMS system service routine, SYS$ASCTIM, to perform the
conversion.

See the VMS System Services Volume for more information on using the
SYS$ASCTIM service.

Note that this Pascal program uses the INHERIT attribute to inherit the
SYS$LIBRARY:STARLET.PEN environment. (PEN is an abbreviation
for ‘‘Pascal Environment.’’) The STARLET.PEN environment includes
the declarations for the VMS system service routines SYS$ASCTIM and
SYS$BINTIM.

Example 18–4, a code fragment from the ADD_EMPLOYEES subroutine,
demonstrates how to display a date.

Example 18–4 Using ASCTIM System Service Routine in RDML/Pascal
FOR E IN EMPLOYEES

WITH E.RDB$DB_KEY = db_key_array[x]
ON ERROR

Handle_error;
END_ERROR

writeln (E.FIRST_NAME, E.MIDDLE_INITIAL,
E.LAST_NAME);

writeln (E.ADDRESS_DATA_1,E.ADDRESS_DATA_2);
writeln (E.CITY, E.STATE);
writeln (E.POSTAL_CODE);

(* Convert binary date to ascii date *)

status := $ASCTIM (
timbuf := ascii_bday,
timadr := E.BIRTHDAY);

if (status <> SS$_NORMAL) then
writeln (’Date conversion failed’)

else
writeln(ascii_bday);

END_FOR;

18.2.1.3 Converting ASCII DATE Strings to Binary Format Use the VMS
system service routine, SYS$BINTIM, to convert ASCII DATE strings into
a binary representation so the DATE data type fields can be stored in the
database.

See the VMS System Services Volume for more information on using the
SYS$BINTIM system service.

18–8 Using the RDML/Pascal Program Environment

Example 18–5, a code fragment from the ADD_EMPLOYEES subroutine,
demonstrates how to use SYS$BINTIM in an RDML/Pascal program.

Example 18–5 Using BINTIM System Service Routine in RDML/Pascal
repeat

writeln (’Please enter the Employee birthday’);
writeln (’In this format: 10-MAY-1986 00:00:00.00’);
readln (ascii_bday);
status := $BINTIM (ascii_bday, employee_record.birthday);
if (status <> SS$_NORMAL)
then writeln (’Date conversion failed’);

until (status = SS$_NORMAL);

18.2.2 Using Literals
Use literal values to replace variables in the same way you would in any
high-level language. Literal values can be either numeric or character strings.
String literals must be quoted in single quotation marks (’ ’) in Pascal. You
may use a literal in any data manipulation statement that accepts a host
variable. For example:

FOR D IN DEPARTMENTS WITH
D.DEPARTMENT_CODE = ’ADMN’

GET
DEP_NAME = D.DEPARTMENT_NAME;

END_GET;
END_FOR;

18.2.3 Forming Record Streams
In Pascal, and any language that you use to access an Rdb/VMS database,
you select the records you are interested in manipulating by gathering records
into a stream. You create this stream using the RDML statements. These
statements use context variables to name the stream of records that you select
from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

Note that RDML/Pascal does not preprocess an RSE that is immediately
followed by a Pascal ‘‘WITH record-name’’ statement. To handle this specific
situation and as a general rule, it is good programming practice to place a
block within any RDML block-structured statement. Instead of using the
structure shown in the following example, use the structure shown in the
succeeding example.

Using the RDML/Pascal Program Environment 18–9

Do not use this structure:

FOR E IN EMPLOYEES (* RSE *)
WITH MYREC ... (* Pascal WITH statement *)

END_FOR;

Use this structure instead:

FOR E IN EMPLOYEES (* RSE *)
Begin (* Block start *)

WITH MYREC ... (* Pascal WITH statement *)
End (* Block end *)

END_FOR;

18.2.4 Retrieving Records
RDML provides you with three statements to retrieve records:

FOR

Two START_STREAM statements:

Declared START_STREAM

Undeclared START_STREAM

18.2.4.1 Using the FOR Statement to Retrieve Records The FOR statement
forms a record stream and provides automatic iteration for any RDML and
host language statements included within the FOR . . . END_FOR block. The
FOR statement always includes an RSE with at least one context variable.

Example 18–6 shows a FOR statement from the DISPLAY_CAND subroutine.
It uses the flag ‘‘succeed’’ to determine if the RSE has been satisfied. If a
candidate record is found in the relation that matches the values in the host
language variables, the succeed flag is set to true. If no record matches the
values in the host language variables then the succeed flag remains set to
false.

18–10 Using the RDML/Pascal Program Environment

Example 18–6 Using the FOR Statement in RDML/Pascal
succeed := FALSE;
FOR C IN CANDIDATES WITH C.FIRST_NAME = first_name

AND C.MIDDLE_INITIAL = middle_init
AND C.LAST_NAME = last_name
writeln (C.FIRST_NAME, ’ ’,

C.MIDDLE_INITIAL, ’ ’, C.LAST_NAME);
writeln (’has the following status: ’, C.CANDIDATE_STATUS);
succeed := FALSE;

END_FOR;

if (succeed) then
COMMIT

else
begin

writeln (’Candidate not found in database’);
ROLLBACK;

end;

18.2.4.2 Using Declared Streams to Retrieve Records RDML provides
two forms of START_STREAM statements, the declared and the undeclared
START_STREAM statements. The declared streams provide all the features
of the undeclared streams and more. Most importantly, undeclared streams
require that the statements you use to manipulate the stream be enclosed by
the START_STREAM and END_STREAM statements in your source program.
Declared streams do not impose this restriction. The statements you use
to manipulate the stream may appear in any order within your program as
long as the DECLARE_STREAM statement appears first and the statements
execute in a logical order (START_STREAM, FETCH, GET, END_STREAM).

Digital recommends that all new applications use the declared START_
STREAM statement. For this reason, only the declared START_STREAM
statement is discussed in this section. Complete details on the differences
between declared and undeclared START_STREAM statements are provided in
Chapter 9.

Example 18–7, from the PAIR subroutine, shows the use of the declared
START_STREAM statement and the FETCH statement. The example pairs a
CANDIDATES record with an EMPLOYEES record at random.

Using the RDML/Pascal Program Environment 18–11

Example 18–7 Using the Declared START_STREAM and FETCH Statements
in RDML/Pascal

(* Declarations for the subroutine named PAIR *)
(* Declare two streams: one for the CANDIDATES relation *)
(* and the other for the EMPLOYEES relation. *)

.

.

.
DECLARE_STREAM CANDS USING

CA IN CANDIDATES SORTED BY CA.LAST_NAME;

DECLARE_STREAM EMPS USING
EM IN EMPLOYEES SORTED BY EM.FIRST_NAME;

.

.

.
(* Set of procedures to control streams in procedure PAIR. *)
(* Of course, a simple program such as this does not require the *)
(* use of functions to separate the RDML statements. It is done *)
(* here to demonstrate what you can do. Note that the statements *)
(* do not appear in the order that they will be executed. This *)
(* is a feature that declared streams have and undeclared streams *)
(* do not have. *)

procedure close_emps;
begin

END_STREAM EMPS;
end;

procedure close_cands;
begin

END_STREAM CANDS;
end;

procedure read_cands;
begin

FETCH CANDS
AT end

end_of_cands := TRUE;
END_FETCH;

end;

(continued on next page)

18–12 Using the RDML/Pascal Program Environment

Example 18–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDML/Pascal

procedure read_emps;
begin

FETCH EMPS
AT end
end_of_emps := TRUE;

END_FETCH;
end;

procedure open_cands;
begin

START_STREAM cands;
end;

procedure open_emps;
begin

START_STREAM emps;
end;

Procedure PAIR;

(* ---*)
(* This procedure demonstrates the use of the declared START_STREAM *)
(* statement. The output of this program is merely a random *)
(* matching of each CANDIDATES record with an EMPLOYEES record. The *)
(* PAIR procedure calls these procedures. *)
(* ---*)

begin
READY PERS;
START_TRANSACTION READ_ONLY;

(* Open both streams and set a flag for the end-of-stream condition *)
(* to false. . *)

open_cands;
open_emps;

end_of_emps := FALSE;
end_of_cands := FALSE;

(* Fetch a record from the CANDIDATES and EMPLOYEES relations. *)

read_cands;
read_emps;

(* Print the employee and candidate names until the end-of-stream *)
(* condition is met for the stream of CANDIDATES records. *)

(continued on next page)

Using the RDML/Pascal Program Environment 18–13

Example 18–7 (Cont.) Using the Declared START_STREAM and FETCH
Statements in RDML/Pascal

while not end_of_cands do
begin

write (EM.LAST_NAME, ’ ’, EM.FIRST_NAME);
write (’ ’:20);
writeln (CA.LAST_NAME, ’ ’, CA.FIRST_NAME);

read_cands;

if not end_of_cands then
read_emps;

end;

(* Close both streams. *)

close_emps;
close_cands;

COMMIT;
end; (* End PAIR *)

18.2.5 Retrieving Segmented Strings
Retrieving segmented strings is a two-step process. First you must retrieve
the record that contains the segmented string field, then you must retrieve the
individual segments that make up the segmented string field.

You may find it easier to picture a segmented string by referring to Figure 8–1
in Chapter 8.

RDML provides you with the FOR statement with segmented strings to
retrieve segmented strings. You must use two streams when processing
segmented string streams. Use the first FOR (or START_STREAM) statement
to form an outer stream of records, and then use a second FOR statement to
form an inner stream of segments. This inner stream identifies the segments
contained in the field specified by the first RSE. Use different context variables
for the inner and outer streams.

Remember that to retrieve a segmented string, you must begin at the first
segment and retrieve segments in the order in which they are stored, that is,
sequentially.

Example 18–8 from the DISPLAY_RESUME subroutine:

Uses a FOR statement to search the database for a record with a value
for the EMPLOYEE_ID field that matches the host language variable,
employee_id

Uses a second FOR statement to loop through the segments of the
segmented string field for the selected EMPLOYEES record

18–14 Using the RDML/Pascal Program Environment

Uses a writeln statement to retrieve the individual segments that make up
the segmented string

Displays these values on the terminal

Example 18–8 Using the FOR Statement with Segmented Strings in
RDML/Pascal

START_TRANSACTION READ_WRITE RESERVING RESUMES
FOR SHARED WRITE;

(* Start an outer FOR loop to retrieve the employee record(s) *)
(* with the specified employee ID. *)

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id

(* Start an inner FOR loop to retrieve the segments of *)
(* the segmented string that make up the employee’s *)
(* resume. Display each segment as it is retrieved *)
(* from the database. *)

FOR LINE IN R.RESUME
writeln (LINE);

END_FOR;
END_FOR;

18.2.6 Retrieving Field Values
RDML lets you use four methods to retrieve field values as outlined in the
following list:

Use the GET statement to retrieve any value including statistical values
and the results of conditional expressions from the database.

Use the Pascal assignment statement or a Pascal function to retrieve one,
several, or all of the fields in a database record and assign those values to
one or more host language variables.

Refer to a field as a parameter of a function.

Use the write statement to print out database values.

Although you can use an assignment statement to retrieve statistical
values and the results of conditional expressions from the database, Digital
recommends that you always use the GET statement in these cases. The GET
statement lets you perform error checking with the ON ERROR clause, a
clause that is not available in statistical functions and conditional expressions.
Furthermore, a function call is generated by an assignment statement that is
not generated when you use the GET statement. Therefore, the GET statement
is more efficient than an assignment statement in the context of statistical and
conditional expressions.

Using the RDML/Pascal Program Environment 18–15

Section 18.2.6.1, Section 18.2.6.2, and Section 18.2.6.3 discuss retrieving field
and statistical values.

18.2.6.1 Using an Assignment Statement to Retrieve Field Values When
you form a record stream using the FOR statement, you can assign database
values to host language variables within the FOR . . . END_FOR block. You
can also access database values by using them as parameters to host language
functions and parameters.

Example 18–9, from the LIST_RECORD subroutine, demonstrates how to use
the Pascal writeln statement to retrieve database values in RDML/Pascal.

Example 18–9 Using an Assignment Statement to Retrieve Field Values in
RDML/Pascal

FOR E IN EMPLOYEES SORTED BY E.LAST_NAME
FOR D IN DEGREES WITH D.EMPLOYEE_ID = E.EMPLOYEE_ID

writeln (’Name is: ’, E.FIRST_NAME, E.LAST_NAME);
writeln (’Degree is: ’, D.DEGREE);
writeln (’Degree field is: ’, D.DEGREE_FIELD);

END_FOR;
.
.
.

END_FOR;

When you form a record stream using the START_STREAM statement,
you include the FETCH and writeln or assignment statements within the
START_STREAM . . . END_STREAM block.

See Example 18–7 for an example of using the FETCH and writeln statements
within a START_STREAM . . . END_STREAM block.

18.2.6.2 Using the GET * Statement to Retrieve Records in RDML/Pascal
A special form of the GET statement is the GET * statement, which lets

you retrieve database values at the record level rather than the field level.
You can retrieve all the fields in a record from a relation with the GET *
statement. To use the GET * statement, you must first declare a record
structure that contains all the fields in the database relation, with record
field names that match the relation field names. You can use the Pascal
DICTIONARY statement to create such a record structure, or you can create
a Pascal record structure. (See Chapter 16 for more information on copying
relation and field definitions from the data dictionary.) The GET * statement
in the following example retrieves all the fields in an EMPLOYEES record into
the employee_record host language record structure.

18–16 Using the RDML/Pascal Program Environment

(* Declare Pascal record structure. *)

employee_record:
RECORD
DECLARE_VARIABLE employee_id SAME AS PERS.EMPLOYEES.EMPLOYEE_ID;
DECLARE_VARIABLE last_name SAME AS PERS.EMPLOYEES.LAST_NAME;
DECLARE_VARIABLE first_name SAME AS PERS.EMPLOYEES.FIRST_NAME;
DECLARE_VARIABLE middle_initial SAME AS PERS.EMPLOYEES.MIDDLE_INITIAL;
DECLARE_VARIABLE address_data_1 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_1;
DECLARE_VARIABLE address_data_2 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_2;
DECLARE_VARIABLE city SAME AS PERS.EMPLOYEES.CITY;
DECLARE_VARIABLE state SAME AS PERS.EMPLOYEES.STATE;
DECLARE_VARIABLE postal_code SAME AS PERS.EMPLOYEES.POSTAL_CODE;
DECLARE_VARIABLE sex SAME AS PERS.EMPLOYEES.SEX;
DECLARE_VARIABLE status_code SAME AS PERS.EMPLOYEES.STATUS_CODE;
DECLARE_VARIABLE birthday SAME AS PERS.EMPLOYEES.BIRTHDAY;
end;

.

.

.
FOR FIRST 1 E IN EMPLOYEES

GET
employee_record = E.*;

END_GET;
END_FOR;

18.2.6.3 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly without processing
each record in the record stream. The result of a statistical expression is
an aggregate, and the data type of the result is often not the same data type
as the field on which the statistical expression is performed. See Chapter 8 for
information on the data type conversions performed by statistical expressions.

There are two advantages to using a GET rather than an assignment
statement. First, the GET statement supports the ON ERROR . . . END_
ERROR clause, which allows you to detect errors that occur during the
statistical or Boolean function. Second, using the GET statement results
in more efficient code than an assignment statement when it is used with
statistical and Boolean functions.

Example 18–10, from the Pascal procedure STATS, uses the COUNT statistical
function to find the total number of records in the EMPLOYEES relation.

Using the RDML/Pascal Program Environment 18–17

Example 18–10 Using the GET Statement to Retrieve Statistical Values in
RDML/Pascal

procedure stats;

(*--*)
(* This procedure displays the total number of records stored in *)
(* the EMPLOYEES relation. *)
(*--*)
var

err: integer; (* Error status *)
atotal: integer; (* total *)

begin
START_TRANSACTION READ_ONLY;

(* Use the GET statement with a statistical expression to calculate *)
(* the total number of records in the EMPLOYEES relation. *)

write (’The number of employees in the Corporation is:’);

GET
atotal = (COUNT OF E IN EMPLOYEES);

END_GET;

writeln (atotal);
COMMIT;

end; (* End of stats *)

18.2.7 Updating Records Using the STORE, MODIFY, and ERASE
Statements

The RDML update statements can only be used within a read/write
transaction. (You may, of course, include any valid RDML statement within
a read/write transaction.) The update statements that require a read/write
transaction are:

STORE

MODIFY

ERASE

If you update a record and triggered actions have been defined for the relation
containing the record, the update operation (STORE, MODIFY, or ERASE) will
have the specified effect on all the relations in the database that have a foreign
key relationship with the record you want to update.

If a relation-specific constraint has been defined, your ability to perform
update operations may depend on the presence of matching field values in
other relations. For more information on relation-specific constraints, see
Section 6.6.

Note You may not use a view to update records if that view refers to more than one
relation.

18–18 Using the RDML/Pascal Program Environment

18.2.7.1 Storing Records You can insert values into one or more fields in
one record using a single STORE statement. To store more than one record in
a relation, include the STORE statement within a program loop.

Note that RDML may return unpredictable results when a Pascal multipath
statement, such as the Pascal case statement, is embedded in an RDML
STORE statement. The problem occurs when a field is referred to but not used
at run time. This is because RDML assumes that any field mentioned within a
STORE . . . END_STORE block is going to be updated.

In the following example, if the program falls through to case 2 at run time,
a value will be stored in the FIRST_NAME field even though FIRST_NAME
is not referred to in case 2. Upon seeing the field referred to in case 1, RDML
sets up a buffer for both the FIRST_NAME and LAST_NAME fields. Because
case 2 does not supply data for the FIRST_NAME field, RDML sends to the
database whatever happens to be in the buffer for the FIRST_NAME field.

The following code will cause unpredictable results:

STORE E IN EMPLOYEES USING
case i of

1: begin
E.LAST_NAME = ’Smith’;
E.FIRST_NAME = ’Andrew’;

end;

2:
E.LAST_NAME = ’Jones’;

end;
END_STORE;

When different fields are referred to in a multipath statement, the RDML
statement should be embedded in the host language multipath statement as
shown in the following example:

case i of
1:

STORE E IN EMPLOYEES USING
E.LAST_NAME = ’Smith’;
E.FIRST_NAME = ’Andrew’;

END_STORE;
2:

STORE E IN EMPLOYEES USING
E.LAST_NAME = ’Jones’;

END_STORE;
end;

Example 18–11, from the STORE_CAND procedure, stores an employee record
in the CANDIDATES relation.

Using the RDML/Pascal Program Environment 18–19

Example 18–11 Storing Records in RDML/Pascal
transaction_started := false;
lock_error := false;
retry := 0;

while (not transaction_started) and (retry < 5) DO
begin

transaction_started := true;
lock_error := false;
START_TRANSACTION READ_WRITE RESERVING

CANDIDATES FOR SHARED WRITE NOWAIT
ON ERROR

Handle_error;
transaction_started := false;
succeed := false;

END_ERROR;
if lock_error then retry := retry + 1;

end; (* of while *)
if transaction_started

then
begin

succeed := false;
retry := 0;
lock_error := false;
repeat

succeed := true;
lock_error := false;

(* Store the values specified by the user in the CANDIDATES *)
(* relation. Check for errors and inform the user of the success *)
(* or failure of the STORE operation. *)

STORE C IN CANDIDATES USING
ON ERROR

Handle_error;
succeed := false;

END_ERROR;
C.FIRST_NAME := first_name;
C.LAST_NAME := last_name;
C.MIDDLE_INITIAL := middle_init;
C.CANDIDATE_STATUS := status_info;

END_STORE;
until (succeed) OR ((lock_error) AND (retry > 4)) OR

(NOT succeed AND NOT lock_error);

(continued on next page)

18–20 Using the RDML/Pascal Program Environment

Example 18–11 (Cont.) Storing Records in RDML/Pascal
end; (* if transaction_started *)

if succeed
then

begin
writeln (’Update operation succeeded’);
COMMIT;

end
else

begin
writeln (’Update operation failed’);
if transaction_started then ROLLBACK;

end;

18.2.7.2 Using the STORE * Statement to Store Records A special form of
the STORE statement is the STORE * statement, which lets you manipulate
database values at the record level rather than the field level. You can store
all the fields in a record with the STORE * statement. To use the STORE *
statement, you must first declare a record structure that specifies all the
fields in the relation definition, with Pascal record field names that match
the database field names exactly. Then, put the values you want to store
in the database record fields into the Pascal program record and store the
entire Pascal record using the STORE * statement. Example 18–12 shows
the use of the STORE * statement to store the fields in the employee_record
record structure that in turn is stored in the EMPLOYEES relation of the
MF_PERSONNEL database.

Example 18–12 Using the STORE * Statement in RDML/Pascal
(* Declare a Pascal record structure *)

employee_record:
RECORD
DECLARE_VARIABLE employee_id SAME AS PERS.EMPLOYEES.EMPLOYEE_ID;
DECLARE_VARIABLE last_name SAME AS PERS.EMPLOYEES.LAST_NAME;
DECLARE_VARIABLE first_name SAME AS PERS.EMPLOYEES.FIRST_NAME;
DECLARE_VARIABLE middle_initial SAME AS PERS.EMPLOYEES.MIDDLE_INITIAL;
DECLARE_VARIABLE address_data_1 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_1;
DECLARE_VARIABLE address_data_2 SAME AS PERS.EMPLOYEES.ADDRESS_DATA_2;
DECLARE_VARIABLE city SAME AS PERS.EMPLOYEES.CITY;
DECLARE_VARIABLE state SAME AS PERS.EMPLOYEES.STATE;
DECLARE_VARIABLE postal_code SAME AS PERS.EMPLOYEES.POSTAL_CODE;
DECLARE_VARIABLE sex SAME AS PERS.EMPLOYEES.SEX;
DECLARE_VARIABLE status_code SAME AS PERS.EMPLOYEES.STATUS_CODE;
DECLARE_VARIABLE birthday SAME AS PERS.EMPLOYEES.BIRTHDAY;
end;

. . .
(* Assign values to the host language variables. *)

(continued on next page)

Using the RDML/Pascal Program Environment 18–21

Example 18–12 (Cont.) Using the STORE * Statement in RDML/Pascal
writeln (’Please enter the Employees last name’);
readln (employee_record.last_name);
writeln (’Please enter the Employees first name’);
readln (employee_record.first_name);
. . .

(* Store these values using the STORE * syntax. *)

STORE E IN EMPLOYEES USING
ON ERROR

Handle_error;
succeed := false;

END_ERROR;
E.* := employee_record;

. . .
END_STORE;

18.2.7.3 Using the STORE Statement with Segmented Strings to Store
Segmented Strings The STORE segmented string statement behaves in a
similar manner to the FOR segmented string statement. You must use two
streams when you process segmented string streams. Use the first STORE
statement to form an outer stream of records, and then use the second STORE
statement to form an inner stream of segments. This second STORE statement
identifies the segments that are contained in the field specified by the first
STORE statement. Use a different context variable in each of the two STORE
statements.

Note that the inner STORE statement uses a segmented string variable in
place of the context variable, and that the field name is qualified by the context
variable specified in the outer STORE statement. Your program must explicitly
repeat the inner STORE statement to store individual segments, or provide
iteration for an inner STORE loop.

Note See Section 9.2.6.1.2 for information about defining the RDMS$BIND_
SEGMENTED_STRING_BUFFER logical name with an appropriate value
for storing your segmented strings.

Note Segmented strings cannot be updated (ERASE, MODIFY, or STORE) as part of
a triggered action. For more information, see the DEFINE TRIGGER statement
in the VAX Rdb/VMS RDO and RMU Reference Manual.

Example 18–13, from the STORE_RES subroutine, demonstrates how to store
a segmented string in Pascal.

18–22 Using the RDML/Pascal Program Environment

Example 18–13 Storing a Segmented String in RDML/Pascal
procedure store_res;
(* This subroutine demonstrates how to store a record with *)
(* a field of data type SEGMENTED STRING. *)

label test, 10;
var

textfile: text;
my_file : varying [20] of char;
continue : char;
err: integer;
succeed: boolean;

DEFINE_TYPE employee_id SAME AS RESUMES.EMPLOYEE_ID;
begin

my_file := ’null’;
employee_id := ’00000’;
continue := ’n’;
succeed := true;
while (Employee_id <> ’exit’) or (Employee_id <> ’EXIT’) do

begin
while ((continue = ’N’) or (continue = ’n’)) do

begin

(* Prompt the user for the employee ID of the *)
(* EMPLOYEES record that he or she wants to store. *)

write (’Please enter the ID of the employee’);
readln (Employee_id);

test: if (employee_id = ’exit’) or (employee_id = ’EXIT’)
then goto 10;

(* Prompt the user for the file name of the resume *)
(* to be stored. *)

writeln (’Please enter file name of the resume’);
readln (my_file);
writeln (’Have you entered all data correctly? (Y,N)’);
readln (continue);

end;

open (textfile, FILE_NAME := my_file,history:=readonly);
reset (textfile);
START_TRANSACTION READ_WRITE RESERVING RESUMES

FOR SHARED WRITE;

(continued on next page)

Using the RDML/Pascal Program Environment 18–23

Example 18–13 (Cont.) Storing a Segmented String in RDML/Pascal

(* Use the STORE statement with segmented strings to store the *)
(* record. The outer STORE statement creates the new RESUMES *)
(* record. The inner STORE statement stores the individual *)
(* segments of the SEGMENTED STRING field. *)

STORE R IN RESUMES USING
ON ERROR

Handle_error;
succeed := false;

END_ERROR;
R.EMPLOYEE_ID := employee_id;
While not EOF (textfile) do

begin
STORE LINE IN R.RESUME

readln (textfile, line);
END_STORE;

end;
END_STORE;

close (textfile);
if succeed then

begin
writeln (’Resume added ’);
COMMIT;

end
else

begin
writeln (’Update operation failed - resume not added’);
ROLLBACK;

end;
continue := ’n’;

end;
10: writeln;
end; (* end store_res *)

18.2.7.4 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of one record in a relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Example 18–14, from the MODIFY_ADDRESS procedure, modifies a record
in the EMPLOYEES relation. The values used to modify the record were
requested earlier in the program.

18–24 Using the RDML/Pascal Program Environment

Example 18–14 Modifying Records in RDML/Pascal
.
.
.

(* Modify the address fields for the specified *)
(* EMPLOYEES record. *)

START_TRANSACTION READ_WRITE
RESERVING EMPLOYEES FOR SHARED WRITE;

FOR E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id
MODIFY E USING

ON ERROR
Handle_error;
succeed := false;

END_ERROR;
E.ADDRESS_DATA_1 := address_1;
E.ADDRESS_DATA_2 := address_2;
E.CITY := city;
E.STATE := state;
E.POSTAL_CODE := pcode;

END_MODIFY;
END_FOR;

18.2.7.4.1 Using the MODIFY * Statement to Modify Records A special
form of the MODIFY statement is the MODIFY * statement, which lets you
manipulate database values at the record level rather than the field level. You
can modify all the fields in a record with the MODIFY * statement. To use the
MODIFY * statement, you must first declare a record structure that contains
all the fields in the record, with record field names that match the database
field names. Then, put the field values you want to replace into the record
fields and modify the entire database record using the MODIFY * statement.

Only use the MODIFY * statement if you need to modify every field value in
a record. Modifying a field by replacing one value with an identical value,
needlessly adds overhead to your program. For example, your program may
check constraints on a field value that you know is valid because it is the same
value that the field presently holds.

Example 18–15 replaces the field values of an employee record in the JOB_
HISTORY relation with the values in the job_history host language record
structure.

Using the RDML/Pascal Program Environment 18–25

Example 18–15 Using the MODIFY * Statement in RDML/Pascal
FOR J IN JOB_HISTORY WITH

J.EMPLOYEE_ID = EMPLOYEE_ID IN JOB_HISTORY
AND J.JOB_END MISSING

MODIFY J USING
J.* = job_history;

END_MODIFY
END_FOR

18.2.7.4.2 Modifying Segmented Strings The method you use to modify a
segmented string involves two RDML statements: the MODIFY statement and
the STORE statement with segmented strings. The MODIFY statement selects
the records for which you want to modify the segmented string field. An inner
STORE statement with segmented strings deletes the existing segmented
string and writes over the existing segmented string handle with a new
segmented string handle. Note that you cannot modify the individual segments
that make up the segmented string, you must replace the entire segmented
string.

Example 18–16 demonstrates how to modify a segmented string in
RDML/Pascal.

Example 18–16 Modifying Segmented String Fields in RDML/Pascal
procedure mod_resume;

(* ---*)
(* This subroutine demonstrates how to modify a field of data *)
(* type SEGMENTED STRING. *)
(* ---*)

label test, 10;

var
textfile: text;
my_file : varying [20] of char; (* Name of file containing resume *)
continue : char; (* Continue module *)
succeed: boolean; (* Success flag *)

DECLARE_VARIABLE employee_id SAME AS RESUMES.EMPLOYEE_ID;
begin

my_file := ’null’;
employee_id := ’00000’;
continue := ’n’;
succeed := true;

(* Prompt the user to enter employee ID of the RESUMES record he or *)
(* she wants to modify. *)

(continued on next page)

18–26 Using the RDML/Pascal Program Environment

Example 18–16 (Cont.) Modifying Segmented String Fields in RDML/Pascal
while (employee_id <> ’exit’) or (employee_id <> ’EXIT’) do

begin
while ((continue = ’N’) or (continue = ’n’)) do

begin
write (’Please enter the ID of the Employee whose’);
writeln (’ resume you want to change or type exit’);
readln (employee_id);

test: if (employee_id = ’exit’) or (employee_id = ’EXIT’)
then goto 10;

(* Prompt user for the file name of the resume that will replace the *)
(* old resume. *)

writeln (’To modify a resume, you must supply a new’);
writeln (’ file name that contains the new resume’);
writeln (’Please enter file name of new resume’);
readln (my_file);
writeln (’Have you entered all data correctly? (Y,N)’);
readln (continue);

end;
open (textfile, FILE_NAME := my_file,history:=readonly);
reset (textfile);
START_TRANSACTION READ_WRITE RESERVING RESUMES

FOR SHARED WRITE;
(* Start an outer FOR loop to retrieve the employee record(s) *)
(* with the specified ID. *)

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id

(* Use a MODIFY statement to change the value of the *)
(* segmented string field. *)

MODIFY R USING
ON ERROR

Handle_error;
succeed := false;

END_ERROR;

(continued on next page)

Using the RDML/Pascal Program Environment 18–27

Example 18–16 (Cont.) Modifying Segmented String Fields in RDML/Pascal
(* Read in the new resume and use a STORE operation to store a new *)
(* segmented string handle in the RESUMES relation. *)

While not EOF (textfile) do
begin

STORE LINE IN R.RESUME
readln (textfile, line);

END_STORE;
end;

END_MODIFY;
END_FOR;
close (textfile);
if succeed then

begin
writeln (’Resume update successful’);
COMMIT;

end
else

begin
writeln (’Update operation failed - resume not updated’);
ROLLBACK;

end;
continue := ’n’;

end;
10: writeln;
end; (* End mod_resume *)

18.2.7.5 Erasing Records You can delete one, many, or all the records from
a relation using the ERASE operation. Before erasing records, you must start
a read/write transaction and form a record stream that contains the records
you wish to erase.

Example 18–17, from the DELETE_RECORD procedure, demonstrates how to
ERASE records in RDML/Pascal programs.

Note The definition of the sample personnel database includes the trigger
EMPLOYEE_ID_CASCADE_DELETE, which performs an automatic deletion
of records in the relations named in ERASE statements in Example 18–17
(except for RESUMES) when the record with the matching employee ID is
deleted from the EMPLOYEES relation. Thus, you would not need to include
‘‘cascading deletion’’ logic in your programs if it were already included in a
trigger definition.

18–28 Using the RDML/Pascal Program Environment

Example 18–17 Erasing Records in RDML/Pascal
(* Earlier in the function DELETE_RECORD, an employee record was *)
(* retrieved to make certain that the user wants to delete this *)
(* employee’s records. Having made that determination, the program *)
(* will now delete all records associated with that employee. When *)
(* the employee record was retrieved, the database key associated *)
(* with that record was also retrieved. It can be used here to *)
(* quickly locate that employee’s EMPLOYEES record again, so that *)
(* records for this employee can be erased from all the relations *)
(* in which he or she has a record. *)

START_TRANSACTION READ_WRITE RESERVING EMPLOYEES,
SALARY_HISTORY, JOB_HISTORY,
DEGREES, RESUMES FOR SHARED WRITE;

FOR E IN EMPLOYEES WITH E.RDB$DB_KEY = db_key
ERASE E;

END_FOR;

FOR JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = employee_id
ERASE JH;

END_FOR;

FOR SH IN SALARY_HISTORY WITH SH.EMPLOYEE_ID = employee_id
ERASE SH;

END_FOR;

FOR D IN DEGREES WITH D.EMPLOYEE_ID = employee_id
ERASE D;

END_FOR;

FOR R IN RESUMES WITH R.EMPLOYEE_ID = employee_id
ERASE R;

END_FOR;

18.3 Controlling the Scope of Database Keys
A database key (dbkey) is a logical pointer that has a one-to-one relationship
with a record in the database. Each record has a unique dbkey that points to
it. You can retrieve this key as though it were a field in a record. For relations,
the dbkey is 8 bytes. For views, you can calculate the size by multiplying the
number of relations referred to in the view by 8 bytes. If your view refers to
only one relation, the dbkey is 8 bytes; if your view refers to two relations, it is
16 bytes, and so on. Once you have retrieved a dbkey, you can use it to retrieve
its associated record directly, within the RSE of a FOR or START_STREAM
statement.

By default, the scope of a dbkey ends with a COMMIT statement. That is, a
dbkey is guaranteed to point to the same record for the life of the transaction
in which it is retrieved.

Using the RDML/Pascal Program Environment 18–29

You can override the default scope of COMMIT in your program by specifying
in the DATABASE statement that the dbkey scope ends with the FINISH
statement.

The following example demonstrates how to specify the dbkey scope in an
RDML/Pascal program.

DATABASE GLOBAL pers = FILENAME ’MF_PERSONNEL’ DBKEY SCOPE IS FINISH;

Suggestions on how you can take advantage of the dbkey scope are contained
in Section 9.2.7.

18.4 Using Structured Programming
Programs and modules that pass through the RDML preprocessor do not
have unlimited freedom in structure. Calls to routines, subprograms, and
subroutines require that you pay special attention to the context from which
they are called.

Many data manipulation statements, in particular those that use context
variables, execute in the context of other data manipulation statements. These
statements are:

FOR

GET

DECLARE_STREAM

START_STREAM

END_STREAM

FETCH

STORE

MODIFY

ERASE

STORE statement with segmented strings

FOR statement with segmented strings

These individual data manipulation statements each form only part of a
complex call to the database. The preprocessor generates one call to the
database, using more than one data manipulation statement. For example, a
MODIFY statement executes within the context of a FOR or START_STREAM
statement. The call to the database can only be made using both the FOR and
MODIFY statements. For this reason, the preprocessor requires such data
manipulation statements to be lexically sequential, that is, in the order they
appear in the program source code.

18–30 Using the RDML/Pascal Program Environment

In structured programming, using program blocks lets you place program
statements in an order that promotes program clarity or execution. This order
may be entirely different from the order of actual program execution. However,
the preprocessor is unaware of the intended run-time order of program block
execution. It generates code in the order that data manipulation statements
appear in the source code. Keep this in mind when writing your application.

Also keep in mind that a context variable is meaningful only within its
scope. In other words, the context variable defined in a FOR statement
is meaningless after the END_FOR statement, and a context variable
defined in an undeclared START_STREAM statement is meaningless after
the END_STREAM statement. However, the context variable defined in a
DECLARE_STREAM statement is meaningful throughout the module in which
it is issued.

A stream declared with the DECLARE_STREAM statement lets you place the
stream manipulation statements in an order that deviates from the order of
actual program execution. When you want to use structured programming and
you do not need the automatic iteration provided by the FOR statement, use
the declared START_STREAM statement.

For more information on the declared and undeclared START_STREAM
statement, see Section 9.2.3.2. Data manipulation statements that stand alone
as independent calls to the database may appear in any order in the source
file. These statements are:

DATABASE

READY

START_TRANSACTION

GET

COMMIT

ROLLBACK

FINISH

DECLARE_STREAM

Remember that you must issue the DECLARE_STREAM statement before
you can issue a declared START_STREAM statement, and the DATABASE
statement must appear in the data declaration section of your program.

Example 18–18, from the DELETE_RECORD and CALL_OTHER subroutines,
demonstrates structured programming in a preprocessed Pascal program.
The DELETE_RECORD and CALL_OTHER subroutines are in modules that
are separately preprocessed and processed. They are linked with the LINK
command. The DELETE_RECORD subroutine passes the value of a dbkey to
the CALL_OTHER subroutine. This subroutine finds the record associated

Using the RDML/Pascal Program Environment 18–31

with the dbkey and displays this record on the terminal. Although it is not
necessary to program this query in two modules, it is done here to demonstrate
how to pass variables between separately processed modules.

Example 18–18 Using Structured Programming in RDML/Pascal
Subroutine DELETE_RECORD:

START_TRANSACTION (TRANSACTION_HANDLE trans_1) READ_WRITE;
found_emp := FALSE;

(* Find the employee record that the user wants to delete *)
(* If an error occurs during the FOR operation, call *)
(* an error handler. *)

FOR (TRANSACTION_HANDLE trans_1)
E IN EMPLOYEES WITH E.EMPLOYEE_ID = employee_id

ON ERROR
Handle_error;
succeed := false;

END_ERROR
found_emp := TRUE;

(* Get the dbkey of the EMPLOYEES record that *)
(* the user wants to delete. *)

db_key := E.RDB$DB_KEY;
END_FOR;

if NOT found_emp
then writeln (’ No employee with ’, employee_id, ’on file’)

(* Pass the dbkey to an external subroutine CALL_OTHER to *)
(* print out the record to which the dbkey points. Note *)
(* that using an external subroutine is neither necessary *)
(* nor recommended for performing this task. It is done *)
(* in this example only to show how values are passed *)
(* between subroutines in an RDML/Pascal program. *)

else Call_OTHER (db_key,req_1);
COMMIT (TRANSACTION_HANDLE trans_1);

Subroutine CALL_OTHER:

module transxn (input,output);
(* Because the database was invoked in the main program *)
(* (P_SAMPLE.RPA) with GLOBAL attributes, assign it *)
(* EXTERNAL scope here. *)

DATABASE pers = [external] FILENAME ’MF_PERSONNEL’;

(continued on next page)

18–32 Using the RDML/Pascal Program Environment

Example 18–18 (Cont.) Using Structured Programming in RDML/Pascal
(* This subroutine is passed the dbkey and transaction *)
(* handle from the DELETE_RECORD subroutine within *)
(* program P_SAMPLE.RPA. With this information, the *)
(* subroutine can find and display the employee record *)
(* associated with an employee_id specified in *)
(* DELETE_RECORD and then return program control to *)
(* the DELETE_RECORD subroutine. *)

type

db_key_type = BASED ON EMPLOYEES.RDB$DB_KEY;

var

trans_1 : [volatile,external] integer;
req_1 : [volatile,external]integer;
dbkey : db_key_type;

[global] procedure call_other(
key:db_key_type;handle:integer);

begin

(* The transaction was started in the DELETE_RECORD subroutine, *)
(* so there is no need to start a transaction here. Use the *)
(* transaction handle to identify this request with the *)
(* transaction started in DELETE_RECORD. Use the dbkey found *)
(* in the DELETE_RECORD subroutine to locate the correct *)
(* employee record. *)

FOR (TRANSACTION_HANDLE trans_1,REQUEST_HANDLE req_1)
E IN EMPLOYEES WITH E.RDB$DB_KEY = key

(* Display the EMPLOYEES record. *)

writeln (E.LAST_NAME);
writeln (E.FIRST_NAME);
writeln (E.ADDRESS_DATA_1);
writeln (E.ADDRESS_DATA_2);
writeln (E.CITY);
writeln (E.STATE);
writeln (E.POSTAL_CODE);
writeln (E.SEX);

END_FOR;

end;
end.

18.4.1 Using Handles
A handle is an identifier that you can specify in your program to identify
separate instances of the following database objects:

Databases

Transactions

Using the RDML/Pascal Program Environment 18–33

Requests

Information on when and how to use request handles is supplied in Chapter 9.
Section 18.4.2 and Section 18.4.4 discuss how to declare handles and identifiers
in an RDML/Pascal program.

18.4.2 Declaring and Initializing Handles
With the exception of the database handle, declaring handles in RDML/Pascal
is similar to declaring any other program variable. The declaration and
initialization of a database handle is done simply by specifying the handle in
the DATABASE statement. You do not declare a database handle in the data
declaration portion of your RDML/Pascal program. RDML/Pascal initializes
the handle for you. You should not assign a value to a database handle with
an assignment statement.

User-specified request and transaction handles must be declared in the data
declaration portion of your program. In RDML/Pascal, declare user-specified
request and transaction handles as RDML$HANDLE_TYPE and initialize
them to zero.

If you want to release the resources associated with a request handle, you can
do so by issuing a FINISH statement, or, if you do not want to detach from the
database, you can release the request by issuing a call to the RDB$RELEASE_
REQUEST procedure with the following statement (where req1 is a user-
supplied request handle):

if not RDB$RELEASE_REQUEST(RDB$MESSAGE_VECTOR, req1) then
RDML$SIGNAL_ERROR(RDB$MESSAGE_VECTOR);

You do not need to declare RDB$RELEASE_REQUEST in Pascal programs; it
is declared for you in RDMLVPAS.PAS.

18.4.3 Using Distributed Transaction Identifiers
A distributed transaction identifier is a variable that uniquely identifies
a distributed transaction. When your application coordinates a distributed
transaction and explicitly calls DECdtm services, you must pass the distributed
transaction identifier to all the databases that are participating in the
distributed transaction. You pass the distributed transaction identifier by using
the DISTRIBUTED_TRANSACTION keyword with the DISTRIBUTED_TID
clause of the START_TRANSACTION statement. The distributed transaction
identifier is a readable parameter and is passed by reference.

See the VAX Rdb/VMS Guide to Distributed Transactions for information on
coordinating a distributed transaction.

18–34 Using the RDML/Pascal Program Environment

18.4.4 Declaring and Initializing Distributed Transaction
Identifiers

Declaring distributed transaction identifiers in RDML/Pascal is similar to
declaring any other program variable. Distributed transaction identifiers must
be declared in the data declaration portion of your Pascal program. Declare
a distributed transaction identifier as two longwords and initialize it to zero.
You should not assign a value to a distributed transaction identifier with an
assignment statement.

18.5 Using Callable RDO
You must use the Callable RDO interface to do either of the following in your
RDML application:

Perform data definition operations within the program.

The RDML statement set does not include data definition statements. If
you want to perform data definition within your RDML/C program, you
must use the Callable RDO program interface. For example, your program
may define a temporary index on a field to facilitate Rdb/VMS performance
during program execution.

Form dynamic queries

A dynamic query is one that is not known until run time, and thus is
constructed by the application at run time. If you know what the query
is before run time, you should use RDML preprocessed statements,
because these statements execute significantly faster than Callable RDO
statements.

When using Callable RDO, your program communicates with Rdb/VMS using
a callable function named RDB$INTERPRET. You call RDB$INTERPRET
as you would call a system service. You call RDB$INTERPRET to pass
your data manipulation or data definition statements to Rdb/VMS. Declare
RDB$INTERPRET as an integer (longword) function. The RDB$INTERPRET
function returns a status value that describes the success or failure of the
procedure execution. The return status value is a condition value that
indicates either success or a unique Rdb/VMS symbolic error code. Your
program declares a longword variable to hold the return status value so you
can test the success or failure of the call.

Callable RDO program development is explained in detail in Chapter 19.

The Pascal format of the RDB$INTERPRET calling sequence is:

ret-stat=RDB$INTERPRET(
’rdb-statement’[,[%STDESCR][%DESCR]host-var,...]);

Using the RDML/Pascal Program Environment 18–35

The arguments for the RDB$INTERPRET calling sequence are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

rdb-statement

A pointer to a descriptor that describes the Rdb/VMS statement you are
passing to Rdb/VMS. Handle rdb-statement according to the Pascal rules
for handling string literals or string variables.

host-var

A pointer to a descriptor that describes a host language variable that you
pass to Rdb/VMS as part of a data manipulation statement. You do not
include host language variables within the Rdb/VMS statement string
literal, but pass them, in order, after the string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some Rdb/VMS statements may produce
unwieldy code in the call to RDB$INTERPRET. Instead, assign the Rdb/VMS
statement string literal to a string variable. Then, pass the string variable in
the calling sequence. Assigning Rdb/VMS statements to a string variable lets
you separate your Rdb/VMS data definition and data manipulation statements
from the mechanics of using the Callable RDO interface.

Callable RDO program development is explained in detail in Chapter 19.

The following section discusses the use of the INVOKE DATABASE statement
and the scope of transactions in preprocessed programs that use Callable RDO.

18.5.1 Using the DATABASE Statement with Embedded Callable
RDO

You must use a DATABASE statement in your preprocessed program and
a separate INVOKE DATABASE statement in the embedded Callable RDO
statements. To ensure that RDML invokes the identical database for the
preprocessed and Callable RDO portions of the program, use the same database
handle in each INVOKE DATABASE statement. Invoke the database:

In the preprocessed program by using a GLOBAL or EXTERNAL database
handle

In the Callable RDO program by passing the database handle to
RDB$INTERPRET

18–36 Using the RDML/Pascal Program Environment

For more information on database handles, see the section on handles in
Chapter 9.

In Callable RDO, you must pass the database handle to the RDB$INTERPRET
function as a !VAL parameter. See Chapter 19 for an example of passing
database handles in Callable RDO.

You may include both RDML and Callable RDO DATABASE statements in the
same program module. You may also call a function or subroutine to perform
data definition with Callable RDO. In that case, use a preprocessed INVOKE
DATABASE statement in the main module and the Callable RDO INVOKE
DATABASE statement in the submodule.

For example, in RDM$DEMO:P_SAMPLE.PAS, the sample program for Pascal,
the database is invoked with the GLOBAL attribute in the main program:

&RDB& DATABASE GLOBAL pers = FILENAME ’MF_PERSONNEL’ DBKEY SCOPE IS FINISH;

This program calls the callable subroutine. This subroutine invokes the
database using the RDB$INTERPRET function:

(* Invoke the database to make it known to Callable RDO. *)

literal1 := ’invoke database !val = filename "mf_personnel"’;
status := rdb$interpret_integer(literal1, pers);
if not odd(status) then callable_error(status);

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the Callable RDO sections of the same
program. The preprocessor will not be able to refer to metadata that has not
yet been defined.

18.5.2 Embedding Data Definition Statements Using Callable
RDO

Data definition statements require a read/write transaction. When an RDML
program statement executes, whether it is preprocessed or Callable RDO,
Rdb/VMS checks for an active transaction. If there is an active transaction
that allows the intended operations, the statement is executed.

You can perform Callable RDO data definition within any active read/write
transaction in your preprocessed program. See Section 19.6 for information
on using Callable RDO statements and preprocessed statements in a single
transaction.

If you call RDB$INTERPRET for data definition, do not attempt to use
database or transaction handles in your data definition statements. Rdb/VMS
does not support the use of database or transaction handles in data definition
statements.

Using the RDML/Pascal Program Environment 18–37

Do not define, change, or delete a field, relation, or view in Callable RDO and
then refer to it in the preprocessed portion of the program. At preprocess time,
the field, relation, or view does not yet exist, and the preprocessor generates
errors for those statements that refer to either the field, relation, or view. You
can define indexes, constraints, and any other database elements that are not
referred to in the preprocessed code.

You can perform any preprocessed data retrieval or update operation within
any Callable RDO transaction. You can omit the START_TRANSACTION
statement from the preprocessed portion of the program and rely upon the
transaction started in the Callable RDO portion. However, it is better practice
to begin an explicit transaction whenever possible rather than to rely on
implicit START_TRANSACTION declarations.

Example 18–19, from the Pascal subroutine DDL_STMNT, shows how to
perform data definition tasks in RDML/Pascal programs.

Example 18–19 Embedding Data Definition Statements in RDML/Pascal
procedure ddl_stmnt;

(* ---*)
(* This subroutine demonstrates how to perform data definition *)
(* tasks from an RDML/Pascal program. You must use the Callable *)
(* RDO interface, RDB$INTERPRET, to perform data definition *)
(* tasks in preprocessed programs. *)
(* ---*)

label test, 10;
var
literal : varying [255] of char; (* RDO command literal buffer *)
literal1: varying [255] of char; (* RDO command user buffer *)
continue: char; (* Continue module *)
status:integer; (* Status returned from RDB$INTERPRET *)
succeed:boolean; (* Success of statement *)
(* Error handler *)

[external] procedure callable_error (var error:integer);
extern;

(* Declare RDB$INTERPRET functions. *)

[ASYNCHRONOUS, EXTERNAL (RDB$INTERPRET)]
FUNCTION RDB$INTERPRET (
rdb_statement : [CLASS_S] PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR)
: integer; EXTERNAL;

[ASYNCHRONOUS, EXTERNAL (RDB$INTERPRET)]
FUNCTION RDB$INTERPRET_STRING (
rdb_statement : [CLASS_S] PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR;
string_arg : [CLASS_S] PACKED ARRAY [$l2..$u2:INTEGER] OF CHAR)
: integer; EXTERNAL;

(continued on next page)

18–38 Using the RDML/Pascal Program Environment

Example 18–19 (Cont.) Embedding Data Definition Statements in
RDML/Pascal

[ASYNCHRONOUS, EXTERNAL (RDB$INTERPRET)]
FUNCTION RDB$INTERPRET_INTEGER (

rdb_statement : [CLASS_S] PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR;
%descr numeric_arg : [list, unsafe] INTEGER)
: integer; EXTERNAL;

[ASYNCHRONOUS, EXTERNAL (RDB$INTERPRET)]
FUNCTION RDB$INTERPRET_STRING_INTEGER (

rdb_statement : [CLASS_S] PACKED ARRAY [$l1..$u1:INTEGER] OF CHAR;
string_arg : [CLASS_S] PACKED ARRAY [$l2..$u2:INTEGER] OF CHAR;
%descr numeric_arg : INTEGER)
: integer; EXTERNAL;

begin

status := 0;
literal1 := ’goahead’;
literal :=’goahead’;
continue := ’N’;
succeed := TRUE;

(* Prompt user for input. Ordinarily, it would not be likely *)
(* that you would ask a user to define an index for the *)
(* database. This example serves only to show you how this type *)
(* of task can be done from within a RDML/Pascal environment. *)

while (literal <> ’exit’) or (literal <> ’EXIT’) do
begin

while ((continue = ’N’) or (continue = ’n’)) do
begin

writeln (’Please enter the data definition statement to define’);
writeln (’ or delete a temporary index, or type "exit"’);
writeln (’For example, to define an index for EMPLOYEES based’);
writeln (’ on EMPLOYEE_ID, you might enter: ’);
write (’define index emp_employee_id for employees. employee_id.’);
writeln (’ end index.’);
write (’To delete this index, you might enter: ’);
writeln (’delete index emp_employee_id.’);
readln (literal);

test: if (literal = ’exit’) or (literal = ’EXIT’)
then goto 10;
writeln (’Did you enter the definition correctly? Y,N’);
readln (continue)

end;

(* Invoke the database to make it known to Callable RDO. *)

literal1 := ’invoke database !val = filename "mf_personnel"’;
status := rdb$interpret_integer(literal1, pers);
if not odd(status) then callable_error(status);

(* Start a READ_WRITE transaction. *)

status := rdb$interpret (’START_TRANSACTION READ_WRITE’);
if not odd(status) then callable_error(status);

(continued on next page)

Using the RDML/Pascal Program Environment 18–39

Example 18–19 (Cont.) Embedding Data Definition Statements in
RDML/Pascal

(* Pass the data definition statement specified by the user *)
(* to RDB$INTERPRET. *)

status := rdb$interpret (literal);
if not odd(status) then

begin
callable_error(status);
succeed := FALSE;

end;

if (succeed) then (* Commit *)
begin

writeln (’Transaction successful’);
status := rdb$interpret (’COMMIT’);
if not odd(status) then callable_error(status);

end

else
begin

writeln (’Transaction failed’); (* Roll back *)
status := rdb$interpret (’ROLLBACK’);
if not odd(status) then callable_error(status);

end;

status := rdb$interpret (’FINISH’); (* Finish database *)
if not odd(status) then callable_error(status);

continue := ’n’;
end;

10: writeln;

end; (* End of ddl_stmnt *)

18.6 Handling Rdb/VMS Run-Time Errors
Before reading this section, you should be familiar with the information
contained in Chapter 10 of this manual. Chapter 10 discusses error handling
concepts; this section contains information that, for the most part, is specific to
error handling in RDML/Pascal.

This section describes how to detect RDML errors that occur at run time, how
to display the accompanying messages, and how to recover from the errors.
In most cases, this section assumes that you have debugged the executing
program for both RDML and host language statements. This section discusses
Rdb/VMS run-time errors only and does not tell you how to handle host
language or system run-time errors. Refer to your Pascal user’s guide for such
information.

If you choose to combine Callable RDO and RDML, use separate error handling
routines for each one. See Chapter 19 for information on handling Callable
RDO errors.

18–40 Using the RDML/Pascal Program Environment

18.6.1 Error Handling
RDML/Pascal enables you to detect errors with the ON ERROR clause. If an
error occurs in an RDML statement, control passes to the ON ERROR clause.
Your program must then handle the error.

This section describes:

The ON ERROR clause

Determining which error has occurred, using the LIB$MATCH_COND
run-time library routine

Error message display, using the SYS$GETMSG and SYS$PUTMSG
system services, user-supplied messages, and the LIB$SIGNAL routine

Information on creating user-supplied error messages is contained in
Chapter 10.

18.6.2 Detecting Errors Using the ON ERROR Clause
You can use the ON ERROR clause only in preprocessed programs. All RDML
statements except the DATABASE and DECLARE_STREAM statements offer
the optional ON ERROR clause. Within the ON ERROR . . . END_ERROR
block you can include one or more host language or Rdb/VMS statements, or
both. These statements can handle the error directly, but more often they will
call an error handler routine that determines the nature of the error and starts
appropriate recovery or cleanup procedures.

If you do not use the ON ERROR clause and an Rdb/VMS error occurs, RDML
passes the error to the VMS Run-Time Library routine, LIB$STOP, which sets
the severity level to 4 (FATAL) and forces program termination.

See Chapter 10 for a more complete description of the ON ERROR clause.

The following Pascal code fragment shows the placement of the ON ERROR
clause and host language statements within a MODIFY operation:

FOR E IN employees WITH E.EMPLOYEE_ID = employee_id
MODIFY E USING

ON ERROR
success_flag := FALSE;
Error_handler (RDB$STATUS)

END_ERROR;

E.ADDRESS_DATA_1 := address_data_1;
E.ADDRESS_DATA_2 := address_data_2;
E.CITY := city;
E.STATE := state;
E.POSTAL_CODE := postal_code;

END_MODIFY;
END_FOR;

Using the RDML/Pascal Program Environment 18–41

18.6.3 Using the RDML General Purpose Error Handler:
RDML$SIGNAL_ERROR

The RDML run-time library provides procedures that are used by code
generated by RDML. A majority of the routines perform very low-level
functions such as building argument lists, internal data transfer, and error
handling. None of the present routines is of any real use to application
programmers except the general purpose error handler RDML$SIGNAL_
ERROR. If an error occurs and you do not use the ON ERROR clause to
provide an error handler, RDML uses RDML$SIGNAL_ERROR to call the
LIB$STOP routine and your application terminates.

The RDML$SIGNAL_ERROR routine takes a single argument,
RDB$MESSAGE_VECTOR. For example (in both C and Pascal):

READY MINE
ON ERROR

RDML$SIGNAL_ERROR (RDB$MESSAGE_VECTOR);
END_ERROR;

Note that in both cases, the ON ERROR clause performs the same error
handling task that would be performed by RDML if there were no ON ERROR
clause.

If you have decided to use RDML$SIGNAL_ERROR as your error handling
routine, there is no need to read the rest of this chapter; it discusses how to
use system service routines.

18.6.4 Determining Which Errors Have Occurred
After detecting an error, you want to determine which error has occurred. Your
program error handler can then take the correct action for recovery or orderly
program termination. Recovery might include trying an operation again or
writing an error to an error log and continuing to the next operation. You
determine which error has occurred by evaluating the symbolic value of the
error code.

18.6.4.1 Using Symbolic Error Codes All communication with an Rdb/VMS
database is done through procedure calls. In preprocessed programs,
RDML/Pascal converts RDML statements to host language calls to Rdb/VMS
procedures. Every procedure returns a status value into a program variable
that is declared by the preprocessor. The return status value is a longword
value that identifies a unique message in the system message file. The return
status value may indicate success, in which case data manipulation continues
uninterrupted. Or this value may signal an error, in which case control passes
to the error handler.

18–42 Using the RDML/Pascal Program Environment

In RDML/Pascal programs, the preprocessor names this variable RDB$STATUS
and declares it to be a longword. The return status value is the second element
of a 20-longword array, RDB$MESSAGE_VECTOR. (The RDB$MESSAGE_
VECTOR array is the message vector that Rdb/VMS uses to pass information
to and from Pascal programs.)

Each error generated by an RDML statement is represented as a symbolic
error code. You can use these symbolic error codes to control program logic for
specific errors. When the Rdb/VMS ON ERROR clause detects an error, your
error handler should:

Evaluate the symbolic error code either by calling the LIB$MATCH_COND
routine or by using a Pascal equality test

Direct program logic with a Pascal host language statement, such as the
EVALUATE statement

Although symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. Chapter 10
explains why this is recommended.

18.6.4.2 Declaring Symbolic Error Codes Rdb/VMS symbolic error codes
are longword values. The Pascal declaration is:

Var
RDB$_NO_DUP,
RDB$_NOT_VALID,
RDB$_STREAM_EOF : [EXTERNAL] INTEGER;

18.6.4.3 Calling LIB$MATCH_COND When you want to determine which of
several possible errors has invoked your error handler, you can use the VMS
Run-Time Library routine LIB$MATCH_COND.

You also can evaluate the return status condition value directly with one
or more host language statements, without calling the LIB$MATCH_COND
routine. Generally, host language statements will use fewer resources than a
call to LIB$MATCH_COND. However, future versions of Rdb/VMS may change
the severity levels or facility names of certain symbolic error codes. You must
then link your program again under the new version so the program will detect
the correct error codes. The LIB$MATCH_COND function matches only the
condition ID of the return status code and is unaffected by changes in severity
levels or facility names.

The LIB$MATCH_COND routine compares the first parameter to each of the
remaining parameters in its parameter list. If a match is found, it returns the
position in the parameter list of the matching parameter; if no match is found,
it returns a zero. You should pass the return status value to the LIB$MATCH_
COND routine as the first parameter in the parameter list. In the remaining
part of the parameter list, pass the error codes you wish to compare to the
return status value. If one of these error codes matches the return status

Using the RDML/Pascal Program Environment 18–43

value, the LIB$MATCH_COND routine returns the position of the matching
parameter in the order of the remaining part of the parameter list.

For example, suppose you want to determine if RDB$_STREAM_EOF, RDB$_
DEADLOCK, or RDB$_NOT_VALID is the return status value. Pass to the
LIB$MATCH_COND routine the parameter list that contains the values
RDB$STATUS, RDB$_STREAM_EOF, RDB$_DEADLOCK, and RDB$_NOT_
VALID. If the value of RDB$STATUS equals the value of RDB$_DEADLOCK,
then the LIB$MATCH_COND routine returns a value of 2, because RDB$_
DEADLOCK is the second parameter in the remaining part of the parameter
list.

Next, use the value that the LIB$MATCH_COND routine returns to determine
the path of your error handler’s conditional statement. To continue our
example, assume you use a CASE statement as the error handler’s conditional
statement. In this example, your CASE statement evaluates the value
returned by the LIB$MATCH_COND routine, and your program falls through
to the second label of the CASE statement. Your program performs the
statement or statements associated with the label statement. These statements
might print a message to the terminal, roll back the transaction, and return
program control to a point before the transaction was started. Or they might
call a more complex routine to perform these and other actions.

The Pascal format of the call to the LIB$MATCH_COND routine is:

err-match = LIB$MATCH_COND([%REF]ret-stat, [%REF]symb-name[,...]);

The arguments for this Pascal call are:

err-match

A numeric variable that holds the integer that identifies the symbol
matched.

ret-stat

A pointer to a program variable that holds the return status value
(RDB$STATUS) of the last call to the database.

symb-name

A pointer to a symbolic error code (or the variable name you have assigned
to it) that you want to match against ret-stat. Specify one or more symb-
name values, as appropriate. The symbolic error codes are longwords, and
are passed by reference.

Declare LIB$MATCH_COND as an external integer function.

Example 18–20 demonstrates the use of LIB$MATCH_COND in a Pascal error
handling routine. This error handler could be called from another program
that detects errors with an ON ERROR clause and that includes a statement
within the ON ERROR . . . END_ERROR block that sets the value of a success

18–44 Using the RDML/Pascal Program Environment

flag to FALSE when the ON ERROR clause is executed. This error handler
does the following:

Receives the return status value and the success flag

Opens a file to record the error messages

Uses the LIB$MATCH_COND routine to determine which error has
occurred

Uses a CASE statement to take different actions depending on which error
has occurred

Sets the success flag to true if corrective error handling could take place

Closes the file that records the error messages

Example 18–20 Using LIB$MATCH_COND in RDML/Pascal
PROCEDURE Handle_error;

(* Error handler for preprocessed portion of program *)
CONST

seconds_to_wait = 5;
TYPE

string_type = packed array [1..128] of char;
$ubyte = [byte] 0..255;
$uword = [word] 0..65535;
starlet$$typ9 = [unsafe] array [1..4] of $ubyte;
vector_type = ARRAY [1..20] OF INTEGER;

VAR
(* Declare Rdb/VMS symbolic error codes. *)
RDB$_DEADLOCK,
RDB$_LOCK_CONFLICT,
RDB$_INTEG_FAIL,
RDB$_NO_DUP,
RDB$_NOT_VALID,
RDB$_STREAM_EOF,
RDB$_NO_RECORD:[value,EXTERNAL]INTEGER;

msg_string:string_type;
msg_len :integer;
error: integer;
string: varying [133] of char;
return_status: integer;

(* Declare system services to handle errors. *)

[ASYNCHRONOUS, EXTERNAL] FUNCTION LIB$MATCH_COND
(ret_status:INTEGER; sym_name:[LIST]INTEGER):INTEGER;EXTERNAL;

[EXTERNAL] FUNCTION LIB$WAIT(seconds:SINGLE):INTEGER;EXTERNAL;

(continued on next page)

Using the RDML/Pascal Program Environment 18–45

Example 18–20 (Cont.) Using LIB$MATCH_COND in RDML/Pascal

[ASYNCHRONOUS,EXTERNAL(SYS$GETMSG)] FUNCTION GETMSG (
%IMMED msgid : UNSIGNED;
VAR msglen : [VOLATILE]$UWORD;
VAR bufadr : [CLASS_S] PACKED ARRAY [$l3..$u3:INTEGER] OF CHAR;
%IMMED flags : UNSIGNED := %IMMED 15;
VAR outadr : [VOLATILE]STARLET$$TYP9 := %IMMED 0) : integer; external;

[ASYNCHRONOUS,EXTERNAL(LIB$signal)] FUNCTION LIB_SIG(
%IMMED ret_status : INTEGER) : INTEGER; EXTERNAL;

[ASYNCHRONOUS,EXTERNAL] FUNCTION LIB$CALLG
(stat_vector : vector_type; proced:UNSIGNED) : INTEGER; EXTERNAL;

PROCEDURE SYS$putmsg (stat_vector:vector_type);EXTERNAL;
PROCEDURE RDB$signal ; EXTERNAL;
begin

(* Use LIB$MATCH_COND to determine which error has occurred. *)

error := LIB$MATCH_COND (RDB$MESSAGE_VECTOR[2],
IADDRESS (RDB$_DEADLOCK),
IADDRESS (RDB$_LOCK_CONFLICT),
IADDRESS (RDB$_NO_DUP),
IADDRESS (RDB$_NOT_VALID),
IADDRESS (RDB$_INTEG_FAIL),
IADDRESS (RDB$_STREAM_EOF),
IADDRESS (RDB$_NO_RECORD));

writeln ;
(* The CASE statement directs program logic depending on the *)
(* type of error that occurs. *)

CASE error OF
0:

begin
writeln (’Unexpected error - terminating program’);
open (errorfile,FILE_NAME := ’error_log’);
EXTend (errorfile);
error := GETMSG(%IMMED RDB$MESSAGE_VECTOR[2],%REF msg_len,

%stdescr msg_string,%IMMED 0, %IMMED 0);
writeln (errorfile,msg_string:msg_len);
close (errorfile);
error := LIB$CALLG (%REF RDB$MESSAGE_VECTOR, %IMMED LIB_SIG);

end;
1,2 :

begin
lock_error := true;
if retry <= 4
then

begin
writeln (’Deadlock or Lock conflict error’);
writeln (’Others are using the data that you want to access’);
return_status := LIB$WAIT(seconds_to_wait);
writeln (’Trying to access the data again’);

end
else

writeln (’Sorry, resources are not available, please retry later’);
end;

(continued on next page)

18–46 Using the RDML/Pascal Program Environment

Example 18–20 (Cont.) Using LIB$MATCH_COND in RDML/Pascal
3:

begin
writeln (’Duplicates are not allowed’);
(* Display error message to see what index violated duplicate clause.*)
SYS$putmsg (RDB$MESSAGE_VECTOR);

end;
4:

begin
writeln (’Invalid data’);
(* Display error message to see what data was invalid. *)
SYS$putmsg (RDB$MESSAGE_VECTOR);

end;
5:

begin
writeln (’Integrity failure’);
(* Display error message to see what data was invalid. *)
SYS$putmsg (RDB$MESSAGE_VECTOR);

end;
6:

begin
string := (’There are no colleges with that code’);
writeln (string);

end;
7: writeln (’A record entered during this session has been deleted’);

end; (* case *)
end;

18.6.5 Displaying Error Messages
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and terminate your
program, you can call the LIB$SIGNAL routine.

Display an error message generated by Rdb/VMS and continue program
execution, you can call the SYS$PUTMSG system service.

Use an error message generated by Rdb/VMS within your program and
continue program execution, you can call the SYS$GETMSG system
service.

Display user-supplied error messages, you can call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code.

Information on creating user-supplied error messages is contained in
Chapter 10.

Note VAX Pascal kits include a file in SYS$LIBRARY, named STARLET.PEN.
This file contains Pascal declarations for system service routines. If this
file is installed on your system, you do not have to declare system services
in your Pascal programs. To make this file known to your program,

Using the RDML/Pascal Program Environment 18–47

place the following statement before your program statement: [INHERIT
’ SYS$LIBRARY:STARLET’].

18.6.5.1 Calling LIB$SIGNAL Call the LIB$SIGNAL routine when you want
to display an error message generated by Rdb/VMS and terminate program
execution. When you call LIB$SIGNAL with LIB$CALLG, the LIB$SIGNAL
routine:

Receives the signal argument list from the signaling procedure

This list is made up of the return status value and a set of optional
arguments that provide information to condition handlers.

Copies this signal argument list and uses it to create a signal argument
vector

The signal argument vector serves as part of the input to the user-
established handlers and the system default handlers.

Causes a signal condition which causes the appropriate catchall condition
handler to pass the signal argument vector to SYS$PUTMSG

The SYS$PUTMSG system service calls the SYS$GETMSG system service
to retrieve the message from the system error messages, and then formats
and displays the error messages on your terminal.

Resignals the error

If the error is not fatal, program execution continues. If the error is fatal,
the program error handler signals the error to the VMS default condition
handler, which terminates program execution.

In Pascal, you can continue program execution after the call to the
LIB$SIGNAL routine even when the error is fatal. See Section 18.6.6 for
information on how to continue program execution after a fatal error.

18.6.5.2 Methods of Calling LIB$SIGNAL The recommended method of
calling LIB$SIGNAL in RDML programs is to pass the message vector,
RDB$MESSAGE_VECTOR, and LIB$SIGNAL to the run-time library function,
LIB$CALLG.

This method ensures that any Formatted ASCII Output (FAO) arguments
that exist in the message vector will be formatted correctly. In addition, this
method ensures that any additional error messages that clarify the nature of
the program error will be returned to your program. For these reasons, Digital
recommends that you always call LIB$SIGNAL with LIB$CALLG.

You can also pass the return status value (RDB$STATUS) to LIB$SIGNAL.
However, this method is not recommended. If you pass RDB$STATUS to
the LIB$SIGNAL routine and FAO arguments exist in the Rdb/VMS error
message, LIB$SIGNAL may be unable to format the Rdb/VMS error message

18–48 Using the RDML/Pascal Program Environment

correctly. In this case, your program may terminate abruptly or may provide
an incompletely formatted error message.

If your application requires that you call LIB$SIGNAL without LIB$CALLG,
be certain that the error message does not contain FAO arguments.
Figure 10–1 in Chapter 10 illustrates the format of the signal argument
vector.

18.6.5.3 The Format of the LIB$SIGNAL Calling Sequence with
RDB$MESSAGE_VECTOR and RDB$STATUS The Pascal format of the
LIB$SIGNAL calling sequence with the message vector (RDB$MESSAGE_
VECTOR) is:

ret-stat = LIB$CALLG[%REF]RDB$MESSAGE_VECTOR, %IMMED LIB_SIG);
where LIB_SIG is declared as:

[ASYNCHRONOUS, EXTERNAL(LIB$SIGNAL)]FUNCTION LIB_SIG(
%IMMED RET_STATUS INTEGER) : INTEGER;
EXTERN;

The LIB$SIGNAL argument is the name of the run-time library routine that
will receive RDB$MESSAGE_VECTOR. The LIB$SIGNAL argument is passed
by reference in Pascal.

When using the LIB$CALLG routine to pass the message vector, do not
declare LIB$CALLG. The Pascal preprocessor includes in your program the
RDBVPAS.PAS file, which declares LIB$CALLG.

When using LIB$CALLG, you must declare LIB$SIGNAL as:

[ASYNCHRONOUS, EXTERNAL (LIB$SIGNAL)]FUNCTION LIB_SIG(
%IMMED RET_STATUS INTEGER) : INTEGER;
EXTERN;

An earlier example, Example 18–20, demonstrates how to call LIB$SIGNAL
with LIB$CALLG.

The Pascal format of the LIB$SIGNAL calling sequence with the return status
value is:

LIB$SIGNAL([%IMMED]RDB$STATUS]);

Declare LIB$SIGNAL as an external integer function.

18.6.5.4 Calling SYS$PUTMSG Call the SYS$PUTMSG system service
when you want to display an error message generated by Rdb/VMS and
continue program execution. The SYS$PUTMSG system service writes the
error message to the terminal and to the error file designated by the logical
name SYS$ERROR. You can define SYS$ERROR at the DCL level to be your
program error file when you want the SYS$PUTMSG system service to write
an Rdb/VMS error message to it.

Using the RDML/Pascal Program Environment 18–49

The first parameter in the call to the SYS$PUTMSG service is the message
vector RDB$MESSAGE_VECTOR. Figure 10–1 in Chapter 10 illustrates the
format of the message vector. The SYS$PUTMSG system service can accept
other optional parameters that specify an action routine to receive control
during message processing, and the facility name to be used in displaying the
message (if you want the facility to be different from the default facility prefix
that is associated with the message). The message vector is required; you
may omit the optional parameters. See the VMS System Services Volume for a
complete description of the SYS$PUTMSG system service.

The Pascal format of the SYS$PUTMSG calling sequence is:

SYS$PUTMSG([%REF]RDB$MESSAGE_VECTOR);

Declare SYS$PUTMSG as an external integer function in Pascal.

See an earlier example, Example 18–20, for a demonstration of the use of the
SYS$PUTMSG system service.

18.6.5.5 Calling SYS$GETMSG Call the SYS$GETMSG system service when
you want to use an error message generated by Rdb/VMS within your program
and continue program execution.

The first parameter in the call to the SYS$GETMSG system service is the
Rdb/VMS return status value, which is the unique identification for the
Rdb/VMS error message. The SYS$GETMSG system service locates the error
message and returns it to your program as the second parameter of the call.
You must declare a string to receive the message. Your program can then
manipulate this string in any way it chooses. Your program can:

Display the string

Write the string to a file

You can also evaluate character substrings within the string, but Digital
recommends that you do not use this method. The message text may change
from one release to the next.

The SYS$GETMSG system service requires a parameter to receive the length
of the message string. You may omit the actual parameter, but you must
include a comma to signify the argument. The SYS$GETMSG system service
accepts other optional parameters that define what is included in the returned
message and receive the FAO count of the message. You may omit these
parameters; if you do, all components of the message are returned. See the
VMS System Services Volume for further information on the SYS$GETMSG
system service.

18–50 Using the RDML/Pascal Program Environment

The SYS$GETMSG system service does not format the FAO arguments in the
error message; instead, it returns the error message with format parameters
embedded in it. If your error message contains a view name, for example, the
SYS$GETMSG system service will return the message:

<View !AC can not be updated>

You can call the SYS$FAO system service to format the FAO arguments in
the message that the SYS$GETMSG system service returns to your program.
However, when the error message contains FAO arguments, you should call
SYS$PUTMSG rather than the SYS$GETMSG system service.

The Pascal format of the SYS$GETMSG calling sequence is:

ret-stat = SYS$GETMSG(
[%IMMED]RDB$STATUS, [%IMMED msg-len],[%STDESCR]msg-string,
%IMMED 0,%IMMED 0);

The arguments of this callings sequence are:

ret-stat

A program variable that holds the longword integer that describes the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

status

A pointer to RDB$STATUS, to a condition code that may be contained in
RDB$STATUS, or to one of the RDB$MESSAGE_VECTOR condition codes.
This is passed by reference.

msg-len

A pointer to a word that holds the number of characters written into
msg-string. This is not an optional parameter; if you omit it, you must use
a comma in its place. This is passed by reference.

msg-string

A pointer to the string variable that holds the returned error message. The
maximum length of any message that can be returned is 256 bytes.

Declare SYS$GETMSG as an external integer function.

See an earlier example, Example 18–20, for a demonstration of the use of
SYS$GETMSG.

Using the RDML/Pascal Program Environment 18–51

18.6.6 Handling Fatal Errors
In some instances, the cause of fatal errors is located in the database, not
the program. For example, your program may attempt to access a relation
that has been deleted by the database administrator, or the process that runs
the program may not have sufficient privilege to modify a particular relation.
There is little that your program can do to correct this type of error. However,
your program can determine which fatal error has occurred, perform cleanup
functions, display an error message, and terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program might:

Evaluate the error using the LIB$MATCH_COND routine or one or more
host language statements, to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or SYS$GETMSG system service to generate an
error message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

In Pascal, you can also call the LIB$SIGNAL routine to display the error
message, but you must use LIB$ESTABLISH, or the Pascal function
ESTABLISH to create a condition handler that will permit your program
to continue after the call to LIB$SIGNAL.

See the VMS Run-Time Library Routines Volume for a complete description of
the use of LIB$ESTABLISH with LIB$SIGNAL.

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary
before calling the LIB$SIGNAL routine. The following is a list of typical
cleanup operations:

End streams

Roll back transactions

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the LIB$SIGNAL routine without establishing a condition handler,
LIB$SIGNAL displays the error message and terminates your program.
Perform any cleanup before making the call to LIB$SIGNAL. However, if
your cleanup includes any Rdb/VMS statements (such as ROLLBACK), these
new calls to the database will change the return status value contained in

18–52 Using the RDML/Pascal Program Environment

RDB$STATUS. Therefore, save the return status value of the fatal error in a
variable before executing other Rdb/VMS statements, then pass the original
return status value to the LIB$SIGNAL routine.

You can call the LIB$SIGNAL routine without performing any Rdb/VMS
cleanup operations; in that case, the database monitor will roll back the
transaction and perform the necessary database cleanup. However, calling
the LIB$SIGNAL routine without performing any cleanup operations is not
recommended.

Using the RDML/Pascal Program Environment 18–53

19
Using the Callable RDO Program

Environment

This chapter describes how to access an Rdb/VMS database using the Callable
RDO program interface. You must use this interface when Rdb/VMS does
not support a preprocessor for your program language. You may also use
this interface when you want to perform Rdb/VMS data definition tasks or
dynamic data manipulation tasks in BASIC, C, COBOL, FORTRAN, or Pascal
programs. The information in this chapter is applicable to any VAX program
language that supports the VAX Procedure Calling Standard. This chapter
presents these main topics:

Callable RDO program interface

Converting queries to the program environment

Using RDB$INTERPRET

Using data manipulation statements

Using data definition statements

Mixing preprocessed and Callable RDO statements in a single transaction

Handling Rdb/VMS errors

Most examples in this chapter are taken from sample programs included in the
online RDM$DEMO directory; these programs work with the sample personnel
database. The file names are PLI_SAMPLE.PLI and PLI_CALL_OTHER.PLI
for the examples written in PL/I. The file name is DEPTFOR.FOR for the
sample program written in FORTRAN.

Using the Callable RDO Program Environment 19–1

Note that many of these examples do not perform all the error handling tasks
that an application program should perform. Your program, of course, should
anticipate as many errors as possible. Only a few error handling tasks have
been included in the example programs in order to emphasize only the specific
operation being discussed.

For examples of BASIC, COBOL, FORTRAN, Pascal, and C programs that use
Callable RDO, refer to the language-specific chapters.

19.1 The Callable RDO Program Interface
When you use the Callable RDO program interface, your program
communicates with Rdb/VMS using a callable function, RDB$INTERPRET.
Unlike preprocessor interfaces, the Callable RDO interface performs in an
interpretive manner.

The Rdb/VMS statements you use in your program are string literals. When
the program executes, the statements are passed to Rdb/VMS in the calls to
RDB$INTERPRET. The interactive Rdb/VMS interface, RDO, then interprets
and executes them.

You call the RDB$INTERPRET function as you would call a VMS Run-
Time Library routine. In the calling sequence, you pass both Rdb/VMS
statements and host language variables that cause values from the database
to be retrieved or updated. The call to RDB$INTERPRET returns a status
value that indicates the success or failure of the statements. If the call was
successful, RDB$INTERPRET also returns retrieved database values to the
appropriate program variables.

Callable RDO is significantly slower than preprocessed Rdb/VMS data
manipulation statements, because the Callable RDO statements must be
interpreted at run time. You should use Callable RDO only when any of the
following applies:

An RDBPRE, RDML, or SQL preprocessor does not exist for your host
language.

See the VAX Rdb/VMS Guide to Using SQL for more information on the
SQL preprocessors.

Your program must perform data definition tasks and you cannot use the
SQL interface.

The Rdb/VMS preprocessors, RDBPRE and RDML, do not support data
definition tasks.

19–2 Using the Callable RDO Program Environment

Your program must perform dynamic data manipulation tasks.

A dynamic data manipulation task is one that is not coded into the
application program. That is, you do not know what the query is until run
time.

19.1.1 Using Rdb/VMS Data Manipulation Statements
The RDO data manipulation statements are a subset of the RDO statement
set. With RDO data manipulation statements, you can access a database,
update records, and retrieve values from selected records in the database.

You cannot use the FOR statement in Callable RDO programs. The FOR
statement provides automatic iteration through all the records in the record
stream. A call to RDB$INTERPRET can, at most, update or retrieve one
record at a time. Thus, the FOR loop will fail after the first iteration in a call
to RDB$INTERPRET. Instead, use one of the START_STREAM statements
and the FETCH statement to retrieve data and repeat the calls within your
program structure.

Make sure that you do not issue preprocessed data manipulation statements
that rely on metadata defined in the interpreted sections of the same program.
The preprocessor will not be able to refer to metadata that has not yet been
defined.

Refer to the VAX Rdb/VMS RDO and RMU Reference Manual for a complete
description of all the Rdb/VMS data manipulation statements.

19.1.2 Using Rdb/VMS Data Definition Statements
The Rdb/VMS data definition statements are a subset of the RDO statement
set. With Rdb/VMS data definition statements, you can access a database and
define, change, or delete the following database elements:

Fields

Relations

Views

Indexes

Constraints

Triggers

Storage maps

Do not attempt to use database or transaction handles in your data definition
statements. Rdb/VMS does not support the use of database or transaction
handles in data definition statements.

Using the Callable RDO Program Environment 19–3

Refer to the VAX Rdb/VMS RDO and RMU Reference Manual for a complete
description of the Rdb/VMS data definition statements.

19.2 Converting Queries to the Program Environment
Once you have a prototype of your queries using interactive RDO, you are
ready to convert these statements to the host language program environment.
See Chapter 7 for a full discussion of developing prototype applications in RDO
and for examples of prototype queries.

When you incorporate your prototype RDO statements into a program,
however, you need to consider these areas of difference:

Use of host language variables

Differences in syntax

Using the GET statement instead of the PRINT statement

Using the START_STREAM and END_STREAM statements instead of
the FOR loop

Nesting FETCH and GET operations within a host language loop

Scope of the database attach:

You cannot invoke a database in Callable RDO programs with the GLOBAL
or EXTERNAL scope.

Subsequent sections discuss these differences in detail.

19.3 Using RDB$INTERPRET
You call the RDB$INTERPRET function to pass your data manipulation or
data definition statement to Rdb/VMS. Declare RDB$INTERPRET as an
external integer (longword) function. Refer to your programming language
reference manual for further instructions about declaring such functions.

The RDB$INTERPRET function returns a status value that indicates the
success or failure of the function’s execution. The return status value indicates
either success or a specific Rdb/VMS error code.

Your program declares a longword variable to hold the return status value so
you can test for the success or failure of the call. (Refer to Chapter 10 and
Section 19.7 for further information on handling Rdb/VMS run-time exception
conditions.)

For example, the PL/I format of the RDB$INTERPRET calling sequence is:

ret-stat = RDB$INTERPRET(DESCRIPTOR(rdo-statement)
[,DESCRIPTOR(host-var),...]);

19–4 Using the Callable RDO Program Environment

The arguments for the RDB$INTERPRET function are:

ret-stat

A program variable that holds the longword integer that indicates the
success or failure of the call. Your program tests the value of ret-stat and
optionally branches to a routine for handling exception conditions.

rdb-statement

The RDO statement you are passing to Rdb/VMS. Handle rdb-statement
according to your host language’s rules for handling string literals or string
variables.

host-var

A host language variable you are passing to Rdb/VMS as part of a data
manipulation statement. You do not include host language variables within
the Rdb/VMS statement string literal, but pass them, in order, after the
string literal.

The RDB$INTERPRET function requires all parameters (the Rdb/VMS
statement and host language variables) to be passed by descriptor. You must
include a by-descriptor passing mechanism when your language’s default
passing mechanism for host language variables is not by descriptor. Refer to
your programming language reference manual for the specific format of the
passing mechanism.

You can include rdb-statement in the calling sequence directly as a string
literal. However, the length of some RDO statements may produce unwieldy
code in the call to RDB$INTERPRET. Instead, assign the RDO statement
string to a string variable. Then pass the string variable in the calling
sequence. Assigning Rdb/VMS statements to a string variable lets you
separate your data manipulation statements from the mechanics of using the
RDB$INTERPRET function.

Note Callable RDO interprets a hyphen between two variables or strings (with no
intervening spaces) as an underscore. For example, A-B is interpreted as A_B.
If you want a hyphen to be interpreted as a hyphen, leave a blank space on each
side of it; for example, A - B.

Example 19–1, from the sample program PLI_SAMPLE.PLI, shows a call to
RDB$INTERPRET. This program assigns the string that contains the START_
STREAM statement to the PL/I host language variable RDB_COMMAND, and
then passes this value to the RDB$INTERPRET function to perform the data
manipulation task.

Using the Callable RDO Program Environment 19–5

Example 19–1 Using RDB$INTERPRET in PL/I
RDB_COMMAND = ’START_STREAM ES USING E IN ’

!! ’EMPLOYEES SORTED BY E.LAST_NAME’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

19.4 Using Rdb/VMS Data Manipulation Statements
Depending upon your particular application, you need to perform some or all of
the following data manipulation functions:

Pass values between your program and Rdb/VMS.

Access one or more databases using the INVOKE DATABASE statement.

Start a transaction using the START_TRANSACTION statement.

Form a record stream using the START_STREAM and END_STREAM
statements.

Form a segmented string stream using the START_SEGMENTED_STRING
statement.

Update or retrieve records using the STORE, MODIFY, ERASE, or GET
statements.

Roll back the transaction using the ROLLBACK statement.

Commit the updates using the COMMIT statement.

19.4.1 Declaring Host Language Variables
A host language variable is a program variable you use to communicate with
Rdb/VMS. A host language variable can contain the values that update the
database; it can also receive values that Rdb/VMS retrieves from the database.
Use host language variables as value expressions in data manipulation
statements, as well as for any other program function. The following data
manipulation statements allow the use of host language variables:

Any statement that permits the use of an RSE

GET

DATABASE

READY

FINISH

19–6 Using the Callable RDO Program Environment

When you declare host language variables, follow the naming rules for your
language. Ensure that host language variable data types and sizes are
compatible with the corresponding database field data types and sizes. Refer
to Chapter 8 for the lists of equivalent VAX data types.

A convenient way to declare host language variables is to copy database
definitions from the data dictionary, CDD/Plus, if your host language includes
a data dictionary copy statement. You can copy field and relation definitions,
which include all the fields within the relation. However, you must be careful
to copy only those field and relation definitions with data types that are
supported by your host language. See Chapter 12 and Chapter 16 for more
information about using data dictionary definitions. See the documentation
set for your host language to determine if your host language includes a data
dictionary copy statement.

19.4.2 Using Host Language Variables
You cannot include host language variables directly in the string literal
Rdb/VMS statement. Instead, you use the placeholder parameter, !VAL, to
reserve a place for each of the host language variables in the string literal.
(The !VAL placeholder is similar in concept to the FAO arguments that are
embedded in an error message.) You then locate the corresponding host
language variables in the parameter list that follows the Rdb/VMS statement
string. The !VAL parameter placeholders and host language variables occur
in paired sets. The first host language variable in the parameter list (after
the Rdb/VMS string) replaces the first !VAL in the literal string, the second
host language variable replaces the second !VAL, and so on. The call to the
RDB$INTERPRET function is likely to fail if the parameter list is not in the
correct order.

The RDB$INTERPRET function expects all parameters to be passed by
descriptor. You must use the by-descriptor passing mechanism when your
programming language does not by default pass a host language variable by
descriptor. For example, the host language variable that receives the value of
a statistical GET statement is numeric. FORTRAN passes numeric values by
reference. Therefore, you must use the %DESCR passing mechanism to pass
this parameter to RDB$INTERPRET.

The function RDB$INTERPRET accepts dynamic descriptors, so you may use
the BASIC dynamic string data type in Callable RDO programs. In other
languages, such as FORTRAN, you can call a function that defines a dynamic
descriptor for a variable. Use dynamic descriptors when you do not know the
length of a host language variable, such as a segmented string segment.

Example 19–2, from the sample program PLI_SAMPLE.PLI, shows a call to
RDB$INTERPRET using the host language variables first_name, employee_id,
and last_name.

Using the Callable RDO Program Environment 19–7

Example 19–2 Using Host Language Variables to Retrieve a Record in
Callable RDO

.

.

.
RDB_COMMAND = ’START_STREAM ES USING E IN ’

!! ’EMPLOYEES SORTED BY E.LAST_NAME’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

FETCH_COMMAND = ’FETCH ES’;
RDB_COMMAND = ’GET !VAL = E.FIRST_NAME; ’

!! ’!VAL = E.EMPLOYEE_ID; ’
!! ’!VAL = E.LAST_NAME END_GET;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (FETCH_COMMAND));

DO WHILE (RDB_STATUS_SUCCESS);
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (first_name),
DESCRIPTOR (employee_id),
DESCRIPTOR (last_name));

found = ’0’B;

NRDB_COMMAND = ’START_STREAM DS USING D IN ’
!! ’DEGREES WITH D.EMPLOYEE_ID = !VAL’;

NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND),
DESCRIPTOR (employee_id));

NFETCH_COMMAND = ’FETCH DS’;
NRDB_COMMAND = ’GET !VAL = D.DEGREE; ’

!! ’!VAL = D.DEGREE_FIELD END_GET;’;

NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NFETCH_COMMAND));
.
.
.

19.4.3 Using Literals
Use literal values to replace variables in the same way you would in any
high-level language. Literal values can be either numeric or character strings.
Remember, you must pass numeric literals by descriptor. String literals must
be passed by descriptor and must be quoted with either double (" ") or single
(’ ’) quotation marks; follow the conventions for your host language. You can
use a literal in any data manipulation statement that accepts a host language
variable.

19–8 Using the Callable RDO Program Environment

Example 19–3 illustrates the use of a literal value within an RSE.

Example 19–3 Using a Literal Value Within a Record Selection Expression
in Callable RDO

RDB_COMMAND = ’STORE C IN CANDIDATES USING ’
!! ’ C.FIRST_NAME = !VAL; ’
!! ’ C.LAST_NAME = !VAL; ’
!! ’ C.MIDDLE_INITIAL = !VAL; ’
!! ’ C.CANDIDATE_STATUS = !VAL END_STORE;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (’Marty’),
DESCRIPTOR (’Silberlicht’),
DESCRIPTOR (’A’),
DESCRIPTOR (’Available in June.’));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

19.4.4 Retrieving Records
When you use Callable RDO from a program to access an Rdb/VMS database,
you select the records that you are interested in manipulating by gathering
these records into a stream. You create this stream using the Rdb/VMS data
manipulation statements. These statements use context variables to name the
stream of records that you select from one or more relations.

Chapter 3 provides information on how to use the data manipulation
statements to select a subset of records.

In Callable RDO, you must use the START_STREAM statement to form record
streams. You cannot use the FOR statement to form record streams in Callable
RDO because the FOR statement uses automatic iteration to process all the
records in the record stream. However, the call to the RDB$INTERPRET
function can pass only one record to or from the database. Therefore, the FOR
statement will fail after the first record is processed.

Rdb/VMS provides two kinds of streams that are opened with a START_
STREAM statement: a declared stream and an undeclared stream. A declared
stream is one that you explicitly declare to your program with the DECLARE_
STREAM statement. The DECLARE_STREAM statement includes an RSE.
Therefore, the START_STREAM statement for a declared stream does not
include an RSE and must be preceded by the DECLARE_STREAM statement.

The declaration of your stream with the DECLARE_STREAM statement is
valid for the duration of your program. This means you cannot use the context
variable that you use in the RSE of the DECLARE_STREAM statement in
any other RSE within your program. However, this also means that you can
declare the stream once, and then start and end it several times without
having to specify the RSE again. If you use the undeclared START_STREAM
statement, you must specify the RSE each time that you start the stream.

Using the Callable RDO Program Environment 19–9

When you issue a DECLARE_STREAM statement that contains host language
variables in the RSE, Rdb/VMS examines the host language variables at the
time it executes the DECLARE_STREAM statement. Any changes you make to
the host language variables after this statement have no effect on the records
included in the stream.

An undeclared stream does not use the DECLARE_STREAM statement.
Instead, you specify the RSE on the START_STREAM statement.

The undeclared START_STREAM statement always includes at least one
context variable in its RSE. The scope of the context variable begins with the
START_STREAM statement and ends with the END_STREAM statement.
If you do not include an END_STREAM statement for a particular record
stream, the scope extends to the end of the transaction. A context variable is
meaningless outside its scope.

When you use an undeclared stream that contains host language variables
in the RSE, Rdb/VMS examines the host language variables at the time it
executes the START_STREAM statement. Any changes you make to the host
language variables after this statement have no effect on the records included
in the stream.

After opening a record stream created by either of the START_STREAM
statements, use the FETCH statement to fetch the next record, and a GET
statement to transfer the field value or values to a host language variable.

In Callable RDO, your program must explicitly detect the end-of-stream
condition. When there are no more records in the stream, the FETCH
statement returns the Rdb/VMS symbolic error code, RDB$_STREAM_EOF.
The RDB$INTERPRET function returns this error code to your program in
the return status value. Your program exits from the FETCH-GET loop and
closes the stream when it detects this value. Refer to Section 19.7.4 for more
information about handling the end-of-stream condition.

You can process a record stream only from the beginning. To return to a
record you have already processed, you must first close the stream, open it
again, and then start processing the stream again from the beginning of the
stream if you are using the undeclared START_STREAM statement. If you are
using a declared START_STREAM statement, you only have to issue another
START_STREAM statement to return to the start of the stream and then
process the stream until you reach the record you desire.

To end a declared or undeclared stream, issue the END_STREAM statement.
This statement must include the same stream name used to start the stream.
If you form any streams within a transaction, do not execute an END_
STREAM statement after a COMMIT or ROLLBACK statement. The COMMIT
and ROLLBACK statements automatically end all streams opened during
that transaction. If you issue an END_STREAM statement after ending a
transaction, Rdb/VMS returns the exception condition, RDO$_STRNOTOPE.

19–10 Using the Callable RDO Program Environment

Example 19–4, from the DISPLAY_CAND function, shows the use of the
START_STREAM and FETCH statements.

Example 19–4 Using the START_STREAM and FETCH Statements in Callable
RDO

STORE_CAND: PROCEDURE;

/**/
/* This procedure stores a record in the CANDIDATES relation. It shows how */
/* to store a value in a field of data type VARYING STRING. */
/**/

/* Initialize variables.*/

continue = ’N’;
succeed = ’1’B;
status = 0;
err = 0;
x = 0;
i = 0;
new_count = 0;
candidate_status = ’ ’;
status_length = 1;
first_name = ’00000’;

/* Prompt the user for data to store in the CANDIDATES relation. */

DO WHILE ((first_name ^= ’exit’) | (first_name ^= ’EXIT’));

DO WHILE ((continue = ’N’) | (continue = ’n’));

new_count = new_count + 1;

PUT SKIP LIST (’Please enter the first name of the candidate’!!
’ or type exit’);

GET LIST (first_name);
TEST: IF first_name = ’exit’ | first_name = ’EXIT’ THEN

GOTO ENDER;

PUT SKIP LIST (’Please enter the middle initial of the candidate’);
GET LIST (middle_initial);

PUT SKIP LIST (’Please enter the last name of the candidate’);
GET LIST (last_name);

PUT SKIP LIST (’Please enter the candidate status information’);
GET LIST (candidate_status);
status_length = LENGTH(TRIM(candidate_status));

PUT SKIP LIST (’Have you entered the candidate info correctly? (Y,N) ’);
GET LIST (continue);

END; /* while continue = n */

(continued on next page)

Using the Callable RDO Program Environment 19–11

Example 19–4 (Cont.) Using the START_STREAM and FETCH Statements in
Callable RDO

RDB_COMMAND = ’START_TRANSACTION READ_WRITE RESERVING ’
!! ’ CANDIDATES FOR SHARED WRITE ’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* Store the values specified by the user in the CANDIDATES relation. */
/* Check for errors and inform the user of the success or failure of */
/* the STORE operation. */

RDB_COMMAND = ’STORE C IN CANDIDATES USING ’
!! ’ C.FIRST_NAME = !VAL; ’
!! ’ C.LAST_NAME = !VAL; ’
!! ’ C.MIDDLE_INITIAL = !VAL; ’
!! ’ C.CANDIDATE_STATUS = !VAL END_STORE;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (first_name),
DESCRIPTOR (last_name),
DESCRIPTOR (middle_initial),
DESCRIPTOR (candidate_status));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

IF (succeed) THEN DO;
RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Update operation succeeded’);
END; /* succeed */

ELSE DO;
RDB_COMMAND = ’ROLLBACK’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Update operation failed’);
END; /* else do for succeed */

continue = ’n’;

END; /* (first_name ^= ’exit’) */

ENDER: PUT SKIP;

END STORE_CAND;

19–12 Using the Callable RDO Program Environment

19.4.5 Retrieving Segmented Strings
The Rdb/VMS segmented string data type allows you to store blocks of
unstructured data such as text, graphics, voice, telemetry, or bit streams. You
store segmented string records in a field of a relation. Each record can hold
any number of segmented strings, up to the physical limits of the storage unit.
Each segment can be up to 65,522 bytes long, except for the first segment of
the string, which has a maximum length of 65,508 bytes. See Chapter 8 for
more information on the segmented string data type.

The Rdb/VMS segmented string data type requires a the use of a pair of
record selection expressions. The first RSE forms an outer stream of records.
It determines the field and the relation that contain the segmented string
records. The second RSE forms the inner stream of segments. It identifies the
segmented string field that contains the individual segments.

In Callable RDO, you can retrieve segmented strings with the START_
SEGMENTED_STRING statement. You must start two streams when
processing segmented string streams with the START_SEGMENTED_STRING
statement. Use the START_STREAM statement to form an outer stream of
records. Then use the START_SEGMENTED_STRING statement to form an
inner stream of segments. This inner stream identifies the segment stream
that is contained in the field specified by the START_STREAM statement.
When you name the segment stream, use a name different from the outer
stream name. Use different context variables for the outer stream and the
inner segmented string stream.

The inner stream is not a stream in the sense that you can control its record
selection. The segmented string behaves like a sequential record file. You must
begin at the first segment and retrieve segments in the order that they are
stored. For this reason, the inner stream does not include selection clauses.
Note that the START_SEGMENTED_STRING statement uses a segmented
string variable in place of the context variable, and that the field name is
qualified by the context variable specified in the outer START_STREAM
statement.

Use the FETCH statement to advance the pointer in the outer START_
STREAM record stream. Use the GET statement in the inner stream to
retrieve the segmented string. There are two special keywords supplied
by Rdb/VMS: RDB$VALUE, containing the segmented string segment just
retrieved, and RDB$LENGTH, an unsigned word integer that contains
the length of this segment. Within the START_SEGMENTED_STRING
statement, the GET statement automatically fetches the contents of the
segment, RDB$VALUE, and automatically advances the segment pointer to the
next segmented string.

Using the Callable RDO Program Environment 19–13

The GET statement fetches only as much of the stored segment as the host
language variable that receives the segment can hold. If the entire segment is
not retrieved by the GET statement, Rdb/VMS returns the exception condition,
RDB$_SEGMENT. Your program can examine this return status value to
determine if more of the segment remains. (See Section 19.7 for information on
detecting and handling exception conditions in Callable RDO.) Use succeeding
GET statements to fetch the remaining pieces of the segment, then fetch
the second segment in the same manner, and so on. You can use dynamic
descriptors to receive the segments if you do not know how big the segment is.

Example 19–5, from the DISPLAY_RESUME procedure, retrieves a segmented
string. The example:

Starts a stream RS that selects the RESUMES relation

Fetches an EMPLOYEES record based on an EMPLOYEE_ID specified
earlier in the program

Starts a segmented string LS

Issues a GET statement to retrieve and display the segments until there
are no more segments left

Ends the segmented string LS

Closes the stream RS

Example 19–5 Retrieving a Segmented String with the START_STREAM and
START_SEGMENTED_STRING Statements in Callable RDO

.

.

.
RDB_COMMAND = ’START_TRANSACTION READ_ONLY RESERVING ’

!! ’ RESUMES FOR SHARED READ ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

(continued on next page)

19–14 Using the Callable RDO Program Environment

Example 19–5 (Cont.) Retrieving a Segmented String with the START_
STREAM and START_SEGMENTED_STRING Statements
in Callable RDO

/* Start a stream to retrieve the employee record */
/* or records with the specified ID. */

RDB_COMMAND = ’START_STREAM RS USING ’
!! ’RR IN RESUMES WITH RR.EMPLOYEE_ID = !VAL’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (employee_id));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’FETCH RS’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* Use a START_SEGMENTED_STRING statement to retrieve */
/* the individual segments that comprise the segmented */
/* string. */

NRDB_COMMAND = ’START_SEGMENTED_STRING LS USING L IN RR.RESUME ’;
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND));
IF (^NRDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

NRDB_COMMAND = ’GET !VAL = L.RDB$VALUE; END_GET; ’;
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND),

DESCRIPTOR (resume_segment));
DO WHILE (NRDB_STATUS = 1);

PUT SKIP LIST (TRIM(resume_segment));
resume_segmen t = ’ ’;
NRDB_COMMAND = ’GET !VAL = L.RDB$VALUE END_GET; ’;
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND),

DESCRIPTOR (resume_segment));

END; /* NRDB_STATUS = 1 */
NRDB_COMMAND = ’END_SEGMENTED_STRING LS’;
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND));
IF (^NRDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’END_STREAM RS’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

(continued on next page)

Using the Callable RDO Program Environment 19–15

Example 19–5 (Cont.) Retrieving a Segmented String with the START_
STREAM and START_SEGMENTED_STRING Statements
in Callable RDO

RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

continue = ’n’;

END; /* (employee_id ^= ’exit’) */

ENDER: PUT SKIP;

END DISPLAY_RESUME;

19.4.6 Retrieving Field and Statistical Values
Use the GET statement to retrieve one, several, or all the fields in a database
record. You can also use the GET statement to retrieve statistical and Boolean
values from the database.

The GET statement is a read operation; you may include it in any Rdb/VMS
transaction. However, you should include the GET statement in a read/write
transaction if you require a highly accurate picture of the database, or if
you intend to update the database using the values returned by the GET
statement.

Section 19.4.6.1 and Section 19.4.6.2 discuss retrieving field and statistical
values.

19.4.6.1 Using the GET Statement to Retrieve Field Values When you
form a record stream using the START_STREAM statement, you include
the FETCH and GET statements between the START_STREAM and END_
STREAM statements. An earlier example, Example 19–2, shows the use of the
GET statement to retrieve field values.

19.4.6.2 Using the GET Statement to Retrieve Statistical Values You can
retrieve the result of a statistical expression directly without processing
each record in the record stream. The result of a statistical expression is an
aggregate and is often not the same data type as the field to which it refers.

Note The result returned by a GET statement when it is used with statistical
expressions is always numeric. The RDB$INTERPRET function passes all
parameters by descriptor. However, most programming languages do not pass
numeric values by descriptor. Include a by-descriptor passing mechanism for
any field that receives the result of a statistical GET statement.

19–16 Using the Callable RDO Program Environment

Example 19–6, from the STATS procedure, shows a PL/I call to
RDB$INTERPRET with the COUNT statistical expression.

Example 19–6 Using the GET Statement to Retrieve a Statistical Value in
Callable RDO

STATS: PROCEDURE;

/* This procedure displays the total number of records stored in */
/* the EMPLOYEES relation. */

/* Initialize variables. */

err = 0;

RDB_COMMAND = ’START_TRANSACTION READ_ONLY ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

/* Use the GET statement with a statistical function to */
/* calculate the total number of records in the EMPLOYEES */
/* relation. */

RDB_COMMAND = ’GET !VAL = COUNT OF E IN EMPLOYEES END_GET;’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (I));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* Display the value. */

PUT SKIP LIST (’The number of employees in the Corporation is: ’, I);

RDB_COMMAND = ’ROLLBACK ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

END STATS;

19.4.7 Updating Records
RDO update statements can only be used within a read/write transaction.
(You may, of course, include any valid RDO statement within a read/write
transaction.) The update statements that require a read/write transaction are:

STORE

MODIFY

ERASE

Also, include the GET statement in a read/write transaction if you intend to
update any of the fields returned by the GET statement.

Using the Callable RDO Program Environment 19–17

Note You may not use a view to update records if that view refers to more than one
relation. Furthermore, do not update a field that is mentioned after the keyword
OVER in a CROSS clause. You should consider fields over which relations are
joined (crossed) as available for read-only access.

If your program prompts for data from a terminal, consider nesting a complete
transaction within the data-input loop. If the transaction fails, the user needs
to enter only the last input data again. But keep in mind that the transaction
should be short and, at the same time, logically must not only partially update
the database.

19.4.7.1 Storing Records You can use a single STORE statement to
insert values into one or more fields in one relation. To store more than
one record in a relation, include the STORE statement within a program
loop. Example 19–7, from the ADD_EMPLOYEES procedure, stores a new
EMPLOYEES record.

Example 19–7 Storing Records in Callable RDO
ADD_EMPLOYEES: PROCEDURE;

/***/
/* This procedure adds a new EMPLOYEES record to the EMPLOYEES */
/* relation. */
/***/

/* Initialize variables. */

employee_id = ’00000’;
continue = ’N’;
succeed = ’1’B;
ascii_bday = ’ ’;
status = 0;
err = 0;
x = 0;
see_all = ’N’;
DO i = 1 TO 5;

db_key_array(i) = ’ ’;
END; /* do 1 = 1 to 5 */
i = 0;
new_count = 0;

/* Prompt user for input, until user enters ’exit’. */

DO WHILE ((employee_id ^= ’exit’) | (employee_id ^= ’EXIT’));

DO WHILE ((continue = ’N’) | (continue = ’n’));

new_count = new_count + 1;

PUT SKIP LIST (’Please enter the ID of the new Employee or type exit’);
GET LIST (employee_id);

(continued on next page)

19–18 Using the Callable RDO Program Environment

Example 19–7 (Cont.) Storing Records in Callable RDO
TEST: IF employee_id = ’exit’ | employee_id = ’EXIT’ THEN

GOTO ENDER;

PUT SKIP LIST (’Please enter the Employees last name’);
GET LIST (last_name);

PUT SKIP LIST (’Please enter the Employees first name’);
GET LIST (first_name);

PUT SKIP LIST (’Please enter the Employees middle initial’);
GET LIST (middle_initial);

/* Prompt user to enter date, keep prompting until user */
/* enters the date in the proper format. */

PUT SKIP LIST (’Please enter the Employees birthday’);
PUT SKIP LIST (’In this format: 14-AUG-1956 0:0:0.0’);
GET LIST (ascii_bday);

PUT SKIP LIST (’Please enter the Employees sex’);
GET LIST (sex);

PUT SKIP LIST (’Please enter the Employees street address’);
GET LIST (address_data_1);

PUT SKIP LIST (’Please enter the Employees apartment number, if any’);
GET LIST (address_data_2);

PUT SKIP LIST (’Please enter city’);
GET LIST (city);

PUT SKIP LIST (’Please enter state’);
GET LIST (state);

PUT SKIP LIST (’Please enter postal code’);
GET LIST (postal_code);

PUT SKIP LIST (’Please enter status code’);
GET LIST (status_code);

PUT SKIP LIST (’Have you entered all data correctly? (Y,N) ’);
GET LIST (continue);

END; /* while continue = n */

/* Pass the START_TRANSACTION statement to RDB$INTERPRET. */

RDB_COMMAND = ’START_TRANSACTION READ_WRITE RESERVING ’
!! ’ EMPLOYEES FOR SHARED WRITE ’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Progressing to STORE’);

(continued on next page)

Using the Callable RDO Program Environment 19–19

Example 19–7 (Cont.) Storing Records in Callable RDO
/* Store the values in the EMPLOYEES relation. */

RDB_COMMAND = ’STORE E IN EMPLOYEES USING ’
!! ’ E.EMPLOYEE_ID = !VAL; ’
!! ’ E.LAST_NAME = !VAL; ’
!! ’ E.FIRST_NAME = !VAL; ’
!! ’ E.MIDDLE_INITIAL = !VAL; ’
!! ’ E.BIRTHDAY = !VAL; ’
!! ’ E.SEX = !VAL; ’
!! ’ E.ADDRESS_DATA_1 = !VAL; ’
!! ’ E.ADDRESS_DATA_2 = !VAL; ’
!! ’ E.CITY = !VAL; ’
!! ’ E.STATE = !VAL; ’
!! ’ E.POSTAL_CODE = !VAL; ’
!! ’ E.STATUS_CODE = !VAL END_STORE;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (employee_id),
DESCRIPTOR (last_name),
DESCRIPTOR (first_name),
DESCRIPTOR (middle_initial),
/* RDB$INTERPRET does DATE conversion. */
DESCRIPTOR (ascii_bday),
DESCRIPTOR (sex),
DESCRIPTOR (address_data_1),
DESCRIPTOR (address_data_2),
DESCRIPTOR (city),
DESCRIPTOR (state),
DESCRIPTOR (postal_code),
DESCRIPTOR (status_code));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

IF succeed THEN DO;
RDB_COMMAND = ’START_STREAM ES USING ’

!! ’E IN EMPLOYEES WITH E.EMPLOYEE_ID = !VAL’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (employee_id));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’FETCH ES’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

(continued on next page)

19–20 Using the Callable RDO Program Environment

Example 19–7 (Cont.) Storing Records in Callable RDO
/* Get the dbkey associated with the newly stored EMPLOYEES record. */

i = i + 1;
RDB_COMMAND = ’GET !VAL = E.RDB$DB_KEY END_GET’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (db_key_array(i)));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’END_STREAM ES’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* If the user wants to see all of the EMPLOYEES records */
/* added during this session, step through the array of */
/* dbkeys to find and print each new EMPLOYEES record. */

PUT SKIP LIST (’Successfully added employee: ’,last_name);
PUT SKIP LIST (’ with employee id: ’,employee_id);
PUT SKIP LIST (’Do you want to see the names of all the’);
PUT SKIP LIST (’employees entered during this session? (Y,N)’);
GET LIST (see_all);

IF see_all = ’Y’ | see_all = ’y’ THEN DO;
DO x = 1 TO i;
RDB_COMMAND = ’START_STREAM ED USING ’

!! ’ E IN EMPLOYEES WITH E.RDB$DB_KEY = !VAL’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (db_key_array(x)));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’FETCH ED’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’GET !VAL = E.FIRST_NAME; ’
!! ’!VAL = E.LAST_NAME END_GET’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (first_name),
DESCRIPTOR (last_name));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

PUT SKIP LIST (first_name, ’ ’, last_name);

RDB_COMMAND = ’END_STREAM ED’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

END; /* for x */

END; /* see_all */

(continued on next page)

Using the Callable RDO Program Environment 19–21

Example 19–7 (Cont.) Storing Records in Callable RDO
RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

END; /* succeed */
ELSE DO;

PUT SKIP LIST (’Update operation failed, ’,last_name);
PUT SKIP LIST (’ with employee ID: ’,employee_id);
PUT SKIP LIST (’ has not been stored in the database’);

RDB_COMMAND = ’ROLLBACK’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

END; /* else do for not success */

continue = ’n’;

END; /* (employee_id ^= ’exit’) */

ENDER: PUT SKIP;

END ADD_EMPLOYEES;

Use the CREATE_SEGMENTED_STRING statement and the STORE
statement to store segmented strings in a relation. You must use two
operations when storing segmented strings. The order in which you process
the inner and outer STORE operations is the reverse order of segmented string
retrieval.

First, use the CREATE_SEGMENTED_STRING statement to form the inner
string of segments. Store the segments in this inner string with the STORE
statement. Your program must explicitly repeat the STORE statement to store
each segment, or iterate the STORE statement by a program loop. You cannot
selectively store individual segments, and you must store the segmented string
in its entirety. For example, if you attempted to store first segment-1, next
segment-3, next segment-5, and finally segment-2, your segmented string
would contain: segment-1, segment-3, segment-5, and segment-2, in that order.

When all the segments are stored into a segmented string, use an outer STORE
statement to store the segmented string identifier into a relation. (The value
you store in the relation is in fact a pointer to the segmented string.) You can
store other fields in the relation with the same STORE statement. Once the
outer store operation is complete, close the segmented string with the END_
SEGMENTED_STRING statement.

You can close the segmented string before you perform the outer store operation
in order to store the segmented string identifier in a relation. However, do not
use that segmented string identifier again until you have stored it in a relation.

19–22 Using the Callable RDO Program Environment

Example 19–8, from the STORE_RES procedure, stores a segmented string.
This example:

Prompts the user for input

Creates a segmented string RS_HANDLE

Uses a STORE statement to store each segment S.RDB$VALUE into RS_
HANDLE

Uses another STORE statement to store the fields RS_HANDLE (the
pointer to the segmented string) and employee_id in RESUMES

Uses an END_SEGMENTED_STRING statement to close the segmented
string RS_HANDLE

Example 19–8 Using the CREATE_SEGMENTED_STRING Statement in
Callable RDO

STORE_RES: PROCEDURE;

/**/
/* This procedure demonstrates how to store a record with */
/* a field of data type SEGMENTED STRING. */
/**/

DECLARE resume_segment1 CHARACTER(80) VARYING;
DECLARE mfile_name CHARACTER(10) VARYING;
DECLARE my_file FILE;
DECLARE end_of_file BIT;

/* Initialize variables. */

employee_id = ’00000’;
continue = ’N’;
correct = ’N’;
succeed = ’1’B;
resume_segment 1 = ’ ’;
end_of_file = ’0’B;
status = 0;
err = 0;
i = 0;

/* Prompt the user for the employee ID of the RESUMES record */
/* he or she wants to modify. */

(continued on next page)

Using the Callable RDO Program Environment 19–23

Example 19–8 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in Callable RDO

DO WHILE ((employee_id ^= ’exit’) | (employee_id ^= ’EXIT’));

DO WHILE ((continue = ’N’) | (continue = ’n’));

new_count = new_count + 1;

PUT SKIP LIST (’Please enter the ID of the new Employee’!!
’or type exit’);

GET LIST (employee_id);

TEST: IF employee_id = ’exit’ | employee_id = ’EXIT’ THEN
GOTO ENDER;

PUT SKIP LIST (’Please enter file name of new resume’);
GET LIST (mfile_name);

PUT SKIP;
PUT SKIP LIST (’Have you entered all data correctly? (Y,N) ’);
GET LIST (continue);

END; /* while continu e = n */

OPEN FILE(my_file) TITLE(mfile_name) SEQUENTIAL;
ON ENDFILE(my_file) end_of_file = ’1’B;

RDB_COMMAND = ’START_TRANSACTION READ_WRITE RESERVING ’
!! ’ RESUMES FOR SHARED WRITE ’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

RDB_COMMAND = ’CREATE_SEGMENTED_STRING RS_HANDLE;’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

READ FILE(my_file) INTO (resume_segment1);
DO WHILE (^end_of_file);

RDB_COMMAND = ’STORE L IN RS_HANDLE USING ’
!! ’ L.RDB$VALUE = !VAL END_STORE;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (TRIM(resume_segment1)));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

READ FILE(my_file) INTO (resume_segment1);
END; /* do while not eof */

(continued on next page)

19–24 Using the Callable RDO Program Environment

Example 19–8 (Cont.) Using the CREATE_SEGMENTED_STRING Statement
in Callable RDO

RDB_COMMAND = ’STORE RE IN RESUMES USING ’
!! ’ RE.RESUME = RS_HANDLE;’
!! ’ RE.EMPLOYEE_ID = !VAL END_STORE;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (employee_id));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’END_SEGMENTED_STRING RS_HANDLE;’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF succeed THEN DO;
RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Update operation succeeded’);
END; /* succeed */

ELSE DO;
RDB_COMMAND = ’ROLLBACK’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Update operation failed’);
END; /* else not succeed */

continue = ’n’;

CLOSE FILE(my_file);

END; /* (employee_id ^= ’exit’) */

ENDER: PUT SKIP;

END STORE_RES;

19.4.7.2 Modifying Records Using a single MODIFY statement, you can
change values in one or more fields of a record in a relation. When you list
fields in the MODIFY statement, list only those fields that you want to change.
If you replace a field value with an identical field value, you are needlessly
adding overhead to your program.

Before modifying records, you must start a read/write transaction and form a
record stream that contains the records you wish to modify.

Using the Callable RDO Program Environment 19–25

Use the START_STREAM statement when you want to modify the records in
the record stream. The START_STREAM statement allows you to conditionally
modify a record that has been fetched. Use host language variables within your
RSE so your program logic can alter a record stream for each new START_
STREAM statement.

Example 19–9, from the MODIFY_EMPLOYEES procedure:

Prompts the user for input

Starts a stream ES that contains the EMPLOYEES record for the employee
whose ID is the same value as the host variable, employee_id

Fetches the record

Changes the current address to the values entered by the user

Closes the stream ES

Example 19–9 Modifying Records in Callable RDO
.
.
.

PUT SKIP LIST (’Please enter new street address’);
GET LIST (address_data_1);

PUT SKIP LIST (’Please enter new box number or apt number’);
GET LIST (address_data_2);

PUT SKIP LIST (’Please enter the city’);
GET LIST (city);

PUT SKIP LIST (’Please enter the state’);
GET LIST (state);

PUT SKIP LIST (’Please enter the postal code’);
GET LIST (postal_code);

PUT SKIP LIST (’Have you entered the address correctly? (Y,N) ’);
GET LIST (correct);

.

.

.
RDB_COMMAND = ’START_TRANSACTION READ_WRITE RESERVING ’

!! ’ EMPLOYEES FOR SHARED WRITE ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

(continued on next page)

19–26 Using the Callable RDO Program Environment

Example 19–9 (Cont.) Modifying Records in Callable RDO
/* Modify the address fields for the specified employee. */

RDB_COMMAND = ’START_STREAM ES USING ’
!! ’E IN EMPLOYEES WITH E.EMPLOYEE_ID = !VAL’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (employee_id));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’FETCH ES’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’MODIFY E USING’
!! ’ E.ADDRESS_DATA_1 = !VAL;’
!! ’ E.ADDRESS_DATA_2 = !VAL;’
!! ’ E.CITY = !VAL;’
!! ’ E.STATE = !VAL;’
!! ’ E.POSTAL_CODE = !VAL END_MODIFY;’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),
DESCRIPTOR (address_data_1),
DESCRIPTOR (address_data_2),
DESCRIPTOR (city),
DESCRIPTOR (state),
DESCRIPTOR (postal_code));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’END_STREAM ES’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

/* Notify user of the success or failure of the MODIFY operation. */

IF succeed THEN DO;
RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Update operation succeeded’);
END; /* succeed */

ELSE DO;
RDB_COMMAND = ’ROLLBACK’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

(continued on next page)

Using the Callable RDO Program Environment 19–27

Example 19–9 (Cont.) Modifying Records in Callable RDO
SKIP_MOD:

PUT SKIP LIST (’Update operation failed’);
END; /* else not succeed */

.

.

.

19.4.7.3 Modifying Segmented Strings To modify a segmented string you
must first create a new segmented string with the CREATE_SEGMENTED_
STRING statement and then modify the existing record by replacing the logical
pointer to the old segmented string identifier with the logical pointer to the
new segmented string identifier. As Chapter 8 explains in more detail, when
you store a segmented string field, you do not actually store segments into
a record; you store a logical pointer to the first segment in the segmented
string. Thus, by creating a new segmented string and a new segmented string
identifier associated with it, you can modify the field in a database record that
‘‘contains’’ a segmented string merely by replacing the old segmented string
identifier with a new segmented string identifier.

Note Although you use a MODIFY statement to modify segmented strings, you are
not actually modifying the individual segments that comprise the segmented
string field. You are actually replacing the entire segmented string field value
with a new segmented string value. Example 19–8 demonstrates how this is
done.

19.4.7.4 Erasing Records You can delete one, many, or all the records from
a relation using the ERASE operation. Before erasing records, you must start
a read/write transaction and form a record stream that contains the records
you wish to erase.

The ERASE statement can be an extremely expensive operation, using almost
as many system resources as a load operation. In shared and protected share
modes, each record erased generates a record in both the recovery-unit journal
and the after-image journal. Thus, large-scale erasing of database records may
exceed the enqueue limit (ENQLM). See the VAX Rdb/VMS Guide to Database
Maintenance and Performance for information on modifying system resources.

Use the START_STREAM statement when you want to erase multiple records
in a relation. The START_STREAM statement lets you conditionally erase the
record that has been fetched. You can display values from selected fields in
this record and then decide to erase it or not.

Use host language variables within your RSE so your program logic can alter a
record stream for each new START_STREAM statement.

19–28 Using the Callable RDO Program Environment

Example 19–10, from the DELETE_RECORD procedure, erases a record from
the JOB_HISTORY relation.

Example 19–10 Erasing Records in Callable RDO
RDB_COMMAND = ’START_STREAM JS USING ’

!! ’JH IN JOB_HISTORY WITH JH.EMPLOYEE_ID = !VAL’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (employee_id));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

DO WHILE (succeed);
RDB_COMMAND = ’FETCH JS’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

IF Succeed THEN DO;
RDB_COMMAND = ’ERASE JH;’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

END;
END; /* end while succeed */

succeed = ’1’B;

RDB_COMMAND = ’END_STREAM JS’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

19.5 Using Rdb/VMS Data Definition Statements
Depending on your particular application, you may need to perform some or all
of the following data definition functions:

Define fields, relations, views, indexes, constraints, or triggers

Change fields, relations, storage areas

Delete fields, relations, views, indexes, constraints, triggers, or storage
areas

Data definition statements in Callable RDO are identical to data definition
statements in interactive RDO. You can include any data definition statements
from an RDO prototype in your Callable RDO program without change.
Simply pass these data definition statements as literal strings to the
RDB$INTERPRET function. Note that unsuccessful data definition calls
return a different set of symbolic error codes than unsuccessful data
manipulation calls.

Using the Callable RDO Program Environment 19–29

If the first executable statement in your program is a data definition statement,
Rdb/VMS starts a read/write transaction. You can include any valid Rdb/VMS
statement within this transaction, but be aware that a lengthy read/write
transaction can limit other users’ access to the database.

When you design your data definition transactions, consider the effect of an
unexpected program termination. If your data definition is done in discrete
transactions, an early program termination may leave the database with
altered metadata. You can include a call to delete this metadata in your
program’s cleanup routines.

Example 19–11, from the DDL_STMNT procedure, defines a temporary index
for the EMPLOYEES relation. Note that you should not perform this type of
operation while others are using the database.

Example 19–11 Using Data Definition Statements in Callable RDO
DDL_STMNT: PROCEDURE;

/***/
/* This procedure demonstrates how to perform data definition tasks. */
/***/
DECLARE literal CHARACTER(100);

/* Initialize variables. */

employee_id = ’00000’;
continue = ’N’;
correct = ’N’;
succeed = ’1’B;
status = 0;
err = 0;
i = 0;

DO WHILE ((literal ^= ’exit’) | (literal ^= ’EXIT’));

DO WHILE ((continue = ’N’) | (continue = ’n’));

/* Prompt user for input. Ordinarily, it would not be likely that */
/* you would ask a user to define an index for the database. */
/* This example serves only to show you how this type of task can */
/* be done within a program environment. */

(continued on next page)

19–30 Using the Callable RDO Program Environment

Example 19–11 (Cont.) Using Data Definition Statements in Callable RDO
PUT SKIP;
PUT SKIP;
PUT SKIP LIST (’Please enter the data definition statement to define’);
PUT SKIP LIST (’ or delete a temporary index, or type exit’);
PUT SKIP LIST (’For example, to define an index for EMPLOYEES based’);
PUT SKIP LIST (’ on EMPLOYEE_ID, you might enter: ’);
PUT SKIP LIST (’define index emp_employee_id for’);
PUT SKIP LIST (’employees.employee_id.’);
PUT SKIP LIST (’ end index. NOTE: ENCLOSE IN SINGLE QUOTES’);
PUT SKIP LIST (’To delete this index, you might enter: ’);
PUT SKIP LIST (’ delete index emp_employee_id.’);
PUT SKIP;
GET LIST (literal);

TEST: IF literal = ’exit’ | literal = ’EXIT’ THEN
GOTO ENDER;

PUT SKIP;
PUT SKIP LIST (’Did you enter the definition correctly (Y,N)’);
GET LIST (continue);
PUT SKIP;

END; /* while continue = n */

/* Start a READ_WRITE transaction. */

RDB_COMMAND = ’START_TRANSACTION READ_WRITE; ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = literal;

/* Pass the data definition statement specified by the user to */
/* RDB$INTERPRET. */

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* Inform the user of the success or failure of the data definition */
/* task. */

IF succeed THEN DO;
RDB_COMMAND = ’COMMIT’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

PUT SKIP LIST (’Operation succeeded’);
END; /* succeed */

ELSE DO;
RDB_COMMAND = ’ROLLBACK’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

(continued on next page)

Using the Callable RDO Program Environment 19–31

Example 19–11 (Cont.) Using Data Definition Statements in Callable RDO

PUT SKIP LIST (’Operation failed’);
END; /* else not succeed */

continue = ’n’;

END; /* (literal ^= ’exit’) */

ENDER: PUT SKIP;

END DDL_STMNT;

19.6 Mixing Preprocessed and Callable RDO Statements in
a Single Transaction
If you want or need to include preprocessed statements and Callable RDO
statements in the same transaction, the recommended technique is:

1 Use the DATABASE statement with a database handle in the preprocessed
module to declare information to the preprocessor. This is not an
executable statement.

2 Use the DATABASE statement in the call to RDB$INTERPRET to
establish the database context and to attach to the database. This is
an executable statement and should be the first statement to access the
database. Use the !VAL parameter and have the database handle returned
in the variable specified (declared) in Step 1.

You should not use a preprocessed READY statement, as this will attempt
to attach to an already attached (open) database.

3 Start a transaction in the preprocessed module, if possible. This is more
efficient than calling RDB$INTERPRET, which must parse the command
string.

Be sure to save the transaction handle because it is used to keep the
Callable RDO and preprocessed DATABASE statements operating in the
same transaction and hence on the same database attach.

This transaction handle should be used in all transactions, both
preprocessed and Callable RDO. This includes the COMMIT and
ROLLBACK statements.

Example 19–12 is a simple RDML/Pascal application that demonstrates this
technique.

19–32 Using the Callable RDO Program Environment

Example 19–12 Using Preprocessed and Callable RDO Statements in a
Single Transaction

program COEXIST(output);

{
| This program uses the RDB$INTERPRET function and precompiled
| DML statements that share the database and transaction handles.
| That is, only one database attach is required for the application.
|
| This shipping database is a small one:
|
| define database shipping.
| define field port_num datatype signed longword.
| define relation port.
| port_num.
| end.
| store p in port using p.port_num=1 end_store
| commit
}

database
db1 = filename ’SHIPPING’;

function RDB$INTERPRET
{-------------}

(command: [class_s,readonly] packed array [l1..u1:integer] of char;
%IMMED argument: [list] integer

): integer; external;

procedure RDB$SIGNAL; external;
{----------}

procedure LIB$SPAWN
{---------}

(command: [class_s] packed array [l1..u1:integer] of char
:= %IMMED 0

); external;

var
t1: RDML$HANDLE_TYPE := NIL;
sts: integer := 0;

begin
{ Attach to the database using the RDB$INTERPRET function.}
sts := RDB$INTERPRET(’database !VAL = filename "SHIPPING"’,

%DESCR db1);
if not ODD(sts) then RDB$SIGNAL;

{ Start a transaction in RDML and establish the transaction handle. }
start_transaction (transaction_handle t1) read_write;

writeln(’First Pass...’);
for (transaction_handle t1) p in port

writeln(p.port_num);
end_for;

(continued on next page)

Using the Callable RDO Program Environment 19–33

Example 19–12 (Cont.) Using Preprocessed and Callable RDO
Statements in a Single Transaction

{
| Use the transaction handle to pass transaction and attach
| information to the RDB$INTERPRET function. This interpreted
| string can be an arbitrary DML command string.
}
sts := RDB$INTERPRET(’store (transaction_handle !VAL) ’ +

’p in port using p.port_num = 25 end_store’,
%DESCR t1);

if not ODD(sts) then RDB$SIGNAL;

writeln(’Second Pass...’);
for (transaction_handle t1) p in port

writeln(p.port_num);
end_for;

{
| Spawn a process and use RMU to display the number of active
| users. There should be only one with the process ID of the
| current user.
}
writeln(’Spawn sub-process to examine database attaches’);
LIB$SPAWN(’RMU/DUMP/USERS SHIPPING’);

rollback (transaction_handle t1);

finish db1;

end.

19.7 Handling Rdb/VMS Errors
The Callable RDO program interface lets you access an Rdb/VMS database
with any VAX program language that conforms to the VAX Procedure Calling
Standard. Your program calls the RDB$INTERPRET function with RDO
statements and host language variables as parameters; RDB$INTERPRET
passes these statements to RDO, the interactive facility of Rdb/VMS.

Error handling in Callable RDO programs and in preprocessed programs
differs in the following ways:

Detecting errors

Errors are detected by checking the return status value of each call to
RDB$INTERPRET.

Evaluating the symbolic error codes

Some Callable RDO symbolic error codes are different from preprocessed
Rdb/VMS symbolic error codes.

Displaying error messages

Callable RDO programs call RDB$SIGNAL, not LIB$SIGNAL.

19–34 Using the Callable RDO Program Environment

Error recovery

Callable RDO programs must detect and handle the normal end-of-stream
condition.

The major difference between error handling in Callable RDO programs
and preprocessed programs is that preprocessed programs use the Rdb/VMS
message vector, whereas Callable RDO programs do not. Rdb/VMS returns
error conditions in the form of a 20-longword signal argument vector. The
second longword of the signal argument vector contains the primary return
status condition value, which indicates if the call succeeded and, if not, the
error condition. The remaining longwords contain FAO arguments included in
the error message and any secondary error messages.

In preprocessed programs, the preprocessor declares the message vector,
RDB$MESSAGE_VECTOR, in the host language program. When an
exception or error condition occurs, Rdb/VMS passes the return status
condition value and any FAO arguments to the host language program
in RDB$MESSAGE_VECTOR. Thus, the message vector is available to
preprocessed programs for error handling.

In Callable RDO programs, the Rdb/VMS message vector is not passed through
the RDB$INTERPRET function, and thus is not accessible to the calling
program. Instead, RDB$INTERPRET returns the return status condition
value of the call to RDO. For this reason, Callable RDO programs usually
use the SYS$GETMSG system service rather than the SYS$PUTMSG system
service, and the RDB$SIGNAL routine rather than the LIB$SIGNAL routine.

This section describes:

Error detection by testing the return status value of the call to the
RDB$INTERPRET function

Determining which error has occurred using the LIB$MATCH_COND
routine

Error message display using the SYS$GETMSG system service and the
RDB$SIGNAL routine

Error recovery, the fatal error case, and continuing despite a fatal error

See Chapter 10 for information on how to display your own error messages.

Using the Callable RDO Program Environment 19–35

19.7.1 Detecting Errors in Callable RDO Programs
A call to the RDB$INTERPRET function returns a condition value. If the call
is a success, Rdb/VMS returns SS$_SUCCESS as the condition value. If the
call fails, Rdb/VMS returns the systemwide symbolic error code that identifies
the error or exception condition. The success or failure of a call is determined
by the low-order bit of the return status condition value. If the call succeeds,
the low-order (zero) bit of the return status value is set to 1. If the call fails,
the low-order bit is not set and equals 0. Your program tests for errors by
determining if the low-order bit of the return status value is set.

If the low-order bit of the return status value is not equal to 1, your program
must handle the error, either by inline code or by branching to an error
handler. You can determine the value of the low-order bit by using the logical
operator AND and the conditional IF statement.

In PL/I, if RDB_STATUS_SUCCESS is declared as the following:

DECLARE RDB_STATUS FIXED BINARY(31), /* status value */
1 RDB_STATUS_FIELDS BASED (ADDR(RDB_STATUS)),

2 RDB_STATUS_SUCCESS BIT(1), /* low-order bit */
2 RDB_STATUS_REST BIT(31); /* bits 1 through 32 */

The test would look like this:

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

In BASIC, the test would look like this:

IF (Return_stat AND 1%) = 0%
THEN

GO TO ERROR_HANDLER
END IF

In Pascal, the test would look like this:

if not odd(status) then
error_handler(status);

In C, the test would look like this:

if (status & 1) == 0)
error_handler(status);

In FORTRAN, the test would look like this:

IF ((status .AND. 1) .EQ. 0) THEN
CALL error_handler(status)

Some programming languages support other conditional tests, such as
SUCCESS/FAILURE. In COBOL, success/fail error detection looks like this:

19–36 Using the Callable RDO Program Environment

SET RETURN-STAT TO SUCCESS.

(call to RDB$INTERPRET)

IF RETURN-STAT EQUAL FAILURE
THEN

PERFORM ERROR-HANDLER
END-IF.

The three low-order bits in the return status value together give the severity
level of the error. Table 19–1 illustrates the setting of the low-order bits for
each severity level.

Table 19–1 Severity Levels of the Return Status Value

Low-Order Bits Severity Type of
2 1 0 Level Return Status

0 0 0 0 WARNING

0 0 1 1 SUCCESS

0 1 0 2 ERROR

0 1 1 3 INFORMATIONAL

1 0 0 4 SEVERE/FATAL

Informational error messages return a status value whose low-order bit is set
to 1, indicating that the call executed successfully. However, the return status
longword value is not equal to 1 because additional bits have been set. For this
reason, it is unwise to determine the success of the call by the simple equality
test:

IF Return_stat <> 1% !BAD CODE

Instead, test for both the success and informational return status values, or
use your programming language’s conditional success/failure test.

The following example shows the program logic you should use to detect for
errors in Callable RDO:

IF STATUS-RESULT IS FAILURE
THEN

PERFORM LOCK-ERROR-CHECK
GO TO GETCHK-EMP-EXIT

END-IF

Using the Callable RDO Program Environment 19–37

19.7.2 Determining Which Errors Have Occurred
Errors that occur when Callable RDO statements are executed may be caused
by any of the following:

Incorrect RDO syntax

Incorrect parameters

Incorrect parameter passing mechanisms

Actual run-time errors

It is easy to confuse actual run-time errors with program bugs in Callable
RDO. You should use the interactive Rdb/VMS facility RDO to test your RDO
statements before including them in your Callable RDO program. Then debug
your program thoroughly to eliminate any incorrect parameters or parameter
passing mechanisms.

After your program is fully debugged, if you detect that a call to
RDB$INTERPRET has failed, you should determine which error has occurred.
Your program error handler can then take the correct action for recovery or
orderly program termination. You determine which error has occurred by
evaluating the symbolic code associated with the error.

19.7.2.1 Using Symbolic Error Codes Every unsuccessful call to the
RDB$INTERPRET function returns a status value that identifies a specific
error condition. An Rdb/VMS symbolic error code is associated with each
unique return status value. For example, RDB$_DEADLOCK is the symbolic
error code that indicates a transaction is deadlocked.

The RDB$INTERPRET function can return two types of symbolic error codes.
Each type is identified by a different prefix that has a different facility code
associated with it:

RDB$_

The data manipulation error codes. These are the same as those codes
returned by Rdb/VMS preprocessed programs. However, there are a few
exceptions. For example, in Callable RDO the symbolic error code for
segmented string end-of-file condition (EOF) is RDO$_NO_MORSEG, not
the preprocessed error code RDB$_SEGSTR_EOF.

RDO$_

The data definition error codes. These codes are the same as those
returned by the interactive RDO facility.

19–38 Using the Callable RDO Program Environment

See Table A–1 in Appendix A for a list of commonly used Rdb/VMS symbolic
error codes for data manipulation statements. The symbolic error codes that
are unique to Callable RDO programs are marked in the table. See Table A–2
in Appendix A for a list of commonly used Rdb/VMS symbolic error codes
for data definition statements. Table A–1 and Table A–2 are not exhaustive
lists; you might want to create a list of likely and less likely errors for your
particular type of application or programming facility. (The VAX Rdb/VMS
RDO and RMU Reference Manual contains pointers to the online Rdb/VMS
error message explanation files.)

In Callable RDO programs, you name and declare the variable that receives
the return status value. You can use the symbolic error codes to control
program logic for specific errors. When your program detects an error, your
error handler:

Evaluates the symbolic error code by:

Calling the LIB$MATCH_COND routine

Using a local host language equality test

Then directs program logic with a host language multipath statement; for
example, the Pascal CASE statement.

Although these symbolic names, such as RDB$_DEADLOCK, represent actual
values, you should use only the symbolic names in your programs. This is
because:

The symbolic error codes themselves are mnemonic. You can assign your
own mnemonic names in some programming languages.

The VMS Linker determines the numeric values.

If the numeric value of a symbolic error code ever changes, all you have
to do is link your program again; on the other hand, if you use hardcoded
values, you have to search for and change every occurrence of the value.

19.7.2.2 Declaring Symbolic Error Codes Rdb/VMS error code values are
longwords and may be declared either as variables or constants. The exact
format for declaring symbolic error codes is language-specific. A declaration in
PL/I is shown in the next example.

Using the Callable RDO Program Environment 19–39

DECLARE (RDB$_STREAM_EOF,
RDB$_NO_RECORD,
RDB$_DEADLOCK,
RDB$_BAD_SEGSTR_HANDLE,
RDB$_LOCK_CONFLICT,
RDB$_INTEG_FAIL,
RDB$_NO_DUP,
RDB$_NOT_VALID,
RDO$_DATCONERR,
RDO$_INDNOTDEF) GLOBALREF FIXED BINARY (31);

Refer to the language-specific chapters for the declaration in BASIC, C,
COBOL, FORTRAN, or Pascal.

Refer to your programming language user’s guide if you are not using PL/I or
one of the languages supported by a preprocessor.

If you are combining Callable RDO and preprocessed RDBPRE or RDML
statements, declare the RDB$_ symbolic error codes only once.

19.7.2.3 Calling LIB$MATCH_COND When you want to determine which of
several errors has caused a call to RDB$INTERPRET to fail, you can use the
VMS Run-Time Library routine LIB$MATCH_COND.

The LIB$MATCH_COND routine compares the first argument in its argument
list to the remaining arguments. If a match is found, it returns the position
in the argument list of the matching argument. If no match is found,
LIB$MATCH_COND returns a zero.

You could evaluate the return status value directly with your programming
language’s SELECT, CASE, EVALUATE, or IF statement, without calling
the LIB$MATCH_COND routine. However, future versions of Rdb/VMS may
change the severity levels or facility names of certain symbolic error codes. If
this were to happen, you would have to link your program again under the
new version so that the program would detect the correct error codes. The
LIB$MATCH_COND routine matches only the condition identifier of the return
status value and is unaffected by changes in severity levels or facility names.
For this reason, you should use the LIB$MATCH_COND routine.

Example 19–13, from the HANDLE_ERROR procedure, demonstrates how to
call the LIB$MATCH_COND routine in a PL/I Callable RDO program. Declare
LIB$MATCH_COND as an EXTERNAL ENTRY in PL/I.

19–40 Using the Callable RDO Program Environment

Example 19–13 Error Handling in Callable RDO
HANDLE_ERROR: PROCEDURE;

/**/
/* This procedure handles run-time errors detected by the */
/* ON ERROR clause in the Callable RDO programs. */
/**/

%REPLACE SECONDS_TO_WAIT BY 5;

DECLARE error FIXED BINARY (15);
DECLARE string CHARACTER (132);
DECLARE msg_string CHARACTER (132);
DECLARE error_len FIXED BINARY (15);
DECLARE lock_error BIT (1);

msg_strin g = ’ ’;
succeed = ’0’B;

/* Use LIB$MATCH_COND to determine which of a series of */
/* errors might have occurred. */

error = LIB$MATCH_COND (RDB_STATUS,
ADDR (RDB$_DEADLOCK),
ADDR (RDB$_LOCK_CONFLICT),
ADDR (RDB$_NO_DUP),
ADDR (RDB$_NOT_VALID),
ADDR (RDB$_INTEG_FAIL),
ADDR (RDB$_STREAM_EOF),
ADDR (RDO$_DATCONERR),
ADDR (RDB$_NO_RECORD));

/* The SELECT statement directs the program to appropriate */
/* statements to execute, depending on the error that */
/* was detected. */

SELECT;

/* Unexpected error */

WHEN (ERROR = 0) DO;
OPEN FILE (err_file) TITLE (’error_file’);
PUT SKIP LIST (’Unexpected error - terminating program’);
err = SYS$GETMSG(RDB_STATUS, ADDR (error_len),

DESCRIPTOR (msg_string), 0, 0);
PUT SKIP FILE (err_file) LIST (msg_string);
CALL RDB$SIGNAL();
CLOSE FILE (err_file);
END;

(continued on next page)

Using the Callable RDO Program Environment 19–41

Example 19–13 (Cont.) Error Handling in Callable RDO

/* Deadlock or lock conflict */

WHEN (ERROR = 1, ERROR = 2) DO;
IF (retry <= 4) THEN DO;

PUT SKIP LIST (’Deadlock or Lock conflict error’);
PUT SKIP LIST (’Others are using the data that’!!

’you want to access’);
err = LIB$WAIT(SECONDS_TO_WAIT);
END;

ELSE DO;
PUT SKIP LIST (’Sorry, resources are not available, ’);
PUT SKIP LIST (’please retry later’);
END;

END;

/* Duplicates not allowed */

WHEN (ERROR = 3) DO;
PUT SKIP LIST (’Duplicates are not allowed’);
err = SYS$GETMSG(RDB_STATUS, ADDR (error_len),

DESCRIPTOR (msg_string), 0, 0);
PUT SKIP LIST (msg_string);
END;

/* Invalid data */

WHEN (ERROR = 4) DO;
PUT SKIP LIST (’Invalid Data’);
err = SYS$GETMSG(RDB_STATUS, ADDR (error_len),

DESCRIPTOR (msg_string), 0, 0);
PUT SKIP LIST (msg_string);
END;

/* Integrity failure */

WHEN (ERROR = 5) DO;
PUT SKIP LIST (’Integrity failure’);
err = SYS$GETMSG(RDB_STATUS, ADDR (error_len),

DESCRIPTOR (msg_string), 0, 0);
PUT SKIP LIST (msg_string);
END;

WHEN (ERROR = 6) DO;
END;

(continued on next page)

19–42 Using the Callable RDO Program Environment

Example 19–13 (Cont.) Error Handling in Callable RDO

/* Invalid date */

WHEN (ERROR = 7) DO;
PUT SKIP LIST (’Invalid Date’);
err = SYS$GETMSG(RDB_STATUS, ADDR (error_len),

DESCRIPTOR (msg_string), 0, 0);
PUT SKIP LIST (msg_string);
END;

/* Record deleted */

WHEN (ERROR = 8) DO;
PUT SKIP LIST (’A record entered during this session has’);
PUT SKIP LIST (’been deleted’);
END;

OTHERWISE ERROR = ERROR;
END;

END;

19.7.3 Displaying Error Messages in Callable RDO Programs
The method you choose to display error messages depends on several factors.
If you want to:

Display an error message generated by Rdb/VMS and optionally terminate
your program, call the RDB$SIGNAL routine.

Display an error message generated by Rdb/VMS and continue program
execution, call the SYS$PUTMSG system service.

Use an error message generated by Rdb/VMS within your program and
continue program execution, call the SYS$GETMSG system service.

Display user-supplied error messages, or a mixture of user-supplied
error messages and Rdb/VMS error messages, call the SYS$GETMSG or
SYS$PUTMSG system service with a user-defined error code.

Information on creating user-supplied error messages is contained in
Chapter 10.

19.7.3.1 Calling RDB$SIGNAL Call the RDB$SIGNAL routine when you
want to display an error message generated by Rdb/VMS and (optionally)
terminate your program. RDB$SIGNAL is an Rdb/VMS routine that calls
the LIB$SIGNAL routine with the Rdb/VMS message vector. The Rdb/VMS
message vector is a signal argument vector that contains pointers to additional
error messages and to the FAO arguments required to format the Rdb/VMS
error messages. The Rdb/VMS message vector is not accessible to the Callable
RDO programs without the use of the RDB$SIGNAL routine.

Using the Callable RDO Program Environment 19–43

LIB$SIGNAL is a VMS Run-Time Library routine that:

Receives the return status value of the error or exception

Causes a signal condition, which causes the appropriate catchall condition
handler to pass the signal argument vector to the SYS$PUTMSG system
service

The SYS$PUTMSG system service calls the SYS$GETMSG system service
to retrieve the message, and then the SYS$FAO service formats the error
message and displays it on your terminal (or in the batch log).

Resignals the error to the traceback or catchall default condition handler

If the error is not fatal, program execution continues. If the error is fatal,
the host language error handler signals the error to the default condition
handler, which terminates program execution.

In FORTRAN, Pascal, C, and any language that does not define its own
condition handler, you can continue program execution after the call to the
RDB$SIGNAL routine even when the error is fatal. See Example 19–16 in
Section 19.7.5, for an example of using a condition handler to continue program
execution despite a fatal error after a call to RDB$SIGNAL.

In BASIC, COBOL, and PL/I, use SYS$GETMSG instead of RDB$SIGNAL
to continue program execution after a fatal error. See Example 19–15 in
Section 19.7.5 for an example of continuing after a fatal error in FORTRAN.

The BASIC and FORTRAN format of the RDB$SIGNAL calling sequence is:

CALL RDB$SIGNAL()

The COBOL format of the RDB$SIGNAL calling sequence is:

CALL "RDB$SIGNAL".

The Pascal format of the RDB$SIGNAL calling sequence is:

RDB$SIGNAL;

The PL/I format of the RDB$SIGNAL calling sequence is:

CALL RDB$SIGNAL();

The C format of the RDB$SIGNAL calling sequence is:

rdb$signal():

Your method of declaring RDB$SIGNAL is language-specific; refer to your
programming language user’s guide for this information if you are not using
PL/I or a language supported by a preprocessor.

See an earlier example, Example 19–13, for an illustration of the use of the
RDB$SIGNAL routine in a PL/I program that uses Callable RDO.

19–44 Using the Callable RDO Program Environment

19.7.3.2 Calling SYS$GETMSG You can call the SYS$GETMSG system
service when you want to use an Rdb/VMS error message within your program,
or to display an Rdb/VMS error message and continue program execution.

The first argument in the call to the SYS$GETMSG system service is the
Rdb/VMS return status value, the unique identification for the Rdb/VMS
error message. The SYS$GETMSG system service locates the error message
and returns it to your program in the second argument of the call. You must
declare a character string to receive the message. Your program can then
manipulate this character string in any way it chooses—for example, it can:

Display the string

Write the string to a file

Evaluate substrings within the string

See the section on calling the SYS$GETMSG system service in each of the
language-specific chapters for more information on the format and use of this
service.

The SYS$GETMSG system service does not format the FAO arguments in the
error message it returns to your program. When you require formatted
FAO arguments in the error message, use RDB$SIGNAL rather than
SYS$GETMSG. In Callable RDO, the format parameters are not available
to your program unless you call RDB$SIGNAL.

You could use the SYS$PUTMSG system service in a Callable RDO application
when you want to display an error message generated by Rdb/VMS and
continue program execution. The SYS$PUTMSG system service writes the
error message to the terminal and to the error file, SYS$ERROR. You can
direct SYS$ERROR at DCL level to your program error file when you want the
SYS$PUTMSG service to write an Rdb/VMS error message to your error file.

However, the SYS$PUTMSG service expects the message vector,
RDB$MESSAGE_VECTOR, which is only accessible through the RDB$SIGNAL
routine. The SYS$PUTMSG system service will accept the return status value
instead of the message vector, but in this case will be unable to format the FAO
arguments in the error message unless you build your own signal argument
vector. For this reason, unless you create your own signal argument vector, you
should use SYS$PUTMSG in Callable RDO only if you also use RDB$SIGNAL.
See Example 19–16 in Section 19.7.5 for a demonstration of the use of the
SYS$PUTMSG system service with RDB$SIGNAL.

An earlier example, Example 19–13, illustrates the use of the SYS$GETMSG
system service in a PL/I Callable RDO program.

Using the Callable RDO Program Environment 19–45

19.7.4 Error Recovery
Error recovery is specific to the program in which the error occurs. Frequently
the individual program logic requires an individual error routine. However,
there are several categories of Rdb/VMS errors that occur in programs:

Multi-user conflicts

Integrity and constraint failures

Fatal or unexpected errors

See Chapter 10 for a full explanation of these errors.

Additionally, Callable RDO does not provide end-of-stream condition handling
automatically. When you fetch records within a stream or get records within
a segmented string, your program must check the end-of-stream condition at
each FETCH statement.

When processing segmented strings, you must check for the end-of-stream
condition at the segmented string GET statement. When your error handler
detects the end-of-stream exception condition, your program can close the
stream or segmented string and proceed to the next logical operation. After
starting a record stream using the START_STREAM statement, you point
to successive records by using the FETCH statement. After retrieving the
last record, the next FETCH statement returns the end-of-stream condition,
RDB$_STREAM_EOF. Your program must explicitly detect this condition.
When your error handler detects the RDB$_STREAM_EOF condition, it should
call the RDB$INTERPRET function to close the stream and continue program
execution as necessary.

If you are retrieving segmented strings in a Callable RDO program, you need
to use two logic loops, each with its own stream. The outer loop forms the
record stream and the inner loop forms the segmented string stream. You
advance the pointer of the record stream in the outer loop using the FETCH
statement, but you do not use this statement with the segmented string
stream. The GET statement both advances the pointer and retrieves the
segment. In retrieving segmented strings, your error handler must detect the
end of the record stream (RDB$_STREAM_EOF) and the end of the segmented
string stream (RDO$_NO_MORSEG). Your program logic proceeds as follows:

1 Fetch a record from the record stream.

2 Get a segment from the segmented string.

3 Continue to get segments until the end-of-segmented-string-stream
condition is met.

4 Fetch another record. If end of the record stream, end; otherwise, go to
Step 2.

19–46 Using the Callable RDO Program Environment

In Callable RDO programs:

To detect end-of-stream check for RDB$_STREAM_EOF

To detect end-of-segmented-string check for RDO$_NO_MORSEG

Example 19–14, from the LIST_RECORD procedure, shows handling the
end-of-stream condition in PL/I.

Example 19–14 Handling a Record Stream End Condition in Callable RDO
LIST_RECORD: PROCEDURE;

/**/
/* This procedure lists all the employees and the colleges they attended. */
/**/

/* Declare variables. */

DECLARE degree CHARACTER(3);
DECLARE degree_field CHARACTER(15);
DECLARE found BIT;

/* Initialize variables. */
err = 0;
first_name = ’ ’;
last_name = ’ ’;
degree = ’ ’;
degree_field = ’ ’;

/* Start transaction. */
RDB_COMMAND = ’START_TRANSACTION READ_ONLY ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

/* For each EMPLOYEES record that has a corresponding record in DEGREES, */
/* print the DEGREES record. */

RDB_COMMAND = ’START_STREAM ES USING E IN ’
!! ’EMPLOYEES SORTED BY E.LAST_NAME’;

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));
IF (^RDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

FETCH_COMMAND = ’FETCH ES’;
RDB_COMMAND = ’GET !VAL = E.FIRST_NAME; ’

!! ’!VAL = E.EMPLOYEE_ID; ’
!! ’!VAL = E.LAST_NAME END_GET;’;

(continued on next page)

Using the Callable RDO Program Environment 19–47

Example 19–14 (Cont.) Handling a Record Stream End Condition in
Callable RDO

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (FETCH_COMMAND));

DO WHILE (RDB_STATUS_SUCCESS);
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND),

DESCRIPTOR (first_name),
DESCRIPTOR (employee_id),
DESCRIPTOR (last_name));

found = ’0’B;

NRDB_COMMAND = ’START_STREAM DS USING D IN ’
!! ’DEGREES WITH D.EMPLOYEE_ID = !VAL’;

NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND),
DESCRIPTOR (employee_id));

NFETCH_COMMAND = ’FETCH DS’;
NRDB_COMMAND = ’GET !VAL = D.DEGREE; ’

!! ’!VAL = D.DEGREE_FIELD END_GET;’;

NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NFETCH_COMMAND));

DO WHILE (NRDB_STATUS_SUCCESS);
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND),

DESCRIPTOR (degree),
DESCRIPTOR (degree_field));

/* Print the names of the employees who have a record */
/* stored in the DEGREES relation. */

PUT SKIP LIST (’Name is: ’, first_name, ’ ’, last_name);
PUT SKIP LIST (’Degree is : ’, degree);
PUT SKIP LIST (’Degree field is: ’,degree_field);

found = ’1’B;

NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NFETCH_COMMAND));

END; /* Do NFETCH */

NRDB_COMMAND = ’END_STREAM DS’;
NRDB_STATUS = RDB$INTERPRET(DESCRIPTOR (NRDB_COMMAND));
IF (^NRDB_STATUS_SUCCESS) THEN

CALL HANDLE_ERROR;

/* Print the records of the employees who do not have a record */
/* stored in the DEGREES relation. */

IF ^(found) THEN DO;
PUT SKIP LIST (first_name, ’ ’, last_name);
PUT SKIP LIST (’Does not have this information stored in the

database’);
END; /* if ^found */

RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (FETCH_COMMAND));

END; /* Do FETCH */

(continued on next page)

19–48 Using the Callable RDO Program Environment

Example 19–14 (Cont.) Handling a Record Stream End Condition in
Callable RDO

RDB_COMMAND = ’END_STREAM ES’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

RDB_COMMAND = ’ROLLBACK ’;
RDB_STATUS = RDB$INTERPRET(DESCRIPTOR (RDB_COMMAND));

IF (^RDB_STATUS_SUCCESS) THEN
CALL HANDLE_ERROR;

END LIST_RECORD;

19.7.5 Handling Fatal Errors
In some instances, the cause of fatal errors is located in the database, not
the program. For example, your program may attempt to access a relation
that has been deleted by the database administrator or the process that runs
the program may not have sufficient privilege to modify a particular relation.
There is little that your program can do to correct this type of error. However,
your program can determine which fatal error has occurred, perform cleanup
functions, display an error message, and optionally terminate the program.

In other cases, you can anticipate a fatal error and design an alternate logical
path to which the program can branch if that error occurs. In this case, your
program could do the following:

Determine which error code was returned (using the LIB$MATCH_COND
routine), to make sure it is the fatal error you expected.

Call the SYS$PUTMSG or SYS$GETMSG system service to generate an
error message.

Perform any necessary database cleanup.

Continue program execution along the alternate path.

You can establish your own condition handler that will permit your program to
continue after a call to the RDB$SIGNAL routine. See Example 19–16 for the
use of a condition handler to continue program execution despite a fatal error
after a call to RDB$SIGNAL.

If you have detected a fatal error and you do not intend to continue program
execution, you should perform whatever cleanup operations are necessary. The
following is a list of typical cleanup operations:

End streams

Roll back transactions

Using the Callable RDO Program Environment 19–49

Finish Rdb/VMS databases

Write an error message to a transaction audit file

Close files

If you call the RDB$SIGNAL routine without establishing a condition handler,
RDB$SIGNAL displays the error message and terminates your program.
When using the RDB$SIGNAL routine, you should not perform any cleanup
operations that involve Rdb/VMS statements. If you issue an Rdb/VMS
statement after the error condition, the new statement alters the message
vector that RDB$SIGNAL passes to LIB$SIGNAL, and you will not receive
the correct error message. Instead, call the RDB$SIGNAL routine without
executing any new calls to the RDB$INTERPRET function. When your
program terminates after the call to the RDB$SIGNAL routine, the database
monitor rolls back the transaction and performs the necessary database
cleanup.

In Example 19–15, from the function GETSUPER in the DEPTFOR.FOR
sample program, fatal errors other than deadlock, lock conflict, or duplicate
index cause error message display and program termination.

Example 19–15 Handling Fatal Errors in Callable RDO
INTEGER FUNCTION GETSUPER(ID)

C---
C This function returns -1 if successfully completed,
C 0 if deadlock or lock conflict occurs, 1 if there is
C a program error.
C---

IMPLICIT NONE

CHARACTER*(*) ID !ID passed to function

CHARACTER*5 SUPER_ID !supervisor ID
CHARACTER*5 SAVE_ID !storage for supervisor ID
CHARACTER*4 SUPER_DEPT !supervisor’s department
CHARACTER*15 LAST_NAME !supervisor’s last name
CHARACTER*200 RDB_STR !string to hold RDO statements
CHARACTER*15 ARG_1, ARG_2, ARG_3 !strings to pass arguments

.

.

.

(continued on next page)

19–50 Using the Callable RDO Program Environment

Example 19–15 (Cont.) Handling Fatal Errors in Callable RDO
16 RDB_STR = ’get !val = c.supervisor-id;’//

X ’!val = sc.last-name;’//
X ’!val = sc.department-code end-get’

ARG_NUM = 3
OK = INTERPN(RDB_STR, SUPER_ID, LAST_NAME,

X SUPER_DEPT, ARG_NUM)
IF (OK) 18, 30, 40

.

.

.

INTEGER*4 FUNCTION INTERPN(RDO_STR, ARG_1, ARG_2, ARG_3, ARG_NUM)

C--
C This function calls RDB$INTERPRET with n !VAL arguments; it
C returns -1 if the call was successful, 0 if deadlock
C or lock conflict, 1 if dept-code already exists. If an un-
C expected fatal error is detected, the function calls RDB$SIGNAL
C and does NOT handle the error.
C--

IMPLICIT NONE

CHARACTER*(*) RDO_STR !RDO string passed to function
CHARACTER*(*) ARG_1, ARG_2, ARG_3 !arguments passed to function
INTEGER*4 ARG_NUM !number of arguments passed to function

INTEGER*4 STAT !return status for call to RDB$INTERPRET
INTEGER*4 ERR !variable returned by LIB$MATCH_COND
INTEGER*4 RDB$INTERPRET !data type for function RDB$INTERPRET
INTEGER*4 LIB$MATCH_COND !data type for function LIB$MATCH_COND
CHARACTER*80 MSG_STR !string to receive error message

.

.

.
C-------------------------
C begin function logic
C-------------------------

IF (ARG_NUM .EQ. 1) THEN !call interpreter with 1 argument

STAT = RDB$INTERPRET(%DESCR(RDO_STR),
1 %DESCR(ARG_1))

ELSE IF (ARG_NUM .EQ. 2) THEN !call interpreter with 2 arguments

STAT = RDB$INTERPRET(%DESCR(RDO_STR),
1 %DESCR(ARG_1),
2 %DESCR(ARG_2))

ELSE IF (ARG_NUM .EQ. 3) THEN !call interpreter with 3 arguments

STAT = RDB$INTERPRET(%DESCR(RDO_STR),
1 %DESCR(ARG_1),
2 %DESCR(ARG_2),
3 %DESCR(ARG_3))

ELSE

(continued on next page)

Using the Callable RDO Program Environment 19–51

Example 19–15 (Cont.) Handling Fatal Errors in Callable RDO

WRITE (3, 1) ARG_NUM !write error message to error file
WRITE (5, 1) ARG_NUM !write error message to terminal

END IF

IF ((STAT .AND. 1) .NE. 0) THEN !call was successful

INTERPN = -1
RETURN !continue main module logic

ELSE

ERR = LIB$MATCH_COND(%REF(STAT),
1 %LOC(RDB$_LOCK_CONFLICT),
2 %LOC(RDB$_DEADLOCK),
3 %LOC(RDB$_NO_DUP),
4 %LOC(RDB$_INTEG_FAIL),
5 %LOC(RDB$_UNRES_REL),
6 %LOC(RDB$_READ_ONLY_VIEW),
7 %LOC(RDB$_NO_CUR_REC),
8 %LOC(RDB$_NO_RECORD),
9 %LOC(RDB$_REQ_NO_TRANS))

END IF

GO TO (10,20,30,40,40,40,40,40), ERR !handle expected errors

C--------------------------------------
C ERR equals 0, an unexpected error
C--------------------------------------

CALL SYS$GETMSG(%REF(STAT),,%DESCR(MSG_STR))
WRITE (3, 2) MSG_STR !write error message to error file
WRITE (5, 3) !write to terminal
CALL RDB$SIGNAL() !send errors to terminal and quit

.

.

.

C------------------------------------
C Other expected but fatal errors
C------------------------------------

40 CALL SYS$GETMSG(%REF(STAT),,%DESCR(MSG_STR))
WRITE (3, 6) MSG_STR !write error message to error file
WRITE (5, 7) !write message to terminal
CALL RDB$SIGNAL() !send errors to terminal and quit

1 FORMAT (’0’,’Program error, ARG_NUM = ’, I6)

2 FORMAT (’0’,’Unexpected fatal RDB$INTERPRET error,
X terminating DEPTFOR.FOR’/ A80)

3 FORMAT (’0’,’Unexpected fatal RDB$INTERPRET error,
X terminating DEPTFOR.FOR’)

(continued on next page)

19–52 Using the Callable RDO Program Environment

Example 19–15 (Cont.) Handling Fatal Errors in Callable RDO

4 FORMAT (’0’,’Lock conflict, rolling back transaction’)
5 FORMAT (’0’,’Deadlock, rolling back transaction’)

6 FORMAT (’0’,’Expected fatal RDB$INTERPRET error,
X terminating DEPTFOR.FOR’/ A80)

7 FORMAT (’0’,’Expected fatal RDB$INTERPRET error,
X terminating DEPTFOR.FOR’)

END

If your programming language does not provide its own error handling, you can
create your own condition handler. You can use the VMS Run-Time Library
routine LIB$ESTABLISH (or VAXC$ESTABLISH in C), to create a condition
handler that allows your program to continue after calling the RDB$SIGNAL
or LIB$SIGNAL routine with a fatal error. In Pascal, use the Pascal function
ESTABLISH to create your own condition handler.

When an error occurs, the RDB$INTERPRET function does not signal the
error. Instead, it returns an error condition in the return status value.
Your program error handler evaluates the return status value and decides
to continue or terminate program execution. However, when you call the
RDB$SIGNAL or LIB$SIGNAL routine, the fatal error condition is signaled.
Unless you establish a condition handler to handle the error, the fatal error
condition is resignaled through all existing condition handlers and the program
terminates.

This section discusses fatal error handling only in those programming
languages that do not define their own condition handling; that is, this
section does not apply to BASIC, COBOL, and PL/I. If your programming
language is BASIC, COBOL, PL/I, or any other language that establishes
its own condition handler, and you call the LIB$ESTABLISH routine, your
programming language’s error handling is disabled. For this reason, you
should not use the LIB$ESTABLISH routine with such languages. Instead,
call the SYS$PUTMSG or SYS$GETMSG system service, which does not
signal the error. Your program can evaluate the error and perform whatever
operations are necessary to continue after the fatal error.

When an error is signaled during program execution, the system condition
handling facility passes control to the most immediate condition handler.
The LIB$ESTABLISH routine establishes your condition handler as the most
immediate condition handler. When the RDB$SIGNAL or LIB$SIGNAL
routine signals a fatal error, control passes to your condition handler.

Your condition handler can choose to resignal the error by returning the value
SS$_RESIGNAL. Or, your handler can choose not to resignal the error by
returning the value SS$_CONTINUE or SS$_UNWIND.

Using the Callable RDO Program Environment 19–53

If your condition handler resignals (that is, returns the value SS$_RESIGNAL):

Control passes to your programming language condition handlers farther
down the stack.

The condition handlers resignal the error to the system error handler.

If the error is sufficiently severe, the program terminates.

If your condition handler does not resignal, but instead returns the value SS$_
CONTINUE:

Control returns to the program statement immediately following the call to
the RDB$SIGNAL routine.

Program execution continues.

If you choose not to resignal the error, your program logic should make sure
that the error will not adversely affect continued program execution. (See
the VMS RTL Library (LIB$) Manual for a complete description of the use
of the LIB$ESTABLISH with LIB$SIGNAL routines, and see the VAX C
documentation set for a complete description of the VAXC$ESTABLISH
routine.)

The following FORTRAN program demonstrates the use of the LIB$ESTABLISH
routine to create a condition handler. The condition handler, HANDLER,
evaluates a COMMON flag, FATAL. If the flag FATAL is set to true (the error
is fatal), HANDLER sets the low-order bits of the condition value to a severity
level of 4 (FATAL) and resignals the error. If the flag FATAL is not true,
HANDLER sets the low-order bits of the condition value to a severity level of 3
(INFORMATIONAL) and returns the value SS$_CONTINUE.

Example 19–16, from the DEPTFOR.FOR program, uses the INTERP0 function
to call the RDB$INTERPRET function with no arguments. The INTERP0
function:

Calls LIB$ESTABLISH to create the user-defined condition handler,
HANDLER.

Calls RDB$INTERPRET.

Evaluates the return status value, STAT.

Sets the flag FATAL to TRUE if the fatal error is unexpected.

Sets the flag FATAL to FALSE if the fatal error is: ‘‘index or constraint
already defined’’.

19–54 Using the Callable RDO Program Environment

Calls RDB$SIGNAL for fatal errors other than deadlock and lock conflict.
The RDB$SIGNAL routine displays the error message and resignals the
error to HANDLER. This condition handler:

Sets the return status SIGARGS(2) severity level to 4 (FATAL) and
returns SS$_RESIGNAL if the flag FATAL is TRUE.

Sets the return status SIGARGS(2) severity level to 3
(INFORMATIONAL) and returns SS$_CONTINUE if the flag FATAL is
FALSE.

Terminates program execution if HANDLER returns the value SS$_
RESIGNAL.

Continues program execution if HANDLER returns the value SS$_
CONTINUE.

Example 19–16 Continuing Program Execution After a Fatal Error in
Callable RDO

INTEGER FUNCTION INTERP0(RDO_STR)

C---
C This function calls RDB$INTERPRET with no !VAL arguments.
C It returns -1 if the call was successful, 0 if deadlock or
C lock conflict is detected, 1 if stream EOF; if constraint or
C index is already defined, the function sets the COMMON flag
C FATAL to false, and calls RDB$SIGNAL which will signal to
C the condition handler. If there is an unexpected fatal error,
C the function sets the COMMON flag FATAL to true and calls
C RDB$SIGNAL which will resignal to the condition handler.
C--

IMPLICIT NONE
INCLUDE ’($SSDEF)’

CHARACTER*(*) RDO_STR !RDO string passed to function

LOGICAL*2 FATAL !flag to set if unexpected fatal error
INTEGER*4 STAT !return status for call to RDB$INTERPRET
INTEGER*4 ERR !variable returned by LIB$MATCH_COND
INTEGER*4 RDB$INTERPRET !data type for function RDB$INTERPRET
INTEGER*4 LIB$MATCH_COND !data type for function LIB$MATCH_COND
CHARACTER*80 MSG_STR !string to receive error message

EXTERNAL HANDLER !condition handler
EXTERNAL RDB$SIGNAL
EXTERNAL LIB$ESTABLISH
EXTERNAL LIB$MATCH_COND
EXTERNAL RDB$INTERPRET
EXTERNAL SYS$GETMSG

COMMON FATAL !make flag available to function HANDLER

(continued on next page)

Using the Callable RDO Program Environment 19–55

Example 19–16 (Cont.) Continuing Program Execution After a Fatal Error
in Callable RDO

C----------------------
C Errors to handle:
C----------------------

INTEGER*4 RDB$_LOCK_CONFLICT !lock conflict
INTEGER*4 RDB$_DEADLOCK !deadlock
INTEGER*4 RDO$_INDEXTS !index already defined
INTEGER*4 RDO$_CONALREXI !constraint already defined
INTEGER*4 RDB$_STREAM_EOF !stream EOF

EXTERNAL RDB$_LOCK_CONFLICT
EXTERNAL RDB$_DEADLOCK
EXTERNAL RDO$_INDEXTS
EXTERNAL RDO$_CONALREXI
EXTERNAL RDB$_STREAM_EOF

C-------------------------
C Begin function logic
C-------------------------

CALL LIB$ESTABLISH(HANDLER) !establish condition handler
STAT = RDB$INTERPRET(%DESCR(RDO_STR)) !call interpreter

IF ((STAT .AND. 1) .NE. 0) THEN !call was successful

INTERP0 = -1
RETURN !continue main module logic

ELSE

ERR = LIB$MATCH_COND(%REF(STAT),
1 %LOC(RDB$_LOCK_CONFLICT),
2 %LOC(RDB$_DEADLOCK),
3 %LOC(RDO$_INDEXTS),
4 %LOC(RDO$_CONALREXI),
5 %LOC(RDB$_STREAM_EOF))

END IF

GO TO (10,20,30,40,50), ERR !handle expected errors

C--
C LIB$MATCH_COND returns 0, no match found:
C set flag so HANDLER will not handle error,
C call RDB$SIGNAL to print error and quit
C--

FATAL = .TRUE. !unexpected fatal error
CALL RDB$SIGNAL()

10 INTERP0 = 0 !lock conflict
WRITE (3, 1) !write message to error file
WRITE (5, 1) !write message to terminal
RETURN

20 INTERP0 = 0 !deadlock
WRITE (3, 2) !write message to error file
WRITE (5, 2) !write message to terminal
RETURN

(continued on next page)

19–56 Using the Callable RDO Program Environment

Example 19–16 (Cont.) Continuing Program Execution After a Fatal Error
in Callable RDO

C--
C LIB$MATCH_COND returns 3, index already
C defined: set flag so HANDLER will handle error,
C call RDB$SIGNAL to print error and continue
C--

30 FATAL = .FALSE. !index already defined
CALL RDB$SIGNAL() !write errors to terminal

INTERP0 = 1 !return 1 to DEFINNDX
WRITE (3, 3) !write message to error file
WRITE (5, 3) !write message to terminal
RETURN

C--
C LIB$MATCH_COND returns 4, constraint already
C defined: set flag so HANDLER will handle error,
C call RDB$SIGNAL to print error and continue
C--

40 FATAL = .FALSE. !constraint already defined
CALL RDB$SIGNAL() !write errors to terminal

INTERP0 = 1 !return 1 to DEFINCON
WRITE (3, 4) !write message to error file
WRITE (5, 4) !write message to terminal
RETURN

50 INTERP0 = 1 !stream EOF, return 1 to MAIN
RETURN

1 FORMAT (’0’,’Lock conflict, rolling back transaction’)
2 FORMAT (’0’,’Deadlock, rolling back transaction’)
3 FORMAT (’0’,’Nonfatal error, index already defined’)
4 FORMAT (’0’,’Nonfatal error, constraint already defined’)

END
.
.
.

INTEGER*4 FUNCTION HANDLER(SIGARGS, MECHARGS)

IMPLICIT NONE
INCLUDE ’($SSDEF)’

INTEGER*4 SIGARGS(20), MECHARGS(5)
LOGICAL*2 FATAL

COMMON FATAL

EXTERNAL SYS$PUTMSG

C--
C If error is fatal, set condition code to severe
C error and resignal; else print error to terminal,
C set severity level to 3 and continue
C--

(continued on next page)

Using the Callable RDO Program Environment 19–57

Example 19–16 (Cont.) Continuing Program Execution After a Fatal Error
in Callable RDO

PRINT *, ’In HANDLER, evaluate FATAL’

10 IF (FATAL) THEN

SIGARGS(2) = JIBCLR(SIGARGS(2), 0)
SIGARGS(2) = JIBCLR(SIGARGS(2), 1)
SIGARGS(2) = JIBSET(SIGARGS(2), 2)
HANDLER = SS$_RESIGNAL

ELSE

CALL SYS$PUTMSG(SIGARGS)
SIGARGS(2) = JIBSET(SIGARGS(2), 0)
SIGARGS(2) = JIBSET(SIGARGS(2), 1)
SIGARGS(2) = JIBCLR(SIGARGS(2), 2)
HANDLER = SS$_CONTINUE

END IF

RETURN

END

19–58 Using the Callable RDO Program Environment

A
Programming Reference Tables

This appendix contains the following tables:

Table A–1 lists the commonly used Rdb/VMS symbolic error codes for data
manipulation statements.

Table A–2 lists the commonly used Rdb/VMS symbolic error codes for data
definition statements. Refer to Appendix B of the VAX Rdb/VMS RDO and
RMU Reference Manual for information about the location of the files that
contain explanations of the RDO, RDB, and RDMS facility error messages.

Table A–1 Commonly Used Rdb/VMS Symbolic Error Codes for Data
Manipulation

Rdb/VMS Statement Likely Errors Less Likely Errors

COMMIT RDB$_LOCK_CONFLICT
RDB$_DEADLOCK
RDB$_INTEG_FAIL

RDB$_BAD_TRANS_HANDLE
RDB$_NO_PRIV
RDB$_REQ_NO_TRANS
RDO$_STRNOTOPE†

CREATE_SEGMENTED_
STRING

RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_BAD_SEGSTR_HANDLE
RDB$_NO_PRIV
RDB$_REQ_NO_TRANS
RDB$_SEGSTR_NO_TRANS

DATABASE None RDB$_NO_PRIV

END_SEGMENTED_
STRING

None RDB$_BAD_SEGSTR_HANDLE

†Callable RDO programs only.

(continued on next page)

Programming Reference Tables A–1

Table A–1 (Cont.) Commonly Used Rdb/VMS Symbolic Error Codes for
Data Manipulation

Rdb/VMS Statement Likely Errors Less Likely Errors

END_STREAM None RDO$_STRNOTOPE†

ERASE RDB$_LOCK_CONFLICT
RDB$_DEADLOCK
RDB$_INTEG_FAIL

RDB$_READ_ONLY_FIELD
RDB$_READ_ONLY_REL
RDB$_READ_ONLY_TRANS
RDB$_READ_ONLY_VIEW
RDB$_NO_PRIV
RDB$_REQ_NO_TRANS

FETCH RDB$_STREAM_EOF
RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_NO_CUR_REC
RDB$_NO_PRIV
RDB$_WRONUMARG
RDO$_STRNOTOPE†
RDB$_STROUTSCO†

FINISH None RDB$_BAD_DB_HANDLE
RDB$_INTEG_FAIL
RDB$_OPEN_TRANS

FIRST
.
.
.

FROM

RDB$_FROM_NO_MATCH None

FOR RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_ARITH_EXCEPT
RDB$_NO_PRIV
RDB$_WRONUMARG

GET RDB$_LOCK_CONFLICT
RDB$_DEADLOCK
RDB$_SEGMENT†
RDB$_SEGSTR_EOF
RDO$_NO_MORESEG†

RDB$_NO_CUR_REC
RDB$_NO_PRIV
RDB$_NO_RECORD
RDB$_OBSOLETE_METADATA
RDB$_REQ_NO_TRANS
RDB$_SEGSTR_NO_OP
RDB$_SEGSTR_NO_READ
RDB$_WRONGNUMARG

†Callable RDO programs only.

(continued on next page)

A–2 Programming Reference Tables

Table A–1 (Cont.) Commonly Used Rdb/VMS Symbolic Error Codes for
Data Manipulation

Rdb/VMS Statement Likely Errors Less Likely Errors

MODIFY RDB$_LOCK_CONFLICT
RDB$_DEADLOCK
RDB$_INTEG_FAIL
RDB$_NO_DUP
RDB$_NOT_VALID
RDB$_BAD_SEGSTR_
HANDLE

RDB$_ARITH_EXCEPT
RDB$_NO_CUR_REC
RDB$_NO_PRIV
RDB$_NO_SEGSTR_CLOSE
RDB$_OBSOLETE_METADATA
RDB$_READ_ONLY_FIELD
RDB$_READ_ONLY_REL
RDB$_READ_ONLY_TRANS
RDB$_READ_ONLY_VIEW
RDB$_REQ_NO_TRANS
RDB$_SEGSTR_NO_WRITE
RDB$_WRONUMARG

ROLLBACK None RDB$_BAD_TRANS_HANDLE
RDB$_REQ_NO_TRANS

START_SEGMENTED_
STRING

RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_NO_PRIV
RDB$_SEGSTR_NO_TRANS

START_STREAM RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_ARITH_EXCEPT
RDB$_NO_PRIV
RDB$_WRONUMARG
RDO$_STALROPE†

START_TRANSACTION RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDB$_BAD_DB_HANDLE
RDB$_BAD_TRANS_HANDLE
RDB$_EXCESS_TRANS
RDB$_NO_PRIV

STORE RDB$_LOCK_CONFLICT
RDB$_DEADLOCK
RDB$_INTEG_FAIL
RDB$_NO_DUP
RDB$_NOT_VALID

RDB$_NO_PRIV
RDB$_NO_SEGSTR_CLOSE
RDB$_OBSOLETE_METADATA
RDB$_READ_ONLY_REL
RDB$_READ_ONLY_TRANS
RDB$_READ_ONLY_VIEW
RDB$_REQ_NO_TRANS
RDB$_REQ_WRONG_DB
RDB$_SEGSTR_NO_WRITE
RDB$_UNRES_REL
RDB$_WRONUMARG

†Callable RDO programs only.

Programming Reference Tables A–3

Table A–2 Commonly Used Rdb/VMS Symbolic Error Codes for Data
Definition

Rdb/VMS Statement Likely Errors Less Likely Errors

CHANGE RELATION RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_AGGNOTALL
RDO$_ANYNOTALL
RDO$_BAD_END_NAME
RDO$_DBKNOTALL
RDO$_FLDNOTDEF
RDO$_HOWCHANOT
RDO$_RELNOTDEF

DEFINE CONSTRAINT RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_CONALREXI

DEFINE FIELD RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_INDEXTS
RDO$_BAD_END_NAME

DEFINE RELATION RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_AGGNOTALL
RDO$_ANYNOTALL
RDO$_BAD_END_NAME
RDB$_DBKNOTALL
RDO$_REL_EXISTS

DEFINE VIEW RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_BAD_END_NAME
RDO$_FLDNOTCRS
RDO$_FLDNOTDEF
RDO$_RELNOTDEF

DELETE CONSTRAINT RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_CONNOTDEF

DELETE FIELD RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_FLDNOTDEF

DELETE INDEX RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_INDNOTDEF

DELETE RELATION RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_RELNOTDEF

DELETE VIEW RDB$_LOCK_CONFLICT
RDB$_DEADLOCK

RDO$_VIEWNOTDEF

A–4 Programming Reference Tables

Index

$ (dollar sign)
See Dollar sign ($)

A
Access

options
START_TRANSACTION

statement, 6–2
transaction modes, 2–17t

Access conflicts
deadlock, 2–24
START_TRANSACTION statement,

2–11
Accessing a database

See INVOKE DATABASE statement
Accessing an Rdb/VMS database

with BASIC programs, 7–1, 7–2
with COBOL programs, 7–1, 7–2
with C programs, 7–1, 7–2
with FORTRAN programs, 7–1, 7–2
with Pascal programs, 7–1, 7–2

Accessing multiple databases
database handles, 2–5, 9–39
DATABASE statement, 9–4

Accessing records directly
database keys, 9–33

Access mode
defaults, 2–6
updates, 2–8

Access using the query optimizer, 2–29
Advancing in a stream

FETCH, 9–9, 9–13, 19–10
in BASIC programs, 13–22
in FORTRAN programs, 15–22

Altering intermediate files
effects of, 11–6

AND logical operator, 3–11, 3–11t
ANSI format

of COBOL programs, 14–2
ANY relational operator, 3–8t, 3–14 to

3–15, 3–21t
ASCII DATE strings

converting to binary format
in BASIC programs, 13–10
in COBOL programs, 14–11
in C programs, 17–9
in Pascal programs, 18–8

Assignment statement
retrieving database values, 17–17,

18–16
AT END clause

detecting the end of a stream, 9–9
using the BASIC line number in,

13–14
using the BASIC REM statement,

13–14
using with FETCH statement, 9–9,

9–13

Index–1

Attaching to a database
database handles, 9–4
in preprocessed programs, 9–4
using Callable RDO, 9–3

Attaching to multiple databases
database handles, 9–4

Auto-locking
in START_TRANSACTION

RESERVING clause, 2–13

B
BASED ON clause

declaring program TYPES in RDML
programs, 16–2

BASIC calling format
LIB$CALLG, 13–52
LIB$MATCH_COND, 13–47
LIB$SIGNAL, 13–52
RDB$INTERPRET, 13–38
RDB$SIGNAL, 19–44
SYS$GETMSG, 13–54
SYS$PUTMSG, 13–53

BASIC compile qualifiers
using with RDBPRE, 11–3

BASIC line number
within the AT END clause, 13–14

BASIC program
calling LIB$SIGNAL, 13–52
Calling RDB$INTERPRET, 13–38
comments in, 13–2
data definition in, 13–37, 13–40
displaying error messages, 13–51
dynamic queries in, 13–37
equivalent data types in, 8–7t
error detection in, 13–45
error handling in, 13–44
ON ERROR clause, 13–44
performing arithmetic operations,

13–7
preprocessing, 11–1
RDBPRE program interface, 12–1
retrieving field values, 13–21
updating database values, 13–23

BASIC program (Cont.)
using conditional expressions, 13–7

CONTAINING, 13–7
MATCHING, 13–7
STARTING WITH, 13–7

using DATE data types, 13–8
using modules, 13–31
using preprocessor program interface,

13–2
using Rdb/VMS statements, 12–2,

12–3, 13–3
using to access an Rdb/VMS database,

7–1, 7–2
BASIC REM statement

within the AT END clause, 13–14
Batch-update transactions

function, 2–5, 2–6, 2–9
BETWEEN relational operator, 3–8t

C
C

using to access an Rdb/VMS database,
7–2

Callable RDO, 3–1
database handles

usage summary, 9–40t
forming record streams, 19–9
in FORTRAN programs, 15–43
passing database values, 8–4

Callable RDO program
calling SYS$PUTMSG, 19–45
developing, 11–1
displaying error messages, 19–43
error detection, 19–36, 19–38
error handling, 19–34
error recovery, 19–46
executing, 11–1
in preprocessed programs

transactions, 9–47
linking, 11–12
processing, 11–12
program interface, 19–2
Rdb/VMS symbolic error codes

data definition, A–3

Index–2

Callable RDO program
Rdb/VMS symbolic error codes (Cont.)

data manipulation, A–1
return status value, 19–36
specifying database handle scope,

9–39
using in preprocessed programs,

9–46
using RDB$INTERPRET, 19–4
using RDB$MESSAGE_VECTOR,

19–35
Callable RDO statement

in BASIC programs, 13–37, 13–40
in COBOL programs, 14–38, 14–40
in C programs, 17–36, 17–39
in FORTRAN programs, 15–40
in Pascal programs, 18–35, 18–37

CALLG procedure
See LIB$CALLG procedure

Calling a submodule, 9–10
Case sensitivity, 3–8
Catchall handler

displaying error messages, 10–4
C calling format

LIB$CALLG, 17–50
LIB$MATCH_COND, 17–46
LIB$SIGNAL, 17–50
RDB$INTERPRET, 17–37
RDB$SIGNAL, 19–44
SYS$GETMSG, 17–51
SYS$PUTMSG, 17–50

C compile qualifier
using with RDML, 11–10

CDD$DEFAULT
defining, 2–2

CDD/Plus data dictionary
using for database access, 2–2

CDD/Plus definition
BASIC %INCLUDE directive, 12–7
C #dictionary control line, 16–6
COBOL COPY FROM DICTIONARY

statement, 12–8
FORTRAN DICTIONARY statement,

12–10

CDD/Plus definition (Cont.)
including in programs, 9–3
including in RDBPRE programs,

12–4
including in RDML programs, 16–3
Pascal %DICTIONARY statement,

16–7
CDO

invoking, 12–6, 16–4
listing CDD/Plus definitions, 12–5,

16–4
Changing a database value

MODIFY, 9–27
in BASIC programs, 13–27
in Callable RDO, 19–25
in COBOL programs, 14–28
in C programs, 17–26
in FORTRAN programs, 15–29
in Pascal programs, 18–24

Changing a record value
MODIFY *, 15–29

in BASIC programs, 13–28
in COBOL programs, 14–29,

14–30
in C programs, 17–27
in FORTRAN programs, 15–31
in Pascal programs, 18–25

Changing a segmented string
in BASIC programs, 13–29
in Callable RDO programs, 19–28
in C programs, 17–28
in FORTRAN programs, 15–32
in Pascal programs, 18–26
in RDBPRE programs, 9–28
in RDML programs, 9–29

Changing the value of a request handle,
9–44

/CHECK=PERFORM qualifier
use of in RDBPRE programs, 14–13

Closing a database
FINISH, 9–4

Closing a stream
END_STREAM statement, 9–9, 9–13,

19–10

Index–3

COBOL
line terminator

in a DATABASE statement, 14–4
qualifying keywords

IN, 14–5
OF, 14–5

COBOL calling format
LIB$CALLG, 14–52
LIB$MATCH_COND, 14–47
LIB$SIGNAL, 14–53
RDB$INTERPRET, 14–38
RDB$SIGNAL, 19–44
SYS$GETMSG, 14–54
SYS$PUTMSG, 14–53

COBOL compile qualifiers
using with RDBPRE, 11–3

COBOL keyword
IN, 14–5
OF, 14–5

COBOL program
calling LIB$SIGNAL, 14–52
calling RDB$INTERPRET, 14–38
/CHECK=PERFORM qualifier

use of in RDBPRE programs,
14–13

data definition in, 14–38, 14–40
displaying error messages, 14–51
dynamic queries in, 14–38
equivalent data types in, 8–10t
error detection in, 14–45
error handling in, 14–44
in ANSI format, 14–2
in terminal format, 14–2
line terminator

use of in RDBPRE programs,
14–12, 14–14

ON ERROR clause, 14–44
preprocessing, 11–1
RDBPRE program interface, 12–1
retrieving field values, 14–21
updating database values, 14–24
using conditional expressions, 14–5

CONTAINING, 14–5
MATCHING, 14–5

COBOL program
using conditional expressions (Cont.)

STARTING WITH, 14–5
using DATE data types, 14–9
using modules, 14–32
using preprocessor program interface,

14–2
using Rdb/VMS statements, 12–2,

12–3, 14–2
using to access an Rdb/VMS database,

7–1, 7–2
Collating sequence

and relational operators, 3–9
specifying, 1–14

Command file, 1–5
linking, 11–12
RDOINI, 1–6
startup, 1–6

Comment character
in RDBPRE BASIC programs, 13–2

COMMIT statement
contrast with ROLLBACK, 6–11t
updating the database, 6–1, 6–4
writing changes to the database,

2–26
Communication between program

modules, 11–9
Comparison of undeclared and declared

START_STREAM statements, 9–7
Compiling RDML programs, 11–10
Concurrency

START_TRANSACTION option, 2–23
Conditional expression

compound, 3–10
logical operators, 3–10 to 3–15
relational operators, 3–8
using host language variables

BASIC, 13–7
COBOL, 14–5
FORTRAN, 15–6

Condition handling, 10–3
Conflicts with other users, 2–12
Consistency

degree 3, 2–23

Index–4

Consistency (Cont.)
START_TRANSACTION option, 2–23

Constraints, 2–4
and referential integrity, 6–16
effect of auto-locking option, 2–13
evaluating at commit time, 2–20
evaluating at verb time, 2–19
failures, 10–10
handling violations, 10–12
validating input data, 7–7

CONTAINING relational operator,
3–9t, 3–18

internationalization aspects, 3–9
pattern matching, 3–17
using in BASIC programs, 13–7
using in COBOL programs, 14–5
using in FORTRAN programs, 15–6
using in Pascal programs, 18–6

Context variables, 1–3
scope within a declared START_

STREAM . . . END_STREAM
block, 9–14

scope within an undeclared START_
STREAM . . . END_STREAM
block, 9–10, 19–11

scope within FOR loop, 9–6
structured programming, 9–35
using, 3–2
value if descriptive, 4–8

Continuation prompt (cont>), 1–5
Control break report, 4–10
COPY FROM DICTIONARY statement

copying CDD/Plus definitions into
COBOL programs, 12–8

format, 12–9
Copying CDD/Plus definitions

BASIC %INCLUDE directive, 12–7
C #dictionary control line, 16–6
COBOL COPY FROM DICTIONARY

statement, 12–8
data type conflicts, 12–5, 16–3
FORTRAN DICTIONARY statement,

12–10
naming conflicts, 12–4, 16–3

Copying CDD/Plus definitions (Cont.)
Pascal %DICTIONARY statement,

16–7
restrictions, 16–3

C programs
calling LIB$SIGNAL, 17–49
calling RDB$INTERPRET, 17–37
data definition in, 17–36, 17–39
declaring host language variables,

16–2
displaying error messages, 17–48
dynamic queries in, 17–36
equivalent data types in, 8–8t
error detection in, 17–44
error handling in, 17–42
ON ERROR clause, 17–43
preprocessing with RDML, 11–6
RDML program interface, 16–1
retrieving field values, 17–16
storing VARYING STRING data,

17–23
updating database values, 17–20
using DATE data types, 17–8
using modules, 17–31
using preprocessor program interface,

17–2
using RDB$CSTRING_TO_VARYING

macro, 17–23
using Rdb/VMS statements, 16–2
using the RDML environment, 17–1
using to access an Rdb/VMS database,

7–1
using VARYING STRING data types,

17–19
CREATE_SEGMENTED_STRING

statement
See also STORE statement with

segmented strings
storing segmented strings, 9–24,

19–22
in BASIC programs, 13–25
in COBOL programs, 14–27
in FORTRAN programs, 15–27

Creating an RDO log file, 7–8, 7–10

Index–5

CROSS clause, 4–1 to 4–9
reflexive join, 4–9

Cross product, 4–3
CTRL/Z

leaving RDO, 1–8

D
Danish collating sequence

and relational operators, 3–10
Database

access conflicts, 6–1
attachment, 9–3, 9–4
detaching from, 9–4
file types, 2–3
identifying

with database handles, 9–38
journal files (RUJ), 2–25
normalization, 1–4, 4–1
snapshot files (SNP), 2–4
update of, 2–8, 6–2

Database files
RDB file type, 2–3
sample (creating), 1–8t

Database handle, 9–37
attaching to multiple databases, 9–4
effects on creating a shareable image,

11–17
in BASIC programs, 13–36
in COBOL programs, 14–36
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–33
naming, 9–4
passing to RDB$INTERPRET, 9–4
scope of, 9–39
specifying, 9–38
usage summary

Callable RDO programs, 9–40t
RDBPRE preprocessed programs,

9–40t
RDML preprocessed programs,

9–40t
using, 9–38

Database handles
multiple

accessing, 2–5
Database handle scope

EXTERNAL, 9–39
GLOBAL, 9–39
in Callable RDO programs, 9–39
LOCAL, 9–39

Database key (dbkey), 2–23
accessing directly, 9–33
controlling scope of, 9–32
scope of, 9–32
using to retrieve records, 9–33

DATABASE statement
attaching to a database in Callable

RDO programs, 9–3
attaching to multiple databases, 9–4
Callable RDO, 9–3
controlling scope of dbkeys, 9–32

in BASIC programs, 13–31
in COBOL programs, 14–31
in C programs, 17–31
in FORTRAN programs, 15–33
in Pascal programs, 18–29

naming a database, 9–4
preprocessed programs, 9–3
using Callable RDO in BASIC

programs, 13–39
using Callable RDO in COBOL

programs, 14–39
using Callable RDO in C programs,

17–38
using Callable RDO in FORTRAN

programs, 15–42
using Callable RDO in Pascal

programs, 18–36
using Callable RDO in preprocessed

programs, 9–47
using multiple databases, 9–4

Database values
passing to Callable RDO, 8–4
passing to RDBPRE, 8–4
passing to RDML, 8–4

Index–6

Data declaration
DECLARE_VARIABLE clause, 17–7,

18–6
Data definition

functions involved in, 9–1
in BASIC programs, 13–37
in COBOL programs, 14–38
in C programs, 17–36
in FORTRAN programs, 15–40
in Pascal programs, 18–35
symbolic error codes, 19–38, A–3

Data definition statements
Callable RDO, 19–3, 19–29

in BASIC programs, 13–40
in COBOL programs, 14–40
in C programs, 17–39
in FORTRAN programs, 15–43
in Pascal programs, 18–37

Data definition tasks
in any programming language, 7–1
in BASIC programs, 7–1
in COBOL programs, 7–1
in C programs, 7–1
in FORTRAN programs, 7–1
in Pascal programs, 7–1

Data dictionary (CDD/Plus)
See also CDD/Plus
using for database access, 2–2

Data input
interactive, 9–22

Data manipulation
functions involved in, 9–1

Data manipulation language (DML)
embedded, 3–1

Data manipulation statements
in Callable RDO programs, 19–6

Data manipulation task
in BASIC programs, 7–2
in COBOL programs, 7–2
in C programs, 7–2
in FORTRAN programs, 7–2
in Pascal programs, 7–2

DATATRIEVE
record definitions, 1–3

Data type
BASIC equivalents, 8–7t
C equivalents, 8–8t
COBOL equivalents, 8–9t
conversion, 8–4

Callable RDO programs, 8–6
preprocessed programs, 8–5
statistical expressions, 8–6t

DATE
using in BASIC programs, 13–8
using in COBOL programs, 14–9
using in C programs, 17–8
using in FORTRAN programs,

15–7, 15–9
using in Pascal programs, 18–8

declaration for segmented strings,
8–3

determining which to use, 8–5
FORTRAN equivalents, 8–10t
of a field, 7–4, 7–6
Pascal equivalents, 8–11t
Rdb/VMS compared to VMS, 8–2t
segmented string, 8–3
support

host language, 8–2
support by host language, 8–1
support by Rdb/VMS, 8–1
VARYING STRING

using in C programs, 17–19
Data validation checks, 7–4
DATE data type

converting, 8–7
using in BASIC programs, 13–8
using in COBOL programs, 14–9
using in C programs, 17–8
using in FORTRAN programs, 15–7
using in Pascal programs, 18–8

Dbkeys
controlling scope of

in BASIC programs, 13–31
in COBOL programs, 14–31
in C programs, 17–31
in FORTRAN programs, 15–33
in Pascal programs, 18–29

Index–7

Dbkeys (Cont.)
DATABASE statement

in BASIC programs, 13–31
in COBOL programs, 14–31
in C programs, 17–31
in FORTRAN programs, 15–33
in Pascal programs, 18–29

locating records, 2–23
DCL

invoking from RDO, 1–5
Deadlock

access conflicts, 2–24
error handling

preprocessed programs, 10–10
Debugging applications

VMS Debugger, 11–24
DECdtm services, 2–5, 9–46, 13–37,

14–37, 15–40, 17–36, 18–34
Declared START_STREAM statement

retrieving records, 9–13
DECLARE_STREAM statement, 6–8 to

6–10, 9–7
DECLARE_VARIABLE clause

declaring host language variables,
17–7, 18–6

declaring host language variables in
RDML programs, 16–2

described, 17–7, 18–6
Declaring

RDB$INTERPRET in Callable RDO
programs, 19–4

Declaring a distributed transaction
identifier

in BASIC, 13–37
in C, 17–36
in COBOL, 14–38
in FORTRAN, 15–40
in Pascal, 18–35

Declaring a host language variable
in BASIC programs, 9–2, 9–3, 13–6
in Callable RDO programs, 19–7
in COBOL programs, 9–2, 9–3, 14–5
in C programs, 9–2, 17–7, 17–8

Declaring a host language variable
(Cont.)

in FORTRAN programs, 9–2, 9–3,
15–5

in Pascal programs, 9–2, 18–6
Declaring a request handle, 9–43

in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–34

Declaring a stream
with the DECLARE_STREAM

statement, 9–7
Declaring a symbolic error code

in BASIC programs, 13–46
in Callable RDO, 19–39
in COBOL programs, 14–46
in C programs, 17–45
in FORTRAN programs, 15–49
in Pascal programs, 18–43

Declaring a variable
to hold database values

in RDBPRE, 8–5
in RDML, 8–5
in RDO, 8–5

Declaring host language variables
in Pascal programs, 18–7

Default access mode
data manipulation statements, 2–6

Default file type
for preprocessors, 11–1
RDBPRE, 11–2t
RDML, 11–6t

Default handle, 9–37
Default value (SQL)

contrasted with missing value (RDO),
6–15

/DEFAULT_TRANSACTIONS qualifier,
11–8

DEFINE CDD$DEFAULT command
(DCL), 2–2

DEFINE CONSTRAINT statement
checking, 10–13

Index–8

DEFINE VIEW statement, 5–2
Defining default in dictionary, 2–2
Defining permanent logical names

for a detached process, 9–2
Degree 3 consistency, 2–23
Deleting

all the records from a record stream,
9–29

records from more than one relation,
9–29

Deleting a database record
ERASE, 9–29

in BASIC programs, 13–30
in Callable RDO, 19–28
in COBOL programs, 14–30
in C programs, 17–30
in FORTRAN programs, 15–32
in Pascal programs, 18–28

Deleting data
See ERASE statement

Descending index, 2–23
Detached process

running application, 9–2
Detaching from a database, 9–4
Detaching from multiple databases, 9–4
Detecting errors

in BASIC programs, 13–45
in Callable RDO, 19–38
in COBOL programs, 14–45
in C programs, 17–44
in FORTRAN programs, 15–48
in Pascal programs, 18–42
in preprocessed programs, 10–5
START_STREAM, 9–9
symbolic error codes

in BASIC programs, 13–45
in Callable RDO, 19–38
in COBOL programs, 14–45
in C programs, 17–44
in FORTRAN programs, 15–48
in Pascal programs, 18–42
in preprocessed programs, 10–5

Detecting the end of a stream
with the AT END clause, 9–9

Determining if a record stream is empty,
9–6

in BASIC programs, 13–12
in COBOL programs, 14–13
in FORTRAN programs, 15–11

Developing a BASIC, COBOL, or
FORTRAN program

&RDB& statement flag, 12–2
Developing a BASIC program

erasing records, 13–30
forming record streams, 13–12,

13–13
modifying database values, 13–27
passing database values as literals,

13–11
retrieving segmented strings, 13–19
storing database values, 13–24
using host language variables, 13–5

Developing a Callable RDO program
advancing in a stream, 19–10
attaching to multiple databases, 9–4
calling RDB$INTERPRET, 19–4

in BASIC programs, 13–38
in COBOL programs, 14–38
in FORTRAN programs, 15–41

declaring host language variables,
19–6

declaring RDB$INTERPRET, 19–4
erasing records, 19–28
forming record streams, 19–9
modifying database values, 19–25
passing database values as literals,

19–8
prototyping queries, 7–3
retrieving field values, 19–16
retrieving segmented strings, 19–13
storing database values, 19–18
storing segmented strings, 19–22
testing statements, 7–9
updating database values, 19–17
using data definition statements,

19–29
using data manipulation statements,

19–6

Index–9

Developing a Callable RDO program
(Cont.)

using Rdb/VMS statements, 19–4
validating input data

constraints, 7–7
index values, 7–7
VALID IF, 7–7

Developing a COBOL program
declaring host language variables,

14–4
erasing records, 14–30
forming record streams, 14–12
modifying database values, 14–28
passing database values as literals,

14–12
retrieving segmented strings, 14–19
storing database values, 14–24

Developing a C program
declaring host language variables,

17–5
erasing records, 17–30
forming record streams, 17–10, 17–11
modifying database values, 17–26
passing database values as literals,

17–10
storing database values, 17–21
storing segmented strings, 17–24
using RDML statements, 17–3

Developing a FORTRAN program
declaring host language variables,

15–5
erasing records, 15–32
forming record streams, 15–11
modifying database values, 15–29
passing database values as literals,

15–10
retrieving segmented strings, 15–18
storing database values, 15–24

Developing an Rdb/VMS program
in BASIC, 7–3, 13–1
in C, 7–3
in COBOL, 7–3, 14–1
in FORTRAN, 7–3, 15–1
in Pascal, 7–3, 18–1

Developing a Pascal program, 18–2
declaring host language variables,

18–5
erasing records

in Pascal programs, 18–28
forming record streams, 18–9, 18–10,

18–11
modifying database values, 18–24
passing database values as literals,

18–9
storing database values, 18–19
storing segmented strings, 18–22

Developing a preprocessed program
attaching to multiple databases, 9–4
forming record streams, 9–5, 9–6
prototyping queries, 7–3
starting a transaction, 9–33
testing statements, 7–9
validating input data

constraints, 7–7
index values, 7–7
VALID IF, 7–7

Developing a program
advancing in a stream, 9–9, 9–13
erasing records, 9–29
modifying database values, 9–27
retrieving records, 9–6
retrieving segmented strings, 9–18
storing database values, 9–23
storing segmented strings, 9–24,

9–25
in BASIC programs, 13–25
in COBOL programs, 14–27
in C programs, 17–24
in FORTRAN programs, 15–27
in Pascal programs, 18–22

Developing a query
using the SET OUTPUT statement,

7–8
Developing COBOL programs

forming record streams, 14–14
Developing FORTRAN programs

forming record streams, 15–12

Index–10

#dictionary control line
copying CDD/Plus definitions into a C

program, 16–6
format, 16–6

DICTIONARY statement
copying CDD/Plus definitions into

FORTRAN programs, 12–10
FORTRAN format, 12–10

%DICTIONARY statement
Pascal format, 16–7

Differences between RDO statements
and Callable RDO, 7–9
and preprocessed program, 7–9

Displaying an error message
catchall handler, 10–4
LIB$SIGNAL

in BASIC programs, 13–51
in COBOL programs, 14–51
in C programs, 17–49
in FORTRAN programs, 15–53
in Pascal programs, 18–48

RDB$MESSAGE_VECTOR
in BASIC programs, 13–53
in COBOL programs, 14–53
in C programs, 17–50
in FORTRAN programs, 15–55
in Pascal programs, 18–49

RDB$SIGNAL
in Callable RDO, 19–43

SYS$GETMSG
in BASIC programs, 13–53
in Callable RDO, 19–45
in COBOL programs, 14–53
in C programs, 17–51
in FORTRAN programs, 15–56
in Pascal programs, 18–50

SYS$PUTMSG
in BASIC programs, 13–53
in Callable RDO, 19–45
in COBOL programs, 14–53
in C programs, 17–50
in FORTRAN programs, 15–55
in Pascal programs, 18–49

traceback handler, 10–4

Displaying a record
See Retrieving a record

Distinguishing between databases
database handles, 9–38

Distributed transaction identifiers, 9–46
declaring in BASIC, 13–37
declaring in C, 17–36
declaring in COBOL, 14–38
declaring in FORTRAN, 15–40
declaring in Pascal, 18–35
initializing in BASIC, 13–37
initializing in C, 17–36
initializing in COBOL, 14–38
initializing in FORTRAN, 15–40
initializing in Pascal, 18–35
using in BASIC, 13–37
using in C, 17–36
using in COBOL, 14–37
using in FORTRAN, 15–40
using in Pascal, 18–34

Distributed transactions, 2–5, 9–46
DML

See Data Manipulation Language
Dollar sign ($)

DCL invoke command, 1–5
Duplicate index value

validating input data, 7–7
Duplicate records

eliminating (REDUCED TO clause),
3–18

DUPLICATES ARE NOT ALLOWED
clause

checking, 10–12
handling violations

preprocessed programs, 10–12
Dynamic query

in BASIC programs, 13–37
in COBOL programs, 14–38
in C programs, 17–36
in FORTRAN programs, 15–40
in Pascal programs, 18–35

Index–11

E
EDIT statement, 1–6, 1–11, 7–10

EDIT * statement, 7–10
Eliminating duplicate records, 3–18
Ending a transaction

COMMIT statement, 2–26
ROLLBACK statement, 2–28

End-of-stream error handling
Callable RDO, 19–46

END_STREAM statement
closing an open stream, 9–9, 9–13,

19–10
Entering data, 6–1 to 6–3
EQ (equal) relational operator, 3–8t
Equivalent data types

in BASIC, 8–7t
in C, 8–8t
in COBOL, 8–9t
in FORTRAN, 8–10t
in Pascal, 8–11t

ERASE statement, 6–7 to 6–8
deleting database records, 9–29

in BASIC programs, 13–30
in Callable RDO, 19–28
in COBOL programs, 14–30
in C programs, 17–30
in FORTRAN programs, 15–32
in Pascal programs, 18–28

using ON ERROR clause, 15–32
Erasing

all the records in a record stream,
9–29

data, 6–7 to 6–8
records from more than one relation,

9–29
Error detection

ON ERROR clause, 7–9
Error handler

catchall, 10–3
design, 10–2
failing to use, 10–2

Error handler (Cont.)
general purpose

for RDML programs, 17–43,
18–42

traceback, 10–3
Error message

in BASIC programs, 13–51
in Callable RDO programs, 19–43
in COBOL programs, 14–51
in C programs, 17–48
in FORTRAN programs, 15–53
in Pascal programs, 18–47
in preprocessed programs, 10–7
user-supplied, 10–8

creating, 10–8
Errors

detecting, 10–1, 10–3
in BASIC programs, 13–45
in Callable RDO, 19–38
in COBOL programs, 14–45
in C programs, 17–44
in FORTRAN programs, 15–48
in Pascal programs, 18–42

displaying, 10–3
run-time

detecting, 10–4
software, 2–4

Evaluating symbolic error codes, 10–6
Exception conditions

constraint violations
preprocessed programs, 10–12

end-of-stream condition
Callable RDO, 19–46

fatal errors
in BASIC programs, 13–55
in Callable RDO, 19–49
in COBOL programs, 14–55
in C programs, 17–52
in FORTRAN programs, 15–57
in Pascal programs, 18–52
in preprocessed programs, 10–13

handling, 10–1
integrity failures

in preprocessed programs, 10–12

Index–12

Exception conditions (Cont.)
multi-user conflicts

preprocessed programs, 10–10
violations of DUPLICATES ARE NOT

ALLOWED
preprocessed programs, 10–12

Exclusive share mode, 2–16
START_TRANSACTION statement,

2–11
Exclusive write transaction

START_TRANSACTION statement,
2–11

Executing
Callable RDO programs, 11–1
preprocessed programs, 11–1
RDBPRE and RDML programs,

11–24
EXIT statement

leaving RDO, 1–8
Expression

compound conditional, 3–10
conditional, 3–8 to 3–15
literal, 3–4
record selection, 1–7, 3–1
value, 3–2, 3–4, 3–6

/EXTEND qualifier
using in RDBPRE FORTRAN

programs, 15–2
EXTERNAL scope

database handle scope, 9–39

F
Failure

hardware, 2–4
inconsistencies, 2–4

Fatal error, 10–10
calling LIB$SIGNAL, 10–14, 15–58,

17–53, 18–52
in BASIC programs, 13–56
in COBOL programs, 14–56
in FORTRAN programs, 15–57

calling RDB$SIGNAL, 19–50
continuing after

in Callable RDO, 19–53

Fatal error (Cont.)
handling

in BASIC programs, 13–55
in Callable RDO, 19–49
in COBOL programs, 14–55
in C programs, 17–52
in FORTRAN programs, 15–57
in Pascal programs, 18–52
in preprocessed programs, 10–13

FETCH statement, 6–8 to 6–11
advancing in a stream, 9–9, 9–13,

19–10
in BASIC programs, 13–22
in FORTRAN programs, 15–22

Field
determining data type of, 7–4, 7–6
determining size of, 7–4, 7–6
indexed, 7–6
modifying, 9–28

in BASIC programs, 13–28
in COBOL programs, 14–29,

14–30
in C programs, 17–27
in FORTRAN programs, 15–31
in Pascal programs, 18–25

Field definitions
shown by RDO SHOW statements,

7–4
File

command, 1–5, 1–6
output, 3–3

File type
database (RDB), 2–3
recovery-unit journal (RUJ), 2–25
snapshot (SNP), 2–4

Finishing a database, 9–4
Finishing multiple databases, 9–4
FINISH statement

closing a database, 9–4
detaching from a database, 9–4

Finnish collating sequence
and relational operators, 3–10

FIRST n clause, 3–7
Foreign key, 2–23

Index–13

Foreign key (Cont.)
and referential integrity, 6–16

FOR loop
using a START_STREAM statement

in, 9–10
Forming a record stream

in BASIC programs, 13–12
in COBOL programs, 14–12
in C programs, 17–10
in FORTRAN programs, 15–11
in Pascal programs, 18–9
START_STREAM statement

declared, 9–13
in Callable RDO, 19–9
undeclared, 9–9

the declared START_STREAM
statement
in BASIC programs, 13–13
in COBOL programs, 14–14
in C programs, 17–11
in FORTRAN programs, 15–12
in Pascal programs, 18–11

using a FOR statement
in BASIC programs, 13–12
in COBOL programs, 14–12
in C programs, 17–11
in FORTRAN programs, 15–11
in Pascal programs, 18–10

FOR statement
determining if a record is found, 9–6

in BASIC programs, 13–12
in C, 17–11
in COBOL programs, 14–13
in FORTRAN programs, 15–11
in Pascal, 18–10

forming record streams, 9–6
in BASIC programs, 13–12
in COBOL programs, 14–12
in C programs, 17–11
in FORTRAN programs, 15–11
in Pascal programs, 18–10

loops, 4–9
nested, 4–9 to 4–11, 6–14
retrieving segmented strings, 9–17

FOR statement (Cont.)
scope of context variable, 9–6
using in Callable RDO, 19–3

FORTRAN calling format
LIB$CALLG, 15–55
LIB$MATCH_COND, 15–50
LIB$SIGNAL, 15–55
RDB$INTERPRET, 15–41
RDB$SIGNAL, 19–44
SYS$GETMSG, 15–56
SYS$PUTMSG, 15–55

FORTRAN compile qualifiers
using with RDBPRE, 11–3

FORTRAN program
calling LIB$SIGNAL, 15–54
calling RDB$INTERPRET, 15–41
continuing after a fatal error, 19–54
converting prototypes, 15–2
data definition in, 15–40, 15–43
displaying error messages, 15–53
dynamic queries in, 15–40
equivalent data types in, 8–10t
error detection in, 15–48
error handling in, 15–47
/EXTEND qualifier

using in RDBPRE programs,
15–2

ON ERROR clause, 15–47
preprocessing, 11–1
RDBPRE program interface, 12–1
retrieving field values, 15–21
updating database values, 15–24
using conditional expressions, 15–6

CONTAINING, 15–6
MATCHING, 15–6
STARTING WITH, 15–6

using DATE data types, 15–7, 15–9
using modules, 15–34
using preprocessor program interface,

15–2
using Rdb/VMS statements, 12–2,

12–3, 15–2
using to access an Rdb/VMS database,

7–1, 7–2

Index–14

French collating sequence
and relational operators, 3–10

Functions
in data definition, 9–1
in data manipulation, 9–1

G
GE (greater than or equal to) relational

operator, 3–8t
GET * statement

retrieving field values, 9–20
GET statement

retrieving database values, 9–21
retrieving field values, 9–20, 19–16

in BASIC programs, 13–21
in Callable RDO programs, 19–16
in COBOL programs, 14–21
in C programs, 17–16
in FORTRAN programs, 15–21
in Pascal programs, 18–15

retrieving record values
in BASIC programs, 13–22
in Callable RDO programs, 19–16
in COBOL programs, 14–22
in C programs, 17–17
in FORTRAN programs, 15–22
in Pascal programs, 18–16

retrieving segmented strings, 9–19
in BASIC programs, 13–19e
in COBOL, 14–19e
in FORTRAN programs, 15–19e

retrieving statistical values, 9–20,
9–21
in BASIC programs, 13–23
in Callable RDO programs, 19–16
in COBOL programs, 14–23
in C programs, 17–18
in FORTRAN programs, 15–23
in Pascal programs, 18–17

GLOBAL
database handle scope, 9–39

GT (greater than) relational operator,
3–8t

G_FLOATING qualifier
and RDBPRE preprocessor, 11–3
and RDML preprocessor, 11–10

H
Handles

controlling initialization of
in RDML, 11–9

database, 9–37
in BASIC programs, 13–36
in COBOL programs, 14–36
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–33

default, 9–37
explicit versus implicit, 9–37
request, 9–37

in BASIC programs, 13–36
in COBOL programs, 14–36
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–33

transaction, 9–37
in BASIC programs, 13–36
in COBOL programs, 14–36
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–33

value of, 9–38
Handling exception conditions

data definition
error codes, A–3

data manipulation
error codes, A–1

HELP statement, 1–5, 1–6
Host language compile qualifiers

with RDBPRE, 11–3
with RDML, 11–10

Host language variables
declaring in BASIC programs, 9–2

to 9–3, 13–6
declaring in Callable RDO programs,

19–7

Index–15

Host language variables (Cont.)
declaring in COBOL programs, 9–2

to 9–3, 14–4
declaring in C programs, 9–2 to 9–3,

16–2, 17–5
declaring in FORTRAN programs,

9–2 to 9–3, 15–5
declaring in Pascal programs, 9–2 to

9–3, 16–2, 18–7
declaring with DECLARE_VARIABLE

clause, 17–7, 18–6
in BASIC programs, 9–2
in COBOL programs, 9–2
in C programs, 9–2
in FORTRAN programs, 9–2
in Pascal programs, 9–2
passing to RDB$INTERPRET, 19–6

I
Identifier

distributed transaction, 9–46
Identifying

a database, 9–38
a query, 9–41
a request, 9–41
a transaction, 9–40

%INCLUDE directive
copying CDD/Plus definitions into a

BASIC program, 12–7
format, 12–7

Including CDD/Plus definitions
in programs, 9–3

Index design
impact on program execution, 7–4

Indexed fields, 7–6
Indexes

descending, 2–23
types, 2–23
with record locking, 2–16

/INITIALIZE_HANDLES
RDBPRE qualifier, 9–38
RDML qualifier, 9–38, 11–9

Initializing
a distributed transaction identifier

in BASIC, 13–37
in C, 17–36
in COBOL, 14–38
in FORTRAN, 15–40
in Pascal, 18–35

handles
effect of /INITIALIZE_HANDLES

qualifier, 9–38
effect of /NOINITIALIZE_

HANDLES qualifier, 9–38
in RDML, 11–9

request handles, 9–43
in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–34

Input file type
defaults for preprocessors, 11–1

Integrity failure, 10–10
handling

preprocessed programs, 10–12
Intermediate file

effects of altering, 11–6
keeping, 11–6

Internationalization
Rdb/VMS support for, 1–14
relational operators, 3–9

INVOKE DATABASE statement, 2–1
opening a database, 2–1
remote access, 2–3
with dictionary path name, 2–2
with file specification, 2–2, 2–4

Invoking
CDO, 12–6, 16–4
preprocessors, 11–1
RDBPRE

using a defined symbol, 11–2
using the RUN command, 11–2

RDML
using a defined symbol, 11–7

Index–16

Issuing the START_STREAM statement,
9–8

J
Join

See also Relational join
join terms (indexed), 4–7
reflexive join, 4–9

Joining
outer join, 6–15

Journal files (RUJ)
transactions, 2–28
updating database, 2–25

L
LE (less than or equal to) relational

operator, 3–8t
LIB$CALLG routine

in BASIC calling format, 13–52
in C calling format, 17–50
in COBOL calling format, 14–52
in FORTRAN calling format, 15–55
in Pascal calling format, 18–49
using with LIB$SIGNAL, 15–54,

17–50, 18–49
in BASIC programs, 13–52
in COBOL programs, 14–52
in C programs, 17–49
in FORTRAN programs, 15–54
in Pascal programs, 18–48

LIB$MATCH_COND routine
in BASIC calling format, 13–47
in C calling format, 17–46
in COBOL calling format, 14–47
in FORTRAN calling format, 15–50
in Pascal calling format, 18–44
symbolic error codes

Callable RDO, 19–40
in BASIC, 13–46
in COBOL programs, 14–46
in C programs, 17–45
in FORTRAN programs, 15–49
in Pascal programs, 18–43

LIB$SIGNAL routine
error handling

in BASIC programs, 13–51
in COBOL programs, 14–51
in C programs, 17–49
in FORTRAN programs, 15–53
in Pascal programs, 18–48

methods of calling, 13–52, 14–52,
15–54, 17–49, 18–48

using
in BASIC programs, 13–52
in COBOL programs, 14–52
in C programs, 17–49
in FORTRAN programs, 15–54
in Pascal programs, 18–48

LIB$STOP routine
program termination, 10–2

Line terminator
use of in RDBPRE COBOL programs,

14–4, 14–12, 14–14
/LINKAGE=GLOBAL_SYMBOLS

RDML qualifier, 11–9
/LINKAGE=PROGRAM_SECTIONS

RDML qualifier, 11–9
Linking

Callable RDO programs, 11–12
preprocessed programs, 11–12
RDML, RDBPRE, and SQL modules,

11–13
using a command file, 11–12

List file
creating

for RDML, 11–8
/LISTING

RDML qualifier, 11–8
Listing CDD/Plus definitions, 12–5
Literal

passing database values, 19–8
in BASIC, 13–11
in C, 17–10
in COBOL programs, 14–12
in FORTRAN, 15–10
in Pascal, 18–9

printing, 3–3

Index–17

Literal expression, 3–4
LOCAL scope

database handle scope, 9–39
Lock conflict

error handling in
preprocessed programs, 10–10

Locking a record
See Record locking

Lock promotion, 2–9
Log file

of an RDO session, 7–8, 7–10
Logical operator, 3–10 to 3–15

AND, 3–11, 3–11t
NOT, 3–13, 3–13t
OR, 3–12, 3–13t

Loops
FOR statement, 4–9

Low-order bit
testing, 19–36

LT (less than) relational operator, 3–8t

M
Manipulating a record value

STORE * statement, 9–23, 15–24
in BASIC programs, 13–25
in COBOL programs, 14–26
in C programs, 17–22
in FORTRAN programs, 15–26
in Pascal programs, 18–21

MAR files
intermediate files produced by

RDBPRE, 11–4
MATCHING relational operator, 3–9t,

3–15
internationalization aspects, 3–9
using in

Pascal programs, 18–6
using in BASIC programs, 13–7
using in COBOL programs, 14–5
using in FORTRAN programs, 15–6

Metadata, 2–4
MF_PERSONNEL database

See Multifile database

MISSING relational operator, 3–9t,
6–12

Missing value, 6–12
contrasted with default value (SQL),

6–15
retrieving, 6–12
sorted as highest value, 6–13
storing, 6–15

MISSING_VALUE clause, 6–12
MODIFY * statement

modifying all the fields in a record,
9–28
in BASIC programs, 13–28
in COBOL programs, 14–29,

14–30
in C programs, 17–27
in FORTRAN programs, 15–31
in Pascal programs, 18–25

Modifying
all the fields in a record, 9–28

in BASIC programs, 13–28
in COBOL programs, 14–29,

14–30
in C programs, 17–27
in FORTRAN programs, 15–31
in Pascal programs, 18–25

all the records in a record stream,
9–27

data, 6–4 to 6–5
one relation, 6–4 to 6–5
queries, 1–11
segmented strings

in BASIC programs, 13–29
in Callable RDO programs, 19–28
in C programs, 17–28
in FORTRAN programs, 15–32
in Pascal programs, 18–26
in RDBPRE programs, 9–28
in RDML programs, 9–29

selected records in a record stream,
9–27

MODIFY statement, 6–4 to 6–5
modifying database values, 9–27

in BASIC programs, 13–27

Index–18

MODIFY statement
modifying database values (Cont.)

in Callable RDO, 19–25
in COBOL programs, 14–28
in C programs, 17–26
in FORTRAN programs, 15–29
in Pascal programs, 18–24

ON ERROR, 15–29
Modular programming

in BASIC programs, 13–31
in COBOL programs, 14–32
in C programs, 17–31
in FORTRAN programs, 15–34
in Pascal programs, 18–30
in preprocessed programs, 9–35

Multifile database, 1–3
sample personnel database, 1–8

Multiline statements
with continuation character, 1–7

Multi-user access
START_TRANSACTION statement,

2–4
Multi-user conflicts, 10–10

handling in
preprocessed programs, 10–10

N
Naming a database, 9–4
Naming a database handle, 9–4
NE (not equal to) relational operator,

3–8t
Nested FOR loop, 4–9 to 4–11, 6–14
/NODEFAULT_TRANSACTIONS

qualifier, 11–8
and the START_TRANSACTION

statement, 9–34
reducing program overhead

in RDML programs, 9–4
/NOINITIALIZE_HANDLES

in RDBPRE qualifier, 9–38
in RDML qualifier, 9–38
RDML qualifier, 11–9

/NOLISTING
RDML qualifier, 11–8

/NOOUTPUT
RDML qualifier, 11–8

Normalization, 1–4, 4–1
Norwegian collating sequence

and relational operators, 3–9
NOT ANY relational operator, 3–14 to

3–15
NOT logical operator, 3–13, 3–13t

O
Object file

output from preprocessors, 11–4
ON ERROR clause

and the ROLLBACK statement, 10–5
and the START_TRANSACTION

statement, 10–5
design of, 10–11
detecting errors, 7–9
detecting run-time errors, 10–4

in BASIC programs, 13–44
in COBOL programs, 14–44
in C programs, 17–43
in FORTRAN programs, 15–47
in Pascal programs, 18–41

including in ERASE, 15–32
including in MODIFY, 15–29
using in declared START_STREAM,

9–13
using in START_STREAM

statements, 9–9
Opening a database

See INVOKE DATABASE statement
Operator

logical
See Logical operator

Operators
relational

See Relational operator
internationalization support, 3–9

Optimizer
See Query optimizer

Index–19

Order of statements
with the declared START_STREAM

statement, 9–8
with the undeclared START_STREAM

statement, 9–8
OR logical operator, 3–12, 3–13t
Outer joins, 6–15
Output

controlling
in RDML, 11–8

/OUTPUT
RDML qualifier, 11–8

Output files
from RDBPRE, 11–4

P
Parameter

See Host language variables
Pascal calling format

LIB$CALLG, 18–49
LIB$MATCH_COND, 18–44
LIB$SIGNAL, 18–49
RDB$INTERPRET, 18–35
RDB$SIGNAL, 19–44
SYS$GETMSG, 18–51
SYS$PUTMSG, 18–50

Pascal compile qualifier
using with RDML, 11–10

Pascal program
calling LIB$SIGNAL, 18–48
calling RDB$INTERPRET, 18–35
data definition in, 18–35, 18–37
declaring host language variables,

16–2
displaying error messages, 18–47
dynamic queries in, 18–35
equivalent data types in, 8–11t
error detection in, 18–42
error handling, 18–41
preprocessing, 11–1

with RDML, 11–6
RDML preprocessor program

interface, 18–2

Pascal program (Cont.)
RDML program interface, 16–1
updating database values, 18–18
using DATE data types, 18–8
using modules, 18–30
using RDML statements, 16–2
using the RDML environment, 18–1
using to access an Rdb/VMS database,

7–1, 7–2
Passing a database value

as a literal, 19–8
in BASIC, 13–11
in C, 17–10
in COBOL programs, 14–12
in FORTRAN, 15–10
in Pascal, 18–9

data type conversion, 8–4
Passing a host language variable

in Callable RDO programs, 19–6
Passing a parameter

to RDB$INTERPRET, 8–6
using !VAL, 19–7

Passing a statement
to RDB$INTERPRET, 7–2

Passing RDB$MESSAGE_VECTOR,
15–54, 17–50, 18–49

in BASIC programs, 13–52
in COBOL programs, 14–52
in C programs, 17–49
in FORTRAN programs, 15–54
in Pascal programs, 18–48

Passing RDB$STATUS, 15–54, 17–50,
18–49

in BASIC programs, 13–52
in COBOL programs, 14–52, 14–53
in C programs, 17–49, 17–50
in FORTRAN programs, 15–54,

15–55
in Pascal programs, 18–48

Pattern matching, 3–15 to 3–18
Performing data definition tasks within

preprocessed programs, 9–46
Personnel database (sample)

files to create, 1–8t

Index–20

PL/I calling format
RDB$INTERPRET, 19–4

Preprocessed programs
data type conversions, 8–5
developing, 11–1
displaying error messages, 10–7
error detection in, 10–5
error handling in, 10–3
error recovery in, 10–10
executing, 11–1
linking, 11–12
ON ERROR clause, 10–4

in Pascal programs, 18–41
Rdb/VMS symbolic error codes

data definition, A–3
data manipulation, A–1

Preprocessing
in BASIC, 11–1
in COBOL, 11–1
in C programs, 11–6
in FORTRAN, 11–1
in Pascal programs, 11–6

Preprocessor, 1–11
declaring databases, 9–3
default input file types, 11–1
invoke format, 11–1
RDBPRE, 7–1
RDML, 7–1
return status value

RDB$STATUS, 10–5, 13–45,
13–52, 13–54, 14–45, 14–53,
14–54, 15–48, 15–55, 15–56,
17–44, 17–50, 17–52, 18–42,
18–49, 18–51

Primary key, 2–23
and referential integrity, 6–16

PRINT statement, 3–2
literals, 3–3

Processing Callable RDO programs,
11–12

Program interface
BASIC preprocessor, 12–1, 13–2
Callable RDO, 19–2
COBOL preprocessor, 12–1, 14–2

Program interface (Cont.)
C preprocessor, 16–1
FORTRAN preprocessor, 12–1, 15–2
Pascal preprocessor, 16–1
RDML/C preprocessor, 17–2
RDML/Pascal preprocessor, 18–2

Program modules
communication between

in RDML, 11–9
Program prototype

testing statements, 7–9
Programs

retrieving database values, 9–21
retrieving field values, 9–20
terminating

LIB$STOP, 10–2
updating database values, 9–22, 9–31
using modules, 9–35

Prompting for data, 9–22
Protected share mode, 2–16
PSECTs

attributes
viewing, 11–16

generated
by RDBPRE, 11–15
by RDML, 11–15

Q
Query

design, 7–5
execution

using the query optimizer, 2–29
in application programs, 3–1
modifying, 1–11
supplying at run-time

in BASIC programs, 13–37
in COBOL programs, 14–38
in C programs, 17–36
in FORTRAN programs, 15–40
in Pascal programs, 18–35

testing, 3–1
Query optimizer, 2–28 to 2–30

access strategies of, 2–29
join predicate, 2–29

Index–21

Query optimizer (Cont.)
processing queries, 2–29
strategies used by, 2–29
tasks, 2–29

R
&RDB& statement flag

format, 12–2
RDB$CSTRING_TO_VARYING macro

used in C, 17–23
RDB$INTERPRET function

calling in BASIC programs, 13–38
calling in Callable RDO programs,

19–4
calling in COBOL programs, 14–38
calling in C programs, 17–37
calling in FORTRAN programs,

15–41
calling in Pascal programs, 18–35
calling in PL/I programs, 19–4
declaring in Callable RDO programs,

19–4
passing host language variables,

19–6
passing statements to, 7–2

RDB$LENGTH
segment length variable, 9–17, 9–25,

19–13
used with segmented string retrieval,

3–22
RDB$MESSAGE_VECTOR, 14–45

Callable RDO, 19–35
displaying error messages

in BASIC programs, 13–53
in COBOL programs, 14–53
in C programs, 17–50
in FORTRAN programs, 15–55
in Pascal programs, 18–49

passing to LIB$SIGNAL, 15–54,
17–50, 18–49
in BASIC programs, 13–52
in COBOL programs, 14–52
in C programs, 17–49
in FORTRAN programs, 15–54

RDB$MESSAGE_VECTOR
passing to LIB$SIGNAL (Cont.)

in Pascal programs, 18–48
RDB$MISSING, 6–14, 6–15, 6–17

example with MODIFY statement,
6–14

RDB$RELEASE_REQUEST
using

in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–36
in FORTRAN programs, 15–39
in Pascal programs, 18–34

RDB$SIGNAL routine
in BASIC calling format, 19–44
in C calling format, 19–44
in COBOL calling format, 19–44
in FORTRAN calling format, 19–44
in Pascal calling format, 19–44

RDB$STATUS value, 10–5
passing to LIB$SIGNAL, 13–52,

14–53, 15–55, 17–50, 18–49
in BASIC programs, 13–52
in COBOL programs, 14–52
in C programs, 17–50
in FORTRAN programs, 15–55

preprocessor return status, 13–54,
14–54, 15–56, 17–52, 18–51

RDB$VALUE
segment variable, 9–17, 9–25, 19–13
used with segmented string retrieval,

3–22
RDB file type

See Database file
RDBPRE

and G-floating data, 11–3
default file types, 11–2t
error message output file, 11–6
intermediate files, 11–4

keeping, 11–6
invoking with a defined symbol, 11–2
invoking with the RUN command,

11–2

Index–22

RDBPRE (Cont.)
output files

error messages, 11–6
source, 11–4

passing database values, 8–4
RDBPRE intermediate files

effects of altering, 11–6
keeping, 11–6

Rdb/VMS
data types

See Data type
message vector

RDB$MESSAGE_VECTOR,
15–54, 17–50, 18–49

statements
using in BASIC programs, 12–2,

12–3, 13–3
using in Callable RDO programs,

19–4
using in COBOL programs, 12–2,

12–3, 14–2
using in FORTRAN programs,

12–2, 12–3, 15–2
symbolic error codes

data definition, A–3
data manipulation, A–1

Rdb/VMS data types
compared to VMS, 8–2

RDML
database handles

usage summary, 9–40t
default file types, 11–6t
error handling in, 11–11
invoking with a defined symbol, 11–7
Pascal

differences between RDML and
Rdb/VMS DML, 18–2

passing database values, 8–4
preprocessor

C environment, 17–2
Pascal environment, 18–2

run-time support, 11–11
statements

converting queries to C, 17–3

RDML
statements (Cont.)

converting queries to Pascal,
18–2

C programs, overview, 17–3
Pascal programs, overview, 18–2
using FOR segmented string (C),

17–14
using FOR segmented string

(Pascal), 18–14
using in C programs, 16–2, 17–3
using in Pascal programs, 16–2,

18–2
RDML$SIGNAL_ERROR

general purpose error handler for
RDML programs, 11–11, 17–43,
18–42

RDML programs
compiling, 11–10

RDML qualifiers
/DEFAULT_TRANSACTIONS, 11–8
/INITIALIZE_HANDLES, 11–9
/LINKAGE=GLOBAL_SYMBOLS,

11–9
/LINKAGE=PROGRAM_SECTIONS,

11–9
/LISTING, 11–8
/NODEFAULT_TRANSACTIONS,

11–8
/NOINITIALIZE_HANDLES, 11–9
/NOLISTING, 11–8
/NOOUTPUT, 11–8
/OUTPUT, 11–8
using, 11–7

RDO
Callable, 3–1
command recall, 1–5
developing queries, 7–3
exiting, 1–8
invoking, 1–5
program prototype

in BASIC program development,
7–3

Index–23

RDO
program prototype (Cont.)

in Callable RDO program
development, 7–3

in COBOL program development,
7–3

in FORTRAN program
development, 7–3

in Pascal program development,
7–3

testing statements, 7–9
statement recall, 7–10

RDOINI
logical name, 1–6
startup file, 1–6

RDO session
creating a log file, 7–8

RDO SHOW statements, 7–4
using to see field definitions, 7–4
using to see relation definitions, 7–4
using to see view definitions, 7–4

Read-only transactions
function, 2–7

Read/write transaction
START_TRANSACTION statement,

2–8, 2–11
READY statement

attaching to a database in
preprocessed programs, 9–4

/REAL_SIZE=GFLOAT qualifier
and RDBPRE preprocessor, 11–3

Reattaching to a database
effects of, 9–4

Recalling statements
in RDO, 7–10

Record
accessing directly

using database keys, 9–33
definitions, 1–3
deleting, 9–29
deleting from more than one relation,

9–29
erasing, 9–29

Record (Cont.)
erasing from more than one relation,

9–29
modifying, 9–27
snapshot file versions, 2–8
streams, 3–1 to 3–20, 6–8 to 6–11
unique records, 3–20

Record locking
access conflicts, 2–17t
conflict resolution, 2–17
consistency, 2–13
exclusive share mode, 2–16
lock promotion, 2–9
protected share mode, 2–16
read locks, 2–5
shared share mode, 2–15
updating the database, 6–4
using indexes, 2–16
waiting, 2–17

Record selection expression
CROSS clause, 4–1 to 4–9
FIRST n clause, 3–7
REDUCED TO clause, 3–18
SORTED BY clause, 3–4
using, 1–7, 3–1
WITH clause, 3–10 to 3–15

Record stream
forming, 9–5
forming with FOR, 9–6

Recovery
Callable RDO programs, 19–46
preprocessed programs, 10–10

Recovery-unit journal
See Journal files (RUJ)

REDUCED TO clause, 3–18
compared to UNIQUE operator, 3–21

Reduce key
using, 3–18

Reducing program overhead
in RDML

/NODEFAULT_TRANSACTIONS
qualifier, 9–4

Redundancy
disadvantages, 1–4

Index–24

Referential integrity, 6–16
Reflexive join, 4–7 to 4–9

defined, 4–7
Relation, 1–2

determining which to use, 7–5
maximum references in a query, 9–5
typical, 1–2f

Relational
more than two relations, 4–6

Relational Database Operator
See RDO

Relational Data Manipulation Language
See RDML

Relational join, 4–1 to 4–9
See also Join
more than two relations, 4–6 to 4–7,

5–4
reflexive join, 4–7 to 4–9
two relations, 4–2 to 4–3

Relational operator, 3–8
internationalization support, 3–9
WITH clause, 3–7

Relation definitions
shown by RDO SHOW statements,

7–4
Relation references

maximum number, 9–5
Releasing a request

in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–36
in FORTRAN programs, 15–39
in Pascal programs, 18–34

Releasing a resource
associated with a request, 9–43

Remote access
INVOKE DATABASE statement, 2–3

REM statement
in RDBPRE BASIC programs, 13–2

Request
releasing resources associated with

in BASIC programs, 13–36
in COBOL programs, 14–37

Request
releasing resources associated with

(Cont.)
in C programs, 17–36
in FORTRAN programs, 15–39
in Pascal programs, 18–34

Request handle, 9–37, 9–41
changing the value of, 9–44
declaring, 9–43

in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–34

determining when to supply them,
9–41

initializing, 9–43
in BASIC programs, 13–36
in COBOL programs, 14–37
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–34

releasing resources associated with,
9–43

scope of, 9–45
Reserving options, 2–11
Restrictions

copying CDD/Plus definitions, 16–3
Retrieving

database values
C assignment statement, 17–17
GET, 9–21
Pascal assignment statement,

18–16
DATABASE values

in C, 17–17
field values

GET statement, 9–20, 19–16
in BASIC programs, 13–21
in COBOL programs, 14–21
in C programs, 17–16
in FORTRAN programs,

15–21
in Pascal programs, 18–15

Index–25

Retrieving (Cont.)
records

GET * statement
in BASIC programs, 13–22
in COBOL programs, 14–22
in C programs, 17–17
in FORTRAN programs,

15–22
in Pascal programs, 18–16

segmented strings, 9–16
in BASIC programs, 13–16
in Callable RDO, 19–13
in COBOL programs, 14–17
in C programs, 17–14
in FORTRAN programs, 15–16
in Pascal programs, 18–14

statistical values
GET statement, 9–21

in BASIC programs, 13–23
in Callable RDO, 19–16
in COBOL programs, 14–23
in C programs, 17–18
in FORTRAN programs,

15–23
in Pascal programs, 18–17

Retrieving a field value
all

using the GET * statement, 9–20
GET statement

in BASIC programs, 13–21
in COBOL programs, 14–21
in C programs, 17–16
in FORTRAN programs, 15–21
in Pascal programs, 18–15

Retrieving a record
all records, 3–2
checking other relations, 3–14
eliminating duplicates, 3–18 to 3–20
exact matches, 3–15
from the database, 9–5
in BASIC programs, 13–12
in Callable RDO programs, 19–9
in COBOL programs, 14–12
in C programs, 17–11

Retrieving a record (Cont.)
in FORTRAN programs, 15–11
in Pascal programs, 18–10
in programs, 9–6
joining relations, 4–1 to 4–9
limited number, 3–7
not satisfying a condition, 3–13 to

3–15
satisfying one of several conditions,

3–12 to 3–13
satisfying several conditions, 3–11 to

3–12
segmented strings, 3–21
selecting fields, 3–7
sorted order, 3–4 to 3–6
substring matches, 3–17
using database keys, 9–33
using data item values, 3–10
value-based, 3–10 to 3–21
with missing values, 6–12
with the declared START_STREAM,

9–13
with the FOR statement, 9–6
with the undeclared START_

STREAM, 9–9
Retrieving a segmented string

START_SEGMENTED_STRING,
9–18
in BASIC programs, 13–19
in Callable RDO, 19–13
in COBOL, 14–19
in FORTRAN programs, 15–18

using the FOR statement, 9–17
in BASIC programs, 13–17
in COBOL programs, 14–17
in FORTRAN programs, 15–16

using the GET statement, 9–19
in BASIC programs, 13–19e
in COBOL programs, 14–19e
in FORTRAN programs, 15–19e

with the START_SEGMENTED_
STRING statement, 9–16

Index–26

Return status value
in BASIC

RDB$STATUS, 13–45
in C

RDB$STATUS, 17–44
in COBOL

RDB$STATUS, 14–45
in FORTRAN

RDB$STATUS, 15–48
in Pascal

RDB$STATUS, 18–42
preprocessor, 13–54, 14–54, 15–56,

17–52, 18–51
RDB$STATUS, 13–52, 14–53,

15–54, 15–55, 17–50, 18–49
symbolic error codes

Callable RDO, 19–38
testing, 19–36

ROLLBACK statement
contrast with COMMIT, 6–11t
discarding changes, 2–24
undoing transaction updates, 2–28
updating the database, 6–4
within the ON ERROR clause, 10–5

RSE
See Record selection expression

RUJ (recovery-unit journal) file type
See Journal files

Running
See Executing

Running an application as a detached
process, 9–2

Run-time
supplying a query

in BASIC programs, 13–37
in COBOL programs, 14–38
in C programs, 17–36
in FORTRAN programs, 15–40
in Pascal programs, 18–35

Run-time errors
detecting

in BASIC programs, 13–44
in Callable RDO, 19–36

Run-time errors
detecting (Cont.)

in COBOL programs, 14–44
in C programs, 17–43
in FORTRAN programs, 15–47
in Pascal programs, 18–41
in preprocessed programs, 10–4
ON ERROR clause, 10–4

in BASIC programs, 13–44
in COBOL programs, 14–44
in C programs, 17–43
in FORTRAN programs,

15–47
in Pascal programs, 18–41

S
Sample database

files to create, 1–8t
Scaled numeric data

performing arithmetic operations
in BASIC, 13–7

Scope
of a request handle, 9–45
of a stream declaration, 9–8
of database handles, 9–39
of database keys, 9–32

Segmented string
data type, 8–3
described, 8–3
in RSE, 3–21
length variable RDB$LENGTH,

9–17, 9–25, 19–13
modifying

in BASIC programs, 13–29
in Callable RDO programs, 19–28
in C programs, 17–28
in FORTRAN programs, 15–32
in Pascal programs, 18–26
in RDBPRE programs, 9–28
in RDML programs, 9–29

retrieving, 9–16
in BASIC programs, 13–16
in Callable RDO, 19–13
in COBOL programs, 14–17

Index–27

Segmented string
retrieving (Cont.)

in C programs, 17–14
in FORTRAN programs, 15–16
in Pascal programs, 18–14

retrieving with START_
SEGMENTED_STRING,
9–18
in BASIC programs, 13–19
in Callable RDO, 19–13
in COBOL, 14–19
in FORTRAN programs, 15–18

retrieving with the FOR statement,
9–17
in BASIC programs, 13–17
in COBOL programs, 14–17
in FORTRAN programs, 15–16

storing with CREATE_SEGMENTED_
STRING, 9–24, 19–22
in BASIC programs, 13–25
in COBOL programs, 14–27
in FORTRAN programs, 15–27

storing with the STORE statement
in C programs, 17–24
in Pascal programs, 18–22

storing with the STORE statement
with segmented strings, 9–25

variable declaration, 8–3
variable RDB$VALUE, 9–17, 9–25,

19–13
Segment stream

forming with FOR segmented string
(C), 17–14

forming with FOR segmented string
(Pascal), 18–14

Selecting a record
for data manipulation, 9–5

SET OUTPUT statement
developing queries, 7–8

SET statement, 1–5
DICTIONARY, 2–2
NOOUTPUT qualifier, 3–3
OUTPUT qualifier, 3–3
VERIFY qualifier, 3–3

Shareable image
creating

with RDBPRE, 11–14
with RDML, 11–14

Shared share mode
START_TRANSACTION statement,

2–11
Share modes

EXCLUSIVE, 2–16
PROTECTED, 2–16
SHARED, 2–15, 2–24

Sharing data
conflicts with, 2–12

SHOW statement, 1–5
Snapshot file (SNP)

access intentions, 2–4
read-only, 2–7
record versions, 2–8

SNP file type
See Snapshot file

SORTED BY clause, 3–4
ASCENDING, 3–5
DESCENDING, 3–5
sort keys, 3–5

Sorting records
alphabetical order, 3–5
numerical order, 3–5

Sort key, 3–4 to 3–6
major, 3–5
minor, 3–5
using value expressions, 3–6

Source file
output from preprocessors, 11–4

Spanish collating sequence
and relational operators, 3–9

SQL
interface to Rdb/VMS, xxv, 1–4
module processor, 7–2
precompiler, 7–2

STARTING WITH relational operator,
3–9t, 3–17

internationalization aspects, 3–10
pattern matching, 3–17
using in BASIC programs, 13–7

Index–28

STARTING WITH relational operator
(Cont.)

using in COBOL programs, 14–5
using in FORTRAN programs, 15–6
using in Pascal programs, 18–6

START_SEGMENTED_STRING
statement

retrieving segmented strings, 9–18,
14–19
in BASIC programs, 13–19
in Callable RDO, 19–13
in FORTRAN programs, 15–18

using to retrieve segmented strings,
9–16

START_STREAM statement, 6–8 to
6–11

comparison of declared and
undeclared, 9–7

declared, 9–7
forming record streams, 9–13

forming record streams
in Callable RDO, 19–9

issuing, 9–8
scope of context variables, 9–10,

19–11
undeclared, 9–7

forming record streams, 9–9
using with a FOR loop, 9–10

START_STREAM statement, declared
forming record streams

in BASIC programs, 13–13
in COBOL programs, 14–14
in C programs, 17–11
in FORTRAN programs, 15–12
in Pascal programs, 18–11

scope of context variables, 9–14
START_TRANSACTION statement,

2–4, 13–37, 14–37, 15–40, 17–36,
18–34

access conflicts, 2–11
access modes, 2–12
access options, 2–6

START_TRANSACTION statement
(Cont.)

and the /NODEFAULT_
TRANSACTIONS qualifier,
9–34

batch-update transaction, 2–9
conflicts with other users, 2–12
degree 3 consistency, 2–23
exclusive mode, 2–11
exclusive write transaction, 2–11
formats, 2–8
for multi-user access, 2–4
for update transactions, 6–2
nowait option, 2–21
protected share mode, 2–11
read-only transaction, 2–7
read/write transaction, 2–8, 2–11
shared share mode, 2–11
updating the database, 6–1
using transactions, 9–33
using views, 5–5
wait option, 2–21

Statement flag (&RDB&), 12–2
Statement recall

in RDO, 7–10
Statistical expression

data type conversion, 8–6t
Statistical value

retrieving with the GET statement,
9–20, 9–21

Storage map design
impact on program execution, 7–5

STORE * statement
using to store every field in a relation,

9–23
in BASIC programs, 13–25
in COBOL programs, 14–26
in C programs, 17–22
in FORTRAN programs, 15–26
in Pascal programs, 18–21

STORE statement, 6–1 to 6–3
MISSING VALUE clause, 6–15
storing database values, 9–23

in BASIC programs, 13–24

Index–29

STORE statement
storing database values (Cont.)

in Callable RDO, 19–18
in COBOL programs, 14–24
in C programs, 17–21
in FORTRAN programs, 15–24
in Pascal programs, 18–19

storing record values, 9–23, 15–24
in BASIC programs, 13–25
in COBOL programs, 14–26
in C programs, 17–22
in FORTRAN programs, 15–26
in Pascal programs, 18–21

storing segmented strings, 9–25
updating several relations, 6–2

STORE statement with segmented
strings

in C programs, 17–24
in Pascal programs, 18–22

Storing DATE strings
using BASIC, 13–10
using C, 17–9
using COBOL, 14–11
using FORTRAN, 15–7
using Pascal, 18–8

Storing every field in a relation
using the STORE * statement, 9–23

in BASIC programs, 13–25
in COBOL programs, 14–26
in C programs, 17–22
in FORTRAN programs, 15–26
in Pascal programs, 18–21

Storing missing values, 6–15
Storing segmented strings

using the CREATE_SEGMENTED_
STRING statement, 9–24, 19–22
in BASIC programs, 13–25
in COBOL programs, 14–27
in FORTRAN programs, 15–27

using the STORE statement, 9–25
with segmented strings, 17–24,

18–22
Stream declaration

scope of, 9–8

Streams
See Record stream

Structured programming
in BASIC programs, 13–31
in COBOL programs, 14–32
in C programs, 17–31
in FORTRAN programs, 15–34
in Pascal programs, 18–30
in preprocessed programs, 9–35
in programs

with context variables, 9–35
Subqueries

maximum number, 9–5
Success/fail detection

return status value, 19–36
Symbolic error code

declaring
in BASIC programs, 13–46
in Callable RDO, 19–39
in COBOL programs, 14–46
in C programs, 17–45
in FORTRAN programs, 15–49
in Pascal programs, 18–43

detecting errors
in BASIC programs, 13–45
in Callable RDO, 19–38
in COBOL programs, 14–45
in C programs, 17–44
in FORTRAN programs, 15–48
in Pascal programs, 18–42
in preprocessed programs, 10–5

evaluating, 10–6
LIB$MATCH_COND

in BASIC programs, 13–46
in Callable RDO, 19–40
in COBOL programs, 14–46
in C programs, 17–45
in FORTRAN programs, 15–49
in Pascal programs, 18–43

usage, 10–7
SYS$GETMSG system service

BASIC calling format, 13–54
C calling format, 17–51
COBOL calling format, 14–54

Index–30

SYS$GETMSG system service (Cont.)
displaying error messages

in BASIC programs, 13–53
in Callable RDO, 19–45
in COBOL programs, 14–53
in C programs, 17–51
in FORTRAN programs, 15–56
in Pascal programs, 18–50

FORTRAN calling format, 15–56
Pascal calling format, 18–51

SYS$PUTMSG system service
BASIC calling format, 13–53
C calling format, 17–50
COBOL calling format, 14–53
displaying error messages

in BASIC programs, 13–53
in COBOL programs, 14–53
in C programs, 17–50
in FORTRAN programs, 15–55
in Pascal programs, 18–49

FORTRAN calling format, 15–55
in Callable RDO, 19–45
Pascal calling format, 18–50

T
Table

See Relation
Terminal format

of COBOL programs, 14–2
Testing

for the presence of a record in a
stream, 9–6
in BASIC programs, 13–12
in COBOL programs, 14–13
in FORTRAN programs, 15–11

Testing queries, 3–1
Testing statements

RDO, 7–9
using RDO, 7–9
with an active database, 7–11

Traceback handler
displaying error messages, 10–4

Transaction, 2–4
access modes, 2–5, 2–6

Transaction (Cont.)
default access modes, 2–6
defined, 2–6
deleting database records, 9–29

in BASIC programs, 13–30
in Callable RDO, 19–28
in COBOL programs, 14–30
in C programs, 17–30
in FORTRAN programs, 15–32
in Pascal programs, 18–28

ending, 2–26, 2–28
initialization of

controlling, 11–8
journal file, 2–28
length of, 9–34
maximum number, 9–40
modifying database values, 9–27

in BASIC programs, 13–27
in Callable RDO, 19–25
in COBOL programs, 14–28
in C programs, 17–26
in FORTRAN programs, 15–29
in Pascal programs, 18–24

process intentions, 2–6
read-only, 2–7
retrieving field values, 19–16

in COBOL programs, 14–21
scope, 2–24
snapshot, 2–7
START_TRANSACTION statement,

6–1, 6–2
storing database values

in BASIC programs, 13–24
in Callable RDO, 19–18
in COBOL programs, 14–24
in C programs, 17–21
in FORTRAN programs, 15–24
in Pascal programs, 18–19

updating database values, 9–22,
9–31, 19–17
in BASIC programs, 13–23
in COBOL programs, 14–24
in C programs, 17–20
in FORTRAN programs, 15–24

Index–31

Transaction
updating database values (Cont.)

in Pascal programs, 18–18
using across modules, 9–37
using Callable RDO in preprocessed

programs, 9–47
using modules, 9–37
write access, 2–8

Transaction handle, 9–37, 9–40
effects on creating a shareable image,

11–17
in BASIC programs, 13–36
in COBOL programs, 14–36
in C programs, 17–35
in FORTRAN programs, 15–39
in Pascal programs, 18–33

Transfer vector, 11–14
Trigger, 6–16

effect of auto-locking option, 2–13
example, 6–17
timing of execution, 6–18

Two-phase commit protocol, 2–5
TYPES

declaring in RDML programs, 16–2

U
Undeclared START_STREAM

retrieving records, 9–9
Undoing updates

ROLLBACK statement, 2–28
Unexpected errors, 10–10
UNIQUE relational operator, 3–9t,

3–20, 3–21t
compared to REDUCED TO clause,

3–21
Updating

several relations, 6–4 to 6–8
write access, 2–8

Updating a record
using a view, 9–22

Updating the database
COMMIT statement, 2–26, 6–4
record locking, 6–4
ROLLBACK statement, 6–4

Updating the database (Cont.)
START_TRANSACTION statement,

6–4
verifying changes, 6–5

Using a module
transactions, 9–37

Using a transaction
COMMIT statement, 9–33
ROLLBACK statement, 9–33
START_TRANSACTION statement,

9–33
Using multiple databases, 9–4

V
!VAL parameter

passing host language variables,
19–7

Validation of data, 7–4
VALID IF clause

checking, 10–12
validating input data, 7–7

Value-based record retrieval, 3–10 to
3–21

Value expressions
as a sort key, 3–6

VARYING STRING data type
C programs

retrieving database values, 17–19
storing values in database, 17–23

View
benefits, 5–1
defining, 5–2
determining which to use, 7–5
read-only if multiple relations, 5–1
using to update records, 9–22
with START_TRANSACTION

statement, 5–5
View definitions

joining multiple relations, 5–4
shown by RDO SHOW statements,

7–4
VMS data types

compared to Rdb/VMS, 8–2
VMS Debugger, 11–24

Index–32

W
WITH clause

relational operators, 3–7

Index–33

