
)

Kednos PL/I for OpenVMS Systems

Reference Manual

Order Number: AA-H952E-TM

November 2003

This manual defines Kednos PL/I for OpenVMS VAX on the OpenVMS VAX
platform and Kednos PL/I for OpenVMS Alpha on the OpenVMS Alpha
platform. It includes the keywords and the semantic and syntax rules of PL/I
programming language statements, attributes, built-in functions, and other
language elements.

Operating System and Version: For Kednos PL/I for OpenVMS VAX:
OpenVMS VAX Version 5.5 or higher
For Kednos PL/I for OpenVMS Alpha:
OpenVMS Alpha Version 6.2 or higher

Software Version: Kednos PL/I Version 3.8 for OpenVMS
VAX
Kednos PL/I Version 4.4 for OpenVMS
Alpha

Published by: Kednos Corporation, Pebble Beach, CA,
www.Kednos.com

First Printing, August 1980
Revised, November 1983
Updated, April 1985
Revised, April 1987
Revised, January 1992
Revised, March 1992
Revised, November 1993
Revised, April 1995
Revised, October 1995
Revised, November 2003

Kednos Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights,
nor do the descriptions contained in this publication imply the granting of licenses to
make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized
only pursuant to a valid written license from Kednos Corporation or an anthorized
sublicensor.

No responsibility is assumed for the use or reliability of software on equipment that is
not listed as supported in the Product Description.

Copyright Kednos Corporation 1980-2003. All rights reserved.

Copyright ©1980-2003

The following are trademarks of Hewlett-Packard: Alpha AXP, AXP, CDD, DEC,
DEC 4000, DECwindows, Digital, OpenVMS AXP, ULTRIX, VAX, OpenVMS, VT102,
VT220, VT240, VT320, VT330, VT340, and the DIGITAL logo.

1

Contents

PREFACE xxiii

CHAPTER 1 PROGRAM STRUCTURE AND CONTENT 1–1

1.1 LEXICAL ELEMENTS 1–1
1.1.1 Keywords 1–1
1.1.2 Punctuation 1–1
1.1.3 Identifiers 1–3
1.1.4 Comments 1–4

1.2 STATEMENTS 1–5
1.2.1 Statement Formats 1–5
1.2.2 Statement Labels 1–5
1.2.3 Simple Statements 1–5
1.2.4 Compound Statements 1–6
1.2.5 Summary of Statements by Function 1–6

1.3 PROGRAM FORMAT 1–8

1.4 BLOCKS 1–9
1.4.1 Begin Blocks 1–11
1.4.2 Procedure Blocks 1–12
1.4.3 Containment 1–12
1.4.4 Block Activation 1–13
1.4.5 Relationship of Block Activations 1–13
1.4.6 Block Termination 1–15

1.5 DATA AND VARIABLES 1–15
1.5.1 Preprocessor 1–16

CHAPTER 2 DECLARATIONS 2–1

2.1 DECLARE STATEMENT 2–1

iii

Contents

2.1.1 Simple Declarations 2–2
2.1.2 Declarations Outside Procedures 2–2
2.1.3 Multiple Simple Declarations 2–3
2.1.4 Factored Simple Declarations 2–3
2.1.5 Array Declarations 2–4
2.1.6 Structure Declarations 2–5

2.2 ATTRIBUTES 2–5
2.2.1 ALIGNED Attribute 2–10
2.2.2 ANY Attribute 2–11
2.2.3 AREA Attribute 2–11
2.2.4 AUTOMATIC Attribute 2–12
2.2.5 BASED Attribute 2–13
2.2.6 BINARY Attribute 2–13
2.2.7 BIT Attribute 2–14
2.2.8 BUILTIN Attribute 2–15
2.2.9 CHARACTER Attribute 2–16
2.2.10 CONDITION Attribute 2–16
2.2.11 CONTROLLED Attribute 2–17
2.2.12 DECIMAL Attribute 2–17
2.2.13 DEFINED Attribute 2–18
2.2.14 DESCRIPTOR Attribute 2–19
2.2.15 DIMENSION Attribute 2–19
2.2.16 DIRECT Attribute 2–20
2.2.17 ENTRY Attribute 2–20
2.2.18 ENVIRONMENT Attribute 2–22
2.2.19 EXTERNAL Attribute 2–24
2.2.20 FILE Attribute 2–24
2.2.21 FIXED Attribute 2–25
2.2.22 FLOAT Attribute 2–26
2.2.23 GLOBALDEF Attribute 2–27
2.2.24 GLOBALREF Attribute 2–27
2.2.25 INITIAL Attribute 2–28
2.2.26 INPUT Attribute 2–30
2.2.27 INTERNAL Attribute 2–31
2.2.28 KEYED Attribute 2–31
2.2.29 LABEL Attribute 2–31
2.2.30 LIKE Attribute 2–31
2.2.31 LIST Attribute 2–32
2.2.32 MEMBER Attribute 2–33
2.2.33 NONVARYING Attribute 2–33
2.2.34 OFFSET Attribute 2–33
2.2.35 OPTIONAL Attribute 2–34

iv

Contents

2.2.36 OUTPUT Attribute 2–34
2.2.37 PARAMETER Attribute 2–34
2.2.38 PICTURE Attribute 2–35
2.2.39 POINTER Attribute 2–35
2.2.40 POSITION Attribute 2–36
2.2.41 PRECISION Attribute 2–36
2.2.42 PRINT Attribute 2–37
2.2.43 READONLY Attribute 2–37
2.2.44 RECORD Attribute 2–37
2.2.45 REFER Attribute 2–38
2.2.46 REFERENCE Attribute 2–38
2.2.47 RETURNS Attribute 2–38
2.2.48 SEQUENTIAL Attribute 2–40
2.2.49 STATIC Attribute 2–40
2.2.50 STREAM Attribute 2–40
2.2.51 STRUCTURE Attribute 2–41
2.2.52 TYPE Attribute 2–41
2.2.53 TRUNCATE Attribute 2–42
2.2.54 UNALIGNED Attribute 2–43
2.2.55 UNION Attribute 2–43
2.2.56 UPDATE Attribute 2–44
2.2.57 VALUE Attribute 2–44
2.2.58 VARIABLE Attribute 2–45
2.2.59 VARYING Attribute 2–45

CHAPTER 3 DATA TYPES 3–1

3.1 SUMMARY OF DATA TYPES 3–1
3.1.1 Declarations 3–2
3.1.2 Default Attributes 3–2

3.1.2.1 Attributes of Constants • 3–3
3.1.2.2 Arithmetic Operands • 3–4

3.1.3 Compatible Data Types 3–4

3.2 ARITHMETIC DATA 3–5
3.2.1 Precision and Scale of Arithmetic Data Types 3–6
3.2.2 Fixed-Point Binary Data 3–8

3.2.2.1 Internal Representation of Fixed-Point Binary Data • 3–9
3.2.3 Fixed-Point Decimal Data 3–10

3.2.3.1 Fixed-Point Decimal Constants • 3–10
3.2.3.2 Fixed-Point Decimal Variables • 3–10
3.2.3.3 Use in Expressions • 3–11
3.2.3.4 Internal Representation of Fixed-Point Decimal Data • 3–11

v

Contents

3.2.4 Floating-Point Data 3–11
3.2.4.1 Floating-Point Constants • 3–12
3.2.4.2 Floating-Point Variables • 3–12
3.2.4.3 Using Floating-Point Data in Expressions • 3–13
3.2.4.4 Floating-Point Data Formats • 3–13
3.2.4.5 OpenVMS VAX Internal Representation of Floating-Point

Data • 3–14
3.2.4.6 OpenVMS Alpha Internal Representation of Floating-Point

Data • 3–16
3.2.5 Pictured Data 3–18

3.2.5.1 Picture Characters • 3–18
3.2.5.2 Assigning Values to Pictured Variables • 3–27
3.2.5.3 Extracting Values from Pictured Data • 3–27
3.2.5.4 Editing by Picture • 3–28
3.2.5.5 The Internal Representation of Pictured Variables • 3–28

3.3 CHARACTER-STRING DATA 3–29
3.3.1 Character-String Constants 3–30

3.3.1.1 Replication of String Constants • 3–30
3.3.2 Character-String Variables 3–31

3.3.2.1 Fixed-Length Character-String Variables • 3–31
3.3.2.2 Internal Representation of Fixed-Length Character Data • 3–32
3.3.2.3 Varying-Length Character-String Variables • 3–32
3.3.2.4 Internal Representation of Varying Character Data • 3–32

3.3.3 Alignment of Character Strings 3–32

3.4 BIT-STRING DATA 3–33
3.4.1 Bit-String Constants 3–33

3.4.1.1 Replication Factor for Bit-String Constants • 3–34
3.4.2 Bit-String Variables 3–35
3.4.3 Alignment of Bit-String Data 3–36
3.4.4 Internal Representation of Bit Data 3–36
3.4.5 Bit Strings and Integers 3–39

3.5 POINTER DATA 3–40
3.5.1 Pointer Variables in Expressions 3–40
3.5.2 Internal Representation of Pointer Data 3–41

3.6 OFFSET DATA 3–41

3.7 LABEL DATA 3–41
3.7.1 Label Array Constants 3–42
3.7.2 Label Values 3–43

vi

Contents

3.7.3 Label Variables 3–44
3.7.4 Internal Representation of Variable Label Data 3–45

3.8 ENTRY DATA 3–45
3.8.1 Entry Constants 3–45
3.8.2 Entry Values 3–46
3.8.3 Entry Variables 3–46
3.8.4 Internal Representation of Variable Entry Data 3–47

3.9 FILE DATA 3–47
3.9.1 File Constants 3–48
3.9.2 File Values 3–48
3.9.3 File Variables 3–48

3.10 AREA DATA 3–49
3.10.1 Area Variables in Expressions 3–50
3.10.2 Reading and Writing Areas 3–50
3.10.3 Internal Representation of Area Data 3–50

3.11 CONDITION DATA 3–51

CHAPTER 4 AGGREGATES 4–1

4.1 ARRAYS 4–1
4.1.1 Array Declarations 4–1
4.1.2 References to Individual Elements 4–5
4.1.3 Initializing Arrays 4–6
4.1.4 Assigning Values to Array Variables 4–9
4.1.5 Order of Assignment and Output for Multidimensional

Arrays 4–9
4.1.5.1 Using GET and PUT Statements with Array Variables • 4–10

4.1.6 Passing Arrays as Arguments 4–10
4.1.7 Built-In Functions Providing Array Dimension

Information 4–11

4.2 STRUCTURES 4–11
4.2.1 Structure Declarations and Attributes 4–12
4.2.2 Using The UNION Attribute On Structure Declarations 4–13
4.2.3 Initializing Structures 4–15

vii

Contents

4.2.4 Using Structure Variables in Expressions 4–15
4.2.5 Passing Structure Variables as Arguments 4–15
4.2.6 Member Attributes 4–15

4.2.6.1 Using the TYPE Attribute • 4–16
4.2.6.2 Using the LIKE Attribute • 4–18
4.2.6.3 Using the REFER Option • 4–19

4.2.7 Structure-Qualified References 4–22

4.3 ARRAYS OF STRUCTURES 4–24
4.3.1 Arrays of Structures that Contain Arrays 4–24
4.3.2 Connected and Unconnected Arrays 4–25

4.4 INTERNAL REPRESENTATION OF AGGREGATE DATA 4–26

CHAPTER 5 STORAGE CLASSES 5–1

5.1 AUTOMATIC VARIABLES 5–1

5.2 STATIC VARIABLES 5–2

5.3 INTERNAL VARIABLES 5–2

5.4 EXTERNAL VARIABLES 5–3

5.5 BASED VARIABLES 5–4
5.5.1 Data Types Used with Based Variables 5–5
5.5.2 Allocation in Areas 5–5
5.5.3 Referring to Based Variables 5–7
5.5.4 Based Variables and Dynamic Storage Allocation 5–8
5.5.5 Using the ADDR Built-in Function 5–12
5.5.6 Data-Type Matching for Based Variables 5–13

5.5.6.1 Matching by Overlay Defining • 5–13
5.5.6.2 Matching by Left-to-Right Equivalence • 5–13
5.5.6.3 Nonmatching Based Variable References • 5–14

5.5.7 Examples of Based Variables 5–15

5.6 CONTROLLED VARIABLES 5–16
5.6.1 Using the ALLOCATION Built-In Function 5–17

viii

Contents

5.6.2 Using the ADDR Built-In Function 5–18

5.7 DYNAMICALLY ALLOCATED VARIABLES 5–18
5.7.1 ALLOCATE Statement 5–18
5.7.2 FREE Statement 5–20
5.7.3 Other Mechanisms for Dynamic Storage Allocation 5–21

5.8 DEFINED VARIABLES 5–21
5.8.1 String Overlay Defining 5–22
5.8.2 Rules for Overlay Defining 5–23

5.9 STORAGE SHARING 5–24

CHAPTER 6 EXPRESSIONS AND DATA TYPE CONVERSIONS 6–1

6.1 ASSIGNMENT STATEMENT 6–1

6.2 OPERATORS AND OPERANDS 6–3
6.2.1 Arithmetic Operators 6–4
6.2.2 Logical Operators 6–5

6.2.2.1 NOT • 6–6
6.2.2.2 AND • 6–7
6.2.2.3 OR • 6–7
6.2.2.4 EXCLUSIVE OR • 6–8
6.2.2.5 AND THEN • 6–8
6.2.2.6 OR ELSE • 6–9

6.2.3 Relational Operators 6–9
6.2.3.1 Arithmetic Comparisons • 6–10
6.2.3.2 Bit-String Comparisons • 6–10
6.2.3.3 Character-String Comparisons • 6–10
6.2.3.4 Comparing Noncomputational Data • 6–11

6.2.4 Concatenation Operator 6–11

6.3 PRECEDENCE OF OPERATORS AND EXPRESSION EVALUATION 6–12

6.4 DATA TYPE CONVERSION OF OPERANDS AND EXPRESSIONS 6–14
6.4.1 Contexts in which PL/I Converts Data 6–15
6.4.2 Derived Data Types for Arithmetic Operations 6–17
6.4.3 Conversion of Operands in Nonarithmetic Operations 6–18

ix

Contents

6.4.4 Built-In Conversion Functions 6–19
6.4.5 Implicit Conversion During Assignment 6–20
6.4.6 Assignment to Arithmetic Variables 6–20

6.4.6.1 Arithmetic to Arithmetic Conversions • 6–20
6.4.6.1.1 Conversions to Fixed Point • 6–21
6.4.6.1.2 Conversions to Floating Point • 6–21
6.4.6.1.3 Conversions from FIXED BINARY to Other Data Types • 6–21
6.4.6.2 Pictured to Arithmetic Conversions • 6–22
6.4.6.3 Bit-String to Arithmetic Conversions • 6–22
6.4.6.4 Character-String to Arithmetic Conversions • 6–23

6.4.7 Assignments to Bit-String Variables 6–24
6.4.7.1 Arithmetic to Bit-String Assignments • 6–24
6.4.7.2 Pictured to Bit-String Conversions • 6–26
6.4.7.3 Character-String to Bit-String Conversions • 6–26

6.4.8 Assignments to Character-String Variables 6–26
6.4.8.1 Arithmetic to Character-String Conversions • 6–27
6.4.8.1.1 Conversion from Fixed-Point Binary or Fixed-Point

Decimal • 6–27
6.4.8.1.2 Conversion from Floating-Point Binary or Floating-Point

Decimal • 6–28
6.4.8.2 Pictured to Character-String Conversion • 6–29
6.4.8.3 Bit-String to Character-String Conversion • 6–29

6.4.9 Assignments to Pictured Variables 6–30
6.4.10 Conversions Between Offsets and Pointers 6–30

CHAPTER 7 PROCEDURES 7–1

7.1 PROCEDURE STATEMENT 7–1

7.2 FUNCTIONS AND FUNCTION REFERENCES 7–3

7.3 ENTRY STATEMENT 7–4
7.3.1 Specifying Entry Points 7–5
7.3.2 Multiple Entry Points 7–6

7.4 CALL STATEMENT 7–7

7.5 PARAMETERS AND ARGUMENTS 7–8
7.5.1 Rules for Specifying Parameters 7–9
7.5.2 Argument Passing 7–11

7.6 CALLING EXTERNAL AND INTERNAL PROCEDURES 7–13

x

Contents

7.7 TERMINATING PROCEDURES 7–15

7.8 PASSING ARGUMENTS TO NON-PL/I PROCEDURES 7–16
7.8.1 Passing Arguments by Immediate Value 7–17
7.8.2 Passing Arguments by Reference 7–17
7.8.3 Passing Arguments by Descriptor 7–18

CHAPTER 8 PROGRAM CONTROL 8–1

8.1 DO GROUPS AND STATEMENTS 8–1
8.1.1 Simple DO 8–2
8.1.2 DO WHILE 8–2
8.1.3 DO UNTIL 8–3
8.1.4 Controlled DO 8–4
8.1.5 DO REPEAT 8–8

8.2 BEGIN STATEMENT 8–10

8.3 END STATEMENT 8–11

8.4 IF STATEMENT 8–12
8.4.1 Nested IF Statements 8–13

8.5 SELECT STATEMENT 8–13
8.5.1 The Two Forms of the SELECT Statement 8–14
8.5.2 OTHERWISE Clause 8–16
8.5.3 Nested SELECT Statements 8–16

8.6 GOTO STATEMENT 8–17

8.7 LEAVE STATEMENT 8–19

8.8 STOP STATEMENT 8–21

8.9 NULL STATEMENT 8–21

xi

Contents

8.10 CONDITION HANDLING 8–22
8.10.1 ON Statement 8–22
8.10.2 SIGNAL Statement 8–23
8.10.3 REVERT Statement 8–24
8.10.4 Summary of ON Conditions 8–25

8.10.4.1 ANYCONDITION Condition Name • 8–27
8.10.4.2 AREA Condition Name • 8–27
8.10.4.3 CONDITION Condition Name • 8–28
8.10.4.4 CONVERSION Condition Name • 8–28
8.10.4.5 ENDFILE Condition Name • 8–30
8.10.4.6 ENDPAGE Condition Name • 8–31
8.10.4.7 ERROR Condition Name • 8–32
8.10.4.8 FINISH Condition Name • 8–33
8.10.4.9 FIXEDOVERFLOW Condition Name • 8–33
8.10.4.10 KEY Condition Name • 8–34
8.10.4.11 OVERFLOW Condition Name • 8–36
8.10.4.12 STORAGE Condition Name • 8–36
8.10.4.13 STRINGRANGE Condition Name • 8–36
8.10.4.14 SUBSCRIPTRANGE Condition Name • 8–37
8.10.4.15 UNDEFINEDFILE Condition Name • 8–37
8.10.4.16 UNDERFLOW Condition Name (Kednos PL/I for OpenVMS

VAX only) • 8–39
8.10.4.17 VAXCONDITION Condition Name • 8–39
8.10.4.18 ZERODIVIDE Condition Name • 8–39

8.10.5 Default PL/I ON-Unit 8–40
8.10.6 Establishment of ON-Units 8–40
8.10.7 Contents of an ON-Unit 8–41
8.10.8 Search Path for ON-Units 8–42
8.10.9 Completion of ON-Units 8–42

CHAPTER 9 INPUT AND OUTPUT 9–1

9.1 OPENING AND CLOSING FILES 9–1
9.1.1 File Declarations 9–1
9.1.2 File Variables 9–2
9.1.3 Opening a File 9–2

9.1.3.1 OPEN Statement Options • 9–4
9.1.3.2 Effects of Opening a File • 9–5
9.1.3.3 Establishing the File’s Attributes • 9–6
9.1.3.4 Determining the File Specification • 9–7
9.1.3.5 Accessing an Existing File • 9–7
9.1.3.6 Creating a File • 9–7
9.1.3.7 File Positioning • 9–8

9.1.4 File Description Attributes and Options 9–8
9.1.5 Closing a File 9–8

xii

Contents

9.2 STREAM I/O 9–10
9.2.1 Processing and Positioning of Stream Files 9–11
9.2.2 Input by the GET Statement 9–13

9.2.2.1 Syntax Summary of the GET Statement • 9–13
9.2.2.2 GET EDIT • 9–15
9.2.2.3 GET LIST • 9–16
9.2.2.4 GET SKIP • 9–18
9.2.2.5 Execution of the GET Statement • 9–18

9.2.3 Output by the PUT Statement 9–20
9.2.3.1 Syntax Summary of the PUT Statement • 9–20
9.2.3.2 PUT EDIT • 9–23
9.2.3.3 PUT LINE • 9–23
9.2.3.4 PUT LIST • 9–24
9.2.3.5 PUT PAGE • 9–25
9.2.3.6 PUT SKIP • 9–25
9.2.3.7 Execution of the PUT Statement • 9–25

9.2.4 Format Items 9–26
9.2.4.1 A Format Item • 9–27
9.2.4.2 B Format Items • 9–29
9.2.4.3 COLUMN Format item • 9–32
9.2.4.4 E Format Item • 9–33
9.2.4.5 F Format Item • 9–36
9.2.4.6 LINE Format Item • 9–39
9.2.4.7 P Format Item • 9–40
9.2.4.8 PAGE Format Item • 9–42
9.2.4.9 R Format Item • 9–42
9.2.4.10 SKIP Format Item • 9–43
9.2.4.11 TAB Format Item • 9–44
9.2.4.12 X Format Item • 9–45
9.2.4.13 Format Specifications • 9–47

9.2.5 Processing and Positioning of Character Strings 9–52
9.2.6 Terminal I/O 9–53

9.2.6.1 Simple Input from a Terminal • 9–53
9.2.6.2 Simple Output to a Terminal • 9–54
9.2.6.3 Print File • 9–54

9.3 RECORD I/O 9–57
9.3.1 READ Statement 9–57

9.3.1.1 File Positioning Following a READ Statement • 9–60
9.3.2 WRITE Statement 9–62

9.3.2.1 File Positioning Following a WRITE Statement • 9–63
9.3.3 DELETE Statement 9–65

9.3.3.1 File Positioning Following a DELETE Statement • 9–66
9.3.4 REWRITE Statement 9–66

9.3.4.1 File Positioning Following a REWRITE Statement • 9–67
9.3.5 Position Information for a Record File 9–69

xiii

Contents

CHAPTER 10 PREPROCESSOR 10–1

10.1 PREPROCESSOR COMPILATION CONTROL 10–1

10.2 PREPROCESSOR STATEMENTS 10–2
10.2.1 %Assignment Statement 10–4
10.2.2 %Null 10–4
10.2.3 %ACTIVATE 10–5
10.2.4 %DEACTIVATE 10–6
10.2.5 %DECLARE 10–7
10.2.6 %DICTIONARY 10–8
10.2.7 %DO 10–10
10.2.8 %END 10–11
10.2.9 %ERROR 10–11
10.2.10 %FATAL 10–12
10.2.11 %GOTO 10–12
10.2.12 %IF 10–13
10.2.13 %INCLUDE 10–14
10.2.14 %INFORM 10–15
10.2.15 %LIST_xxx 10–15
10.2.16 %NOLIST_xxx 10–16
10.2.17 %PAGE 10–17
10.2.18 %PROCEDURE 10–17
10.2.19 %REPLACE Statement 10–23
10.2.20 %RETURN Statement 10–23
10.2.21 %SBTTL 10–24
10.2.22 %TITLE 10–24
10.2.23 %WARN 10–24

10.3 USER-GENERATED DIAGNOSTIC MESSAGES 10–25

10.4 PREPROCESSOR BUILT-IN FUNCTIONS 10–26

CHAPTER 11 BUILT-IN FUNCTIONS, SUBROUTINES, AND
PSEUDOVARIABLES 11–1

11.1 BUILT-IN FUNCTION ARGUMENTS 11–1

11.2 CONDITIONS SIGNALED 11–2

xiv

Contents

11.3 SUMMARY OF BUILT-IN FUNCTIONS 11–2

11.4 DESCRIPTIONS OF BUILT-IN FUNCTIONS 11–7
11.4.1 ABS 11–7
11.4.2 ACOS 11–7
11.4.3 ACTUALCOUNT 11–7
11.4.4 ADD 11–7
11.4.5 ADDR 11–8
11.4.6 ADDREL 11–9
11.4.7 ALLOCATION 11–9
11.4.8 ASIN 11–10
11.4.9 ATAN 11–10
11.4.10 ATAND 11–11
11.4.11 ATANH 11–11
11.4.12 BINARY 11–11
11.4.13 BIT 11–12
11.4.14 BOOL 11–12
11.4.15 BYTE 11–14
11.4.16 BYTESIZE 11–14
11.4.17 CEIL 11–14
11.4.18 CHARACTER 11–14
11.4.19 COLLATE 11–15
11.4.20 COPY 11–15
11.4.21 COS 11–16
11.4.22 COSD 11–16
11.4.23 COSH 11–16
11.4.24 DATE 11–16
11.4.25 DATETIME 11–17
11.4.26 DECIMAL 11–17
11.4.27 DECODE 11–18
11.4.28 DESCRIPTOR 11–18
11.4.29 DIMENSION 11–18
11.4.30 DIVIDE 11–19
11.4.31 EMPTY 11–20
11.4.32 ENCODE 11–20
11.4.33 ERROR 11–20
11.4.34 EVERY 11–21
11.4.35 EXP 11–21
11.4.36 FIXED 11–21
11.4.37 FLOAT 11–22
11.4.38 FLOOR 11–22
11.4.39 HBOUND 11–23

xv

Contents

11.4.40 HIGH 11–23
11.4.41 INDEX 11–23
11.4.42 INFORM 11–24
11.4.43 INT 11–24
11.4.44 LBOUND 11–26
11.4.45 LENGTH 11–26
11.4.46 LINE 11–26
11.4.47 LINENO 11–27
11.4.48 LOG 11–27
11.4.49 LOG10 11–27
11.4.50 LOG2 11–27
11.4.51 LOW 11–27
11.4.52 LTRIM 11–28
11.4.53 MAX 11–28
11.4.54 MAXLENGTH 11–29
11.4.55 MIN 11–29
11.4.56 MOD 11–30
11.4.57 MULTIPLY 11–31
11.4.58 NULL 11–32
11.4.59 OFFSET 11–32
11.4.60 ONARGSLIST 11–33
11.4.61 ONCHAR 11–33
11.4.62 ONCODE 11–33
11.4.63 ONFILE 11–34
11.4.64 ONKEY 11–34
11.4.65 ONSOURCE 11–35
11.4.66 PAGENO 11–35
11.4.67 POINTER 11–35
11.4.68 POSINT 11–36
11.4.69 PRESENT 11–37
11.4.70 PROD 11–37
11.4.71 RANK 11–38
11.4.72 REFERENCE 11–38
11.4.73 REVERSE 11–38
11.4.74 ROUND 11–39
11.4.75 RTRIM 11–40
11.4.76 SEARCH 11–41
11.4.77 SIGN 11–42
11.4.78 SIN 11–42
11.4.79 SIND 11–43
11.4.80 SINH 11–43
11.4.81 SIZE 11–43
11.4.82 SOME 11–45

xvi

Contents

11.4.83 SQRT 11–45
11.4.84 STRING 11–46
11.4.85 SUBSTR 11–46
11.4.86 SUBTRACT 11–47
11.4.87 SUM 11–48
11.4.88 TAN 11–48
11.4.89 TAND 11–48
11.4.90 TANH 11–49
11.4.91 TIME 11–49
11.4.92 TRANSLATE 11–49
11.4.93 TRIM 11–51
11.4.94 TRUNC 11–52
11.4.95 UNSPEC 11–52
11.4.96 VALID 11–53
11.4.97 VALUE 11–54
11.4.98 VARIANT 11–55
11.4.99 VERIFY 11–56
11.4.100 WARN 11–57

11.5 BUILT-IN SUBROUTINES 11–57

11.6 PSEUDOVARIABLES 11–58
11.6.1 INT Pseudovariable 11–59
11.6.2 ONCHAR Pseudovariable 11–60
11.6.3 ONSOURCE Pseudovariable 11–60
11.6.4 PAGENO Pseudovariable 11–61
11.6.5 POSINT Pseudovariable 11–61
11.6.6 STRING Pseudovariable 11–62
11.6.7 SUBSTR Pseudovariable 11–63
11.6.8 UNSPEC Pseudovariable 11–64

APPENDIX A ALPHABETIC SUMMARY OF KEYWORDS A–1

APPENDIX B DIGITAL MULTINATIONAL CHARACTER SET B–1

xvii

Contents

APPENDIX C COMPATIBILITY WITH PL/I STANDARDS C–1

C.1 DIFFERENCES AND SIMILARITIES BETWEEN KEDNOS PL/I FOR
OPENVMS VAX AND KEDNOS PL/I FOR OPENVMS ALPHA C–1

C.2 RELATION TO THE 1981 PL/I GENERAL-PURPOSE SUBSET C–1
C.2.1 Program Structure C–2
C.2.2 Program Control C–2
C.2.3 Storage Control C–2
C.2.4 Input/Output C–2
C.2.5 Attributes and Pictures C–3
C.2.6 Built-In Functions and Pseudovariables C–3
C.2.7 Expressions C–3

C.3 198X PL/I GENERAL-PURPOSE SUBSET FEATURES SUPPORTED C–3
C.3.1 Lexical Constructs C–4
C.3.2 Program Control C–4
C.3.3 Storage Control C–4
C.3.4 Input/Output C–4
C.3.5 Attributes and Pictures C–4
C.3.6 Program Control C–5
C.3.7 Built-In Functions and Pseudovariables C–5
C.3.8 Expressions C–5

C.4 FULL PL/I FEATURES SUPPORTED C–5
C.4.1 Program Structure C–6
C.4.2 Program Control C–6
C.4.3 Storage Control C–6
C.4.4 Attributes and Pictures C–6
C.4.5 Built-In Functions and Pseudovariables C–6
C.4.6 Expressions C–6

C.5 NONSTANDARD FEATURES FROM OTHER IMPLEMENTATIONS C–7
C.5.1 Preprocessor C–7
C.5.2 Built-In Functions C–7
C.5.3 LIKE Extension C–7
C.5.4 Declarations C–7

C.6 PL/I-SPECIFIC EXTENSIONS FOR OPENVMS VAX AND OPENVMS
ALPHA PLATFORMS C–7

xviii

Contents

C.6.1 Procedure-Calling and Condition-Handling Extensions C–8
C.6.2 Support of OpenVMS Record Management Services C–9
C.6.3 Miscellaneous Extensions C–9

C.7 IMPLEMENTATION-DEFINED VALUES AND FEATURES C–9

APPENDIX D MIGRATION NOTES D–1

D.1 KEYWORDS NOT SUPPORTED D–1

D.2 DIFFERENCES BETWEEN KEDNOS PL/I FOR OPENVMS VAX AND
KEDNOS PL/I FOR OPENVMS ALPHA D–4

D.3 IMPLICIT CONVERSIONS D–13

D.4 PRINTING A HEXADECIMAL MEMORY DUMP D–14

APPENDIX E LANGUAGE SUMMARY E–1

E.1 STATEMENTS E–1

E.2 ATTRIBUTES E–7

E.3 EXPRESSIONS AND DATA CONVERSIONS E–10

E.4 PSEUDOVARIABLES E–12

E.5 BUILT-IN SUBROUTINES E–13

INDEX

xix

Contents

EXAMPLES
1–1 Structure of a PL/I Program 1–9
7–1 Parameters and Arguments 7–8
7–2 Invoking an Internal Procedure 7–14
7–3 Invoking an External Procedure 7–14

FIGURES
1–1 Relationship of Block Activations 1–14
3–1 Internal Representation of Fixed-Point Binary Data 3–9
3–2 Fixed-Point Decimal Data Representation 3–11
3–3 VAX Internal Representation of Floating-Point Data 3–16
3–4 IEEE S_floating Data Representation 3–17
3–5 IEEE T_floating Data Representation 3–17
3–6 Internal Representation of a Pictured Variable 3–29
3–7 Internal Representation of a Pictured Variable 3–29
3–8 Unaligned Bit String Storage 3–37
3–9 Sample Unaligned Bit String Storage 3–38
3–10 Aligned Bit String Storage 3–38
3–11 Sample Aligned Bit String Storage 3–39
3–12 Variable Label Data Representation 3–45
3–13 Variable Entry Data Representation 3–47
4–1 Specifying Elements of an Array 4–6
4–2 Storage of Structure with REFER Option 4–21
4–3 Remapped Storage of Structure with REFER Option 4–22
4–4 Connected and Unconnected Arrays 4–26
5–1 External Variables 5–3
5–2 Using the ALLOCATE Statement 5–10
5–3 Using the READ Statement with a Based Variable 5–12
5–4 Using the ADDR Built-In Function 5–13
5–5 An Overlay Defined Variable 5–23
11–1 Example of the BOOL Built-In Function 11–13

TABLES
1 Conventions Used in this Manual xxiii
1–1 Punctuation Marks Recognized by PL/I 1–2
1–2 Summary of PL/I Statements 1–7
2–1 Alphabetic Summary of PL/I Attributes 2–8
3–1 Implied Attributes for Computational Data 3–2
3–2 Supported Floating-Point Formats 3–13
3–3 Ranges of Floating-Point Formats 3–13
3–4 Ranges of Precision for Floating-Point Types 3–14
3–5 Floating-Point Types Used by PL/I 3–14

xx

Contents

3–6 Picture Characters 3–18
3–7 ASCII Representation of Encoded-Sign Characters 3–22
4–1 Specifying Array Dimensions 4–3
4–2 Natural Alignment for Structure Members 4–27
6–1 Data Types for Assignment Statement 6–2
6–2 Precedence of Operators 6–12
6–3 Contexts in Which PL/I Converts Data 6–16
6–4 Derived Data Types 6–17
6–5 Converted Precision as a Function of Target and Source

Attributes 6–18
6–6 Built-In Functions for Conversions Between Arithmetic and

Nonarithmetic Types 6–19
8–1 Summary of ON Conditions 8–26
9–1 File Description Attributes Implied when a File is Opened 9–6
9–2 Summary of File Description Attributes 9–8
9–3 Attributes and Access Modes for Stream Files 9–10
9–4 Attributes and Access Modes for OpenVMS Record Files 9–57
10–1 Summary of PL/I Preprocessor Statements 10–3
10–2 Summary of PL/I Preprocessor Built-In Functions 10–26
11–1 Summary of PL/I Built-In Functions 11–2
11–2 Summary of PL/I Built-In Subroutines 11–57
A–1 PL/I Keywords A–1
D–1 PL/I Keywords Not Supported D–1

xxi

Preface

Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS Alpha are
Kednos Corporation implementations of the PL/I programming language,
General-Purpose Subset, ANSI X3.74-1981.

Intended Audience
This manual is intended for programmers using PL/I to design or
implement applications on OpenVMS VAX or OpenVMS Alpha systems. A
prerequisite for attaining optimal benefit from the manual is that its users
understand the concepts of programming in PL/I and are familiar with the
keywords and topics that will be searched for information. This manual is
not suitable for use as a tutorial document.

Associated Documents
The Kednos PL/I for OpenVMS Systems User Manual provides
information on program development with the system-specific command
language, the extensive I/O capabilities provided in PL/I, and
programming techniques available to PL/I programs executing under
the exclusive control of the operating system.

For information on installing PL/I, see the Kednos PL/I for OpenVMS
Alpha Installation Guide.

Conventions
Table 1 lists the conventions used in this manual.

Table 1 Conventions Used in this Manual

Conventions Meaning

Return In examples, the symbol Return represents a single stroke
of the key on the terminal.

Ctrl/X In examples, Ctrl/X indicates that you hold down the Ctrl
key while you press another key (represented here by X).

monospace This bold monospace typeface is used in interactive
examples to indicate input entered by the user.

italic This italic typeface is used to identify variable names.

.

.

.

Vertical ellipses indicate that not all of the text of a
program or program output is illustrated. Only relevant
material is shown in the example.

. . . Horizontal ellipses indicate that additional parameters,
options, or values can optionally be entered. When a
comma precedes an ellipsis, it indicates that successive
items must be separated by commas.

xxiii

Preface

Table 1 (Cont.) Conventions Used in this Manual

Conventions Meaning

quotation mark
apostrophe

The term quotation mark is used only to refer to the double
quotation mark character ("). The term apostrophe is
used to refer to the single quotation mark character (’).

[OPTIONS (option, . . .)] Except in OpenVMS file specifications, brackets indicate
that a syntactic element is optional and you need not
specify it.h

LIST
EDIT

i
Brackets surrounding two or more stacked items indicate
conflicting options, one of which can optionally be chosen.n

EXTERNAL
INTERNAL

o
Braces surrounding two or more stacked items indicate
conflicting options, one of which must be chosen.

FILE (file-reference) An uppercase word or phrase indicates a keyword that
must be entered as shown; a lowercase word or phrase
indicates an item for which a variable value must be
supplied. This convention applies to format (syntax) lines,
not to code examples.

A # symbol is used in some contexts to indicate a single
ASCII space character.

Technical Assumptions
All descriptions of the effects of executing statements and evaluating
expressions assume that the initial procedure activation of the program is
through an entry point with OPTIONS(MAIN).

It is further assumed that any non-PL/I procedures called by the program
follow all conventions of the PL/I run-time environment. Except as
explicitly noted, descriptions of I/O statements do not cover the effects
of system-specific options. For details on mixed-language programming
and system-specific options, see the Kednos PL/I for OpenVMS Systems
User Manual.

Terminological Conventions
Information in this manual applies to the use of Kednos PL/I on the
OpenVMS VAX and OpenVMS Alpha Operating Systems unless otherwise
indicated.

The term Kednos PL/I refers to both Kednos PL/I for OpenVMS VAX and
Kednos PL/I for OpenVMS Alpha.

The terms "full PL/I" and "standard PL/I" refer to the ANSI standard PL/I,
X3.53-1976.

xxiv

1 Program Structure and Content

This chapter introduces the following elements of a PL/I program:

• The lexical elements (Section 1.1)

• The statements that make up a block and the general format and
elements of a PL/I statement (Section 1.2)

• The format of a PL/I program (Section 1.3)

• The blocks that make up a program and their effects during program
execution (Section 1.4)

• The PL/I data types (Section 1.5)

Future chapters discuss these topics in more detail.

1.1 Lexical Elements
This section describes the following topics:

• PL/I keywords

• Punctuation

• Identifiers

• Comments

1.1.1 Keywords
A keyword is a name that has a special meaning to PL/I when used in
a specific context. In context, keywords identify statements, attributes,
options, and other program elements. PL/I keywords are not reserved
words, so it is possible to use them in a program in other than their
keyword context.

PL/I has numerous keywords. Table A–1 describes the PL/I keywords,
including brief identifications of their uses and valid abbreviations for the
keywords that can be abbreviated.

1.1.2 Punctuation
PL/I recognizes punctuation marks in statements. The punctuation marks
serve the following two functions:

• They specify arithmetic or other operations to be performed on
expressions.

• They delimit and separate identifiers, keywords, constants, and
statements.

1–1

Program Structure and Content

For example:

A = B + C;

In this statement, the equal sign (=), the addition operator (+), and the
semicolon (;) delimit the identifiers A, B, and C, as well as define the
operation to be performed. (Chapter 6 describes the effect of the various
operators in expressions.)

Whenever you use a punctuation mark in a PL/I statement, you can
precede or follow the character with any number of spaces (except in the
case of an operator consisting of two characters, like >= or **, which must
be entered without a space between the two characters). For example, the
following two statements are equivalent:

DECLARE (A, B) FIXED DECIMAL (7 , 0) ;

DECLARE(A,B)FIXED DECIMAL(7,0);

In the second statement, all nonessential spaces are omitted; the
parentheses and commas are sufficient to distinguish elements in the
statement. The only space required in this statement is the space that
separates the two keywords FIXED and DECIMAL.

Table 1–1 lists all the punctuation marks recognized by PL/I.

Table 1–1 Punctuation Marks Recognized by PL/I

Category Symbol Meaning

Arithmetic operators + Addition or unary plus

- Subtraction or unary minus

/ Division

* Multiplication

** Exponentiation

Relational (or comparison)
operators

> Greater than

< Less than

= Equal to

^> Not greater than

^< Not less than

^= Not equal to

>= Greater than or equal to

<= Less than or equal to

Logical operators ^ Logical NOT (unary) and

EXCLUSIVE OR (binary)

& Logical AND

&: Logical AND THEN

| Logical OR

| : Logical OR ELSE

Concatenation operator | | String concatenation

1–2

Program Structure and Content

Table 1–1 (Cont.) Punctuation Marks Recognized by PL/I

Category Symbol Meaning

Separators , Delimits elements in a list

; Terminates a PL/I statement

. Separates identifiers in a structure name;
specifies a decimal point

: Terminates a procedure name or a
statement label

() Encloses lists and extents; defines
the order of evaluation of expressions;
separates statement and option names
from specific keywords; specifies a
parameter list

’ Delimits character strings and bit strings

Locator qualifier -> Pointer resolution

The tilde (~) is equivalent to the circumflex (^), and the exclamation
point (!) is equivalent to the vertical bar (|).

Spaces, Tabs, and Line-End Characters

In addition to punctuation marks, PL/I accepts spaces, tabs, and line-end
characters between identifiers, constants, and keywords.

The rules for entering spaces are:

— Between any identifiers, keywords, or constants

— Preceding or following punctuation marks that normally serve as
delimiters, for example, tabs or commas

The line-end character is a valid punctuation mark between items in a
PL/I statement except when it is embedded in a string constant. In a
string constant, the line-end character is ignored. For example:

A = ’THIS IS A VERY LONG STRING THAT MUST BE CONTI
NUED ON MORE THAN ONE LINE IN THE SOURCE FILE’;

This assignment statement gives the variable A the value of the specified
character-string constant. (The line-end character in the constant is
ignored.) Note that any tabs or spaces preceding NUED in the previous
example will be included in the string.

1.1.3 Identifiers
An identifier is a user-supplied name for a procedure, a statement label,
or a variable that represents a data item. The rules for forming identifiers
are:

• An identifier can have from 1 to 31 characters.

1–3

Program Structure and Content

• An identifier can consist of any of the following characters:

— The alphabetic letters A through Z and a through z. PL/I converts
all lowercase letters to uppercase when it compiles a source
program. The identifiers abc, ABC, Abc, and so on, all refer to
the same object.

— The numeric digits 0 through 9.

— The underscore character (_).

— The dollar sign character ($).

• An identifier cannot contain any blanks, spaces, or hyphens.

• An identifier must begin with an alphabetic letter, a dollar sign ($), or
an underscore (_). It cannot begin with a numeral.

Examples of valid identifiers are:

STATE
total
FICA_PAID_YEAR_TO_DATE
ROUND1
SS$_UNWIND

1.1.4 Comments
A comment is an informational tool for documenting a PL/I program. To
insert a comment in a program, enclose it within the character pairs /*
and */. For example:

/* This is a comment . . . */

Except inside a string constant, wherever the starting characters (/*)
appear in a program, the compiler ignores all text until it encounters the
ending characters (*/). A comment can span several lines.

The rules for entering comments are:

• Except within a string constant, a comment can appear anywhere that
a space can appear:

• A comment can contain any character except the pair */; comments
cannot be nested.

The following are examples of comments:

A = B + C ; /* Add B and C */

/* ********* START OF SECOND PHASE ********* */

DECLARE/*COUNTER*/A FIXED BINARY (7);

/* This module performs the following steps:
1. Initializes all arrays and data structures.
2. Establishes default condition handlers.

*/

Although complete comments cannot be nested, you can comment out a
statement such as the following:

DECLARE EOF BIT(1); /* end-of-file */

1–4

Program Structure and Content

To do this, precede the DECLARE statement with another /* pair, as
follows:

/* DECLARE EOF BIT(1); /* end-of-file */

The compiler will then ignore all text, including the DECLARE statement
and the second /*, until it reaches the */.

1.2 Statements
A statement is the basic element of a PL/I procedure. Statements are used
to do the following:

• Define and identify the structure of the program and the data that it
acts upon (possibly including text from other files; see Section 10.2.13.)

• Request specific actions to be performed on data

• Control the flow of execution in a program

Table 1–2 and Table 10–1 provide summaries of PL/I statements. Detailed
descriptions of these statements appear throughout this manual.

1.2.1 Statement Formats
The general format of a PL/I statement consists of an optional statement
label, the body of the statement, and the required semicolon terminator.

The body of the statement consists of user-specified identifiers, literal
constants, or PL/I keywords. Each element must be properly separated,
either by special characters that punctuate the statement or by spaces or
comments.

1.2.2 Statement Labels
The optional statement label identifies a statement so that it can be
referred to elsewhere in the program, for example, as the target of a
GOTO statement. A label precedes a statement; it consists of any valid
identifier (see Section 1.1.3) terminated by a colon. For example:

TARGET: A = A + B;

READ_LOOP: READ FILE (TEXT) INTO (TEMP);

A statement cannot have more than one label.

1.2.3 Simple Statements
A simple statement contains only one action to be performed. There are
three types of simple statements:

• Keyword statements

• Assignment statements

• Null statements

1–5

Program Structure and Content

Keyword Statements
Keyword statements are identified by the PL/I keyword that requests a
specific action. Examples of keyword statements are:

READ FILE (A) INTO (B);
GOTO LOOP;
DECLARE PRICE PICTURE ’$$$99V.99’;

In these examples, READ, GOTO, and DECLARE are keywords that
identify these statements to PL/I.

Assignment Statements
PL/I identifies an assignment statement by syntax: an assignment
statement consists of an identifer and an expression separated by an
equal sign (=). For example:

TOTAL = TOTAL + PRICE;
COUNTER = 0;

Null Statements
A null statement consists of only a semicolon (;); it indicates that PL/I is
to perform no operation. For example:

IF A < B THEN GOTO COMPUTE;
ELSE;

This IF statement shows a common use of the null statement: as the
target of an ELSE clause.

1.2.4 Compound Statements
A compound statement contains more than one PL/I statement within the
statement body; it is terminated by the semicolon that terminates the final
statement.

1.2.5 Summary of Statements by Function
You can group PL/I statements by function into the following categories.

Data Definition and Assignment Statements
The DECLARE statement defines variable names:

DECLARE identifier [attribute . . .];

The assignment statement gives a value to a variable or variables:

reference, reference = expression;

Input/Output Statements
These statements identify files and data formats and perform input and
output operations:

CLOSE GET READ

DELETE OPEN REWRITE

FORMAT PUT WRITE

1–6

Program Structure and Content

Program Structure Statements
These statements define the organization of the program into procedures,
blocks, and groups:

BEGIN ENTRY

DO PROCEDURE

END null

Flow Control Statements
These statements change or interrupt the normal sequential flow of
execution in a PL/I program:

CALL ON SIGNAL

GOTO RETURN STOP

IF REVERT

LEAVE SELECT

Storage Allocation Statements
These statements acquire and control the use of storage in a PL/I program:

ALLOCATE
FREE

Table 1–2 gives a summary of the PL/I statements and their uses.

Table 1–2 Summary of PL/I Statements

Statement Use

Assignment Evaluates an expression and gives its value to an identifier

Null Specifies no operation

ALLOCATE Allocates storage for a based or controlled variable

BEGIN Denotes the beginning of a block of statements to be executed as a
unit

CALL Transfers control to a subroutine or external procedure

CLOSE Terminates association of a file control block with an input or output
file

DECLARE Defines the variable names and identifiers to be used in a PL/I
program and specifies the data attributes associated with them

DELETE Removes an existing record from a file

DO Denotes the beginning of a group of statements to be executed as a
unit

END Denotes the end of a block or group of statements begun with a
BEGIN, DO, or PROCEDURE statement

ENTRY Specifies an alternative point at which a procedure can be invoked

FORMAT Specifies the format of data that is being read or written with GET
EDIT and PUT EDIT statements and defines the conversion, if any, to
be performed

FREE Releases storage of a based or controlled variable

1–7

Program Structure and Content

Table 1–2 (Cont.) Summary of PL/I Statements

Statement Use

GET Obtains data from an external stream file or from a character-string
expression

GOTO Transfers control to a labeled statement

IF Tests an expression and establishes actions to be performed based
on the result of the test

LEAVE Transfers control out of a DO group

ON Establishes the action to be performed when a specified condition is
signaled

OPEN Establishes the association between a file control block and an
external file

PROCEDURE Specifies the point of invocation for a program, subroutine, or user-
defined function

PUT Transfers data to an external stream file or to a character-string
variable

READ Obtains a record from a file

RETURN Gives back control to the procedure from which the current procedure
was invoked

REVERT Cancels the effect of the most recently established ON unit

REWRITE Replaces a record in an existing file

SELECT Tests a series of expressions and establishes the action to be
performed based on the result of the test

SIGNAL Causes a specific condition to be signaled

STOP Halts the execution of the current program

WRITE Copies data from the program to an external record file

1.3 Program Format
A PL/I program consists of a series of statements, which perform the
following tasks:

• Define the data to be used for program input and output

• Define the operations to be performed on the data during the execution
of the program

• Control the environment within which the program executes

• Define the order of execution or control flow for a program

A statement comprises user-specified identifiers, constants, and PL/I
keywords, separated by blanks, comments, and punctuation marks. You
can organize statements into structural sequences of groups or blocks.
Example 1–1 shows the structure of a PL/I program.

1–8

Program Structure and Content

Example 1–1 Structure of a PL/I Program

SAMPLE: PROCEDURE OPTIONS (MAIN);!

DECLARE (X,Y,Z) FIXED, "
MESSAGE CHARACTER(80),
CALC ENTRY (FLOAT) RETURNS (FLOAT),
TOTAL FLOAT;

X = 0; #
PUT SKIP LIST(MESSAGE);

FINISH: PROCEDURE; $
DECLARE TEXT (5) CHARACTER (20);

END FINISH: %
END SAMPLE;

Key to Example 1–1

! A PROCEDURE is the basic executable program unit.

" The declarations of variables in a procedure are usually, but not
necessarily, placed at the beginning of the procedure.

Executable statements are placed following variable declarations.

$ Internal procedures may be placed anywhere.

% All procedures must terminate with END statements.

The source text of a PL/I program is freeform. As long as you terminate
every statement with a semicolon (;), individual statements can begin
in any column, be on additional lines, or be written with more than one
statement to a line.

Individual keywords or identifiers of a statement, however, must be
confined to one line. Only a character-string constant (which must be
enclosed in apostrophes) can be on more than one line.

PL/I programs are easier to read and comprehend if you follow a standard
pattern in formatting. For example:

• Write source statements with no more than one statement per line.

• Use indentation to show the nesting level of blocks and DO-groups.

1.4 Blocks
PL/I is a block-structured language with each block composed of a
sequence of PL/I statements. There are two types of blocks:

• Procedure blocks. A procedure block begins with a PROCEDURE
statement and terminates with an END statement. A procedure is the
basic program unit of PL/I; it also defines the scope of names declared
within it.

1–9

Program Structure and Content

• Begin blocks. A begin block is a sequence of statements headed by
a BEGIN statement (see Section 8.2) and terminated by an END
statement (see Section 8.3). In general, you can use a begin block
wherever a single PL/I statement would be valid. In some contexts,
such as an ON-unit, a begin block is the only way to perform severa
statements instead of one. A primary use of begin blocks is to localize
variables. Because execution of a begin block causes a block activation,
automatic variables declared within the begin block are local to it, and
their storatge disappears when the block completes execution. Because
BEGIN causes a block activation, a new stack frame will be generated
in the same manner as a procedure statement. Thus, if you do not
need this capability use a DO Group instead, as it is more efficient.

Scope of Names

The scope of a declaration of a name is that region of the program in which
the name has meaning. A name has meaning in the following locations:

• The block in which it is declared

• Any blocks contained within the declaring block, as long as the name
is not redeclared in the contained block

• Any procedure contained in the program, if the name is declared
outside a procedure

Two or more declarations of the same name are not allowed in a single
block unless one or more of the declarations are of structure members.

Two declarations of the same name in different blocks denote distinct
objects unless both specify the EXTERNAL attribute. All EXTERNAL
declarations of a particular name denote the same variable or constant,
and all must agree as to the properties of the variable or constant,
otherwise unpredictable results will occur. Note that EXTERNAL is
the default for declarations of ENTRY and FILE constants. It must be
specified explicitly for variables.

The following example shows the scope of internal names:

NAME SCOPE

DECLARE Q STATIC FIXED; Q MAINP, ALPHA, BETA, and CALC

MAINP: PROCEDURE OPTIONS
(MAIN);

MAINP MAINP, ALPHA, BETA, and CALC

DECLARE (X, Y, Z) FIXED; X, Y

Z in MAINP

MAINP, ALPHA, BETA, and CALC
MAINP, ALPHA, and CALC

ALPHA: PROCEDURE; ALPHA MAINP, ALPHA, BETA, and CALC

BETA: BEGIN; BETA ALPHA, BETA

DECLARE Z FLOAT; Z in BETA BETA

GOTO ERROR;
END BETA;

1–10

Program Structure and Content

ERROR: ERROR ALPHA, BETA

END ALPHA;

CALC: PROCEDURE; CALC MAINP, ALPHA, and CALC

DECLARE (SUM, TOTAL)
FLOAT;

SUM, TOTAL CALC

END CALC;
END MAINP;

Declarations can appear outside procedures and, if contained within
the same block, have meaning throughout all procedures contained in
the block. However, if there are multiple blocks, declarations outside
procedures must have the EXTERNAL attribute if they are to be
recognized by all blocks and procedures in the program. For example:

File A.PLI

DECLARE X FIXED EXTERNAL STATIC;

A: PROCEDURE OPTIONS(MAIN);

DECLARE B ENTRY;
.
.
.

END A;

File B.PLI

B: PROCEDURE;
.
.
.

END B;

In this example, the variable X has meaning in both procedures. Because
the two procedures are in two different files, X must be declared with the
EXTERNAL attribute. If X is declared with the INTERNAL attribute, X is
recognized only in the first procedure.

1.4.1 Begin Blocks
A begin block is a sequence of statements headed by a BEGIN statement
(see Section 8.2) and terminated by an END statement (see Section 8.3).
In general, you can use a begin block wherever a single PL/I statement
would be valid. In some contexts, such as an ON-unit, a begin block is the
only way to perform several statements instead of one. A primary use of
begin blocks is to localize variables. Because execution of a begin block
causes a block activation, automatic variables declared within the begin
block are local to it, and their storage disappears when the block completes
execution.

Another way to allow your program to perform several statements in
place of one is to use a DO group (see Section 8.1). You should choose it
when possible because it does not incur the overhead associated with block

1–11

Program Structure and Content

activation. Use a begin block when there are declarations present or when
you require multiple statements in an ON unit.

1.4.2 Procedure Blocks
A procedure is a sequence of statements (possibly including begin
blocks and other procedures) headed by a PROCEDURE statement and
terminated by an END statement. Unlike a begin block, which executes
when control reaches it, a procedure executes only when it is specifically
invoked. Invocation occurs in the following ways:

• Enter the DCL command RUN to invoke the main procedure of a PL/I
program. This is either the procedure that has OPTIONS(MAIN) on
its PROCEDURE statement or the first procedure encountered by the
linker.

• Statements within a procedure can invoke other procedures. The
CALL statement invokes a procedure as a subroutine. A function
reference invokes a function, which is a procedure that returns a value
for use in the evaluation of an expression.

A PL/I program must have at least one procedure, the main procedure.
Any procedure, including the main procedure, can contain others; these
are called internal procedures. A procedure that is not contained within
any other is called an external procedure. The main procedure is always
an external procedure.

Except for the main procedure, no procedure executes unless it is invoked
by a CALL statement or a function reference. Chapter 7 discusses
procedures in more detail.

1.4.3 Containment
As an example, block B is said to be contained in another block A if all of
B’s source text, from label (if any) to END statement inclusive, is between
A’s BEGIN or PROCEDURE statement and A’s END statement. If block
B is not contained in any other block within block A, then B is said to be
immediately contained in A. For example:

A: PROCEDURE OPTIONS(MAIN);
B: PROCEDURE;
END B;

.

.

.
BEGIN;

CALL B;
END; /* of begin block */

END A;

The procedures B and the begin block all are immediately contained in A.

If block B is contained in block A, then B is said to be nested in A. The
maximum nesting level is 64.

1–12

Program Structure and Content

1.4.4 Block Activation
A block is activated when program execution flows into it. Then, all
automatic variables declared in the block become active. When control
leaves the block, the variables become undefined and inaccessible.

You can only enter a procedure block with a CALL statement (see
Section 7.4) or a function reference. If an internal procedure is declared
within a source program, control flows around the internal procedure
during the normal sequence of execution.

A begin block is entered when it is encountered during the normal flow of
execution.

1.4.5 Relationship of Block Activations
During the execution of a program, many blocks can be simultaneously
active. Two different relationships can be defined among block activations;
they are the immediate dynamic descendance and the immediate parent
activation. For example:

B: PROCEDURE OPTIONS(MAIN);
A: PROCEDURE;

CALL Q;
.
.
.

END A;
Q: PROCEDURE;

.

.

.
END Q;

BEGIN;
CALL A;
END; /* of begin block */

END B;

Figure 1–1 shows these relationships.

1–13

Program Structure and Content

Figure 1–1 Relationship of Block Activations

Begin
Block

Dynamic
Descendent
Chains

Parent
Chains

NU−2437A−RA

B

A

Q

In the immediate dynamic descendance relationship, a block activation is
the immediate dynamic descendant of the block that invoked it. At a given
time, the chain of immediate dynamic descendants includes all existing
block activations, starting with the activation of the main procedure and
terminating in the current block activation. For example, in Figure 1–1,
the begin block is the immediate dynamic descendant of procedure B; the
complete chain is B, begin block, A, Q. This chain is used for finding the
applicable ON-unit when a condition is signaled.

The other relationship shown in Figure 1–1 applies to activations of
nested blocks. An activation of a block X that is a begin block or internal
procedure has an immediate parent activation, which is an activation of
the block that immediately contains X. The chain of immediate parent
activations extends back to an activation of the external procedure
containing X. In Figure 1–1, the parent chain for the begin block,
procedure A, and procedure Q leads directly back to the activation of
B, because each of these blocks is immediately contained in B. This chain
is used in interpreting references.

When a block is activated, its immediate parent activation is determined
as follows:

• If the block is an external procedure, it has no parent activation.

• If the block is a begin block, its immediate parent activation is the
activation that invoked it. Therefore, the begin block is the immediate
dynamic descendant of its immediate parent.

• If the block is an internal procedure invoked in block activation B by
a reference to an entry constant (such as A in Figure 1–1) declared in
block B, then the immediate parent of the new block activation of A is
the activation of A in the parent chain starting at B.

1–14

Program Structure and Content

• If the block is an internal procedure invoked by an entry variable, the
parent activation is taken from the entry value. It was originally set
when the complete entry value was generated by the assignment of an
entry constant to an entry variable (Section 3.8 discusses entry data).

1.4.6 Block Termination
When a block terminates normally, that is, when an END statement or a
RETURN statement is executed, the current block is released and control
goes to the preceding block activation. If a nonlocal GOTO statement is
executed that transfers control out of the current block, the current block
and any blocks between it and the block containing the label that is the
target of the GOTO statement are released.

1.5 Data and Variables
The statements in a PL/I program process data, generally in the form of
variables that take on different values as the result of program execution.
In PL/I, you must declare variables in a DECLARE statement before
you can use them in other statements. Declaring a variable associates
an identifier with a set of attributes and with a region of storage. Thus,
when you declare a variable you must usually specify one or more data
type attributes to be associated with it. (The concept of an attribute is
more basic to PL/I than the concept of a data type.) Furthermore, you can
specify how the variable is to be allocated by supplying a storage-class
attribute in the declaration.

A few examples of PL/I attributes are BIT, CHARACTER, BINARY,
DECIMAL, FILE, FLOAT, PRINT, UPDATE, and VALUE. For a complete
alphabetic list of the PL/I attributes with their uses, see Section 2.2.

An identifier can refer to a single variable (called a scalar variable) or to
a collection of related variables. Such a collection is called an aggregate.
There are two kinds of aggregates:

• The array, in which all members have the same data type and are
referenced by relative position

• The structure, in which the members can have different data types
and are referenced in a hierarchical fashion

The following chapters provide information on these topics:

• Chapter 2 describes the DECLARE statement and the scope of a
declaration.

• Chapter 3 describes the data types that you can specify for variables.

• Chapter 4 describes aggregates.

1–15

Program Structure and Content

1.5.1 Preprocessor
PL/I supports an embedded lexical preprocessor, which recognizes a
specific set of statements that are executed at compile time. These
statements cause the PL/I compiler to include additional text in the
source program or to change the values of constant identifiers at compile
time.

Preprocessor statements are identified by a leading unquoted percent sign
(%) and are terminated by an unquoted semicolon (;), except for %THEN
and %IF statements. You can freely intermix preprocessor statements
with the rest of the source program statements.

Table 10–1 lists the preprocessor statements. For additional information
on the PL/I preprocessor, see Chapter 10.

1–16

2 Declarations

The declaration of a name in a PL/I program consists of a user-specified
identifier and the attributes of the name. The attributes describe the
following:

• The data type of the name, that is, whether it is a computational data
item (such as a number or a string) or noncomputational program data
(such as a file constant or label)

• The storage-class to which the name belongs, that is, whether the
compiler allocates storage for it, and how the storage is allocated

• The scope of the name, that is, whether the name is known only within
the block in which it is declared and its contained blocks, or whether it
is known in external blocks

A name is declared either explicitly in a DECLARE statement or implicitly
by its appearance in a particular context. For example:

CALC: PROCEDURE;

This statement is an implicit declaration of the name CALC as an entry
constant.

This chapter describes the DECLARE statement and data attributes.

2.1 DECLARE Statement
The DECLARE statement specifies the attributes associated with names.

The format of the DECLARE statement is:n
DECLARE
DCL

o
declaration [,declaration, . . .];

declaration
One or more declarations consisting of identifiers and attributes. A
declaration has the following format:

[level] declaration-item

level
Levels are used to specify the relationship of members of structures; if a
level is present in the declaration, it must be written first.

declaration-item
A declaration-item has the following format:(

identifier [(bound-pair, . . .)]
(declaration-item, . . .)
(identifier, . . .) [(bound-pair, . . .)]

)
[attribute . . .]

2–1

Declarations

The format of the DECLARE statement varies according to the number
and nature of the items being declared. The DECLARE statement can
list a single identifier, optionally specifying a level, bound-pair list, and
other attributes for that identifier. Alternatively, the statement can
include, in parentheses, a list of declarations to which the level and all
subsequent attributes apply. The declarations in the second case can be
simple identifiers or can include attributes that are specific to individual
identifiers.

Bound pairs are used to specify the dimensions of arrays. If bound pairs
are present, they must be in parentheses and must immediately follow the
identifier or the list of declarations. For example, (2:10), lower bound is 2
and upper bound is 10. Bounds can be any valid PL/I expression.

The various formats are described individually in the following sections.

2.1.1 Simple Declarations
A simple declaration defines a single name and describes its attributes.
The format of a simple declaration is:

DECLARE identifier [attribute . . .] ;

identifier
A 1- to 31-character user-supplied name. The name must be unique within
the current block.

An identifier can consist of any of the alphanumeric characters A through
Z, a through z, 0 through 9, dollar signs ($), and underscores (_), but
must begin with an alphabetic letter, dollar sign, or underscore.

attribute
One or more attributes of the name. Attribute keywords must be
separated by spaces. They can appear in any order.

See Section 2.2 for a list of the valid attribute keywords and their
meanings.

The following are examples of simple declarations:

DECLARE COUNTER FIXED BINARY (7);
DECLARE TEXT_STRING CHARACTER (80) VARYING;
DECLARE INFILE FILE;

Names that are not given specific attributes in a DECLARE statement or
that are referenced without being declared, receive the default attributes
FIXED BINARY (31,0) AUTOMATIC. Note that the compiler issues a
warning message whenever it gives these default attributes to a name.

2.1.2 Declarations Outside Procedures
You can declare a variable outside any procedure. Any variable so declared
will be visible within all procedures contained by the module. The format
for declarations outside procedures is the same as for other declarations,
except that the storage-class attribute cannot be AUTOMATIC. If a
storage-class is not specified or is specified as AUTOMATIC, the compiler

2–2

Declarations

will issue a warning and supply the STATIC attribute. The following
example shows the use of this type of declaration:

DECLARE A STATIC FIXED BINARY(31);
.
.
.

FIRST: PROCEDURE;
DECLARE B FIXED BINARY(31);

.

.

.
END FIRST;

SECOND: PROCEDURE;
DECLARE C FIXED BINARY(31);

.

.

.
END SECOND;

In this example, variable A is visible in both the FIRST and SECOND
procedures, but variables B and C are visible only in their containing
procedures.

2.1.3 Multiple Simple Declarations
Multiple simple declarations define two or more names and their
individual attributes. This format of the DECLARE statement is:

DECLARE identifier [attribute . . .]
[,identifier [attribute . . .]] . . . ;

When you specify more than one set of names and their attributes,
separate each name and attribute set from the preceding set with a
comma. A semicolon must follow the last name.

The following is an example of multiple declarations:

DECLARE COUNTER FIXED BINARY (7),
TEXT_STRING CHARACTER (80) VARYING,
Y FILE;

This DECLARE statement defines the variables COUNTER, TEXT_
STRING, and Y. The attributes for each variable follow the name of the
variable.

2.1.4 Factored Simple Declarations
When two or more names have common attributes, you can combine
the declarations into a single, factored declaration. This format of the
DECLARE statement is:

DECLARE (identifier[,identifier . . .])
[attribute . . .];

2–3

Declarations

When you use this format, you must place names that share common
attributes within parentheses and separate them with commas. The
attributes that follow the parenthetical list of names are applied to all the
named identifiers.

The following are examples of factored declarations:

DECLARE (COUNTER, RATE, INDEX) FIXED BINARY (7) INITIAL (0);
DECLARE (INPUT_MESSAGE, OUTPUT_MESSAGE, PROMPT)

CHARACTER (80) VARYING;

In these declarations, the variables COUNTER, RATE, and INDEX share
the attributes FIXED BINARY (7) and are given the initial value of zero.
The variables INPUT_MESSAGE, OUTPUT_MESSAGE, and PROMPT
share the attributes CHARACTER (80) VARYING.

You can also specify, within the parentheses, attributes that are unique to
specific variable names, using the following format:

DECLARE (declaration-item, declaration-item [,declaration-item])
attribute . . .

For example:

DECLARE (INFILE INPUT RECORD,
OUTFILE OUTPUT STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file and
OUTFILE as an STREAM OUTPUT file.

The parentheses can be nested. For example:

DECLARE ((INFILE INPUT, OUTFILE OUTPUT) RECORD,
SYSFILE STREAM) FILE;

The DECLARE statement declares INFILE as a RECORD INPUT file,
OUTFILE as a RECORD OUTPUT file, and SYSFILE as a STREAM file.

2.1.5 Array Declarations
The declaration of an array specifies the dimensions of the array and the
bounds of each dimension. This format of a DECLARE statement is:

DECLARE declaration (bound-pair, . . .) [attribute . . .];

where each bound pair has the following format:n
[lower-bound:]upper-bound
*

o

One bound pair is specified for each dimension of the array. The number
of elements per dimension is defined by the bound pair. The extent of an
array is the product of the numbers of elements in its dimensions. If the
lower bound is omitted, the lower bound for that dimension is 1 by default.

You can use the asterisk (*) as the bound pair when arrays are declared as
parameters of a procedure. The asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension
is specified with an asterisk, all must be specified with asterisks.)

2–4

Declarations

For example:

DECLARE SALARIES(100) FIXED DECIMAL(7,2);

This statement declares a 100-element array with the identifier
SALARIES. Each element is a fixed-point decimal number with a total
of seven digits, two of which are fractional. The identifier in the statement
can be replaced with a list of declarations, to declare several objects with
the same attributes. For instance:

DECLARE (SALARIES,PAYMENTS) (100) FIXED DECIMAL(7,2);

This declares SALARIES and another array, PAYMENTS, with the same
dimensions and other attributes.

For further details on how to specify the bounds of an array, and for
examples of array declarations, see Section 4.1.1.

2.1.6 Structure Declarations
The declaration of a structure defines the organization of the structure
and the names of members at each level in the structure. This format of a
DECLARE statement is:n

DECLARE
DCL

o
level declaration-item [,level declaration-item . . .];

Each declaration specifies a member of the structure and must be preceded
by a level number. As shown in the following example, a single variable
can be declared at a particular level; or the level can contain one or more
complete declarations, including declarations of arrays or other structures.
The major structure name is declared as structure level 1; minor members
must be declared with level numbers greater than 1.

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER(80) VARYING,
3 FIRST CHARACTER(80) VARYING,

2 SALARY FIXED DECIMAL(7,2);

This statement declares a structure named PAYROLL.

Alternatively, because the last and first names have the same attributes,
the same structure can be declared as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 (LAST,FIRST) CHARACTER(80) VARYING,
2 SALARY FIXED DECIMAL(7,2);

For details and examples of structure declarations, see Section 4.2.1.

2.2 Attributes
Attributes define and describe the characteristics of names used in a PL/I
program. Each name in a PL/I program has a set of attributes associated
with it. You can specify attributes in any of the following contexts:

• In a DECLARE statement for an identifier. These attributes are
specified either by keyword or by syntax. For example:

2–5

Declarations

DECLARE SIGNAL CHARACTER (20);

In this declaration, the keyword attribute CHARACTER is associated
with the identifier SIGNAL. The syntax length attribute of the variable
is specified in parentheses following the CHARACTER keyword.
In this manual, keyword attributes are shown in format lines in
uppercase letters. Attributes given by syntax are shown in lowercase
letters.

• In an OPEN statement to describe a particular file. During the
opening of a file, these attributes are merged with file description
attributes specified in the declaration of the file.

• Within the ENTRY attribute to describe the parameters of an external
procedure. These attributes must match the attributes given to
corresponding parameters specified in the PROCEDURE or ENTRY
statements of the invoked subroutine or function.

• Within the RETURNS attribute of a PROCEDURE or ENTRY
statement to describe the value returned by a function.

Attributes can also be implied by the presence of other attributes. For
example, if the RETURNS attribute is specified for an identifier, the
compiler supplies the ENTRY attribute by default.

The entry for each attribute in this chapter gives its syntax and
abbreviation (if any) and describes related and conflicting attributes.
See Table 2–1 for a concise alphabetic summary of PL/I attributes.

Computational Data Type Attributes

The attributes that define arithmetic and string data are:

CHARACTER [(length)]
h

VARYING
NONVARYING

i
BIT [(length)]

h
ALIGNED
UNALIGNED

i
n

FLOAT
FIXED

o n
BINARY
DECIMAL

o
[[PRECISION] (precision [,scale-factor])]

PICTURE ’ picture’

You can specify these attributes for all elements of an array and for
individual members of a structure.

Noncomputational Data Type Attributes

The following attributes apply to program data that is not used for
computation:

AREA
CONDITION
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL

2–6

Declarations

OFFSET
POINTER

Storage-Class and Scope Attributes

The following attributes control the allocation and use of storage for a
computational variable and define the scope of the variable:

AUTOMATIC [INITIAL(initial-element, . . .)]
BASED [(pointer-reference)] [INITIAL(initial-element, . . .)]
CONTROLLED [INITIAL(initial-element, . . .)]
DEFINED(variable-reference) [POSITION(expression)]
STATIC [READONLY] [INITIAL(initial-element, . . .)]
PARAMETER
INTERNAL

EXTERNAL

"
GLOBALDEF [(psect-name)]

h
VALUE
READONLY

i
GLOBALREF

#

Member Attributes

You can apply the following attributes to the major or minor members of a
structure:

LIKE
MEMBER
REFER
STRUCTURE
TYPE
UNION

File Description Attributes

You can apply the following attributes to file constants and used in OPEN
statements:

ENVIRONMENT(option, . . .)
n

RECORD [KEYED]
STREAM

o (INPUT
OUTPUT [PRINT]
UPDATE

)
�

DIRECT
SEQUENTIAL

�

2–7

Declarations

Entry Name Attributes

You can apply the following attributes to identifiers of entry points:

ENTRY [VARIABLE] [OPTIONS (VARIABLE)]
[RETURNS (returns-descriptor)]

BUILTIN

Nondata Type Attributes

You can apply the following attributes to data declarations:

ALIGNED
DIMENSION
UNALIGNED

Table 2–1 lists the PL/I attributes. The sections following this table
describe each attribute in detail.

Table 2–1 Alphabetic Summary of PL/I Attributes

Attribute Use

ALIGNED Requests alignment of bit-string variables in storage

ANY Indicates that a parameter (of an external procedure not written in PL/I)
can have any data type

AREA [(extent)] Defines an area of storage for the allocation of based variablesn
AUTOMATIC
AUTO

o
Requests dynamic allocation of storage for a variable

BASED [(pointer-reference)] Indicates that a variable’s storage is located by a pointern
BINARY
BIN

o
[(precision[,scale-factor])] Defines a binary base for arithmetic data

BIT [(length)] Defines bit-string data

BUILTIN Defines a built-in function namen
CHARACTER
CHAR

o
[(length)] Defines character-string datan

CONDITION
COND

o
(condition-name) Defines an identifier as a condition namen

CONTROLLED
CTL

o
Defines a variable whose storage is allocated and freed in successive
and fixed-sequence generationsn

DECIMAL
DEC

o
[(precision[,scale-

factor])]

Defines a decimal base for arithmetic data

n
DEFINED
DEF

o
(variable-reference) Indicates that a variable will share the storage allocated for another

variable

2–8

Declarations

Table 2–1 (Cont.) Alphabetic Summary of PL/I Attributes

Attribute Usen
DESCRIPTOR
DESC

o
Requests that an argument be passed to an external non-PL/I
procedure by descriptorn

DIMENSION
DIM

o
(bound-pair, . . .) Indicates that a variable is an array, and defines the number and extent

of its dimensions

DIRECT Specifies that a file will be only accessed randomly

ENTRY (descriptor, . . .) Describes an external procedure and its parametersn
ENVIRONMENT
ENV

o
(option, . . .) Specifies system-dependent information about a filen

EXTERNAL
EXT

o
Identifies the name of a variable whose storage is referenced or defined
in other procedures

FILE Identifies a PL/I file constant or file variable

FIXED [(precision[,scale-factor])] Defines a fixed-point arithmetic variable

FLOAT [(precision)] Defines a floating-point arithmetic variable

GLOBALDEF [(psect-name)] Defines an external variable and optionally specifies the program
section in which the variable will reside

GLOBALREF Declares an external variable which is defined in an external proceduren
INITIAL
INIT

o
(value, . . .) Provides initial values for variables

INPUT Specifies that a file will be used for inputn
INTERNAL
INT

o
Limits the scope of a variable to the block in which it is defined

KEYED Specifies that a file can be accessed randomly by key

LABEL Defines a label variable

LIKE structure-reference Copies the declaration of a structure to another structure variable

LIST Specifies that a parameter can accept a list of actual parameters, of
arbitrary length

MEMBER Specifies that an item is a member of a structuren
NONVARYING
NONVAR

o
Specifies that the length of a string is nonvarying

OFFSET [(area-reference)] Defines an offset variable

OPTIONAL Specifies, in the declaration of a formal parameter, that the actual
parameter need not be specified in a call

OUTPUT Specifies that a file will be used for outputn
PARAMETER
PARM

o
Indicates that a variable will be assigned a value when it is used as an
argument to a proceduren

PICTURE
PIC

o
’ picture’ Specifies the format of numeric data stored in character formn

POINTER
PTR

o
† Defines a pointer variablen

POSITION
POS

o
† Specifies the position within a variable at which a defined variable

begins

2–9

Declarations

Table 2–1 (Cont.) Alphabetic Summary of PL/I Attributes

Attribute Usen
PRECISION
PREC

o
[(precision[,scale-

factor])]

Specifies the number of digits in an arithmetic variable and, with
fixed-point data, the number of fractional digits

PRINT Specifies that a file is to be formatted for printing

READONLY Specifies that a static variable’s value does not change during program
execution

RECORD Specifies that a file will be accessed by record I/O statements

REFER Defines dynamically self-defining structuresn
REFERENCE
REF

o
Requests that an argument be passed to an external non-PL/I
procedure by reference

RETURNS (returns-descriptor) Specifies that an external entry is a function and describes the value
returned by itn

SEQUENTIAL
SEQL

o
Specifies that a file can be accessed sequentially

STATIC Requests static allocation of storage

STREAM Specifies that a file will be accessed by stream I/O statements

STRUCTURE Specifies that a variable is a structure variable

TRUNCATE Specifies, in a declaration of a formal parameter, that the actual
parameter list can be truncated at the point where this argument should
occur

TYPE Copies declarations of structures, scalars, and arrays to another
variablen

UNALIGNED
UNAL

o
Specifies nonalignment for bit-string variables in storage

UNION Indicates that a variable will share the storage allocated for another
variable

UPDATE Specifies that records in a file can be rewritten or deletedn
VALUE
VAL

o
Requests either that a global symbol be accessed by value rather
than by reference, or that an argument be passed to a procedure by
immediate value

VARIABLE Defines variable entry and file datan
VARYING
VAR

o
Defines a varying-length character string

2.2.1 ALIGNED Attribute
The ALIGNED attribute controls the storage boundary of bit-string data
in storage. The format of the ALIGNED attribute is:

ALIGNED

You can specify the ALIGNED attribute in conjunction with the BIT
attribute in a DECLARE statement to request alignment of a bit-string
variable on a byte boundary. If you specify ALIGNED for an array of
bit-string variables, each element of the array is aligned.

2–10

Declarations

You can specify ALIGNED in the declaration of a nonvarying character-
string variable. Specifying ALIGNED is not recommended with character
strings, as all character strings are byte-aligned.

Restriction

The ALIGNED attribute conflicts with the VARYING attribute and is
invalid with all data-type attributes other than BIT and CHARACTER.
You must specify either BIT or CHARACTER with the ALIGNED
attribute.

2.2.2 ANY Attribute
The ANY attribute specifies that an entry’s corresponding argument can
be of any data type. This attribute is applicable only to the declaration
of entry names denoting non-PL/I procedures. The format of the ANY
attribute is:

ANY

2
64

VALUE
CHARACTER(*)
REFERENCE
DESCRIPTOR

3
75

Restrictions

If you specify ANY for a parameter, you cannot specify any data-type
attributes for that parameter except CHARACTER(*). If ANY is used
by itself, the parameter is passed by reference. If ANY is used with
VALUE, the parameter is passed by immediate value. If ANY is used with
CHARACTER(*), the parameter is passed by character descriptor.

Example

DECLARE SYS$SETEF ENTRY (ANY VALUE);

This statement identifies the system service procedure SYS$SETEF and
indicates that the procedure accepts a single argument, which can be of
any data type, to be passed by value. (Note that PLI$STARLET contains
declarations for all system services, RTL routines, and utility routines.)

2.2.3 AREA Attribute
The AREA attribute defines an area variable. The format of the AREA
attribute is:

AREA [(extent)]

extent
The size of the area in bytes. The extent must be a nonnegative integer.
The maximum size is 500 million bytes. The rules for specifying the extent
are:

• If AREA is specified for a static variable declaration, extent must be
a restricted integer expression. A restricted integer expression is one
that yields only integral results and has only integral operands. Such

2–11

Declarations

an expression can use only the addition (+), subtraction (�), and
multiplication (*) operators.

• If AREA is specified in the declaration of a parameter or in a
parameter descriptor, you can specify extent as an integer constant
or as an asterisk (*).

• If AREA is specified for an automatic or based variable, you can specify
extent as an integer constant or as an expression. For automatic
variables, the extent expression must not contain any variables or
functions declared in the same block, except for parameters.

• If no extent is specified for the area, a default of 1024 bytes is
provided. Kednos recommends explicitly specifying a size, because
the default varies considerably between PL/I implementations.

Restrictions

The AREA attribute is not allowed in a returns descriptor. The AREA
attribute conflicts with all other data-type attributes.

2.2.4 AUTOMATIC Attribute
The AUTOMATIC attribute specifies, for one or more variables, that PL/I
is to allocate storage only for the duration of a block. An automatic
variable is not allocated storage until the block that declares it is
activated. The storage is released when the block is deactivated. The
format of the AUTOMATIC attribute is:n

AUTOMATIC
AUTO

o

AUTOMATIC explicitly defines the storage-class of a variable, array, or
major structure in a DECLARE statement. Because AUTOMATIC is the
default for internal variables, you need not specify it.

Restriction

The AUTOMATIC attribute conflicts with the following attributes
(the specification of which implies that storage allocation is not to be
automatic):

BASED GLOBALREF

CONTROLLED PARAMETER

DEFINED READONLY

EXTERNAL STATIC

GLOBALDEF

The AUTOMATIC attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

For a discussion of PL/I storage allocation, see Chapter 5.

2–12

Declarations

2.2.5 BASED Attribute
The BASED attribute defines a based variable, that is, a variable whose
actual storage will be denoted by a pointer or offset reference. The format
of the BASED attribute is:

BASED [(reference)]

reference
A reference to a pointer or offset variable or pointer-valued function. If
the reference is to an offset variable, that variable must be declared with
a base area. Each time a reference is made to a based variable without an
explicit pointer or offset qualifier, the reference is evaluated to obtain the
pointer or offset value.

Restriction

The following attributes conflict with the BASED attribute:

AUTOMATIC GLOBALREF

CONTROLLED PARAMETER

DEFINED READONLY

EXTERNAL STATIC

GLOBALDEF VALUE

The BASED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

See Section 5.5 for more information on the BASED variable.

2.2.6 BINARY Attribute
The BINARY attribute specifies that an arithmetic variable has a binary
base. The format of the BINARY attribute is:n

BINARY
BIN

o

When you specify the BINARY attribute for an identifer, you can also
specify one of the following attributes to define the scale and precision of
the data:

FIXED [(precision[,scale])]
FLOAT [(precision)]

FIXED indicates a fixed-point binary value and FLOAT indicates a
floating-point binary value.

For a fixed-point binary value, the precision specifies the number of bits
representing an integer and must be in the range 1 through 31. For a
fixed-point binary value, the scale factor represents the number of bits to
the right of the binary point and must be in the range -31 through 31. The
magnitude of the scale factor must be less than or equal to the specified
precision.

2–13

Declarations

For a floating-point value, the precision specifies the number of bits
representing the mantissa of a floating-point number and must be in the
range:

• For OpenVMS VAX systems: 1 through 113

• For OpenVMS Alpha systems: 1 through 53

The maximum floating-point binary precision is always 113 for OpenVMS
VAX and 53 for OpenVMS Alpha. The default values applied to the
BINARY attribute are:

Attributes
Specified Defaults Supplied

BINARY FIXED (31,0)

BINARY FIXED (31,0)

BINARY FLOAT (24)

Restrictions

The BINARY attribute directly conflicts with any other data-type
attribute.

2.2.7 BIT Attribute
The BIT attribute identifies a variable as a bit-string variable. The format
of the BIT attribute is:

BIT[(length)]

length
The number of bits in the variable. If you do not specify a length, the
default length is 1 bit. The length must be in the range 0 through 32,767.

The rules for specifying the length are:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression. A
restricted integer expression is one that yields only integral results
and has only integral operands. Such an expression can use only the
addition (+), subtraction (�), and multiplication (*) operators.

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, you can specify length as a restricted integer
expression or as an asterisk (*).

• If the attribute is specified for an automatic, based, controlled, or
defined variable, you can specify length as an expression. In the case
of automatic or defined variables, the expression must not contain any
variables or functions that are declared in the same block except for
parameters.

If specified, the length in parentheses must follow the keyword BIT.

If you give a variable the BIT attribute, you can also specify the ALIGNED
attribute to request alignment of the variable on a byte boundary in
storage.

2–14

Declarations

Restriction

The BIT attribute directly conflicts with any other data-type attribute.

2.2.8 BUILTIN Attribute
The BUILTIN attribute indicates that the name declared is the name of
a PL/I built-in function. Within the block in which the name is declared,
all references to the name will be interpreted as references to the built-in
function or pseudovariable of that name. The format of the BUILTIN
attribute is:

BUILTIN

Use the BUILTIN attribute when you want to refer to a built-in function
within a block in which the function’s name has been used to declare a
variable.

You also use the BUILTIN attribute when you want to invoke a built-in
function that takes no arguments (such as the DATE function) and you do
not want to include a null argument list.

Restriction

When you specify the BUILTIN attribute, you cannot specify any other
attributes.

Examples

OUTER: PROCEDURE;
DECLARE MAX FIXED BINARY STATIC INITIAL (10);

.

.

.
INNER: PROCEDURE;
DECLARE MAX BUILTIN;

TEST = MAX(A,B);
.
.
.

END INNER;
END OUTER;

The keyword MAX is used here as a variable name. In the internal
procedure INNER, the MAX built-in function is invoked. Because the
scope of the name MAX includes the internal procedure, the function must
be redeclared with BUILTIN.

You can also use the BUILTIN attribute to declare PL/I built-in functions
that have no arguments, if you want to invoke them without the empty
argument list. For example:

DECLARE DATE BUILTIN;
PUT LIST(DATE);

Without the declaration, the PUT LIST statement would have to include
an empty argument list for DATE:

PUT LIST(DATE());

2–15

Declarations

2.2.9 CHARACTER Attribute
The CHARACTER attribute identifies a variable as a character-string
variable. The format of the CHARACTER attribute is:n

CHARACTER
CHAR

o
[(length)]

length
The number of characters in a fixed-length string or the maximum length
of a varying-length string. If not specified, a length of 1 is assumed. The
length must be in the range 0 through 32,767 characters.

The rules for specifying the length are:

• If the attribute is specified for a static variable declaration or in a
returns descriptor, length must be a restricted integer expression.

• If the attribute is specified in the declaration of a parameter or in a
parameter descriptor, you can specify length as a restricted integer
expression or as an asterisk (*).

• If the attribute is specified for an automatic, based, or defined variable,
you can specify length as an expression. In the case of automatic or
defined variables, the expression must not contain any variables or
functions that are declared in the same block except for parameters.

If specified, the length must immediately follow the keyword
CHARACTER, and it must be enclosed in parentheses.

If you give a variable the CHARACTER attribute, you can also specify the
attribute VARYING, NONVARYING, ALIGNED, or UNALIGNED.

Restriction

The CHARACTER attribute directly conflicts with any other data-type
attribute.

2.2.10 CONDITION Attribute
You can optionally use the CONDITION attribute in a declaration to
specify that the variable name is a condition name. You can specify
INTERNAL or EXTERNAL scope attributes with the CONDITION
attribute. The default scope is external. The format of the CONDITION
attribute is:n

CONDITION
COND

o
(condition-name)

condition-name
Name used for ON units to handle programmer-defined conditions.

2–16

Declarations

2.2.11 CONTROLLED Attribute
The CONTROLLED attribute causes a variable’s actual storage to be
allocated and freed dynamically in generations, only the most recent of
which is accessible to the program. The format of the CONTROLLED
attribute is:n

CONTROLLED
CTL

o

Restrictions

The following attributes conflict with the CONTROLLED attribute:

AUTOMATIC
BASED
DEFINED
GLOBALDEF
GLOBALREF
READONLY
STATIC
VALUE
PARAMETER

The CONTROLLED attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

See Section 5.6 for more information on the CONTROLLED variable.

2.2.12 DECIMAL Attribute
The DECIMAL attribute specifies that an arithmetic variable has a
decimal base. The format of the DECIMAL attribute is:n

DECIMAL
DEC

o

When you specify the DECIMAL attribute for a variable, you can also
specify the following attributes to define the scale factor and precision of
the data:

FIXED (precision[,scale-factor])
FLOAT (precision)

FIXED indicates a fixed-point value, and FLOAT indicates a floating-point
decimal value.

(precision[,scale-factor])
The precision of a fixed-point decimal value is the total number of integral
and fractional digits. The precision of a floating-point decimal value is
the total number of digits in the mantissa. The precision for a fixed-point
decimal value must be in the range 1 through 31; the scale factor, if
specified, must be greater than or equal to 0 and less than or equal to the
specified precision.

2–17

Declarations

The precision for a floating-point decimal value must be in the range:

• For OpenVMS VAX systems: 1 through 34

• For OpenVMS Alpha systems: 1 through 15

The default values applied to the DECIMAL attribute are:

Attributes Specified Defaults Supplied

DECIMAL FIXED (10,0)

DECIMAL FIXED (10,0)

DECIMAL FIXED (n) (n,0)

DECIMAL FLOAT (7)

Restrictions

The DECIMAL attribute conflicts with any other data-type attribute.

2.2.13 DEFINED Attribute
The DEFINED attribute indicates that PL/I is not to allocate storage for
the variable, but is to map the description of the variable onto the storage
of another base variable. The DEFINED attribute provides a way to
access the same data using different names. The format of the DEFINED
attribute is:n

DEFINED
DEF

o
(variable-reference)

variable-reference
A reference to a variable that has storage associated with it. The variable
must not have the BASED, CONTROLLED, or DEFINED attribute. The
variable and the declared variable must satisfy the rules given for defined
variables in Section 5.8.

The DEFINED attribute can optionally specify a position within the
referenced variable at which the definition begins. For example:

DECLARE ZONE CHARACTER(10)
DEFINED(ZIP) POSITION(4);

Restrictions

The following attributes conflict with the DEFINED attribute:

AUTOMATIC BASED CONTROLLED

EXTERNAL GLOBALDEF GLOBALREF

INITIAL PARAMETER READONLY

STATIC UNION VALUE

The DEFINED attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

See Section 5.8 for more information on defined variables.

2–18

Declarations

2.2.14 DESCRIPTOR Attribute
The DESCRIPTOR attribute forces a parameter to be passed by descriptor
to a non-PL/I procedure.

The format of the DESCRIPTOR attribute is:n
DESCRIPTOR
DESC

o

Restriction

You can use the DESCRIPTOR attribute only in parameter descriptors

See Section 7.5.1 for more information on rules for specifying parameters.

2.2.15 DIMENSION Attribute
The DIMENSION attribute defines a variable as an array. It specifies the
number of dimensions of the array and the bounds of each dimension. The
format of the DIMENSION attribute is:h

DIMENSION
DIM

i
(bound-pair, . . .)

bound-pair
One or two expressions that indicate the number of elements in a
single dimension of the array. You must specify the list of bound pairs
immediately following the name of the identifier in the array declaration
if the optional keyword DIMENSION or DIM is omitted; otherwise, you
must specify the list of bound pairs immediately following the keyword
DIMENSION or DIM. See the following examples.

The maximum number of dimensions allowed is eight.

A bound pair can be specified:

• [lowerbound:]upperbound

This format of a bound pair specifies the minimum and maximum
subscripts that can be used for the dimension. The number of elements
is:

(upperbound� lowerbound) + 1

If the lower bound is omitted, it is assumed to be 1.

• *

This format of a bound pair, when used to define a parameter for a
procedure or function, indicates that the bounds are to be determined
from the associated argument. If one bound pair is specified as an
asterisk, all bound pairs must be specified as asterisks.

The following two declarations are exactly equivalent:

DECLARE A(10) FIXED BIN;

DECLARE A FIXED BIN DIMENSION(10);

2–19

Declarations

The following two declarations are also equivalent:

DECLARE B(1:5,1:5) FLOAT DEC;

DECLARE B DIM(1:5,1:5) FLOAT DEC;

2.2.16 DIRECT Attribute
The DIRECT file description attribute indicates that a file will be accessed
only in a nonsequential manner, that is, by key or by relative record
number.

The format of the DIRECT attribute is:

DIRECT

The DIRECT attribute implies the RECORD and KEYED attributes.

Specify the DIRECT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file. A file declared with the
DIRECT attribute must be one of the following:

• A relative file

• An indexed sequential file

• A sequential disk file with fixed-length records

• A sequential file opened with ENVIRONMENT(BLOCK_ID)

To to access a file both randomly and sequentially, use the SEQUENTIAL
attribute instead of DIRECT.

Restriction

The DIRECT attribute conflicts with the SEQUENTIAL, STREAM, and
PRINT attributes.

2.2.17 ENTRY Attribute
The ENTRY attribute declares a constant or variable whose value is an
entry point and describes the attributes of the parameters (if any) that are
declared for the entry point. The format of the ENTRY attribute is:

ENTRY [(parameter-descriptor, . . .)]
[OPTIONS (VARIABLE)]
[RETURNS (returns-descriptor)]

parameter-descriptor
A set of attributes describing a parameter of the entry. Attributes
describing a single parameter must be separated by spaces; sets of
attributes (each set describing a different parameter) must be separated
by commas. Parameter descriptors are not allowed if the ENTRY attribute
is within a RETURNS descriptor.

2–20

Declarations

The following rules apply to the specification of a parameter descriptor for
an array or structure:

• If the parameter is a structure, the level number must precede the
attributes for each member.

• You must specify extents for a parameter using only integer constants,
restricted integer expressions, or asterisks (�).

• You cannot specify storage-class attributes.

OPTIONS (VARIABLE)
An option indicating that you can invoke the specified external procedure
with a variable number of arguments. At least one parameter descriptor
must be specified following the ENTRY keyword if OPTIONS(VARIABLE)
is specified.

This option is provided for use in calling non-PL/I procedures. For
complete details on using OPTIONS (VARIABLE), see the Kednos PL/I for
OpenVMS Systems User Manual.

RETURNS (returns-descriptor)
For an entry that is invoked as a function reference, an option giving the
data type attributes of the function value returned. For entry points that
are invoked by function references, the RETURNS attribute is required;
for procedures that are invoked by CALL statements, the RETURNS
attribute is invalid.

The ENTRY attribute without the VARIABLE attribute implies the
EXTERNAL attribute (and implies that the declared item is a constant),
unless the ENTRY attribute is used to declare a parameter.

You must declare all external entry constants with the ENTRY attribute.

Restrictions

You cannot declare internal entry constants with the ENTRY attribute
in the procedure to which they are internal. Internal entry constants
are declared implicitly by the labels on the PROCEDURE or ENTRY
statements of an internal procedure.

The ENTRY attribute conflicts with all other data-type attributes.

Example

DECLARE COPYSTRING ENTRY (CHARACTER (40) VARYING,
FIXED BINARY(7))

RETURNS (CHARACTER(*));

This declaration describes the external entry COPYSTRING. This entry
has two parameters: a varying-length character string with a maximum
length of 40 and a fixed-point binary value. The RETURNS attribute
indicates that COPYSTRING is invoked as a function and that it returns
a character string of any length.

2–21

Declarations

2.2.18 ENVIRONMENT Attribute
The ENVIRONMENT file description attribute is used in DECLARE,
OPEN, and CLOSE statements to specify options that define file
characteristics specific to the OpenVMS file system and options that
request special processing not available in the standard PL/I language.
The format of the ENVIRONMENT attribute is:n

ENVIRONMENT
ENV

o
(option, . . .)

option, . . .
One or more keyword options separated by commas.

Summary of Options

The following items with asterisks (*) are options you can specify in a
CLOSE statement.

APPEND

BACKUP_DATE(variable-reference)

BATCH*

BLOCK_BOUNDARY_FORMAT

BLOCK_IO

BLOCK_SIZE(expression)

BUCKET_SIZE(expression)

CARRIAGE_RETURN_FORMAT

CONTIGUOUS

CONTIGUOUS_BEST_TRY

CREATION_DATE(variable-reference)

CURRENT_POSITION

DEFAULT_FILE_NAME(character-expression)

DEFERRED_WRITE

DELETE*

EXPIRATION_DATE(variable-reference)

EXTENSION_SIZE(expression)

FILE_ID(variable-reference)

FILE_ID_TO(variable-reference)

FILE_SIZE(expression)

FIXED_CONTROL_SIZE(expression)

FIXED_CONTROL_SIZE_TO(variable-reference)

FIXED_LENGTH_RECORDS

GROUP_PROTECTION(character-expression)

IGNORE_LINE_MARKS

INDEX_NUMBER

INITIAL_FILL

2–22

Declarations

MAXIMUM_RECORD_NUMBER(expression)

MAXIMUM_RECORD_SIZE(expression)

MULTIBLOCK_COUNT(expression)

MULTIBUFFER_COUNT(expression)

NO_SHARE

OWNER_GROUP(expression)

OWNER_ID(expression)

OWNER_MEMBER(expression)

OWNER_PROTECTION(character-expression)

PRINTER_FORMAT

READ_AHEAD

READ_CHECK

RECORD_ID_ACCESS

RETRIEVAL_POINTERS(expression)

REVISION_DATE(variable-reference)*

REWIND_ON_CLOSE*

REWIND_ON_OPEN

SCALARVARYING

SHARED_READ

SHARED_WRITE

SPOOL*

SUPERSEDE

SYSTEM_PROTECTION(character-expression)

TEMPORARY

TRUNCATE

USER_OPEN(entry-name)

WORLD_PROTECTION(character-expression)

WRITE_BEHIND

WRITE_CHECK

The previous list of options to the ENVIRONMENT attribute are described
in detail in the Kednos PL/I for OpenVMS Systems User Manual.

You can specify all ENVIRONMENT options in OPEN statements. You
can also specify all ENVIRONMENT options except those that require
variable references in DECLARE statements. Certain disposition options
(noted in the list) can be specified in CLOSE statements.

Some ENVIRONMENT options require you to specify a value. In a
DECLARE statement, you must use a literal constant to supply the
value required. In OPEN and CLOSE statements, however, you can use
expressions (including but not limited to literal constants) to supply the
values.

2–23

Declarations

Any option that does not require a value can optionally be specified with
a Boolean expression that indicates whether the option is to be enabled (if
true) or disabled (if false). For example:

DECLARE IFDELETE BIT(1);
.
.
.

OPEN FILE (XYZ) ENVIRONMENT(DELETE(IFDELETE));

This DELETE option specifies a Boolean variable whose value can be true
or false at run time. Boolean values must be specified as constants in
DECLARE statements. You can specify Boolean values as expressions
(including constants) in OPEN statements and CLOSE statements.

2.2.19 EXTERNAL Attribute
The EXTERNAL attribute declares an external name, that is, a name
whose value can be known to blocks outside the block in which it is
declared. The format of the EXTERNAL attribute is:n

EXTERNAL
EXT

o

The EXTERNAL attribute is implied by the FILE, GLOBALDEF, and
GLOBALREF attributes. EXTERNAL is also implied by declarations
of entry constants (declarations that contain the ENTRY attribute but
not the VARIABLE attribute). For variables, the EXTERNAL attribute
implies the STATIC attribute.

Restrictions

The EXTERNAL attribute directly conflicts with the AUTOMATIC,
BASED, and DEFINED attributes.

The EXTERNAL attribute cannot be applied to minor structures, members
of structures, parameters, or descriptions in an ENTRY or RETURNS
attribute.

The EXTERNAL attribute is invalid for variables that are the parameters
of a procedure.

If a variable is declared as EXTERNAL STATIC INITIAL:

• All blocks that declare the variable must initialize the variable with
the same value.

2.2.20 FILE Attribute
The FILE attribute declares a file constant or file variable. The format of
the FILE attribute is:

FILE

2–24

Declarations

The FILE attribute is implied by any of the following file description
attributes:

DIRECT OUTPUT SEQUENTIAL

ENVIRONMENT PRINT STREAM

INPUT RECORD UPDATE

KEYED

See Table 9–2 for definitions of these file description attributes.

If the VARIABLE attribute is not specified, the FILE attribute declares
a file constant. If the INTERNAL attribute is not specified, the file has
the EXTERNAL attribute by default. All external declarations of a file
constant are associated with the same file.

Restrictions

The FILE attribute conflicts with all other data-type attributes. If
the FILE attribute is used to declare a variable or parameter, no file
description attributes may be specified. If the VARIABLE attribute is not
specified, no storage-class attributes are allowed.

2.2.21 FIXED Attribute
The FIXED attribute indicates that the variable so declared is arithmetic
with a fixed number of fractional digits. Such variables are called fixed-
point (as opposed to floating-point) variables because the decimal point
and binary point are fixed relative to the representation of the value. The
format of the FIXED attribute is:

FIXED [(precision[,scale-factor])]

precision
The precision is the number of decimal or binary digits used to represent
values of the variable.

scale-factor
Scale factor indicates how much of the precision is to be used for fractional
digits.

When you specify the FIXED attribute in a DECLARE statement, you
can specify either the BINARY or the DECIMAL attribute to indicate a
binary or decimal fixed-point variable. For example, the attributes FIXED
BINARY(31,5) define a variable that takes fixed-point binary values of up
to a maximum of 31 bits, 5 of which are fractional. The attributes FIXED
DECIMAL(10,2) define a variable that takes fixed-point decimal values of
up to 10 decimal digits, 2 of which are fractional. PL/I supplies default
attributes for attributes that you do not specify (as shown in the following
table).

You normally use fixed-point binary data to represent integers. The
precision of a fixed-point binary variable must be in the range 1 through
31. The scale factor can be in the range -31 through 31.

2–25

Declarations

You can also use fixed-point decimal data, which can represent larger
absolute values. You use fixed-point data whenever arithmetic values
must be precise to a specified number of fractional digits. For a fixed-point
decimal value, the precision must be in the range 1 through 31 (decimal
digits). The scale factor, if specified, must be greater than or equal to zero
and less than or equal to the specified precision.

If the scale factor is omitted, zero is used (that is, an integer variable is
declared).

The default values given for unspecified related attributes are:

Attributes Specified Defaults Supplied

FIXED BINARY (31,0)

FIXED BINARY (31,0)

FIXED DECIMAL (10,0)

Restriction

The FIXED attribute directly conflicts with all data-type attributes except
BINARY and DECIMAL.

2.2.22 FLOAT Attribute
The FLOAT attribute indicates that a variable is a floating-point
arithmetic item. The format of the FLOAT attribute is:

FLOAT [(precision)]

precision
You can specify the precision within the following ranges:

• For OpenVMS VAX systems: the range for a floating-point binary
variable is 1 through 113. The range for a floating-point decimal
variable is 1 through 34.

• For OpenVMS Alpha systems: the range for a floating-point binary
variable is 1 through 53. The range for a floating-point decimal
variable is 1 through 15.

When you specify the FLOAT attribute in a DECLARE statement, you can
specify either the BINARY or the DECIMAL attribute. The default values
given for unspecified related attributes are:

Attributes Specified Defaults Supplied

FLOAT BINARY (24)

FLOAT BINARY (24)

FLOAT DECIMAL (7)

Restriction

The FLOAT attribute directly conflicts with all data-type attributes except
BINARY and DECIMAL.

2–26

Declarations

2.2.23 GLOBALDEF Attribute
The GLOBALDEF attribute declares an external variable or an external
file constant. It can optionally control the program section in which the
data is allocated. The format of the GLOBALDEF attribute is:

GLOBALDEF [(psect-name)]

psect-name
The name of a program section. A program section name can have up to
31 characters, which can consist of the alphanumeric characters, dollar
signs ($), and underscores (_). The first character cannot be numeric (0
through 9).

If you do not specify a program section name, PL/I places the definition for
the name in the default program section associated with the variable.

The GLOBALDEF attribute implies the EXTERNAL attribute. The
GLOBALDEF attribute also implies STATIC except when used for file
constants.

Restrictions

The GLOBALDEF attribute conflicts with the GLOBALREF and
INTERNAL attributes. GLOBALDEF cannot be used with ENTRY
constants.

Only one procedure in a program can declare a particular external variable
with the GLOBALDEF attribute.

For complete details on using the GLOBALDEF attribute to declare global
external symbols, see Section 5.4.

2.2.24 GLOBALREF Attribute
The GLOBALREF attribute indicates that the declared name is a global
symbol defined in an external procedure. The format of the GLOBALREF
attribute is:

GLOBALREF

The GLOBALREF attribute implies the EXTERNAL attribute. The
corresponding name must be declared in another procedure with the
GLOBALDEF attribute or, if the external procedure is written in another
programming language, with its equivalent in that language.

Restriction

The GLOBALREF attribute conflicts with the INITIAL, GLOBALDEF,
and INTERNAL attributes. If GLOBALREF is specified with the FILE
attribute, you cannot specify any other file description attributes.

See Section 5.4 for information about using this attribute.

2–27

Declarations

2.2.25 INITIAL Attribute
The INITIAL attribute provides an initial value for a declared variable.
The format of the INITIAL attribute is:n

INITIAL
INIT

o � (initial-element[,initial-element . . .])
((*) valid-expression)

�

initial-element
A construct that supplies a value for the initialized variable. The value
must be valid for assignment to the initialized variable. If the initialized
variable is an array, a list of initial elements separated by commas is used
to initialize individual elements. The number of initial elements must be
1 for a scalar variable and must not exceed the number of elements of an
array variable. Each initial element must have one of the following forms:

• string-constant

• (replication-factor) string-constant

• (iteration-factor) (string-constant)

• (iteration-factor) ((replication-factor) string-constant)

• [(iteration-factor)] arithmetic-constant

• [(iteration-factor)] scalar-reference

• [(iteration-factor)] (scalar-expression)

• [(iteration-factor)] �

The iteration factors are nonnegative integer-valued expressions that
specify the number of successive array elements to be initialized with the
following value.

An asterisk (�) following the iteration factor specifies that the
corresponding array elements are to be skipped during the initialization.

You can use a replication factor in combination with an iteration factor in
initializing a string constant. For example, the following two statements
are equivalent:

INITIAL ((10)(’ABCABC’))

INITIAL ((10)((2)’ABC’))

The first statement uses an iteration factor exclusively; the second
statement combines an iteration factor of 10 with a replication factor
of 2.

A string constant must be parenthesized if it is used with an iteration
factor, because this set of parentheses prevents the iteration factor from
being interpreted as a string replication factor.

INITIAL ((10)’ABC’)

For example, the initial value is interpreted as a string replication factor,
not an iteration factor, and cannot be used to initialize a whole array.

2–28

Declarations

(*) valid-expression
A construct that initializes all elements of an array to the same value
by means of the asterisk iteration factor. The expression must evaluate
to a value that is valid for assignment to the initialized array. If the
expression is a string constant, it must be parenthesized so that the
asterisk iteration factor is not interpreted as a string replication factor.
The possible expressions are:

• (string-constant)

• ((replication-factor) string-constant)

• arithmetic-constant

• scalar-reference

• (scalar-expression)

• *

An asterisk following the asterisk iteration factor results in no
initializations being performed.

Examples

The following are examples of declarations that include the INITIAL
attribute:

DECLARE RATE FIXED DECIMAL (2,2) STATIC INITIAL (.04);

DECLARE SWITCH BINARY STATIC INITIAL (’1’B);

DECLARE BELL_CHAR BINARY STATIC INITIAL (’07’B4);

DECLARE OUTPUT_MESSAGE CHARACTER(20) STATIC
INITIAL (’GOOD MORNING’);

DECLARE (A INITIAL (’A’), B INITIAL (’B’),
C INITIAL (’C’)) STATIC CHARACTER;

DECLARE QUEUE_END POINTER STATIC INITIAL(NULL());

DECLARE X(10,5) FIXED BIN(31) INITIAL ((*) -2); /* Initializes all 50
elements to -2 */

DECLARE 1 A(10),
2 B(10),

3 C(10) FIXED BIN(31) INITIAL ((*) 4); /* Initializes all
1000 elements
to 4 */

DECLARE A(10) FIXED INIT ((5) 1,(5) 2); /* Initializes the first
5 elements to 1 and
the second 5 elements
to 2 */

The following declaration is not valid, because the asterisk iteration
factor cannot be used to initialize part of an array; it can only be used to
initialize all elements of the array to the same value:

DECLARE A(10) FIXED INIT ((5) 1,(*)2); /* Invalid use of asterisk
iteration factor */

2–29

Declarations

Restrictions

You cannot specify the INITIAL attribute for a structure variable. You
must individually initialize the members of the structure.

You cannot specify the INITIAL attribute for a variable or member of a
structure that has any of the following attributes:

DEFINED
ENTRY
FILE
LABEL
PARAMETER
UNION

If the initialized variable is STATIC, only constants, restricted expressions,
and references to the NULL or EMPTY built-in functions are allowed. You
can use these initial values with a constant iteration factor.

Variables and functions (except for parameters) occurring in an initial
element (for automatic variables) must not be declared in the same block
as the variable being initialized.

2.2.26 INPUT Attribute
The INPUT file description attribute indicates that the associated file is to
be an input file. The format of the INPUT attribute is:

INPUT

Specify the INPUT attribute on a DECLARE statement for a file constant
or on an OPEN statement to access the file for reading.

You can specify the INPUT attribute with either the STREAM or the
RECORD attribute. For a stream file, INPUT indicates that the file will
be accessed with GET statements. For a record file, INPUT indicates that
the file will be accessed only with READ statements.

For example:

DECLARE INFILE RECORD INPUT;

OPEN FILE(INFILE);
READ FILE(INFILE) INTO(RECORD_BUFFER);

These statements declare, open, and access the first record in the input file
INFILE.

For a description of the attributes that can be applied to files, see
Table 9–2.

The INPUT attribute can be supplied by default for a file, depending on
the context of its opening. See Section 9.1.3.3 for more information.

Restriction

The INPUT attribute conflicts with the OUTPUT, UPDATE, and PRINT
attributes and with any data-type attribute other than FILE.

2–30

Declarations

2.2.27 INTERNAL Attribute
The INTERNAL attribute limits the scope of an identifier to the block in
which the identifier is declared and its dynamic descendents.

The format of the INTERNAL attribute is:n
INTERNAL
INT

o

You only need to use the INTERNAL attribute to explicitly declare the
scope of a file constant as internal. File constants, by default, have the
EXTERNAL attribute.

Restriction

The INTERNAL attribute directly conflicts with the EXTERNAL,
GLOBALDEF, and GLOBALREF attributes.

2.2.28 KEYED Attribute
The KEYED file description attribute indicates that you can randomly
access records in the specified file. The KEYED attribute implies the
RECORD attribute.

Specify KEYED in a DECLARE statement to identify a file or in an OPEN
statement to open the file. For a description of the attributes that can be
applied to files, see Table 9–2.

Restriction

The KEYED attribute conflicts with the STREAM attribute and with any
data-type attributes other than FILE.

2.2.29 LABEL Attribute
The LABEL attribute declares a label variable; it indicates that values
given to the variable will be statement labels. The format of the LABEL
attribute is:

LABEL

Restriction

You cannot specify the LABEL attribute with any other data-type
attribute, the INITIAL attribute, or any file description attributes.

2.2.30 LIKE Attribute
The LIKE attribute copies the member declarations contained within a
major or minor structure declaration into the structure variable to which
it is applied. The format of the LIKE attribute is:

level-number identifier [attributes] LIKE reference

2–31

Declarations

level-number
The level number to which the declarations in the reference are copied.

identifier
The variable to which the declarations in the reference are to be copied.
The identifier must be preceded by a level number.

attributes
Storage class or dimensions appropriate for the level number. You can
specify a storage class and dimensions with a major structure, or you can
specify dimensions with a minor structure.

reference
The name of a major or minor structure that is known in the current
block.

The LIKE attribute causes the structuring and member declarations of its
reference to be copied, but not the name, storage class, or dimensioning
(if any) of the reference. The exception to this rule is that the UNION
attribute is propagated in a LIKE declaration. While logical structuring is
copied, the level numbers themselves are not copied.

You can use the LIKE attribute on a structure already containing the
LIKE attribute.

2.2.31 LIST Attribute
The LIST attribute is used in the declaration of a formal parameter to
indicate that the parameter can accept a list of actual parameters of
arbitrary length. This list must contain at least one argument. To allow
a list of zero or more arguments, you must declare the formal parameter
with both the TRUNCATE attribute and the LIST attribute. The format of
the LIST attribute is:

LIST

The LIST attribute is valid only on formal parameters of external
procedures. It is not supported for PL/I procedures. (To simulate list
parameters in PL/I, use asterisk-extent arrays.)

You can only use the LIST attribute for the last formal parameter in an
argument list.

Examples

DCL NUMBER FIXED BINARY;
DCL LIST_PROC1 ENTRY (FIXED BINARY,FIXED BINARY LIST);
DCL LIST_PROC2 ENTRY (FIXED BINARY,FIXED BINARY LIST TRUNCATE);

CALL LIST_PROC1 (NUMBER,NUMBER);
CALL LIST_PROC1 (NUMBER,NUMBER,NUMBER);

CALL LIST_PROC2 (NUMBER);
CALL LIST_PROC2 (NUMBER,NUMBER,NUMBER,NUMBER);

2–32

Declarations

2.2.32 MEMBER Attribute
You can optionally specify the MEMBER attribute in the declaration
of a structure member (minor structure). A structure member has the
MEMBER attribute implicitly. The format of the MEMBER attribute is:

MEMBER

Restriction

The MEMBER attribute cannot be used with a major structure (that is, a
structure variable with level 1).

2.2.33 NONVARYING Attribute
The NONVARYING attribute keyword explicitly states that a bit-string or
character-string variable has a fixed length, not a varying length. Because
NONVARYING is the default for bit and character strings, it need not be
specified. The format of the NONVARYING attribute is:n

NONVARYING
NONVAR

o

2.2.34 OFFSET Attribute
The OFFSET attribute declares a variable that will be used to reference a
based variable within an area. The format of the OFFSET attribute is:

OFFSET [(area-reference)]

area-reference
The name of a variable with the AREA attribute. The value of the offset
variable will be interpreted as an offset within the specified area.

Examples

DECLARE MAP_SPACE AREA (40960),
MAP_START OFFSET (MAP_SPACE),
MAP_LIST(100) CHARACTER(80) BASED (MAP_START);

These declarations define an area named MAP_SPACE, an offset variable
that will contain offset values within that area, and a based variable
whose storage is located by the value of the offset variable MAP_START.

Restriction

The area reference must be omitted if the OFFSET attribute is specified
within a returns descriptor, parameter declaration, or a parameter
descriptor. The OFFSET attribute conflicts with all other data-type
attributes.

2–33

Declarations

2.2.35 OPTIONAL Attribute
The OPTIONAL attribute indicates that an actual parameter need not be
specified in a call. If the actual parameter is not specified, a placeholder
for it must be specified, and PL/I will pass a longword zero as the actual
parameter in that position. The format of the OPTIONAL attribute is:

OPTIONAL

Example

DCL E ENTRY (FIXED,FIXED OPTIONAL);
CALL E(1,2);
CALL E(1,);

2.2.36 OUTPUT Attribute
The OUTPUT file description attribute indicates that data is to be written
to, and not read from, the associated external device or file. The format of
the OUTPUT attribute is:

OUTPUT

Specify the OUTPUT attribute on a DECLARE statement for a file
constant or on an OPEN statement to access the file for writing. You can
specify the OUTPUT attribute with either the STREAM or the RECORD
attribute. For a stream file, OUTPUT indicates that the file will be
accessed with PUT statements. For a record file, OUTPUT indicates that
the file will be accessed with only WRITE statements.

Examples

DECLARE OUTFILE RECORD OUTPUT;

OPEN FILE(OUTFILE);
WRITE FILE(OUTFILE) FROM(RECORD_BUFFER);

These statements declare, open, and write a record to the output file
OUTFILE.

For a description of the attributes that you can apply to files and the
effects of combinations of these attributes, see Chapter 9.

Restriction

The OUTPUT attribute conflicts with the INPUT and UPDATE attributes
and with any data-type attributes other than FILE. The OUTPUT
attribute also conflicts with ENVIRONMENT(INDEXED).

2.2.37 PARAMETER Attribute
A variable occurring in the parameter list of a PROCEDURE or ENTRY
statement has the PARAMETER attribute implicitly. You can optionally
use the PARAMETER keyword in the declaration of a variable name to
state explicitly that it is a parameter. The format of the PARAMETER
attribute is:

2–34

Declarations

n
PARAMETER
PARM

o

Example

The following example uses the PARAMETER keyword:

TEST: PROC(A, B);
DCL A CHAR(*) PARAMETER;
DCL B FIXED BIN PARM;

.

.

.

Refer to Section 7.5 for a discussion on parameters.

2.2.38 PICTURE Attribute
The PICTURE attribute is used to declare a pictured variable. Pictured
variables have fixed-point decimal attributes, but values of the variable
are stored internally as character strings. The character string contains
decimal digits representing the numeric value of the variable, plus special
editing symbols described in the picture. The format of the PICTURE
attribute is:n

PICTURE
PIC

o
’picture’

picture
A string of picture characters that define the representation of the
variable.

See Section 3.2.5.1 for detailed information about picture characters,
syntax, and examples.

Restriction

The PICTURE attribute conflicts with all other data-type attributes.

2.2.39 POINTER Attribute
The POINTER attribute indicates that the associated variable will be used
to identify locations of data. The format of the POINTER attribute is:n

POINTER
PTR

o

Restriction

The POINTER attribute conflicts with all other data-type attributes.

2–35

Declarations

2.2.40 POSITION Attribute
The POSITION attribute specifies the character or bit position in a defined
variable’s base at which the defined variable begins. The format of the
POSITION attribute is:n

POSITION
POS

o
(expression)

expression
An integer expression that specifies a position in the base. A value of 1
indicates the first character or bit.

Restriction

You can specify the POSITION attribute only in connection with
DEFINED and only when the defined variable satisfies the rules for
string overlay defining (see Section 5.8.2).

2.2.41 PRECISION Attribute
The PRECISION attribute specifies the maximum number of decimal or
binary digits in a number. You can specify the precision of an arithmetic
variable in any of the following formats, depending on the numeric base of
the data item. The formats of the PRECISION attribute are:

BINARY [FIXED] [[PRECISION] (precision[,scale-factor])]
[BINARY] FLOAT [[PRECISION] (precision)]
DECIMAL [FIXED] [[PRECISION] (precision[,scale-factor])]
DECIMAL FLOAT [[PRECISION] (precision)]

precision
You can abbreviate the keyword PRECISION to PREC, or you can omit it
entirely. If you use the keyword, the precision (and scale factor, if used)
must immediately follow the keyword, which can be placed before or after
any other attributes in the declaration. If you omit the keyword, the
precision (and scale factor, if used) must follow the other attributes. For
example, the following declarations are equivalent:

DCL A FIXED BIN(31); DCL A FIXED BIN PRECISION(31);

DCL B FLOAT BIN(53); DCL B PREC(53) FLOAT BIN;

DCL C FIXED DEC(5,2); DCL C FIXED DEC PREC(5,2);

The precision of a floating-point data item is the number of decimal or
binary digits in the mantissa of the floating-point representation.

scale-factor
The scale factor is the number of digits to the right of the decimal or
binary point in fixed-point decimal or binary data. If no scale factor is
specified with fixed-point data, the default is zero.

2–36

Declarations

The ranges of values you can specify for the precision of each arithmetic
data-type, and the defaults applied if you do not specify a precision, are
summarized Section 3.2.1.

2.2.42 PRINT Attribute
The PRINT attribute is used to declare a print file. The file SYSPRINT,
used as the default output by PUT statements, is a print file. The format
of the PRINT attribute is:

PRINT

Print files are stream output files with special formatting characteristics.
The PRINT attribute implies the OUTPUT and STREAM attributes.

Restriction

The PRINT attribute conflicts with the INPUT, RECORD, UPDATE,
KEYED, SEQUENTIAL, and DIRECT attributes.

2.2.43 READONLY Attribute
You can apply the READONLY attribute to any static computational
variable whose value does not change during program execution. The
format for the READONLY attribute is:

READONLY

When you specify READONLY in conjunction with the declaration of
a static variable, the PL/I compiler allocates storage for the variable
based on the fact that its value does not change. A static variable with
the READONLY attribute is given an initial value with the INITIAL
attribute.

Restrictions

You can apply the READONLY attribute only to static computational
variables. You must declare the variables with the EXTERNAL, STATIC,
GLOBALREF, or GLOBALDEF attribute.

The value of a variable with the READONLY attribute cannot be modified.
An attempt to modify a variable declared with the READONLY attribute
will result in a run-time error.

The READONLY attribute conflicts with the ENTRY, FILE, LABEL,
POINTER, and VALUE attributes.

2.2.44 RECORD Attribute
The RECORD file description attribute indicates that data in an input or
output file consists of separate records and that the file will be processed
by record I/O statements. The format of the RECORD attribute is:

RECORD

2–37

Declarations

The RECORD attribute is implied by the DIRECT, SEQUENTIAL,
KEYED, and UPDATE attributes.

You can specify this attribute in a DECLARE statement for a file constant
or in the OPEN statement that accesses the file.

Restriction

The RECORD attribute conflicts with the STREAM and PRINT
attributes.

2.2.45 REFER Attribute
The REFER attribute defines dynamically self-defining structures. The
format of the REFER attribute is:

REFER

See Section 4.2.6.3 for more information on the REFER option.

2.2.46 REFERENCE Attribute
The REFERENCE attribute forces a parameter to be passed by reference.
The format of the REFERENCE attribute is:n

REFERENCE
REF

o

By default, most parameters are passed by reference in PL/I. However,
the REFERENCE attribute is needed for passing an asterisk-extent array
or character string by reference, because asterisk-extent parameters are
passed by descriptor by default.

Example

DECLARE E ENTRY((*) FIXED BIN(31) REFERENCE, FIXED BIN(31));

This is a declaration of a non-PL/I entry point that takes an asterisk-
extent parameter by reference. The first parameter of the external
procedure is an arbitrarily large array of longwords, and the second
parameter is the size of the array. The external procedure should have
some method of determining the size of the array being passed.

Restriction

Note that you can only use the REFERENCE attribute in parameter
descriptors.

2.2.47 RETURNS Attribute
The RETURNS option must be specified on the PROCEDURE or ENTRY
statement if the corresponding entry point is invoked as a function. The
RETURNS attribute is specified with the ENTRY attribute to give the
data-type of a value returned by an external function. The format of the
RETURNS option and attribute is:

2–38

Declarations

RETURNS (returns-descriptor . . .)

returns-descriptor
One or more attributes that describe the value returned by the function
to its point of invocation. The returned value becomes the value of the
function reference in the invoking procedure. The attributes must be
separated by spaces, except for attributes (the precision, for example) that
are enclosed in parentheses.

Restrictions

The data types you can specify for a returns descriptor are restricted to
scalar elements of either computational or noncomputational types. Areas
are not allowed.

You can specify the extent of a character-string value as an asterisk (*) to
indicate that the string can have any length. Otherwise, extents must be
specified with restricted expressions.

You cannot use the RETURNS option or the RETURNS attribute for
procedures that are invoked by the CALL statement.

The attributes specified in a returns descriptor in a RETURNS attribute
must correspond to those specified in the RETURNS option of the
PROCEDURE statement or ENTRY statements in the corresponding
procedure. For example:

CALLER: PROCEDURE OPTIONS (MAIN);
DECLARE COMPUTER ENTRY (FIXED BINARY)

RETURNS (FIXED BINARY); /* RETURNS attribute */
DECLARE TOTAL FIXED BINARY;

.

.

.
TOTAL = COMPUTER (A+B);

The first DECLARE statement declares an entry constant named
COMPUTER. COMPUTER will be used in a function reference to invoke
an external procedure, and the function reference must supply a fixed-
point binary argument. The invoked function returns a fixed-point binary
value, which then becomes the value of the function reference.

The function COMPUTER contains the following:

COMPUTER: PROCEDURE (X) RETURNS (FIXED BINARY); /* RETURNS option */
DECLARE (X, VALUE) FIXED BINARY;

.

.

.
RETURN (VALUE); /* RETURN statement */

In the PROCEDURE statement, COMPUTER is declared as an external
entry constant, and the RETURNS option specifies that the procedure
return a fixed-point binary value to the point of invocation. The RETURN
statement specifies that the value of the variable VALUE be returned by
COMPUTER. If the data-type of the returned value does not match the
data-type specified in the RETURNS option, PL/I converts the value to the
correct data-type according to the rules given under Section 6.4.

2–39

Declarations

2.2.48 SEQUENTIAL Attribute
The SEQUENTIAL file description attribute indicates that records in
the file will be accessed in a sequential manner. The format of the
SEQUENTIAL attribute is:�

SEQUENTIAL
SEQL

�

If you specify SEQUENTIAL, the RECORD attribute is implied.

Specify the SEQUENTIAL attribute in a DECLARE statement for a file
constant or in the OPEN statement that accesses the file.

You can apply the SEQUENTIAL attribute to files with sequential,
relative, or indexed sequential file organizations.

Restriction

The SEQUENTIAL attribute conflicts with the DIRECT, STREAM, and
PRINT attributes.

2.2.49 STATIC Attribute
The STATIC attribute specifies the way that PL/I is to allocate storage for
a variable. The format of the STATIC attribute is:

STATIC

The STATIC attribute is implied by the EXTERNAL attribute. For
more information on STATIC and on other storage-class attributes, see
Chapter 5.

Restriction

The STATIC attribute directly conflicts with the BASED, CONTROLLED,
DEFINED, and parameter attributes. The STATIC attribute cannot
be applied to members of structures, parameters, or descriptions in an
ENTRY or RETURNS attribute.

2.2.50 STREAM Attribute
The STREAM file description attribute indicates that the file consists
of ASCII characters and that it will be processed using GET and PUT
statements. The format of the STREAM attribute is:

STREAM

The STREAM attribute is implied by the PRINT attribute. It is also
supplied by default for a file that is implicitly opened with a GET or PUT
statement.

Specify the STREAM attribute in a DECLARE statement for a file
identifier or in the OPEN statement that opens the file.

2–40

Declarations

Restriction

The STREAM attribute directly conflicts with the RECORD, KEYED,
DIRECT, SEQUENTIAL, and UPDATE attributes.

2.2.51 STRUCTURE Attribute
You can optionally specify the STRUCTURE attribute in the declaration of
a structure. The format of the STRUCTURE attribute is:

STRUCTURE

2.2.52 TYPE Attribute
The TYPE attribute copies the declarations contained within the type
declaration to the variable to which it is applied. The format of the TYPE
attribute is:

level-number identifier [attributes] TYPE reference

level-number
The level number to which the declarations in the reference are copied.

identifier
The variable to which the declarations in the reference are to be copied.
The identifier must be preceded by a level number.

attributes
Storage class or dimensions appropriate for the level number. You can
specify a storage class and dimensions with a major structure, or you can
specify dimensions with a minor structure.

reference
The name of a type declaration that is known in the current block.

The TYPE attribute causes the declaration of its reference to be copied,
but not the name, storage class, or dimensioning (if any) of the reference.
The exception to this rule is that the UNION attribute is propagated in a
TYPE declaration. While logical structuring is copied, the level numbers
themselves are not copied.

You can use the TYPE attribute on a declaration already containing the
TYPE attribute.

Restrictions

A TYPE definition cannot be:

• A pointer-qualified variable

• A subscripted variable

• An entry variable

• A variable declaration that leads to direct or indirect circular
declarations

2–41

Declarations

Examples of circular declarations that should not be used are:

DECLARE 1 S11,
2 F1 CHARACTER(10),
2 F2 TYPE(S11); /* Direct circular */

DECLARE V1 TYPE(V2); /* Indirect circular */
DECLARE V2 TYPE(V3);
DECLARE V3 TYPE(V1);

DECLARE A1(10) TYPE(A2); /* Indirect circular */
DECLARE A2(10) TYPE(A3);
DECLARE A3(10) TYPE(A1);

DECLARE 1 S31,
2 F1 CHARACTER(10),
2 F2 TYPE(S32); /* Indirect circular */

DECLARE 1 S32,
2 F1 CHARACTER(10),
2 F2 TYPE(S33);

DECLARE 1 S33,
2 F1 CHARACTER(10),
2 F2 TYPE(S31);

• A structure variable with the BASED attribute and declarations with
the REFER option if the TYPE variable does not have a BASED
attribute. For example:

DECLARE N FIXED BINARY;
DECLARE 1 VARIABLE_X BASED,

2 SIZE FIXED BINARY(15),
2 ITEMS (N REFER (VARIABLE_X.SIZE)) CHARACTER(80);

DECLARE VARIABLE_Y TYPE (VARIABLE_X); /* Error - VARIABLE_Y not BASED */

2.2.53 TRUNCATE Attribute
The TRUNCATE attribute is used in the declaration of a formal parameter
to indicate that the actual parameter list can be truncated at the point
where this argument should occur. The format of the TRUNCATE
attribute is:

TRUNCATE

When the actual call is made, the actual parameter list can stop at the
parameter before the one declared with the TRUNCATE attribute. It is
possible to pass an actual parameter in a position with the TRUNCATE
attribute. Note that in this case, all remaining parameters must also be
specified unless they have the TRUNCATE attribute.

Example

DCL E ENTRY (FIXED,FIXED TRUNCATE,FIXED);
CALL E(1);
CALL E(1,2,3);

The following call, however, will be invalid:

CALL E(1,2);

This call is invalid because the second parameter has the TRUNCATE
attribute, so the third parameter must be specified.

2–42

Declarations

2.2.54 UNALIGNED Attribute
The UNALIGNED attribute is used in conjunction with the BIT attribute
to specify that a bit-string variable should not be aligned on a byte
boundary. Because UNALIGNED is the default for bit strings, it need
not be specified. The format of the UNALIGNED attribute is:n

UNALIGNED
UNAL

o

You can use the UNALIGNED attribute in the declaration of character
strings. All character strings are aligned on byte boundaries; therefore,
the UNALIGNED attribute has no effect on the actual storage of a
character string.

Restriction

The UNALIGNED attribute conflicts with all data-type attributes other
than BIT and CHARACTER.

2.2.55 UNION Attribute
The UNION attribute, which can be used only in conjunction with a
level number in a structure declaration, signifies that all immediate
members of the major or minor structure so designated occupy the same
storage. Immediate members are those members having a level number 1
higher than the major or minor structure with the UNION attribute. For
example, if the UNION attribute were associated with level n, then all
members or minor structures at level n+1 up to the next member at level
n would be immediate members and would occupy the same storage. The
format for the UNION attribute is:

level-number identifier [storage-class] UNION

level-number
The level number of the variable with which the declarations in the
reference share storage.

identifier
Names the variable with which the declarations in the reference share
storage. A variable declared with the UNION attribute must be a major or
minor structure.

storage-class
The storage class specified for the structure. You can specify the storage
class only on level 1.

2–43

Declarations

2.2.56 UPDATE Attribute
The UPDATE attribute is a file description attribute indicating that the
associated file is to be used for both input and output. You can apply the
UPDATE attribute to relative files, indexed files, and sequential disk files
with fixed-length records. The format of the UPDATE attribute is:

UPDATE

Specify the UPDATE attribute on a DECLARE statement for a file
constant or on an OPEN statement to access the file for update. The
UPDATE attribute implies the RECORD attribute.

For a description of the attributes that are applied to files, see
Section 9.1.3.3.

Restriction

The UPDATE attribute directly conflicts with the INPUT, OUTPUT,
STREAM, and PRINT attributes and with any data-type attribute other
than FILE.

2.2.57 VALUE Attribute
The VALUE attribute is provided for passing parameters by value rather
than by reference, or it can be used to specify a global constant value. The
format of the VALUE attribute is:n

VALUE
VAL

o

The VALUE attribute serves two purposes:

• In a parameter descriptor in an ENTRY declaration, it specifies that
the corresponding argument is to be passed using the hardware-
specific convention for passing arguments by value. For this usage,
VALUE must be specified in conjunction with one of the following
attributes:

ANY
FIXED BINARY(m) where m is less than or equal to 31
FLOAT BINARY(n) where n is less than or equal to 24
BIT(o) ALIGNED where o is less than or equal to 32
ENTRY
OFFSET
POINTER

• In conjunction with the GLOBALREF or GLOBALDEF attributes,
it specifies that a global external variable has a constant value for
which no storage is allocated. The compiler can use this value as an
immediate value in generating instructions. With the global external
variables, the format is:n

VALUE
VAL

o n
GLOBALDEF[(psect-name)][INITIAL(value)]
GLOBALREF

o

2–44

Declarations

The VALUE attribute, when specified with the BIT attribute, implies the
ALIGNED attribute.

2.2.58 VARIABLE Attribute
The VARIABLE attribute indicates that the associated identifier is a
variable. VARIABLE is implied by all computational data-type attributes
and by all noncomputational attributes except FILE and ENTRY. The
format of the VARIABLE attribute is:

VARIABLE

If you specify the FILE or ENTRY attribute in a DECLARE statement
without the VARIABLE attribute, the defined object is assumed to be a file
or entry constant.

The VARIABLE attribute is implied by the LABEL attribute. You can
declare label constants only by using the label identifier in the program;
you cannot define a label constant in a DECLARE statement.

Restriction

The VARIABLE attribute is not valid in a returns descriptor or in a
parameter descriptor.

2.2.59 VARYING Attribute
The VARYING attribute indicates that a character-string variable does not
have a fixed length, but that its length changes according to its current
value. The format of the VARYING attribute is:n

VARYING
VAR

o

You must specify a length attribute in conjunction with VARYING by
giving the maximum length allowed for the variable. The current
length is stored with the value and can be determined at any time
with the LENGTH built-in function. If you need to determine the
maximum declared length of a varying- length character string, use
the MAXLENGTH built-in function.

The value of an uninitialized CHARACTER VARYING variable is
undefined.

Special rules apply to reading and writing record files into and from
variables that have the VARYING attribute. See the Kednos PL/I for
OpenVMS Systems User Manual.

Restriction

The VARYING attribute directly conflicts with any data-type attribute
other than CHARACTER.

2–45

Declarations

Examples

DECLARE STRING CHARACTER(80) VARYING;

A variable named STRING is declared as a varying-length character string
with a maximum length of 80 characters.

S: PROCEDURE OPTIONS(MAIN);
DECLARE STRING CHARACTER(80) VARYING;

STRING = ’PIE’;
PUT LIST (LENGTH(STRING));
PUT LIST (MAXLENGTH(STRING));
PUT LIST (SIZE(STRING));

END;

The value returned by the built-in function LENGTH is 3, the length of
the current value of the string. The value returned by the built-in function
MAXLENGTH is 80, the maximum declared length. The value returned
by the built-in function SIZE is 82, the maximum declared length plus two
(for the two bytes that hold the value of the current length).

2–46

3 Data Types

All programs process data items. Data items can be constants or variables.
A constant data item has a value that does not change during program
execution; a variable data item can represent different values.

A data item has an associated type that you can specify as an attribute
or collection of attributes in a declaration. Unlike other languages that
often have a distinction between data types and data attributes, a PL/I
data type is entirely defined by the data attributes given to a data item
identifier. The data type that you select determines the operations that
you can perform on data items and how they are stored.

The rest of this chapter describes data types in more detail.

3.1 Summary of Data Types
PL/I supports the following computational data types:

• Arithmetic data types define values that can be used in arithmetic
computation. They are:

— Fixed point (binary and decimal integers and fractions)

— Floating point (binary and decimal)

— Pictured (fixed point data stored in character form)

• Character-string data consists of a sequence of ASCII characters.

• Bit-string data consists of sequences of binary digits.

PL/I also supports the following noncomputational data types and
attributes:

• Pointers and offsets represent the location in memory of data, and are
used to access data and areas in system-allocated buffers.

• Label constants and variables provide a flexible means of control
within a program.

• Entry constants and variables are used to invoke procedures through
specified entry points.

• File constants and variables provide access to files.

• Areas are regions of storage in which based variables can be allocated
and freed. Offsets represent the location of a based variable in an
area.

• Programmer-defined conditions represent exceptional conditions for
use with the ON statement (Section 8.10.1) and SIGNAL statement
(Section 8.10.2).

3–1

Data Types

You can place each of these data types in aggregate structures or arrays to
form new data types. See Chapter 4 for more information.

3.1.1 Declarations
All names referenced in a PL/I program must be declared explicitly, with
the exception of entry-point names, statement labels, built-in functions,
and the default file constants SYSIN and SYSPRINT. You declare a name
and its data type attributes in a DECLARE statement. For example:

DECLARE AVERAGE FIXED DECIMAL;
DECLARE NAME CHARACTER (20);

The keywords DECIMAL, FIXED, and CHARACTER describe
characteristics, or attributes, of the variables AVERAGE and NAME.

3.1.2 Default Attributes
It is not always necessary to define all the characteristics, or attributes, of
a variable; the PL/I compiler makes assumptions about attributes that are
not explicitly defined. For example:

DECLARE NUMBER FIXED;

The default FIXED attribute implies the attributes BINARY(31,0). Thus,
the variable NUMBER has the attributes FIXED BINARY(31,0).

Table 3–1 shows the default attributes implied by each computational data
attribute.

Table 3–1 Implied Attributes for Computational Data

Specified Implied

FIXED BINARY(31,0)

BINARY FIXED(31,0)

FIXED BINARY (31,0)

FLOAT BINARY(24)

FLOAT BINARY (24)

DECIMAL FIXED(10,0)

FIXED DECIMAL (10,0)

FIXED DECIMAL(p) (p,0)

FLOAT DECIMAL (7)

BIT [ALIGNED] (1)

CHARACTER [VARYING] (1)

PICTURE ’ picture’

3–2

Data Types

3.1.2.1 Attributes of Constants
Constants have attributes implied by the characters used to specify
them. The following list describes the expression of constants and their
attributes:

• A series of characters enclosed in apostrophes is assumed to be a
string constant:

— If the letter B, which can be lowercase, is appended after the
closing apostrophe, the constant is a bit-string constant, for
example, <BIT_STRING>(00010101)B. If the integer 2, 3, or 4 is
appended to the letter B, the constant is a bit-string constant with
the base 4, 8, or 16, respectively. Each digit occupies 2, 3, or 4 bits.
For example, <BIT_STRING>(17777)B3 is an octal constant that is
represented internally as a string of 15 bits.

— If the constant does not have the letter B appended, it is a
character-string constant even when it contains only the characters
0 and 1. (However, a character string of 0s and 1s can be converted
by a simple assignment to a bit string.)

• If the constant is an integer, it has the attributes FIXED
DECIMAL(n,0), where n is the number of digits in the integer.
For example, the constant 1777 is a constant of type FIXED
DECIMAL(4,0).

• Constants with an appended or embedded decimal point, but with no
following exponent, are of type FIXED DECIMAL(p,q), where p is the
total number of digits and q is the number of digits to the right of the
decimal point.

• Consider this example where a fixed-point decimal constant has the
following appended characters:

E
h +

-

i
digit . . .

It is of type FLOAT DECIMAL(p), where p is the total number of digits
in the fixed-point constant (that is, the total number to the left of the
letter E).

Note that PL/I has no constants with the attributes FIXED BINARY,
FLOAT BINARY, or PICTURE. However, this presents no problems in
programming because you can assign constants of any computational
type to variables of any computational type and they are converted
automatically to the target type.

You usually give values to binary variables by assigning decimal constants
to them. For example:

I = 1;

This converts the decimal integer 1 and assigns the converted value to a
fixed-point binary variable I. Consider the following example:

F = 1.333E-12;

This converts the floating-point decimal constant 1.333E-12 and assigns
the converted value to a floating-point binary variable F.

3–3

Data Types

Picture variables are usually given values by assigning fixed-point decimal
constants. For example:

PAY_PIC = 123.44;

This assigns the fixed-point decimal value 123.44 to a picture variable
PAY_PIC. The value of PAY_PIC is a pictured value, which is stored
internally as a character string containing the characters 1, 2, 3, 4, and 4,
along with any special formatting symbols defined for PAY_PIC.

3.1.2.2 Arithmetic Operands
The implied data types of constants are important primarily because of
PL/I’s rules for converting operands in an arithmetic operation. (Bit-
string and character-string operations must have bit- and character-string
operands, respectively.) All operations, including arithmetic operations,
must be performed in a single data type, and automatic conversions are
performed on arithmetic operands to make this possible. For example:

DECLARE X FLOAT DECIMAL (49);
X = X + 1.3;

In this example, the fixed-point decimal constant 1.3 is converted to
floating-point decimal before the addition is performed. The rules for
operand conversion are discussed in detail in Section 6.4.2.

For information about arithmetic operators, operands, and data
conversions, see Chapter 6.

3.1.3 Compatible Data Types
In PL/I, the notion of compatible data types is used in the rules for passing
arguments by reference and for based, controlled, defined, or external
variables. For two nonstructure variables to have compatible data types,
the following attributes must agree. That is, if one variable has the
attribute, the other variable must also have it after the application of
default rules.

ALIGNED DIMENSION OFFSET

AREA ENTRY picture

array bounds FILE PICTURE

BINARY FIXED POINTER

BIT FLOAT precision

CHARACTER LABEL PRECISION

DECIMAL length VARYING

Two pictured variables must have identical pictures after the expansion of
iteration factors.

In addition, the following values must be equal:

• Precisions and scale factors for arithmetic data

• String lengths and area sizes

• Number of dimensions for arrays and bounds in each dimension

3–4

Data Types

Two structure variables have compatible data types if they have the
same number of immediate members, and if corresponding members have
compatible data types.

In general, you can specify string lengths, area sizes, and array bounds
with expressions or with asterisks. The values used to determine whether
two variables have compatible data types are obtained as follows:

• For static variables, the values must be constants.

• For automatic and defined variables, the expressions are evaluated
when the block containing such a variable’s declaration is activated.
The resulting values are used for all references to the variable within
that block activation.

• For parameters, the declaration specifies any extents either with
constants or with asterisks. In the case of asterisks, the extent in
a particular procedure invocation is determined by the extent of the
argument passed to the parameter. The extent remains the same
throughout the procedure invocation.

• For based or controlled variables, extent expressions are evaluated
each time the variable is referenced.

Consider the following example:

/* Example of extent determination */

DATAT: PROCEDURE (PTR1);

DECLARE N FIXED, S CHARACTER(N) BASED(PTR1);
DECLARE PTR1 POINTER;

N = 10;

CALL P(S);

P: PROCEDURE(A);

DECLARE A CHARACTER(*), B CHARACTER(N);
N = 20;
PUT LIST(LENGTH(A),LENGTH(B),LENGTH(S));
END P;

END DATAT;

The PUT statement writes out:

10 10 20

The assignment to N inside the procedure P affects the extent of S, but not
the extents of A or B, which were frozen when P was invoked.

3.2 Arithmetic Data
Arithmetic data types are used for variables on which arithmetic
calculations are to be performed. The arithmetic data types supported
by PL/I are as follows:

• Fixed point-for binary and decimal data with a fixed number of
fractional digits

3–5

Data Types

• Floating point-for calculations on very large or very small numbers
with the decimal point (number of fractional digits) allowed to float

• Pictured-for fixed point decimal data that is stored internally in
character form with special formatting characters

When you declare an arithmetic variable, you do not always have to define
all its characteristics, or attributes.

Table 3–1 shows the implied attributes for computational data.

3.2.1 Precision and Scale of Arithmetic Data Types
The PRECISION attribute applies to decimal and binary data as follows:

• The precision of a fixed-point data item is the total number of decimal
or binary digits used to represent a value.

• The precision of a floating-point data item is the number of decimal or
binary digits in the mantissa of the floating-point representation.

The scale of fixed-point data is the number of digits to the right of the
decimal or binary point. Floating-point variables do not have a scale
factor. In this manual, the letter p is used to indicate precision, and the
letter q is used to indicate the scale factor.

You can specify both precision and scale in a declaration. For example:

DECLARE x FIXED DECIMAL(10,3) INITIAL(1.234);

This example indicates that the value of x has 10 decimal digits and that
3 of those are fractional. When a value is assigned to the variable, its
internal representation does not include the decimal point; the previous
value for x is stored as 1234, and the decimal point is inserted when
the number is output. The scale factor has the effect of multiplying the
internal representation of the decimal number by a factor of 10�q (where
q is the absolute value of the specified scale).

The ranges of values you can specify for the precision for each arithmetic
data type, and the defaults applied if you do not specify a precision, are
summarized as follows:

Data Type
Attributes Precision

Scale
Factor Default Precision

BINARY FIXED 1 <= p <= 31 p >= q >= -31 31

BINARY FLOAT
(OpenVMS VAX
systems)

1 <= p <= 113 - 24

BINARY FLOAT
(OpenVMS Alpha
systems)

1 <= p <= 53 - 24

DECIMAL FIXED 1 <= p <= 31 p >= q >= 0 10

3–6

Data Types

Data Type
Attributes Precision

Scale
Factor Default Precision

DECIMAL FLOAT
(OpenVMS VAX
systems)

1 <= p <= 34 - 7

DECIMAL FLOAT
(OpenVMS Alpha
systems)

1 <= p <= 15 - 7

If no scale factor is specified for fixed-point data, the default is 0.

For fixed-point binary data, the scale factor must be within the range -31
through 31 and less than or equal to the specified precision. Positive scale
factors for fixed binary numbers function according to the same principles
as those for fixed decimal. That is, a positive scale factor is similar to
multiplying the internal representation binary number by a factor of 2�q.

A negative scale factor indicates that the number of fractional bits are
shifted in the opposite direction. In effect, this is similar to multiplying
the binary number by a factor of 2q, where q is the absolute value of the
specified scale. For example:

DECLARE (A,B) FIXED BINARY(31,-3),
(C,D) FIXED BINARY(31,3);

A = 128; /* output = 128 */
B = 7; /* output = 0 */
C = 128; /* output = 128.0 */
D = 7; /* output = 7.0 */

PUT SKIP LIST (A,B,C,D);
END;

Internally, binary numbers undergo an implicit conversion and are
represented as powers of 2. For instance, in the previous example variable
A is first divided by 23 because it is declared with a scale factor of -3. The
stored number is 16. On output, the number 16 is multiplied by 23 and
the number is again 128. However, when variable B is first divided by
23, the result is 0, which is the value of the stored number. Therefore, on
output, 0 is multiplied by 23 and the output is 0.

Integer variables declared in the previous example with a positive scale
factor are output as they were input, but they are followed on the right
with a decimal point and a 0.

Even though arithmetic operands can be of different arithmetic types, all
operations must be performed on objects of the same type. Consequently,
the compiler can convert operands to a derived type, as previously shown.
Therefore, when you declare a fixed binary number with a scale factor and
assign it a decimal value, the results may not be as you expect because
the binary scale factor left-shifts the specified number of bits to the right
of the decimal point. During conversion to a decimal representation,
the difference between the resulting binary number and its decimal
representation is not the equivalent of dividing or multiplying the decimal
number by 10. Instead, the binary number is first converted to its internal
representation and then this representation is converted to its decimal
representation.

3–7

Data Types

When excess fractional digits are truncated, no condition is signaled. If
there is any resulting loss of precision, it may be difficult to detect because
truncated fractional digits do not signal a condition.

For example:

A: PROCEDURE OPTIONS (MAIN);
DECLARE A FIXED BIN (31,3),

B DECIMAL (10,5),
C DECIMAL (10,5);

A = .3;
B = 34.8;

C = MULTIPLY(A,B,10,5);

PUT SKIP LIST (A,B,C);
END;

Before the multiplication is performed, the variables are converted to fixed
binary so that the operands share a common data type. However, after
conversion, variable A is output as 0.2 rather than 0.3. The output from
the previous example is:

0.2 34.80000 8.6875

If variable A was declared with the attributes FIXED DECIMAL (10,5),
the output will be:

0.30000 34.80000 10.44000

3.2.2 Fixed-Point Binary Data
The attributes FIXED and BINARY are used to declare integer variables
and fractional variables in which the number of fractional digits is fixed
(that is, nonfloating-point numbers). The BINARY attribute is implied by
FIXED.

For example, a fixed-point binary variable can be declared as:

DECLARE X FIXED BINARY(31,0);

The variable X is given the attributes FIXED, BINARY, and (31,0) in this
declaration. The precision is 31. The scale factor is 0, so the number is an
integer.

There is no representation in PL/I for a fixed-point binary constant.
Instead, integer constants are represented as fixed decimal. However,
fixed decimal integer constants (and variables) are converted to fixed
binary when combined with fixed binary variables in expressions. For
example:

I = I+3;

In this example, if I is a fixed binary variable, the integer 3 is represented
as fixed decimal; however, PL/I converts it to fixed binary when evaluating
the expression.

3–8

Data Types

Fixed binary variables have a maximum precision of 31, and therefore
fixed binary integers can have values only in the range -2,147,483,648
through 2,147,483,647. An attempt to calculate a binary integer outside
this range, in a context that requires an integer value, signals the
FIXEDOVERFLOW condition.

The attributes FIXED BINARY are used to declare binary data in PL/I.
The BINARY attribute is implied by FIXED. The format of a declaration of
a single, fixed-point, binary variable is:

DECLARE identifier FIXED [BINARY] [(precision[,scale-factor])];

There is no form for a fixed-point binary constant, although constants of
other computational types are convertible to fixed-point binary. A fixed-
point binary variable usually receives given values by being assigned to
an expression of another computational type or another fixed-point binary
variable.

3.2.2.1 Internal Representation of Fixed-Point Binary Data
Figure 3–1 shows the internal representation of fixed-point binary data.
Storage for fixed-point binary variables is always allocated in a byte, word,
or longword. For any fixed-point binary value:

• If p is in the range 1 through 7, a byte is allocated.

• If p is in the range 8 through 15, a word is allocated.

• If p is in the range 16 through 31, a longword is allocated.

The binary digits of the stored value go from right to left in order of
increasing significance; for example, bit 6 of a FIXED BINARY (7) value is
the most significant bit, and bit 0 is the least signficant.

In all cases, the high-order bit (7, 15, or 31) represents the sign.

Figure 3–1 Internal Representation of Fixed-Point Binary Data

sign

sign

Longword

Byte

Word

NU−2438A−RA

sign

7 6 0

15 14 0

31 30 0

3–9

Data Types

3.2.3 Fixed-Point Decimal Data
Fixed-point decimal data is used in calculations where exact decimal
values must be maintained, for example, in financial applications. You can
also use fixed-point decimal data with a scale factor of 0 whenever integer
data is required.

The following sections describe fixed-point constants and variables and
their use in expressions.

This discussion is divided into the following parts:

• Constants

• Variables

• Use in expressions

• Internal representation

3.2.3.1 Fixed-Point Decimal Constants
A fixed-point decimal constant can have between 1 and 31 of the decimal
digits 0 through 9 with an optional decimal point or sign, or both. If there
is no decimal point, PL/I assumes it to be immediately to the right of the
rightmost digit. Some examples of fixed-point decimal constants are:

12
4.56
12345.54
-2
01.

The precision of a fixed-point decimal value is the total number of digits
in the value. The scale factor is the number of digits to the right of the
decimal point, if any. The scale factor cannot be greater than the precision.

3.2.3.2 Fixed-Point Decimal Variables
The attributes FIXED and DECIMAL are used to declare fixed-point
decimal variables. The FIXED attribute is implied by DECIMAL.

If you do not specify the precision and the scale factor, the default values
are 10 and 0, respectively.

The format of a declaration of a single fixed-point decimal variable is:

DECLARE identifier [FIXED] DECIMAL [(p[,q])];

Some examples of fixed-point decimal declarations are:

DECLARE PERCENTAGE FIXED DECIMAL (5,2);
DECLARE TONNAGE FIXED DECIMAL (9);

3–10

Data Types

3.2.3.3 Use in Expressions
You cannot use fixed-point decimal data with a nonzero scale factor in
calculations with binary integer variables. If you must use the two types
of data together, use the DECIMAL built-in function to convert the binary
value to a scaled decimal value before attempting an arithmetic operation.
For example:

DECLARE I FIXED BINARY,
SUM FIXED DECIMAL (10,2);

SUM = SUM + DECIMAL (I);

3.2.3.4 Internal Representation of Fixed-Point Decimal Data
Fixed-point decimal data is stored in packed decimal format. Each digit is
stored in a half-byte, as shown in Figure 3–2. Bits 0 through 3 of the last
half-byte contain a value indicating the sign. Normally, the hexadecimal
value C indicates a positive value and the hexadecimal value D indicates a
negative value.

Figure 3–2 Fixed-Point Decimal Data Representation

7 4 03

digit 1 digit 2

digit 4digit 3

sign...

NU−2439A−RA

3.2.4 Floating-Point Data
The floating-point data types provide a way to express very large and
very small numbers such as in scientific calculations. All floating-point
calculations are performed on values in one of the binary floating-point
formats. In general, the precision of the result is determined by the
maximum precision of any operands in the operation. The numerical
result of an operation is rounded to the result precision.

The following sections describe floating-point constants and variables and
their use in expressions.

This discussion of floating-point data is divided into the following parts:

• Constants

• Variables

• Use in expressions

• Floating-point data formats

• Internal representation of floating-point data

3–11

Data Types

3.2.4.1 Floating-Point Constants
A floating-point constant can have one or more of the decimal digits 0
through 9 (with an optional decimal point), followed by the letter E and
from one to five decimal digits representing a power of 10. The floating-
point value and the integer exponent can both be signed. The first portion
of the value, to the left of the letter E, is called the mantissa. The value to
the right of the letter E is called the exponent.

Some examples of floating-point constants are:

2E10
-3E8
32E-8
.45632E16

The decimal precision of each of these values is the number of digits in the
mantissa.

If you write a constant without the E and the exponent, it is considered to
be fixed-point decimal. However, you can use such constants anywhere in
expressions involving floating-point data.

All floating-point constants are decimal.

3.2.4.2 Floating-Point Variables
The keyword FLOAT identifies a floating-point variable in a declaration.

A floating-point value can be either binary or decimal. Because the
internal representation of floating-point variables is binary, it is
recommended that you use FLOAT BINARY (which is the default) to
declare variables, unless you need the properties of FLOAT DECIMAL.
(The difference between FLOAT BINARY and FLOAT DECIMAL appears
only when a conversion to another type, such as character, for doing I/O is
necessary.) You should declare all floating-point variables using the same
base.

To declare a single floating-point binary variable, specify a DECLARE
statement as follows:

DECLARE identifier FLOAT [BINARY] [(p)];

You can optionally specify the precision for a floating-point variable in the
declaration. For example:

DECLARE X FLOAT BINARY(53);

The keyword FLOAT identifies a floating-point variable.

To declare a decimal floating-point variable, use the following format:

DECLARE identifier FLOAT DECIMAL [(p)];

For example:

DECLARE X FLOAT DECIMAL (30);

3–12

Data Types

3.2.4.3 Using Floating-Point Data in Expressions
You can use both integer and scaled decimal constants in floating-point
expressions. An arithmetic constant is always converted to the appropriate
internal representation for use in a floating-point operation. The target
type for the conversion depends on the context. For example:

DECLARE X FLOAT BINARY (53);
X = X + 1.3;

Here, the constant 1.3 is converted to floating point when the expression is
evaluated.

Such a conversion is normally done during compilation, but in some cases
the constant is maintained in decimal until run time.

3.2.4.4 Floating-Point Data Formats
Table 3–2 summarizes the floating-point formats supported by the different
implementations of PL/I.

Table 3–2 Supported Floating-Point Formats

Implementation Supported Formats

OpenVMS VAX systems F, D, G, and H

OpenVMS Alpha systems F, S, D, G, and T

The S and T formats conform to the IEEE standards of floating-point
formats.

Table 3–3 summarizes the approximate ranges of the floating-point
formats.

Table 3–3 Ranges of Floating-Point Formats

Format Range

F or S 0:29 � 10
�38 to 1:7 � 10

38

D Same as F but with a more precise mantissa (see Table 3–4)

G or T 0:56 � 10
�308 to 0:9 � 10

308

H 0:84 � 10
�4932 to 0:59 � 10

4932

Table 3–4 summarizes the ranges of precision (sign bits, exponent
bits, and fractional bits of accuracy) for each type. Section 3.2.4.5 and
Section 3.2.4.6 describe the internal representation of floating-point data.

3–13

Data Types

Table 3–4 Ranges of Precision for Floating-Point Types

Floating-Point Type 1
Sign
Bits

Exponent
Bits Fractional Bits

F or S (single precision) 1 8 24

D (double precision) 1 8 53

G or T (double precision) 1 11 53

H (quadruple precision) 1 15 113

1You can perform G- and H-floating computations with software emulation on some
older processors. In addition, floating-point hardware is optional on most MicroVAX
systems. See the appropriate processor manual for more information.

The PL/I compiler selects the appropriate floating-point type based on the
precision you specify and on a compile-time qualifier on the PLI command.
The types are selected as shown in Table 3–5, where p indicates precision.

Table 3–5 Floating-Point Types Used by PL/I

Precision
(DECIMAL) Precision (BINARY)

OpenVMS
VAX OpenVMS Alpha

1 <= p <= 7 1 <= p <= 24 F F or S1

8 <= p <= 15 25 <= p <= 53 D or
G2

D, G, or T3

16 <= p <= 34 54 <= p <= 113 H Warning

1If no qualifier is supplied, the default type is F. If /FLOAT=IEEE_FLOAT, type S is
used.
2If no qualifier is supplied, the default type is D. If the /G_FLOAT qualifier is supplied,
type G is used.
3If no qualifier is supplied, the default type is D. If /FLOAT=G_FLOAT, type G is used.
If /FLOAT=IEEE_FLOAT, type T is used.

3.2.4.5 OpenVMS VAX Internal Representation of Floating-Point Data
In all VAX floating-point formats, the value 0 is indicated when the
sign bit and all exponent bits are set to 0. In effect, this allows for the
representation of a value with a 24-bit fraction and an 8-bit exponent in
single precision, even though only 23 bits in the format are allocated for
the fraction.

The double-precision and G-floating formats as used by PL/I have the
same fractional precision; G-floating format allows an extra three bits for
the exponent. The double-precision format has 56 bits available for the
fraction, but only 53 bits are used by PL/I. If you specify a floating-point
binary precision in the range 54 to 56, the numbers with this range of
precision are represented by the H-floating format.

3–14

Data Types

This small reduction in the precision of double-precision numbers is
necessary to keep the compiler from selecting H-floating format on
machines that lack the necessary hardware. The intent is to preserve
the size of a structure containing double-precision data regardless of
whether the G_FLOAT qualifier is used.

Figure 3–3 shows the internal structure of floating-point data for VAX
systems. For a more detailed description of VAX floating-point formats,
see the VAX Architecture Reference Manual.

3–15

Data Types

Figure 3–3 VAX Internal Representation of Floating-Point Data

NU−2440A−RA

sign

15 14 7 06

exponent

mantissa

mantissa

sign

15 14 7 06

exponent mantissa

mantissa

mantissa

mantissa

sign

15 14 4 03

exponent mantissa

mantissa

mantissa

mantissa

sign

15 14 0

exponent

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

mantissa

F_FLOAT

D_FLOAT

G_FLOAT

H_FLOAT

VAX PL/I only

3.2.4.6 OpenVMS Alpha Internal Representation of Floating-Point Data
This section describes the S and T floating-point formats supported by
OpenVMS Alpha systems. OpenVMS Alpha also supports the F, D, and G
floating-point formats described in Section 3.2.4.5.

3–16

Data Types

IEEE S_floating Format

The following PL/I types are represented using S_floating data, which
occupies four contiguous bytes:

FLOAT BINARY (P) P � 24
FLOAT DECIMAL (P) P � 7

Bits are labeled from the right, 0 through 31, as shown in Figure 3–4.

Figure 3–4 IEEE S_floating Data Representation

EXPONENT :A

0

N
G
I
S
31 30

NU−2996A−RA

FRACTION

23 22

The form of S_floating data is sign magnitude, with bit 31 the sign bit (0
for positive numbers, 1 for negative numbers), bits 30:23 an exponent,
and bits 22:0 a normalized 24-bit fraction including the redundant
most significant fraction bit not represented. The value of data is in
the range 1.17549435E-38 (normalized) to 3.40282347E38. The precision
is approximately one part in 2**23; that is, typically seven decimal digits.

When loaded into a 64-bit register, the S_floating value resides in bits
29-63.

IEEE T_floating Format

The following PL/I types are represented using T_floating data, which
occupies eight contiguous bytes:

FLOAT BINARY (P) 24 < P � 53
FLOAT DECIMAL (P) 7 < P � 15

Bits are labeled from the right, 0 through 63, as shown in Figure 3–5.

Figure 3–5 IEEE T_floating Data Representation

EXPONENT :A

0

N
G
I
S

63 62

NU−2997A−RA

FRACTION

52 51

The form of T_floating data is sign magnitude, with bit 63 the sign bit (0
for positive numbers, 1 for negative numbers), bits 62:52 an exponent,
and bits 51:0 a normalized 53-bit fraction including the redundant
most significant fraction bit not represented. The value of data is in the
approximate range 2.225073859E-380 (normalized) to 1.797693135E308.
The precision is approximately one part in 2**52; that is, typically fifteen
decimal digits.

3–17

Data Types

3.2.5 Pictured Data
Use pictured data when you want to manipulate a quantity arithmetically
and accept or display its value using a special format.

A picture specification (or picture) describes both the numeric attributes
of a pictured variable and its input/output (I/O) format. A simple picture
might look like this in a DECLARE statement:

DECLARE CREDIT PICTURE ’$99999V.99DB’;

This statement declares the variable CREDIT as a pictured variable. The
characters within the apostrophes describe its format.

The formatting possible with pictured data is useful in many applications,
but pictured data is much less efficient than fixed-point decimal data for
strictly computational use.

This section discusses the following topics:

• The picture characters that make up a specification in the PICTURE
attribute and in the P format item. It also describes picture syntax.

• The process by which a value is assigned to a pictured variable or
written out with the P format item.

• The process by which a pictured value is assigned to other variables or
acquired with the P format item.

• Editing by picture.

• The internal representation of pictured variables.

The formatting possible with pictured data is useful in many applications,
but pictured data is less efficient than fixed-point decimal data in
computations. Therefore, do not use pictured data unless you need the
formatting.

3.2.5.1 Picture Characters
Table 3–6 summarizes the PL/I picture characters, their meaning, and
whether they effect numeric interpretation and internal representation.
The paragraphs following the table describe the picture characters and
syntax. All picture characters are shown here in uppercase, but their
lowercase equivalents can be used.

Table 3–6 Picture Characters

Character Meaning
Numeric
Interpretation

Internal
Representation

V Position of assumed decimal
point

yes no

9 Decimal digit, including
leading zeros

yes yes

Z Decimal digit with leading-
zero suppression

yes yes

3–18

Data Types

Table 3–6 (Cont.) Picture Characters

Character Meaning
Numeric
Interpretation

Internal
Representation

* Decimal digit with asterisk for
leading zero

yes yes

Y Decimal digit with space for
any zero

yes yes

(n) Iteration factor for
subsequent character

yes yes

T Position of digit and encoded
plus sign or minus sign

yes yes

I Position of digit and encoded
plus sign if number >= 0

yes yes

R Position of digit and encoded
minus sign if number < 0

yes yes

$ Position(s) of (drifting) dollar
sign

yes yes

+ Position(s) of (drifting) plus
sign if number >= 0

yes yes

- Position(s) of (drifting) minus
sign if number < 0

yes yes

S Position(s) of (drifting) plus
sign or minus sign

yes yes

, Position at which comma is
inserted

no yes

. Position at which decimal
point is inserted

no yes

/ Position at which slash is
inserted

no yes

B Position at which space is
inserted

no yes

CR Positions at which <BIT_
STRING>(CR) is inserted if
number < 0

no yes

DB Positions at which <BIT_
STRING>(DB) is inserted if
number < 0

no yes

Decimal Place Character (V)

The V character shows the position of the assumed decimal point, or the
scale factor for the fixed-point decimal value. The V character has no
effect on the internal representation of the pictured value and does not
cause a decimal point to appear in the internal representation or in the
output (use the period insertion character for this purpose). The following
rules apply to the V character:

• Only one V character can appear in a picture.

3–19

Data Types

• If a picture does not contain the V character, the V is assumed to be
at the right end of the picture. That is, the pictured value has a scale
factor of 0.

• When a fixed-point value is assigned to a pictured variable, the
integral portion of the assigned value is described by the picture
characters to the left of the V; the fractional portion of the assigned
value is described by the picture characters to the right of the V.
Values with too many or too few digits are handled as follows:

— If the assigned value has fewer integral digits than are indicated
by the picture characters to the left, then the integral value of the
pictured variable is extended on the left with zeros. If the assigned
value has too many integral digits, the value of the pictured
variable is undefined and the FIXEDOVERFLOW condition is
signaled.

— If the assigned value has fewer fractional digits than are indicated
in the picture, then the fractional value of the pictured variable
is extended on the right with zeros. If the assigned value has
too many fractional digits, then the excess fractional digits are
truncated on the right; no condition is signaled. Thus, if the
V character is the last character in the picture or is omitted,
assigned fixed-point values are truncated to integers.

The following example shows the effect of the V character:

DECLARE PRICE PICTURE ’$$9V.99’,
BAD_PRICE PICTURE ’$$9.99’;

PRICE = .98; /* Output as $0.98 */
BAD_PRICE = .98; /* Output as $0.00 */
PRICE = 98; /* Output as $98.00 */
BAD_PRICE = 98; /* Output as $0.98 */

In this example, note that the variable PRICE, which contains the V
character, represents the value properly. The variable BAD_PRICE, which
contains only the period insertion character, has an assumed V character
at the end of the picture, which causes the variable to misrepresent the
value.

Digit Characters (9, Z, *, Y)

The characters 9, Z, and Y, and the asterisk character (*) mark the
positions occupied by decimal digits. The number of these characters
present in a picture specifies the number of digits, or precision, of the
fixed-point decimal value of the pictured variable. The following rules
apply to these characters:

• The position occupied by 9 always contains a decimal digit, whether or
not the digit is significant in the numeric interpretation of the pictured
value. Leading zeros at positions occupied by a 9 are output.

• The position occupied by Z contains a decimal digit only if the digit is
significant in the integral portion of the numeric interpretation; if the

3–20

Data Types

digit is a leading 0, it is replaced by a space. Several additional rules
apply to the Z character:

— The Z character must not appear in the same picture with the
asterisk character (*). It must not appear to the right of the
characters 9, T, I, or R nor to the right of a drifting string.

— If the Z character appears to the right of the V character, then
all digits to the right of the V must be indicated by Z characters.
Fractional zeros are then suppressed only if all fractional digits
are 0 and all of the integral digits are suppressed; in that case, the
internal representation contains only spaces in the digit positions.

• The position occupied by the asterisk character (*) functions
identically with the Z character, except that leading zeros are replaced
by asterisks instead of spaces.

• The position occupied by the Y character contains a decimal digit
only if the digit is not 0. All zeros in the indicated positions, whether
significant or not, are replaced by spaces.

Iteration Factor (n)

You can precede any picture character that can appear more than once in
a picture by an iteration factor, which must be a positive integer constant
enclosed in parentheses. For example:

’(4)9’

This picture is the same as the following one:

’9999’

Encoded-Sign Characters (T, I, R)

You can use the characters T, I, and R, which are encoded-sign characters,
wherever 9 is valid. Each represents a digit that has the sign of the
pictured value encoded in the same position. You can use only one
encoded-sign character in a picture.

An encoded-sign character cannot be used in a picture that contains one
of the following characters: S, +, -, CR, or DB (described in the following
text).

The meanings of the characters are:

• The T character indicates that the position contains an encoded minus
sign if the numeric value is less than 0 and an encoded plus sign if the
numeric value is greater than or equal to 0.

• The I character indicates an encoded plus sign if the numeric value
is greater than or equal to 0. Otherwise, the position contains an
ordinary digit.

• The R character indicates an encoded minus sign if the numeric value
is less than 0. Otherwise, the position contains an ordinary digit.

3–21

Data Types

Table 3–7 lists the encoded-sign characters and their ASCII equivalents.

Table 3–7 ASCII Representation of Encoded-Sign Characters

Digit ASCII Character Digit ASCII Character

+0 { -0 }

+1 A -1 J

+2 B -2 K

+3 C -3 L

+4 D -4 M

+5 E -5 N

+6 F -6 O

+7 G -7 P

+8 H -8 Q

+9 I -9 R

Drifting Characters ($, +, -, S)

The dollar sign ($), plus sign (+), minus sign (-), and S character are
drifting characters. You can use the drifting characters to indicate digits,
and they also indicate a symbol to be inserted when, for example, a
pictured value is written out by PUT LIST. The meanings of the characters
are:

• The dollar sign ($) causes a dollar sign to be inserted.

• The plus sign (+) causes a plus sign to be inserted if the numeric
value is greater than or equal to 0.

• The minus sign (-) causes a minus sign to be inserted if the numeric
value is less than 0.

• The S character causes a plus sign to be inserted if the numeric value
is greater than or equal to 0, and a minus sign if the value is less than
0.

If one of these characters is used alone in the picture, it marks the position
at which a special symbol or space is always inserted, and it has no effect
on the value’s numeric interpretation. In this case, the character must
appear either before or after all characters that specify digit positions.

However, if a series of n of these characters appears, then the rightmost
n-1 of the characters in the series also specify digit positions. If the digit is
a leading 0, the leading 0 is suppressed, and the leftmost character drifts
to the right; the character appears either in the position of the last drifting
character in the series or immediately to the left of the first significant
digit, whichever comes first.

Used this way, the n-1 drifting characters also define part of the numeric
precision of the pictured variable, because they describe at least some of
the positions occupied by decimal digits. For an example of this behavior
by a drifting character (the dollar sign), refer to the V decimal place
character description.

3–22

Data Types

The following additional rules apply to drifting characters:

• A drifting string is a series of more than one of the same type of
drifting character. Only one drifting string can appear in the picture;
any other drifting characters can be used only singly and therefore
designate insertion characters, not digits.

• The Z and asterisk (*) cannot appear to the right of a drifting string.

• A digit position cannot be specified (for instance, with a 9) to the left of
a drifting string.

• A drifting string can contain the V character and one of the insertion
characters, which are defined as follows:

— If the drifting string contains an insertion character, it is inserted
in the internal representation only if a significant digit appears to
its left. In the position of the insertion character, a space appears
if the leftmost significant digit is more than one position to the
right; the drifting symbol appears if the next position to the right
contains the leftmost significant digit.

— If the drifting string contains a V character, all digit positions
to the right of the V (the fractional digits) must also be part of
the drifting string. In this case, insignificant fractional digits are
suppressed only when all integral and fractional digits are zeros:
they are replaced by spaces in the internal representation. If any
digit is not 0, all fractional digits appear as actual digits.

— Any insertion characters immediately to the right of a drifting
string are considered part of it.

Insertion Characters (, . / B)

The insertion characters indicate that characters are inserted between
digits in the pictured value. The insertion characters are the comma (,),
period (.), slash (/), and the space (B). The B character indicates that a
space is always inserted at the indicated position.

The drifting characters ($, +, -, S) also function as insertion characters
when used singly (that is, not as part of a drifting string).

The period (.) does not imply a decimal place character V (see the example
in the description of the V character, described earlier).

The following rules describe insertion by the comma, period, and slash
insertion characters.

• In general, the insertion character itself is inserted in the internal
representation of the pictured value. In particular, this is true if the
insertion character is the first character in the picture, or if all the
picture characters to its left are characters that do not specify decimal
digits.

• If 0 suppression occurs, the insertion character is inserted only in
these cases:

— If a significant digit appears immediately to its left

3–23

Data Types

— If the V character appears immediately to its left, and the
fractional part of the numeric value contains significant digits

• If the position preceding the insertion character is occupied by an
asterisk or drifting string and the preceding position is taken by a
leading 0, then the preceding character also indicates the character
to be inserted in the position of the insertion character. If, however,
the preceding position is taken by a leading 0 and does not have an
asterisk or drifting string, then the insertion character’s position is a
space in the internal representation of the pictured value.

• To guarantee that the decimal point is in the same position in both the
numeric and character interpretations, the V and period characters
must be adjacent. However, if the period precedes the V, then it is
suppressed if there are no significant integral digits, even though all
the fractional digits are significant. This property can make fractions
appear to be integers when the internal (character) value is displayed.
Consequently, the period should immediately follow the V character;
it will then be in the correct location and will appear whenever any
fractional digit is significant. The following example shows the correct
and incorrect placement of the period:

DECLARE NUM PICTURE ’ZZZV.ZZ’,
BAD_NUM PICTURE ’ZZZ.VZZ’;

NUM=0.02; /* Output as .02 */
BAD_NUM=0.02; /* Output as 02 */

• You can use other insertion characters, such as the comma, to separate
the integral and fractional portions of a number. Do not use the
comma with GET LIST input, because in that context it separates
different data items in the input stream.

Credit (CR) and Debit (DB) Characters

These picture characters are always specified as the character pairs CR
and DB. If either pair is included, it appears if the numeric value is less
than zero. In each case, the associated positions contain two spaces if the
numeric value is greater than or equal to 0.

The characters are inserted with the same case as used in the picture. If
the lowercase form cr is used in the picture, lowercase letters are inserted
in the pictured value; if the combination Cr is used, then Cr is inserted.

The credit and debit characters cannot be combined in one picture, nor
can they be used in the same picture as any other character that specifies
the sign of the value (S, plus sign (+), and minus sign (-) characters). In
addition, they must appear to the right of all picture characters specifying
digits.

Picture Syntax

After all its iterations are expanded and all its insertion characters are
removed, a picture must satisfy the following syntax rules (the notation
character, or ellipsis (. . .), indicates a series of the same character, with
no embedded characters).

3–24

Data Types

Picture:

’[left-part]center-part[right-part]’

Left-part:8><
>:

$
+
-
S

9>=
>;

Right-part:8>>>>><
>>>>>:

$
+
-
S
CR
DB

9>>>>>=
>>>>>;

Center-part:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9 . . . [V[9 . . .]]
V9 . . .
Z . . . [9 . . . [V[9 . . .]]]
Z . . . [V[9 . . .]]
[Z . . .]VZ . . .
* . . . [9 . . . [V[9 . . .]]]
* . . . [V[9 . . .]]
[* . . .]V* . . .
++ . . . [9 . . . [V[9 . . .]]]
++ . . . [V[9 . . .]]
- - . . . [9 . . . [V[9 . . .]]]
- - . . . [V[9 . . .]]
SS . . . [9 . . . [V[9 . . .]]]
SS . . . [V[9 . . .]]
$$. . . [9 . . . [V[9 . . .]]]
$$. . . [V[9 . . .]]
+[+ . . .]V+ . . .
-[- . . .]V- . . .
S[S . . .]VS . . .
$[$. . .]V$. . .

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Note: The character Y, T, I, or R can appear wherever 9 is valid with the
following restrictions. Only one character T, I, or R can appear in
a picture. A picture cannot contain T, I, or R if it also contains S,
+, -, CR, or DB.

Examples

Valid Pictures

’S99V.99’

The picture specifies a signed fixed-point number with a precision of 4
(p=4) and a scale factor of 2 (q=2). The sign of the number is always
included in its representation, in the first position. A period is inserted at
the position of the assumed decimal point.

’****99’

3–25

Data Types

The picture specifies a 6-digit integer, with the first four leading zeros
replaced by asterisks.

’****V.**’

The picture specifies a fixed-point number with p=6, q=2. The first four
leading zeros are replaced by asterisks in the integral portion. Both
fractional digits always appear unless all six digits are 0. A period is
inserted at the position of the assumed decimal point.

’ZZ99V.99’

The picture specifies a fixed-point number with p=6, q=2. The first two
digits in the integral portion are replaced with spaces if they are zeros.
Two digits always appear on either side of the decimal point.

’(4)SV.99’

The picture specifies a fixed-point number with p=5, q=2. (The iteration
factor 4 specifies a string of four S characters, one of which specifies a
sign and three of which specify digits.) A plus (+) or minus (-) symbol
is inserted to the immediate left of the first significant integral digit,
or to the left of the decimal point if no integral digit is significant. Any
insignificant integral digits are replaced with spaces or with the sign
symbol.

’ZZZ,ZZZV.99’

The picture specifies a fixed-point number with p=8, q=2. If the integral
portion has four or more significant digits, a comma is inserted between
the third and fourth digit; otherwise, both the leading zeros and the
comma are suppressed. The decimal point always appears followed by two
fractional digits.

’ZZZ.ZZZV,99’

The picture specifies a fixed-point number with p=8, q=2. If the integral
portion has four or more significant digits, a period is inserted between
the third and fourth; otherwise, both the leading zeros and the period are
suppressed. The decimal point (indicated by a comma) always appears
followed by two fractional digits.

’ZZZ/ZZZ/ZZZ’

The picture specifies a fixed-point number with p=9, q=0. A slash is
inserted between the 3-digit groups unless the digit preceding the slash is
a suppressed 0.

Invalid Pictures

’999ZZZZV.99’

The picture is invalid because a 9 occurs to the left of Z.

’$$$-99v.99’

The picture is invalid because it contains two drifting strings (<BIT_
STRING>($$$) and <BIT_STRING>(- -)).

’(4)-V.ZZZ’

3–26

Data Types

The picture is invalid because fractional digits in this case must be
pictured either with a drifting minus sign or with 9s.

3.2.5.2 Assigning Values to Pictured Variables
Assignment of a computational value to a pictured variable is performed
in the following two steps:

1 The value is converted to fixed decimal, with precision and scale as
specified by the picture.

2 The resulting fixed decimal value is edited into the pictured variable.

If PL/I cannot perform one of these steps in a meaningful fashion, an error
occurs. The following examples show two programming errors that are
common in assignments to pictured variables.

CREDIT = ’$12443.00’;

This example signals the CONVERSION condition, because the character
string contains a dollar sign and cannot be converted to fixed-point
decimal. The value assigned to CREDIT should be either ’ 12443.00’
or 12443.00, both of which result in the same value assigned to CREDIT.

If a negative value is assigned to a pictured variable, the picture must
include one of the sign picture characters (such as DB). For example:

CREDIT = -12443.00;

If the picture of CREDIT did not contain the DB characters, this
assignment would signal the FIXEDOVERFLOW condition, because the
sign would be lost. In some circumstances (for example, with the READ
statement), it is possible to assign a value to a pictured variable that is
not valid with respect to the variable’s picture specification. In such cases,
you can use the VALID built-in function to validate the contents of the
variable.

3.2.5.3 Extracting Values from Pictured Data
When you use a pictured value in an arithmetic context (such as an
assignment to an arithmetic variable), the picture is used to extract the
fixed-point decimal number from the character string that internally
represents the pictured value. Extraction also occurs when you input a
pictured value with the GET EDIT statement and the P format item. If
the contents of the pictured variable or input item do not conform to the
picture, an error occurs.

For example:

DECLARE CREDIT PICTURE ’$99999V.99DB’;

In the picture for CREDIT, the 9 character specifies the position of a
decimal digit; because the picture contains seven of these, the fixed-point
decimal precision of CREDIT is 7. The V character separates the integral
and fractional digits; because there are two 9 characters to the right of the
V, the scale factor of CREDIT is 2. Because the V character specifies only
a numeric property, a period picture character (.) is included after the V
to ensure that the output value has a decimal point in the correct place.

3–27

Data Types

The period and dollar sign are always inserted in the internal
representation and the output value regardless of CREDIT’s numeric
value.

The picture character DB appears only when the value of CREDIT is less
than 0; otherwise, two spaces appear in the indicated positions. The DB
character also indicates that CREDIT’s value is numerically negative, so
that if CREDIT is later assigned to an arithmetic variable the variable
will be given a negative value.

3.2.5.4 Editing by Picture
Any computational value or expression can be assigned to a pictured
variable, as long as it meets these two qualifications:

• The value either is a fixed-point decimal value or can be converted to a
fixed-point decimal value.

• The fixed-point decimal value can be represented with the precision
and scale factor of the picture specified for the target pictured variable.

When a value is assigned to a pictured variable, the value is edited to
construct a character string that meets the picture specification. Editing
also occurs when a value is output with the PUT EDIT statement and the
P format item. Editing was performed in the previous examples in which
fixed-point decimal values were assigned to the pictured variable CREDIT.

Because a picture specifies a fixed-point decimal value, the
FIXEDOVERFLOW condition is signaled in the same circumstances as
for assignment of an expression to a FIXED DECIMAL variable.

3.2.5.5 The Internal Representation of Pictured Variables
A pictured variable has the attributes of a fixed-point decimal variable,
but values assigned to it are stored internally as character strings. Such a
character string contains digits describing the variable’s numeric value as
well as special symbols. An individual picture character and its position
in the picture indicate the interpretation of an associated position in the
pictured value.

The picture characters fall into three categories:

• Characters that do not affect internal representation. The decimal
place character (V) is the only one in this category.

• Characters that affect both the numeric interpretation and internal
representation of the value. These characters indicate how the digits
of the numeric value should be placed in the string and where to place
a sign as follows:

— The digit characters (9, Z, *, Y)

— The encoded-sign characters (T, I, R)

— The drifting characters ($, +, -, S)

• Characters that affect only the internal representation of the value.
These characters appear in the internal characters string as follows:

— The insertion characters (comma, period, slash, space)

3–28

Data Types

— The credit (CR) and debit (DB) characters

Section 3.2.5.1 describes each picture character in more detail. The
assignment CREDIT = 12443.00; stores data internally, as shown in
Figure 3–6, as a character string where delta (4) represents a space.

Figure 3–6 Internal Representation of a Pictured Variable

First character

NU−2441A−RA

$ 1 2 4 4 3 . 0 0 D D

The assignment CREDIT = -12443.00; stores data internally as shown in
Figure 3–7.

Figure 3–7 Internal Representation of a Pictured Variable

First character

NU−2442A−RA

$ 1 2 4 4 3 . 0 0 D B

In situations that call for a character representation of a pictured data
item (such as output with PUT LIST), this internal representation is used,
including the nonnumeric characters. On output, the values assigned to
CREDIT would look like this:

$12443.00 /* a positive value (credit) */

$12443.00DB /* a negative value (debit) */

3.3 Character-String Data
A character string is a sequence of zero or more characters. The value of a
character-string variable can consist of any DEC Multinational Character
to a maximum length of 32,767 characters. The first 128 characters of
the DEC Multinational Character Set are the ASCII characters. See
Appendix B for the entire character set.

Every character-string variable has a length attribute that specifies
either the length of all values of the variable (fixed-length strings) or the
maximum length of a value of the variable (varying-length strings).

This discussion of character-string data is divided into the following parts:

• Constants

3–29

Data Types

• Variables

— Fixed-length character strings and their internal representation

— Varying-length character strings and their internal representation

• Alignment of character strings

3.3.1 Character-String Constants
A character-string constant can consist of any characters in the DEC
Multinational Character Set (see Appendix B). When you use character-
string constants in a program, you must enclose the strings in apostrophes,
as shown in the following examples:

’Total is:’
’Enter your name and age’

’Error - value is out of range’

To specify a string containing a literal apostrophe, use two apostrophes
within the string. For example:

’Life isn’’t fair’

When a character string that has embedded apostrophes is specified as
previously shown, the final result contains only a single apostrophe.

Note that the quotation mark (") is not a legal delimiter for PL/I character
constants.

3.3.1.1 Replication of String Constants
You can use a replication factor to replicate character-string and bit-
string constants in any context of the program. A replication factor is
an unsigned integer constant that specifies the number of times a simple
string constant is replicated to produce a resulting string constant. For
example:

(4)’season ’

In this example, the string is repeated four times. The character constant
resulting from this specification is equivalent to:

’season season season season ’

You can use a replication factor in combination with the iteration factor in
INITIAL. For example, the following two statements are equivalent:

INITIAL ((10)(’ABCABC’))

INITIAL ((10)((2)’ABC’))

The first example uses an iteration factor exclusively, but the second
example combines an iteration factor of 10 with a replication factor of 2.
Note that an extra set of parentheses is required to separate the iteration
factor from the replication factor and the character string.

3–30

Data Types

3.3.2 Character-String Variables
The CHARACTER keyword identifies a variable as a character-string
variable in a declaration. The format for specifying a character-string
variable is:

DECLARE variable-name

" CHARACTER [(n)]
VARYING CHARACTER [(n)]
CHARACTER [(n)] VARYING

#
;

The CHARACTER keyword identifies a character-string variable in a
declaration.

The addition of the VARYING attribute indicates a varying-length
character-string variable.

An optional number in parentheses specifies the length of the variable,
that is, the number of bytes needed to contain its value (maximum is
32,767). This length attribute specifies either the length of all values of
the variable (fixed-length strings) or the maximum length of a value of the
variable (varying-length strings). If the length is not specified, PL/I uses
the default length of one character, or byte. The rules for specifying the
length are:

• For a static variable declaration, the length must be an integer
constant.

• In the declaration of a parameter or returns descriptor, you can specify
the length as an integer constant or as an asterisk (*). The resulting
string is fixed length unless VARYING is also specified.

• For an automatic, based, or defined variable, you can specify the length
as an integer constant or as an expression. In the case of automatic
or defined variables, the expression must not contain any variables or
functions that are declared in the same block, except for parameters.

• The maximum length in any declaration is 32,767.

If specified, n must immediately follow the keyword CHARACTER and
must be enclosed in parentheses.

3.3.2.1 Fixed-Length Character-String Variables
A fixed-length character string is one that does not have the VARYING
attribute. For a particular allocation of a fixed-length character-string
variable, all its values have the same length. When a program assigns a
value to a fixed-length character-string variable, however, the value does
not need to have the same length defined for the variable. Depending on
the size of the value, PL/I adjusts the assignment length according to the
following rules:

• If the value is smaller than the length of the character string, PL/I
pads the character string with spaces on the right. For example:

DECLARE STRING CHARACTER (10);
STRING = ’ABCDEF’;

The final value of the variable STRING is ’ ABCDEF ’ , that is,
the characters ABCDEF followed by four space characters.

3–31

Data Types

• If the value is larger than the length of the variable, PL/I truncates
the character string on the right. For example:

DECLARE STRING CHARACTER (4);
STRING = ’ABCDEF’;

Here, the final value of STRING is ’ ABCD’ , that is, the first four
characters of the value ’ ABCDEF’ .

3.3.2.2 Internal Representation of Fixed-Length Character Data
PL/I stores fixed-length character string data in a contiguous sequence of
bytes with the leftmost character occupying the lowest memory address.

3.3.2.3 Varying-Length Character-String Variables
When you define a character-string variable, you can also specify the
VARYING attribute. In a varying character-string variable, the length is
not fixed. The length specified in the declaration of the variable defines
the maximum length of any value that can be assigned to the variable.
Each time a value is assigned, the current length changes. For example:

DECLARE NAME CHARACTER (20) VARYING;
NAME = ’COOPER’;
NAME = ’RANDOM FACTOR’;

The declaration of the variable NAME indicates that the maximum length
of any character-string value it can have is 20. The current length becomes
6 when NAME is assigned the value ’ COOPER’ ; the length becomes 13
when NAME is assigned the value ’ RANDOM FACTOR’ ; and so on.

When a varying character string is assigned a value with a length greater
than the maximum defined, the value is truncated on the right.

The initial length of an automatic varying-length character-string variable
is undefined unless the variable is initialized.

You can use the LENGTH built-in function to determine the current length
of any string, and the MAXLENGTH built-in function to determine the
maximum length.

3.3.2.4 Internal Representation of Varying Character Data
A varying-length character string consists of a word specifying the string’s
current length, followed by a sequence of bytes in sequentially higher
memory addresses.

3.3.3 Alignment of Character Strings
The PL/I language makes a distinction between aligned and unaligned
(fixed-length) character-string variables. (No such distinction is made for
varying character strings or for character-string constants.) A character-
string variable is aligned if it is declared with the ALIGNED attribute.

This distinction affects only argument passing. If a procedure declares
a parameter as ALIGNED CHARACTER, and if the corresponding
argument is an unaligned character-string variable or vice versa, the
actual argument will be a dummy variable. For example:

3–32

Data Types

DECLARE GETSTRING ENTRY (CHARACTER (*) ALIGNED);
DECLARE STRING CHARACTER (8);
CALL GETSTRING (STRING);

PL/I constructs a dummy variable here to pass the unaligned string
variable STRING to the called procedure GETSTRING, rather than
passing the actual argument by reference.

All character strings on the VAX and Alpha hardware are aligned on
byte boundaries. You should not use the ALIGNED attribute to declare
character-string variables.

3.4 Bit-String Data
A bit string consists of a sequence of binary digits, or bits. It can be
used as a Boolean value, which has one of two states: true (if any bit is
non-zero) or false (if all bits are 0).

Like a fixed-length character string, a bit string has a fixed length defined
in the declaration or specified by the number of bits in a bit-string
constant. The maximum length of any bit string is 32,767 bits. However,
bit-string variables cannot be declared with the VARYING attribute.

The rest of this section discusses bit-string constants and variables,
alignment of bit-string data, and the use of bit strings to represent
integers.

This discussion of bit-string data is divided into the following parts:

• Constants

• Variables

• Alignment

• Internal representation

• Bit strings and integers

3.4.1 Bit-String Constants
To specify a bit-string constant, enclose the string in apostrophes and
follow the closing apostrophe with the letter B. For example:

’0101’B
’10101010’B
’1’B

The length of a bit-string constant is always the number of binary digits
specified; the B does not count in the length of the string. You can specify
a bit-string constant with a maximum of 1000 characters between the
apostrophes.

You can also specify a bit-string constant using the following syntax:

’character-string’Bn

3–33

Data Types

n
Is the number of bits to be represented by each digit in the string. n can
have the value 1 through 4, and if not specified defaults to 1.

This format allows you to specify bit-string constants with bases other
than 2. You can use base 4, 8, and 16, where n equals 2, 3, and 4
respectively. For example:

’EF8’B4
’117’B3
’223’B2

These constants specify the hexadecimal value EF8, the octal value 117,
and the base 4 value 223. All such constants are stored internally as bit
strings, not as integer representations of the value.

The valid characters for each type of bit-string constant are as follows:

• For B or B1, only the characters 0 and 1 are valid

• For B2, only the characters 0, 1, 2, and 3 are valid

• For B3, only the characters 0, 1, 2, 3, 4, 5, 6, and 7 are valid

• For B4, the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F
are valid (the letters A through F can be either upper- or lowercase)

Using the B format items, you can also acquire or output (with the GET
EDIT and PUT EDIT statements) bit-string data in binary, base 4, octal,
or hexadecimal format. See Section 9.2.4.2 for more information on the B
format item.

3.4.1.1 Replication Factor for Bit-String Constants
A replication factor is an unsigned integer constant that specifies the
number of times a simple bit-string constant is replicated. A replication
factor permits repetition of bit strings in any context where a simple string
constant is permissible, including format items and assignment, string,
and arithmetic operations. The format of a replication factor is as follows:

(r)’string’Bn

r
An unsigned integer that represents the number of times that the string is
to be replicated.

string
A simple bit string constant to be replicated. The bit string is enclosed in
apostrophes.

An example of replication is:

DECLARE (A) BIT (800);
A = (400) ’2’B2;
PUT SKIP LIST ((A));

END;

In this example, A will be replicated to its maximum specified length of
800 characters.

3–34

Data Types

The resulting character constant looks like this:

’10101010101010101010101010101010
.
.
.

10101010101010101010101010’B

You can use the replication factor in combination with the iteration factor
in INITIAL. For example, the following two statements are equivalent:

INITIAL ((10)(’ABCABC’B4))

INITIAL ((10)((2)’ABC’B4))

The first statement uses an iteration factor exclusively; the second
statement combines an iteration factor of 10 with a replication factor
of 2. An extra set of parentheses is required to separate the iteration
factor from the replication factor and the bit string.

3.4.2 Bit-String Variables
Use the BIT attribute to declare a bit-string variable. The format is:

DECLARE variable-name BIT [(length)];

You can optionally specify the length of the variable in parentheses. The
length can be from 0 to 32,767; the default length is one bit. The rules for
specifying the length are as follows:

• If BIT is specified for a static variable declaration or in a returns
descriptor, the length must be an integer constant.

• If BIT is specified in the declaration of a parameter or in a parameter
descriptor, you can specify the length as an integer constant or as an
asterisk (*).

• If BIT is specified for an automatic, based, or defined variable, you can
specify the length as an integer constant or as an expression. In the
case of automatic or defined variables, the expression must not contain
any variables or functions that are declared in the same block, except
for parameters.

A program can assign to a bit-string variable a value larger or smaller
than the variable’s defined length. In such cases, PL/I does the following:

• If the assigned string is shorter than the defined length, PL/I pads the
bit-string value with zeros in the direction of least significance. The
less significant bits are on the right as the string is represented by
PUT LIST.

• If the assigned string is longer, PL/I truncates the least significant bits
from the bit-string value.

You can convert bit-string variables to other data types; however, there are
some precautions you must observe if you do so. Section 6.4 describes how
to convert bit-string variables.

3–35

Data Types

3.4.3 Alignment of Bit-String Data
PL/I distinguishes between aligned and unaligned bit-string variables.
(Bit-string constants are always unaligned.) A bit-string variable is
aligned only if it is declared with the ALIGNED attribute, as shown in the
following example:

DECLARE FLAGS BIT (8) ALIGNED;

If the default packed alignment is in effect, PL/I allocates storage for an
aligned bit-string variable on a byte boundary and reserves an integral
number of bytes to contain the variable. If natural alignment is in effect,
PL/I allocates storage for an aligned bit-string variable on a longword
boundary and reserves an integral number of longwords to contain the
variable. See the PL/I for OpenVMS Systems User Manual for more
information on the /ALIGN and /DATA command line qualifiers, which
affect what type of alignment is in effect.

Unaligned bit-string variables always occupy only as many bits as are
needed to contain them. They need not be on byte boundaries. You
can optionally specify the UNALIGNED attribute in a declaration;
UNALIGNED is the default for bit strings.

In general, operations involving unaligned bit-string variables are less
efficient than those involving aligned bit-string variables. Unaligned bit-
string variables are also invalid as the targets of the FROM and INTO
options of record I/O statements, and as the argument of the ADDR built-
in function. Moreover, most non-PL/I programs that accept bit-string
arguments require the strings to be aligned.

In most cases, you should declare bit-string variables with the ALIGNED
attribute. Use unaligned bit-string variables when bit strings must be
packed as tightly as possible, for example, in arrays and in structures. See
Section 2.2.1 for a description of the ALIGNED attribute.

3.4.4 Internal Representation of Bit Data
In this discussion, the term most significant bit means the leftmost bit in
an external representation of a string, as, for example, when the string
is output by the PUT LIST statement. The least significant bit is the
rightmost bit in the external representation.

The notion of significance has no meaning for bit strings unless they are
used to store integers. PL/I permits the use of bit strings for this purpose,
and has defined rules for conversions between bit strings and other data
types.

NOTE: The use of PL/I bit-string data to store integers is not
recommended, for two reasons:

• In assignments involving two bit strings of different lengths,
the source string is padded or truncated as required to make a
string of the length of the target.

3–36

Data Types

• As shown in the following discussions, the significance of bits
results in bit strings being stored in the reverse order from
actual numeric data. Consequently, conversion of bit strings
to arithmetic data is expensive in terms of execution speed,
except in the special case of a 1-bit string.

You should use the UNSPEC built-in function and UNSPEC
pseudovariable when you must store integers in a compact form.
Otherwise, use the data types FIXED BINARY and FIXED DECIMAL
for integer arithmetic.

Note: Sophisticated applications that depend on the internal
representation of bit strings and other types of data may not be
directly transportable from other PL/I implementations to Kednos
PL/I.

In Kednos PL/I, bit strings are stored in memory with the leftmost
bit (as represented by PUT LIST) in the lowest memory location, and
bits following the leftmost in successively higher memory locations.
This representation of a bit string is reversed by PUT with respect
to a conventional picture of memory locations, in which the lowest
location appears on the right and higher locations on the left. If you
are accustomed to using PL/I on computers other than OpenVMS systems
and if you do not change your data to correct for this difference, the result
is likely to be in error.

If you wish to use bit strings to represent integers and you would like
to associate the leftmost bit (as it might be represented in a PUT LIST
statement) with the Most significant bit, use the BINARY builtin function,
an example of which appears in Section 11.4.43.

Unaligned Bit Strings
An unaligned bit string is stored beginning at an arbitrary bit location
in storage; this location is the location of the most significant bit. The
subsequent, less significant, bits are stored in progressively higher
locations in memory, as shown in Figure 3–8.

Figure 3–8 Unaligned Bit String Storage

NU−2445A−RA

......

most significant bit

least significant bit

The following programming sequence shows how a value for an unaligned
bit-string variable is stored:

3–37

Data Types

DECLARE ABIT BIT (10);
ABIT = ’1011’B;

After the assignment, the variable appears in storage as shown in
Figure 3–9.

Figure 3–9 Sample Unaligned Bit String Storage

NU−2446A−RA

......

most significant bit

least significant bit

0 0 0 0 0 0 01 1 1

Aligned Bit Strings
PL/I allocates storage for an aligned bit-string variable on a byte boundary
and allocates an integral number of bytes. The number of bytes to be
allocated is calculated as:

ceil(n=8)

Here, n is the length specified for the bit string.

Beginning at bit 0 (the lowest memory location) of the lowest allocated
byte, the bit string is stored like unaligned bit-string data; that is, the
beginning bit is used to hold the most significant bit in the string. Less
significant bits are stored in progressively higher memory locations.
Unused bits are set to 0 each time the bit-string variable is assigned a
value.

The representation is shown in Figure 3–10.

Figure 3–10 Aligned Bit String Storage

NU−2447A−RA

most significant bitleast significant bit

Byte Byte

The following programming sequence shows how values are stored for
aligned bit strings:

DECLARE ABIT BIT (10) ALIGNED;
ABIT = ’10011’B;

3–38

Data Types

In this example, the variable ABIT is aligned. When it is assigned the
value 10011, the value is stored as shown in Figure 3–11.

Figure 3–11 Sample Aligned Bit String Storage

NU−2448A−RA

most significant bitleast significant bit

Byte 1 Byte 0

unused

0 0 0 0 0 0 0 0 0 0 0 1 0 110... ...

3.4.5 Bit Strings and Integers
PL/I defines conversions between bit-string data and other data types, and
the PL/I compiler carries out these conversions. However, the conversions
defined by PL/I are not always straightforward or intuitive; the padding
and truncation that take place during assignment of bit strings of different
lengths result in implicit multiplication or division of the bit string’s
integer value. For example:

DECLARE BITSTR BIT (10);
BITSTR = 1;
PUT LIST (BITSTR);

The output is:

’0001000000’B

The result may seem incorrect, but it conforms to PL/I’s rules for
conversion to bit strings. In this case, the fixed-decimal constant 1 is
converted to a FIXED BINARY(4) value, which is in turn converted to an
intermediate bit string of length 4:

’0001’B

Next, this intermediate bit string is assigned to the variable BITSTR.
Because BITSTR is of length 10, the intermediate bit string is padded on
the right with zeros, producing the result as output by PUT LIST. If you
now attempt to interpret the value of BITSTR as an integer (for example,
by using BITSTR as the argument of the BINARY built-in function), the
result would be 64, not 1.

Extra execution time is required to reverse the order of bits when the
integer’s value is computed. Using arithmetic variables to represent
integers is more efficient.

Because of the unexpected results and longer execution time, avoid using
bit strings to represent integers or other data types.

3–39

Data Types

3.5 Pointer Data
A pointer is a variable whose value represents the address in memory of
another variable or data item.

Pointers are used to qualify references to based variables, that is, variables
for which storage is explicitly allocated at run time by the ALLOCATE
statement. For example:

DECLARE LIST_POINTER POINTER;
DECLARE 1 LIST_STRUCTURE BASED,

2 FORWARD_PTR POINTER,
2 MEMBER_NAME CHAR(20) VAR;

ALLOCATE LIST_STRUCTURE SET (LIST_POINTER);
LIST_POINTER -> LIST_STRUCTURE.MEMBER_NAME = ’newname’;

When these statements are executed, the ALLOCATE statement allocates
storage for a variable LIST_STRUCTURE and sets the pointer LIST_
POINTER to the address in memory of the allocated storage. This
dynamically created variable is called an allocation of the variable LIST_
STRUCTURE.

In the assignment statement, the locator qualifier (->) and the identifier
LIST_POINTER distinguish this allocation of LIST_STRUCTURE from
allocations created by other ALLOCATE statements, if any. Pointers may
also be used directly in declarations of based variables. For example:

DECLARE X POINTER,
BUFFER CHARACTER(80) BASED (X);

The variable X is given the POINTER attribute. Then it is used as the
target pointer in another declaration, which defines a buffer to be based on
X.

This section discusses the following:

• Pointer variables in expressions

• Internal representation of pointer data

3.5.1 Pointer Variables in Expressions
Expressions containing pointer variables are restricted to the relational
operators equal (=) and not equal (^=).

For example, to test whether a pointer is currently pointing to valid
storage, you can write the following statement:

IF LIST_POINTER ^= NULL() THEN
DO;

The NULL built-in function always returns a null pointer value.

You can use pointer variables in simple assignment statements that assign
a pointer value to a pointer variable. For example:

LIST_POINTER_1 = LIST_POINTER_2;

LIST_END = NULL();

3–40

Data Types

You can also use a pointer variable as the source or target in an
assignment statement involving an offset variable or offset value.

3.5.2 Internal Representation of Pointer Data
A pointer occupies a longword (32 bits) of storage and represents a virtual
memory address.

3.6 Offset Data
You declare an offset variable with the OFFSET attribute, optionally
followed by an area variable reference. The value of the offset variable will
be interpreted as an offset within the specified area, unless the POINTER
function is used to explicitly specify another area. You must omit the area
reference if the OFFSET attribute is specified within a returns descriptor,
parameter declaration, or parameter descriptor. For example:

DECLARE MAP_SPACE AREA (40960),
MAP_START OFFSET (MAP_SPACE),
MAP_LIST(100) CHARACTER(80) BASED (MAP_START);

These declarations define an area named MAP_SPACE; an offset variable,
MAP_START, that will contain offset values within that area; and a based
variable whose storage is located by the value of MAP_START.

Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. The OFFSET built-in function
(described in Section 11.4.59) converts a pointer value to an offset value.
PL/I also automatically converts a pointer value to an offset value, or an
offset value to a pointer value, in an assignment statement. The following
assignments are valid:

1 pointer-variable = pointer-value;

2 offset-variable = offset-value;

3 pointer-variable = offset-variable;

4 offset-variable = pointer-value;

In assignment 2, any area references are ignored in the assignment;
therefore, the offset value and variable can refer to different areas. In
assignments 3 and 4, the offset variable must have been declared with an
area reference.

Expressions containing offset variables are restricted to the relational
operators = and ^=, for testing the equality or inequality of two values.

3.7 Label Data
A label identifies a statement so that it can be referred to elsewhere in
the program, for example, as the target of a GOTO statement. A label
precedes a statement and consists of any valid identifier terminated by a
colon. Some examples are:

TARGET: A = A + B;
READ_LOOP: READ FILE (TEXT) INTO (TEMP);

3–41

Data Types

These statements contain the implicit declarations of the names TARGET
and READ_LOOP as label constants.

No statement can have more than one label. A statement can, however, be
preceded by any number of labeled null statements. For example:

A: ;
B: DO I = 1 TO 5;

Other statements in the program can refer to the DO statement in this
example by specifying either label A or label B.

A name occurring as a statement label is implicitly declared as a label
constant. It has the attributes LABEL and constant. You cannot explicitly
declare label constants.

This section discusses the following:

• Label array constants

• Label values

• Label variables

• Internal representation or variable label data

3.7.1 Label Array Constants
Any label constant except the label of a PROCEDURE or FORMAT
statement can have a single subscript. Subscripts must be specified
with integer constants; a subscript must appear in parentheses following
the label name. An example for VAX and Alpha is:

PART(1):
.
.
.

PART(2):
.
.
.

PART(*):

When labels are written this way, the unscripted label name represents
the implicit declaration of a label array constant. In this example, the
array is named PART and is treated as if it were declared within the block
containing the subscripted labels. In VAX, a default label can be created
by using the asterisk (*) in place of a label constant. If a default label is
used, it must be the last label in the list. If the variable subscript is out of
range and the default label is present, the default label will be executed.

Elements of the array can be referenced in GOTO statements that specify
a subscript. For example:

GOTO PART(I);

I is a variable whose value represents the subscript of the element of
PART that is the label to be given control.

3–42

Data Types

Within a single block, you cannot use the same subscript value in two
different subscripted references with the same name. For example:

PART(1):

This label array constant can be used only once in a block. However, the
subscript values are not constrained to be in any particular order or to be
consecutive. For example, you can use the array constants PART(1) and
PART(3) without using PART(2).

If a name is used as a label array constant in two or more different blocks,
each declaration of the name is treated as an internal declaration. For
example:

LIST(2): RETURN;
BEGIN;

GOTO LIST (ELEMENT);
LIST(1):;
LIST(3):
END;

In this example, the value of ELEMENT cannot cause control to pass
to the RETURN statement labeled LIST(2) in the containing block. The
subscripted LIST labels in the begin block restrict the scope of the name
to that block.

3.7.2 Label Values
Whenever a reference to a label constant is interpreted, the result is a
label value. A label value has two components:

• The first component designates the statement identified by the label
constant.

• The second component designates an activation of the block in which
the label was declared (that is, to which the labeled statement
belongs). If the label belongs to the current block, this block activation
is the current block activation. If the label belongs to a containing
block, the activation is found on the chain of parent block activations
ending with the current block.

The GOTO statement with a label reference transfers control to the
designated statement in the designated block activation. If the target
block activation is different from the block activation in which the GOTO
statement is executed, then the GOTO is nonlocal. For example:

DECLARE LV LABEL; /* LABEL variable */
.
.
.

LV = L; /* assigns a bound label value to LV */

BEGIN;
.
.
.

GOTO LV; /* nonlocal GOTO */
END;

L: RETURN;

3–43

Data Types

Operations on label values are restricted to the operators = and ^= for
testing the equality or inequality of two values. Two values are equal if
they refer to the same statement in the same block activation.

Any reference to a label value after its block activation ceases to exist is
an error with unpredictable results.

3.7.3 Label Variables
When an identifier is explicitly declared with the LABEL attribute, it
acquires the VARIABLE attribute by default. You can use such a variable
to denote different label values during the execution of the program. For
example:

DECLARE PROCESS LABEL;
.
.
.
IF CODE THEN

PROCESS = BILLING;
ELSE

PROCESS = CHARGE;
.
.
.

GOTO PROCESS;

When the GOTO statement evaluates the reference to the label PROCESS,
the result is the current value of the variable. The GOTO statement
transfers control to either of the labels BILLING or CHARGE, depending
on the current value of the Boolean variable CODE.

You can also give values to label variables by passing label values as
arguments or by returning a label value as the value of a function
(although the latter method can lead to programming errors that are
difficult to diagnose). For example:

CALL COMPUTER(ERROR_EXIT, YVAL, XVAL);
.
.
.

ERROR_EXIT:

In this example, the actual argument that is passed for ERROR_EXIT is a
dummy argument whose value consists of the following:

• The location in memory of the statement labeled ERROR_EXIT

• A pointer to the stack frame for the block in which the CALL
statement is executed

Restrictions

Any statement in a PL/I program can be labeled except the following:

• A DECLARE statement

• A statement beginning an ON-unit or THEN, ELSE, WHEN, or
OTHERWISE clauses

3–44

Data Types

Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and cannot be used as the targets of GOTO
statements.

An identifier occurring as a label in a block cannot be declared in that
block (except as a structure member), and cannot occur in a parameter list
of that block.

3.7.4 Internal Representation of Variable Label Data
Figure 3–12 shows the internal representation of variable label data.

Figure 3–12 Variable Label Data Representation

NU−2449A−RA

031

address of label

parent frame pointer

3.8 Entry Data
Entry constants and variables are used to invoke procedures through
specified entry points. An entry value specifies an entry point and a block
activation of a procedure.

This section discusses the following:

• Entry constants

• Entry values

• Entry variables

• Internal representation of variable entry data

3.8.1 Entry Constants
You declare entry constants by using labels on PROCEDURE or ENTRY
statements.

You declare internal entry constants by using labels on PROCEDURE or
ENTRY statements whose procedure blocks are nested in another block.
You can use an internal entry constant anywhere within its scope to invoke
its procedure block.

You declare external entry constants either by using labels on
PROCEDURE or ENTRY statements that belong to external procedures,
or by explicitly declaring the constant names with the ENTRY attribute.
You can use an external entry constant to invoke its procedure block from
any program location that is within its scope. Its scope is either the scope

3–45

Data Types

of its declaration (as a label) or the scope of a DECLARE statement for the
constant.

In DECLARE statements, you declare external entry constants with the
ENTRY attribute. The declaration must agree with the actual entry
point. That is, the declaration of the external entry constant must contain
parameter descriptors for any parameters specified at the entry point, and,
if the entry constant is to be used in a function reference, the declaration
must have a returns descriptor describing the returned value.

3.8.2 Entry Values
Whenever a reference to an entry constant is interpreted, the result is an
entry value. An entry value is the entry point of a procedure, and it serves
to activate the block in which the entry point is declared (that is, the block
in which the entry point’s name appears as the label of a PROCEDURE or
ENTRY statement). This block activation is the current block activation if
the entry point belongs to the current block. If the entry point belongs to
a containing block, the activation is on the chain of parent activations that
ends at the current block activation.

No conversions are defined between entry data and other data types. You
can assign an entry variable only the value of an entry constant or the
value of another entry variable. The only operations that are valid for
entry data are comparisons for equality (=) and inequality (^=). Two
entry values are equal if they refer to the same entry point in the same
block activation.

PL/I supports the passing of external procedures, but not internal
procedures, as entry value parameters. To pass an internal procedure,
use an entry parameter.

3.8.3 Entry Variables
Entry variables are variables (including parameters) that take entry
values. If the VARIABLE attribute is specified with the ENTRY attribute
in a DECLARE statement, the declared identifier is an entry variable. You
can assign to an entry variable either another entry variable or an entry
constant.

When an entry variable is used to invoke a procedure, its declaration must
agree with the definition of the entry point. If the value you assign to an
entry variable specifies an entry point with parameters, the parameters
must be described with parameter descriptors in the declaration of the
variable. If the assigned value specifies an entry point that is invoked as a
function, then the declaration of the entry variable must have a RETURNS
attribute that describes the data type of the returned value.

The scope of an entry variable name can be either internal or external. If
neither the EXTERNAL nor the INTERNAL attribute is specified with the
entry variable, the default is INTERNAL.

3–46

Data Types

You can use the entry variable to represent different entry points during
the execution of the PL/I program. For example:

DECLARE E ENTRY VARIABLE,
(A,B) ENTRY;
E = A;
CALL E;

The entry constant A is assigned to the entry variable E. The CALL
statement results in the invocation of the external entry point A.

You can also declare arrays of entry variables. The following example
shows an array of external functions:

DECLARE EXTRACT(10) ENTRY (FIXED,FIXED) VARIABLE RETURNS (FLOAT),
GETVAL FLOAT;

GETVAL = EXTRACT(3)(1,3);

This assignment statement references the third element of the array
EXTRACT. When the statement is executed, this array element must
contain a valid entry value.

Note: Exercise caution using static entry variables. The value of a static
entry variable is valid only as long as the block in which that value
was declared is active.

3.8.4 Internal Representation of Variable Entry Data
Figure 3–13 shows the internal representation of variable entry data.

Figure 3–13 Variable Entry Data Representation

NU−2450A−RA

031

address of procedure mask for this entry point

parent frame pointer

3.9 File Data
A PL/I file, or file constant, is represented by a file control block. A file
control block is an internal data structure maintained by PL/I.

No conversions are defined between file data and other data types. You
can assign a file variable only the value of a file constant or the value of
another file variable. The only operations that are valid for file data are
comparisons for equality (=) and inequality (^=).

This section discusses the following:

• File constants

• Files values

3–47

Data Types

• File variables

3.9.1 File Constants
You declare file constants by using the FILE attribute without the
VARIABLE attribute. All file constants are external by default. To define
an internal file constant, you must specify the INTERNAL attribute. For
example:

DECLARE INFILE FILE;

This declaration declares a file constant named INFILE whose attributes
include EXTERNAL by default.

DECLARE INFILE FILE INTERNAL;

This declaration specifies that the file constant named INFILE is internal
to the block in which it is declared.

If you declare a file constant as EXTERNAL, you must use identical
attributes, including ENVIRONMENT attributes, in all blocks that declare
the constant. Otherwise, PL/I uses the last set of attributes encountered
during compilation and ignores the others.

3.9.2 File Values
Whenever a reference to a file constant is interpreted, the result is a file
value. A file value is a pointer to the file control block for the file with
which the constant is associated.

PL/I supports the passing of external files, but not internal files, as file
value parameters. To pass an internal file, use a file parameter.

3.9.3 File Variables
File variables are variables (including parameters) that take file values.
If the VARIABLE attribute is specified with the FILE attribute in a
DECLARE statement, the declared identifier is a file variable. You can
assign to a file variable either another file variable or a file constant.

A file variable is represented internally as a longword that contains
a pointer to a file control block. The value of the file variable, when
evaluated, is the address of the file control block for the file with which the
variable is currently associated.

The scope of a file variable name can be either internal or external. If
neither the EXTERNAL nor the INTERNAL attribute is specified with the
file variable, the default is external.

If you declare a file variable implicitly or explicitly as EXTERNAL, you
must use identical attributes, including ENVIRONMENT attributes, in
all blocks that declare the variable. Otherwise, PL/I uses the last set of
attributes encountered during compilation and ignores the others.

3–48

Data Types

You can use the file variable to represent different files during the
execution of the PL/I program. For example:

DECLARE F FILE VARIABLE,
(A,B) FILE;
E = A;
CALL READFILE(E);

The file constant A is assigned to the file variable E. The CALL statement
results in the invocation of the entry point READFILE with file A as its
parameter.

You can also declare arrays of file variables. The following example shows
an array of external file variables:

DECLARE FILELIST(10) FILE VARIABLE,
MYFILE FILE VARIABLE;

MYFILE = FILELIST(3);

This assignment statement references the third element of the array
FILELIST. When the statement is executed, this array element must
contain a valid file value.

3.10 Area Data
An area is a region of storage in which based variables can be allocated
and freed. You define an area by declaring a variable with the AREA
attribute. An area variable can belong to any storage class. Areas provide
the following programming capabilities:

• Based variables can be allocated within a specific area, and the
entire area can be assigned or transmitted in a single operation.
The variables can be referred to by offset values within the area; the
offset values remain valid throughout assignment or transmission.

• You can control the allocation of storage for related variables by
placing them in the same area, which improves the locality of
reference. Also, you can use one operation to recover the storage
for all allocations within an area by freeing or initializing the area
itself.

• You can use a structure containing an area to represent a disk file that
is mapped into a process’s virtual address space.

All areas must be declared with the AREA attribute before they can be
referenced in a BASED attribute or an ALLOCATE statement with the IN
option. For example:

DECLARE MYAREA AREA;
DECLARE PTR OFFSET(MYAREA);
DECLARE MYDATA FIXED BIN(31) BASED(PTR);

The variable MYAREA is given the AREA attribute. Then it is used as
the target in another declaration, which defines a pointer offset based on
MYAREA. To allocate storage for MYDATA in area MYAREA, use the IN
option of the ALLOCATE statement as follows:

ALLOCATE MYDATA IN(MYAREA) SET (PTR);

3–49

Data Types

When these statements are executed, the ALLOCATE statement allocates
storage for a variable MYDATA in the area MYAREA and sets PTR to the
offset in the area of the allocated storage.

This section discusses the following:

• Area variables in expressions

• Reading and writing areas

• Internal representation of area data

3.10.1 Area Variables in Expressions
Expressions containing area variables are restricted to the relational
operators equal (=) and not equal (^=) and to comparison to the empty ()
built-in function (BIF).

For example, to test whether an area is empty, that is, to determine
whether it currently has storage allocated in it, you can write the following
statement:

IF MYAREA = EMPTY() THEN
DO;

The EMPTY() built-in function always returns an empty area value.

You can use area variables in simple assignment statements that assign
one area variable to another. For example:

AREA_1 = AREA_2;

AREA_2 = EMPTY();

3.10.2 Reading and Writing Areas
An area can be the source or target of data transmission in READ and
WRITE record I/O statements. If the area is written by itself (not as a
member of a structure), only the current allocated portion is transmitted
unless the SCALARVARYING option of the ENVIRONMENT attribute
was specified when the file was opened.

3.10.3 Internal Representation of Area Data
An area occupies the number of bytes, specified in the extent, of storage.
Since this storage includes overhead used by PL/I for bookkeeping, slightly
less than the full amount (specified in the extent) is available for program
allocations.

3–50

Data Types

3.11 Condition Data
PL/I provides a CONDITION attribute for declaring programmer-defined
conditions. These conditions may only be signaled by the SIGNAL
statement.

Condition data occupies a longword (32 bits) of storage.

No conversions are defined between condition data and other data types.
The only operations that are valid for condition data are comparisons for
equality (=) and inequality (^=).

Unlike some other noncomputational data type (such as ENTRY and
FILE), the CONDITION data type may only be used as a constant. You
cannot declare condition variables. For example, the following results in a
compile-time error:

DECLARE (C1, C2, C3) CONDITION;
DECLARE C CONDITION VARIABLE;

The compiler will reject the declaration of C in the previous example.

3–51

4 Aggregates

An aggregate is a data structure, either an array or structure composed of
items as follows:

• An array is an aggregate in which all items, called elements, have the
same data type. An individual element of an array is referred to by
an integer subscript that designates the element’s position, or order, in
the array. Elements can be scalar data items or aggregrates.

• A structure is an aggregate in which individual items, called members,
can have different data types. Individual members are referred to by
qualified references. Members can be scalar data items or aggregrates.

4.1 Arrays
Arrays provide an orderly way to manipulate related variables of the same
data type. An array variable is defined in terms of the number of elements
that the array contains and the organization of those elements. These
attributes of an array are called its dimensions.

4.1.1 Array Declarations
To declare an array, specify its dimensions in a DECLARE statement using
one of the following syntaxes:

DECLARE identifier [DIMENSION] (bound-pair, . . .)
[attribute . . .];

DECLARE (identifier [DIMENSION] (bound-pair, . . .))
[attribute . . .];

To declare two or more array variables that have the same dimensions,
bounds, and attributes, use the following syntax:

DECLARE (identifier, . . .) [DIMENSION] (bound-pair, . . .)
[attribute . . .];

identifier
A valid PL/I identifier to be used as the name of the array.

bound-pair
A specification of the number of elements in each dimension of the array.
A bound pair can consist of one of the following:

• Two expressions separated by a colon giving the lower and upper
bounds for that dimension

• A single expression giving the upper bound only (the lower bound is
then 1 by default)

4–1

Aggregates

• An asterisk (*), used in the declaration of array parameters, indicating
that the parameter can be matched to array arguments with varying
numbers of elements in that dimension

Bound pairs in series must be separated by commas, and the list of bound
pairs must be enclosed in parentheses. The list of bound pairs must
immediately follow the identifier or the optional keyword DIMENSION
or the list of declarations. The following rules apply to specifying the
dimensions of an array and the bounds of a dimension:

• An array can have up to eight dimensions.

• The values you can specify for bounds are restricted as follows:

— If the array has the STATIC attribute, you must specify all bounds
as restricted integer expressions. A restricted integer expression
is one that yields only integral results and has only integral
operands, which can be evaluated at translation time. Such an
expression can use only the addition (+), subtraction (-), and
multiplication (*) operators.

— If the array has the AUTOMATIC, BASED, CONTROLLED, or
DEFINED attribute, you can specify the bounds as optionally
signed integer constants or as expressions that yield integer values
at run time. If the array has AUTOMATIC or DEFINED, the
expressions must not contain any variables or functions that are
declared in the same block, except for parameters.

• The value of the lower bound you specify must be less than the value
of the upper bound.

Table 4–1 shows several forms of bound pairs as used in declarations.
Note that all the examples in Table 4–1 would be identical in effect if the
optional keyword DIMENSION were added.

attribute
One or more data type attributes of the elements of the array. All
attributes you specify apply to each of the elements in the array.

Elements of an array can have any data type. If the array has the FILE
or ENTRY attribute, it must also have the VARIABLE attribute.

4–2

Aggregates

Table 4–1 Specifying Array Dimensions

Bound Pairs Examples

ARRAY_NAME (bound)

A single value specifies:

• That the array has a single
dimension.

• That the number of elements in
the dimension is the bound (that
is, 6).

• That the value specified is the
high bound, which is the largest
numbered element. By default,
the low bound is 1.

DECLARE VERBS (6) CHARACTER (12) ;

ARRAY_NAME (low-bound:high-bound)

A single range of values specifies:

• That the array has a single
dimension.

• That the number of elements in
the dimension is (high-bound) -
(low-bound) + 1.

• That the first value specified is
the low bound and the second
value specified is the high
bound.

DECLARE TEMPERATURES (-60:120) ;

ARRAY_NAME
(bound1,bound2, . . .)

A list of values specifies:

• That the array is
multidimensional. Each bound
value represents a dimension in
the array.

• The extent of each dimension.
Each bound defines the number
of elements in a dimension.

• The high-bound value of each
dimension. The low-bound
value of each dimension defaults
to 1.

DECLARE TABLE (10,10) FIXED BINARY ;

DECLARE SETS (5,5,5,5) CHARACTER (80) ;

4–3

Aggregates

Table 4–1 (Cont.) Specifying Array Dimensions

Bound Pairs Examples

ARRAY_NAME (low-bound1:high-bound1,low-bound2,high-bound2, . . .)

A list of ranges specifies:

• That the array is
multidimensional. Each range of
values represents a dimension
of the array (ranges can be
intermixed with single-bound
specifications).

• The extent of each dimension.
• The low-bound and high-bound

values of each dimension.

DECLARE WINDOWS (1:10,-2:32) FIXED;

DECLARE HISTORIES (10,30:102,50) . . .

ARRAY_NAME (*, . . .)

Asterisk extents specify:

• The number of dimensions
in the array. Each asterisk
indicates a dimension.

• That the extent of each
dimension will be defined by
the actual argument passed
to the procedure when it is
invoked.

ADDIT: PROCEDURE (ARR) ;
DECLARE ARR(*,*) FIXED ;

The declaration of an array specifies its dimensions, the bounds of each
dimension, and the attributes of the elements.

One bound pair is specified for each dimension of the array to define the
number of elements in that dimension. The total number of elements in
the array, called its extent, is the product of the number of elements in all
the dimensions of the array. If omitted, the lower bound is 1 by default.

You can use an asterisk (*) as the bound pair when you declare arrays as
parameters of a procedure; the asterisk indicates that the parameter can
accept array arguments with any number of elements. (If one dimension
is specified with an asterisk, all must be specified with asterisks.) For
example:

DECLARE SALARIES (100) FIXED DECIMAL (7,2);

This statement declares a 100-element array with the identifier
SALARIES. Each element is a fixed-point decimal number with a total
of seven digits, two of which are fractional.

The following statement declares a two-dimensional array of 64 integers:

DECLARE GAME_BOARD (8,8) FIXED BINARY (7);

The following statement declares a one-dimensional array of 12 character
strings, each having a length of 2:

DECLARE PM_HOURS(13:24) CHARACTER(2);

4–4

Aggregates

The elements of the previous array is numbered 13 through 24 instead of
1 through 12.

You can replace the identifier in a statement with a list of declarations,
which declares several arrays with the same attributes. For example:

DECLARE (SALARIES,PAYMENTS)(100) FIXED DECIMAL(7,2);

This statement declares SALARIES and another array, PAYMENTS, with
the same dimensions and other attributes.

4.1.2 References to Individual Elements
You refer to an individual element in the array with subscripts. Because
an array’s attributes are common to all of its elements, a subscripted
reference has the same properties as a reference to a scalar variable with
those attributes.

You must enclose subscripts in parentheses in a reference to an array
element. For example, in a one-dimensional array named ARRAY declared
with the bounds (1:10), the elements are numbered 1 through 10 and are
referred to as ARRAY(1), ARRAY(2), ARRAY(3), and so on. The lower and
upper bounds that you declare for a dimension determine the range of
subscripts you can specify for that dimension.

The lower and upper bounds that you declare for a dimension determine
the range of subscripts that you can specify for that dimension. The
number of elements in any dimension of any array is:

(upperbound)� (lowerbound) + 1

For multidimensional arrays, the subscript values represent an element’s
position with respect to each dimension in the array. Figure 4–1 shows
subscripts for elements of one-, two-, and three-dimensional arrays.
In subscripted references for multidimensional arrays, the number of
subscripts must match the number of dimensions of the array and must be
separated by commas.

You can specify the subscript of an array element using any variables or
expressions having integer values, that is, values that can be expressed as
fixed binary or fixed decimal with a zero scale factor. For example:

DECLARE DAYS_IN_MONTH(12) FIXED BINARY;

DECLARE (COUNT, TOTAL) FIXED BINARY;
TOTAL = 0;
DO COUNT = 1 TO 12;

TOTAL = TOTAL + DAYS_IN_MONTH(COUNT);
END;

Here, the variable COUNT is used as a control variable in a DO loop.
As the value of COUNT is incremented from 1 to 12, the value of the
corresponding element of the array DAYS_IN_MONTH is added to the
value of the variable TOTAL.

4–5

Aggregates

Figure 4–1 Specifying Elements of an Array

6

7

1

2

3

4

5

DECLARE ARRAY_2(5,5);

DECLARE ARRAY_3 (3,4,4);

DECLARE ARRAY_1(7);

 ARRAY_3(3,1,2)

 ARRAY_3(2,3,3)

 ARRAY_3(1,3,4)

ARRAY_1(2)

ARRAY_1(6)

NU−2453A−RA

ARRAY_2(4,2)

ARRAY_2(2,4)

1 2 3 4 5

1

2

3

4

5

1 2 3 4

1

2

3

4

3

2

1

4.1.3 Initializing Arrays
Specify the INITIAL attribute for an array to initialize its values in the
declaration. For example:

4–6

Aggregates

DECLARE MONTHS (12) CHARACTER (9) VARYING
INITIAL (’January’, ’February’, ’March’, ’April’,

’May’, ’June’, ’July’, ’August’,
’September’, ’October’, ’November’, ’December’);

Each element of the array MONTHS is assigned a value according to the
order of the character-string constants in the initial list: MONTH(1)
is assigned the value ’ January’ ; MONTH(2) is assigned the value
’ February’ ; and so on.

If the array being initialized is multidimensional, the initial values are
assigned in row-major order.

To assign identical initial values to some or all elements of an array, you
can use an iteration factor with the INITIAL attribute. For example:

DECLARE TEST_AVGS (30,4) FIXED DECIMAL (5,2)
STATIC INITIAL ((120) 50);

This statement declares the array TEST_AVGS with 120 elements, each of
which is given an initial value of 50.

You can also use the asterisk (*) iteration factor to initialize all the
elements of an array to the same value. For example:

DECLARE TEST_AVGS (30,4) FIXED DECIMAL (5,2)
STATIC INITIAL ((*) 50);

This statement also declares the array TEST_AVGS with 120 elements,
each of which is given an initial value of 50.

Although Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS
Alpha both support the initialization of automatic arrays with the INITIAL
attribute, for the following reasons this is not always the most efficient
way (in terms of program compilation and execution) to initialize array
elements:

• When you initialize elements in an array that has the AUTOMATIC,
BASED, or CONTROLLED attribute, the compiler does not check that
all elements are initialized until run time. Thus, you do not receive
any compile-time checking of initialization, even if you used constants
to specify the array bounds and iteration factors.

• Your programs will run more efficiently if you initialize automatic
arrays with assignment statements rather than the INITIAL attribute.

If the array is not modified by your program, you can increase program
efficiency by declaring the array with the STATIC and READONLY
attributes and using the INITIAL attribute to initialize its elements.
In this case, the compiler checks that you have initialized all the elements
and that they are valid.

Iteration Factors

When more than one successive element of an array is to be assigned the
same value with the INITIAL attribute, you can specify an iteration factor.
An iteration factor indicates the number of times that a specified value is
to be used in the assignment of values to elements of an array. You can
specify an iteration factor in one of the following formats:

4–7

Aggregates

(iteration-factor) arithmetic-constant
(iteration-factor) scalar-reference
(iteration-factor) (scalar-expression)
(iteration-factor) *

iteration-factor
An unsigned decimal constant indicating the number of times the specified
value is to be used in the assignment of an array element. The iteration
factor can be zero.

arithmetic-constant
Any arithmetic constant whose data type is valid for conversion to the
data type of the array.

scalar-reference
A reference to any scalar variable or to the NULL built-in function.

scalar-expression
Any arithmetic or string expression or string constant. The expression or
constant must be enclosed in parentheses.

*
Symbol used to indicate that the corresponding array element is not to be
assigned an initial value.

You can use any of these forms for arrays that have the AUTOMATIC
attribute. For arrays with the STATIC attribute, you can use only
constants and the NULL built-in function.

For example, the following declaration of the array SCORES initializes all
elements of the array to 1:

DECLARE SCORES (100) FIXED STATIC INITIAL ((100)1);

The next declaration initializes the first 50 elements to 1 and the last 50
elements to -1:

DECLARE SCORES (100) FIXED STATIC INITIAL ((50)1,(50)-1);

The following declaration initializes the first 49 elements to 1; the next 2
elements are not initialized; and the next 49 elements are initialized to -1:

DECLARE SCORES (100) FIXED STATIC INITIAL ((49)1,(2)*,(49)-1);

The declaration in the next example initializes all 10 elements of an
array of character strings to the 26-character value in apostrophes. The
string constant is enclosed in parentheses; this is required to differentiate
between iteration factors and replication factors.

DECLARE ALPHABETS (10) CHARACTER(26) STATIC
INITIAL((10)(’ABCDEFGHIJKLMNOPQRSTUVWXYZ’));

4–8

Aggregates

4.1.4 Assigning Values to Array Variables
You can specify an array variable as the target of an assignment statement
in the following cases:

array-variable = expression;

This is valid where the expression yields a scalar value. Every element of
the array is assigned the resulting value. The array variable must be a
connected array whose elements are scalar. You can use the asterisk in an
assignment:

array-variable (*, . . .) = expression;

You can use a single asterisk regardless of how many dimensions an array
has, or you can use an asterisk for each dimension.

Note that the arithmetic operators, such as the plus sign (+) and the
minus sign (-), cannot have arrays as operands. An assignment of the
following form is invalid:

ARRAYC = ARRAYA + ARRAYB;

The following assignment is valid where the specified array variables have
identical data-type attributes and dimensions:

array-variable-1 = array-variable-2;

Each element in array-variable-1 is assigned the value of the
corresponding element in array-variable-2. In this type of assignment,
both arrays must be connected. The actual storage they occupy must not
overlap, unless the arrays are identical.

All other specifications of an array variable as the target of an assignment
statement are invalid.

4.1.5 Order of Assignment and Output for Multidimensional Arrays
When a multidimensional array is initialized, or when it is assigned
values without references to specific elements, PL/I assigns the values in
row-major order. In row-major order, the rightmost subscript varies the
most rapidly. For example, an array can be declared as follows:

DECLARE TESTS (2,2,3);

If TESTS is specified in a GET statement or in a declaration with the
INITIAL attribute, values are assigned to the elements in the following
order:

TESTS (1,1,1)
TESTS (1,1,2)
TESTS (1,1,3)
TESTS (1,2,1)
TESTS (1,2,2)
TESTS (1,2,3)
TESTS (2,1,1)
TESTS (2,1,2)
TESTS (2,1,3)

4–9

Aggregates

TESTS (2,2,1)
TESTS (2,2,2)
TESTS (2,2,3)

When an array is output with a PUT statement, PL/I uses the same order
to output the array elements. For example:

PUT LIST (TESTS);

This PUT statement outputs the contents of TESTS in the order previously
shown.

4.1.5.1 Using GET and PUT Statements with Array Variables
When you specify an array variable name in the input-target list of a GET
LIST or GET EDIT statement, elements of the array are assigned values
from the data items in the input stream. For example:

DECLARE VERBS (6) CHARACTER (15) VARYING;
GET LIST (VERBS);

When this GET LIST statement executes, it accepts data from the
default input stream. Each input field delimited by blanks, tabs, or
commas is considered a separate string. The values of these strings
are assigned to elements of the array VERBS in the order VERBS(1),
VERBS(2), . . . VERBS(6). If a multidimensional array appears in an
input-target list, input data items are assigned to the array elements in
row-major order.

An array can also appear, with similar effects, in the output-source list of
a PUT statement.

4.1.6 Passing Arrays as Arguments
You can pass an array variable as an argument to another procedure.
Within the invoked procedure, the corresponding parameter must be
declared with the same number of dimensions. The rules for specifying the
bounds in a parameter descriptor for an array parameter are as follows:

• If you specify the bounds with integer constants, they must match
exactly the bounds of the corresponding argument.

• You can specify all bounds as asterisks (*). Then, the bounds of the
array are determined from the bounds of the corresponding argument
when the procedure is actually invoked. If any bound is specified as an
asterisk, all bounds must be specified as asterisks.

For example:

DECLARE SCAN ENTRY ((5,5,5) FIXED,(*) FIXED),
MATRIX (5,5,5) FIXED,
OUTPUT (20) FIXED;

CALL SCAN (MATRIX,OUTPUT);

4–10

Aggregates

The procedure SCAN receives two arrays as arguments. The first is a
three-dimensional array whose bounds are known. The second is a one-
dimensional array whose bounds are not known. The procedure SCAN can
declare these parameters as follows:

SCAN: PROCEDURE (IN,OUT);
DECLARE IN (*,*,*) FIXED,

OUT (*) FIXED;

An array whose storage is unconnected cannot be passed as an argument.
Arrays are always passed by reference.

4.1.7 Built-In Functions Providing Array Dimension Information
PL/I provides the following built-in functions that return information
about the dimensions of an array:

• DIMENSION returns the number of elements in a given dimension.

• HBOUND returns the value of the upper bound of the array in a given
dimension.

• LBOUND returns the value of the lower bound of the array in a given
dimension.

For the first dimension of an array X, the relationship of these functions
can be expressed as follows:

DIMENSION(X; 1) = HBOUND(X; 1)� LBOUND(X; 1) + 1

The procedure that follows uses the HBOUND and LBOUND built-in
functions:

ADDIT: PROCEDURE (X);
DECLARE X (*) FIXED BINARY,

(COUNT,I) FIXED BINARY;

COUNT = 0;
DO I = LBOUND (X,1) TO HBOUND(X,1);

COUNT = COUNT + 1;
X(I) = COUNT;
END;

RETURN;
END;

This procedure receives a one-dimensional array as a parameter and
initializes the elements of the array with integral values beginning with
1.

4.2 Structures
A structure is a data aggregate consisting of one or more members. The
members can be scalar data items or aggregrates. Different members can
have different data types. Structures are useful when you want to group
related data items having different data types.

4–11

Aggregates

4.2.1 Structure Declarations and Attributes
The declaration of a structure defines its organization and the names
of members at each level in the structure. The major structure name is
declared as structure level 1; minor members must be declared with level
numbers greater than 1. For example:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST CHARACTER(80) VARYING,
3 FIRST CHARACTER(80) VARYING,

2 SALARY FIXED DECIMAL(7,2);

This statement declares a structure named PAYROLL. You can access the
last name with a qualified reference:

PAYROLL.NAME.LAST = ’ROOSEVELT’;

Alternatively, because the last and first names have the same attributes,
you can declare the same structure as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 (LAST,FIRST) CHARACTER(80) VARYING,
2 SALARY FIXED DECIMAL(7,2);

The following additional rules apply to the specification of level numbers:

• Level numbers must be specified with decimal integer constants.

• A level number must be separated from its associated variable name
by at least one space or tab character.

• Level numbers after level 1 can have any integer value, as long as
each level number is equal to or greater than the level number of the
preceding level. (There can be only one level 1.)

• Each identifier in the structure must be separated from the declaration
of the previous identifier by a comma.

• Substructures at the same logical level of nesting do not have to have
the same level number.

• The deepest possible logical level is 15.

• The largest possible level number constant is 32767.

Attributes for Structure Variables

Within a structure, you can only declare members at the lowest level
of each substructure with data-type attributes. Additional rules for
specifying attributes for the various components of a structure are as
follows:

• Only the following attributes are valid for the major structure:

AUTOMATIC GLOBALREF

BASED INTERNAL

CONTROLLED READONLY

4–12

Aggregates

DEFINED STATIC

EXTERNAL STRUCTURE

GLOBALDEF UNION

TYPE

• You can dimension the major structure, a minor structure, or any
member of the structure: that is, there can be arrays of structures and
structures whose members are arrays.

• Member names cannot have any of the attributes a major structure
can have except for INTERNAL and UNION attributes. You can use
the UNION attribute on any member with a level number.

• If a structure has the STATIC attribute, the extents of all members
(lengths for character- and bit-string variables, dimensions for array
variables, and area extents) must be specified with optionally signed
decimal integer constants.

4.2.2 Using The UNION Attribute On Structure Declarations
A union is a variation of a structure in which all immediate members
occupy the same storage. The UNION attribute (which must be associated
with a level number in a structure declaration) declares a union. All
immediate members of the union-that is, all members having a logical
level number one higher-occupy the same storage. A reference to one
member of a union refers to storage occupied by all members of the union.
Therefore, a union provides a convenient way to look at a large entity
(such as a character string or a bit mask) as a series of smaller entities
(such as component character strings or individual flag bits).

A variable declared with the UNION attribute must be a major or
minor structure. All members of a union must have a constant size
(see Chapter 2 for format and details).

The UNION attribute is not part of the PL/I General-Purpose Subset; it
is provided in Kednos implementations of PL/I to give users convenient
access to data as it is internally represented. Potential applications of
unions might depend on the internal representation of data, and would
therefore not be transportable between OpenVMS VAX and OpenVMS
Alpha systems. The following example shows unions:

4–13

Aggregates

DECLARE 1 CUSTOMER_INFO,
.
.
.

2 PHONE_DATA UNION,
3 PHONE_NUMBER CHARACTER (13),
3 COMPONENTS,

4 LEFT_PAREN CHARACTER (1),
4 AREA_CODE CHARACTER (3),
4 RIGHT_PAREN CHARACTER (1),
4 EXCHANGE CHARACTER (3),
4 HYPHEN CHARACTER (1),
4 SPECIFIC_NUMBER CHARACTER (4),

2 ADDRESS_DATA,
.
.
.

The UNION attribute associated with the declaration of PHONE_DATA
signifies that PHONE_DATA’s immediate members (PHONE_NUMBER
and COMPONENTS) occupy the same storage. Any modification of
PHONE_NUMBER also modifies one or more members of COMPONENTS;
conversely, modification of a member of COMPONENTS also modifies
PHONE_NUMBER. Note, however, that the UNION attribute does not
apply to the members of COMPONENTS because they are not immediate
members of PHONE_DATA. The members of COMPONENTS occupy
separate storage in the normal fashion for structure members.

Unions provide capabilities similar to those provided by defined variables.
However, the rules governing defined variables are more restrictive
than those governing unions. The following example (for VAX only)
demonstrates a use of a union that would not be possible with a defined
variable:

DECLARE 1 X UNION,
2 FLOAT_NUM FLOAT BINARY (24),
2 BREAKDOWN,

3 FRAC_1 BIT (7),
3 EXPONENT BIT (8),
3 SIGN BIT (1),
3 FRAC_2 BIT (16);

The union X has two immediate members, FLOAT_NUM (a floating-point
variable) and BREAKDOWN. The members of BREAKDOWN are bit-
string variables that overlay the storage occupied by FLOAT_NUM and
provide access to the individual components of an VAX floating-point value.
Assignment to FLOAT_NUM modifies the members of BREAKDOWN and
vice versa. For example:

EXPONENT = ’0’B;
SIGN = ’1’B;

FLOAT_NUM = FLOAT_NUM + 1;

The first two assignment statements set the exponent and sign fields
of FLOAT_NUM to the reserved operand combination; the expression
FLOAT_NUM + 1 causes a reserved operand exception to occur.

Note that, unlike the character-string example that precedes it, this
example depends on the VAX internal representation of data.

4–14

Aggregates

4.2.3 Initializing Structures
You can initialize a structure by giving the INITIAL attribute to its
members. Not all members need be initialized. For example:

DECLARE 1 COUNTS,
2 FIRST FIXED BIN(15) INITIAL(0),
2 SECOND FIXED BIN(15),
2 THIRD (5) FIXED BIN(15) INITIAL (5(1));

The first and third members of the structure COUNTS are initialized.

The INITIAL attribute cannot be applied, however, to a major or a minor
structure name.

In a union, the same data can only be initialized once.

4.2.4 Using Structure Variables in Expressions
You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are
identical in size and structure, and all corresponding members have
the same data types.

4.2.5 Passing Structure Variables as Arguments
You can pass a structure variable as an argument to another procedure.
The relative structuring of the structure variable specified as the argument
and the corresponding parameter must be the same. The level numbers
do not have to be identical. The following example shows the parameter
descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40),
2 PICTURE ’999V99’);

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its corresponding members must
have the same data types.

When structures are passed as arguments, they must match the
corresponding parameters. They cannot be passed by dummy argument.

4.2.6 Member Attributes
PL/I supports three member attributes, so named because they apply
specifically to the declaration of structure members rather than to the
structure as a whole. The member attributes are as follows:

• The TYPE attribute

• The LIKE attribute

• The REFER option

Each is discussed in detail in the following sections.

4–15

Aggregates

4.2.6.1 Using the TYPE Attribute
The TYPE attribute copies a scalar, array, or member declaration in a
major or minor structure into another scalar, array, or structure variable
respectively. The TYPE attribute copies the attributes to the target
variable. For structures, the TYPE attribute also copies the logical
structuring and member declarations from the major or minor structure
to the target variable. TYPE does not copy any storage class or INITIAL
attributes or dimensioning (except for dimensioning that is applied to
arrays and members) from scalars, arrays, or structures.

Note that the TYPE attribute is a superset of the LIKE attribute. The
TYPE attribute is identical to the LIKE attribute when it is used to copy a
member declaration in a major or minor structure declaration into another
structure variable.

An identifier names the variable to which the declarations for the reference
are copied. The reference is the name of a scalar, an array, or a major or
minor structure known to the current block. For structures, the identifier
must be preceded by a level number. Any attributes that can be used
with a structure variable at that level can be used with the identifier. For
example, a major structure can specify a storage class and dimensions, and
a minor structure can specify dimensions. The following example shows
the TYPE attribute:

DECLARE NO_OF_SINGLE_ROOMS FIXED BINARY(31);
DECLARE NO_OF_DOUBLE_ROOMS TYPE (NO_OF_SINGLE_ROOMS);

In the previous example, the declaration of NO_OF_DOUBLE_ROOMS
uses the TYPE attribute to create a declaration that duplicates the
attributes of NO_OF_SINGLE_ROOMS. The declaration of NO_OF_
DOUBLE_ROOMS is equivalent to the following:

DECLARE NO_OF_DOUBLE_ROOMS FIXED BINARY(31);

In the next example, the declaration uses the TYPE attribute to create the
declaration that duplicates the attributes of BED_SERIAL_NOS:

DECLARE BED_SERIAL_NOS((NO_OF_SINGLE_ROOMS + NO_OF_DOUBLE_ROOMS),2)
CHARACTER(12);

DECLARE TABLE_SERIAL_NOS TYPE(BED_SERIAL_NOS);

The declaration of TABLE_SERIAL_NOS in the previous example is
equivalent to the following:

DECLARE TABLE_SERIAL_NOS((NO_OF_SINGLE_ROOMS + NO_OF_DOUBLE_ROOMS),2)
CHARACTER(12);

In the following example, the declaration of NEW_RESER uses the TYPE
attribute to create a set of member declarations that duplicate those in
RES_DATA:

4–16

Aggregates

DECLARE 1 RES_DATA BASED (RPTR),
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER(20),
3 FIRST CHARACTER(10),

2 STAY FIXED BIN(7),
1 NEW_RESER TYPE(RES_DATA),

.

.

.
GET LIST (NEW_RESER.DATE,NEW_RESER.HOTEL_CODE);

.

.

.
RES_DATA = NEW_RESER;

The declaration of NEW_RESER in the previous example is equivalent to
the following:

DECLARE 1 NEW_RESER,
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER(20),
3 FIRST CHARACTER(10),

2 STAY FIXED BINARY(7);

In the previous example, the members of NEW_RESER are assigned
data after that data is validated; the entire contents of NEW_RESER
are assigned to RES_DATA. This assignment is possible because the two
structures are identical as a result of using the TYPE attribute.

You can use the TYPE attribute to copy a minor structure to a major
structure and vice versa; neither the level numbers nor the logical levels
must match. For example:

DECLARE 1 PARTY_NAME,
2 LAST CHAR(20),
2 FIRST CHAR(10);

DECLARE 1 SPOUSE_NAME TYPE(PARTY_NAME);

Given the declarations in the preceding example, this declaration is
equivalent to the following:

DECLARE 1 SPOUSE_NAME,
2 LAST CHAR(20),
2 FIRST CHAR(10);

You can also apply dimensions or, for a major structure, storage-class
attributes to a structure variable declared with the TYPE attribute, as
follows:

DECLARE 1 KID_NAMES (10) TYPE(PARTY_NAME);

Or, you can use:

DECLARE 1 DAILY_DATA,
2 DATE CHAR(8),
2 TODAYS_RESERS (NO_OF_RES) TYPE(RES_DATA);

.

.

.

4–17

Aggregates

4.2.6.2 Using the LIKE Attribute
The LIKE attribute copies the member declarations in a major or minor
structure declaration into another structure variable. It copies the logical
structuring and member declarations from the major or minor structure
to the target variable, but does not copy any storage-class attributes or
dimensioning (except for dimensioning that is applied to members).

An identifier names the variable to which the declarations in the reference
are copied. The reference is the name of a major or minor structure
known to the current block. The identifier must be preceded by a level
number. Any attributes that can be used with a structure variable at that
level can be used with the identifier; for example, a major structure can
specify a storage class and dimensions, and a minor structure can specify
dimensions.

The following example shows the LIKE attribute:

DECLARE 1 RES_DATA BASED (RPTR),
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER(20),
3 FIRST CHARACTER(10),

2 STAY FIXED BIN(7),
1 NEW_RESER LIKE RES_DATA,

.

.

.
GET LIST (NEW_RESER.DATE,NEW_RESER.HOTEL_CODE);

.

.

.
RES_DATA = NEW_RESER;

In the previous example, the declaration of NEW_RESER uses the LIKE
attribute to create a set of member declarations that duplicate those
in RES_DATA. The declaration of NEW_RESER is equivalent to the
following:

DECLARE 1 NEW_RESER,
2 DATE CHARACTER(8),
2 HOTEL_CODE CHARACTER(3),
2 PARTY_NAME,

3 LAST CHARACTER(20),
3 FIRST CHARACTER(10),

2 STAY FIXED BINARY(7);

In the previous example, the members of NEW_RESER are assigned
data after that data is validated, the entire contents of NEW_RESER
are assigned to RES_DATA. This assignment is possible because the two
structures are identical as a result of using of the LIKE attribute.

You can use the LIKE attribute to copy a minor structure to a major
structure and vice versa; neither the level numbers nor the logical levels
must match. For example:

DECLARE 1 SPOUSE_NAME LIKE PARTY_NAME;

4–18

Aggregates

Given the declarations in the preceding example, this declaration is
equivalent to the following:

DECLARE 1 SPOUSE_NAME,
2 LAST CHAR(20),
2 FIRST CHAR(10);

You can also apply dimensions or, for a major structure, storage-class
attributes to a structure variable declared with the LIKE attribute:

DECLARE 1 KID_NAMES (10) LIKE PARTY_NAME;

or

DECLARE 1 DAILY_DATA,
2 DATE CHAR(8),
2 TODAYS_RESERS (NO_OF_RES) LIKE RES_DATA;

.

.

.

4.2.6.3 Using the REFER Option
Use the REFER option to create self-defining based structures. In a based
structure, the value of one member is used to determine the size of the
storage space allocated for another member of the same structure. You can
use the REFER option in a DECLARE statement to specify array bounds,
the length of a string, or the size of an area. The format of the REFER
option is as follows:

refer-element REFER (refer-object-reference)

refer-element
An expression that represents the value assigned to the refer object when
the structure is allocated. The refer element must satisfy the following
conditions:

• It must be an expression that produces a FIXED BINARY(31) value or
a value that can be converted to FIXED BINARY (31).

• It cannot reference storage in the structure containing the refer
element.

refer-object-reference
A reference to a scalar variable. The refer object reference must satisfy
the following conditions:

• It cannot be a subscripted variable reference.

• It cannot be locator qualified.

• It must reference a refer object that is a previous member of the
structure containing the REFER option.

The refer object is a scalar variable contained by the structure. The refer
object must satisfy the following conditions:

• It must be a previous member of the structure containing the REFER
option, which references the refer object.

• It must be scalar; it cannot be dimensioned or a dimensioned array.

4–19

Aggregates

• It must have a computational data type.

An example of a structure declaration containing the REFER option is as
follows:

DECLARE 1 STRUCTURE S BASED(P),
2 I FIXED BINARY(31),
2 A CHARACTER(20 REFER(I));

For the compiler to allocate storage for a based structure, the structure
must have a known size. In the example, the initial length for A is taken
from the refer element, 20. However, the REFER option permits the size
of the structure to change at run time as the value of the refer object (I)
changes. After allocation, the length of A is determined by I.

You can have multiple REFER options within a structure.

The following example and figures show storage mapping with the REFER
option.

DECLARE 1 S BASED (POINTER),
2 I FIXED BINARY(15),
2 J FIXED BINARY(15),
2 A CHARACTER ((X*2+2) REFER(I)),
2 B(2) CHARACTER (Y REFER(J));

X = 5;
Y = 10;

ALLOCATE S;
S.A = ’ABCDEFGHIJKL’;
S.B(1) = ’0123456789’;
S.B(2) = ’NOW IS THE’;

.

.

.
END;

When this structure is allocated, the refer elements (X*2+2) and Y are
evaluated and used to determine the length of the associated string. The
evaluated refer element value (X*2+2) is assigned to the refer object I and
Y is assigned to J. Thereafter, the sizes of strings A and B are determined
by the value of the refer objects I and J.

Storage for the previous structure is shown in Figure 4–2.

4–20

Aggregates

Figure 4–2 Storage of Structure with REFER Option

NU−2454A−RA

12

10

S.B(2)

B

C

S.I

S.J

S.A

S.B(1)

T

D

F

H

J

L

1

3

5

7

9

O

S

E

W

A

E

G

I

K.

0

2

4

6

8

N

I

H

If the refer object I is assigned the value 6 and the refer object J is
assigned the value 4, the resulting storage is remapped as shown in
Figure 4–3.

4–21

Aggregates

Figure 4–3 Remapped Storage of Structure with REFER Option

NU−2455A−RA

6

4

S.B(2)

B

C

S.I

S.J

S.A

S.B(1)

D

F

H

J

L

1

A

E

G

I

K.

0

Note: PL/I does not restrict the use of the REFER option within
structure declarations: therefore, exercise caution in its use.

If you change a value that causes the size of one or more structure
members to decrease, then some storage at the end of the allocated storage
will become inaccessible for future reference.

If the scalar variable (the refer object) does not satisfy the following
criteria, the results are undefined:

• It must not be assigned a value that is less than 0 or greater than the
refer element value used for structure allocation.

• It must have the value used for allocation, if the structure is freed.

The following rules apply to structures containing the REFER option:

• A structure containing the REFER option cannot be the target of a
LIKE reference.

• When a based structure is allocated, the order in which the refer
elements are selected for evaluation is undefined.

• When a based structure is allocated, the order in which the refer
objects are selected for initialization is undefined.

4.2.7 Structure-Qualified References
To refer to a structure in a program, you use the major structure name,
minor structure names, and individual member names. Member names
need not be unique even within the same structure. To refer to the name
of a member or minor structure, you must ensure only that the reference
uniquely identifies it. You can qualify the variable name by preceding
it with the name or names of higher-level (lower-numbered) variables in
the structure; names in this format, called a qualified reference, must be
separated by periods (.).

4–22

Aggregates

The following sample structure definition shows the rules for identifying
names of variables within structures:

DECLARE 1 STATE,
2 NAME CHARACTER (20),
2 POPULATION FIXED (10),
2 CAPITAL,

3 NAME CHARACTER (30),
3 POPULATION FIXED (10,0),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

The rules for selecting and specifying variable names for structures are as
follows:

• The name of the major structure is subject to the rules for the scope of
variables in a program.

• You can qualify the name of any minor structure or member in a
structure by the names of higher-level members in the structure.
The variable names must be specified from left to right in order of
increasing level numbers separated by periods. The members of the
previous sample, completely qualified, are as follows:

STATE.NAME
STATE.POPULATION
STATE.CAPITAL.NAME
STATE.CAPITAL.POPULATION
STATE.SYMBOLS.FLOWER
STATE.SYMBOLS.BIRD

• Names of minor structures or members within structures do not have
to be qualified if they are unique within the scope of the name. The
following names in the sample structure can be referred to without
qualification (so long as there are no other variables with these
names):

CAPITAL
SYMBOLS
FLOWER
BIRD

• You can omit intermediate qualification names if the reference remains
unambiguous. The following references to members in the sample
structure are valid:

STATE.FLOWER
STATE.BIRD

If a name is ambiguous, the compiler cannot resolve the reference and
issues a message. In the example, the names POPULATION and NAME
are ambiguous.

You can specify the name of a major or minor structure in an assignment
statement only if the source expression and the target variable are
identical in size and structure, and all corresponding members have
the same data types.

4–23

Aggregates

4.3 Arrays of Structures
An array of structures is an array whose elements are structures. Each
structure has identical logical levels, minor structure names, and member
names and attributes. For example, a structure STATE can be declared an
array:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31),
2 CAPITAL,

3 NAME CHARACTER (30) VARYING,
3 POPULATION FIXED (31),

2 SYMBOLS,
3 FLOWER CHARACTER (20),
3 BIRD CHARACTER (20);

A member of a structure that is an array inherits the dimensions of the
structure. For example, the member CAPITAL.NAME of the structure
STATE inherits the dimension 50. You must use a subscript whenever you
refer to the variable CAPITAL.NAME, as in the following example:

PUT LIST (CAPITAL.NAME(I)) ;

A subscript for a member of a structure that is an array element can
appear following any name within a qualified reference. For example, all
of these references are equivalent:

STATE(10).CAPITAL.NAME
STATE.CAPITAL(10).NAME
STATE.CAPITAL.NAME(10)

4.3.1 Arrays of Structures that Contain Arrays
A structure that is defined with a dimension can have members that are
arrays. For example:

DECLARE 1 STATE (50),
2 AVERAGE_TEMPS(12) FIXED DECIMAL (5,2),

.

.

.

In this example, the elements of the array STATE are structures. At the
second level of the hierarchy of each structure, AVERAGE_TEMPS is an
array of 12 elements. Because AVERAGE_TEMPS inherits the dimension
of STATE, any of AVERAGE_TEMPS’s elements must be referred to by
two subscripts:

• The first subscript references an element in STATE.

• The second subscript references an element in AVERAGE_TEMPS.

These subscripts can appear following any name in the qualified reference.
For example:

STATE(3).AVERAGE_TEMPS(4)
STATE.AVERAGE_TEMPS(3,4)

These references are equivalent.

4–24

Aggregates

Note the following rules for specifying subscripts for members of structures
containing arrays:

• The number of subscripts specified for any member must include any
dimensions inherited from a major or minor structure declaration, as
well as those specified for the member itself.

• The subscripts that refer to a member of a structure in an array do not
have to follow immediately the name to which they apply. However,
the order of subscripts must be preserved.

• The total number of dimensions, including the inherited dimensions,
must not exceed eight.

4.3.2 Connected and Unconnected Arrays
A connected array is one whose elements occupy consecutive locations in
storage. For example:

DECLARE NEWSPAPERS (10) CHARACTER (30);

In storage, the 10 elements of the array NEWSPAPERS occupy 10
consecutive 30-byte units. Thus, NEWSPAPERS is a connected array.

A connected array is valid as the target of an assignment statement,
as long as the source expression is a similarly dimensioned array or a
single scalar value. The top diagram in Figure 4–4 shows the storage of a
connected array.

In an unconnected array, the elements do not occupy consecutive storage
locations. The bottom diagram in Figure 4–4 shows the storage of an
unconnected array. An unconnected array is not valid in an assignment
statement or as the source or target of a record I/O statement. A structure
with the dimension attribute always results in unconnected arrays. When
a structure is dimensioned, each member of the structure inherits the
dimensions of the structure and becomes, in effect, an array. For example:

DECLARE 1 STATE (50),
2 NAME CHARACTER (20) VARYING,
2 POPULATION FIXED (31);

In this example, the members NAME and POPULATION of the major
structure STATE inherit the dimension 50 from the major structure.
When PL/I allocates storage for a structure or a dimensioned structure,
each member is allocated consecutive storage locations; thus, the elements
of the arrays NAME and POPULATION are not connected.

4–25

Aggregates

Figure 4–4 Connected and Unconnected Arrays

NU−2456A−RA

name(1)

name(2)

name(3)

pop(1)
pop(2)
pop(3)

...
name(50)

...
pop(50)

name(1)

name(2)

name(3)

pop(1)

pop(2)

pop(49)

pop(50)

name(50)

4.4 Internal Representation of Aggregate Data
Structures can be unaligned or naturally aligned. When a structure is
unaligned, each of its members (except for unaligned bit string members)
is aligned on a byte boundary. Unaligned bit-string members are bit
aligned. In an array of unaligned structures (which contain members
other than unaligned bit strings), each structure is aligned on a byte
boundary. In an array of unaligned structures that contain only unaligned
bit strings, the array elements are bit aligned.

When a structure is naturally aligned, each of its members is aligned as
described in Table 4–2. In an array of naturally aligned structures, each
structure is aligned on the boundary that is the maximum alignment of its
members.

The alignment you select is determined by the compile-time /NOALIGN or
/ALIGN switch. The /NOALIGN switch (the default) produces unaligned
structures. The /ALIGN switch produces aligned structures as described
in Table 4–2.

4–26

Aggregates

Table 4–2 Natural Alignment for Structure Members

Data Type Precision Alignment

FIXED BINARY(p) p <= 7 byte

FIXED BINARY(p) 7 < p <= 15 word

FIXED BINARY(p) p > 15 longword

FIXED DECIMAL(p,q) word

FLOAT BINARY(p) p <= 24 longword

FLOAT BINARY(p) 24 < p <= 53 quadword

FLOAT BINARY(p) p > 53 octaword

FLOAT DECIMAL(p) p <= 7 longword

FLOAT DECIMAL(p) 7 < p <= 15 quadword

FLOAT DECIMAL(p) p > 15 octaword

CHAR (UNALIGNED) byte

CHAR ALIGNED
BYTE

byte

CHAR VARYING word

BIT (UNALIGNED) bit

BIT ALIGNED longword

POINTER longword

LABEL quadword

ENTRY quadword

FILE longword

STRUCTURE maximum of members

PICTURE byte

OFFSET longword

<fnLOCALDATA READONLYCONSTDATA;v>

4–27

5 Storage Classes

The storage class to which a variable belongs determines whether PL/I
allocates its storage at compile time or dynamically at run time. This
chapter describes the following classes of variables:

• Automatic variables, which are allocated storage on activation of the
declaring procedure

• Static variables, which are allocated storage at program activation,
and which exist for the duration of the program execution

• Internal variables, which can be referenced only by the declaring
procedure and its dynamic descendants

• External variables, which can be known to blocks outside the block in
which they are declared

• Based variables, which are allocated storage dynamically under
program control at run time, and which are accessed by means of
a pointer

• Controlled variables, which are allocated dynamically under program
control at run time, and which are accessed sequentially, as on a stack

• Defined variables, which are not allocated storage, but instead share
with the variable upon which it is defined

Section 5.7 describes the mechanisms for dynamically allocating storage.
Section 5.9 describes how variables can share physical storage locations.

Note: Both Kednos PL/I for OpenVMS VAX and Kednos PL/I for
OpenVMS Alpha compilers place an upper limit of 536,870,911
(229 � 1) bytes as the maximum size of any data object. The
OpenVMS operating system may impose stricter limits depending
on the storage-class parameters of the operating system and
the parameters associated with your user name. For detailed
information on limits, consult the system manager of your
operating system.

5.1 Automatic Variables
The default storage-class attribute for PL/I variables is AUTOMATIC.
PL/I does not allocate storage for an automatic variable until the block
that declares it is activated. When the block is deactivated the storage is
released. For example:

CALC: BEGIN;
DECLARE TEMP FIXED BINARY (31);

.

.

.
END;

5–1

Storage Classes

Each time the block labeled CALC is activated, storage is allocated for
the variable TEMP. When the END statement is executed, the block is
deactivated, and all storage for TEMP and all other automatic variables is
released. The value of TEMP becomes undefined.

The storage requirements of an automatic variable are evaluated each time
the block is activated. Thus, you can specify the length of an automatic
character-string variable as follows:

DECLARE STRING_LENGTH FIXED;
.
.
.

COPY: BEGIN;
DECLARE TEXT CHARACTER(STRING_LENGTH);

When this begin block is activated, the length of TEXT is evaluated. The
variable is allocated storage depending on the value of STRING_LENGTH,
which must have a valid value.

5.2 Static Variables
A static variable is allocated storage when the program is activated,
and it exists for the duration of the program. A variable has the static
attribute if you declare it with any of the attributes STATIC, EXTERNAL,
GLOBALDEF, or GLOBALREF. In declaring static arrays and strings,
you must use restricted expressions. (Note that the EXTERNAL scope
attribute implies static storage for variables.)

If a block that declares a static variable is entered more than once during
the execution of the program, the value of the static variable remains
valid. For example:

UNIQUE_ID: PROCEDURE RETURNS (FIXED BINARY(31));
DECLARE ID STATIC INTERNAL FIXED INITIAL (0);

ID = ID + 1; /* Increment ID */
RETURN (ID);
END;

The function UNIQUE_ID declares the variable ID with the STATIC
attribute and specifies an initial value of 0 for it. The variable is initialized
to this value when the program is activated. The storage for the variable
is preserved, and the function returns a different integer value each time
it is referenced.

A variable with the STATIC attribute can also have external scope; that
is, its definition and value can be accessed by any other procedure that
declares it with the STATIC and EXTERNAL attributes.

5.3 Internal Variables
An internal variable is known only within the block in which it is defined
and within all contained blocks. By default, PL/I gives all variables
the INTERNAL attribute with the exception of data with the FILE and
CONDITION attributes.

5–2

Storage Classes

5.4 External Variables
An external variable provides a way for external procedures to share
common data. All declarations that refer to an external variable must also
declare it with the EXTERNAL attribute (or with an attribute that implies
EXTERNAL) and with identical data type attributes. You can abbreviate
the EXTERNAL keyword to EXT. The following example and Figure 5–1
shows how procedures can use external variables:

APPLIC: PROCEDURE OPTIONS (MAIN);
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL;

.

.

.
CALL READY;

READY: PROCEDURE;
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL;

Figure 5–1 External Variables

FLAGS

READY

APPLIC

NU−2457A−RA

...

Block activation
is created when
the main program
is executed

Storage for static
and static external
variables

A reference to
FLAGS in either
procedure is
resolved to the
same storage
location when
these procedures
are linked

Block activation is
created when READY
is involked

The OpenVMS Linker allows more control over the definition and
allocation of external variables than does PL/I. With the GLOBALDEF
attribute, you can define the allocation and initialization of an external
variable in a single module. Other PL/I modules can then declare the
variable with the GLOBALREF attribute and with no INITIAL attribute.

Further control is provided by the VALUE attribute, which can be used
in conjunction with GLOBALDEF and GLOBALREF. A variable declared
in this way is a constant whose value is used immediately in instructions
generated by the compiler.

The EXTERNAL attribute is implied by the FILE, GLOBALDEF,
GLOBALREF, and CONDITION attributes, and also by declarations of
entry constants (that is, declarations that contain the ENTRY attribute
but not the VARIABLE attribute). For variables, the EXTERNAL attribute
implies the STATIC attribute.

5–3

Storage Classes

The following rules apply to the use of external names:

• The EXTERNAL attribute directly conflicts with the AUTOMATIC,
BASED, DEFINED, and INTERNAL attributes.

• The EXTERNAL attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

• The EXTERNAL attribute is invalid for variables that are the
parameters of a procedure.

• If a variable is declared as EXTERNAL STATIC INITIAL, all blocks
that declare the variable must initialize the variable with the same
value.

• If you declare a file constant or file variable explicitly or implicitly
as EXTERNAL, you must use identical attributes, including
ENVIRONMENT attributes, in all blocks that declare the file.

5.5 Based Variables
A based variable is a variable that describes a data type associated with
storage that will be accessed through a pointer or offset value. PL/I does
not allocate any storage for a based variable. Instead, you must explicitly
allocate storage.

When you declare a based variable, you provide PL/I with a description
of the data that will be accessed by the variable. The actual data must
be referenced by a pointer that contains the address of the data storage
location. See Section 2.2.5 for information about the BASED attribute.
The following example shows a declaration of a based variable:

DECLARE BUFFER CHARACTER(80) BASED (BUF_PTR),
LINE CHARACTER(80),
BUF_PTR POINTER;

BUF_PTR = ADDR(LINE);

The declaration of the variable BUFFER does not allocate any storage for
it. Rather, PL/I associates the declaration of the variable with the pointer
variable BUF_PTR. During the execution of the program, the value of the
pointer variable is set to the location (address) in storage of the variable
LINE by means of the ADDR built-in function. This effectively associates
the description of BUFFER with the actual data value of LINE.

You can associate a based variable with a storage location by using
the ADDR built-in function, as in the preceding example; by using the
ALLOCATE statement; by using a locator-qualified reference to the based
variable; by using the SET option of the READ statement; or by explicit
allocation within an area.

The following sections cover these topics:

• Data types used with based variables: pointers, areas, and offsets

• Allocation in areas

5–4

Storage Classes

• Mechanisms for referring to based variables and for obtaining pointer
values to them

• Based variables and dynamic storage allocation

• The ADDR built-in function

• Data type matching for based variables

• Examples of based variables in use, including allocation in areas

5.5.1 Data Types Used with Based Variables
The data types most commonly associated with based variables are
pointers, areas, and offsets.

A pointer is a variable whose value represents the location in memory of
another variable or data item. Pointers are used to access based variables
and buffers allocated by the system as a result of the SET option of the
READ and ALLOCATE statements.

Areas are regions of storage in which based variables can be allocated and
freed. The use of areas can simplify and speed operations involving large
or numerous based variables.

An offset is a value indicating the location of a based variable relative to
the beginning of an area.

5.5.2 Allocation in Areas
PL/I supports storage management in areas (see Section 3.10 for a
description of area data). If you use the ALLOCATE statement with
an area (either implied or explicitly specified), you can cause the allocation
of storage to be performed in that area, instead of in the general memory
pool for based and controlled storage.

Storage management in areas has a number of uses, including the
following:

• To allow an area to be moved to different addresses without
invalidating its data.

• To allocate storage that can be freed all at once with low overhead, by
allocating variables in an area and then emptying the areas with the
EMPTY built-in function rather than freeing the generations one at a
time.

• To allocate storage that can be rolled back, by allocating variables in
an area and making periodic assignment of the area to a backup area.

If it is found that some operations need to be rolled back, the backup
area can then be copied back into the current area (or they can be
swapped). Note that when areas are assigned to each other, all offsets
into the old area are valid for the new area as well.

• To use areas to overlay shared memory sections, which can be mapped
into different address ranges in different processes.

5–5

Storage Classes

Note that PL/I will signal the AREA condition if allocation or freeing
operations are attempted on such an area from multiple processors
simultaneously. (This mechanism is intended only as a debugging
aid. If you are going to use shared areas, you need to provide the
synchronization for the shared data, typically by using the OpenVMS
lock manager or run-time library (RTL) routines such as LIB$BBSSI
and LIB$BBCCI that provide multiprocessor interlocking capability.)

You allocate storage in areas with the IN and SET options on the
ALLOCATE statement, the AREA and OFFSET data attributes, and
the EMPTY built-in function.

The IN option on the ALLOCATE statement takes a reference to an area.
If the IN option is not specified, the area is implied from the SET option
if the SET option specifies an offset variable with a base area. The SET
option itself can be implied from the base variable. Whether an area is
specified explicitly or implied, the allocation is performed in that area
instead of in the available memory pool for based and controlled storage.
If an error is detected in the process, the AREA condition is raised.

PL/I provides full support for allocation in areas as specified in the ANSI
full PL/I language standard. In addition, it provides extensions to full
PL/I, which enhance the usefulness of areas or provide for improved
compatibility with other implementations of PL/I. These extensions are as
follows:

• Area control information is stored in the form of offsets so that an area
can be moved to different addresses and still be correct (see Section 3.6
for a description of offset data). As a result, you can assign areas as
members of structures as long as their extents are identical. Note,
however, that if such an assignment is performed, the entire area
will be copied rather than just the extent. The position independence
of the area control information also allows an area to be written to
secondary storage and retrieved by another program at a different
address. You must ensure that any data allocated in the area is
position independent, by restricting locator values stored in the area to
offsets specifying that area as a base.

• You can assign areas of differing sizes to each other directly (that is,
not as members of structures). The AREA condition will be raised if
the target area is not large enough to hold the extent of the source
area.

• If you transmit an area by itself (as opposed to a member of an
aggregate) with a WRITE or REWRITE statement, only the current
extent of the area is transmitted (as in the case of varying-length
character strings). You can transmit the entire area by using the
SCALARVARYING ENVIRONMENT option.

• The base area in an ALLOCATE statement need not match the base
area of the offset. However, if they do match, then one area must
contain the other.

5–6

Storage Classes

• A normal return from an AREA condition due to a full area during
an allocation attempt will result in another allocation attempt. An
infinite loop will occur if the problem is not corrected, because the
area reference is not reevaluated before the retry is attempted after a
normal return. The ON-unit must correct the condition by deallocating
storage in the area, or by using the EMPTY built-in function.

• The control information for an area is stored inside the area. The
control information occupies at least 24 to 31 bytes for header
information, plus space for linking unused portions of the area. The
number of links needed to link unused portions of the area depends
on how fragmented the area is. As a result, there are slightly fewer
bytes available for the allocation of user variables in an area than the
number of bytes the area is declared with.

• Area variables are not initially empty. They must be explicitly
initialized. For example:

A = EMPTY();

The initialization can be in an INITIAL clause of the declaration; for
example:

DECLARE A AREA(100) STATIC INITIAL(EMPTY());

In both examples, the EMPTY built-in function returns an empty area
value.

Note that the last three items in this list are features that differ in some
other implementations of PL/I.

For examples showing allocation in areas, see Section 5.5.7.

5.5.3 Referring to Based Variables
A reference to a based variable (except in an ALLOCATE statement) must
specify a pointer or offset reference designating the storage to be accessed.
This qualifying pointer or offset reference can be implicit, if it is specified
with the BASED attribute, or explicit, if the based variable reference is
prefixed with a locator qualifier. A complete based variable reference (with
the locator qualifier) has the following form:

qualifying-reference -> based-reference

Whether explicit or implicit, the qualifying reference must be to a pointer
variable, a pointer-valued function, or an offset variable declared with a
base area. The qualifying reference is evaluated each time the complete
reference is evaluated and must yield a valid pointer value. If the
qualifying reference is to an offset variable, the offset value is converted to
a pointer using the base area specified in the offset variable’s declaration.

You can use both implicit and explicit qualifications with the same based
variable; the explicit qualifier overrides the implicit one. For example:

5–7

Storage Classes

DECLARE X FIXED BIN BASED(P),
P POINTER,
(A,B) FIXED BIN;

P = ADDR(A);
X = ADDR(B)->X;

In the second assignment statement, the reference to X on the left-hand
side of the assignment has the implicit qualifier P, which is the address
of the variable A. The reference to X on the right-hand side is explicitly
qualified with the address of another variable, B. This assigns the value of
B to the variable A.

In PL/I, you can obtain a valid pointer value in any of the following ways:

• Through the SET option of the ALLOCATE statement

• From a user-provided storage allocation routine

• Through the SET option of the READ statement

• From applying the ADDR built-in function to an addressable variable

• By converting an offset value to a pointer value

A pointer value is valid only as long as the storage to which it applies
remains allocated. Moreover, a pointer obtained by the application of
ADDR to a parameter or an automatic variable is valid only as long as the
parameter’s procedure invocation exists, even though the storage pointed
to may exist longer.

The NULL built-in function returns a null pointer value that can be
assigned to pointer and offset variables, but that is not valid for qualifying
a based variable reference.

5.5.4 Based Variables and Dynamic Storage Allocation
These subsections discuss the dynamic allocation of storage by the
ALLOCATE statement and the READ SET statement.

Using the ALLOCATE Statement

Each time it is executed, the ALLOCATE statement allocates storage
for a based variable and, optionally, sets a pointer or offset variable to
the location of the storage in memory. The storage allocated can also be
assigned values if the variable is declared with the INITIAL attribute. For
example:

DECLARE LIST (10) FIXED BINARY BASED, !
(LIST_PTR_A, LIST_PTR_B) POINTER;

ALLOCATE LIST SET (LIST_PTR_A); "

ALLOCATE LIST SET (LIST_PTR_B); #

LIST_PTR_A -> LIST(1) = 10; $
LIST_PTR_B -> LIST(1) = 15;

The numbered items in this example are shown in Figure 5–2.

5–8

Storage Classes

As you can see in this example, the array LIST is declared with the
BASED attribute; however, the declaration does not reserve storage for
this variable. Instead, the ALLOCATE statements allocate storage for
the variable and set the pointers LIST_PTR_A and LIST_PTR_B to the
storage locations. LIST_PTR_A and LIST_PTR_B must both be declared
with the POINTER attribute.

In references, the different allocations of LIST can then be distinguished
(unless the pointers are assigned new values) by locator qualifiers that
identify the specific allocation of LIST.

The phrase LIST_PTR_A-> is a locator qualifier; it specifies the pointer
that locates an allocation of storage for the variable. In this example, the
first element of the storage pointed to by LIST_PTR_A is assigned the
value 10. The first element of the storage pointed to by LIST_PTR_B is
assigned the value 15.

5–9

Storage Classes

Figure 5–2 Using the ALLOCATE Statement

LIST_PTR_A

LIST_PTR_B

LIST_PTR_A LIST_PTR_B

No storage is allocated

Automatic storage is allocated
for the pointer variables

 ALLOCATE statement
allocates storage for array

LIST in dynamic memory

This generation of storage is
pointed to by LIST_PTR_A

ALLOCATE statement obtains
another allocation of storage
for array LIST.

LIST_PTR_B points to
storage allocation

LIST Locater−qualified
references indicate specific
allocation to be modified

NU−2477A−RA

10

15

2

1

3

4

for the array LIST

5–10

Storage Classes

Any extent expressions in the based variable declaration are evaluated
each time the variable is allocated or referenced. Therefore, based
variables can be used for data aggregates whose size depends on input
data. Here is an example of dynamically allocating a matrix that will be
accessed by several external procedures:

DECLARE 1 MATRIX_CONTROL_BLOCK STATIC EXTERNAL,
2 MATRIX_POINTER POINTER,
2 (ROW_SIZE,COL_SIZE) FIXED BINARY;

DECLARE 1 MATRIX(ROW_SIZE,COL_SIZE)
BASED(MATRIX_POINTER);

GET LIST(ROW_SIZE,COL_SIZE);
ALLOCATE MATRIX;

The SET Option of the READ Statement

When you use the READ statement with a based variable, you do not
have to define storage areas within your program to buffer records for
I/O operations. If you specify the SET option on the READ statement,
the READ statement places an input record in a system buffer and sets a
pointer variable to the location of this buffer. For example:

DECLARE REC_PTR POINTER,
NEW_BALANCE FIXED DECIMAL (6,2),
INFILE FILE RECORD INPUT SEQUENTIAL;

DECLARE 1 RECORD_LAYOUT BASED (REC_PTR),
2 NAME CHARACTER (15),
2 AMOUNT PICTURE ’999V99’,
2 BALANCE FIXED DECIMAL (6,2);

.

.

.
READ FILE (INFILE) SET (REC_PTR) ;

.

.

.
REC_PTR->BALANCE = NEW_BALANCE;
REWRITE FILE (INFILE);

In this example, the structure defined to describe the records in a file
is declared with the BASED attribute; the declaration does not reserve
storage for this structure. When the READ statement is executed, the
record is read into a system buffer and the pointer REC_PTR is set to its
location.

When you use the SET option with the READ statement, a subsequent
REWRITE statement need not specify the record to be rewritten. PL/I
rewrites the record indicated by the pointer variable specified in the READ
statement.

Figure 5–3 shows this example.

5–11

Storage Classes

Figure 5–3 Using the READ Statement with a Based Variable

NU−2478A−RA

REC_PTR

REC_PTR

RECORD_LAYOUT

No storage is allocated for the structure

READ statement
locates internal
buffer into which
the record is read;
assigns this value to
REC_PTR

longword of storage is
allocated for pointer

5.5.5 Using the ADDR Built-in Function
The ADDR built-in function returns the storage location of a variable.
You can use it to associate the storage occupied by a variable with the
description of a based variable. For example:

DECLARE A FIXED BINARY BASED (X),
B FIXED BINARY,
X POINTER;

X = ADDR (B);
A = 15;

In this example, the variable A is declared as a based variable, with X
designated as its pointer. The variable B is an automatic variable; PL/I
allocates storage for B when the block is activated. When the ADDR built-
in function is referenced, it returns the location in storage of the variable
B, and the assignment statement gives this value to the pointer X. This
assignment associates the variable A with the storage occupied by B.
Because A is based on X and X points to B, an assignment statement that
gives a value to A actually modifies the storage occupied by the variable B.
Figure 5–4 shows this example.

5–12

Storage Classes

Figure 5–4 Using the ADDR Built-In Function

NU−2458A−RA

string

B

B

X

X

No storage is allocated for A.

B is allocated 1000
bytes of storage.

X is allocated a longword
of storage.

The value of X is B’s memory
location. A reference to A is
resolved as a reference to B.

5.5.6 Data-Type Matching for Based Variables
In most applications, the data type of a based variable reference is
identical to the data type under which the accessed storage is allocated.
However, it is not required that the data types be identical. The following
sections discuss type-matching criteria in more detail.

5.5.6.1 Matching by Overlay Defining
Matching by overlay defining is in effect if the based variable reference
and the variable for which the storage was originally allocated are both
suitable for character-string or bit-string overlay defining. The only
further restriction is that the size n (in characters or bits) of the based
variable reference must be less than or equal to the size in characters or
bits of the original variable. The based variable reference accesses the first
n characters or bits of the storage.

The first program in Section 5.5.7 contains an example of this type
of matching. The structure members PAY_RECORD.GROSS_PAY (a
character string) and HEALTH_RECORD.EXAM DATE (a picture) are not
identical data types. However, both are stored as a character string of
length 9; therefore, they meet the criteria for string overlay defining and
for data-type matching.

5.5.6.2 Matching by Left-to-Right Equivalence
Matching by left-to-right equivalence applies to structured variables that
are identical up to a certain point. To see if this applies, examine the
declaration of the based variable, and consider only the portion on the left
that includes the referenced member and all of the level-2 substructure
containing the referenced member (if the member is not itself at level 2).
If the original variable’s declaration has a similar left part with identical
data type, then the based variable reference and the original reference
match. For example:

5–13

Storage Classes

DECLARE 1 S1 BASED (P),
2 X,

3 (A,B) FIXED BIN,
2 Y,

3 C CHAR(10),
3 D(5) FLOAT;

DECLARE 1 S2 BASED(P),
2 X,

3 (A,B) FIXED BIN,
2 Y,

3 C CHAR(10),
3 E BIT(32);

ALLOCATE S1;

S2.A = 3; /* valid l-to-r match */
S2.C = ’X’; /* INVALID */

In the first assignment, S2.A is a valid reference because S1 and S2 match
through the level-2 structure X. In the second assignment, S2.C is invalid
in standard PL/I because the level-2 structures S2.Y and S1.Y do not
match. However, the reference to S2.C does work.)

This sort of matching is useful in connection with data structures and
files, where the first part of a record contains a value indicating the
precise structure of the remainder of the record.

Note that the UNION attribute allows this type of declaration to be
written more easily.

5.5.6.3 Nonmatching Based Variable References
In PL/I, a based variable reference need not match the variable for which
the storage was originally allocated. The only requirement is that the size
of the based variable in bits be less than or equal to the size of the original
variable in bits. However, use of such nonmatching references requires
knowledge of the internal representation of data. You should not expect
the resulting code to be transportable between OpenVMS systems or to
other vendors’ hardware. For example:

DECLARE X FLOAT BINARY(24);
DECLARE 1 S BASED(ADDR(X)),

2 FRAC_1 BIT(7),
2 EXP BIT(8),
2 SIGN BIT(1),
2 FRAC_2 BIT(16);

EXP = ’0’B; /* set exponent to 0 */
SIGN = ’1’B; /* set sign negative */
X = X + 1;

The declaration of S describes the internal VAX representation of a single-
precision floating-point number. The first two assignments set the sign
and exponent fields to the reserved operand combination; the assignment
to X causes a reserved operand exception.

5–14

Storage Classes

5.5.7 Examples of Based Variables
The program DEFINED uses based variables and the READ SET
statement to process a file of personnel data (PERSONNEL.DAT). The
file has two types of valid records, a pay record and a health record, which
are identified by a 1-character code in the first position. The two record
types are declared as based structures (PAY_RECORD and HEALTH_
RECORD), one of which is selected based on the record type character
(’ P’ for pay, ’ E’ for health). Any record that does not begin with one of
these characters is invalid and is written out as a reference to the based
character variable INVALID_RECORD.

DEFINED: PROCEDURE OPTIONS(MAIN);

DECLARE P POINTER; /* pointer to structures */

DECLARE 1 PAY_RECORD BASED(P),
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),

/* the two structures differ in this member: */
2 GROSS_PAY PICTURE ’999999V.99’;

DECLARE 1 HEALTH_RECORD BASED(P),
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),
2 EXAM_DATE CHARACTER(9);

DECLARE INVALID_RECORD CHARACTER(30) BASED(P);

DECLARE PERSONNEL RECORD FILE;
DECLARE PERSOUT STREAM OUTPUT PRINT FILE;

/* used to control DO group: */
%REPLACE NOTENDFILE BY ’1’B;
ON ENDFILE(PERSONNEL) BEGIN;

PUT FILE(PERSOUT) SKIP LIST
(’All processing complete.’);

STOP; /* program stops here */
END;

OPEN FILE(PERSONNEL) INPUT TITLE(’PERSONNEL.DAT’);

DO WHILE(NOTENDFILE);
/* terminated by ENDFILE ON-unit */

READ FILE(PERSONNEL) SET(P);
/* P is the location of the

record acquired by the READ statement */
IF P->PAY_RECORD.RECORD_TYPE = ’P’ THEN

PUT FILE(PERSOUT) SKIP LIST
(’Name=’,P->PAY_RECORD.NAME,
’Gross pay=’,P->GROSS_PAY);

ELSE /* either a health record or an invalid record */
DO;
IF P->HEALTH_RECORD.RECORD_TYPE = ’E’ THEN
PUT FILE(PERSOUT) SKIP LIST

(’Name=’,P->HEALTH_RECORD.NAME,
’Exam date:’,P->EXAM_DATE);

ELSE /* invalid record type */
PUT FILE(PERSOUT) SKIP LIST

(’Invalid record:’,P->INVALID_RECORD);
END;

END; /* repeat DO group until ENDFILE is signaled */

END DEFINED;

5–15

Storage Classes

For example, assume that the file PERSONNEL.DAT contains these
records:

PMary A. Ford 125000.55
EMary A. Ford 22July 80
t12345678901234567890pppppp.pp

The output file (PERSOUT.DAT) will contain the following output:

Name= Mary A. Ford Gross pay= 125000.55
Name= Mary A. Ford Exam date: 22July 80
Invalid record: t12345678901234567890pppppp.pp
All processing complete.

Notice these other features of the program:

• The references to based variables have a locator qualifier (P->) for
clarity. However, because all are declared with P as their pointer
reference, the locator qualifier can be omitted.

• References to the structure members RECORD_TYPE and NAME
must be fully qualified with the name of their containing structures
(PAY_RECORD and HEALTH_RECORD) because both structures have
members with these names. In contrast, GROSS_PAY and EXAM_
DATE are unique to their structures and need not be fully qualified.

The UNION attribute can be used to declare a single record with a variant
portion in place of PAY_RECORD and HEALTH_RECORD. For example:

1 RECORD BASED(P),
2 RECORD_TYPE CHARACTER(1),
2 NAME CHARACTER(20),
2 VARIANS UNION,

3 GROSS_PAY PICTURE ’999999V.99’,
3 EXAM_DATE CHARACTER(9)

Note that the UNION attribute is not available in many other PL/I
implemenations.

5.6 Controlled Variables
A controlled variable is a variable whose actual storage is allocated
and freed dynamically in generations, of which only the most recent is
accessible to the program. Controlled variables are declared with the
CONTROLLED attribute. A controlled variable can be a scalar, array,
area, or major structure variable possessing any of the attributes that
do not conflict with the CONTROLLED attribute. See Section 2.2.11 for
information about the CONTROLLED attribute.

The CONTROLLED attribute cannot be applied to minor structures,
members of structures, parameters, or descriptions in an ENTRY or
RETURNS attribute.

A controlled variable has no storage assigned to it until an ALLOCATE
statement allocates storage for it. Each storage assignment is a generation
of the variable. Subsequent ALLOCATE statements allocate subsequent
generations. At any time in the program’s execution, a reference to a
controlled variable is a reference to the most recent generation of that

5–16

Storage Classes

variable, that is, the generation created by the most recent ALLOCATE
statement.

The FREE statement frees the most recent generation of a controlled
variable. If an attempt is made to free a controlled variable for which no
generation exists (or to refer to such a variable), PL/I signals the ERROR
condition. The following example shows the use of controlled variables:

CONT: PROCEDURE OPTIONS (MAIN);

DECLARE STR CHARACTER (10) CONTROLLED;

ALLOCATE STR;
STR = ’First’;
ALLOCATE STR;
STR = ’Second’;
ALLOCATE STR;
STR = ’Third’;
PUT SKIP LIST (STR);
FREE STR;
PUT SKIP LIST (STR);
FREE STR;
PUT SKIP LIST (STR);
FREE STR;

END;

The output of this program is as follows:

Third
Second
First

5.6.1 Using the ALLOCATION Built-In Function
Because only the most recent generation of a controlled variable is
available to a program, controlled variables provide an easy way to
implement a stack. The ALLOCATE statement is equivalent to a push
operation, and the FREE statement is equivalent to a pop operation. The
ALLOCATION built-in function returns the number of generations of a
variable, so you can use it to find out if the stack is empty. For example:

DECLARE NEXT_MOVE CHARACTER(5) CONTROLLED,
DIRECTIONS(4) CHARACTER(5) INITIAL(
’North’,’East’,’South’,’West’),
D FIXED BINARY (7);

.

.

.
ALLOCATE NEXT_MOVE; /* Part of a loop that reports */
NEXT_MOVE = DIRECTIONS(D); /* moves in reverse order */

.

.

.
DO WHILE /* Print moves in correct order */

(ALLOCATION(NEXT_MOVE) ^= 0);
PUT SKIP LIST (’Go ’, NEXT_MOVE);
FREE NEXT_MOVE;

END;

See Section 11.4.7 for more information about the ALLOCATION built-in
function.

5–17

Storage Classes

5.6.2 Using the ADDR Built-In Function
You can use a controlled variable as the argument of the ADDR built-
in function. If a generation exists, ADDR returns a pointer to it. If no
generation of the variable exists, ADDR returns the null pointer. Thus,
you can use ADDR to preserve a pointer to a generation of a controlled
variable that later becomes hidden under further generations, as in the
following example:

DECLARE STOPS CHARACTER (20) VARYING CONTROLLED,
MIDPOINT CHARACTER (20) VARYING BASED (P),
P POINTER;

.

.

.
ALLOCATE STOPS;
STOPS = CURRENT_LOC;
IF I = 5 THEN P = ADDR(STOPS);

.

.

.
PUT SKIP LIST (

’End reached! Halfway point was’, MIDPOINT);

At a certain point during the execution of this program, the ADDR built-in
function captures the address of the current generation of STOPS and
assigns it to P. After more generations of STOPS have been allocated,
MIDPOINT (which is based on P) has the value of that same intermediate
generation of STOPS.

Note that the value of P (and therefore of MIDPOINT) is valid only so long
as the intermediate generation of STOPS to which P points is allocated.
As soon as that generation is freed, the value of P becomes invalid, and it
must not be used in a pointer-qualified reference until it is reassigned.

A controlled variable cannot be used in a pointer-qualified reference. In
the previous example, a reference like the following would be illegal:

P->STOPS

5.7 Dynamically Allocated Variables
This section describes the mechanisms for dynamically allocating storage.

5.7.1 ALLOCATE Statement
The ALLOCATE statement obtains storage for a based or controlled
variable and sets (with based variables) a locator variable equal to the
address of the allocated storage. The format of the ALLOCATE statement
is as follows:n

ALLOCATE
ALLOC

o
allocate-item, . . . ;

5–18

Storage Classes

allocate-item
The syntax of the allocate item is:

variable-reference [SET(locator-reference)] [IN(area-reference)]

variable-reference
A based or controlled variable for which storage is to be allocated. The
variable can be any scalar value, array, area, or major structure variable;
it must be declared with the BASED or CONTROLLED attribute.

SET(locator-reference)
The specification of a pointer or offset variable (for based variables)
that is assigned the value of the location of the allocated storage. If
the SET option is omitted, the based variable must be declared with
BASED(locator-reference); the variable designated by that locator
reference is assigned the location of the allocated storage.

You cannot use the SET option to allocate controlled variables.

IN(area-reference)
The specification of an area reference (for based variables) in which the
storage is to be allocated. If the IN option is omitted, the SET option (or
implied SET option if the locator variable is an offset) must be an offset
declared with OFFSET(area-reference).

You cannot use the IN option to allocate controlled variables.

Examples

DECLARE STATE CHARACTER(100) BASED (STATE_POINTER),
STATE_POINTER POINTER;

ALLOCATE STATE;

This ALLOCATE statement allocates storage for the variable STATE and
sets the pointer STATE_POINTER to the location of the allocated storage.

The ALLOCATE statement obtains the amount of storage needed to
accommodate the current extent of the specified variable. If, for example,
a character-string variable is declared with an expression for its length,
the ALLOCATE statement evaluates the current value of the expression to
determine the amount of storage to be allocated. For example:

DECLARE BUFFER CHARACTER (BUFLEN) BASED,
BUF_PTR POINTER;

.

.

.
BUFLEN = 80;
ALLOCATE BUFFER SET (BUF_PTR);

Here, the value of BUFLEN is evaluated when the ALLOCATE statement
is executed. The ALLOCATE statement allocates 80 bytes of storage
for the variable BUFFER and sets the pointer variable BUF_PTR to its
location.

The ALLOCATE statement is also used to allocate storage for controlled
variables. A controlled variable is one whose actual storage is allocated
and freed dynamically in generations, only the most recent of which is

5–19

Storage Classes

accessible to the program. Unlike based variables, a controlled variable
cannot be used in a pointer-qualified reference.

If the variable being allocated has been declared with initial values, these
values are assigned to the variable after allocation.

5.7.2 FREE Statement
The FREE statement releases the storage that was allocated for a based
or controlled variable. The format of the FREE statement is as follows:

FREE free-item[,free-item . . .];

free-item
The syntax of the free-item is:

variable-reference [IN(area-reference)]

variable-reference
A reference to the based or controlled variable whose storage is to be
released.

If you do not explicitly free the storage acquired by the variable, the
storage is not freed until the program terminates.

If you free a variable that is explicitly associated with a pointer, the
pointer variable becomes invalid and must not be used to reference
storage. You can only free a variable once for each allocation.

IN(area-reference)
The specification of an area reference (for based variables) in which the
storage is to be freed. If the IN option is omitted, the variable reference
must be either implicitly or explicitly based on an offset variable with a
base area.

You cannot use the IN option in conjunction with controlled variables.

Examples

FREE LIST;
FREE P->INREC;

These statements release the storage acquired for the based variable LIST
and for the allocation of INREC pointed to by the pointer P.

ALLOCATE STATE SET (STATE_PTR);
.
.
.

FREE STATE;

This FREE statement releases the storage for the based variable STATE
and makes the value of STATE_PTR undefined.

5–20

Storage Classes

5.7.3 Other Mechanisms for Dynamic Storage Allocation
PL/I has a variety of dynamic storage management mechanisms available
besides those for based and controlled variables. You can also use the
following mechanisms:

• Explicitly specified calls to LIB$GET_VM and LIB$FREE_VM

• Explicitly specified calls to LIB$GET_VM and LIB$FREE_VM using
zones

• Explicitly specified calls to OpenVMS system memory management
services

These storage control mechanisms are generally similar in the amount of
overhead that they require both in execution time and in storage space,
although certain mechanisms have characteristics that make them useful
in specific circumstances.

In general, the standard PL/I language manipulation of dynamic memory
provides reasonable performance with some built-in checking.

5.8 Defined Variables
The DEFINED attribute indicates that PL/I is not to allocate storage
for the variable, but is to map the description of the variable onto the
storage of another variable called the base variable. The DEFINED
attribute provides a way to access the same data using different names
(see Section 2.2.13 for a description of the DEFINED attribute).

In a declaration of a defined variable, the DEFINED keyword, which you
can abbreviate to DEF, is followed by a variable reference (which must not
have the BASED or DEFINED attribute), and optionally by the position
in the variable at which the defined variable begins. If you specify the
position, you use the POSITION attribute followed by an expression in
parentheses. The expression is an integer expression that specifies a
position in the base; a value of 1 indicates the first character or bit. You
can use the POSITION attribute only when the defined variable satisfies
the rules for string overlay defining, which is described later in this
section.

When you use the DEFINED attribute in the declaration of a variable,
PL/I associates the description of the variable in the declaration with the
storage allocated for the variable on which the declaration is defined. For
example:

DECLARE NAMES(10) CHARACTER(5) DEFINED (LIST),
LIST(10) CHARACTER(5);

In this example, the variable NAMES is a defined variable; its data
description is mapped to the storage occupied by the variable LIST. Any
reference to NAMES or to LIST is resolved to the same location in memory.

With defined variables that meet the criteria for string overlay defining,
you can use the POSITION attribute to specify the position in the base
variable at which the definition begins. For example:

5–21

Storage Classes

DECLARE ZIP CHARACTER(20),
ZONE CHARACTER(10) DEFINED(ZIP) POSITION(4);

This statement declares the variable ZONE and maps it to characters 4
through 13 of the variable ZIP.

The extent of a defined variable is determined at the time of block
activation, but the base reference (and the position, if the POSITION
attribute is also specified) is interpreted each time the defined variable is
referenced. For example:

DECLARE I FIXED,
A(10) FIXED,
B FIXED DEFINED(A(I));

DO I = 1 TO 10;
B = I;
END;

The DO group assigns I to A(I) for I = 1,2, . . . 10.

The base reference of a defined variable cannot be a reference to a based
variable or to another defined variable. A defined variable and its base
reference must satisfy one of the following criteria:

• They must both be suitable for character-string overlay defining.

• They must both be suitable for bit-string overlay defining.

5.8.1 String Overlay Defining
If the defined variable is specified with the POSITION attribute, then both
the defined variable and the base reference must be suitable for bit- or
character-string overlay defining.

In brief, a variable is suitable for overlay defining if it consists entirely of
characters or bits, and those characters or bits are packed into adjacent
storage without gaps. Such a variable can be treated as a string or
interpreted as different types of aggregates. For example:

DECLARE A (10) CHARACTER (5);
DECLARE B (5) CHARACTER (10) DEFINED (A);

A (1) = ’AAAAA’;
A (2) = ’BBBBB’;
PUT LIST (B(1));

Figure 5–5 shows a 50-byte region of storage treated either as a 10-
element array (A) of 5-character strings or as a 5-element array (B) of
10-character strings.

5–22

Storage Classes

Figure 5–5 An Overlay Defined Variable

NU−2459A−RA

A A A A A

B B B B B

B(5)

A(1)
B(1)

A(10)

The declaration of A reserves
storage for a 10−element array
of 5−byte character strings.

The declaration of B defines
B’s storage as equivalent to
A’s. Any reference to B will
access the same storage as
that allocated for A.

If the defined variable and its base reference have identical data types, a
reference to the defined variable is equivalent to the base reference. In the
case of overlay defining, the defined variable maps onto part of the base
reference’s storage as follows:

1 If the POSITION attribute was specified, let position be its value at
the moment of reference; otherwise, let position equal 1.

2 Let m be the total number of characters (or bits) specified by the data
type of the defined variable. (Note that for pictured data, m is the
total number of characters in the picture specification, exclusive of the
V character.)

3 A reference to the defined variable accesses m characters (or
bits) of the base reference, beginning with the character or bit
specified by position. The reference must lie entirely within the base
reference; that is, position and m must satisify the following formula:
1 <= position <= position+m <= n+ 1

n is the total number of characters or bits in the base reference.

5.8.2 Rules for Overlay Defining
A variable V is suitable for character-string overlay defining if V is not an
unconnected array and if one of the following criteria is satisfied:

• V has the CHARACTER attribute, but not ALIGNED or VARYING.

• V has the PICTURE attribute.

• V is a structure, and each of V’s members and submembers that is not
a structure satisfies one of the first two criteria.

5–23

Storage Classes

A variable V is suitable for bit-string overlay defining if V is not an
unconnected array and if one of the following criteria is satisfied:

• V has the BIT attribute but not ALIGNED.

• V is a structure, and each of V’s members or submembers that is not a
structure satisfies the first criterion.

5.9 Storage Sharing
Variables that have any of the attributes BASED, DEFINED, UNION, or
PARAMETER can share physical storage locations with one or more other
variables.

A based variable is not allocated any storage when it is declared. Instead,
storage is either located by a locator-qualified reference to the variable or
allocated by the ALLOCATE statement. The BASED attribute then allows
you to describe the characteristics of a variable, which can then be located
by a reference that qualifies the variable’s name with any valid pointer
value. Based variables are useful when the program must control the
allocation of storage for several variables with identical attributes. The
creation and processing of a queued or linked list is a common case. For
full details on based variables and valid pointer values, see Section 5.5.

A defined variable uses the storage of a previously declared variable,
which is referenced in the DEFINED attribute. The referenced variable is
known as the base of the defined variable. The base can be a character- or
bit-string variable, suitable for a technique called string overlay defining.
When the base is a string variable, the POSITION attribute can also
be specified for the defined variable, giving the position within the base
variable’s storage at which the overlay defining begins. Defined variables
are useful when the program must refer to the same storage by different
names. For full details, see Section 5.8

Unions provide capabilities similar to those of defined variables, but the
rules governing unions are less restrictive. A union is a variation of a
structure in which all immediate members occupy the same storage.

The UNION attribute, which is used only in conjunction with a level
number in a structure declaration, signifies that all immediate members
of the major or minor designated structure occupy the same storage.
Immediate members are those members having a level number one higher
than the major or minor structure with the union attribute. For more
details, see Section 4.2.2

Parameters of a procedure share storage with their associated arguments.
The associated argument is either a variable written in the argument
list or a dummy variable allocated by the compiler. When the written
argument is a variable, the sharing of storage by the parameter and
argument allows a procedure to return values to the invoking procedure by
changing the value of the parameter. For instance, a function can return
values in this manner in addition to returning the value specified in its
RETURN statement. For more information, see Section 7.5.

5–24

6 Expressions and Data Type Conversions

An expression is a representation of a value or of the computation of a
value, and an assignment gives the value contained in an expression to a
variable. Together, expressions and assignments form the mechanism for
performing computation.

This chapter describes the following topics:

• The assignment statement

• Operators and operands, the elements of an expression

• The manner in which expression evaluation takes place

• Conversion of operands and expressions

• Conversion of the data types of operands during expression evaluation
and assignment

6.1 Assignment Statement
The assignment statement gives a value to a specified variable. The
format of the assignment statement is:

target, . . . = expression;

target
A reference to a variable to be assigned the expression’s value. If there are
two or more targets, they are separated by commas. A target can be:

• A reference to a scalar variable or scalar array element

• A reference to a pseudovariable (for example, SUBSTR)

• A reference to a major or minor structure name or any member of a
structure

• A reference to an array variable

expression
Any valid expression.

PL/I evaluates the targets and the expression in any order. Thus, a
program should not depend on the evaluation of the targets before the
expression.

PL/I performs the following steps for assignment. Note that the only
certain things about the order of steps performed are that step 1 precedes
step 3 and that step 4 is performed last.

1 The expression is evaluated, producing a value to be assigned to
the target. An expression can consist of many subexpressions and
operations, each of which must be evaluated.

6–1

Expressions and Data Type Conversions

2 Each target is evaluated. If a target contains a pseudovariable, any
expressions in the argument list are evaluated.

3 If the data type of the result does not match the data type of a target
variable, the resulting value is converted to the data type of the target,
if possible. The compiler issues a WARNING message to alert you to
the implicit conversion.

4 The value of the expression is assigned to the targets.

Some general rules regarding the types of data you can specify in
assignment statements are listed in Table 6–1. For the complete rules
for data conversion in assignments, see Section 6.4.

Table 6–1 Data Types for Assignment Statement

Data Type Rules

Area Only the current extent of an area is moved from the source area to
a target. If the target area is not large enough to hold the extent, the
AREA condition is raised. Note that the assignment is performed in
such a way that all offsets in the source area are valid in the target
area after the assignment. Areas cannot be assigned as members of
structures.

Arithmetic PL/I converts an arithmetic expression to the type of its target if their
types are different. If the target is a character- or bit-string variable,
PL/I converts the arithmetic expression to its character- or bit-string
equivalent.

A character-string expression can be converted to the data type of
an arithmetic target only if the string consists solely of characters
that have numeric equivalents.

Arrays You can specify an array variable as the target of an assignment
statement in only the following ways:

• array-variable = expression;

where expression yields a scalar value. Every element of the
array is assigned the resulting value.

• array-variable-1 = array-variable-2;

where the specified array variables have identical data type
attributes and dimensions. Each element in array-variable-1
is assigned the value of the corresponding element in array-
variable-2.

The storage occupied by the two arrays must not overlap.

Any array variable specified in an assignment statement must occupy
connected storage. All other specifications of an array variable as a
target of an assignment statement are invalid.

Bit When a target of an assignment is a bit-string variable, the resulting
expression is truncated or padded with trailing zeros to match the
length of the target.

6–2

Expressions and Data Type Conversions

Table 6–1 (Cont.) Data Types for Assignment Statement

Data Type Rules

Character When a target of an assignment is a fixed-length character string,
the resulting expression is truncated on the right or padded with
trailing spaces to match the length of the target. If a target is a
varying-length character string, the resulting expression is truncated
on the right if it exceeds the maximum length of the target.

When one character-string variable is assigned to another, the
storage occupied by the two variables cannot overlap.

Entry If the specified expression is an entry constant, an entry variable, or
a function reference that returns an entry value, the target variable
must be an entry variable.

Label If the specified expression is a label constant, a label variable, or a
function reference that returns a label value, the target variable must
be a label variable.

Pointer and
Offset

If the specified expression is a pointer or offset, or a function
reference that returns a pointer or offset, the target variable must be
a pointer or offset variable.

Structures You can specify the name of a major or minor structure as a target of
an assignment statement only if the source expression is an identical
structure with members in the same hierarchy and with identical
sizes and data type attributes. The storage occupied by the two
structures must not overlap.

Any structure variable specified in an assignment statement must
occupy connected storage.

The following are examples of assignment statements:

A = 1;
A = B + A;
SUM = A + 3;
STRING = ’word’;

6.2 Operators and Operands
An operator is a symbol that requests a unique operation. Operands are
the expressions on which operations are performed. Built-in functions
can also be considered operators, as well as their arguments considered
operands.

Operators

A prefix operator precedes a single operand. The prefix operators are the
unary plus (+), the unary minus (-), and the logical NOT (^).

• The plus sign can prefix an arithmetic value or variable. However, it
does not change the sign of the operand.

• A minus sign reverses the sign of an arithmetic operand.

• The logical NOT (^) prefix operator performs a logical NOT operation
on a bit-string operand; the bit value is complemented.

6–3

Expressions and Data Type Conversions

The following are examples of expressions containing prefix operators:

A = +55;
B = -88;
BITC = ^BITB;

An infix operator appears between two operands, and indicates the
operation to be performed on them. PL/I has infix operators for
arithmetic, logical, and relational (comparison) operations, and for string
concatenations. Following are some examples of expressions containing
infix operators:

RESULT = A / B;
IF NAME = FIRST_NAME || LAST_NAME THEN GOTO NAMEOK;

An expression can contain both prefix and infix operators. For example:

A = -55 * +88;

You can apply prefix and infix operators to expressions by using
parentheses for grouping.

For a table giving the categories of operators and the operator symbols,
see Chapter 1.

Operands

Because all operators must yield scalar values, operands cannot be arrays
or structures. The data type that you can use for an operand in a specific
operation depends on the operator:

• Arithmetic operators must have arithmetic operands; if the operands
are of different arithmetic types, they are converted before the
operation to a single type, called the derived data type. Section 6.4.2
describes this process.

• Logical operators must have bit-string operands.

• Relational operators must have two operands of the same type. (Note,
however, that comparisons are allowed between offsets and pointers.)

• The operators greater than (>), less than (<), not greater than (^>),
not less than (^<), greater than or equal to (>=), and less than or
equal to (<=) are valid only with computational operands.

• The concatenation operator must have two bit-string operands or two
character-string operands.

6.2.1 Arithmetic Operators
The arithmetic operators perform calculations. Programs that accept
numeric input and produce numeric output use arithmetic operators to
construct expressions that perform the required calculations. The infix
arithmetic operators are:

6–4

Expressions and Data Type Conversions

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

In addition, there are two prefix operators: unary plus (+) and unary
minus (-). The unary plus is valid on any arithmetic operand, but it
performs no actual operation. The unary minus reverses the sign of any
arithmetic operand.

For any arithmetic operator, operands must be arithmetic; that is, they
must be constants, variables, or other expressions with the data type
attribute BINARY, DECIMAL, or PICTURE. Operands of different
arithmetic types are converted to a common type before the operation
is performed.

Arithmetic operators have a predefined precedence that governs the
order in which operations are performed. All expressions can be enclosed
in parentheses to override the rules of precedence. Table 6–2 lists the
precedence of operators.

6.2.2 Logical Operators
The logical operators perform logical operations on one or two operands.
The operands of the logical operators must be bit-string expressions, except
that the operand of the NOT operator can be a bit-string expression or a
single relational operator. All relational expressions result in bit-string
values of length 1, and they can therefore be used as operands in logical
operations.

Except when the NOT operator is used as the prefix of a relational
operator, the result of a logical operation is always a bit string.

Except for AND THEN and OR ELSE, logical operations are performed on
their operands bit by bit. If bit-string operands are not the same length,
PL/I extends the smaller of the operands on the right (that is, in the
direction of the least significance) with zeros to match the length of the
larger operand. This length is always the length of the result.

There are five infix operators and one prefix operator:

Prefix Operator Operation

^ (circumflex) Logical NOT. In a logical NOT operation, the value of the
operand is complemented; that is, a 1 bit becomes a 0 and
a 0 bit becomes a 1. The value of a relational expression is
also complemented; that is ^(A < B) is equivalent to (A >=
B).

6–5

Expressions and Data Type Conversions

Infix Operator Operation

& (ampersand) Logical AND. In a logical AND operation, two operands
are compared. If corresponding bits are 1, the result is 1;
otherwise, the result is 0.

| (vertical bar) or !
(exclamation point)

Logical OR. In a logical OR operation, two operands are
compared. If either or both of two corresponding bits are 1,
the result is 1; otherwise the result is 0. (The | and the !
characters can be used interchangeably.)

&: (ampersand and
colon)

Logical AND THEN. The operation is like AND except that
the second operand is evaluated only if the first operand
is true, and except that AND THEN does not do bit-by-bit
operations on bit-string operands.

^ (circumflex) Logical EXCLUSIVE OR. Two operands are compared, and
the result is 1 if one of the corresponding bits is 1 and the
other is 0.

| : (vertical bar and
colon)

Logical OR ELSE. The operation is like OR except that
the second operand is evaluated only if the first operand
is false, and except that OR ELSE does not do a bit-by-bit
operation on bit-string operands.

You can define additional operations on bit strings with the BOOL built-in
function.

Logical expressions will not be completely evaluated in some cases. If the
result of the total expression can be determined from the value of one or
more individual operands, the evaluation can be terminated. For example:

A & B & C & D & E

In this expression, evaluation will stop when any operand or the result of
any operation is a bit string containing all zeros.

Examples

DECLARE (BITA,BITB,BITC) BIT(4);
BITA = ’0001’B;
BITB = ’1001’B;
BITC = ^BITA; /* BITC equals ’1110’B */
BITC = BITA | BITB; /* BITC equals ’1001’B */
BITC = BITA & BITB; /* BITC equals ’0001’B */
BITC = ^(BITA & BITB); /* BITC equals ’1110’B */
BITC = ^(BITA > BITB); /* BITC equals ’1000’B (true) */

In the last assignment statement, the logical NOT expression yields <BIT_
STRING>(1)B; when this value is assigned to BITC, a BIT(4) variable, the
value is padded with zeros and becomes <BIT_STRING>(1000)B.

6.2.2.1 NOT
The logical NOT operator in PL/I is the circumflex character (^), used as a
prefix operator. In a logical NOT operation, the value of a bit is reversed.
If a bit is 1, the result is 0; if a bit is 0, the result is 1.

The NOT operator can be used on expressions that yield bit-string values
(bit-string, relational, and logical expressions). It can also be used to
negate the meanings of the relational operators (<,>, =). For example:

6–6

Expressions and Data Type Conversions

IF A ^> B THEN . . .
/* equivalent to IF A <= B THEN . . . */

The result of a logical NOT operation on a bit-string expression is a
bit-string value. For example:

DECLARE (BITA, BITB) BIT (4);
BITA = ’0011’B;
BITB = ^BITA;

The resulting value of BITB is 1100.

The NOT operator can test the falsity of an expression in an IF statement.
For example:

IF ^(MORE_DATA) THEN . . .

6.2.2.2 AND
The ampersand (&) character is the logical AND operator in PL/I. In a
logical AND operation, two bit-string operands are compared bit by bit.
If two corresponding bits are 1, the corresponding bit in the result is 1;
otherwise, the resulting bit is 0.

The result of a logical AND operation is a bit-string value. All relational
expressions result in bit strings of length 1; they can therefore be used as
operands in an AND operation. If the two operands have different lengths,
the shorter operand is converted to the length of the longer operand, and
the greater length is the length of the result.

Examples

DECLARE (BITA, BITB, BITC) BIT (4);
BITA = ’0011’B;
BITB = ’1111’B;
BITC = BITA & BITB;

The resulting value of BITC is <BIT_STRING>(0011)B.

The AND operator can test whether two or more expressions are both true
in an IF statement. For example:

IF (LINENO(PRINT_FILE) < 60) &
(MORE_DATA = YES) THEN . . .

6.2.2.3 OR
The vertical bar character (|) represents the logical OR operation in
PL/I. In a logical OR operation, two bit-string operands are compared bit
by bit. If the two operands are of different lengths, the shorter operand
is converted to the length of the longer operand, and this is the length of
the result. If either of two corresponding bits is 1, the resulting bit is 1;
otherwise, the resulting bit is 0.

All relational expressions result in bit strings of length 1, and they can
therefore be used as operands in an OR operation.

The result of the OR operation is a bit-string value. For example:

DECLARE (BITA, BITB, BITC) BIT (4);
BITA = ’0011’B;
BITB = ’1111’B;
BITC = BITA | BITB ;

6–7

Expressions and Data Type Conversions

The resulting value of BITC is <BIT_STRING>(1111)B.

The OR operator can test whether one of the expressions in an IF
statement is true. For example:

IF (LINENO(PRINT_FILE) < 60) |
(MORE_DATA = YES) THEN . . .

You can use the exclamation point (!) in place of the vertical bar, for
compatibility with other PL/I implementations.

6.2.2.4 EXCLUSIVE OR
The EXCLUSIVE OR operator (infix or dyadic ^) causes a bit-by-bit
comparison of two bit-string operands. If the two operands are not of
equal length, the shorter is padded with 0s until it is the same length as
the other, and this length is also the length of the result. If either of two
corresponding bits is 1 and the other is 0, the result is 1. If both are 1, or
if both are 0, the result is 0.

All relational expressions result in bit strings of length 1, and they can
therefore be used as operands in an EXCLUSIVE OR operation.

The result of the EXCLUSIVE OR operation is a bit-string value. For
example:

DECLARE (BITA, BITB, BITC) BIT (4);
BITA = ’0011’B;
BITB = ’1011’B;
BITC = BITA ^ BITB;

The resulting value of BITC is ’ 1000’ B.

The EXCLUSIVE OR operator can be used to test whether one and only
one of the expressions in an IF statement is true. For example:

IF (A > 0) ^ (B > 0) THEN . . .

6.2.2.5 AND THEN
The ampersand-colon token (&:) is the AND THEN operator in PL/I. The
AND THEN operator causes the first operand to be evaluated; if it is false,
the result returned is ’ 0’ B. The second operand will never be evaluated
if the first operand is false. If and only if the first operand is true, the
second operand is evaluated. If both are true, the result returned is true
(’ 1’ B); otherwise, the result is false (’ 0’ B).

The AND THEN operator performs a Boolean truth evaluation, not a bit-
by-bit operation, even when the two operands are bit strings. For example,
’ 00001’ B &: ’ 10000’ B yields ’ 1’ B (not ’ 00000’ B, which would be the
result of an AND operation on these two bit strings). The reason is that
each operand is a non-zero bit value, and therefore each evalutes to ’ 1’ B.

The AND THEN operator yields the same result as the AND operator (&)
when expressions are tested in an IF statement (as in the last example in
the ‘‘AND Operator’’ entry). The difference is that the AND operator can
have its operands evaluated in either order.

6–8

Expressions and Data Type Conversions

The AND THEN operator is useful in compound test expressions in which
the second test should occur only if the first test was successful. For
example:

IF (P ^= NULL()) &: (P->X ^= 4) THEN . . .

This statement causes P->X to be evaluated only if P is not a null pointer.
If the AND operator were used instead of AND THEN, this expression
could cause an access violation (invalid pointer reference).

6.2.2.6 OR ELSE
The vertical bar and colon characters (| :) together are the OR ELSE
operator in PL/I. The OR ELSE operator causes the first operand to be
evaluated. If it is true, the result returned is ’ 1’ B. If and only if the
first operand is false, the second operand is evaluated. If either or both
operands are true, the result returned is ’ 1’ B; otherwise, the result is
’ 0’ B.

The OR ELSE operator performs a Boolean truth evaluation, not a bit-by-
bit operation, even when the two operands are bit strings. For example:

’00001’B |: ’10000’B

This yields:

’1’B

It does not yield ’ 10001’ B, which would be the result of an OR operation
on these two bit strings. The reason is that each operand is a nonzero bit
value, and therefore each evalutes to ’ 1’ B.

The OR ELSE operator yields the same result as the OR operator (|)
when expressions are tested in an IF statement (as in the last example in
the ‘‘OR Operator’’ entry). The difference is that the OR operator can have
its operands evaluated in any order.

The OR ELSE operator is useful in compound test expressions in which
the second test should occur only if the first test failed. For example:

IF (A=0) |: (B/A > 1) THEN . . .

This results in the second expression (B/A > 1) being evaluated only if the
first expression is false. Thus, the OR ELSE operator prevents an attempt
to divide by zero.

6.2.3 Relational Operators
The relational, or comparison, operators test the relationship of two
operands; the result is always a Boolean value (that is, a bit string
of length 1). If the comparison is true, the resulting value is <BIT_
STRING>(1)B; if the comparison is false, the resulting value is <BIT_
STRING>(0)B. The relational operators are all infix operators. The following
table describes all the relational operators:

6–9

Expressions and Data Type Conversions

Operator Operation

< Less than

^< Not less than

<= Less than or equal to

= Equal to

^= Not equal to

>= Greater than or equal to

> Greater than

^> Not greater than

Note that PL/I recognizes the tilde symbol (~) as synonymous with the
circumflex (^).

Relational operators compare any of the following data types: arithmetic
(decimal or binary); bit-string; character-string; and entry, pointer, label, or
file data. Specific results of operations on each type of data are elaborated
below. The following general rules apply:

• All operands must be scalar.

• Both operands must be arithmetic, or they must have the same data
type.

6.2.3.1 Arithmetic Comparisons
Arithmetic and picture operands are compared algebraically. If the
operands have a different base, scale, or precision, PL/I converts them
according to the rules for arithmetic operand conversion.

6.2.3.2 Bit-String Comparisons
When two bit strings are compared, they are compared bit by bit from
the most significant bit to the least significant bit (as represented by PUT
LIST). If the operands have different lengths, PL/I extends the smaller
operand with zeros in the direction of the least significance. Null bit
strings are equal.

6.2.3.3 Character-String Comparisons
When two character strings are compared, they are compared character by
character in a left-to-right order. The comparison is based on the ASCII
collating sequence. The ASCII characters are the first 128 characters of
the DEC Multinational Character Set, which is in Appendix B.

Note the following characteristics of the collating sequence:

• Uppercase letters are less than any lowercase letters.

• Numeric characters are less than any letters.

If the operands do not have the same length, PL/I extends the smaller
operand on the right with blanks for the comparison. Either or both of the
strings can have the attribute VARYING; PL/I uses the current length of
a varying character string when it makes the comparison. Null character
strings are equal.

6–10

Expressions and Data Type Conversions

6.2.3.4 Comparing Noncomputational Data
Only the following operators are valid, or meaningful, for comparisons of
any of the noncomputational data types except areas (condition, entry, file,
label, offset, and pointer):

Operator Operation

= Equal

^= Not equal

The results of the comparisons provide the information indicated below for
each data type.

Condition Data
Two condition values are equal if they identify the same condition values.

Entry Data
Two entry values are equal if they identify the same entry point in the
same block activation of a procedure.

File Data
Two values defined with the FILE attribute are equal if they identify the
same file constant.

Label Data
Two label values are equal if they identify the same statement in the same
block activation.

A label that identifies a null statement is not equal to the label of any
other statement.

Offset Data
Two offset values are equal if they identify the same storage location or if
they are both null.

Pointer Data
Two pointer values are equal if they identify the same storage location or
if they are both null.

6.2.4 Concatenation Operator
The concatenation operator produces a single string from two strings
specified as operands. The concatenation operator is two vertical bars
(| |).

The operands must both be character strings or both be bit strings. (If not,
the appropriate conversion is performed, and you get a warning message
about the conversion. The result of the operation is a string of the same
type as the operands.

6–11

Expressions and Data Type Conversions

Examples

CONCAT: PROCEDURE OPTIONS(MAIN);
DECLARE OUTFILE STREAM OUTPUT PRINT FILE;

PUT FILE(OUTFILE) SKIP LIST(’ABC’||’DEF’);
PUT FILE(OUTFILE) SKIP LIST(’001’B||’110’B);
PUT FILE(OUTFILE) SKIP LIST((3)’001’B||’07’B3);

END CONCAT;

The program CONCAT writes the following output to the file
OUTFILE.DAT:

ABCDEF
’001110’B
’001001001000111’B

Note that the exclamation point can be used in place of the vertical bar,
for compatibility with other PL/I implementations.

6.3 Precedence of Operators and Expression Evaluation
The precedence, or priority, of operators defines the order in which
expressions are evaluated when they contain more than one operator.
Table 6–2 gives the priority of PL/I operators. Low numbers indicate high
priority. For example, the exponentiation operator (**) has the highest
priority (1), so it is performed first, and the OR ELSE operator (| :) has
the lowest priority (9), so it is performed last.

Table 6–2 Precedence of Operators

Operator Priority
Left/Right
Associative Order of Evaluation

() 0 N/A deepest first

** 1 right left to right

+ (prefix) 1 N/A N/A

- (prefix) 1 N/A N/A

^ (prefix) 1 N/A N/A

* 2 left left to right

/ 2 left left to right

+ (infix) 3 left left to right

- (infix) 3 left left to right

| | 4 left left to right

> 5 left left to right

< 5 left left to right

^> 5 left left to right

^< 5 left left to right

= 5 left left to right

^= 5 left left to right

<= 5 left left to right

6–12

Expressions and Data Type Conversions

Table 6–2 (Cont.) Precedence of Operators

Operator Priority
Left/Right
Associative Order of Evaluation

>= 5 left left to right

& 6 left left to right

| 7 left left to right

^ (infix) 7 left left to right

&: 8 left left to right across entire expression

| : 9 left left to right across entire expression

Expressions are evaluated from left to right, with the following
qualifications:

• Some PL/I operators take precedence over others used in the same
expression. Operations with higher precedence are evaluated first,
and their results are used as single operands. The rules of precedence
usually guarantee an algebraically correct result without the use of
parentheses. All built-in functions are of equal precedence.

• Any expression can be enclosed in parentheses to override the usual
rules of precedence. Expressions at the deepest level of nested
parentheses are always evaluated first, and their results are used
as single operands.

Consider the expression:

A |: B &: C

It should be parenthesized according to the rules of associativity as:

(A |: (B &: C))

However, the semantics of the OR ELSE (| :) and AND THEN (&:)
operators dictate that the operands be evaluated in the order A, B,
C as necessary. This means that the B &: C will be evaluated before
A which might not be the intent of the programmer and might not
conform to the semantic rules of the OR ELSE (| :) operator.

When PL/I determines which to evaluate first, (1) the deeply nested B
&: C (consistent with the order of evaluation for parentheses), or (2)
the A | : (consistent with the order of evaluation of | :), (1) the deeply
nested B &: C is chosen.

Whenever an expression that contains any combination of two or more
&: or | : operators, the order of operand evaluation will be performed
in the order dictated by the associativity of the operators. This may or
may not be the desired behavior. To work around this, you will have
to construct similar program sequences using IF THEN constructs in
conjunction with either the AND (&) or OR (|) operators to achieve
the desired behavior.

• Exponential operations of the form A��B ��C are evaluated from right
to left.

6–13

Expressions and Data Type Conversions

• The run-time evaluation of a logical expression can be terminated as
soon as its result is known. For instance:

A & USER_FUNCTION(ALPHA,BETA)

Evaluation of this expression can be terminated without the
USER_FUNCTION reference being evaluated if the evaluation of
A results in a false Boolean value. However, the evaluation of A might
not occur first, because the order of evaluations is not guaranteed in
AND operations. To ensure that the first operand is evaluated first,
use &:, which is the AND THEN operator, instead of &.

• The compiler may evaluate the subexpressions of an expression in any
order that produces an algebraically correct result. For example:

A + B + FUNC(I) + C

The subexpression A+B might not be evaluated and the result stored
before FUNC(I) is evaluated. Therefore, if FUNC(I) alters A, B, or C,
results may not be as expected.

• If a function referenced in an expression executes a nonlocal GOTO
statement, the expression is not evaluated further.

6.4 Data Type Conversion of Operands and Expressions
Conversion is the changing of a data item from one data type to another.
Data conversion in PL/I takes place in many contexts, not all of them
obvious ones. Program results that seem improper may in fact be caused
by data conversion at some point in the program’s execution. This section
discusses the following topics:

• When PL/I converts data.

• How arithmetic operands of different types are converted to a single
derived type during expression evaluation.

• How nonarithmetic operands of different types are converted to the
same type.

• How you can control conversions precisely by using conversion built-in
functions designed for that purpose.

• Contexts in which PL/I automatically converts data from one type
to another-for example, in input and output by the GET and PUT
statements.

• Assignments to arithmetic variables

— From any arithmetic data type to any other arithmetic data type

— From pictured to any arithmetic type

— From bit-string to any arithmetic data type

— From character-string to any arithmetic data type

• Assignments to bit-string variables

— From any arithmetic data type to bit-string

6–14

Expressions and Data Type Conversions

— From pictured to bit-string

— From character-string to bit-string

• Assignments to character-string variables

— From any arithmetic data type to character-string

— From pictured to character-string

— From bit-string to character-string

• Assignments to pictured variables

— From any computational type to pictured

• Conversions between offsets and pointers

6.4.1 Contexts in which PL/I Converts Data
PL/I can perform data conversions in the following contexts:

• Assignment statements.

• Arguments passed to a procedure.

• Values specified in a RETURN statement.

• An argument converted by the built-in function FIXED, FLOAT,
BINARY, DECIMAL, BIT, or CHARACTER.

• Conversions to and from character strings performed by the PUT and
GET statements, respectively.

If an attempt is made to assign a value to a target for which there is
no defined conversion, the compiler generates a diagnostic message. For
example:

F = ’133.45’;

If F is a variable with the attributes FIXED DECIMAL (5,2), then the
statement assigns the numeric value 133.45 to F, as expected, although
the compiler issues a WARNING message about the implicit conversion,
stating that the constant ’ 133.45’ has been converted to a FIXED
DECIMAL target. The warning does not prevent you from linking and
running the program. However, note the following example:

F = ’ABCD’;

This statement results not only in a compiler WARNING message, but
if you go on to link and run the program, you receive a CONVERSION
condition, which will normally be fatal unless it is handled with an ON
CONVERSION ON-unit.

Table 6–3 illustrates the contexts in which PL/I performs conversions. The
table also lists the built-in conversion functions, such as BINARY and
CHARACTER, which you can use when you want to explicitly indicate a
conversion and to specify such characteristics as the precision or string
length of the converted result.

6–15

Expressions and Data Type Conversions

Table 6–3 Contexts in Which PL/I Converts Data

Context Conversion Performed

target = expression; In an assignment statement, the given expression
is converted to the data type of the target.

entry-name
RETURNS (attribute . . .

);
.
.
.

In a RETURN statement, the specified value
is converted to the data type specified by the
RETURNS option on the PROCEDURE or ENTRY
statement.

RETURN (value);

x + y
x - y
x * y
x / y
x**y
x | | y
x & y
x | y
x&:y
x | :y
x ^ y
x > y
x < y
x = y
x^=y

In any expression, if operands do not have the
required data type, they are converted to a
common data type before the operation. For
most operators, the data types of all operands
must be identical. A warning message is issued in
the case of a concatenation conversion.

BINARY (expression)
BIT (expression)
CHARACTER (expression)
DECIMAL (expression)
DECODE (expression)
ENCODE (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PL/I provides built-in functions that perform specific
conversions.

PUT LIST (item, . . .); Items in a PUT LIST statement are converted to
character-string data.

GET LIST (item, . . .); Character-string input data is converted to the data
type of the target item.

6–16

Expressions and Data Type Conversions

Table 6–3 (Cont.) Contexts in Which PL/I Converts Data

Context Conversion Performed

PAGESIZE (expression)
LINESIZE (expression)
SKIP (expression)
LINE (expression)
COLUMN (expression)
format items A, B, E, F, and X
TAB (expression)

Values specified for various options to PL/I
statements must be converted to integer values.

DO control-variable . . . Values are converted to the attributes of the control
variable.

parameter Actual parameters are converted to the type of the
formal parameter, if necessary.

INITIAL attribute Initial values are converted to the type of the
variable being initialized.

6.4.2 Derived Data Types for Arithmetic Operations
Even though arithmetic operands can be of different arithmetic types,
all operations will be performed on objects of the same type. Any set of
operands of different arithmetic types has an associated derived type, as
follows:

• If any operand has the attribute BINARY, the derived type is BINARY.
Otherwise, the derived type is DECIMAL.

• If any operand has the attribute FLOAT, the derived type is FLOAT.
Otherwise, the derived type is FIXED.

Table 6–4 gives the derived data type for two arithmetic operands of
different types. (Note that the types derived from FIXED DECIMAL in
Table 6–4 are also derived when one operand is pictured.)

Table 6–4 Derived Data Types

Type of Operand 1 Type of Operand 2 Derived Type

FIXED BINARY FLOAT BINARY FLOAT BINARY

FIXED BINARY FLOAT DECIMAL FLOAT BINARY

FIXED DECIMAL FLOAT DECIMAL FLOAT DECIMAL

FIXED DECIMAL FLOAT BINARY FLOAT BINARY

FIXED BINARY FIXED DECIMAL FIXED BINARY

Table 6–5 gives the precision resulting from the conversion of an operand
to its derived type. The values p and q are known as the converted
precision of an operand and are based on the values p and q of the source
operand.

6–17

Expressions and Data Type Conversions

Table 6–5 Converted Precision as a Function of Target and Source Attributes

Target
Data
Type Binary Fixed Source 1

Decimal Fixed
Source 1

Binary
Float
Source 1 Decimal Float Source 1

Binary
Fixed

p
q

min(ceil(p*3.32)+1,31)
min(ceil(q*3.32),31)

N/A
N/A

N/A
N/A

Decimal
Fixed

min(ceil(p/3.32)+1,31)
max(0,min(ceil(q*3.32),31))

p
q

N/A
N/A

N/A
N/A

Binary
Float

OpenVMS VAX:
min(p,113) min(ceil(p*3.32),113) p min(ceil(p*3.32), 113)

OpenVMS Alpha:
min(p,53) min(ceil(p*3.32),53) p min(ceil(p*3.32), 53)

Decimal
Float

OpenVMS VAX:
min(ceil(p/3.32),34) min(p,34) min(ceil(p/3.32),34)p

OpenVMS Alpha:
min(ceil(p/3.32),15) min(p,15) min(ceil(p/3.32),15)p

1The constant 3.32 is an approximation of log2(10), the number of bits required to represent a decimal digit.

All arithmetic operations except exponentiation are performed in the
derived type of the two operands. Exponential operations are performed
in a data type that is based on the derived type of the operands. All
operations, including exponentiation, have results of the same type as that
in which they are performed.

The result of an arithmetic operation can be assigned to a target variable
of any computational type. The result is converted to the target type,
following the rules in Section 6.4.5.

6.4.3 Conversion of Operands in Nonarithmetic Operations
As operations must be performed on operands of the same type, the
following conversions are performed when operands do not match in
nonarithmetic operations:

• PICTURE is converted to CHARACTER.

• DECIMAL is converted to CHARACTER.

• FIXED BINARY is converted to BIT.

• If either operand is CHARACTER, after other conversions have been
performed, the noncharacter operand is converted to CHARACTER.

A warning message is issued about a conversion in a concatenation
expression, except for picture to character.

6–18

Expressions and Data Type Conversions

6.4.4 Built-In Conversion Functions
The built-in conversion functions can take arguments that are either
arithmetic or string expressions. They are often used to convert an
operand to the type required in a certain context-for instance, to convert a
bit string to an arithmetic value for use as an arithmetic operand.

For the purpose of these functions, and in a few other contexts, derived
arithmetic attributes are also defined for bit- and character-string
expressions:

• The derived type of a bit string is fixed-point binary; its converted
precision is 31, with a scale factor of 0.

• The derived type of a character string is fixed-point decimal; its
converted precision is 31, with a scale factor of 0.

PL/I uses these derived attributes to determine the precision of values
returned by the conversion functions if no precision is specified in the
functions’ argument lists. Note that the value of a string argument must
also be convertible to the result type; for instance, ’ 1.333’ is convertible
to arithmetic, but ’ XYZ’ is not.

Table 6–6 indicates which built-in functions you should use for each
conversion between an arithmetic and a nonarithmetic type. In addition,
you can use the BINARY, DECIMAL, FIXED, and FLOAT built-in
conversion functions to control conversions between two arithmetic types.

Table 6–6 Built-In Functions for Conversions Between Arithmetic and
Nonarithmetic Types

Conversion Function

Arithmetic to bit BIT

Arithmetic to character CHARACTER

Arithmetic or character to fixed-
point arithmetic

FIXED

Bit to arithmetic BINARY

Bit to character CHARACTER

Character to bit BIT

Character to decimal DECIMAL

Character to float FLOAT

Arithmetic or character to binary BINARY

Character to fixed binary DECODE

Decimal integer to character ENCODE

Integer (non-negative) to
character

BYTE

6–19

Expressions and Data Type Conversions

6.4.5 Implicit Conversion During Assignment
During assignment, PL/I automatically converts the derived data type of
an expression to the data type of a target, if necessary. In assignments,
conversions are defined between the noncomputational types POINTER
and OFFSET, and between any two computational types. However, a
conversion during assignment results in an error if PL/I cannot perform it
in a meaningful way. For example, you can assign the string ’ 123.4’ to
a fixed decimal variable; you cannot, however, assign the string ’ ABCD’
to the same variable. Similarly, an assignment of an arithmetic type to a
fixed variable results in the FIXEDOVERFLOW condition if integral digits
are lost.

Although PL/I performs conversions in assignment statements, such
conversions may represent programming errors and are in violation of
the PL/I G subset standard. Therefore, the compiler issues a warning
message that an implicit conversion is taking place. These messages do
not terminate the compilation and may not indicate errors; they simply
alert you to the fact that your program converts one data type to another
in a way that may cause a problem when the program is run. You can
prevent such warning messages in two ways:

• Use the built-in conversion functions to convert data types explicitly.
This method is recommended. Section 6.4.4 summarizes the functions.

• Use the /NOWARNINGS qualifier to the PLI command to suppress
diagnostic warning messages. (The compiler will continue to print
messages of greater severity.) However, you run the risk of missing
important diagnostic information.

For example:

DECLARE (A,B) FIXED DECIMAL (5,2);
A = ’123.45’; /* Warning message */
B = FIXED(’123.45’,5,2); /* No warning */

Both assignment statements assign the same value to their targets;
however, the first statement causes a warning message from the compiler,
while the second statement does not.

6.4.6 Assignment to Arithmetic Variables
Expressions of any computational type can be assigned to arithmetic
variables. The conversion rules for each source type are described in the
following sections.

6.4.6.1 Arithmetic to Arithmetic Conversions
A source expression of any arithmetic type can be assigned to a target
variable of any arithmetic type. Note the following qualifications:

• If the target is a variable of type FIXED BINARY or FIXED
DECIMAL, then the FIXEDOVERFLOW condition is signaled when
the source value has a larger number of integral digits than are
specified in the precision of the target. If the target is a fixed-point
binary variable, FIXEDOVERFLOW is signaled if the source value

6–20

Expressions and Data Type Conversions

exceeds the storage allocated for the target, which can be larger than
the target’s declared precision.

• If the target is a variable of type FIXED DECIMAL(p,q) or FIXED
BINARY(p,q) and the source value has more than q fractional digits,
then the excess fractional digits of the source are truncated, and no
condition is signaled. If the source has fewer than q fractional digits,
the source value is padded on the right with zeros.

• If the target value is floating point and the absolute source value is too
large to be represented by a floating-point type, then the OVERFLOW
condition is signaled, and the value of the target is undefined. On
OpenVMS VAX systems only, if the absolute source value is too small
to be represented, the value zero is assigned to the target, and if
UNDERFLOW is enabled it is signaled. Alpha hardware does not
support UNDERFLOW and does not signal the underflow condition.

6.4.6.1.1 Conversions to Fixed Point
In the following examples, the specified source values are converted to
FIXED DECIMAL(4,1):

Source Value Converted Value

25.505 25.5
-2.562 -2.5
101 101.0
5365 FIXEDOVERFLOW - value undefined

6.4.6.1.2 Conversions to Floating Point
Let p be the precision of the floating-point target. If the source value is an
integer that can be represented exactly in p digits, then the source value
is converted to floating-point binary with no loss of accuracy.

Otherwise, the source value is converted to floating-point binary with
rounding to precision p. For example, the constant 479 will be converted to
FLOAT BINARY(24) without loss of accuracy, while the constant 16777217,
which cannot be represented exactly in 24 bits, will be rounded during
conversion.

6.4.6.1.3 Conversions from FIXED BINARY to Other Data Types
Conversions from FIXED BINARY to other data types follow the rules
outlined below. Notice that these rules assume both precision and scale.

Precisions of the source and target are (p,q) and (p1,q1), respectively. The
precision of the result is (p2,q2).

Target Result

FIXED DECIMAL(p1,q1) p2=1+CEIL(p1/3.32) and q2=CEIL(q1/3.32).

6–21

Expressions and Data Type Conversions

Target Result

FIXED BINARY(p1,q1) Precision and scale of the source are maintained
during conversion; therefore, padding or truncation can
occur. If nonzero bits are lost on the left, the result is
undefined.

FLOAT DECIMAL(p1) p2=CEIL(p1/3.32). The exponent indicates any
fractional value.

FLOAT BINARY(p1) p2=p1. The mantissa indicates any fractional value.

PICTURE The target implies FIXED DECIMAL and is converted
accordingly.

CHARACTER The binary precision (p,q) is converted to a
FIXED DECIMAL with precision (p1,q1), where
p1=1+CEIL(p/3.32) and q1=CEIL(q/3.32). Then
the rules for conversion from FIXED DECIMAL to
CHARACTER are in effect.

BIT The binary precision (p,q) is converted to an
intermediate bit string where the size or precision
is MIN(31,p-q). Then the intermediate bit string is
converted to BIT(n). If (p-q) is negative or zero, the
result is a null bit string.

If the scale factor is negative, substitute the FLOOR value for CEIL in the
above calculations which contain q’s.

6.4.6.2 Pictured to Arithmetic Conversions
In PL/I all pictured values have the associated attributes FIXED
DECIMAL(p,q), where p is the total number of characters in the picture
specification that specify decimal digits, and q is the total number of these
digits that occur to the right of the V character. If the picture specification
does not include a V character, then q is zero. This value is assigned to the
target, following the PL/I rules for arithmetic to arithmetic conversion.

6.4.6.3 Bit-String to Arithmetic Conversions
When a bit-string value is assigned to an arithmetic variable, PL/I treats
the bit string as a fixed-point binary value. A string of type BIT(n) is
converted to FIXED BINARY(m,0), where m = min(n; 31).

If the converted value is greater than or equal to 231, then
FIXEDOVERFLOW is signaled. The leftmost bit in the bit string (as
output by PUT LIST) is the most significant bit in the fixed-point binary
value, not its sign. If the bit string is null, the fixed-point binary value is
zero.

The intermediate fixed-point binary value is then converted to the target
arithmetic type.

Note that bit strings are stored internally with the leftmost bit in the
lowest address. The conversion to an arithmetic type must reverse the bits
from this representation; therefore, you should avoid this conversion when
performance is a consideration.

6–22

Expressions and Data Type Conversions

Examples

CONVTB: PROCEDURE OPTIONS(MAIN);

DECLARE STATUS FIXED BINARY(8);
DECLARE STATUS_D FIXED DECIMAL(10);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE(’CONVTB.OUT’);
ON FIXEDOVERFLOW PUT SKIP FILE(OUT)

LIST(’Fixedoverflow:’);

STATUS = ’1001101’B;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS_D = ’001101’B;
PUT SKIP FILE(OUT) LIST(STATUS_D);

STATUS = ’1232’B2;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS = ’FF’B4;
PUT SKIP FILE(OUT) LIST(STATUS);

STATUS_D = ’10111111111111111111111111111111’B;
END CONVTB;

Note that because the program CONVTB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

The program CONVTB produces the following output:

77
13

110
255

Fixedoverflow:

The leftmost bit of all the bit-string constants is treated as the most
significant numeric bit, not as a sign. For instance, the hexadecimal
constant <BIT_STRING>(FF)B4 is converted to 255 instead of -127. The
last assignment to STATUS_D signals the FIXEDOVERFLOW condition
because the bit-string constant, when represented as a binary integer, is
greater than 231. The resulting value of STATUS_D is undefined.

6.4.6.4 Character-String to Arithmetic Conversions
When a character string is assigned to an arithmetic value, PL/I creates
an intermediate numeric value based on the characters in the string.
The type of this intermediate value is the same as that of an ordinary
arithmetic constant comprising the same characters; for example,
342.122E-12 and <BIT_STRING>(342.122E-12) are both floating-point
decimal.

The character string can contain any series of characters that describes a
valid arithmetic constant. That is, the character string can contain any
of the numeric digits 0 through 9, a plus (+) or minus (-) sign, a decimal
point (.), and the letter E. If the character string contains any invalid
characters, the CONVERSION condition is signaled. See the following
examples.

6–23

Expressions and Data Type Conversions

If the implied data type of the character string does not match the data
type of the arithmetic target, PL/I converts the intermediate value to the
data type of the target, following the PL/I rules for arithmetic to arithmetic
conversions. In conversions to fixed point, FIXEDOVERFLOW is signaled
if the character string specifies too many integral digits. Excess fractional
digits are truncated without signaling a condition.

If the source character string is null or contains all spaces, the resulting
arithmetic value is zero.

Examples

DECLARE SPEED FIXED DECIMAL (9,4);

SPEED = ’23344.3882’;
/* string converted to 23344.3882 */

SPEED = ’32423.23SD’;
/* CONVERSION condition */

SPEED = ’4324324.3933’;
/* FIXEDOVERFLOW condition */

SPEED = ’1.33336’;
/* string converted to 1.3333 */

6.4.7 Assignments to Bit-String Variables
In the conversion of any data type to a bit string, PL/I first converts the
source data item to an intermediate bit-string value. Then, based on the
length of the target string, it does the following:

• If the length of the target bit-string value is greater than the length of
the intermediate string, the target bit string (as represented by PUT
LIST) is padded with zeros on the right.

• If the length of the target bit-string value is less than the length of
the intermediate string, the intermediate bit string (as represented by
PUT LIST) is truncated on the right.

The next sections describe how PL/I arrives at the intermediate bit-string
value for each data type.

6.4.7.1 Arithmetic to Bit-String Assignments
In converting an arithmetic value sv to a bit-string value, PL/I performs
the following steps:

1 Let v = abs(sv).

2 Determine a precision p as follows:

Source Precision p

FIXED BINARY(r,s) min(31,r-s)

FLOAT BINARY(r) min(31,r)

FIXED DECIMAL(r,s) min(31,ceil((r-s)*3.32))

6–24

Expressions and Data Type Conversions

Source Precision p

FLOAT DECIMAL(r) min(31,ceil(r*3.32))

3 If p=0 (for example, when r=s), the intermediate string is a null bit
string. Otherwise, the value v is converted to an integer n of type
FIXED BINARY(p,0). If n >= 2p, the FIXEDOVERFLOW condition is
signaled; otherwise, the intermediate bit string is of length p, and each
of its bits represents a binary digit of n.

Bit strings are stored internally with the leftmost bit in the lowest
address. The conversion must reverse the bits from this representation
and should therefore be avoided when performance is a consideration.
Note also that during the conversion, the sign of the arithmetic value and
any fractional digits are lost.

Examples

CONVB: PROCEDURE OPTIONS(MAIN);

DECLARE NEW_STRING BIT(10);
DECLARE LONGSTRING BIT(16);
DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE(’CONVB1.OUT’);

NEW_STRING = 35;
PUT FILE(OUT) SKIP

LIST(’35 converted to BIT(10):’,NEW_STRING);

NEW_STRING = -35;
PUT FILE(OUT) SKIP

LIST(’-35 converted to BIT(10):’,NEW_STRING);

NEW_STRING = 23.12;
PUT FILE(OUT) SKIP

LIST(’23.12 converted to BIT(10):’,NEW_STRING);

NEW_STRING = .2312;
PUT FILE(OUT) SKIP

LIST(’.2312 converted to BIT(10):’,NEW_STRING);

NEW_STRING = 8001;
PUT FILE(OUT) SKIP

LIST(’8001 converted to BIT(10):’,NEW_STRING);

LONGSTRING = 8001;
PUT FILE(OUT) SKIP

LIST(’8001 converted to BIT(16):’,LONGSTRING);
END CONVB;

Note that because the program CONVB performs implicit conversions,
the compiler issues WARNING messages. (Linking and running are
accomplished successfully because the conversions are valid.)

The program CONVB produces the following output:

35 converted to BIT(10): ’0100011000’B
-35 converted to BIT(10): ’0100011000’B
23.12 converted to BIT(10): ’0010111000’B
.2312 converted to BIT(10): ’0000000000’B
8001 converted to BIT(10): ’0111110100’B
8001 converted to BIT(16): ’0111110100000100’B

6–25

Expressions and Data Type Conversions

The values 35 and -35 produce the same bit string because the sign
is lost in the conversion. In the first assignment, 35, which is FIXED
DECIMAL(2,0), is converted to FIXED BINARY(7,0) and then to a 7-bit
string (<BIT_STRING>(0100011)B). Three additional bits are appended to
this intermediate bit string when it is assigned to NEW_STRING. Notice
that the low-order bit of 8001 is lost when the constant is assigned to a
BIT(10) variable.

6.4.7.2 Pictured to Bit-String Conversions
If the source value is pictured, its associated fixed-point decimal value is
extracted. The fixed-point decimal value is then converted to a bit string,
following the previous rules for arithmetic to bit-string conversion.

6.4.7.3 Character-String to Bit-String Conversions
PL/I can convert a character string of 0s and 1s to a bit string. Any
character in the character string other than 0 or 1, including spaces, will
signal the CONVERSION condition.

PL/I converts each 0 or 1 character in the character string to a 0 or a 1
bit in the corresponding position (as represented by PUT LIST) in the
intermediate bit string.

If the source is a null character string, the intermediate string is a null bit
string.

Examples

DECLARE NEW_STRING BIT(4);

NEW_STRING = ’0010’;
/* NEW_STRING = ’0010’B */

NEW_STRING = ’11’;
/* NEW_STRING = ’1100’B */

NEW_STRING = ’AS110’;
/* CONVERSION condition */

6.4.8 Assignments to Character-String Variables
In the conversion of any data type to a character string, PL/I first converts
the source value to an intermediate character-string value. Then it does
one of the following:

• If the length of the intermediate string is zero, a null string is assigned
to the target.

• If the target is a parameter or return value with an asterisk extent
(as in RETURNS CHAR(*)), the intermediate string is assigned to the
target.

• If the target is of type CHARACTER, and the intermediate string is
shorter than the maximum length of the target, the target is assigned
the value of the intermediate string without trailing spaces if the
target has the VARYING attribute. If the target does not have the
VARYING attribute, the string is padded with trailing spaces.

6–26

Expressions and Data Type Conversions

• If the maximum length of the target character string is less than the
length of the intermediate string, the intermediate string is truncated.

The rules for how PL/I arrives at the intermediate string for conversion of
each data type are described below. Examples illustrate the intermediate
value as well as the resulting value.

6.4.8.1 Arithmetic to Character-String Conversions
The manner in which PL/I converts an arithmetic data item depends on
the data type of the item, as described below.

6.4.8.1.1 Conversion from Fixed-Point Binary or Fixed-Point Decimal
If the data item source value is of type FIXED BINARY(p1,q1), PL/I first
converts it to type FIXED DECIMAL(p2,q2), where:

p2 = min(ceil(p1=3:32) + 1; 31)

q2 = max(0;min(ceil(q1=3:32); 31))

PL/I converts a value with attributes FIXED DECIMAL(p,q) to an
intermediate string of length p+3. The numeric value is right-justified in
the string. If the value is negative, a minus sign immediately precedes the
value. If q is greater than zero, the value contains a decimal point followed
by q digits. When p equals q, a 0 character precedes the decimal point.
When q equals zero, a value of zero is represented by the 0 character.

Alternatively, the format of the intermediate string can be described by
picture specifications, as follows:

1 If q=0, the intermediate string is the string created by the following
picture specification:

’BB(p)-9’

That is, the first two characters of the string are spaces. The last
p characters in the string are the digit characters representing the
integer; leading zeros are replaced by spaces except in the last position.
If the integer is negative, a minus sign immediately precedes the first
digit; if the number is not negative, this position contains a space. At
least one digit always appears in the last position in the string.

2 If p=q, the intermediate string is the string created by the following
picture specification:

’-9V.(q)9’

That is, the first three characters are (in order) an optional minus
sign if the fraction is negative, the digit 0, and a decimal point. If
the number is not negative, the first character is a space. The last q
characters in the string are the fractional digits of the number.

3 If p > q, the intermediate string is the string created by the following
picture specification:

’B(p-q)-9V.(q)9’

6–27

Expressions and Data Type Conversions

That is, the first character is always a space; the last q characters
are the fractional digits of the number and are preceded by a decimal
point; the decimal point is always preceded by at least one digit, which
can be zero; all integral digits appear before the decimal point, and
leading zeros are replaced by spaces; a minus sign precedes the first
integral digit if the number is negative; if the number is not negative,
then the minus sign is replaced by a space.

Examples

DECLARE STRING_1 CHARACTER (8),
STRING_2 CHARACTER (4);

STRING_1 = 283472.;
/* intermediate string = ’ 283472’,
STRING_1 = ’ 28347’ */

STRING_2 = 283472.;
/* intermediate string = ’ 283472’,
STRING_2 = ’ 2’ */

STRING_2 = -283472.;
/* intermediate string = ’ -283472’,
STRING_2 = ’ -2’ */

STRING_2 = -.003344;
/* intermediate string = ’-0.003344’,
STRING_2 = ’-0.0’ */

STRING_2 = -283.472;
/* intermediate strin g = ’ -283.472’,
STRING_2 = ’ -28’ */

STRING_2 = 283.472;
/* intermediate string = ’ 283.472’,
STRING_2 = ’ 28’ */

6.4.8.1.2 Conversion from Floating-Point Binary or Floating-Point Decimal
If the data item source value is of type FLOAT BINARY(p1), it is converted
to FLOAT DECIMAL(p2), where:

For OpenVMS VAX systems:

p2 = min(ceil(p1=3:32); 34)

For OpenVMS Alpha systems:

p2 = min(ceil(p1=3:32); 15)

For a value of type FLOAT DECIMAL(p), where p is less than or equal to
34, the intermediate string is of length p+6; this allows extra characters
for the sign of the number, the decimal point, the letter E, the sign of the
exponent, and the 2-digit exponent.

Note: If the value is a G-floating-point number, three characters are
allocated to the exponent, and the length of the string is p+7. For
OpenVMS VAX systems only, if the value is an H-floating-point
number, four characters are allocated to the exponent, and the
length of the string is p+8.

6–28

Expressions and Data Type Conversions

If the number is negative, the first character is a minus sign; otherwise,
the first character is a space. The subsequent characters are a single digit
(which can be 0), a decimal point, p-1 fractional digits, the letter E, the
sign of the exponent (always + or -), and the exponent digits. The exponent
field is of fixed length, and the zero exponent is shown as all zeros in the
exponent field.

Examples

CONCH: PROCEDURE OPTIONS(MAIN);

DECLARE OUT PRINT FILE;

OPEN FILE(OUT) TITLE(’CONCH.OUT’);

PUT SKIP FILE(OUT) EDIT(’’’’,25E25,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,-25E25,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,1.233325E-5,’’’’) (A);
PUT SKIP FILE(OUT) EDIT(’’’’,-1.233325E-5,’’’’) (A);

END CONCH;

The program CONCH produces the following output:

’ 2.5E+26’
’-2.5E+26’
’ 1.233325E-05’
’-1.233325E-05’

The PUT statement converts its output sources to character strings,
following the rules described in this section. (The output strings are
surrounded with apostrophes to make the spaces distinguishable.) In
each case, the width of the quoted output field (that is, the length of the
converted character string) is the precision of the floating-point constant
plus 6.

6.4.8.2 Pictured to Character-String Conversion
If the source value is pictured, its internal, character-string representation
is used without conversion as the intermediate character string.

6.4.8.3 Bit-String to Character-String Conversion
When PL/I converts a bit string to a character string, it converts each bit
in the bit string (as represented by PUT LIST) to a 0 or 1 character in the
corresponding position of the intermediate character string.

If the bit string is a null string, the intermediate character string is also a
null string.

Examples

DECLARE STRING_1 CHARACTER (4),
STRING_2 CHARACTER (8);

STRING_1 = ’1010’B;
/* STRING_1 = ’1010’ */

STRING_2 = ’1010’B;
/* STRING_2 = ’1010 ’ */

STRING_1 = ’010011’B;
/* STRING_1 = ’0100’ */

6–29

Expressions and Data Type Conversions

6.4.9 Assignments to Pictured Variables
A source expression of any computational type can be assigned to a
pictured variable. The target pictured variable has a precision (p), which
is defined as the number of characters in the picture specification that
specify decimal digits. The target also has a scale factor (q), which is
defined as the number of picture characters that specify digits and occur
to the right of the V character in the picture specification. If the picture
specification contains no V character, or if all digit-specification characters
are to the left of V, then q is zero.

The source expression is converted to a fixed-point decimal value v of
precision (p,q), following the PL/I rules for the source data type. This
value is then edited to a character string s, as specified by the picture
specification, and the value s is assigned to the pictured target.

When the value v is being edited to the string s, the CONVERSION
condition is signaled if the value of v is less than zero and the picture
specification does not contain one of the characters S, +, -, T, I, R, CR,
or DB. The value of s is then undefined. FIXEDOVERFLOW is signaled
if the value v has more integral digits than are specified by the picture
specification of the target.

6.4.10 Conversions Between Offsets and Pointers
Offset variables are given values by assignment from existing offset values
or from conversion of pointer values. Pointer variables are given values
by assignment from existing pointer values or from conversion of offset
values.

The OFFSET built-in function converts a pointer value to an offset value.
The POINTER built-in function converts an offset value to a pointer.

PL/I also automatically converts a pointer value to an offset value, and
vice versa, in an assignment statement. The following assignments are
valid:

pointer-variable = pointer-value;
offset-variable = offset-value;
pointer-variable = offset-variable;
offset-variable = pointer-value;

In the third and fourth assignments above, the offset variable must have
been declared with an area reference.

6–30

7 Procedures

A procedure is the basic executable program unit in PL/I. It consists
of a sequence of statements, headed by a PROCEDURE statement and
terminated by an END statement, that define an executable set of program
instructions. There are three kinds of procedures:

• A MAIN procedure is the procedure where program execution begins.

• A subroutine procedure is invoked with a CALL statement and returns
values to the invoking procedure by means of a parameter list.

• A function procedure is invoked by a function reference and returns
a scalar value to the invoking procedure. It can also return values
through a parameter list.

Subroutines and function procedures can be passed data from the invoking
procedure by means of an argument list.

This chapter discusses the following topics:

• The PROCEDURE statement which defines the beginning of a
procedure block

• Built-in and user-written functions

• The ENTRY statement and how to specify entry points

• The CALL statement which transfers control to an entry point

• Parameters and argument passing

• Calling external and internal procedures

• Terminating procedures

• Passing Arguments to non-PL/I procedures

7.1 PROCEDURE Statement
The PROCEDURE statement defines the beginning of a procedure block
and specifies the parameters, if any, of the procedure. If the procedure
is invoked as a function, the PROCEDURE statement also specifies the
data type attributes of the value that the function returns to its point
of invocation. The PROCEDURE statement can denote the beginning of
either an internal or an external subroutine or function.

The format of the PROCEDURE statement is as follows:

entry-name:
n

PROCEDURE
PROC

o
[(parameter, . . .)]

[OPTIONS (option, . . .)]h
RECURSIVE
NONRECURSIVE

i

7–1

Procedures

[RETURNS (returns-descriptor)];

entry-name
A 1- to 31-character identifier denoting the entry label of the procedure.
The label cannot be subscripted. The PROCEDURE statement declares
the entry name as an entry constant. The scope of the name is INTERNAL
if the procedure is contained in any other block, and EXTERNAL if the
procedure is not contained in any other block.

parameter, . . .
One or more parameters (separated by commas) that the procedure expects
when it is activated. Each parameter specifies the name of a variable
declared in the procedure headed by this PROCEDURE statement. The
parameters must correspond, one-to-one, with arguments specified for
the procedure when it is invoked with a CALL statement or in a function
reference.

OPTIONS (option, . . .)
An option that specifies one or more options, separated by commas:

IDENT(string)

An option specifying a character-string constant giving the module
ident for the listing and the object files. Only the first 31 characters of
the string are recognized.

Each module should contain only one procedure with the IDENT
option. Should there be more than one, the last specified indent will
be the one used.

MAIN

An option specifying that the named procedure is the initial procedure
in a program. The identifier of the procedure is the primary entry
point for the program. The MAIN option is not allowed on internal
procedures, and only one procedure in a program can have the MAIN
option.

A program must have one procedure with OPTIONS(MAIN) in order
for condition handling to work properly.

UNDERFLOW

An option that requests that the run-time system signal underflow
conditions when they occur. By default, the run-time system does not
signal these conditions.

RECURSIVE or NONRECURSIVE
An option that indicates (for program documentation) that the procedure
will or will not be invoked recursively. In standard PL/I, the RECURSIVE
option must be specified for a procedure to be invoked recursively.
However, any procedure can be invoked recursively, and the RECURSIVE
and NONRECURSIVE options are ignored by the compiler.

7–2

Procedures

RETURNS (returns-descriptor)
An option specifying that the procedure is invoked by a function reference,
as well as specifying the attributes of the function value returned. One of
the possible attributes is TYPE. The syntax of the TYPE attribute is:

[(TYPE (reference)];

RETURNS must be specified for functions. It is invalid for procedures that
are invoked by CALL statements.

For valid return descriptors, see the RETURN statement section of
Section 7.7.

7.2 Functions and Function References
A function is a procedure that returns a value and that receives control
when its name is referenced in an expression. There are two types of
functions:

• PL/I built-in functions

• User-written functions

A user-written function must have the following elements:

• The RETURNS option on the PROCEDURE statement

• A value on the RETURN statement; the value must be of a data type
that is valid for conversion to the one specified in the RETURNS
option

For example:

ADDER: PROCEDURE (X,Y) RETURNS (FLOAT);
DECLARE (X,Y) FLOAT;

RETURN (X+Y);
END;

The function ADDER has two parameters, X and Y. They are floating-
point binary variables declared within the function. When the function
is invoked by a function reference, it must be passed two arguments to
correspond to these parameters. It returns a floating-point binary value
representing the sum of the arguments. The function ADDER can be
referenced as follows:

TOTAL = ADDER(5,6);

The arguments in the reference to ADDER are converted to FLOAT.

If a function has no parameters, you must specify a null argument list;
otherwise, the compiler treats the reference as a reference to an entry
constant. Specify a null argument list as follows:

GETDATE = TIME_STAMP();

This assignment statement contains a reference to the function TIME_
STAMP, which has no parameters.

7–3

Procedures

This rule applies to PL/I built-in functions as well; however, if you declare
a PL/I built-in function explicitly with the BUILTIN attribute, you need
not specify the empty argument list. For example:

DECLARE P POINTER,
NULL BUILTIN;

.

.

.
P = NULL;

This example assigns a null pointer value to P. Without the declaration of
NULL as a built-in function, the assignment statement would have been
as follows:

P = NULL();

7.3 ENTRY Statement
The ENTRY statement defines an alternate entry point to a procedure. Its
format is as follows:

entry-name: ENTRY [(parameter, . . .)]h
RECURSIVE
NONRECURSIVE

i
[RETURNS (returns-descriptor)];

entry-name
A 1- to 31-character label for the entry point. Specifying the entry name
declares the name as an entry constant. The scope of the name is external
if the ENTRY statement is contained in an external procedure, and is
internal if it is contained in an internal procedure.

parameter, . . .
One or more parameters that the procedure requires at this entry point.
Each parameter specifies the name of a variable declared in the block to
which this ENTRY statement belongs. The parameters must correspond,
one to one, with arguments specified for the procedure when it is invoked
via the ENTRY statement.

RECURSIVE or NONRECURSIVE
An option that indicates (for program documentation) that the procedure
will or will not be invoked recursively. In standard PL/I, the RECURSIVE
option must be specified for a procedure to be invoked recursively.
However, any procedure can be invoked recursively, and the RECURSIVE
and NONRECURSIVE options are ignored by the compiler.

RETURNS (returns-descriptor)
For an entry that is invoked as a function reference, an option giving the
data type attributes of the function value returned.

One of the possible attributes is TYPE. The syntax of the TYPE attribute
is:

[(TYPE (reference)];

7–4

Procedures

For entry points that are invoked by function references, the RETURNS
option is required; for procedures that are invoked by CALL statements,
the RETURNS option is invalid.

Restrictions

An ENTRY statement is not allowed in a begin block, in an ON-unit, or in
a DO group except for a simple DO.

You should avoid unnecessary use of ENTRY statements, because their
effect is detrimental to the overall optimization of the program and they
make debugging more complicated.

7.3.1 Specifying Entry Points
The entry points of a procedure are the points at which it can be invoked.
The PROCEDURE statement specifies one entry point. You can specify
additional entry points with ENTRY statements within the procedure
block. ENTRY statements are allowed anywhere except as specified in the
restrictions described in Section 7.3.

The labels used on PROCEDURE and ENTRY statements declare those
names as entry constants. The scope of the declarations is internal if the
PROCEDURE and ENTRY statements appear in internal procedures, and
external if they appear in external procedures.

You declare an entry name in the block containing the procedure to which
the entry point belongs. For example:

P: PROCEDURE;
DECLARE E: ENTRY;

Q: PROCEDURE;
DECLARE E FIXED BINARY;

END Q;
END P;

The entry names E and Q are declared in procedure P. Within procedure
Q, E is declared as a fixed-point binary variable. This does not conflict
with the declaration of E as an entry in procedure P.

You can invoke an entry point by using the appropriate entry constant
as the reference in a CALL statement or function reference. Invoking an
entry point enters a procedure at the specified point and activates the
procedure block that contains the entry point.

If the CALL statement or function reference invokes an entry point in
an external procedure, the entry constant must be declared with the
ENTRY attribute, as in Example 7–3. The declaration of an external
constant must also describe the parameters for that entry point, if any.
For example:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15));

The identifier PITCH is declared as an entry constant. When the
procedure containing this declaration is linked to other procedures, one of
the external procedures must define an entry point named PITCH, either
as the label of a PROCEDURE statement or as the label of an ENTRY
statement.

7–5

Procedures

The data type attributes in parentheses (known as ‘‘parameter
descriptors’’) are the data types of the parameters that are defined
elsewhere for the entry point PITCH. Arguments of these types must
be supplied when PITCH is invoked.

If PITCH is to be used as a function, the DECLARE statement must also
include a RETURNS attribute to describe the attributes of the returned
value, as in the following example:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15))
RETURNS(FIXED);

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke
the external entry point, and a returned fixed-point binary value will
become the value of the function reference.

7.3.2 Multiple Entry Points
A procedure can be entered at more than one point. However, only one
entry point can be specified by a PROCEDURE statement; additional
entry points are declared with ENTRY statements.

The rules governing the declaration of multiple entry points follow:

• A particular parameter need not be specified in all of a procedure’s
entry points (including the point defined by the PROCEDURE
statement). However, a reference to the parameter is valid only if
the procedure was invoked through one of the entries specifying the
parameter.

• In a procedure that has multiple entry points, a RETURN statement
must be compatible with the entry point by which the procedure was
invoked. If the entry point does not have a RETURNS option, the
RETURN statement must not specify a return value. (In addition, it
must be invoked as a ‘‘subroutine’’-that is, with the CALL statement.)
If the entry point has a RETURNS option, the RETURN statement
must specify a return value that is valid for conversion to the data
type specified in the RETURNS option.

• An ENTRY statement is not executable. If control reaches it
sequentially, control immediately continues to the next statement.

The following example shows a procedure with two alternative entry
points:

QUEUES: PROCEDURE(ELEMENT,QUEUE_HEAD);
.
.
.

ADD_ELEMENT: ENTRY(ELEMENT);
.
.
.

REMOVE_ELEMENT: ENTRY(ELEMENT);

7–6

Procedures

This procedure can be entered by CALL statements that reference
QUEUES, ADD_ELEMENT, or REMOVE_ELEMENT. If invoked at
QUEUES, the procedure must be passed two parameters. If invoked at
either of the alternative entries ADD_ELEMENT or REMOVE_ELEMENT,
the procedure must be passed only one parameter.

When this procedure is entered at either alternative entry point, the entire
block beginning at QUEUES is activated, but execution begins with the
first executable statement following the entry point.

7.4 CALL Statement
The CALL statement transfers control to an entry point of a procedure and
optionally passes arguments to the procedure. The format of the CALL
statement is as follows:

CALL entry-name [(argument, . . .)];

entry-name
The name of an external or internal procedure that does not have the
RETURNS attribute. The entry name can also be an entry variable or a
reference to a function that returns an entry value.

[(argument, . . .)]
The argument list to be passed to the called procedure. If specified,
the arguments must correspond to the parameters specified in the
PROCEDURE or ENTRY statement that identifies the entry name of
the called procedure.

You must enclose arguments in parentheses. Multiple arguments must be
separated by commas.

You can use the CALL statement to call an internal or external procedure.
The following example illustrates a main procedure, CALLER, and a
call to an internal procedure, PUT_OUTPUT. PUT_OUTPUT has two
parameters, INSTRING and OUTFILE, that correspond to the arguments
LINE and DEVICE specified in the CALL statement.

CALLER: PROCEDURE OPTIONS(MAIN);
.
.
.

CALL PUT_OUTPUT(LINE,DEVICE);
.
.
.

PUT_OUTPUT:PROCEDURE(INSTRING,OUTFILE);
.
.
.

END PUT_OUTPUT;
END CALLER;

7–7

Procedures

7.5 Parameters and Arguments
A PL/I procedure can invoke other procedures, as well as pass values
to and receive them from the invoked procedure. Values are passed to
an invoked procedure by means of arguments written in the procedure
invocation. Values are returned to the invoking procedure by means of
parameters and also, in the case of functions, by specifying a value in the
function’s RETURN statement.

You can specify arguments for a subroutine (invoked by a CALL statement)
or for a function (invoked by a function reference). Subroutines and
functions return values by different means.

• A subroutine can return values only through a list of parameters. A
subroutine must not specify a return value in its RETURN statement,
and the declaration of an external entry point must not include the
RETURNS attribute if the entry point is to be invoked as a subroutine.
Instead, you can return values by assigning them, within the invoked
subroutine, to the variables listed as parameters.

• A function can return values through its parameter list like a
subroutine and, in addition, must return a single value that becomes
the value of the function reference in the invoking procedure; this
value is specified in the function’s RETURN statement. The attributes
of this returned value are specified within the invoking procedure,
in the function’s PROCEDURE or ENTRY statement, or in the
declaration of the external entry constant or entry variable used to
invoke the function.

Example 7–1 illustrates the relationship between arguments (specified in
a CALL statement) or function reference and parameters (specified in a
PROCEDURE or ENTRY statement).

Example 7–1 Parameters and Arguments

CALLER:PROCEDURE;
DECLARE COMPUTER EXTERNAL ENTRY!

(FIXED BINARY (7), CHARACTER (80) VARYING);
CALL COMPUTER (5,’ABC’); "

END CALLER;
COMPUTER:PROCEDURE (X,Y);#

DECLARE X FIXED BINARY (7); $
DECLARE Y CHARACTER (80) VARYING;

END COMPUTER;

! The ENTRY attribute in a DECLARE statement provides a parameter
descriptor for each parameter of the called procedure. A parameter
descriptor is a set of data type attributes.

" In a CALL statement or a function reference, arguments appear in
parentheses following the name of the procedure. Arguments can be
variables, expressions, aggregates, or (as in this example) constants.

The data type of each argument is matched with the corresponding
parameter descriptor in the declaration of the entry.

7–8

Procedures

The PROCEDURE statement for the called procedure specifies the
parameters of the procedure. These parameters correspond, in the
order specified, to the arguments specified in the CALL statement.

$ Each parameter specified in the PROCEDURE statement must be
declared within the procedure.

A parameter is a variable that occurs in the parameter list of a
PROCEDURE or ENTRY statement. When the procedure is invoked,
each argument variable in the list is associated with a parameter. Within
the called procedure, any reference to the parameter is equivalent to a
reference to the associated argument variable.

If the invoked procedure is external to the invoking procedure, the
attributes of the parameters must be described in parameter descriptors,
which are part of the declaration of the external procedure.

An argument variable associated with a parameter is passed in a dummy
argument if the argument is specified as a constant. References to that
parameter in the invoked procedure do not modify any storage in the
invoking procedure. For example:

test: procedure options(main);

declare a fixed bin(31);

a = 100;
call subroutine(a,100);
put skip list (a,100);

end test;

subroutine: procedure(x,y);
declare (x,y) fixed bin(31);

x = 101;
y = 101;

end subroutine;

The result of this example would be:

101 100

7.5.1 Rules for Specifying Parameters
The general rules listed below for specifying parameters are followed by
specific rules that pertain only to certain data types.

• You must declare a parameter explicitly in a DECLARE statement (to
give it a data type) within the invoked procedure. This declaration
must not be part of a structure.

• You cannot declare a parameter with any of these attributes:

AUTOMATIC EXTERNAL READONLY

BASED GLOBALDEF STATIC

CONTROLLED GLOBALREF

7–9

Procedures

DEFINED INITIAL

• A maximum of 253 parameters can be specified for an entry point.

• The parameters of an external entry must be explicitly specified by
parameter descriptors in the declaration of the entry constant. The
parameters of a procedure that is invoked through an entry variable
must be specified by parameter descriptors in the ENTRY attribute of
the variable’s declaration. You cannot declare an internal entry (and
its parameters) in the containing procedure.

• Each parameter must have a corresponding argument at the time
of the procedure’s invocation. PL/I matches the data type of the
parameter with the data type of the corresponding argument and
creates a dummy argument if they do not match or if the parameter is
a constant, expression, or is enclosed in parentheses.

Array Parameters

If the name of an array variable is passed as an argument, the
corresponding parameter descriptor or parameter declaration must
specify the same number of dimensions as the argument variable. You
can declare the bounds of a dimension for an array parameter using
asterisks (*) or optionally signed integer constants. If the bounds are
specified with integer constants, they must match exactly the bounds of
the corresponding argument. An asterisk indicates that the bounds of a
dimension are not known. (If one dimension contains an asterisk, all the
dimensions must contain asterisks.) For example:

DECLARE SUMUP ENTRY ((*) FIXED BINARY);

This declaration indicates that SUMUP’s argument is a one-dimensional
array of fixed-point binary integers that can have any number of elements.
Any one-dimensional array of fixed-point binary integers can be passed to
this procedure.

All the data type attributes of the array argument and parameter must
match.

Arrays are always passed by reference. They cannot be passed by dummy
argument.

Structure Parameters

If the name of a structure variable is passed as an argument, the
corresponding parameter descriptor or declaration must be identical,
in terms of structure levels, members’ sizes, and members’ data types. The
level numbers do not have to be identical, but the levels must be logically
equivalent. You can specify array bounds and string lengths with asterisks
or with optionally signed integer constants. The following example shows
the parameter descriptor for a structure variable:

DECLARE SEND_REC ENTRY (1,
2 FIXED BINARY(31),
2 CHARACTER(40) VARYING,
2 PICTURE ’999V99’);

7–10

Procedures

The written argument in the invocation of the external procedure SEND_
REC must have the same structure, and its members must have the same
data types.

Structures are always passed by reference. They cannot be passed by
dummy argument.

Character-String Parameters

If a character-string variable is passed as an argument, the corresponding
parameter descriptor or parameter declaration can specify the length using
an asterisk (*) or an optionally signed nonnegative integer constant. For
example:

COPYSTRING: PROCEDURE (INSTRING,COUNT);
DECLARE INSTRING (CHARACTER(*));

The asterisk in the declaration of this parameter indicates that the string
can have any length. The string is fixed length unless VARYING is also
included in the declaration.

Entry, File, and Labels Parameters

An entry, file, or label can be passed as an argument. The actual
parameter is a variable.

7.5.2 Argument Passing
This section describes how PL/I passes an argument to procedures written
in PL/I.

Number of Arguments

The number of arguments in the argument list must equal the number of
parameters of the invoked entry point. The compiler checks that the count
matches as follows:

• For an internal procedure, the compiler checks the number of
arguments in the argument list against the number of parameters
on the PROCEDURE or ENTRY statement for the internal procedure.

• For an external procedure, the compiler checks that the number of
parameter descriptors in the ENTRY declaration list matches the
number of arguments in the procedure invocation.

You specify arguments for a subroutine or function by enclosing the
arguments in parentheses following the procedure or entry-point name.
For example, a procedure call can be written as follows:

CALL COMPUTER (A,B,C);

The variables A, B, and C in this example are arguments to be passed
to the procedure COMPUTER. The procedure COMPUTER might have a
parameter list like this:

COMPUTER: PROCEDURE (X, Y, Z);
DECLARE (X,Y,Z) FLOAT;

7–11

Procedures

The parameters X, Y, and Z, specified in the PROCEDURE statement
for the subroutine COMPUTER, are the parameters of the subroutine.
PL/I establishes the equivalence of the arguments A, B, and C to the
parameters X, Y, and Z.

Actual Arguments

When a PL/I procedure is invoked, each of its parameters is associated
with a variable determined by the corresponding written argument of the
procedure call. This variable is the actual argument for this procedure
invocation. It can be one of the following:

• A reference to the written argument

• A dummy argument

The data type of the actual argument is the same as that of the
corresponding parameter. When a written argument is a variable
reference, PL/I matches the variable against the corresponding
parameter’s data type according to the rules given under the heading
‘‘Argument Matching,’’ below. If they match, the actual argument is the
variable denoted by the written argument. That is, the parameter denotes
the same storage as the written variable reference. If they do not match,
the compiler creates a dummy argument and assigns to it the value of the
written argument.

Dummy Arguments

A dummy argument is a unique temporary variable allocated by the
compiler, which exists only for the duration of the procedure invocation.

When the written argument is a constant or an expression, the actual
argument is always a dummy argument. The value of the written
argument is assigned to the dummy argument following the rules of
data type conversion before the call (this is described later). The data type
of the written argument must be valid for assignment to the data type of
the dummy argument.

Aggregate Arguments

An array, structure, or area argument must be a variable reference that
matches the corresponding parameter. It cannot be a reference to an
unconnected array. A dummy argument is never created for an array,
structure, or area.

Argument Matching

A written argument that is a variable reference is passed by reference
only if the argument and the corresponding parameter have identical data
types:

• For an internal procedure, the attributes of the argument must match
those specified in the declaration of the parameter.

• For an external procedure or a procedure invoked through an ENTRY
variable, the attributes specified in the ENTRY attribute parameter
descriptor must match those of the arguments.

7–12

Procedures

When the compiler detects that a scalar variable argument does not
match the data type of the corresponding parameter, it issues a warning
message, creates a dummy argument, and associates the address of the
dummy argument with the corresponding parameter. You can suppress
the warning message and force the creation of a dummy argument if you
enclose the argument in parentheses. For example, if a parameter requires
a character varying string and an argument is a character nonvarying
variable, you would enclose the variable in parentheses.

For string lengths and array bounds, an asterisk (*) in the parameter
matches any expression. An integer constant matches only an integer
constant with the same value.

Conversion of Arguments

When the data type of a written argument is suitable for conversion to
the data type of the corresponding parameter descriptor, PL/I performs
the conversion of the argument to a dummy argument using the rules
described in Section 5.4.3.

7.6 Calling External and Internal Procedures
An external procedure is one whose text is not contained in any other
block. The source text of an external procedure can be compiled separately
from that of a calling procedure. The differences between internal and
external procedures are as follows:

• Before an external procedure can be invoked (except through an entry
variable), its name must be declared within the procedure that invokes
it. The DECLARE statement for the external entry name must also
provide a list of parameter descriptors that give the data types of the
parameters that the procedure requires, if any, as well as a RETURNS
attribute for a function procedure.

You cannot explicitly declare internal procedures. The procedure name
is implicitly declared by its occurrence in the PROCEDURE or ENTRY
statement.

• External procedures can reference the same variable only if it is
declared (implicitly or explicitly) with the EXTERNAL attribute in all
of them.

An internal procedure, on the other hand, can reference internal
variables declared in any procedure in which it is contained.

• Any procedure can call an external procedure.

An internal procedure can be called only by the procedure that
contains it or by other procedures at the same level of nesting within
the containing procedure. The only exception is invocation through an
entry variable.

7–13

Procedures

Example 7–2 illustrates the use of an internal procedure:

Example 7–2 Invoking an Internal Procedure

MAINP: PROCEDURE OPTIONS (MAIN);
COMPUTE: PROCEDURE;

ADD_NUMBERS: PROCEDURE;

END ADD_NUMBERS;
END COMPUTE;
PRINT_REPORT: PROCEDURE;
END PRINT_REPORT;

END MAINP;

In Example 7–2, the procedures COMPUTE and PRINT_REPORT are
internal to the procedure MAINP, and the procedure ADD_NUMBERS is
internal to the procedure COMPUTE. MAINP can invoke the procedures
COMPUTE and PRINT_REPORT, but not ADD_NUMBERS. COMPUTE
and PRINT_REPORT can invoke one another. ADD_NUMBERS can call
COMPUTE and PRINT_REPORT.

Example 7–3 illustrates the use of an external procedure:

Example 7–3 Invoking an External Procedure

WINDUP: PROCEDURE;
DECLARE PITCH EXTERNAL ENTRY (CHARACTER(15) VARYING,

FIXED BINARY(7));
CALL PITCH (PLAYER_NAME,NUMBER_OF_OUTS);

The procedure WINDUP declares the procedure PITCH with the
EXTERNAL and ENTRY attributes. The text of PITCH is in another
source program that is separately compiled. When the object module that
contains WINDUP is linked, the linker must be able to locate the object
module that contains PITCH. You can accomplish this by including both
object modules on the linker command line, or by placing PITCH in an
object module library and including the library on the linker command
line.

When a CALL statement or function reference invokes an entry point
in an external procedure, the entry constant must be declared with the
ENTRY attribute, as in the example above. Such a declaration must also
describe the parameters for that entry point, if any. For example:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15));

The identifier PITCH is declared as an entry constant. When the
procedure containing this declaration is linked to other procedures, one
of them must define an entry point named PITCH as the label either of
a PROCEDURE statement or an ENTRY statement. If the linker cannot
locate an external entry point, it issues a warning message.

The parameter descriptors define the data types of the parameters for
the entry point PITCH. Arguments of these types must be supplied when
PITCH is invoked.

7–14

Procedures

If PITCH is to invoke a function, the DECLARE statement must also
include a RETURNS attribute describing the attributes of the returned
value, as follows:

DECLARE PITCH ENTRY (CHARACTER(*), FIXED BINARY(15))
RETURNS(FIXED);

Within the scope of this DECLARE statement, the entry constant PITCH
must be used in a function reference. The function reference will invoke
the external entry point, and a returned fixed-point binary value will
become the value of the function reference.

A PL/I program can invoke an external procedure that is not written
in PL/I. A common instance is the use of a system service by a PL/I
program to obtain some system function not available directly through
PL/I. Or, a PL/I program can invoke an external procedure written in
another language that provides an application-specific function. Such
instances are possible because of the OpenVMS Procedure Calling and
Condition Handling Standard, which includes a set of conventions for
passing arguments among procedures.

7.7 Terminating Procedures
The execution of subroutines and functions can be terminated with the
following statements:

• END statement

If an END statement closes the procedure block of a subroutine before
a RETURN or STOP statement is executed, the END statement has
the same effect as RETURN. A function cannot be terminated without
a RETURN statement. See Section 8.3 for more information about the
END statement.

• Nonlocal GOTO statement

A GOTO statement that transfers control to a label that is outside
the current block terminates a subroutine or a function. The label
specified on the GOTO statement must be known within the block that
contains the GOTO statement, and the block containing the specified
label must be active when the GOTO is executed. See Section 8.6 for
more information about the GOTO statement.

• STOP statement

A STOP statement ends the entire program execution. It does not pass
a return value. See Section 8.8 for more information about the STOP
statement.

• RETURN statement

A RETURN statement provides a normal termination for a subroutine
or function. For a function, a RETURN statement must specify
a return value. The rest of this section describes the RETURN
statement.

7–15

Procedures

RETURN Statement

The RETURN statement terminates execution of the current procedure.
The format of the RETURN statement is as follows:

RETURN [(return-value)];

return-value
The value to be returned to the invoking procedure. If the current
procedure was invoked by a function reference, a return value must be
specified. If the current procedure was invoked by a CALL statement, a
return value is invalid.

A return value can be any scalar arithmetic, bit-string, or character-
string expression; it can also be an entry, pointer, or label expression
or other noncomputational expression. The return value must be valid
for conversion to the data type specified in the RETURNS option of the
function.

The action taken by the RETURN statement depends on the context of the
procedure activation, as follows:

• If the current procedure is the main or only active procedure, the
RETURN statement terminates the program.

• If the current procedure was activated by a CALL statement, the next
executable statement in the calling procedure is executed.

• If the current procedure was activated by a function reference, control
returns to continue the evaluation of the statement that contained the
function reference.

• If the RETURN statement is executed in a begin block, control returns
from the containing procedure to the calling procedure.

Restrictions

The RETURN statement must not be immediately contained in an ON-unit
or in a begin block that is immediately contained in an ON-unit.

7.8 Passing Arguments to Non-PL/I Procedures
There are three ways that a PL/I procedure can pass an argument to a
non-PL/I procedure:

• By immediate value. The actual value of the argument is passed.

• By reference. The address in storage of the argument is passed.

• By descriptor. The address in storage of a data structure describing
the argument is passed.

The following sections describe the requirements for each of these
argument-passing mechanisms.

7–16

Procedures

7.8.1 Passing Arguments by Immediate Value
To pass an argument by immediate value, use the VALUE attribute in
a parameter description. The following declaration of the external entry
VHF illustrates a declaration for an external routine that receives its
parameter by immediate value.

DECLARE VHF ENTRY (FIXED BINARY(31) VALUE);

You can also define PL/I procedures that receive arguments by immediate
value. To do this, you must specify the VALUE attribute in the declaration
of the parameter. For example, the corresponding definition of the
procedure VHF would be as follows:

VHF: PROCEDURE (LENGTH);
.
.
DECLARE LENGTH FIXED BINARY(31) VALUE;
.

Arguments that can be passed by immediate value are limited to the
following data types:

• FIXED BINARY(m), where m <= 31

• FLOAT BINARY(n), where n <= 24

• BIT(o) ALIGNED, where o <= 32

• ENTRY

• OFFSET

• POINTER

PL/I supports the passing of external procedures, but not internal
procedures, as value parameters. To pass an internal procedure, use
an entry parameter.

When you specify the VALUE attribute in a parameter descriptor, you can
specify the ANY attribute instead of declaring any data type attributes.
For example, the declaration of SYS$SETEF can appear as follows:

DECLARE SYS$SETEF ENTRY (ANY VALUE);

At the time of the procedure’s invocation, PL/I converts the written
argument as needed to create a longword dummy argument.

You can use the VALUE built-in function to force an argument to be passed
by immediate value to a non-PL/I procedure, regardless of the declaration
of the formal parameter (see Section 11.4.97).

7.8.2 Passing Arguments by Reference
By default, PL/I passes all arguments by reference except character
strings and arrays with nonconstant extents. The parameter descriptor for
an argument to be passed by reference need specify only the data type of
the parameter.

7–17

Procedures

On OpenVMS systems for example, the Read Event Flags (SYS$READEF)
system service requires that its first argument be passed by immediate
value and its second by reference. You could declare this procedure as
follows:

DECLARE SYS$READEF ENTRY (FIXED BINARY(31) VALUE,
BIT (32) ALIGNED);

When the procedure is invoked, the second argument must be a variable
declared as BIT(32) ALIGNED. PL/I passes the argument by reference.

An argument of any data type can be passed by reference. Bit-string
variables, however, must have the ALIGNED attribute.

The data types in the parameter descriptors of all output arguments must
match the data types of the written arguments. For convenience, you
can specify ANY in the parameter descriptor. To describe an argument
to be passed by reference, you can specify the ANY attribute without the
VALUE attribute. When you specify ANY for an argument to be passed by
reference, you cannot specify data type attributes. Note that if you specify
the VALUE attribute in conjunction with the ANY attribute, PL/I passes
the argument by immediate value.

The ANY attribute is especially useful when you must specify a data
structure as an argument. You need not declare the structure within the
parameter descriptor, only the ANY attribute.

When an argument is passed by reference, PL/I passes the address of the
actual argument. This address can be interpreted as a pointer value; you
can explicitly specify a pointer value as an argument for data to be passed
by reference; for example:

DECLARE SYS$READEF (ANY VALUE, POINTER VALUE),
FLAGS BIT(32) ALIGNED;

CALL SYS$READEF (4, ADDR(FLAGS));

At this procedure invocation, PL/I places the pointer value returned by the
ADDR built-in function directly in the argument list.

7.8.3 Passing Arguments by Descriptor
A descriptor is a structure that describes the data type, extents, and
address of a data item. When passing an argument by descriptor, PL/I
creates the descriptor and places its address in the argument list for the
called procedure.

PL/I passes arguments by descriptor when a parameter descriptor specifies
the following:

• A character string with an asterisk length or an array with asterisk
extents

• An unaligned bit string or an array or structure consisting entirely of
unaligned bit strings

• A structure containing any strings or arrays with asterisk extents

7–18

Procedures

• ANY without VALUE, and the corresponding written argument is
specified with the DESCRIPTOR built-in function

For example, PL/I passes by descriptor the arguments associated with the
following parameter descriptors:

DECLARE UNSTRING ENTRY (CHARACTER(*)),
TESTBITS ENTRY (BIT(3)),
MODEST ENTRY (1,

2 CHARACTER(*),
2,

3 BIT(3),
3 BIT(3));

When you declare a non-PL/I procedure that requires a character-
string descriptor for an argument, specify the parameter descriptor as
CHARACTER(*). For example, the Set Process Name (SYS$SETPRN)
system service requires the address of a character-string descriptor as an
argument. You can declare this service as follows:

DECLARE SYS$SETPRN ENTRY (CHARACTER(*));

When a parameter is declared as CHARACTER(*), its written argument
can be one of the following:

• A character-string constant or expression.

• A fixed-length character-string variable.

• A varying character-string variable or a variable declared as
CHARACTER(*)VARYING.

For any of those arguments, PL/I constructs a character-string descriptor
and passes its address.

To force an argument to be passed by descriptor, use the DESCRIPTOR
built-in function. For example:

DECLARE P ENTRY (ANY);
DECLARE (X,Y) FIXED DECIMAL (7,2);

CALL P(DESCRIPTOR (X));
CALL P(Y);

Here, X is passed by descriptor as specified by the DESCRIPTOR built-in
function. Y is passed by reference (see Section 11.4.28).

7–19

8 Program Control

The statements described in this chapter direct the run-time flow of
execution from statement to statement. They are the DO, BEGIN, END,
IF, SELECT, GOTO, LEAVE, STOP, null, ON, SIGNAL, and REVERT
statements.

The remainder of the chapter is devoted to handling conditions that could
arise during the execution of your program.

8.1 DO Groups and Statements
A DO-group is a sequence of PL/I statements delimited by a DO statement
and its corresponding END clause. The statements in a DO-group are
executed as the result of an unconditional DO statement or as the result
of the successful test of a conditional DO.

For example:

IF A > B THEN DO;
.
.
.
END;

The statements that occur between the DO and the END are a DO-
group. After all statements to be executed in this conditional DO-group
are complete, execution continues with the next executable statement
following the END statement.

Normally, all the statements contextually nexted one level below the DO
in the group are executed. However, control can be transferred out of a
DO-group in the following ways:

• By execution of a GOTO statement that transfers control to a label
outside the DO-group. The GOTO statement can be present in the
DO-group itself, in a procedure invoked directly or indirectly from
within the DO-group, or in an ON-unit activated while the DO-group
is active.

• By execution of a LEAVE statement that transfers control outside the
containing DO-group or to the next executable statement following the
END statement that terminates the DO-group.

• By execution of a RETURN or STOP statement that terminates the
current procedure or program.

You can nest DO-groups to a maximum level of 64.

The DO statement begins a sequence of statements to be executed in a
group; the group ends with the nonexecutable statement END. DO-groups
have several formats. These formats are described individually under the
following subheadings:

8–1

Program Control

• Simple DO

• DO WHILE

• DO UNTIL

• Controlled DO

• DO REPEAT

8.1.1 Simple DO
A simple DO statement is a noniterative DO. The statements nested
directly between the DO statement and its corresponding END statement
are executed once. PL/I treates these nested statements as if they are one
statement. After all statements in the group are executed, control passes
to the next executable statement in the program.

The format of a simple DO statement is:

DO;
.
.
.
END;

Examples

IF A < B THEN DO;
PUT LIST (’More data needed’);
GET LIST (VALUE);
A = A + VALUE;
END;

The simple DO statement is commonly used as the action of the THEN
clause of an IF statement, as shown above, or of an ELSE option.

8.1.2 DO WHILE
A DO WHILE statement causes a group of statements to be repeatedly
executed as long as a particular condition is satisfied. When the condition
is not true, the group is not executed.

The format of the DO WHILE statement is:

DO WHILE (test-expression);
.
.
.
END;

8–2

Program Control

test-expression
Any expression that yields a scalar value. If any bit of the value is a 1,
then the test expression is true; otherwise, the test expression is false. The
test expression must be enclosed in parentheses. (Comparison operations
yield a value with the type BIT(1).)

This expression is evaluated before each execution of the DO-group.
It must have a true value in order for the DO-group to be executed.
Otherwise, control passes over the DO-group to the next executable
statement following the END statement that terminates the group.

Examples

DO WHILE (A < B);
.
.
.

END;

This DO-group is executed as long as the value of the variable A is less
than the value of the variable B.

DO WHILE (LIST->NEXT ^= NULL());
.
.
.

END;

This DO-group is executed until a forward pointer in a linked list has a
null value.

DECLARE EOF BIT(1) INITIAL(’0’B);
.
.
.

ON ENDFILE(INFILE) EOF = ’1’B;
READ FILE(INFILE) INTO(INREC);
DO WHILE (^EOF);

.

.

.
READ FILE(INFILE) INTO(INREC);
END;

This DO-group reads records from the file INFILE until the end of the
file is reached. At the beginning of each iteration of the DO-group, the
expression ^EOF is evaluated; the expression is <BIT_STRING>(1)B until the
ENDFILE ON-unit sets the value of EOF to <BIT_STRING>(1)B.

8.1.3 DO UNTIL
A DO UNTIL statement causes a group of statements to be repeatedly
executed until a particular condition is satisfied. That is, while the
condition is false, the group is repeated.

The format of the DO UNTIL statement is:

DO UNTIL (test-expression);
.

8–3

Program Control

.

.
END;

test-expression
Any expression that yields a scalar value. If any bit of the value is 1, then
the test expression is true; otherwise the test expression is false. The test
expression must be enclosed in parentheses. (Comparison operations yield
a value having the type BIT(1).)

This expression is evaluated after each execution of the DO-group. It must
have a false value for the DO-group to be repeated. Otherwise, control
passes to the next executable statement following the END statement
that terminates the DO-group. The test expression must be enclosed in
parentheses.

Note: Both the WHILE and UNTIL options check the status of test
expressions, but they differ in that the WHILE option tests the
value of the test expression at the beginning of the DO-group,
and UNTIL tests the value of the test expression at the end of
the DO-group. Therefore, a DO-group with the UNTIL option and
no WHILE option will always be executed at least once, but a
DO-group with the WHILE option may never be executed.

Examples

DO UNTIL (A=0);
.
.
.

END;

This DO-group is executed at least once and continues as long as the value
of A is not equal to zero.

DO UNTIL (K<ALPHA);

.

.

.
END;

This DO-group is executed at least once and continues as long as the value
of the variable K is greater than or equal to the value of the variable
ALPHA.

8.1.4 Controlled DO
A controlled DO statement identifies a variable whose value controls the
execution of the DO-group and defines the conditions under which the
control variable is to be modified and repeatedly tested.

The format of the controlled DO statement is:

DO control-variable = start-value

8–4

Program Control

�
TO end-value [BY modify-value]
BY modify-value

�
[WHILE (test-expression)]
[UNTIL (test-expression)]
;

.

.

.
END;

control-variable
A reference to a variable whose current value, as compared to the end
value specified in the TO option, determines whether the DO-group is
executed. If none of the options are specified, the DO-group is executed
a single time regardless of the value of the control variable. The control
variable must be of an arithmetic data type.

start-value
An expression specifying the initial value to be given to the control
variable. Evaluation of this expression must yield an arithmetic value.

end-value
An expression giving the value to be compared with the control variable
during successive iterations. Evaluation of this expression must yield
an arithmetic value. This expression is evaluated exactly once when the
statement is executed for the first time. Thus if the end value changes as
the loop progresses, only this initial value is used.

modify-value
An expression giving a value by which the control value is to be modified.
Evaluation of this expression must yield an arithmetic value. This
expression is evaluated exactly once when the statement is executed
for the first time. Thus if the modify value changes as the loop progresses,
only this initial value is used. If the BY option is not specified, the modify
value is 1 by default.

WHILE (test-expression)
An option specifying a condition that further controls the execution of
the DO-group. The condition must be true at the beginning of each
DO-group iteration for the DO-group to be executed. The specified test
expression must yield a scalar value. If any bit in the value is a 1, then
the test expression is true; otherwise, the test expression is false. The test
expression must be enclosed in parentheses.

UNTIL (test-expression)
An option specifying a condition that further controls the execution of the
DO-group. This expression is evaluated at the end of each interation of
the DO-group, before the BY clause is applied to the control variable. The
condition must be false at the end of a DO-group execution for the next
DO-group iteration to be executed. The specified test expression must
yield a scalar value. If any bit in the value is a 1, then the test expression
is true; otherwise, the test expression is false. The test expression must be
enclosed in parentheses.

8–5

Program Control

Note: If the TO, WHILE, and UNTIL options are omitted, the controlled
DO statement specifies no means for terminating the group; the
execution of the group must be terminated by a statement or
condition occurring within the group.

Example

This DO-group will prompt the user for integer input values, and add each
input value to the current sum. When the sum is greater than 100, the
DO-group will exit.

DECLARE (NEXT_VALUE,SUM) FIXED BIN;

SUM = 0;
DO UNTIL (SUM > 100);

GET LIST (NEXT_VALUE) OPTIONS (PROMPT (’Next value to add? ’));
SUM = SUM + NEXT_VALUE;

END;

PUT SKIP LIST (’The total sum is ’,SUM);

The controlled DO-group is executed by the following steps:

1 The following measures are taken to prevent the allocation of a new
control variable during the execution of the DO-group:

• If the control variable is based, its pointer qualifier is evaluated
and a temporary reference of the control variable type is created.
The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is subscripted, its subscripts are evaluated
and a temporary reference of the control variable type is created.
The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is neither based nor subscripted, its
reference is used in subsequent steps.

2 The start value expression is evaluated and assigned to the control
variable. The expressions specified in the TO and BY options
(if specified) are evaluated, and their values are stored. These
expressions can contain references to the object referenced by the
control variable. If they do, the original reference, not the temporary
reference, is used in evaluation of the expressions.

3 If the TO option is present, the value of the control variable is
compared with the end value specified in the TO option. Otherwise,
this step is skipped. Execution of the DO-group terminates if either of
the following is true:

• The modify value is greater than zero and the control variable is
greater than the end-value.

• The modify value is less than zero and the control variable is less
than the end value.

If this step terminates the DO-group on the first iteration, the control
variable has a final value assigned by the start value. If the group is
terminated on a subsequent iteration, the control variable has a final
value assigned by step 6.

8–6

Program Control

4 If a WHILE option is present, its test expression is evaluated. If
it does not produce a true value, the execution of the DO-group
terminates.

5 The body of the DO-group is executed. The execution of the DO-
group can be terminated during this step by the execution of a STOP
or RETURN statement or by the execution of a GOTO or LEAVE
statement that transfers control out of the DO-group.

The body of the DO-group can also contain statements that change
the values of the control variable, modify value, end value, or test
expression. Changing the modify value or the end value in the body
of the loop will not affect the number of times the loop is iterated.
However, changing the value of the control variable or the test
expression can affect the number of iterations if the control variable
was not made into a temporary by step 1.

6 If an UNTIL option is present, its test expression is evaluated. If it
produces a true value, the execution of the DO-group terminates.

7 Unless none of the options are specified, the value of the control
variable is modified as follows:

control variable = control variable + modify value;

8 Execution continues at step 3 unless none of the options are specified,
in which case control passes to the next executable statement in the
program.

Examples

DO I = 2 TO 100 BY 2;

This DO-group is executed 50 times, with values for I of 2, 4, 6, and so on.

DO I = LBOUND(ARRAY,1) TO HBOUND(ARRAY,1);

This DO-group is executed as many times as there are elements in the
array variable ARRAY, using the subscript values of the array’s elements
for the values of I.

DO I = 1 BY 1 WHILE (X < Y);

This DO-group continues to be executed with successively higher values
for I while the value of X is less than the value of Y.

DO I = 1 BY 1 WHILE (X < Y) UNTIL (X = 12);

This DO-group resembles the DO-group in the preceding example, except
that the DO-group continues to be executed while the value of X is less
than the value of Y or until the value of X is equal to 12.

A controlled DO statement that does not specify a TO or BY option results
in a single iteration of the following DO-group. For example:

DO X = 1 WHILE (A);

Even if A is true, this DO-group executes a single time only. If A is false,
it is not executed at all. Because there is no expression to change the
value of X, the DO-group will not be executed again.

DO X = 1;

8–7

Program Control

This DO-group executes a single time only, regardless of the value of X.

8.1.5 DO REPEAT
The DO REPEAT statement executes a DO-group repetitively for different
values of a control variable. The control variable is assigned a start value
that is used on the first iteration of the group. The REPEAT expression is
evaluated before each subsequent iteration, and its result is assigned
to the control variable. A WHILE clause can also be included. If it
is included, the WHILE expression is evaluated before each iteration
(including the first), but after the control variable has been assigned. The
format of the DO REPEAT statement is:

DO variable = start-value REPEAT expression
[WHILE (test-expression)] [UNTIL (test-expression)];

.

.

.
END;

variable
A reference to a control variable. The control variable can be any scalar
variable.

start-value
An expression specifying the initial value to be given to the control
variable. The evaluation of this expression must yield a value that is
valid for assignment to the control variable.

expression
An expression giving the value to be assigned to the control variable on
reiterations of the DO REPEAT group. The expression is evaluated before
each iteration after the first. Evaluation of this expression must yield a
result that is valid for assignment to the control variable.

WHILE (test-expression)
An option specifying a condition that controls the termination of the DO
REPEAT group. The DO REPEAT group continues while the condition
is true. The specified test expression must yield a scalar value. If any
bit of the value is 1, then the test expression is true; otherwise, the test
expression is false. The test expression must be enclosed in parentheses.

This expression is evaluated each time control reaches the DO statement;
the test expression must have a true value in order for the DO-group to
be executed. Otherwise, control passes to the next executable statement
following the END statement that terminates the DO-group.

See Section 8.1.4 for a discussion of this option when used with the
controlled DO statement.

8–8

Program Control

UNTIL (test-expression)
An option specifying a condition that further controls the termination
of the DO REPEAT group. The DO REPEAT group continues until the
condition is true. The specified test expression must yield a scalar value.
If any bit in the value is 1, then the test expression is true; otherwise,
the test expression is false. The test expression must be enclosed in
parentheses.

This expression is evaluated after the first execution of the DO-group; the
test expression must have a true value in order for the DO-group to be
executed a second time. Otherwise, control passes to the next executable
statement following the END statement that terminates the DO-group.

Note: If the WHILE and UNTIL options are omitted, the DO REPEAT
statement specifies no means for terminating the group; the
execution of the group must be terminated by a statement or
condition occurring within the group.

A DO REPEAT group is executed by the following steps:

1 The following measures are taken to prevent the allocation of a new
control variable during the execution of the DO-group:

• If the control variable is based, its pointer qualifier is evaluated
and a temporary reference of the control variable type is created.
The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is subscripted, its subscripts are evaluated
and a temporary reference of the control variable type is created.
The temporary reference is used as the control variable in
subsequent steps.

• If the control variable is neither based nor subscripted, its
reference is used in subsequent steps.

2 The start value expression is evaluated and assigned to the control
variable.

3 If a WHILE option is present, its test expression is evaluated. If
it does not produce a true value, the execution of the DO-group
terminates. If the test expression is not present, execution continues.

4 The body of the DO-group is executed. The execution of the DO-
group may be terminated during this step by the execution of a STOP
or RETURN statement or by the execution of a GOTO or LEAVE
statement that transfers control outside the DO-group. Statements in
the group can also modify the values of the control control variable,
REPEAT expression, and test expression.

5 If an UNTIL option is present, its test expression is evaluated. If it
produces a true value, the execution of the DO-group terminates. If
the test expression is not present, execution continues.

6 The REPEAT expression is evaluated and its value is assigned to the
control variable.

7 Execution continues at step 3.

8–9

Program Control

Examples

DO LETTER=’A’ REPEAT (BYTE(I));

This example will repeat the group with an initial LETTER value of <BIT_
STRING>(A) and with subsequent values assigned by the built-in function
BYTE(I). The control variable I can be assigned new values within the
group. The group will iterate endlessly unless terminated by a statement
or condition within the group.

DO I = 1 REPEAT (I + 2) WHIL E (I <= 100);

This example has the same effect as the following controlled DO
statement:

DO I = 1 TO 100 BY 2;

The most common use of the DO REPEAT statement is in the
manipulation of lists. For example:

DO P = LIST_HEAD REPEAT (P->LIST.NEXT)
WHILE (P ^= NULL());

In this example, the pointer P is initialized with the value of the pointer
control variable LIST_HEAD. The DO-group is then executed with this
value of P. The REPEAT option specifies that each time control reaches the
DO statement after the first execution of the DO-group, P is to be set to
the value of LIST.NEXT in the structure currently pointed to by P.

8.2 BEGIN Statement
The BEGIN statement denotes the start of a begin block.

The format of the BEGIN statement is:

BEGIN;

A begin block is a sequence of statements headed by a BEGIN statement
and terminated by an END statement. A begin block can be used wherever
a single executable statement is valid, for instance, in an ON-unit. The
statements in a begin block can be any PL/I statements, and begin blocks
can contain DO-groups, DECLARE statements, procedures, and other
(nested) begin blocks.

A begin block provides a convenient way to localize variables. Variables
declared as internal within a begin block are not allocated storage until
the block is activated. When the block terminates, storage for internal
automatic variables is released. A begin block terminates in the following
situations:

• When its corresponding END statement is encountered. Control
continues with the next executable statement in the program.

• When it executes a nonlocal GOTO to transfer control to a previous
block.

• When it executes a RETURN statement.

8–10

Program Control

A begin block differs from a DO-group chiefly in its ability to localize
variables. Variables declared within DO-groups are not localized to the
group (unless the group contains a begin block or procedure that declares
internal variables). Begin blocks are preferable when you want to restrict
the scope of variables. Furthermore, there are some cases (such as ON-
units) in which DO-groups cannot be used. Otherwise, DO-groups are
often more efficient, because they do not have the overhead associated
with block activation. In general, you should use a DO-group instead of a
begin block unless there are declarations present or you require multiple
statements in an ON-unit.

A begin block can designate a series of statements to be executed
depending on the success or failure of a test in an IF statement. For
example:

IF A = B THEN BEGIN ;
.
.
.
END;

A begin block also provides the only way to denote a series of statements
to be executed when an ON condition is signaled. For example:

ON ERROR BEGIN;
[statement . . .]
END;

See Section 1.4 for more details on blocks.

8.3 END Statement
The END statement marks the end of the block or group headed by the
most recent BEGIN, DO, SELECT, or PROCEDURE statement.

The format of the END statement is:

END [label-reference];

label-reference
A reference to the unsubscripted label on the PROCEDURE, BEGIN,
SELECT, or DO statement for which the specified END statement is the
termination. A label is not required. If specified, the label reference must
match only one label, which is the label of the most recent BEGIN, DO,
SELECT, or PROCEDURE statement that is not already matched with an
END statement. If the label reference is omitted, the most recent textual,
non-terminated PROC, BEGIN, SELECT, or DO statement is matched by
default.

Note that a procedure declared with the RETURNS option must execute a
RETURN statement before it encounters the END statement marking the
end of the procedure.

When the END statement is encountered, one of the following actions is
performed, depending on the type of block or group that it terminates:

• When an END statement denotes the end of a procedure, the procedure
is terminated. The storage allocated for the block is released, and all
automatic variables are made inaccessible. If the current procedure

8–11

Program Control

is the main or only procedure, the program terminates. Otherwise,
control returns to the statement following the CALL statement or
function invocation that invoked the procedure.

• When an END statement denotes the end of a begin block, the block
is terminated. Storage allocated for the block is released, and all
automatic variables are made inaccessible. Control passes to the next
executable statement.

• When an END statement denotes the end of a DO-group, control
returns either to the DO statement that heads the group or to the next
executable statement following the END statement. If the DO-group
is headed by a simple DO, that is, one that causes the DO-group to be
executed only once, control passes to the next executable statement.
Otherwise, control returns to the head of the DO-group.

• When an END statement denotes the end of a SELECT-group, the
SELECT-group is terminated and control passes to the next executable
statement following the end statement.

8.4 IF Statement
The IF statement tests an expression and performs a specified action if the
result of the test is true.

The format of the IF statement is:

IF test-expression THEN action [ELSE action];

test-expression
Any valid expression that yields a scalar bit-string value. If any bit of the
value is 1, then the test expression is true; otherwise, the test expression
is false.

action
Any of the following:

• Any unlabeled statement except the nonexecutable statements:
DECLARE, END, ENTRY, FORMAT, or PROCEDURE

• An unlabeled DO-group or begin block

The IF statement evaluates the test expression. If the expression is true,
the action specified following the keyword THEN is executed. Otherwise,
the action, if any, specified following the ELSE keyword is executed.

Examples

IF A < B THEN BEGIN;

The begin block following this statement is executed if the value of the
variable A is less than the value of the variable B.

IF ^SUCCESS
THEN

CALL PRINT_ERROR;
ELSE

CALL PRINT_SUCCESS;

8–12

Program Control

The IF statement defines the action to be taken if the variable SUCCESS
has a false value (the THEN clause) and the action to be taken otherwise
(the ELSE clause).

8.4.1 Nested IF Statements
The action specified in a THEN or an ELSE clause can be another IF
statement.

An ELSE clause is matched with the nearest preceding IF/THEN that is
not itself matched with a preceding ELSE. For example:

IF ABC
THEN

IF XYZ
THEN

GOTO GBH;
ELSE

GOTO THESTORE;
ELSE

GOTO HOME;

In this example, the first ELSE clause is executed if ABC is true and XYZ
is false. The second ELSE clause is executed if ABC is false.

In some cases, proper matching of IF and ELSE can require a null
statement (a semicolon) as the target of an ELSE. For example:

IF ABC
THEN

IF XYZ
THEN

GOTO HOME;
ELSE;

ELSE
GOTO THESTORE;

In this example, the ELSE GOTO THESTORE statement is executed if
ABC is false.

8.5 SELECT Statement
The SELECT statement tests a series of expressions and performs a
specified action depending on the result of the test. The statement has two
forms: in the first form, the expressions in a WHEN clause are tested for
truth; in the second form, the expressions in a WHEN clause are compared
to see if any have the same value as another specified expression called
the select expression. Any of the expressions can be, but need not be,
constants. An optional OTHERWISE clause is available to name an action
to be performed if none of the preceding expressions have satisfied the
condition specified.

The two forms of the SELECT statement and the OTHERWISE clause are
described in more detail below.

The general form of the SELECT statement is:

8–13

Program Control

SELECT [(select-expression)];
[WHEN [ANY | ALL] (case-expression, . . .) [action] ;] . . .
[{OTHERWISE | OTHER} [action] ;]

END;

select-expression
An expression that can be evaluated to any type of value.

case-expression, . . .
One or more expressions to be tested, evaluating to bit-string values, or, if
a select expression is used, with values that will be compared to the select
expression’s value.

action
Any statement (including a null statement, another SELECT statement,
a DO-group, or a BEGIN-END block) except a DECLARE, END, ENTRY,
FORMAT, or PROCEDURE statement.

8.5.1 The Two Forms of the SELECT Statement
Depending on whether you use a select expression or not, SELECT has
two different forms, which are explained in detail below.

SELECT Without a Select Expression

The first form of the SELECT statement omits the select expression. In
this form, the expressions in a WHEN clause are evaluated, and a specified
action is performed if the result of any test is true (or, if ALL is specified,
the results of all tests are true); an expression is true if it evaluates to a
bit string containing any bit with the value of ’ 1’ B. In the usual case, the
test for truth results in a bit string containing one bit: ’ 1’ B for true or
’ 0’ B for false.

When the keyword ANY (the default) appears in the WHEN clause, then
if any one of the expressions evaluates to true the corresponding action is
performed. No further expressions in that WHEN clause or in subsequent
WHEN clauses are evaluated (and thus the expressions need not have
unique values), and no subsequent actions are performed.

The WHEN clauses are checked in the order listed. However, the
expressions within one WHEN clause might be evaluated in any order,
and not all these expressions are necessarily evaluated. As soon as any
expression is found true, subsequent expressions are not evaluated.

If the keyword ALL appears in the WHEN clause, the action is performed
only if all expressions in that WHEN clause evaluate to true. Once one
action is performed, no subsequent WHEN clauses are evaluated and no
subsequent actions are performed. If any expression in the WHEN clause
does not result in a true value, no further expressions in that clause are
evaluated and the action is not performed.

8–14

Program Control

Following is an example of the first form of SELECT:

SELECT;
WHEN ANY (A=10,A=20,A=30) B=B+1;
WHEN (A=50) B=B+2;
WHEN (A=60) B=B+3;
WHEN (A=70) B=B+4;
WHEN (A=80) B=B+5;
WHEN (A=90) B=B+6;
WHEN ALL (A>90,A<500) B=B+10;
OTHERWISE B=B+C;

END;

The SELECT statement defines the action to be taken if the variable A
has any of the values specified in the WHEN clauses (or, in the case of
the WHEN ALL clause, if A is both greater than 90 and less than 500). If
none of the WHEN clauses is true, the action specified in the OTHERWISE
clause (B=B+C) is performed.

SELECT With a Select Expression

The second form of the SELECT statement has a select expression after
the keyword SELECT. This form of the SELECT statement evaluates
expressions in the WHEN clauses and then compares their values to the
value of the select expression (instead of testing the expressions for truth
or falsity, as in the first form of SELECT). It performs a specified action if
any expression has the same value as the select expression (or, if ALL is
used, all expressions have the same value as the select expression). In this
form of the SELECT statement, as in the previous form, the expressions
in a WHEN clause might be evaluated in any order, and not all the
expressions are necessarily evaluated.

Following is an example of the second form of SELECT:

SELECT(A);
WHEN (50) C=C+1;
WHEN ANY (60,61,62,B+C) C=C+2;
WHEN ALL (70,D) C=C+3;
OTHERWISE C=C+D;

END;

The SELECT statement defines the action to be taken if the select
expression (A in the example) evaluates to any or all of the values of the
expressions following a WHEN clause. The first action (the assignment
statement C=C+1) will be performed if A has a current value of 50. In that
case, none of the subsequent WHEN clauses will be evaluated. The second
WHEN clause includes the ANY keyword, and so the second action will be
performed if A evaluates to or equals 60 or 61 or 62 or the sum of B and
C. If neither the first nor the second action is performed, the third WHEN
clause’s expressions are tested. The third WHEN clause includes the ALL
keyword, so the third action will be performed only if A equals both 70 and
D. If none of the WHEN clauses causes an action to be performed, then
the action in the OTHERWISE clause (the assignment statement C=C+D)
will be performed.

8–15

Program Control

8.5.2 OTHERWISE Clause
If none of the WHEN clauses causes the corresponding action to be
performed, the action specified in the optional OTHERWISE clause
is performed; but if the OTHERWISE clause is omitted, an ERROR
condition is signalled. OTHERWISE can be followed by a semicolon (a
null statement) to cause execution to continue and avoid an ERROR
condition when you do not want to specify an action after OTHERWISE.
For example:

OTHERWISE;

After an action is performed following a WHEN or OTHERWISE clause,
control passes to the next executable statement following the END
statement that terminates the SELECT statement, unless normal flow
is altered within the action.

8.5.3 Nested SELECT Statements
Note that the action specified in a WHEN or OTHERWISE clause can be
another SELECT statement, resulting in nested SELECT statements, as
in the following example:

SELECT;
WHEN (condition A)

SELECT;
WHEN (condition A1) statement 1;
WHEN (condition A2) statement 2;
END;

WHEN (condition B)
SELECT;

WHEN (condition B1) statement 3;
WHEN (condition B2) statement 4;
OTHERWISE statement 5;
END;

OTHERWISE statement 6;
END;

In this example, statement 1 is executed when both condition A and
condition A1 are true. Statement 2 is executed when both condition A and
condition A2 are true and A1 is false. If A is true but neither A1 nor A2
is true, an ERROR condition is reported because no OTHERWISE clause
exists within this SELECT statement.

If condition A is false, condition B is checked. If B is true but B1 and B2
are both false, statement 5 (in the corresponding OTHERWISE clause)
is executed. If conditions A and B are both false, statement 6 (in the
outermost OTHERWISE clause) is executed.

If you want to avoid the possibility that execution could be stopped by an
ERROR condition, which occurs in this example if condition A is true and
A1 and A2 are false, you can put in an OTHERWISE clause with a null
statement (a semicolon) as its action, which would cause control to pass to
the first executable statement following the end of the outermost SELECT
statement.

An END statement must terminate each SELECT statement.

8–16

Program Control

8.6 GOTO Statement
The GOTO statement causes control to be transferred to a labeled
statement in the current or any outer procedure.

The format of the GOTO statement is:n
GOTO
GO TO

o
label-reference [OTHERWISE];

label-reference
A label constant or an expression that, when evaluated, yields a label
value. A label value denotes a statement in the program.

The specified label cannot be the label of an ENTRY, FORMAT, or
PROCEDURE statement. The label reference specified in a GOTO
statement can be any of the following:

• An unsubscripted label constant. For example:

GOTO ALPHA;
.
.
.

ALPHA:

• A subscripted label constant, for which the subscript is specified with
an integer constant or a variable expression. For example:

GOTO PROCESS(1);
.
.
.

PROCESS(1):

• A label variable that, when evaluated, yields a label value. For
example:

DECLARE PROCESS LABEL VARIABLE;
.
.
.

PROCESS = BILLING;
.
.
.

GOTO PROCESS;

• A subscripted label variable that, when evaluated, yields a label value.
For example:

DECLARE X(5) LABEL;
X(1) = NEXT;

GOTO X(1);

In the case of a label variable, the resulting label value must designate an
existing block activation. (Similarly, a label constant must designate an
existing block activation.) If the designated block activation is the current
block activation, the GOTO statement causes a local GOTO. No special
processing occurs.

8–17

Program Control

OTHERWISE
This option can be used only when the label-reference is a subscripted
label with a variable subscript. If present in any other case, it will be
reported as an error.

If the variable subscript is out of range and the OTHERWISE option is
present, the statement following the GOTO will be executed next. If the
OTHERWISE option is not specified and the subscript of the last label is
not an asterisk (*), the subscript is reported out of range at run-time and
the process will be terminated.

Nonlocal GOTO

If the specified label value is not in the current block, the GOTO statement
is considered a nonlocal GOTO. The following can occur:

• The current block, and any blocks intervening between it and the block
containing the label value, are released. This rule applies both to
procedure blocks and to begin blocks.

• If a GOTO statement transfers control out of a procedure that is
invoked in a function reference, the statement containing the function
reference is not evaluated further.

• A special case of a nonlocal GOTO occurs if a GOTO is executed in an
ON-unit. The condition handling mechanism signals SS$_UNWIND
before control transfers to the label. This allows programs to clean up
intervening blocks before proceding.

Examples

The following example shows the use of the GOTO statement:

RESTART:;
.
.
.
BEGIN;

ON ERROR GOTO RESTART;
.
.
.

END;

The GOTO statement provides a transfer address for the current procedure
when the ERROR condition is signaled.

DECLARE PROCESS(5) LABEL VARIABLE;
.
.
.

GOTO PROCESS(2);

The GOTO statement evaluates the label reference and transfers control
to the label constant corresponding to the second element of the array
PROCESS. PROCESS consists of label variables.

The following restrictions apply to the use of labels and label data:

• No statement can have more than one label. However, an executable
statement can be preceded by any number of labeled null statements,
which have the same effect as would multiple labels.

8–18

Program Control

• Operations on label values are restricted to the operators = and ^=, for
testing equality or inequality. Two values are equal if they refer to the
same statement in the same block activation.

• Any statement in a PL/I program can be labeled except the following:

— A DECLARE statement

— A statement beginning an ON-unit, THEN clause, ELSE clause,
WHEN clause, or OTHERWISE clause

• Labels on PROCEDURE, ENTRY, and FORMAT statements are not
considered statement labels and cannot be used as the targets of
GOTO statements.

• An identifier occurring as a label in a block cannot be declared in that
block (except as a structure member) or occur in the block’s parameter
list.

• Any reference to a label value after its block activation terminates is
an error with unpredictable results.

For more information on labels, see Section 3.7.

8.7 LEAVE Statement
The LEAVE statement causes control to be transferred out of the
immediately containing DO-group or out of the containing DO-group
whose label is specified with the statement.

The format of the LEAVE statement is:

LEAVE [label-reference];

label-reference
A reference to a label on a DO statement that heads a containing DO-
group. The label reference can be a label constant or a subscripted label
constant for which the subscript is specified with an integer constant. The
label reference cannot be a label variable, nor can it be a subscripted label
constant for which the subscript is specified with a variable.

On execution, a LEAVE statement with no label reference causes control
to be transferred to the first statement following the END statement that
terminates the immediately containing DO-group. If the LEAVE statement
has a label, control is passed to the first executable statement following
the END statement for the corresponding label indicated in the LEAVE
statement. Thus, the LEAVE statement provides an alternative means of
terminating execution of a DO-group. In the case of a LEAVE statement
with a label reference, several nested DO-groups can be terminated as
control transfers outside the referenced DO-group.

Restrictions

The following restrictions apply to the use of the LEAVE statement:

• A LEAVE statement must be contained within a DO-group.

• A LEAVE statement must be in the same block as the DO statement
to which it refers.

8–19

Program Control

• If a LEAVE statement has a label reference, it must refer to a label
on a DO statement that heads a DO-group that contains the LEAVE
statement. The LEAVE statement must be in the same block as the
labeled DO statement.

• The label reference specified with a LEAVE statement must be a label
constant or a subscripted label constant with an integer constant
subscript.

Examples

The following example shows a LEAVE statement without a label
reference:

DO I = 1 TO 100;
.
.
.

IF COMMAND = ’QUIT’ THEN LEAVE;
.
.
.

END;
PUT LIST (’Job finished’);

In this example, the LEAVE statement transfers control directly to the
PUT statement if the condition in the IF statement is satisfied.

The next example shows a LEAVE statement with a label reference:

LOOP1: DO WHILE (MORE);
.
.
.

LOOP2: DO I = 1 TO 12;
.
.
.

IF QUAN(I) > 150 THEN LEAVE LOOP1;
END; /* Loop 2 */

.

.

.
END; /* Loop 1 */

In this example, the LEAVE statement transfers control to the first
statement beyond the END statement that terminates LOOP1.

The following examples show some invalid uses of the LEAVE statement:

LEAVE; /* LEAVE statement must be in */
/* DO-group */

DO;
BEGIN;

LEAVE; /* LEAVE statement must be in */
END; /* same block as DO statement */

END;

ON ENDFILE(SYSIN) LEAVE; /* ON-unit is separate block */

8–20

Program Control

DECLARE LABVAR LABEL VARIABLE;
LABVAR = LOOP;
LOOP: DO I = 1 TO 10;

LEAVE LABVAR; /* Label reference cannot be a variable */
END;

LAB(1): DO;
LAB(2): DO;

I = 1;
LEAVE LAB(I); /* Subscript must be a constant */

END;
END;

8.8 STOP Statement
The STOP statement terminates execution of a program, regardless of the
current block activation.

The format of the STOP statement is:

STOP;

The STOP statement signals the FINISH condition, and closes all open
files. If the main procedure has the RETURNS attribute, no return value
is obtainable.

8.9 Null Statement
The null statement performs no action. Its format is:

;

The null statement usually serves as the target statement of a THEN
or ELSE clause in an IF statement, as the target of a WHEN or
OTHERWISE clause in a SELECT statement, or as an action in an
ON-unit. The following examples illustrate these uses.

IF A < B THEN GOTO COMPUTE;
ELSE ;

In this example, no action takes place if A is greater than or equal to B;
execution continues at the statement following ELSE ;. A construction
of this type may be necessary when IF statements are nested (see
Section 8.4.1).

SELECT;
WHEN (condition A,B,C) GOTO FILE_READ;
WHEN (condition D,E) GOTO UPDATE;
OTHERWISE;

END;

In this example, control is passed to the next executable statement after
END if conditions A, B, C, D, and E are not true.

ON ENDPAGE(SYSPRINT);

In this example, no action takes place upon execution of the ON-unit; the
I/O operation that caused the ENDPAGE condition continues.

8–21

Program Control

The null statement can also be used to declare two labels for the same
executable statement, as in the following example:

LABEL1: ;
LABEL2: statement . . .

8.10 Condition Handling
A PL/I condition is any occurrence that causes the interruption of a
program and a signal. When a condition is signaled, PL/I initiates a
search for a user-written program unit called an ON-unit to handle the
condition.

An ON condition is any one of several named conditions whose occurrence
during the execution of a program interrupts the program. When a
condition occurs or is signaled, a statement or sequence of statements,
called an ON-unit, is executed. The SYSTEM option can be specified in
the ON statement, causing the default system condition handling to be
executed.

The following list of condition handling topics are discussed in subsequent
sections.

• The ON statement

• The SIGNAL statement

• The REVERT statement

• Summary of ON conditions

• Default PL/I ON-unit

• Establishment of ON-units

• Contents of an ON-unit

• Search for ON-units

• Completion of ON-units

8.10.1 ON Statement
The ON statement defines the action to be taken when a specific condition
or conditions are signaled during the execution of a program. The ON
statement is an executable statement. It must be executed before the
statement that signals the specified condition.

The format of the ON statement is:

ON condition-name, . . . [SNAP]
�

on-unit
SYSTEM;

�

8–22

Program Control

condition-name, . . .
The name or names of the specific conditions for which an ON-unit or the
SYSTEM option is specified. There is a keyword name associated with
each condition. Successive keyword names must be separated by commas.
The conditions are summarized in Table 8–1; each condition is described
in an individual entry in this manual.

SNAP
This option invokes the debugger and causes a traceback of all active
routines to be displayed when the condition is raised. If you use the SNAP
option, you should specify the /DEBUG qualifier on both the PLI command
and the LINK command in order to have all the debugger symbol table
information accessible.

If you want to run a program containing the SNAP option in a batch job
and cause the program to resume execution after any display of traceback
information, you can define DBG$INIT to point to a debug initialization
file that contains the following line:

WHILE PC ^= 0 DO(GO)

on-unit
The action to be taken when the specified condition or conditions are
signaled. An ON-unit can be:

• Any single, unlabeled statement except DECLARE, DO, END, ENTRY,
FORMAT, IF, ON, PROCEDURE, RETURN, or SELECT.

• An unlabeled begin block.

• A null statement (a semicolon alone), which causes program execution
to continue as if the condition had been handled.

Only the most recent ON-unit established for a given condition can
be active. If two successive ON statements are executed for the same
condition, the second ON statement nullifies the first.

If no ON-unit is established for a particular condition, the condition
ERROR is signaled. If no ON-unit is established for ERROR condition, the
default system ON-unit is executed. See Section 8.10.5.

SYSTEM
This option invokes the default system condition handling for the
specified condition, overriding any existing ON-unit for the condition.
See Section 8.10.6.

8.10.2 SIGNAL Statement
The SIGNAL statement causes a specified condition to be signaled, which
causes the system to search for and execute an ON-unit to handle the
condition. See Section 8.10.8.

The format of the SIGNAL statement is:

SIGNAL condition-name;

8–23

Program Control

condition-name
The name of the condition to be signaled. It must be one of the keywords
listed in Table 8–1. Each of these conditions is described in its own section.

Most conditions occur as a result of a hardware trap or fault, or as
a result of signaling by PL/I run-time procedures. You can use the
SIGNAL statement within a program as a general-purpose communication
technique. In particular, the VAXCONDITION and CONDITION
conditions let you signal unique user-defined condition values.

8.10.3 REVERT Statement
The REVERT statement cancels an ON-unit established for a specified
condition or conditions in the current block only.

The format of the REVERT statement is as follows:

REVERT condition-name, . . . ;

condition-name, . . .
The keyword name or names associated with the condition or conditions
for which the ON-unit is to be reverted. Successive names must be
separated by commas. The valid condition names are the same as for
the ON statement.

If no ON-unit is established for a specified condition for the current block,
the REVERT statement has no effect.

The REVERT statement does not cancel all ON-units that may be active
at the same time it is executed (see Section 8.10.8), only a handler in
the current block. If you want to temporarily block activation of all user-
written ON-units for a condition, define an ON-unit with the SYSTEM
option for the given condition.

An ON-unit can be re-established after execution of a REVERT statement
by subsequently executing an ON statement.

The REVERT statement has no effect on an ON-unit established for the
ANYCONDITION condition unless the statement explicitly references the
ANYCONDITION condition. For example:

REVERT ANYCONDITION;

Therefore, a statement such as the following has no effect on an ON-unit
established for the ANYCONDITION condition:

REVERT ZERODIVIDE;

The next example shows this more clearly:

PROGRAM: PROCEDURE OPTIONS(MAIN);
DECLARE A FIXED;
DECLARE B FIXED INITIAL (5);
DECLARE C FIXED INITIAL (0);

ON ANYCONDITION BEGIN;
PUT SKIP LIST (’Handled condition = ’,ONCODE());
END;

REVERT ZERODIVIDE;

8–24

Program Control

A = B / C; /* Signal divzero */

ON ZERODIVIDE BEGIN;
PUT SKIP LIST (’Handled ZERODIVIDE’);
END;

A = B / C; /* Signal divzero */

REVERT ZERODIVIDE;

A = B / C; /* Signal divzero */

ON ZERODIVIDE BEGIN;
PUT SKIP LIST (’Handled ZERODIVIDE’);
END;

REVERT ANYCONDITION;

A = B / C; /* Signal divzero */

REVERT ZERODIVIDE;

A = B / C; /* Signal divzero */

END PROGRAM;

When you run the program, the following conditions result:

Handled condition = 1156
Handled ZERODIVIDE
Handled condition = 1156
Handled ZERODIVIDE
PL/I ERROR condition.

8.10.4 Summary of ON Conditions
Most, but not all, ON conditions are associated with errors. The types
of conditions for which you can establish ON-units are grouped in the
following categories.

• Conditions that occur during I/O operations:

— ENDFILE, to take action when the end-of-file occurs while a file is
being read

— ENDPAGE, to take action when the last line on a page is printed

— KEY, to take action when an error occurs when a record is accessed
by key

— UNDEFINEDFILE, to respond to any file-specific errors that can
occur during the opening of a file

• Conditions that indicate arithmetic conditions related to hardware
violations:

— FIXEDOVERFLOW, to respond when integer or fixed-point values
become too large to be expressed

— OVERFLOW, to respond when floating-point values become too
large to be expressed

— UNDERFLOW (OpenVMS VAX systems only), to respond when
floating-point values become too small to be expressed.

8–25

Program Control

— ZERODIVIDE, to respond when the divisor in a division operation
has a value of zero

• Other conditions:

— AREA, to respond when an error has been detected during
performance of an operation on an area (various subconditions
can be determined through use of the ONCODE built-in function)

— CONDITION, to respond to programmer-defined conditions

— CONVERSION, to respond to data conversion errors from
CHARACTER to any arithmetic data type or bit string

— STORAGE, to respond when an error has been detected during
allocation of a controlled variable or a based variable other than in
an area

— STRINGRANGE, to respond to substring references that are
beyond the length of the string.

— SUBSCRIPTRANGE, to respond to array references with out-of-
bound subscripts.

• General classes of exceptional conditions:

— ANYCONDITION, to respond to all conditions for which no specific
ON-unit is established in the current block

— ERROR, to respond to language-specific and run-time-specific
errors

— FINISH, to respond when a STOP statement is executed

— VAXCONDITION, to respond to condition values that are specific
to the operating system or to be used as user-defined conditions
created by SIGNAL VAXCONDITION(n).

Table 8–1 summarizes ON conditions. Each condition is described
individually in the sections that follow.

Table 8–1 Summary of ON Conditions

Condition Name Function

ANYCONDITION Handles any condition not specifically handled by another
ON-unit

AREA Handles a condition that occurs during an operation on an
area

CONDITION Handles programmer-defined conditions

CONVERSION Handles data conversion errors

ENDFILE Handles end-of-file for a specified file

ENDPAGE Handles end-of-page for a specified file with PRINT
attribute

ERROR Handles miscellaneous error conditions and conditions for
which no specific ON-unit exists

8–26

Program Control

Table 8–1 (Cont.) Summary of ON Conditions

Condition Name Function

FINISH Handles program exit when the main procedure executes
a RETURN statement, when any block executes a STOP
statement, or when the program exits due to an error that
is not handled by an ON-unit

FIXEDOVERFLOW Handles fixed-point decimal and integer overflow exception
conditions

KEY Handles any error involving the key during keyed access
to a specified file

OVERFLOW Handles floating-point overflow exception conditions

STORAGE Handles a condition that occurs during allocation of a
controlled variable or a based variable other than in an
area

STRINGRANGE Handles out-of-bound substring references

SUBSCRIPTRANGE Handles out-of-bound array references

UNDEFINEDFILE Handles any errors in opening a specified file

UNDERFLOW (VAX
only)

Handles floating-point underflow exception conditions

VAXCONDITION Handles operating system or programmer-specified
condition values

ZERODIVIDE Handles divide-by-zero exception conditions

8.10.4.1 ANYCONDITION Condition Name
The ANYCONDITION keyword can be specified in an ON, REVERT, or
SIGNAL statement. It designates an ON-unit established for all signaled
conditions that are not handled by specific ON-units.

The ANYCONDITION keyword is not defined in the PL/I language.
It is provided specifically for use in the OpenVMS operating system
environment. For detailed information on OpenVMS condition handling,
see the Kednos PL/I for OpenVMS Systems User Manual.

8.10.4.2 AREA Condition Name
The AREA condition is raised when various operations fail in relation
to areas. For example, it is raised if the extent of an area is not large
enough to contain the variable or variables allocated to it, or if the area is
incorrectly formatted.

For more information see the Kednos PL/I for OpenVMS Systems User
Manual.

8–27

Program Control

8.10.4.3 CONDITION Condition Name
The CONDITION condition name is used for ON-units to handle
programmer-defined conditions. The value returned by the ONCODE
built-in function is PLI$_CONDITION. There is no way to distinguish
between multiple programmer-defined conditions if they are specified in
the same ON statement.

The format of the CONDITION condition name is:

CONDITION (cond-name)

cond-name
A name declared with the CONDITION attribute.

8.10.4.4 CONVERSION Condition Name
The CONVERSION condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate a CONVERSION condition or ON-unit.

PL/I signals the CONVERSION condition when the source character data
in a conversion to bit-string or arithmetic data contains characters that
are not valid in the specified context. In particular, the CONVERSION
condition is raised when a character string is being converted and one of
the following conditions is true:

• The target of the conversion is an arithmetic type, and the source
string does not contain a valid, optionally signed arithmetic constant.

• The target of the conversion is a picture, and the source string does
not conform to the picture specification.

• The target of the conversion is a bit string, and a character other than
0 or 1 appears in the source string.

The CONVERSION condition can be raised either by a non-I/O conversion,
such as an explicit conversion using a built-in function or an implicit
conversion generated by the compiler, or by an I/O conversion in a GET
statement. For example, A = BIT(’ 1014’) would cause the CONVERSION
condition to be raised, because 4 is not a valid binary digit. Likewise,
a GET statement with an arithmetic target would also cause the
CONVERSION condition to be raised if the characters ’ 12K45’ appeared
in the input field, because ’ K’ is not a valid numeric character.

You can use the ONSOURCE and ONCHAR built-in functions and
pseudovariables inside an ON CONVERSION ON-unit. The ONSOURCE
built-in function returns the source string that caused the CONVERSION
condition to be raised. The ONCHAR built-in function returns the specific
character that caused the conversion to fail. You can use the ONSOURCE
pseudovariable to change the value of the conversion. Likewise, you can
use the ONCHAR pseudovariable to modify only the single character in
error.

If the CONVERSION condition was raised during a conversion required by
the GET statement, the ONFILE built-in function returns the name of the
file constant inside the CONVERSION ON-unit. If the CONVERSION
condition was not raised during a conversion required by the GET
statement, the ONFILE built-in function returns a null string.

8–28

Program Control

ON-Unit Completion

A normal return from a CONVERSION condition will cause the conversion
to be reattempted if the ONSOURCE or ONCHAR pseudovariables have
had values assigned to them. If the ONSOURCE value has not been
modified, the ERROR condition is raised instead.

For example:

/*
* Sample program that displays a ’quick-fix’ CONVERSION
* ON-unit. At the end of this program, TARGET1 contains
* the value 14015, and TARGET2 contains the value ’11100’B.
* Note that SOURCE1 and SOURCE2 are not modified.
*/
MAIN: PROCEDURE OPTIONS(MAIN);

DCL SOURCE1 CHARACTER(5) VARYING INITIAL(’14$15’);
DCL SOURCE2 CHARACTER(5) VARYING INITIAL(’11q00’);

DCL TARGET1 FIXED BINARY(31);
DCL TARGET2 BIT(5) ALIGNED;

/*
* Sample ’quick-fix’ CONVERSION ON-unit that replaces
* erroneous lowercase q’s with 1’s, and all other
* erroneous characters with 0’s.
*/
ON CONVERSION BEGIN;

PUT SKIP EDIT(’"’,ONSOURCE(),’" "’,ONCHAR(),’"’)((5)A);

IF ONCHAR() = ’q’
THEN

ONCHAR() = ’1’;
ELSE

ONCHAR() = ’0’;

END; /* ON */

/*
* Note that the CONVERSION condition is raised for all
* 3 of the following statements.
*/
TARGET1 = SOURCE1;
TARGET1 = SOURCE1;
TARGET2 = SOURCE2;

PUT SKIP(2) EDIT(SOURCE1,SOURCE2)(A,X,A);
PUT SKIP EDIT(TARGET1,TARGET2)(F(8),X,B(5));

END MAIN;

The output from this program is:

"14$15" "$"
"14$15" "$"
"11q00" "q"

14$15 11q00
14015 11100

The target of the conversion is undefined when the CONVERSION
condition is raised.

8–29

Program Control

ON-Unit Completion

The retry attempted on a normal return is for the single field that was in
error. Attempts to assign a string containing, for example, a comma list of
values will not be used for successive data items in a GET statement.

The actual value modified by the ONSOURCE and ONCHAR
pseudovariables is a temporary value that is discarded once the conversion
is complete, or the control flow cannot return to the point of the error.
This means that invalid data stored in a character string variable will
cause the CONVERSION condition to be raised each time the value is
converted, not just the first time the conversion is attempted, regardless
of modifications to the ONSOURCE and ONCHAR pseudovariables inside
the CONVERSION ON-unit.

8.10.4.5 ENDFILE Condition Name
The ENDFILE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-file condition or ON-unit for a
specific file.

PL/I signals the ENDFILE condition when a GET or READ statement
attempts an input operation on a file or device after the last data item has
been input.

The format of the ENDFILE condition name is:

ENDFILE (file-reference)

file-reference
The name of a file constant or file variable for which the ENDFILE ON-
unit is established. If the name of a file variable is specified, the variable
must be resolved to the name of a file constant when the condition is
signaled.

An ENDFILE ON-unit can be established for any input file. For any
particular file, the meaning of the end-of-file condition depends on the type
of device. For example, end-of-file is signaled for a terminal device when
the Ctrl/Z character is read.

For a stream file, an end-of-file condition is signaled whenever a GET
statement attempts to access an empty file or attempts to access a file
whose last input field has been read.

For a record file, an end-of-file condition is signaled when a READ
statement is executed with the file at the end-of-file position or when a
read is attempted beyond the last record in the file. For example:

ON ENDFILE (RECEIPTS) EOF = ’1’B;
EOF = ’0’B;
OPEN FILE (RECEIPTS) RECORD SEQUENTIAL;
READ FILE (RECEIPTS) INTO (RECORD);
DO WHILE (^EOF);

.

.

.
READ FILE (RECEIPTS) INTO (RECORD);
END;

8–30

Program Control

In this example, the ON statement establishes the default action to be
taken when the last record in the input file has been processed: the flag
EOF is set to ’ 1’ B.

An ON-unit established to handle end-of-file conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

ON-Unit Completion

If the ON-unit for the ENDFILE condition does not transfer control
elsewhere in the program, control returns to the statement following the
GET or READ statement that caused the condition to be signaled.

When the ENDFILE condition is signaled, it remains in effect until the
file is closed. Subsequent GET or READ statements for the file cause the
ENDFILE condition to be signaled repeatedly.

8.10.4.6 ENDPAGE Condition Name
The ENDPAGE condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an end-of-page condition or ON-unit for a
specific print file.

The format of the ENDPAGE condition name is:

ENDPAGE (file-reference)

file-reference
The name of the file constant or file variable for which the ENDPAGE
ON-unit is to be established. If the name of a file variable is specified, the
variable must be resolved to the name of a file constant when the condition
is signaled. The file must have the PRINT attribute.

The maximum number of lines that can be output on a single page is set
by the PAGESIZE option of the OPEN statement. The maximum number
of lines allowed on a single page is 32767. If not specified, PL/I determines
a default page size using the formula LIB$LP_LINES minus 6.

PL/I signals the ENDPAGE condition when a PUT statement attempts
to output a line beyond the last line specified for an output page. When
the ENDPAGE condition is signaled, the current line number associated
with the file is the page size plus 1. An ENDPAGE ON-unit allows you
to provide special processing before output continues on a new page. For
example:

ON ENDPAGE (PRINTFILE) BEGIN;
PUT FILE (PRINTFILE) PAGE;
PUT FILE (PRINTFILE) LIST(HEADER_LINE);
PUT FILE (PRINTFILE) SKIP(2);
END;

The ON-unit for the ENDPAGE condition for the file PRINTFILE outputs
a page eject and a header line for the new output page.

To cause PL/I to ignore the ENDPAGE condition when a large amount of
output is written to a terminal, you can use the following ON-unit, that
contains only the null statement:

ON ENDPAGE(SYSPRINT);

8–31

Program Control

This is optional because PL/I ignores the ENDPAGE condition on
SYSPRINT by default. You cannot catch the ENDPAGE(SYSPRINT)
condition.

An ON-unit established to handle end-of-page conditions can reference the
ONFILE built-in function to determine the name of the file constant for
which the condition was signaled.

ON-Unit Completion

If the ON-unit does not transfer control elsewhere in the program,
the line number is set to 1 and the program continues execution of
the PUT statement. If the ENDPAGE condition was signaled during
data transmission, the data is written on the new current line. If the
ENDPAGE condition was caused by a LINE or a SKIP option on the PUT
statement, then the action specified by these options is ignored on return.

An ENDPAGE condition can occur only once per page of output. If the
ON-unit specified does not specify a new page, then execution and output
continue. The current line number can increase indefinitely; PL/I does
not signal the ENDPAGE condition again. However, if a LINE option on a
PUT statement specifies a line number that is less than that of the current
line, a new page is output and the current line is set to 1.

Default PL/I Action

If the ENDPAGE condition is signaled during file processing, PL/I starts
output on a new page and continues processing. An exception is made
for SYSPRINT which is to take no action. If the ENDPAGE condition is
signaled as a result of a SIGNAL statement, the statement following the
SIGNAL statement is executed and no page is output by default.

8.10.4.7 ERROR Condition Name
The ERROR condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate an error condition or ON-unit.

PL/I signals the ERROR condition in the following contexts:

• When a condition occurs for which the default PL/I action is to signal
ERROR

• When the SIGNAL ERROR statement signals the condition

• When there is a default PL/I ON-unit and a condition is signaled for
which there is no corresponding ON-unit

When any condition is signaled for which no specific ON-unit is
established, the default PL/I action for all conditions except ENDPAGE is
to signal the ERROR condition.

When any ON-unit is executed, the ON-unit can reference the built-in
function ONCODE. This function returns the numeric condition value
associated with the specific error that signaled the condition.

ON-Unit Completion

If an ERROR ON-unit does not handle the condition, the program is
terminated.

8–32

Program Control

8.10.4.8 FINISH Condition Name
The FINISH condition name can be specified in an ON, SIGNAL, or
REVERT statement to designate a FINISH condition or a FINISH ON-
unit.

PL/I signals the FINISH condition in the following contexts:

• When any procedure in the program executes the STOP statement

• When a procedure that specifies OPTIONS(MAIN) executes a
RETURN statement, or, if the procedure does not execute a RETURN
statement, when its corresponding END statement is executed

• When a program exits as a result of an interruption by an external
CTRL key function or as a result of a call to the system procedure:
SYS$EXIT or SYS$FORCEX (Force Exit)

• When the SIGNAL FINISH statement signals the condition

ON-Unit Completion

If a FINISH ON-unit that executes as a result of a SIGNAL FINISH
statement does not execute a nonlocal GOTO statement, control returns
to the statement following SIGNAL FINISH. If the FINISH ON-unit
executes as a result of any of the other three causes listed above, the
program terminates.

8.10.4.9 FIXEDOVERFLOW Condition Name
The FIXEDOVERFLOW condition name can be specified in an ON,
SIGNAL, or REVERT statement to designate a fixed overflow condition or
ON-unit.

PL/I signals the FIXEDOVERFLOW condition in the following
circumstances:

• When the result of an arithmetic operation on a fixed-point decimal or
binary integer value exceeds the maximum precision of the hardware.
The maximum precision allowed for a fixed-point decimal or binary
value is 31.

• When the source value of a fixed-point expression exceeds the precision
of the target variable. For example, PL/I signals FIXEDOVERFLOW
when a value that is not in the range -128 through 127 is assigned
to a fixed-point binary variable with a precision of 7 bits and scale
equal to zero. Similarly, the condition is signaled if a value assigned
to a picture variable has more integral digits than are specified by the
picture specification.

The value resulting from an operation that causes this condition is
undefined.

8–33

Program Control

Value of ONCODE

Two hardware exceptions exist that result in the FIXEDOVERFLOW
condition. These are SS$_DECOVF (for a fixed-point decimal overflow)
and SS$_INTOVF (for a fixed-point binary integer overflow). An ON-unit
that receives control when FIXEDOVERFLOW is signaled can reference
the ONCODE built-in function to determine which condition is actually
signaled.

To define an ON-unit to respond specifically to either of these errors, use
the VAXCONDITION condition name.

Example

To respond to a FIXEDOVERFLOW condition caused by either decimal or
integer overflow, write an ON-unit as follows:

ON FIXEDOVERFLOW BEGIN;
IF ONCODE() = SS$_DECOVF THEN DO; /* Decimal overflow handling */
END;

IF ONCODE() - SS$_INTOVF THEN DO; /* Fixed binary overflow handling */
END;

END; /* ON */

To respond to a decimal overflow only, write an ON-unit like the following:

ON VAXCONDITION (SS$_DECOVF) BEGIN; /* Decimal overflow handling */
END; /* ON */

ON-Unit Completion

If the ON-unit does not transfer control elsewhere in the program, control
returns to the point at which the condition was signaled.

8.10.4.10 KEY Condition Name
The KEY condition name can be specified in an ON, SIGNAL, or REVERT
statement to designate a key error condition or ON-unit for a specific file.

The format of the KEY condition name is:

KEY (file-reference)

file-reference
A reference to the file constant or file variable for which the ON-unit is to
be established. If the name of a file variable is specified, the variable must
be resolved to the name of a file constant when the condition is signaled.

PL/I signals the KEY condition during an operation on a keyed file when
an error occurs in processing a key. Some examples of errors for which
PL/I signals the KEY condition follow:

• The record indicated by the specified key cannot be found.

• The key specification requires conversion from one data type to another
and the conversion is not valid.

• The key is not correctly specified.

8–34

Program Control

• The key of a relative file exceeds the maximum record number
specified when the file was created. This error is shown in the
Example section.

An ON-unit established to handle the KEY condition can obtain
information about the condition by invoking the following built-in
functions:

• The ONFILE built-in function returns the name of the file being
processed when the condition was signaled.

• The ONCODE built-in function returns the specific RMS condition
value associated with the error.

• The ONKEY built-in function returns the key value that caused the
condition to be signaled.

Example

The following example shows the key of a relative file exceeding the
maximum record number specifed.

%INCLUDE $RMSDEF;

KEYTEST: PROCEDURE OPTIONS(MAIN);

DECLARE
RECBUF CHAR(80),
MYFILE FILE;

ON KEY(MYFILE) BEGIN;

PUT SKIP LIST(’Key condition raised’);
IF ONCODE()=RMS$_MRN THEN

PUT SKIP LIST(’You have exceeded the maximum record.’);

STOP;

END;

OPEN FILE(MYFILE) TITLE(’MYFILE.DAT’) OUTPUT KEYED
ENVIRONMENT(FIXED_LENGTH_RECORDS,

MAXIMUM_RECORD_SIZE(80),
MAXIMUM_RECORD_NUMBER(20));

RECBUF = ’This record will not ever make it into the file’;

WRITE FILE(MYFILE) FROM(RECBUF) KEYFROM(100);

END;

ON-Unit Completion

If the ON-unit does not execute a nonlocal GOTO, control returns to the
statement immediately following the statement that caused the KEY
condition.

8–35

Program Control

8.10.4.11 OVERFLOW Condition Name
The OVERFLOW condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate an ON condition or ON-unit for floating-
point overflow conditions.

The exponent of a floating-point value is adjusted, if possible, to represent
the value with the specified precision. That is, the precision is maximized
and the exponent is minimized. The maximum precisions allowed are:

• OpenVMS VAX systems: binary floating-point value is 113; decimal
floating-point value is 34.

• OpenVMS Alpha systems: binary floating-point value is 53; decimal
floating-point value is 15.

PL/I signals the OVERFLOW condition when the result of an arithmetic
operation on a floating-point value exceeds the maximum exponent size
allowed by the hardware.

The value resulting from an operation that causes this condition is
undefined.

ON-Unit Completion

Control returns to the point of the interruption.

8.10.4.12 STORAGE Condition Name
The STORAGE condition is raised when an error has been detected during
allocation of a controlled variable or a based variable other than to an
area. The ONCODE value is the error returned by LIB$GET_VM. The
most common cause is the exhaustion of virtual memory; another cause
might be an erroneous attempt to allocate a negative amount of storage.

8.10.4.13 STRINGRANGE Condition Name
The STRINGRANGE condition is raised when a substring reference is
beyond the length of the string. The error is detected either by compiled
code or by a run-time library routine.

STRINGRANGE can be abbreviated STRG.

Any one of several subconditions can cause the STRINGRANGE condition
to be raised. You can use the ONCODE built-in function to determine
which one. Following are the possible values of the ONCODE built-in
function for the STRINGRANGE condition:

ONCODE value Raised by

PLI$_STRRANGE SIGNAL STRINGRANGE

PLI$_SUBSTR2 Out-of-range SUBSTR 2nd argument

PLI$_SUBSTR3 Out-of-range SUBSTR 3rd argument

PLI$_BIFSTAPOS Out-of-range starting position for an INDEX, SEARCH, or
VERIFY built-in function

Note that STRINGRANGE is always enabled in RTL code (which is
currently used for more complex cases of INDEX, SEARCH, and VERIFY),

8–36

Program Control

but in-line checking is only performed if /CHECK=BOUNDS is used to
compile the code in which the condition would be raised.

An example of the use of the STRINGRANGE condition and the ONCODE
built-in function follows.

%INCLUDE $PLIDEF;
ON STRINGRANGE BEGIN;

/*
* The THEN clause below will be executed for all
* SUBSTR starting-position range errors. All other
* STRINGRANGE errors will be resignaled. Note that
* SUBSTR is processed in-line, so the code must be
* compiled with /CHECK=BOUNDS for this ON-unit to
* be effective.
*/

IF ONCODE() = PLI$_SUBSTR2
THEN

.

.

.
ELSE

CALL RESIGNAL();
END;

8.10.4.14 SUBSCRIPTRANGE Condition Name
The SUBSCRIPTRANGE condition is raised in response to out-of-
bounds subscripts in references to arrays. The value returned by the
ONCODE built-in function for the SUBSCRIPTRANGE condition is
PLI$_SUBRANGE or PLI$_SUBRANGEn, where n is the number of
the subscript, in the range 1 through 8.

8.10.4.15 UNDEFINEDFILE Condition Name
The UNDEFINEDFILE condition name can be specified in an ON,
SIGNAL, or REVERT statement to designate an undefined file condition
or ON-unit for a specific file.

The format of the UNDEFINEDFILE condition name is:n UNDEFINEDFILE
UNDF

o
(file-reference)

file-reference
A reference to a file constant or file variable for which the ON-unit is
established.

If the name of a file variable is specified, the variable must be resolved to
the name of a file constant when the condition is signaled.

PL/I signals the UNDEFINEDFILE condition when a file cannot
be opened. Following are some examples of errors that cause the
UNDEFINEDFILE condition:

• The value specified by the TITLE option is an invalid file specification.

• The file is opened for input or update and the specified file does not
exist.

• An existing file is accessed with PL/I file description attributes that
are inconsistent with the file’s actual organization.

8–37

Program Control

• Any system-detected file error prevents the file from being accessed.

The UNDEFINEDFILE condition lets you establish an ON-unit to provide
processing when a file cannot be opened, for example, to provide a default
file if no file is specified at run time.

X: PROCEDURE (FILENAME);
DECLARE FILENAME CHARACTER (128) VARYING;
DECLARE INPUT_FILE FILE INPUT;

ON UNDEFINEDFILE (INPUT_FILE)
OPEN FILE (INPUT_FILE)
TITLE (’SYS$INPUT’);

OPEN FILE (INPUT_FILE) TITLE (FILENAME);

In this example, the procedure X expects a file specification string
to be passed as an argument. If no argument is passed, or if the
argument is not a valid file specification, the OPEN statement fails.
The UNDEFINEDFILE ON-unit provides a default OPEN statement with
the file specification SYS$INPUT.

An ON-unit established to handle the UNDEFINEDFILE condition can
obtain information about the condition by invoking the following built-in
functions:

• The ONFILE built-in function returns the name of the variable defined
as FILE that was being processed when the condition was signaled.

• The ONCODE built-in function returns the specific status value
associated with the error.

ON-Unit Completion

The action taken on a normal return from the UNDEFINEDFILE
condition depends on whether the file was opened explicitly or implicitly.

If the UNDEFINEDFILE condition was signaled following an explicit
OPEN statement for a file, then the normal action following the ON-
unit execution is for the program to continue. If the ON-unit does not
transfer control elsewhere in the program, control returns to the statement
following the OPEN statement that caused the condition to be signaled.

If the UNDEFINEDFILE condition was signaled during an implicit open
attempt, the run-time system tests the state of the file. If the file is not
open, the ERROR condition is signaled. If the file was opened by the
ON-unit, execution of the I/O statement continues.

If an ON-unit receives control when an explicit OPEN results in the
UNDEFINEDFILE condition, and the ON-unit does not handle the
condition by opening the file or by transferring control elsewhere in
the program, control returns to the statement following the OPEN.
Then, if an attempt is made to access the file with an I/O statement,
the UNDEFINEDFILE condition is signaled again when PL/I attempts the
implicit open of the file. This time, PL/I signals the ERROR condition on
completion of the ON-unit.

8–38

Program Control

8.10.4.16 UNDERFLOW Condition Name (Kednos PL/I for OpenVMS VAX only)
On Kednos PL/I for OpenVMS VAX you can specify the UNDERFLOW
condition name (which can be abbreviated UFL) in an ON, REVERT, or
SIGNAL statement to designate a floating-point underflow condition or
ON-unit. The Alpha hardware does not support UNDERFLOW detection;
therefore, the underflow condition is not raised on OpenVMS Alpha
systems.

Kednos PL/I for OpenVMS VAX signals the UNDERFLOW condition when
the absolute value of the result of an arithmetic operation on a floating-
point value is smaller than the minimum value that can be represented by
the VAX hardware.

ON-Unit Completion

On completion of the ON-unit, control is returned to the point of the
interrupt. Continued execution is unpredictable.

This condition is signaled by Kednos PL/I for OpenVMS VAX only in
procedures in which the UNDERFLOW option is enabled. The option is
enabled when you specify UNDERFLOW in the procedure options. Kednos
PL/I for OpenVMS Alpha ignores the UNDERFLOW option.

The value resulting from an operation that causes the UNDERFLOW
condition is undefined. (The value would be set to zero only if
UNDERFLOW were not specified in the procedure options.)

8.10.4.17 VAXCONDITION Condition Name
The VAXCONDITION condition name can be specified in an ON,
RESIGNAL, REVERT, or SIGNAL statement. The VAXCONDITION
condition name provides a way to signal and handle operating-
system or programmer-specified condition values. The format of the
VAXCONDITION condition name is:

VAXCONDITION (expression)

expression
An expression yielding a fixed binary value. The expression is evaluated
when the ON statement is executed, not when the condition is signaled.

The VAXCONDITION condition name is provided specifically for PL/I
procedures that interact with operating system routines. For details on
using the VAXCONDITION condition name and the meanings of system-
and user-defined values that you can specify, see the Kednos PL/I for
OpenVMS Systems User Manual.

8.10.4.18 ZERODIVIDE Condition Name
The ZERODIVIDE condition name can be specified in an ON, REVERT, or
SIGNAL statement to designate a divide-by-zero condition or ON-unit.

PL/I signals the ZERODIVIDE condition when the divisor in a division
operation has a value of zero. The value resulting from such an operation
is undefined.

8–39

Program Control

8.10.5 Default PL/I ON-Unit
PL/I defines a default ON-unit for the procedure that is designated as the
main procedure. This is why there must be exactly one procedure with
OPTIONS(MAIN) specified in any executable image. This default ON-unit
performs the following actions depending on the condition signaled. Note
that the severity of the signal is determined by the low three bits of the
condition code.

• If the signal is the ENDPAGE condition, the default PL/I handler
executes a PUT PAGE for the file, and then continues the program
at the point at which ENDPAGE was signaled. Note that ENDPAGE
is ignored by default for SYSPRINT (see Section 8.10.4.6 for more
information).

• If the signal is the ERROR condition and the severity is fatal, the
default handler signals the FINISH condition. Then, one of the
following occurs:

— If a FINISH ON-unit is found, it is given a chance to execute. If
it executes a nonlocal GOTO or if it signals another condition,
program execution continues.

— If no FINISH ON-unit is found or if a FINISH ON-unit completes
execution by handling the condition, then PL/I resignals the
condition to the default condition handler. This handler prints a
message, displays a traceback, and terminates the program.

• If the signal is any condition other than ENDPAGE or ERROR with a
fatal severity, the default PL/I handler signals the ERROR condition
with the severity of the original condition. Then, one of the following
occurs:

— If an ERROR ON-unit is found, it is executed. If it completes
execution by handling the condition, the program continues.

— If an ERROR ON-unit is not found, the default PL/I handler
resignals the condition. If this resignal results in return of control
to the system, the default condition handler prints a message
and a traceback. If the error is a fatal error, the default handler
terminates the program; if the error is nonfatal, the program
continues.

8.10.6 Establishment of ON-Units
An ON-unit is established for a specific ON condition or conditions
following the execution of an ON statement that specifies the condition
name(s). For example:

ON ENDFILE (ACCOUNTS) GOTO CLOSE_FILES;

This ON statement defines an ON-unit for an ENDFILE (end-of-file)
condition in the file specified by the name ACCOUNTS. The ON-unit
consists of a single statement, a GOTO statement.

8–40

Program Control

After an ON-unit is established by an ON statement for a condition,
it remains in effect for the activation of the current block and all its
dynamically descendant blocks, unless one of the following occurs:

• Another ON statement is specified for the same condition in a
dynamically descendant block. The ON-unit established within the
descendant block remains in effect as long as the descendant block is
active.

• A REVERT statement is executed for the specified condition. A
REVERT statement nullifies the most recent ON-unit for the specified
condition. (See Section 8.10.3).

• Another ON statement is specified for the same condition within the
current block. Within the same block, an ON statement for a specific
condition cancels the previous ON-unit.

• The block or procedure within which the ON-unit is established
terminates. When a block exits, any ON-units it has established are
reverted.

• For an ON-unit is established inside the ON-unit:

ON OVERFLOW BEGIN
.
.
.
ON OVERFLOW BEGIN
.
.
.
END;

END;

8.10.7 Contents of an ON-Unit
An ON-unit can consist of a single simple statement, a group of statements
in a begin block, or a null statement.

Simple Statements in ON-Units
The following ON statement specifies a single statement in the ON-unit:

ON ERROR GOTO WRITE_ERROR_MESSAGE;

This ON statement specifies a GOTO statement that transfers control
to the label WRITE_ERROR_MESSAGE in the event of the ERROR
condition.

A simple statement must not be labeled and must not be any of the
following:

DECLARE FORMAT RETURN

DO IF SELECT

END ON

ENTRY PROCEDURE

8–41

Program Control

Begin Blocks in ON-Units
An ON-unit can also consist of a sequence of statements in a begin block.
For example:

ON ENDFILE (SYSIN) BEGIN;
CLOSE FILE (TEMP);
CALL PRINT_STATISTICS(TEMP);
END;

This ON-unit consists of CLOSE and CALL statements that request
special processing when the end-of-file condition occurs during reading of
the default system input file, SYSIN.

If a BEGIN statement is specified for the ON-unit, the BEGIN statement
must not be labeled. The begin block can contain any statement except a
RETURN statement.

Null Statements in ON-Units
A null statement specified for an ON-unit indicates that no processing is
to occur when the condition occurs. Program execution continues as if the
condition had been handled. For example:

ON ENDPAGE(SYSPRINT);

This ON-unit causes PL/I to continue output on a terminal regardless of
the number of lines that have been output.

8.10.8 Search Path for ON-Units
When a condition is signaled during the execution of a PL/I procedure,
PL/I searches for an ON-unit to respond to the condition. This occurs
unless you have used the SYSTEM option in an ON statement for the
condition; the SYSTEM option causes the system default action to be
executed regardless of the existence of any ON-unit.) PL/I first searches
the current block, that is, the block in which the condition occurred. If
no ON-unit exists in this block for the specific condition, it searches the
block that activated the current block (its parent), and then the block that
activated that block, and so on.

PL/I executes the first ON-unit it finds, if any, that can handle the
specified condition. If no ON-unit for the specific condition is found,
default PL/I condition handling is performed.

8.10.9 Completion of ON-Units
The ON-unit can complete its execution in any of the following ways:

• If the ON-unit executes a nonlocal GOTO statement, or if it invokes
a subroutine or function that executes a nonlocal GOTO, program
control is transferred to that statement and continues sequentially at
that point in the program.

• If the ON-unit executes a STOP statement, then the FINISH condition
is signaled. If no FINISH ON-unit exists, the program is terminated.

• An ON-unit can use the RESIGNAL built-in subroutine to request that
PL/I continue to search for an ON-unit to handle a specific condition.

8–42

Program Control

• When any ON-unit (except for ERROR or FINISH) completes normally,
control returns either to the statement that caused the condition or
to the statement immediately following the statement that caused the
condition.

Descriptions of each ON condition in this manual indicate the action that
PL/I takes on completion of an ON-unit associated with the condition.

8–43

9 Input and Output

PL/I provides two distinct types of I/O processing, each of which handles
input and output data in a different manner, and each of which has a
unique set of I/O statements. These types of I/O are:

• Stream (the GET and PUT statements)

• Record (the READ, WRITE, DELETE, and REWRITE statements)

When a file is read or written with stream I/O, the data is treated as if it
formed a continuous stream. Individual fields of data within the stream
are delimited by commas, spaces, and record boundaries. A stream I/O
statement specifies one or more fields to be processed in a single operation.

When a file is read or written with record I/O, however, a single record is
processed upon the execution of an I/O statement.

This chapter describes I/O concepts that apply to both stream and record
I/O.

9.1 Opening and Closing Files
This section discusses the following:

• File declarations

• File variables

• Opening a file

• File description attributes and options

• File access modes

• Closing a file

9.1.1 File Declarations
A file declaration specifies an identifier, the FILE attribute, and one or
more file description attributes that describe the type of I/O operation that
will be used to process the file.

A file is denoted in an I/O statement by the FILE option as follows:

FILE(file-reference)

file-reference
The name specified in the file’s declaration. For example:

DECLARE INFILE FILE SEQUENTIAL INPUT;
OPEN FILE(INFILE);

9–1

Input and Output

Here, INFILE is the name of a file constant. A file constant is an identifier
declared with the FILE attribute and without the VARIABLE attribute.
Except for the default file constants SYSIN and SYSPRINT, all files must
be declared before they can be opened and used.

By default, all file constants have the EXTERNAL attribute. Any external
procedure that declares the identifier with the FILE attribute and without
the INTERNAL attribute can access the same file constant and, therefore,
the same physical file.

9.1.2 File Variables
In PL/I, you can also refer to files using file variables and file-valued
functions. For example:

DECLARE ANYFILE FILE VARIABLE;
.
.
.

ANYFILE = INFILE;
OPEN FILE(ANYFILE);

If INFILE is declared as in the previous example, the OPEN statement
opens the file INFILE.

A file variable can also be given a value by receiving a file constant or
variable passed as an argument, or by receiving a file constant or variable
as the value of a function. For example:

GETFILE: PROCEDURE (PRINTFILE);
DECLARE PRINTFILE FILE VARIABLE;

This file variable is given a value when the procedure GETFILE is
invoked.

9.1.3 Opening a File
A file is opened explicitly by an OPEN statement or implicitly by a READ,
WRITE, REWRITE, DELETE, PUT, or GET statement issued for a file
that is not open.

The OPEN statement explicitly opens one or more PL/I files with a
specified set of attributes that describe the file and the method for
accessing it. The format of the OPEN statement is as follows:

OPEN FILE(file-reference) [file-description-attribute . . .]
[,FILE(file-reference) [file-description-attribute . . .]] . . . ;

9–2

Input and Output

FILE(file-reference)
A reference to the file to be opened. If the file is already open, the OPEN
statement has no effect. Therefore, if you want to change any attributes
of an open file, you should first close it, and then reopen it with the new
attributes.

file-description-attribute
The attributes and options of the file. The attributes specified are merged
with the permanent attributes of the file specified in its declaration, if any.
Then, default rules are applied to the union of these sets of attributes to
complete the set of attributes in effect while the file is open.

The attributes you can specify with the OPEN statement are as follows:

DIRECT PRINT

ENVIRONMENT(option, . . .) RECORD

INPUT SEQUENTIAL

KEYED STREAM

OUTPUT UPDATE

The attributes are described in Chapter 2.

The OPEN options are described in Section 9.1.3.1.

Examples

DECLARE INFILE FILE,
STATE_FILE FILE KEYED;

OPEN FILE (INFILE),
FILE (STATE_FILE) UPDATE;

.

.

.
CLOSE FILE (STATE_FILE);
OPEN FILE (STATE_FILE) INPUT SEQUENTIAL;

The DECLARE and OPEN statements for INFILE do not specify any file
description attributes; PL/I applies the default attributes STREAM and
INPUT. If any statement other than GET is used to process this file, the
ERROR condition is signaled.

The file STATE_FILE is declared with the KEYED attribute. With the
first OPEN statement that specifies this file, it is given the UPDATE
attribute and opened for updating; that is, READ, WRITE, REWRITE, and
DELETE statements can be used to operate on records in the file. The
KEYED attribute implies the SEQUENTIAL attribute; thus, records in
the file can be accessed sequentially or by key.

The second OPEN statement specifies the INPUT and SEQUENTIAL
attributes. During this opening, the file can be accessed by sequential and
keyed READ statements; REWRITE, DELETE, and WRITE statements
cannot be used.

DECLARE COPYFILE FILE OUTPUT;
OPEN FILE(COPYFILE) TITLE(’COPYFILE.DAT’);

9–3

Input and Output

The file specified by the file constant COPYFILE is opened for output.
Each time this program is run, it creates a new version of the file
COPYFILE.DAT.

9.1.3.1 OPEN Statement Options
The options that you can use in the OPEN statement are:

LINESIZE Option

The LINESIZE option specifies the maximum number of characters that
can be output on a single line when the PUT statement writes data to
a file with the STREAM and OUTPUT attributes. The format of the
LINESIZE option is:

LINESIZE(expression)

expression
A fixed-point binary expression in the range 1 to 32767, giving the number
of characters per line. If the expression is outside this range, a run-time
error occurs.

The value specified in the LINESIZE option is used as the output line
length for all subsequent output operations on the stream file, and it
overrides the system default line size.

The default line size is as follows:

• If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is determined by the device.

• If the output is to the default file, SYSPRINT, the default line size is
80.

• If the output is to a print file, the default line size is 132.

• If the output is to a nonrecord device (magnetic tape), the default line
size is 510.

The line size is used by output operations to determine whether output
will be placed on the current line or on the next line.

PAGESIZE Option

The PAGESIZE option is used in the OPEN statement to specify the
maximum number of lines that can be written to a print file without
signaling the ENDPAGE condition. The format of the PAGESIZE option
is:

PAGESIZE(expression)

expression
A fixed-point binary expression in the range 1 through 32767, giving
the number of lines per page. If the expression is outside this range, a
run-time error occurs.

The value specified in the PAGESIZE option is used as the output page
length for all subsequent output operations on the print file, and overrides
the system default page size. The default page size is the following:

9–4

Input and Output

• If the logical name SYS$LP_LINES is defined, the default page size is
the numeric value of SYS$LP_LINES minus 6.

• If SYS$LP_LINES is not defined, or if its value is less than 30 or
greater than 99, or if its value is not numeric, the default page size is
60.

During output operations, the ENDPAGE condition is signaled the first
time that the specified page size is exceeded.

The PAGESIZE option is valid only for print files.

TITLE Option

The TITLE option is specified in an OPEN statement to designate the
external file specification of the file to be associated with the PL/I file.
The TITLE option is specified only on the OPEN statement for a file. Its
format is as follows:

TITLE(expression)

expression
A character-string expression which represents an external file
specification for the file.

For details on how the file specification is determined see the
Section 9.1.3.4.

9.1.3.2 Effects of Opening a File
Opening a file in PL/I has the following effects:

• Any permanent attributes specified in a DECLARE statement of a
file constant are merged with the attributes specified in the OPEN
statement, if any, or with the attributes implied by the context of the
opening. (For example, if no attributes are specified for a file in its
declaration, and the first reference to the file is a GET statement, PL/I
opens the file with the INPUT and STREAM attributes.) The rules
that PL/I follows in applying default attributes are described in the
next section.

• The merged attributes apply to the file for the duration of this opening
only. When the file is closed, only its permanent attributes remain in
effect.

• The file specification of the file is determined. This process is decribed
in Section 9.1.3.4.

• If the file already exists, it is located and its attributes are checked
for compatibility with the attributes specified or implied by the OPEN
statement.

• If the file does not exist, and if the attempted access does not require
that the file exist, PL/I creates a new file using the attributes specified
or implied to determine the file’s organization.

• If the file is opened successfully, the file is positioned.

9–5

Input and Output

Each of these steps is described in more detail below. If an error occurs
during the opening of a file, the UNDEFINEDFILE condition is signaled
(see the Kednos PL/I for OpenVMS Systems User Manual.

9.1.3.3 Establishing the File’s Attributes
The description attributes specified when a file is opened are merged with
the file’s permanent attributes. Duplicate specification of an attribute is
allowed only for an attribute that does not specify a value.

An incomplete set of attributes is augmented with implied attributes.
Table 9–1 summarizes the attributes that can be added to an incomplete
set.

Table 9–1 File Description Attributes Implied when a File is Opened

Attribute Implied Attributes

DIRECT RECORD KEYED

KEYED RECORD

PRINT STREAM OUTPUT

SEQUENTIAL RECORD

UPDATE RECORD

If the set of attributes is still not complete, PL/I uses the following steps to
complete the set:

1 If neither STREAM nor RECORD is present or implied, STREAM is
supplied.

2 If neither INPUT, nor OUTPUT, nor UPDATE is present, INPUT is
supplied.

3 If RECORD is specified, but neither SEQUENTIAL nor DIRECT is
present or implied, SEQUENTIAL is supplied.

4 If the file is associated with the external file constant SYSPRINT, and
the attributes STREAM and OUTPUT are present but the attribute
PRINT is not, PRINT is supplied.

5 If the set contains the LINESIZE option, it must contain STREAM
and OUTPUT. If it contains these attributes and does not contain
LINESIZE, the default system line size value is supplied.

6 If the set contains the PAGESIZE option, it must contain PRINT. If
PRINT is present but PAGESIZE is not, the default system page size
is supplied.

The completed set of attributes applies only for the current opening of the
file. The file’s permanent attributes, specified in the declaration of the file,
are not changed.

9–6

Input and Output

9.1.3.4 Determining the File Specification
PL/I uses the value of the TITLE option to determine the file specification,
that is, the actual name of the file or device on which the I/O is to be
performed. The determination of the file specification depends on the
following system-specific functions:

1 The value of the TITLE option can be a logical name, or a portion
of it can contain a logical name. In either case, the logical name is
translated. If the resulting name is a logical name, that name is also
translated, to a maximum of 10 translations.

2 After translation, PL/I applies any default values specified in the
DEFAULT_FILE_NAME option of the ENVIRONMENT attribute list.

3 If the file specification is still not complete, system defaults are applied
to the incomplete portions of the file specification.

Defaults are provided for node, device, directory, file type, and version
number. If a file name is not specified, PL/I uses the default name,
which is the name of the file constant which declared the file.

The rules for logical name translation and for the application of system
defaults are described in detail in the Kednos PL/I for OpenVMS Systems
User Manual.

The maximum length of the expanded file specification is 128.

9.1.3.5 Accessing an Existing File
A file opening accesses an existing file if the file specified by the TITLE
option actually exists and if the following attributes are present:

• The file is opened for INPUT or UPDATE.

• The file is opened with the OUTPUT attribute and with the
ENVIRONMENT(APPEND) option.

Whenever PL/I accesses an existing file, the file’s organization is checked
for compatibility with the PL/I attributes specified. If any incompatibilities
exist, the UNDEFINEDFILE condition is signaled.

9.1.3.6 Creating a File
A file opening creates a new file if the following are all true:

• The OUTPUT attribute is specified.

• The TITLE option, after name translation and the application of
system defaults, specifies a mass-storage device (such as a disk or a
tape).

• The ENVIRONMENT(APPEND) option is not specified.

You can specify the organization and record format of a new file with
ENVIRONMENT options. If no ENVIRONMENT options are given, the
new file’s organization is determined as follows:

• If the KEYED attribute is present, PL/I creates a relative file with a
maximum record size of 480 bytes and a maximum record number of
-2147883647.

9–7

Input and Output

• If the PRINT attribute is present, PL/I creates a sequential file with
variable-length records, maximum record length of 508, and a 2 byte
fixed-control field used to store carriage-control information.

• If neither KEYED nor PRINT is specified, PL/I creates a sequential file
with variable-length records and a maximum record size of 510 bytes.

When a file is opened with the RECORD and OUTPUT attributes, only
WRITE statements can be used to access the file. If the file has the
KEYED attribute as well, the WRITE statements must include the
KEYFROM option.

9.1.3.7 File Positioning
When PL/I opens a file, the initial positioning of the file depends
on the type of file (record or stream), the access mode, and certain
ENVIRONMENT options.

For a definition of the file-positioning information for record files, see
Section 9.3.5. For a definition of file-positioning information for stream
files, see Section 9.2.1.

9.1.4 File Description Attributes and Options
The file description attributes are summarized in Table 9–2. These
attributes can be specified on DECLARE and OPEN statements.

Table 9–2 Summary of File Description Attributes

Attribute Description

DIRECT Records in the file will be accessed randomly.

INPUT The file is an input file and will only be read.

KEYED Records in the file will be accessed by key.

OUTPUT The file is an output file and will only be written.

PRINT The file will be output on a printer or terminal.

RECORD The file will be accessed with record I/O statements.

SEQUENTIAL Records in the file will be accessed sequentially.

STREAM The file will be accessed with stream I/O statements.

UPDATE The file will be accessed for both reading and writing, and records
can be rewritten and deleted.

For detailed descriptions of these attributes, see Chapter 2.

9.1.5 Closing a File
The CLOSE statement dissociates PL/I files from the physical files with
which they were associated when opened. The format of the CLOSE
statement is as follows:

CLOSE FILE(file-reference) [ENVIRONMENT(option, . . .)]

9–8

Input and Output

[,FILE(file-reference) [ENVIRONMENT(option, . . .
)]] . . . ;

FILE(file-reference)
A file to be closed. If the file is already closed, the CLOSE statement has
no effect.

ENVIRONMENT(option, . . .)
One or more of the following ENVIRONMENT options, separated by
commas:

BATCH

DELETE

REVISION_DATE

REWIND_ON_CLOSE

SPOOL

TRUNCATE

No other ENVIRONMENT options are valid. All ENVIRONMENT options
are described in detail in the Kednos PL/I for OpenVMS Systems User
Manual.

Examples

This CLOSE statement closes the file constant INFILE:

CLOSE FILE(INFILE);

This CLOSE statement closes two files specified in a comma list, each with
a different ENVIRONMENT option:

CLOSE FILE(A) ENV(DELETE), FILE(B) ENV(REVISION_DATE(X));

Another example of a CLOSE statement is:

DECLARE STATE_FILE FILE KEYED;

OPEN FILE(STATE_FILE) DIRECT UPDATE;
.
.
.

CLOSE FILE(STATE_FILE);
OPEN FILE(STATE_FILE) INPUT SEQUENTIAL;

The file STATE_FILE is declared with the KEYED attribute. The first
OPEN statement that specifies this file is given the DIRECT and UPDATE
attributes and opened for updating; the file can be accessed only by key.

The CLOSE statement closes the file. The second OPEN statement
specifies the INPUT and SEQUENTIAL attributes; the file can now be
accessed sequentially.

9–9

Input and Output

9.2 Stream I/O
Stream I/O is one of the two general kinds of I/O performed by PL/I.
Stream input and output is performed by the statements GET and
PUT, respectively. Both statements can perform either list-directed or
edit-directed operations.

In stream I/O, more than one record or line can be processed by a single
statement, and, conversely, multiple statements can process a single line
or record. In contrast, record I/O only processes one record of a file in each
READ or WRITE statement.

Table 9–3 summarizes the file description attributes and access modes for
stream files.

Table 9–3 Attributes and Access Modes for Stream Files

Attributes
Specified

Attributes
Implied

Valid Devices
and File
Organizations Usage

PRINT STREAM
OUTPUT

Any output
device and
any file except
indexed

Individual data values are written with PUT statements that
convert the values to character strings and automatically format
the strings into lines, or records. A PUT statement can fill part
or all of one or more lines. Data conversion and alignment
within lines can use the default processing provided by the PUT
LIST form of the PUT statement or can be explicitly controlled
by format specifications in the PUT EDIT form of the PUT
statement. The output fields can be aligned to specific tab
positions.

The PAGESIZE and LINESIZE options can be specified to
control the formatting of lines on pages. The ENDPAGE
condition is signaled when the end-of-page is reached.

STREAM
INPUT

Any input
device and
any file except
indexed

Individual data items are read by GET statements. A single
GET statement can process all or part of one or more lines or
records. The format of an input field can be determined by the
default processing provided by the GET LIST form of the GET
statement or can be explicitly controlled by format specifications
in the GET EDIT form of the GET statement.

STREAM
OUTPUT

Any output
device and
any file except
indexed

This form of stream output is similar to that provided when
PRINT is specified, except that tab positioning and page
formatting are not provided. Moreover, when string values are
written with the PUT LIST form of the PUT statement, they
are enclosed in apostrophes. Files that are created with these
attributes can be read back in with GET LIST statements when
the file is opened with the STREAM and INPUT attributes.

Successive GET statements acquire their input from the same line or
record until all the characters in the line have been read, unless the
program explicitly skips to the next line. When necessary, a single GET
statement will read multiple lines to satisfy its input-target list. A single
input data item cannot cross a line unless it is a character string enclosed
in apostrophes or unless the ENVIRONMENT option IGNORE_LINE_
MARKS is in effect for the input file. This option produces stream input
operations that match exactly with standard PL/I. However, the option is

9–10

Input and Output

usually not necessary; most programs produce the expected results without
it. (For more information on ENVIRONMENT, see the Kednos PL/I for
OpenVMS Systems User Manual.

Successive PUT statements write their output to the same line or record
until the line size is reached or until the program explicitly skips to a new
line. A single PUT statement will write as many records as necessary to
satisfy its output-source list. Any single data item that will not fit on the
current line is split across lines.

The next sections describe the following aspects of stream I/O:

• Processing and Positioning of Stream Files

• Input by the GET statements.

• Output by the PUT statements.

• Format items

• Processing and Positioning of Character Strings

• Terminal I/O

9.2.1 Processing and Positioning of Stream Files
A stream file is a file of ASCII text, divided into lines. For every stream
file used in a program, PL/I maintains the following information:

• The locations of the beginning and end of the file. On input operations,
the ENDFILE condition is signaled on the first attempt to read past
the end of the file.

• For output files, the maximum number of ASCII characters in a line,
or the line size. The line size is either a default value or the specific
value you have established for the file (see Section 9.1 for LINESIZE
option). The line size is used to determine when to skip to the next
line. On input, a single data item cannot cross a line unless it is a
character string enclosed in apostrophes or unless the file was opened
with ENVIRONMENT (IGNORE_LINE_MARKS). On output, data
items are continued on the next line.

• The current position in the file. Essentially, this is the point in the
file at which the last input or output operation stopped. It is the exact
character position at which the next output item is written or from
which the next input item is read.

Input operations can begin at any position from the current position
onward. The default is the current position. To acquire data from a
different position, you can do the following:

• Use the SKIP option of the GET statement to advance by a specified
number of lines before reading data.

• Use control format items to move to a specified position before reading
data. With the GET statement, control format items are restricted to
SKIP (the same operation as the SKIP option), COLUMN (advance to
a specified character position), and X (advance by a specified number
of character positions from the current position). Note that the control

9–11

Input and Output

format items, unlike the SKIP option, are executed during, not before,
the input of data. The control format items can signal the ENDFILE
and ERROR conditions if the end-of-file is encountered.

• Close and then reopen the file, which sets the current position to the
first character in the file.

Because stream files are sequential files, output operations always place
data at the end of the file. You can do the following additional formatting
of output with any stream output file:

• Use the SKIP option of the PUT statement to skip lines following the
current position. If the current position is the beginning of a line, the
SKIP option inserts null lines in the file between the current position
and the position of the next output.

• Use the control format items to advance to a specified line or character
position. The control format items are COLUMN (move to a specified
character position), SKIP (the same effect as the SKIP option), and X
(skip a specified number of characters following the current position).
As with the input case, control format items are executed only during
the output of data; if only part of the format list is used, the excess
control format items are ignored.

If the output file is a print file (that is, has the attributes STREAM,
OUTPUT, and PRINT, or is the default file SYSPRINT), the following
additional information is maintained for the file:

• The current page number. The first output to a print file is written to
page 1. The current page number is incremented by the PAGE option,
the PAGE format item, and, in some circumstances, by the LINE
option and LINE format item. You can evaluate the current page
number for a specified print file with the PAGENO built-in function.
You can also set it to a new value by assigning a value to the PAGENO
pseudovariable.

• The page size. This is an integer that specifies the number of lines on
a page. The page size is either the default value or the specific number
that you have established for the print file (see Section 9.1). When
the last line on a page is filled, the first attempt to write (or position
the file) beyond that position signals the ENDPAGE condition. The
ENDPAGE condition is signaled only on the first such attempt; if no
ON-unit is established for the condition, a PUT PAGE is executed. For
example, the ON-unit for the ENDPAGE condition can write a trailer
at the bottom of the current page, or a header at the top of the next
page, before printing a new page of data.

• The current line number. This is an integer specifying the line
currently being used for output, relative to the top of the page. The
first line on the page is line 1. The LINENO built-in function can
evaluate the current line of a specified print file. The LINE option of
the PUT statement, and the LINE format item, can reposition the file
to a specified line.

9–12

Input and Output

• Position of tab stops. Tab stops always occur at 8-column increments
on every line of a print file, beginning with column 1. The TAB format
item can reposition a print file to a specified tab stop relative to the
current position.

Terminals should always be declared as print files when used for output
(see Section 9.2.6.)

9.2.2 Input by the GET Statement
The GET statement acquires data from an input stream, which is either
a stream file or a character-string expression. The input file can be a file
declared with the STREAM attribute or the default file SYSIN, usually
associated with the user’s default input device. See Section 9.2.6 for more
information.

This section describes the syntax, options, and execution of GET
statements.

9.2.2.1 Syntax Summary of the GET Statement
The GET statement has several forms; they are:

GET EDIT (input-target*, . . .) (format-specification, . . .)2
64

FILE(file-reference)*
[SKIP[(expression)]]*
[OPTIONS(option, . . .)]*

STRING(expression)*

3
75;

GET LIST (input-target*, . . .)2
64

FILE(file-reference)*
[SKIP[(expression)]]*
[OPTIONS(option, . . .)]*

STRING(expression)*

3
75;

GET [FILE(file-reference)]* SKIP [(expression)] ;

Options*
NO_ECHO
NO_FILTER
PROMPT(expression)
PURGE_TYPE_AHEAD

*Syntax elements common to two or more forms

input-target
The names of one or more variables to be assigned values from the input
stream. Multiple input targets must be separated by commas.

An input target has one of the following forms:

reference

9–13

Input and Output

The reference is to a scalar or aggregate variable of any computational
type. If the reference is to an array, data is assigned to array elements
in row-major order. If the reference is to a structure, data is assigned to
structure members in the order of their declaration.

(input-target, . . . DO reference=expression [TO expression]
[BY expression] [WHILE(expression)] [UNTIL(expression)])

Another form is:

(input-target, . . . DO reference=expression
[REPEAT expression] [WHILE(expression)] [UNTIL(expression)])

The input target can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding the input target are in addition to the parentheses
surrounding the entire input list.

For a discussion of the matching of format items to input targets and of
the use of DO specifications, see Section 9.2.4.13.

format-specification
A list of format items to control the conversion of data items in the input
list. You can use data format items, control format items, or remote
format items. For each variable name in the input-target list, there is
a corresponding data format item in the format-specification list that
specifies the width of the field and controls the data conversion. See
Section 9.2.4 for format items.

FILE (file-reference)
An option specifying that the input stream is a file; the reference is to
a declared file variable or constant. If neither the FILE option nor the
STRING option is specified, PL/I assumes the file SYSIN. This file is
associated with the default system input file SYS$INPUT.

If a file is specified and is not currently open, PL/I opens it with the
attributes STREAM and INPUT. The UNDEFINEDFILE condition is
signaled if the file cannot be opened.

SKIP [(expression)]
An option that advances the input file a specified number of lines before
processing the input list. This option can be used only with the implied or
explicit FILE option. If the expression is specified, it indicates the number
of lines to be advanced; if it is omitted, the default is to skip to the next
line. The SKIP option is always executed first, before any other input or
positioning of the input file, regardless of its position in the statement.

OPTIONS (option, . . .)
An option that specifies one or more of the following options. This option
can be used only with the default or explicit FILE option; it cannot be used
with the STRING option. Multiple options must be separated by commas.

CANCEL_CONTROL_O
NO_ECHO
NO_FILTER
PROMPT (string-expression)

9–14

Input and Output

PURGE_TYPE_AHEAD

The options are described fully in the Kednos PL/I for OpenVMS Systems
User Manual.

STRING(expression)
An option specifying that the input stream is a character-string expression.
The STRING option cannot be used with the FILE, OPTIONS, or SKIP
option.

The GET STRING statement acquires a string from a character-string
variable and assigns it to one or more input targets. If more than one
input target is listed, the characters in the string should include any
punctuation (comma or space separators or apostrophes) that would be
required if the character string were in an external file.

9.2.2.2 GET EDIT
The GET EDIT statement acquires fields of character-string data from an
input stream, which can be a stream file or a character-string expression.
The stream file can be a declared file or the default file SYSIN. GET EDIT
converts the character strings under control of a format specification and
assigns the resulting values to a specified list of input targets (variables).
It also allows input of characters from selected positions in the input
stream.

The form of the GET EDIT statement is as follows:

GET EDIT (input-target, . . .) (format-specification, . . .)2
64

FILE(file-reference)
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

[STRING(expression)]

3
75;

The syntax is described in more detail in Section 9.2.2.1.

Examples

GET EDIT (FIRST,MID_INITIAL,LAST)
(A(12),A(1),A(20));

This statement reads the next 12 characters from the default stream
input file (SYSIN) and assigns the string to FIRST. It then reads the next
character into MID_INITIAL, and then the next 20 characters into LAST.

GET EDIT (SOCIAL_SECURITY) (A(12))
FILE (SOCIAL) SKIP (12);

This statement opens the stream file SOCIAL if the file was closed,
advances 12 lines, reads the first 12 characters of the line, and assigns the
characters to the variable SOCIAL_SECURITY.

GET EDIT (N, (A(I) DO I=1 TO N))
(F(4),SKIP,100 F(10,5));

where the dimension of A is less than or equal to 100. This reads the
value of N from the input stream using the format item F(4). The process

9–15

Input and Output

then skips to the next line (record). It reads N elements into the array A,
using the format item F(10,5) for each element.

GET EDIT (NAME.FIRST,NAME.LAST)
(A(10),X(3),A(20))
STRING(’Philip A. Rothberg ’);

This statement assigns <BIT_STRING>(Philip) to the structure member
NAME.FIRST, skips the middle initial, period, and space, and assigns
<BIT_STRING>(Rothberg) to NAME.LAST.

9.2.2.3 GET LIST
The GET LIST statement acquires character-string data from an input
stream, which can be a stream file or a character-string expression. The
stream file can be a declared file or the default file SYSIN. The acquired
character strings are assigned to input targets named in the GET LIST
statement, after being converted automatically to the targets’ data types.

Use the GET LIST statement to read unformatted data from a stream
file or character string. Because GET LIST does not require that data be
aligned in specific columns, it is useful for acquiring input from a terminal.

The form of the GET LIST statement is as follows:

GET LIST (input-target, . . .)2
64

FILE(file-reference)
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

STRING(expression)

3
75;

The syntax is described in more detail in Section 9.2.2.1.

Specifying Input Data

The items to be read into the input targets are separated by a space or a
single comma. Multiple spaces are treated as a single space, and a comma
can be surrounded by spaces. The following rules apply:

• No items can be split across lines unless the split occurs inside a
quoted string.

• Character strings do not have to be enclosed in apostrophes unless
they contain a space or comma or are written on more than one line.
When a character string is enclosed in apostrophes, n apostrophes
within the string are written as n * 2 apostrophes; for instance, the
word isn’t would be specified as either:

isn’t or ’isn’’t’

• When a line begins with a comma or when two commas appear in
the line without intervening nonspace characters, the item in the
input-target list corresponding to that item is not updated. The target
retains whatever value it contained before GET LIST was executed.

• Every input field, including the last input field in a line, must be
terminated by a space, a comma, or a carriage return.

9–16

Input and Output

• Input fields are also terminated by the end-of-file (FILE option) or
end-of-string (STRING option), unless the end is encountered inside a
quoted string.

• If an input request from GET LIST encounters a null record, the
null character string (’’) is assigned, with appropriate conversion,
to the corresponding input target. A null input record means a
null record in a file or, if the input is from a terminal, a carriage
return with no other input. See Section 9.2.6 for examples.
ENVIRONMENT (IGNORE_LINE_MARKS) is used for the input
file, record terminators such as the carriage return are ignored, and
the GET LIST statement waits until the input request is satisfied.

• The CONVERSION condition is signaled whenever a data item in the
stream cannot be converted to the data type of the corresponding item
in the input-target list.

• The ENDFILE condition is signaled if the end of the file is encountered
during file input. The ERROR condition is signaled if the expression
in the STRING option does not contain enough characters to complete
processing of the input-target list.

Examples

GETS: PROCEDURE OPTIONS(MAIN);

DECLARE NAME CHARACTER(80) VARYING;
DECLARE AGE FIXED;
DECLARE (WEIGHT,HEIGHT) FIXED DECIMAL(5,2);
DECLARE SALARY PICTURE ’$$$$$$V.$$’;
DECLARE DOSAGE FLOAT;

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

GET FILE(INFILE)
LIST(NAME,AGE,WEIGHT,HEIGHT,SALARY,DOSAGE);

PUT FILE(OUTFILE)
LIST(NAME,AGE,WEIGHT,HEIGHT,SALARY,DOSAGE);

END GETS;

If the file INFILE.DAT contains the following data:

’Thomas R. Dooley’,33,150.60,5.87,15000.50,4E-6,

then the program GETS writes the following output to OUTFILE.DAT:

Thomas R. Dooley 33 150.60 5.87 $15000.50 4.0000000E-06

In the input file (INFILE.DAT), the string <BIT_STRING>(Thomas R. Dooley)
is surrounded by apostrophes so that the spaces between words will not be
interpreted as field separators.

GSTR: PROCEDURE OPTIONS(MAIN);

DECLARE STREXP CHARACTER(80) VARYING;
DECLARE (A,B,C,D,E) FIXED;
DECLARE OUTFILE STREAM OUTPUT FILE;

OPEN FILE(OUTFILE) TITLE(’GSTR.OUT’);

STREXP = ’1,2,3,4,5’;
GET STRING(STREXP) LIST(A,B,C,D,E);
PUT FILE(OUTFILE) LIST(A,B,C,D,E);

9–17

Input and Output

END GSTR;

The program GSTR writes the following output to GSTR.OUT:

1 2 3 4 5

For other examples, see Section 9.2.6.

9.2.2.4 GET SKIP
The GET SKIP statement positions the input file at the start of a new line.
The format of this GET statement is as follows:

GET [FILE(file-reference)] SKIP [(expression)] ;

The syntax is described in more detail in Section 9.2.2.1.

9.2.2.5 Execution of the GET Statement
When a GET statement is executed, the first action is to evaluate the
FILE option, if there is one. For example:

GET FILE(INFILE) LIST(A);

If INFILE references an open file, PL/I checks that the file has the INPUT
and STREAM attributes.

If INFILE has not been opened, PL/I implicitly opens the file with the
attributes INPUT and STREAM.

If the associated file does not exist, or if for any reason the associated file
cannot be opened, the UNDEFINEDFILE condition is signaled.

If the statement has a STRING option instead of a FILE option, the
reference in the STRING option is evaluated.

If the statement has neither a FILE option nor a STRING option, it is
taken to refer to the default file constant SYSIN. SYSIN is declared by
default with the STREAM INPUT attributes, and it is normally used for
input from a terminal (see Section 9.2.6).

If the input stream is a file, the next action is to execute the SKIP option,
if there is one. The SKIP option cannot be used with the STRING option.
Note that a GET statement can perform a SKIP operation even if it
performs no data input. For example:

GET FILE(INFILE) SKIP(2);

This statement repositions the file referenced by INFILE to the second line
following the current line in the file.

A GET statement that has the EDIT or LIST option performs input
from the stream to a list of input targets, which must be variables of
computational data types. If the input target is an aggregate variable,
then input is assigned to each element of the aggregate; input values are
assigned to array elements in row-major order and to structure members
in the order of their declaration. An input target can also contain a
DO construct that further controls the assignment. Because a stream
consists only of ASCII characters, and the input targets are not necessarily
character-string variables, an input field must be selected from the input
stream for each target and must be converted, if necessary, to the type of
the target.

9–18

Input and Output

In edit-directed (GET EDIT) statements, the selection and assignment
of the input field are controlled by a format item that corresponds to the
input target. In the default case, which applies to terminal input and to
input from most stream files, a data format item assumes that the end of
the input field has occurred if it encounters the end of a record in an input
file or the end of a line when the input is from a terminal.

For example, a common technique for reading lines of varying length
from a terminal is to deliberately use a format item that specifies a field
wider than the column width of the terminal. If a carriage return is
typed in response to an input request for GET EDIT, or if the end of
a record is immediately encountered, the requested field width is filled
with spaces and assigned to the input target under the control of the
corresponding format item. (Note that all spaces will cause an error
for B format items.) However, if the input stream is a character-string
expression (GET STRING), the ERROR condition is signaled if the format
item causes the end of the input string to be reached in the middle of
an input field. If the input stream is a file declared or opened with
ENVIRONMENT(IGNORE_LINE_MARKS), the search for characters
to complete the input field continues at the next record.

In list-directed (GET LIST) statements, an input field is acquired by
examining the input stream for the next character that is not a space
character. The following actions are taken depending on the character
found:

• If the next nonspace character is an apostrophe, the input field is
assumed to contain a bit- or character-string constant, in the same
format as that used to write a string constant in a program. The
constant is acquired and can span the end of a record or line. However,
the ERROR condition is signaled if the end of the file is reached before
the terminating apostrophe is found; if the input stream is a character-
string expression rather than a file, the ERROR condition is signaled
if the end of the string is reached. The apostrophes and B suffix
are removed from the constant, and any double apostrophe within a
character-string constant is changed to a single apostrophe. (If the
field contains a bit-string constant in base 4, octal, or hexadecimal
radix, its binary equivalent is found.) The resulting character- or bit-
string value is then assigned to the corresponding input target. If the
input target is not of the same data type, the input value is converted
according to the PL/I conversion rules (see Section 6.4).

• If the next nonspace character is a comma, and the previous operation
on the input file was by GET LIST, and the previous input field
was terminated by a space, carriage return, or end-of-record, the scan
continues. If the next nonspace character is a comma, and the previous
nonspace character was also a comma, the corresponding input target
is skipped; the input target retains whatever value it had before the
GET LIST statement.

• If the input line or record is empty (that is, a carriage return or
end-of-record is encountered immediately after the beginning of a
line), The null character string (’’) is assigned to the input target
with appropriate type conversion. If the input file was opened with

9–19

Input and Output

ENVIRONMENT(IGNORE_LINE_MARKS), the carriage return or
end-of-record is ignored.

• If the next nonspace character is neither a comma nor an apostrophe,
the input field is then assumed to begin with this character and to be
terminated by the next space, comma, carriage return, end-of-record (if
ENVIRONMENT(IGNORE_LINE_MARKS) was not used), end-of-file
(if the input stream is a file), or end-of-string (if the input stream is
a character string). All the characters in the field are acquired and
assigned, with appropriate type conversion, to the input target.

If the GET LIST statement attempts to read a file after its last input
field has been read, or if it attempts to read an empty file, the ENDFILE
condition is signaled. If the GET LIST statement attempts to read a
character string after its last field has been read, or if it attempts to read
a null string, the ERROR condition is signaled.

9.2.3 Output by the PUT Statement
The PUT statement transfers data from the program to the output
stream. The output stream can be either a stream file or a character-
string variable. The output file can be a declared file or the default file
SYSPRINT.

This entry describes the syntax, options, and execution of PUT
statements.

9.2.3.1 Syntax Summary of the PUT Statement
The PUT statement has several forms; they are:

PUT EDIT (output-source*, . . .) (format-specification, . . .)2
6664

FILE(file-reference)*
[PAGE]* [LINE(expression)]*
[SKIP[(expression)]]*
[OPTIONS(option)]*

STRING(reference)*

3
7775;

PUT [FILE (file-reference)*] LINE (expression);

PUT LIST (output-source, . . .)*2
6664

FILE(file-reference)*
[PAGE]* [LINE(expression)]*
[SKIP[(expression)]]*
[OPTIONS(option)]*

STRING(reference)*

3
7775;

PUT [FILE(file-reference)*] PAGE;

PUT [FILE(file-reference)]* SKIP [(expression)] ;

*Syntax elements common to two or more forms

9–20

Input and Output

output-source
A construct that specifies one or more expressions to be placed in the
output stream. Multiple output sources must be separated by commas.

An output source has the following forms:

expression

The expression is of any computational type, including a reference to a
scalar or aggregate variable. If the reference is to an array, data is output
from array elements in row-major order. If the reference is to a structure,
data is output from structure members in the order of their declaration.

(output-source, . . . DO reference=expression
[TO expression][BY expression][WHILE(expression)][UNTIL(expression)])

Another form is:

(output-source, . . . DO reference=expression
[REPEAT expression][WHILE (expression)][UNTIL(expression)])

The output source can be any of these forms, and the references and
expressions are as for the DO statement. Notice that the parentheses
surrounding this form of output source are in addition to the parentheses
surrounding the entire output-source list.

For a discussion of the matching of format items to output sources and of
the use of DO specifications, see Section 9.2.4.13.

format-specification
A list of format items to control the conversion of data items in the output
list. Format items can be data format items, control format items, or
remote format items. For each variable name in the output-source list,
there is a corresponding data format item in the format-specification list
that specifies the width of the output field and controls the data conversion
(see Section 9.2.4.13 and Section 9.2.4).

FILE(file-reference)
An option that specifies that the output stream be a stream file; the
reference is to a declared file variable or constant. If neither the FILE
option nor the STRING option is specified, PL/I uses the default file
SYSPRINT. SYSPRINT is associated with the default system output
file SYS$OUTPUT, which in turn is generally associated with the user’s
terminal.

If a file is specified, and it is not currently open, PL/I opens the file with
the attributes STREAM and OUTPUT.

PAGE
An option that advances the output file to a new page before any data is
transmitted. The PAGE option can be used only with implied or explicit
print files. The file is positioned at the beginning of the next page, and the
current page number is incremented by 1. The PAGE, LINE, and SKIP
options are always executed, in that order, before any other output or
file-positioning operations. The page size is either the default value or the
specific value that you have established for the file (See Section 9.1.3). The
PAGESIZE option can be used only with print files.

9–21

Input and Output

LINE (expression)
An option that advances the output file to a specified line. You can use the
LINE option only with implied or explicit print files. The expression must
yield an integer i. Blank lines are inserted in the output file such that the
next output data appears on the ith line of a page.

If the file is currently positioned at the beginning of line i, no operation is
performed by the LINE option.

If the file is currently positioned before line i, and i is less than or equal to
the page size, then blank lines are inserted following the current line until
line i is reached.

If the file is currently positioned at or beyond line i, and the file is not
at the beginning of line i, then the remainder of the page (the portion
between the current line and the current page size) is filled with blank
lines. The ENDPAGE condition is signaled.

When the LINE option is used within an ENDPAGE ON-unit, it causes a
skip to the next page.

SKIP [(expression)]
An option that advances a specified number of lines from the current
line. You can use the SKIP option only with the implied or explicit FILE
option. The expression must yield an integer i, which must not be negative
and must be greater than zero except for print files. If the expression is
omitted, i equals 1.

If the file is not a print file, i-1 blank lines are inserted following the
current line, and subsequent output of data begins at the beginning of
(current line)+i.

If the file is a print file, i=0 causes a return to the beginning of the current
line. If i is greater than zero, and either the current line exceeds the page
size or the page size is greater than or equal to the current line plus i,
then i-1 blank lines are inserted. Otherwise, the remainder of the current
page is filled with blank lines, and the ENDPAGE condition is signaled.

On output devices with the space-suppression feature, SKIP(0) can be used
to cause overprinting, underscoring, and so forth. For further information
on pages in stream files, see Section 9.2.6.

OPTIONS (CANCEL_CONTROL_O)
A statement option that can be included only with the implied or explicit
FILE option. The option is described fully in the Kednos PL/I for
OpenVMS Systems User Manual.

STRING(reference)
An option that specifies that the output stream be the referenced
character-string variable. The STRING option cannot be used in the
same statement with FILE, OPTIONS, PAGE, LINE, or SKIP.

9–22

Input and Output

9.2.3.2 PUT EDIT
The PUT EDIT statement takes output sources (variables and expressions)
from the program, converts the results to characters under control of a
format specification, and places the resulting character strings in the
output stream. The output stream is either a stream file or a character-
string variable.

With PUT EDIT, the format of the output data is controlled by the
program.

The form of the PUT EDIT statement is as follows:

PUT EDIT (output-source, . . .) (format-specification, . . .)2
666664

FILE(file-reference)
[PAGE] [LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

STRING(reference)

3
777775 ;

The syntax is described in more detail in Section 9.2.3.1.

Examples

PUTE: PROCEDURE OPTIONS(MAIN);

DECLARE SOURCE FIXED DECIMAL(7,2);

DECLARE OUTFILE PRINT FILE;

OPEN FILE(OUTFILE) TITLE(’PUTE.OUT’);

SOURCE = 12345.67;

PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (F(8,2));
PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (E(13));
PUT SKIP FILE(OUTFILE) EDIT(SOURCE) (A);
PUT SKIP FILE(OUTFILE) EDIT(’American: ’,SOURCE)

(A,P’ZZ,ZZZV.ZZ’);
PUT SKIP FILE(OUTFILE) EDIT(’European: ’,SOURCE)

(A,P’ZZ.ZZZV,ZZ’);

END PUTE;

The program PUTE writes the following output to PUTE.OUT:

12345.67
1.234567E+04

12345.67
American: 12,345.67
European: 12.345,67

9.2.3.3 PUT LINE
The PUT LINE statement advances a print file to a specified line. Its
format is as follows:

PUT [FILE (file-reference)] LINE (expression);

9–23

Input and Output

file-reference
A reference to the file to which the statement applies. The file must be a
print file.

The syntax is described in more detail in Section 9.2.3.1.

9.2.3.4 PUT LIST
The PUT LIST statement specifies a list of output sources (variables
and expressions) whose results are converted to character strings and
transmitted to the output stream. If the output file is a print file, the
output character strings are placed at the start of the next tab stop, where
a tab stop is in column 1, 9, 17, and so on. Otherwise, the strings are
separated by spaces.

With PUT LIST, the conversion of the output sources and formatting of
the output data are automatic and follow the PL/I rules for conversion to
character strings.

The form of the PUT LIST statement is as follows:

PUT LIST (output-source, . . .)

2
6666664

FILE(file-reference)
[PAGE] [LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

STRING(reference)

3
7777775

;

The syntax is described in more detail in Section 9.2.3.1.

Examples

PUTL: PROCEDURE OPTIONS(MAIN);

DECLARE I FIXED BINARY,
F FLOAT,
P PICTURE ’99V.99’,
S CHAR(10);

DECLARE INFILE STREAM INPUT FILE;
DECLARE OUTFILE PRINT FILE;

OPEN FILE(INFILE) TITLE(’PUTL.IN’);
OPEN FILE(OUTFILE) TITLE(’PUTL.OUT’);

GET FILE(INFILE) LIST (I,F,P,S);
PUT FILE(OUTFILE) SKIP LIST (I,F,P,S);

END PUTL;

Assume that the file PUTL.IN contains the following data:

2,3.54,22.33,’A string’

Then the program PUTL writes the following output to PUTL.OUT:

2 3.5400000E+00 22.33 A string

For print files, each output item is written at the next tab position.
Floating-point values are represented in floating-point notation. Character
values are not enclosed in apostrophes.

9–24

Input and Output

9.2.3.5 PUT PAGE
The PUT PAGE statement positions the output file at the start of a new
page. This statement is valid only for print files, that is, files that have
been opened with the PRINT attribute.

The form of the PUT PAGE statement is:

PUT [FILE(file-reference)] PAGE;

The syntax is described in more detail in Section 9.2.3.1.

Example

PUT FILE(REPORT) PAGE SKIP LINE(2);

The PUT statement advances the file REPORT to the beginning of the
next page, advances to line 2, and skips to the beginning of the next line
(3).

9.2.3.6 PUT SKIP
The PUT SKIP statement positions the output file at the start of a new
line.

The form of the PUT SKIP statement is as follows:

PUT [FILE(file-reference)] SKIP [(expression)];

The syntax is described in more detail in Section 9.2.3.1.

9.2.3.7 Execution of the PUT Statement
When a PUT statement is executed, the first action is to evaluate the FILE
or STRING option, if there is one. If the statement has a FILE option and
is not already open, the referenced file is either opened or created with
the STREAM and OUTPUT attributes. The file is opened if it has the
APPEND attribute; otherwise, it is created.

If neither the FILE option nor the STRING option is present, the output
stream is assumed to be the default file SYSPRINT.

If the output stream is a file, the next action is to execute any of the
options PAGE, LINE, and SKIP that occur in the statement, in that order.
The output stream must be a file if any of these options are included, and
it must be a print file if LINE or PAGE is included. Note that a PUT
statement can contain one or more of these options even if it performs no
data output. For example:

PUT FILE(OUT) PAGE LINE(20);

This statement skips to a new page in the file referenced by OUT (which
must be a print file), moves to line 20 of the file, and then terminates.

However, if the statement also has a LIST or EDIT option, it then writes
out a list of output sources, which must be variables, constants, or other
expressions of computational data types. Because a stream consists only
of ASCII characters, each output source is converted to a character string
before being written out, as follows:

• If the PUT statement is list directed, the output source is converted
according to the PL/I rules for converting a computational value to a
character string (see Section 6.4).

9–25

Input and Output

• If the PUT statement is edit directed, the output source is converted as
specified by a corresponding format item. For details, see Section 9.2.4.

• If the output stream is a character-string variable or file with the
attributes STREAM and OUTPUT (but not PRINT), the statement is
list directed, and the output source is of type CHARACTER, the output
source value is surrounded by apostrophes, and any apostrophe within
the value is replaced by a double apostrophe.

• If the output source is of type BIT, and the statement is list directed,
the converted output source is surrounded by apostrophes, and the
letter <BIT_STRING>(B) is appended.

The converted output source is then written to the output stream, as
follows:

• If the statement is list directed and the output stream is a file with
the attributes STREAM and OUTPUT (but not PRINT), then the
converted output source is written beginning at the end of the file and
followed by a single space. If the output stream is a print file, the
converted output source is written out beginning at the end of the file,
after enough spaces have been written out to move to the next tab
stop. In either case, if the converted output source does not fit on the
remainder of the current line, as much as possible is written on the
current line, and the rest is written on the next line. The ENDPAGE
condition can be signaled if the output stream is a print file. For more
information on print files, see Section 9.2.6.

• If the statement is edit directed, the exact number of characters
specified by the format item is written out, and no space follows. As
much output as possible is written on the remainder of the current
line, and it is continued, if necessary, on the next line. Any additional
positioning, such as on tab stops in a print file, is performed by control
format items.

• If the output stream is a character-string variable, the output process
is identical to that for a STREAM OUTPUT file except that the
first output source written out by a PUT statement is placed at the
beginning of the variable’s storage, and any previous value in the
variable is erased. Note that the X format item, which can be used
with PUT STRING, performs positioning by writing out spaces, not
by ‘‘skipping’’ characters in the previous value of the variable. Note
also that list-directed output to a character variable, followed by list-
directed output of the variable itself, can result in a proliferation of
apostrophes in the value finally written to a file.

9.2.4 Format Items
In PL/I, formatted input and output data is transferred with the GET
EDIT and PUT EDIT statements, which include a format specification
made up of format items.

PL/I format items are categorized as follows:

• Data format items: A, B, E, F, and P

9–26

Input and Output

• Remote format item: R

• Control format items: COLUMN, LINE, PAGE, SKIP, TAB, and X

The data format items refer to a field of characters in the stream. Each
data format item specifies the field width in characters and either the
manner in which the field is used to represent a value (output) or the
manner in which the characters in the field are to be interpreted (input).
Because the representation or interpretation is under control of the format
items, certain symbols used in the stream with GET LIST and PUT LIST
are not used with GET EDIT or PUT EDIT:

• Strings input by the GET EDIT statement should not be enclosed
in apostrophes unless the apostrophes are intended to be part of the
string. Strings output by PUT EDIT are not enclosed in apostrophes.

• Bit strings input by the GET EDIT statement should not be enclosed
in apostrophes, nor should they be followed by the radix factor B,
B1, B2, B3, or B4. These factors are not added by the PUT EDIT
statement on output.

• The comma and space characters are not interpreted as data
separators on input. On output, values are not automatically
separated by spaces.

The following guidelines apply to errors and mismatches that occur
between the actual data values and the fields specified by data format
items:

• On input, the CONVERSION condition is signaled if the field of
characters cannot be interpreted as required by the format item.

• On output, strings are left-justified in the specified field, and numeric
data is right-justified. Truncation occurs if the field is too narrow to
contain the necessary characters; strings are truncated on the right
and numeric data on the left.

The rest of this section describes each format item in detail. The
following subsections describe format-specification lists and the FORMAT
statement.

9.2.4.1 A Format Item
The A format item (both uppercase and lowercase) describes the
representation of a character string in the input or output stream. The
form of the A format item is as follows:

A [(w)]

w
A nonnegative integer or an integer expression that specifies the width in
characters of the field in the stream. If it is not included (PUT EDIT only),
the field width equals the length of the converted output source.

9–27

Input and Output

Input with GET EDIT

The value w must be included when the A format item is used with GET
EDIT. If w has a positive value, a character-string value comprising the
next w characters in the input stream is acquired and assigned to the
input variable.

The acquired character string is converted, if necessary, to the data type
of the input target, following the PL/I data conversion rules. Apostrophes
should enclose the stream data only if the apostrophes are intended to be
acquired as part of the data.

Output with PUT EDIT

The output source associated with an A format item is converted, if
necessary, to a string of characters. The result is assigned to a string
of w characters, which are placed in the output stream. If w is omitted,
the length of the output string equals the length of the converted output
source. If w is zero, the A format item and the associated output source
are skipped.

Output strings are not surrounded automatically by apostrophes. The
converted output source is truncated or appended with trailing spaces,
according to the value of w. The conversion of a computational data item
to a character string is performed following the PL/I data conversion rules
(see Section 6.4).

The next tables show the relationship between the internal and external
representations of characters that are read or written with the A format
item.

Input Examples

The input stream shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the
right. The # character is used to signify a space. The target type is the
type of the variable to which the input value is assigned.

Format
Item Input Stream Target Type Target Value

A(10) ##SHRUBBERY# . . .CHAR(10) ##SHRUBBER

A(6) ##SHRUBBERY# . . .CHAR(10) ##SHRU####

A(6) ##SHRUBBERY# . . .CHAR(10)
VAR

##SHRU

A(10) ##1.2345#### . . . DECIMAL(4,1) 001.2
A(5) ##1.2345#### . . . DECIMAL(4,2) 01.20
A(6) ##1.2345#### . . . DECIMAL(4,2) 01.23

9–28

Input and Output

Output Examples

The output source value shown in the table that follows is either a
constant or the value of a variable that is written with the associated
format item.

Output Source Value Format Item Output Value

’ STRING’ A(10) STRING####
’ STRING’ A STRING
1.2345 A(2) ##
1.2345 A ##1.2345
-1.2345 A(4) #-1.
-1.2345 A #-1.2345
’’ A(10) ##########
’’ A [no output]

0 A(3) ###
0 A ###0
-12345 A(6) ##-123
-12345 A ##-12345

9.2.4.2 B Format Items
The B format items B, B1, B2, B3, and B4 describe representations of
bit strings in an input or output stream. Note that the B can be typed
lowercase. The form of the B format items is as follows:

B[m] (w)

m
The integer 1, 2, 3, or 4, specifying the radix factor, that is, 2m. B and
B1 have the same meaning. When the radix factor is omitted or is 1,
the bit string is represented by the characters 0 and 1 (binary) in the
stream. When the radix factor is 2, the bit string is represented by the
characters 0, 1, 2, and 3 (base 4). When the radix factor is 3, the bit string
is represented by the characters 0, 1, 2, 3, 4, 5, 6, and 7 (octal). When the
radix factor is 4, the bit string is represented by the characters 0 through
9 and A through F (hexadecimal).

w
A nonnegative integer or integer expression that specifies the width in
characters of the field in the stream.

The interpretation of the B format items on input and output is described
below.

Input with GET EDIT

The value w must be included when the B format items are used with
GET EDIT. The number of characters specified by w is acquired. The
input characters are converted to an intermediate bit string of length
w*m. If the input target is not a bit-string variable, then this intermediate
bit string is converted to the type of the input target, following the PL/I
conversion rules (for details, see Section 6.4).

9–29

Input and Output

The string of characters in the stream can be preceded or followed by
spaces, which are ignored. All characters in the input field (except any
leading and trailing spaces) must be those implied by the radix factor;
otherwise, a CONVERSION condition is signaled. Consequently, input
strings should not be enclosed in apostrophes and should not include the
suffix Bm.

Output with PUT EDIT

The output source is converted, if necessary, to a bit string, following the
PL/I rules for converting data to bit strings (see Section 6.4). If the length
of the resulting bit string is not a multiple of the radix factor (m), the bit
string is padded with zeros on the right to make its length the next higher
multiple.

The bit string is then converted to a character representation appropriate
to the radix factor and placed in the output stream. The character
representation is left-justified in the field specified by w and is truncated
or padded with spaces on the right if necessary. If w is not included, the
output string has the same length as the converted output source. If w is
zero, the B format item and its associated output source are skipped.

Examples

BFORMAT_XM: PROCEDURE OPTIONS(MAIN);
/* This program prints incorrect values for an integer */
DECLARE I FIXED BINARY(31);
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 5;
OPEN FILE(BFORM) TITLE(’BFORMXM.OUT’);
PUT SKIP FILE(BFORM) EDIT (’Decimal:’,I) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT (’Binary:’,I) (A,X,B);
PUT SKIP FILE(BFORM) EDIT (’Base 4:’,I) (A,X,B2);
PUT SKIP FILE(BFORM) EDIT (’Octal:’,I) (A,X,B3);
PUT SKIP FILE(BFORM) EDIT (’Hexadecimal:’,I) (A,X,B4);
END BFORMAT_XM;

This program produces the following output:

Decimal: 5
Binary: 0000000000000000000000000000101
Base 4: 0000000000000022
Octal: 00000000024
Hexadecimal: 0000000A

The base 4, octal, and hexadecimal representations of I are incorrect
because the precision of I (31) is not a multiple of 2, 3, or 4. For the B2
and B4 format items, an extra zero bit was appended to the intermediate
bit string, in effect multiplying the value of the string by 2. For B3, two
extra bits were appended to make the string 33 bits long and thus divisible
into an exact number of 3-bit segments. To avoid this problem, the
precision of the output source must be a number that is evenly divisible
by any radix factor with which it is to be written out, as in the following
example:

9–30

Input and Output

BFORMAT_XM: PROCEDURE OPTIONS(MAIN);
/* This program prints correct values for an integer */
DECLARE I FIXED BINARY(24); /* 24 is a multiple of 2*3*4 */
DECLARE BFORM STREAM OUTPUT PRINT FILE;
I = 5;
OPEN FILE(BFORM) TITLE(’BFORMXM5.OUT’);
PUT SKIP FILE(BFORM) EDIT (’Decimal:’,I) (A,X,F(2));
PUT SKIP FILE(BFORM) EDIT (’Binary:’,I) (A,X,B);
PUT SKIP FILE(BFORM) EDIT (’Base 4:’,I) (A,X,B2);
PUT SKIP FILE(BFORM) EDIT (’Octal:’,I) (A,X,B3);
PUT SKIP FILE(BFORM) EDIT (’Hexadecimal:’,I) (A,X,B4);
END BFORMAT_XM;

This version of the program produces the following output:

Decimal: 5
Binary: 000000000000000000000101
Base 4: 000000000011
Octal: 00000005
Hexadecimal: 000005

The output values are correct representations of I because the precision
(24) is evenly divisible by 2, 3, or 4.

The tables below show the relationship between the internal and external
representations of characters that are read or written with the B format
item.

Input Examples

The input stream shown in the following table is a field of characters
beginning at the current position in the stream and continuing to the
right. The # character is used to signify a space. The target type is the
type of the variable to which the input value is assigned.

Format
Item Input Stream Target Type Target Value

B(12) 111000111110 . . . BIT(12) ’ 111000111110’ B
B(12) ######110011 . . . BIT(12) ’ 110011000000’ B

B2(6) 123123 . . . BIT(12) ’ 011011011011’ B
B3(4) 1775 . . . BIT(12) ’ 001111111101’ B
B4(3) 1FA . . . BIT(12) ’ 000111111010’ B

Output Examples

The output source value shown in the following table is either a constant
or the value of a variable that is written out with the associated format
item.

Output Source Value Format Item Output Value

4095 B 111111111111
4095 B(11) 11111111111

9–31

Input and Output

Output Source Value Format Item Output Value

4095 B2 333333
4095 B3 7777
4095 B4 FFF

9.2.4.3 COLUMN Format item
The COLUMN format item sets a stream file to a specific character
position within a line. In other words, COLUMN determines the position
at which the next data will be output or from which the next data will
be input. The COLUMN format item refers to an absolute character
position in a line; for information on how to refer to a relative position, see
Section 9.2.4.12.

The form of the COLUMN format item is:n
COLUMN
COL

o
(w)

w
A nonnegative integer or expression that identifies the wth position from
the beginning of the current line. The value of the converted expression
must be zero or positive. If the value of the converted expression is zero, a
value of 1 is assumed.

If the file is already at the specified position, no operation is performed. If
the file is already beyond the specified position, the format item is applied
to the next line.

The interpretation of the COLUMN format item on input and output is
given below.

Input with GET EDIT

The file is positioned at the column specified by w. Characters between
the beginning of the line and this column are ignored. If the file is already
positioned beyond the specified column, the remainder of the line is
skipped and the format item is applied to the next line.

Output with PUT EDIT

The file is positioned at the column specified by w. Within the current line,
positions between the wth column and the position of the last output data
are filled with spaces.

If the file is already positioned beyond the specified column, the format
item is applied to the next line. If w exceeds the line size, a value of 1 is
assumed. See Section 9.1.

9–32

Input and Output

Examples

COL: PROCEDURE OPTIONS(MAIN);

DECLARE IN STREAM INPUT FILE;
DECLARE OUT STREAM OUTPUT FILE;
DECLARE LETTER CHARACTER(1);

PUT FILE(OUT) SKIP
EDIT(’123456789012345678901234567890’) (A);

PUT FILE(OUT) SKIP
EDIT(’COL1’,’COL28’) (A,COL(28),A);

GET FILE(IN) EDIT (LETTER) (A(1));
PUT FILE(OUT) SKIP(2)

LIST(’Letter in column 1:’,LETTER);

GET FILE(IN)
EDIT (LETTER) (COL(25),A(1));

PUT FILE(OUT) SKIP
LIST (’Letter in column 25:’,LETTER);

END COL;

If the stream input file IN.DAT contains the following text:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

then the program COL writes the following output to the stream output
file OUT.DAT:

123456789012345678901234567890
COL1 COL28

’Letter in column 1:’ ’A’
’Letter in column 25:’ ’Y’

9.2.4.4 E Format Item
The E format item describes the representation of a fixed- or floating-point
value as a decimal floating-point number in a stream.

The form of the item is:

E(w[,d])

w
A nonnegative integer or expression that specifies the total width in
characters of the field in the stream.

d
An optional nonnegative integer or expression that specifies the number
of fractional digits in the stream representation and whose value is
interpreted depending on GET EDIT and PUT EDIT statements as
described below.

Input with GET EDIT

Used with GET EDIT, the E format item acquires a character-string value
representing a floating-point decimal value and assigns it, with necessary
conversions, to an input target of any computational type. If w is zero, no
operation is performed on the input stream, and a null character string is
converted and assigned to the input target.

9–33

Input and Output

For input, floating-point values can be represented in the stream in the
following forms:

Form Example

mantissa 124333

sign mantissa -123.333

sign mantissa sign exponent -123.333-12

sign mantissa E exponent -123.333E12

sign mantissa E sign exponent -123.343E-12

The mantissa is a fixed-point decimal constant, the sign is a plus (+) or
minus (-) symbol, and the exponent is a decimal integer. A zero exponent
is assumed if both the letter E and the exponent are omitted.

If, on input, the mantissa includes a decimal point, it overrides the
specification of d. If no decimal point is included, then d specifies the
number of fractional digits.

The value of w should be large enough to include the mantissa, the
optional decimal point in the mantissa, the signs on the exponent and
mantissa, the optional letter E, and the exponent. If the field width is too
narrow, the stream representation is truncated on the right; if the field
width is too wide, excess characters are acquired on the right and may
contain invalid input.

Spaces can precede or follow the value in the stream and are ignored. If
the entire field contains spaces, zero is assigned to the input target. If
the stream representation is not one of the acceptable forms, an ERROR
condition is signaled.

Output with PUT EDIT

Used in a PUT EDIT statement, the E format item converts an output
source of any computational type to the following form for representation
in the stream:

[-] digit . [fractional-digits] E sign exponent

Typical representations are as follows:

1.E+07

3.33E-10

-2.7186E+00

If d is omitted from the format item, then d = s - 1, where s is the precision
of the output source expressed in decimal. The decimal value is rounded
before being written out.

The exponent is ordinarily a 2-digit decimal integer and is always signed.
The exponent is adjusted so that the first digit of the mantissa is not zero,
except that the value 0 is represented as:

0.0000 . . . E+00

with a number of zeros to the right of the decimal point equal to the
specified number of fractional digits.

9–34

Input and Output

To account for negative values with fractional digits, the specified width
integer should be 7 greater than the number of digits to be represented
in the mantissa: one character for the preceding minus sign, one for the
decimal point in the mantissa, one for the letter E, one for the sign of the
exponent, and two for the exponent itself. (On OpenVMS VAX systems for
values of type H-float, the value of w should be 8 greater than the number
of digits, respectively.)

If the number’s representation is shorter than the specified field, the
representation is right-justified in the field and the number is extended on
the left with spaces.

If the field specified by w is too narrow, an ERROR condition is signaled.

Examples

The next tables show the relationship between the internal and external
representations of numbers that are read or written with the E format
item.

Input Examples

The input stream shown in this table is a field of characters beginning at
the current position in the stream and continuing to the right. The target
type is the type of the variable to which the input value is assigned.

Format
Item Input Stream Target Type Target Value

E(6,0) 124333 . . . DECIMAL(10,2) 124333.00
E(6,0) -123333 . . . DECIMAL(10,2) -12333.00
E(8) -123.333 . . . DECIMAL(8,5) -123.33300
E(11) -123.333-

12 . . .
FLOAT
DEC(7)

-1.233330E-10

E(11,3) -123343E-
12 . . .

FLOAT
DEC(15)

-1.23343000000000E-10

Output Examples
The output source value shown in the table is either a constant or the
value of a variable that is written out with the associated format item.
The # character is used to signify a space.

Output Source Value Format Item Output Value

-12234 E(11) -1.2234E+04
-12234 E(11,2) ##-1.22E+04
12234 E(11) #1.2234E+04
12234 E(11,2) ###1.22E+04
-12.234 E(11,1) ###-1.2E+01
-1.23456E3 E(12) -1.23456E+03
-1.23456E3 E(12,2) ###-1.23E+03

9–35

Input and Output

9.2.4.5 F Format Item
The F format item describes the representation of a fixed- or floating-point
value as a decimal fixed-point number in a stream.

The form of the item is:

F(w[,d])

w
A nonnegative integer or expression that specifies the total width in
characters of the field in the stream.

d
An optional nonnegative integer or expression that specifies the number
of fractional digits in the stream representation and whose value is
interpreted depending on GET EDIT and PUT EDIT statements as
described below.

Input with GET EDIT

Used with GET EDIT, the F format item acquires a fixed-point decimal
value from the next w characters in the stream and converts it to an
input target of any computational type. Fixed-point decimal values can be
represented in the stream in the following forms:

9–36

Input and Output

number
sign number

The number is a fixed-point decimal constant, and the sign is a plus (+) or
minus (-) symbol.

The following are valid representations:

124333
-123333
-123.

A CONVERSION condition is signaled if the field is not blank and does
not contain a valid representation; otherwise, the fixed-point decimal
number is extracted from the field and is assigned to the input target,
with any necessary conversions. A decimal point included in the number
overrides the specification of d. If no decimal point is included, d specifies
the number of fractional digits. If d is omitted, it is assumed to be zero.

The value w should be only large enough to include the number, the
optional decimal point in the number, and the optional sign. If w is too
small, the stream representation is truncated on the right. If w is too
large, extra characters, which might include invalid syntax, are acquired.

If w is zero, a null character string is converted and assigned to the input
target, and no operation is performed on the stream.

Spaces can precede or follow the number in the stream and are ignored. If
the entire string contains spaces or is a null string, the fixed-point decimal
constant 0 is converted and assigned to the input target.

Output with PUT EDIT

Used in a PUT EDIT statement, the F format item converts an output
source of any computational type to one of the following forms for
representation in the stream:

integer
integer.fractional-digits
-integer.fractional-digits

Typical representations are:

3234
0.23432
3.33
-3234.33

The decimal value is rounded before being written out. If d is omitted from
the format item, the decimal point is not shown, and only the integral part
of the number is shown.

9–37

Input and Output

If d is larger than the number of fractional digits to be output, trailing
zeros are appended to the output number. All leading zeros to the left of
the decimal point are suppressed unless the integral part of the number is
zero, in which case one zero appears to the left of the decimal point.

To account for negative values with fractional digits, the specified width
integer should be 2 greater than the number of digits to be represented:
one character for the preceding minus sign and one for the decimal point
in the number.

If the number’s representation is shorter than the specified field, the
representation is right-justified in the field, and the number is extended
on the left with spaces.

If the field is too narrow to represent the integral portion of the output
number, an ERROR condition is signaled.

Examples

The tables below show the relationship between the internal and external
representations of numbers that are read or written with the F format
item.

Input Examples
The input stream shown in this table is a field of characters beginning at
the current position in the stream and continuing to the right. The target
type is the type of the variable to which the input value is assigned.

Format
Item Input Stream Target Type Target Value

F(10,2) -123456.78 . . . DECIMAL(10,2) -123456.78
F(10,4) -

1234.56789 . . .
DECIMAL(10,2) -1234.56

F(8,5) -
.123456789 . . .

DECIMAL(5,5) -0.12345

F(10) 1234.56789 . . . FLOAT DEC(7) 1.234568E+03

Output Examples
The output source value shown in this table is either a constant or the
value of a variable that is written out with the associated format item.
The # character is used to specify a space.

Output Source Value Format Item Output Value

-12.234 F(3,0) -12
-12.234 F(6,2) -12.23
-12.234 F(7,3) -12.234
-1.23456E3 F(8) ###-1235
-1.23456E3 F(8,2) -1234.56
’ 1000’ B3 F(4) #512

9–38

Input and Output

Output Source Value Format Item Output Value

’ 1000000000000000’ B F(5) 32768
’ 100000’ B3 F(5) 32768
’ ABCEDF’ B4 F(10) ##11259615

9.2.4.6 LINE Format Item
The LINE format item sets a print file to a specific line. It can be used
only with print files and the PUT EDIT statement. If necessary, blank
lines are inserted between the current file position and the specified line,
and subsequent output begins on the specified line.

The LINE format item identifies an absolute line position on the current
output page; to specify a line position relative to the current line, see SKIP
format item.

The form of the LINE format item is:

LINE(w)

w
An integer, or an expression, that specifies a line on the current page,
where line 1 is the first line. The maximum value for a print file’s line
number is 32767. If a program generates a value in excess of 32767, a
run-time error occurs.

When the LINE format item is executed, the current line is determined.
The current line is 1 if the file is at the beginning of a new page.
Otherwise, the current line is n+1, where n is the number of complete
lines already on the page. The position in the file is then changed as
follows:

• If line w is the current line, and the file is either at the beginning of
a new line or at the beginning of a new page, then no operation is
performed.

• If line w is beyond the current line and is less than or equal to the
current page size, then the file is positioned at line w, and the lines
between the current line and line w are filled with blank lines. (See
Section 9.1)

• If line w is at or before the current line, the current line is not beyond
the current page size, and the file is not at the beginning of a line
or page, then the remainder of the page (the portion between the
current line and the current page size) is filled with blank lines, and
the ENDPAGE condition is signaled. The same actions occur when the
current line is less than or equal to the page size and w is greater than
the page size.

• Otherwise, the file is positioned at the beginning of a new page, and
the page number is incremented by 1 (for instance, when w is zero).

9–39

Input and Output

9.2.4.7 P Format Item
The picture format item (P) describes a field of characters in the input or
output stream. The field can be an input field acquired with GET EDIT or
an output field transmitted by PUT EDIT. With GET EDIT, the P format
item acquires a pictured value from the input stream. With PUT EDIT,
the P format item edits an output source to a specified picture format.

The form of the P format item is:

P ’picture’

’ picture ’
A picture of the same syntax as for the PICTURE data attribute. The
syntax is summarized in PICTURE attribute (see Section 2.2.38. The field
width is the total number of characters, exclusive of V, in the picture.

The interpretation of the P format item, for input and output, is given
below.

Input with GET EDIT

Used with the GET EDIT statement, the P format item acquires a
pictured value (a field of characters) from the stream file, extracts its
fixed-point decimal value, and assigns the value to an input target of any
computational type. The picture describes a field of w characters, where w
is the total number of picture characters in the picture, exclusive of the V
character.

A string of w characters is acquired from the input stream and validated
against the picture specified in the format item. The string is valid if it
corresponds to an internal representation that would be created by the
specified picture if the picture were used to declare a variable of type
PICTURE. If the string is valid, its fixed-point decimal value is extracted
and assigned to the input target. If necessary, the value is converted to
the type of the input target, following the usual rules (see Section 6.4). If
the string is not valid, the CONVERSION condition is signaled.

When no decimal point appears in the input stream item, the scale factor
of the item is assumed to be the number of digit positions specified to the
right of the V character in the picture. If no V character appears, the scale
factor is zero.

Output with PUT EDIT

Used with the PUT EDIT statement, the P format item outputs a source
of any computational type in the specified format. If necessary, the output
source is first converted to a fixed-point decimal value, following the
PL/I conversion rules. The fixed-point decimal value is then edited by
the picture specified in the format item. The P format item therefore
describes an output field of w characters, where w is the total number
of characters in the picture, exclusive of the V character. If the output
source is a pictured value, then its extracted fixed-point decimal value
must be capable of being edited by the picture specified in the P format
item. Otherwise, the ERROR condition is signaled.

9–40

Input and Output

Examples

The following tables show the relationship between the internal and
external representations of numbers that are read or written with the P
format item.

Input Examples
The input stream shown in this table is a field of characters beginning
at the current position in the stream and continuing to the right. The #
character is used to specify a space. The target type is the type of the
variable to which the input value is assigned.

Format Item Input Stream Target Type Target Value

P’ $$$,$$$,$$9V.99DB’$10,987,654.00DB . . . DECIMAL(10,2) -10987654.00

P’ $$$,$$$,$$9V.99DB’########$10.99## . . . DECIMAL(10,2) 10.99

P’ SSSSV.SSSSS’ ##-1.12345 . . . DECIMAL(8,5) -1.12345
P’ SSSSV.SSSSS’ +100.12345 . . . DECIMAL(8,5) 100.12345
P’ SSSSV.SSSSS’ #100.12345 . . . DECIMAL(8,5) [CONVERSION]
P’ SSSSV.SSSSS’ +1001.2345 . . . DECIMAL(8,5) [CONVERSION]

The last two cases signal the CONVERSION condition. In the first case,
the input field has a space instead of a plus symbol or minus symbol in
the first position. In the second case, the input field has four digits to the
left of the period, and the P format item specifies a maximum of three.
The P format item in both cases uses drifting strings of S characters, and,
if used to declare a picture variable, the specification could create several
different character representations. However, the specification could not
have created the last two input fields shown, and they are therefore
invalid values.

Note that in the second line in the table, the characters ‘‘$10.99’’ must
be surrounded with the number of spaces shown. The drifting dollar
signs and the comma insertion characters always specify either digits, the
characters themselves, or spaces. Similarly, the characters ‘‘DB’’ in the
picture specification specify either these characters or the same number of
spaces. If the pictured input value did not contain these spaces, it would
be invalid.

Output Examples
The output source value shown in this table is either a constant or the
value of a variable that is written out with the associated format item.

Output Source Value Format Item Output Value

-12234 P’ $$$$$$DB’ $12234DB
-12234 P ’ SSSSSSV.SS’ -12234.00
-12.234 P ’ T9V.999’ J2.234
-1.23456E3 P ’ -9999V.99’ -1234.56

9–41

Input and Output

Output Source Value Format Item Output Value

-1.23456E3 P ’ +ZZZ9V.99’ #1234.56

9.2.4.8 PAGE Format Item
The PAGE format item is used with print files to begin a new page. See
Section 9.2.6 for more information on print files.

The form of the PAGE format item is:

PAGE

Subsequent output begins on line 1 of the next page, and the current page
number for the print file is incremented by 1.

9.2.4.9 R Format Item
The R (remote) format item specifies the label of a FORMAT statement
from which some or all of a format specification is obtained by a GET
EDIT or PUT EDIT statement.

The form of the R format item is:

R (label)

label
The label of a FORMAT statement within the same block as the GET
EDIT or PUT EDIT statement. If the item occurs in a recursive procedure,
the R item and FORMAT statement must occur in the same recursion.

FORMAT Statement

The FORMAT statement describes a remote format-specification list to be
used by GET EDIT or PUT EDIT statements. The FORMAT statement
and remote (R) format item are useful when the same format specification
is used by a large number of GET EDIT or PUT EDIT statements, or both.
In this case, a change to the format specification can be made in the single
FORMAT statement, rather than in each GET or PUT statement.

The form of the FORMAT statement is:

label: FORMAT (format-specification, . . .);

label
A valid PL/I label. A label is required and is specified in the GET EDIT
or PUT EDIT statement that contains an R format item in its format-
specification list.

format-specification
A list of one or more format items that match corresponding input targets
in a GET EDIT statement, or output sources in a PUT EDIT statement.

Although the FORMAT statement can contain another R format item, the
following restrictions apply:

• The FORMAT statement cannot designate its own label with an R
format item.

9–42

Input and Output

• The FORMAT statement cannot begin a chain of remote format items
that leads back to the original FORMAT statement.

Examples

RFRM: PROCEDURE OPTIONS(MAIN);

DECLARE SYSIN STREAM INPUT FILE;
DECLARE SYSPRINT PRINT FILE;
DECLARE SALARY PICTURE ’$$$$$$$$9V.99’;
DECLARE (FIRST,MID,LAST) CHARACTER(80) VARYING;
DECLARE 1 HIRING,

2 DATE CHARACTER(20) VARYING,
2 EXPERIENCE FIXED,
2 SALARY PICTURE ’$$$$$$$$9V.99’;

OPEN FILE(SYSIN) TITLE(’RFRM.IN’);
OPEN FILE(SYSPRINT) TITLE(’RFRM.OUT’);

GET EDIT(SALARY,FIRST,MID,LAST,DATE,EXPERIENCE,HIRING.SALARY)
(F(8,2),R(PERSONNEL_FORMAT));

PUT SKIP LIST(LAST||’, ’||FIRST||’ ’||MID||’:’,
’Hired ’||DATE||’ at ’||HIRING.SALARY);

PUT SKIP LIST(EXPERIENCE,’ years prior experience’);
PUT SKIP LIST(’Present salary: ’||SALARY);

PERSONNEL_FORMAT: FORMAT(R(NAME),A(20),SKIP,F(2),X,F(8,2));
NAME: FORMAT(3(SKIP,A(80)));
END RFRM;

Assume the file RFRM.IN contains the following data:

25005.50
Thomasina
A.
Delacroix
6 July 1976

2 15003.65

The following output, with spacing as shown, will be written to the print
file RFRM.OUT:

Delacroix, Thomasina A.: Hired 6 July 1976 at $15003.65
2 years prior experience

Present salary: $25005.50

9.2.4.10 SKIP Format Item
The SKIP format item sets a stream file to a new position relative to the
current line. It is used with input and output files.

The form of the SKIP format item is:

SKIP [(w)]

w
An integer, or an expression, giving the number of lines to be skipped; the
expression must not convert to a negative integer and must be greater
than zero, except for print files. If w is omitted, a value of 1 is assumed.

9–43

Input and Output

If w is 1 or is omitted, the file is positioned at the beginning of the next
line. If w is greater than 1, w-1 lines are skipped on input, but the
ENDFILE condition is signaled if the end of the file is encountered first.
On output, w-1 blank lines are inserted. In both cases, the new position is
the beginning of (current line)+w.

Use with Print Files

If w is zero, the file is repositioned at the beginning of the current line,
allowing overprinting of the line. If w is greater than zero, and either
the current line exceeds the page size or the page size is greater than
or equal to the current line plus w, then w-1 blank lines are inserted.
Otherwise, the remainder of the page (the portion between the current line
and the page size) is filled with blank lines, and the ENDPAGE condition
is signaled.

9.2.4.11 TAB Format Item
The TAB format item sets a print file to a specified tab stop. It is used
only for output to print files. Within a line, tab stops always occur every
eight columns, starting at column 1. The form of the TAB format item is:

TAB [(w)]

w
An integer, or an expression, that identifies the wth tab stop from the
current position; w must not be negative. If w equals zero, no operation is
performed. If w is omitted, a value of 1 is assumed.

When the TAB format item is executed, the current column (cc) is
determined. If the current position is the beginning of a line, page, or
file, then cc is one. Otherwise, cc is the column in the current line at
which the next output character would appear. For example, if seven
characters have already been written on a line, then the cc is column 8;
this is where the next output would occur. The file is then repositioned in
one of the following ways:

• If there are at least w tab stops between (cc+1) and the end of the line,
then the file is moved to the wth tab stop from the current column,
and the intervening positions are filled with spaces. The end of the
line is at one column after the current line size, which is either the
default value or the specific value that you have established for the
file. See Section 9.1 for LINESIZE option.

• If there are fewer than w tab stops on the remainder of the current
line, the file is skipped to the beginning of the next line and positioned
at the first tab stop (column 1). If, before the skip operation, the
current line was the last line on the page, the ENDPAGE condition is
signaled, and the current line becomes (page size)+1. The page size is
either the default value or the specific value that you have established
for the file. See Section 9.1 for PAGESIZE option.

9–44

Input and Output

Examples

TAB: PROCEDURE OPTIONS(MAIN);

DECLARE OUT STREAM OUTPUT PRINT FILE;

OPEN FILE(OUT) LINESIZE(60);

PUT FILE(OUT) SKIP
EDIT(’123456789012345678901234567890’) (A);

PUT FILE(OUT) SKIP EDIT(’COL1’,’?’) (A,TAB(2),A);
PUT FILE(OUT) EDIT(’!’) (TAB(20),A);
PUT FILE(OUT) SKIP EDIT(’*’) (TAB(1),A);
PUT FILE(OUT) EDIT(’abcdefg’) (A); /* cc now = 17 */
PUT FILE(OUT) EDIT(’&’) (TAB(6),A);

END TAB;

The program TAB writes the following output to the print file OUT.DAT:

123456789012345678901234567890
COL1 ?
!

*abcdefg
&

The question mark appears in column 17, which is the second tab stop
following the string <BIT_STRING>(COL1). The exclamation point appears
in column 1 of the next line because there are fewer than 20 tab stops on
the remainder of the line. In the third PUT EDIT statement, the SKIP
option first resets the current column to zero. When the TAB format item
is executed, it must position the file to the first tab stop that is between
column 1 (cc+1) and the end of the line; therefore, the file is positioned,
and the asterisk appears, in column 9. Similarly, the fourth statement
writes out the string <BIT_STRING>(abcdefg), after which the current
column is 17, a tab stop. Because the line size has been established as 60,
there are only five tab stops between cc+1 and the end of the line: 25, 33,
41, 49, and 57. Therefore, the format item TAB(6) in the last PUT EDIT
statement causes a skip to the next line, and the ampersand appears in
column 1.

9.2.4.12 X Format Item
The X format item sets a stream file or character-string expression to a
column relative to the current position. It is the only control format item
that can be used with either the FILE or STRING option of GET EDIT
and PUT EDIT. The form of the X format item is:

X [(w)]

w
An integer, or an expression, that specifies a number of consecutive
character positions in the stream; w must not yield a negative integer
value. If w yields zero, no operation is performed. If the w is omitted, its
value is assumed to be 1.

Input with GET EDIT

On input, the next w columns after the current column are skipped.

9–45

Input and Output

Output with PUT EDIT

On output, w spaces are inserted following the current column.

When the output stream is a file, and the end of the current line is
reached, the output of spaces continues on the next line until w spaces
have been output. The size of the current line is either the default value
or the specific value you have established for the file (see Section 9.1 for
LINESIZE option). If the file is a print file, the ENDPAGE condition is
signaled if the page size is reached; on normal return from the ENDPAGE
ON-unit, output of spaces continues at the top of the next page until w
spaces have been output.

If the output stream is a character-string variable, w spaces are written to
the variable. The ERROR condition is signaled if the maximum length of
the string is exceeded.

Examples

XFOR: PROCEDURE OPTIONS(MAIN);

DECLARE INLINE CHARACTER(80) VARYING;
DECLARE FIRSTWORD CHARACTER(80) VARYING;
DECLARE OUTFILE PRINT FILE;
DECLARE SPACE1 FIXED;

GET EDIT(INLINE) (A(1000)) OPTIONS(PROMPT(’Line>’));

SPACE1 = INDEX(INLINE,’ ’); /* position of first wordbreak */

FIRSTWORD = SUBSTR(INLINE,1,SPACE1-1);

PUT STRING(FIRSTWORD) EDIT (FIRSTWORD,’-FIRST WORD TYPED’) (A,X(2),A);

PUT SKIP FILE(OUTFILE) LIST(FIRSTWORD);
END XFOR;

The GET EDIT statement in the program XFOR inputs a complete line
from a user’s terminal, after issuing and receiving an answer to the
prompt <BIT_STRING>(Line>). Assume that the interaction is as follows:

Line> beautiful losers Return

The following output will be written to OUTFILE.DAT:

beautiful -FIRST WORD TYPED

The X format item has correctly inserted two spaces between <BIT_
STRING>(beautiful) and <BIT_STRING>(-FIRST WORD TYPED).

XFOR2: PROCEDURE OPTIONS(MAIN);

DECLARE INLINE CHARACTER(80) VARYING;
DECLARE OUTFILE2 PRINT FILE;

GET EDIT(INLINE) (X(10),A(1000))
OPTIONS(PROMPT(’Line>’));

PUT SKIP FILE(OUTFILE2) LIST(INLINE);
END XFOR2;

In the program XFOR2, the GET EDIT statement skips the first 10
characters typed after the prompt and then inputs the remainder of the
line. Assume that the interaction is:

9–46

Input and Output

Line> ABCDEFGHIJKLMNOPQRSTUVWXYZReturn

The following output will be written to OUTFILE2.DAT:

KLMNOPQRSTUVWXYZ

The first 10 letters (A to J) have been ignored on input.

9.2.4.13 Format Specifications
In the GET EDIT, PUT EDIT, and FORMAT statements, format items are
used singly or in combination to create format specifications. The syntax
of a format specification is as follows:8<
:

format-item
iteration-factor format-item
iteration-factor(format-specification, . . .)

9=
;

The iteration factor is an integer or an integer expression that repeats
the following format item or the following list of format specifications.
Expressions must be enclosed in parentheses. If an integer iteration factor
precedes a single format item that is not in parentheses, the iteration
factor and the format item must be separated by a space. For example:

PUT EDIT (A) (F(5,2));

This statement specifies a 5-character field containing decimal digits, two
of which are fractional. Used by itself as a format specification, this item
specifies one such field. To specify two such fields, precede the item with
the iteration factor 2:

PUT EDIT (A,B) (2F(5,2));

Or:

PUT EDIT (A,B) (2 (F(5,2)));

An iteration factor can also repeat an entire list of format specifications:

PUT EDIT ((A(I) DO I = 1 TO 10)) /* 10 array elements */
(2(F(5,2),2(F(7,2),E(8)))); /* 10 format items */

Expanded into individual format items, this specification looks like this:

F(5,2),F(7,2),E(8),F(7,2),E(8),F(5,2),F(7,2),E(8),F(7,2),E(8)

If an expression is used as the iteration factor, it must be enclosed in
parentheses, but does not require spaces. For example:

PUT EDIT (A) ((Z*4)F(5,2));

In general, data listed in the GET EDIT or PUT EDIT statement is
matched to the expanded list of data format items, from left to right, until
the end of the input-target or output-source list is reached. Matching
occurs only between I/O data and data format items; control format
items are executed only if they are encountered while the matching is in
progress.

9–47

Input and Output

Format-Specification List

Format-specification lists are used in GET EDIT, PUT EDIT, and FORMAT
statements to control the conversion of data between the program and
the input or output stream and to precisely control positioning within
the input or output stream. This entry describes the syntax of format-
specification lists and the manner in which a format list is processed to
acquire or transmit data.

Rules for Use

This section briefly describes rules and constraints for format-specification
lists.

• A GET EDIT or PUT EDIT statement must include one and only
one format-specification list and also one and only one list of input
targets or output sources. The input-target or output-source list must
immediately follow the keyword EDIT and must be immediately
followed by the format-specification list.

• The same set of data format items is used for input and output. The
F and E format items are used for I/O in fixed-point and floating-
point formats, respectively. The A and B format items are used for
I/O in character-string and bit-string formats, respectively. The P
format item is used for both input and output of data, with the format
specified by a picture contained in the format item.

• Of the control format items, only X can be used when the input or
output stream is a character string.

• Unlike the statement options PAGE, LINE, and SKIP, the format
items PAGE, LINE, and SKIP are executed in the order in which they
occur.

How Edit-Directed Operations Are Performed

This section describes the manner in which format items are matched to
input targets or output sources.

All edit-directed input statements include the following syntax:

EDIT (input-target, . . .) (format-specification, . . .)

All edit-directed output statements include the following syntax:

EDIT (output-source, . . .) (format-specification, . . .)

format-specification
One of the following:

• A single control or data format item.

• A construct containing an iteration factor followed by one or more
format items.

• An R format item, which specifies the label of a FORMAT statement.
In effect, the entire format-specification list in the FORMAT statement
is acquired and inserted at the position of the R format item.

Except for picture (P) and remote (R) format items, arguments to format
items can be integer expressions.

9–48

Input and Output

input-target
One of the following:

• A variable reference, which can be to a scalar or aggregate variable of
any computational data type

• A construct with the following syntax:

(input-target, . . . DO reference=expression[TO expression]
[BY expression] [WHILE(expression)][UNTIL(expression)])

• A construct with the following syntax:

(input-target, . . . DO reference=expression[REPEAT
expression] [WHILE (expression)][UNTIL(expression)])

output-source
One of the following:

• Any expression with a computational value, including references to
scalar or aggregate variables of any computational type

• A construct containing a DO specification, as shown for input targets

When PL/I performs an edit-directed operation, it examines the list of
input targets or output sources, beginning with the first in the list. If the
target or source is an array or structure or contains a DO specification, it
is expanded to form a list of individual data items; an array is expanded
in row-major order, a structure is expanded in the order of its declaration,
and items preceding a DO specification are expanded according to the DO
specification.

Within a single target or source, items at the innermost level of
parentheses are processed first.

Given a list of one or more data items contained in the first target or
source, PL/I processes the data items from left to right. Beginning with
the leftmost data item, and for each subsequent item, PL/I executes format
items until the data item has been either assigned a value from the input
stream, or converted to a character representation and placed in the
output stream. Control format items are therefore executed in the order
in which they occur in the format-specification list. With the first target or
source, the execution of format items begins with the leftmost format item
in the format-specification list. If the end of the format-specification list is
reached, PL/I returns to the leftmost format item and continues.

When all items contained in the first target or source have been processed,
PL/I operates on the next target or source. The target or source is
evaluated, and PL/I then examines the format-specification list, beginning
where the previous operation stopped.

This processing continues until all data items in the input-target or
output-source list have been processed, at which point the edit-directed
statement terminates. If this occurs while PL/I is in the middle of the list
of format items, the format items to the right are not executed.

9–49

Input and Output

Examples

The following examples show typical edit-directed operations. All cases
shown are for input (GET EDIT), but the operations for PUT EDIT are
similar. The simple cases, shown first, are with input targets that are
scalar variable references. The next cases shown are with aggregate
(array and structure) references. The last cases shown are with DO
specifications.

Scalar Variables
The following examples have input targets that are scalar variables:

GET EDIT (A,B,C,D) (A(12),F(5,2),F(6,2),A(14));

This statement acquires four values from the input stream: a 12-character
string, a 5-digit fixed-point decimal number, a 6-digit fixed-point decimal
number, and a 14-character string, and assigns these values, with any
necessary conversions, to the target variables A, B, C, and D, respectively.

GET EDIT (A,B,C,D) (A(12));

This statement acquires four 12-character strings and assigns them (with
conversions, if necessary) to the targets A, B, C, and D.

GET EDIT (A,B,C,D) (A(12), 2 F(5,2), A(14));

This statement acquires a 12-character string, two fixed-point decimal
numbers, and a 14-character string, in that order, and assigns them to A,
B, C, and D. (You can use embedded spaces in format lists, as elsewhere,
for clarity; the space between 2 and F(5,2) is required.)

GET EDIT (A,B,C,D,E) (2(A(12),A(14)), A(20));

This statement acquires, in order, a 12-character string, a 14-character
string, another 12-character string, another 14-character string, and a
20-character string, and assigns the strings, in that order, to A, B, C, D,
and E.

GET EDIT (A,B,C,D,E) (2(A(12),A(14)), SKIP, A(20));

This statement performs the same operation as in the previous example,
but acquires the 20-character string from the next line.

Aggregates
The following examples have input targets that are references to array
and structure variables:

GET EDIT (A) (2(A(12),A(14)), A(20));

A is an array of five elements or a structure with five scalar members.
This statement expands A to a list of individual data items. Then it
acquires, in order, a 12-character string, a 14-character string, another
12-character string, another 14-character string, and a 20-character string,
and assigns the strings, in that order, to the elements A(1) through A(5) (if
an array) or to the five members of structure A in the order in which the
members are declared.

GET EDIT (A,B) (2(A(12),A(14)), A(20));

Both A and B are aggregates with five elements or members. For A, this
statement performs the same operation as in the previous example, and
then repeats the operation for B, using the same format list each time.

9–50

Input and Output

Because there are five format items specified, and the aggregates both
have five elements or members, strings of the same length are acquired for
corresponding elements of A and B.

GET EDIT (NAME) (SKIP,A(20),SKIP,A(80));

NAME is a structure declared as:

DECLARE 1 NAME
2 FIRST CHARACTER(20) VARYING,
2 LAST CHARACTER(80) VARYING;

This statement skips to the next line and acquires a 20-character string. It
assigns the string to NAME.FIRST. This statement skips to the next line
and acquires an 80-character string. This statement assigns that string to
NAME.LAST.

GET EDIT (A,B) (2(A(12),A(14)), SKIP, A(20));

Both A and B are 4-element arrays. From the current line, this statement
executes A(12), A(14), A(12), and A(14), in that order, and assigns the
results to A(1) through A(4). This statement then skips to the next line
and executes A(20), A(12), A(14), and A(12), in that order, and assigns the
results to B(1) through B(4); the list of data items is now exhausted, so
this statement does not execute SKIP a second time.

DO Specifications
The following examples have input targets that include DO specifications.
The DO specifications control the assignment of input values to variables
that are arrays and based structures.

GET EDIT ((B(I) DO I=10 TO 4 BY -2) , B(1))
(2(A(12),A(14)), A(20));

B is a 10-element array. Notice that the parentheses surrounding the
first input target are in addition to the parentheses surrounding the
entire input-target list. This statement executes the format items A(12),
A(14), A(12), and A(14), in that order, and assigns the resulting strings
to elements B(10), B(8), B(6), and B(4), respectively. This statement then
executes A(20) and assigns the result to B(1).

GET EDIT (((A(I,J) DO J=1 TO 10) DO I=1 TO 20))
(F(5),F(6));

A is a two-dimensional array of 20 rows and 10 columns. Two hundred
decimal integers are acquired and assigned to the array elements in the
order A(1,1), A(1,2), . . . ,A(20,10). Elements with odd-numbered columns
receive 5-digit integers, and those with even-numbered columns, 6-digit
integers. Because the DO specifications specify row-major order, the same
operation is performed by the next example.

GET EDIT (A) (F(5),F(6));

Because row-major order is the default, nested DO specifications are used
to change the order in which values are assigned.

The example has the same effect as the following DO-group:

DO I = 1 TO 20;
DO J = 1 TO 10;

GET EDIT(A(I,J)) (F(5),F(6));
END;

END;

9–51

Input and Output

Compared with a DO construct in the input-target list, however, the use
of nested DO groups is much less efficient in execution speed. In addition,
the identical effect is not generally true for all stream I/O statements. For
instance:

GET SKIP EDIT(input-target, . . .) (format-specification, . . .);

This statement has different effects in the two cases. If it occurs in a pair
of nested DO groups, as shown previously, the SKIP option is executed on
each iteration of the innermost DO group. If instead the DO specifications
are in the input-target list, the SKIP option is executed only once, before
any other input processing is performed.

GET EDIT ((CURRENT->PERSON.NAME
DO CURRENT = FIRST
REPEAT CURRENT->PERSON.NEXT
WHILE (CURRENT ^= NULL)))

(A(80));

CURRENT and FIRST are pointers, and PERSON is a based structure
declared as:

DECLARE /* Based structure for list elements: */
1 PERSON BASED,

2 NEXT POINTER, /* Pointer to next element: */
2 NAME CHARACTER(80) VARYING;

DECLARE /* NULL function and pointers to first and
current list elements: */

NULL BUILTIN,
(FIRST,CURRENT) POINTER;

The GET EDIT statement acquires 80-character strings from the input
stream and assigns each to a list member PERSON.NAME. On the first
input operation, the string is assigned to FIRST->PERSON.NAME. On
subsequent iterations of the DO specification, the pointer to the next
element, PERSON.NEXT, is assigned to CURRENT before the input
operation. Before each input operation, including the first, the WHILE
clause tests to determine whether the end of the queued list has been
reached (indicated by the null pointer).

The DO REPEAT construct is often used in this type of application. You
should provide a WHILE or UNTIL clause in this or any DO REPEAT
construct to be sure that the operation has a defined termination.
However, the WHILE or UNTIL clause is not required.

9.2.5 Processing and Positioning of Character Strings
If the input or output stream is a character string, the processing is
similar to the processing of files, but the positioning options are more
limited:

• Input can begin either at the beginning of the string or at a specified
character position. The ERROR condition is signaled if the end of the
string is encountered. Only the X format item is used for positioning.

• The first output by a PUT statement always occurs at the beginning of
the string, and subsequent output by the same statement follows the
previous output. The ERROR condition is signaled if the maximum

9–52

Input and Output

length of the string is exceeded. Only the X format item is used for
positioning.

9.2.6 Terminal I/O
In most applications, the terminal is treated as a stream file. You can
explicitly declare a stream file to be associated with a user’s terminal.
The stream input and output statements, GET and PUT, use the default
PL/I files SYSIN (the terminal) and SYSPRINT, respectively, when no file
reference is included in the statement.

This file is associated with the default system input file SYS$INPUT,
which in turn is usually assigned to the user’s terminal. The PL/I print
file SYSPRINT is associated with the default system file SYS$OUTPUT,
which, in interactive mode, is also assigned to the user’s terminal. For
further information, see the Kednos PL/I for OpenVMS Systems User
Manual.

9.2.6.1 Simple Input from a Terminal
Simple input from a terminal is accomplished with the GET LIST
statement, which in its simple form has the following format:

GET LIST (input-target, . . .);

Because this statement has no reference to a specific file, the default file
SYSIN (the terminal) is assumed. When this GET LIST statement is
executed in a program, the program pauses until enough values are typed
by the user to satisfy the input-target list.

The user must separate the values with the Return key, spaces, or
commas. The user must press the Return key to send the typed line
to the program.

In the context of simple terminal input, the input targets are usually
simple variable references. For example:

GET LIST (SALARY,CONTRIBUTION(42),PAYROLL.DEDUCTION);

This statement gets three character strings from the terminal. The strings
are converted automatically to the target data types and assigned to
the scalar variable SALARY, element 42 of the array CONTRIBUTION,
and member DEDUCTION of the structure PAYROLL. There are several
sequences with which the user can type the needed values, including the
following:

15500,500,1200 Return

15500 Return

500 Return

1200 Return

15500 500 Return

1200 Return

9–53

Input and Output

If you press Return in response to an input request from GET LIST,
the null character string ’’ is assigned to the input target. If you press
Return in response to an input request from GET EDIT, the requested
field width is filled with spaces and assigned to the input target under
control of the corresponding format item. (Note that an all-space field
causes an error for B formats.)

For full details on input targets, see the GET LIST statement
(Section 9.2.2).

9.2.6.2 Simple Output to a Terminal
You can send data to a terminal with the PUT LIST statement. A simple
form of PUT LIST is as:

PUT LIST (output-source, . . .);

The output sources in simple cases are expressions, including variable
references. The PUT LIST statement converts the results of the
expressions to the appropriate character representations and sends the
character strings to the terminal. For instance:

PUT LIST (A,B,C);

This statement converts the values of the variables A, B, and C to
character strings and sends the results to the terminal. In this simple
case, the displayed strings are separated by tabs.

The file SYSPRINT, used as the default output stream by PUT LIST, is
a print file, and the terminal has the characteristics of print files. For
example, on RISC ULTRIX, the ENDPAGE condition is signaled when the
terminal’s page size is exceeded.

9.2.6.3 Print File
A print file is a stream output file that is intended for output on a
terminal, line printer, or other output device. You can declare any stream
output file to be a print file by using the PRINT attribute. The default
stream output file, SYSPRINT, is a print file.

The following list describes the special features of print files, as opposed to
ordinary stream output files:

• Character strings are not enclosed in apostrophes on list-directed
output.

• List-directed output data items are separated by tabs instead of
spaces. Tab stops occur at 8-column increments beginning with column
1. With the PUT EDIT statement and the TAB format item, you can
begin output at a specified tab stop.

• An internal record is kept of the current line in a print file. The
LINENO built-in function returns the current line number for a
specified file. This function allows you to keep track of the number of
lines being written to a file and to decide where page advances should
occur.

• Print files are divided into both lines and pages. An internal record is
kept of the number of lines per page. You can specify a page size when
the print file is created (see Section 9.1 for PAGESIZE option).

9–54

Input and Output

• During output of data to a print file, the ENDPAGE condition is
signaled when the output exceeds the page size.

• New pages are started by the PUT PAGE statement, the PAGE format
item, and certain other format items. Each of these operations
increments the current page number by 1. The PAGENO built-in
function returns the current page number from a print file. This
function allows you to keep track of the number of pages being written
to a file. You can set the current page number to a specific value by
assigning the value to the PAGENO pseudovariable.

• If the print file is a terminal, the output is written to the terminal at
the conclusion of each PUT statement.

• A print file is created with PRN-format carriage control. PRN format
is efficient for both terminals and line printers because blank lines
do not require individual records. (PRN format is discussed in the
OpenVMS Record Management Services Reference Manual.)

• Print files usually cannot be read properly with GET LIST or GET
EDIT.

Examples

SIMPLE_INPUT: PROCEDURE OPTIONS (MAIN);
/* Simple input from user’s terminal */

DECLARE
BADGE_NUMBER FIXED DECIMAL (5),
SOCIAL_SECURITY_NUMBER CHARACTER(11);

GET LIST (BADGE_NUMBER,SOCIAL_SECURITY_NUMBER);

PUT LIST (BADGE_NUMBER,SOCIAL_SECURITY_NUMBER);

END SIMPLE_INPUT;

PL/I does not display a prompt character on the terminal when a program
executes a GET or READ statement. Consequently, it is difficult to
tell that a program is trying to read data unless the program executes
an output statement containing a prompting message. The program
SIMPLE_INPUT would be easier to use if the following statement
appeared immediately before GET LIST:

PUT SKIP
LIST(’Enter badge number, social security number:’);

The cursor remains on the same line after the prompt is displayed, so the
input can be entered on the same line. The completed line might be as:

Enter badge number, social security number: 7,116-40-0482 Return

The GET statement also has a PROMPT statement option that displays
a prompt on the user’s terminal. See the Kednos PL/I for OpenVMS
Systems User Manual.

TIN: PROCEDURE OPTIONS(MAIN);

DECLARE STRING CHAR(10) VARYING,
I FIXED BINARY STATIC INITIAL(0),
A FLOAT BINARY;

DECLARE EOF BIT STATIC INITIAL(’0’B);

ON ENDFILE(SYSIN) EOF = ’1’B;

9–55

Input and Output

PUT SKIP LIST(’Enter string, integer, float>’);
GET LIST(STRING,I,A);
DO WHILE(^EOF); /* stop when CTRL/Z is typed */

PUT SKIP LIST(STRING,I,A);
PUT SKIP LIST(’Enter string, integer, float>’);
GET LIST(STRING,I,A);

END;

END TIN;

Here, the user is prompted to enter three values from the default file
SYSIN. The three values are immediately written out to the default file
SYSPRINT. This sequence continues until the user answers the prompt
with a Ctrl/Z, which signals the ENDFILE condition for SYSIN; the
program then terminates. The following is a sample dialog with the
program:

$ RUN TIN Return

Enter string, integer, float> JONES,27,3.75 Return

JONES 27 3.7500000E+00
Enter string, integer, float> JONES 27 3.75 Return

JONES 27 3.7500000E+00
Enter string, integer, float> JONES Return

27 Return

3.75 Return

JONES 27 3.7500000E+00
Enter string, integer, float> DOOLEY Return

Return

4E-6 Return

DOOLEY 0 4.0000000E-06
Enter string, integer, float> Ctrl/Z

$

Notice that input fields are separated by commas, spaces, or the RETURN
key. Notice also that entering a blank line after <BIT_STRING>(DOOLEY)
causes the program to set the value of I to zero.

Other Topics

The following topics are of interest in terminal I/O applications:

• For using GET STRING and certain built-in functions for string
handling, see the GET statement (Section 9.2.2).

• For using GET EDIT and PUT EDIT to control the format of input
or output data, see the GET and PUT statements (Section 9.2.2 and
Section 9.2.3.1).

• For using PUT SKIP, PUT LINE, and PUT PAGE to create formatted
displays, see the PUT statement (Section 9.2.3.1).

• For using the OPTIONS keyword with GET and PUT to override
default operations, see the Kednos PL/I for OpenVMS Systems User
Manual.

9–56

Input and Output

9.3 Record I/O
Record I/O is performed by the READ, WRITE, DELETE, and REWRITE
statements. In record I/O, each I/O statement processes an entire record.
(In stream I/O, more than one line or record can be processed by a single
statement.) Table 9–4 summarizes the file description attributes that
apply to record I/O.

Table 9–4 Attributes and Access Modes for OpenVMS Record Files

Attributes
Specified

Attributes
Implied

Valid Devices
and File
Organizations Usage

SEQUENTIAL
OUTPUT

RECORD Any output
device or file
except
indexed

Records can be added to the end of the file with WRITE
statements. Each WRITE statement adds a single record to the
file.

SEQUENTIAL
INPUT

RECORD Any input
device or file

Records in the file are read with READ statements. Each
statement reads a single record.

SEQUENTIAL
UPDATE

RECORD Relative,
indexed,
stream

READ statements read a file’s records in order. PL/I maintains
the current record, which is the record just read. This record can
be replaced in a REWRITE statement. In a relative or indexed
sequential file, the current record can also be deleted with a
DELETE statement. Each statement processes a single record.

DIRECT
OUTPUT1

KEYED
RECORD

Relative,
stream

WRITE statements insert records into the file at positions
specified by keys. Each statement inserts a single record.

DIRECT
INPUT

KEYED
RECORD

Relative,
indexed,
stream

READ statements specify records to be read randomly by key.
Each statement reads a single record.

DIRECT
UPDATE

KEYED
RECORD

Relative,
indexed,
stream

READ, WRITE, and REWRITE statements specify records
randomly by key. In a relative or indexed file, records can also
be deleted by key.

KEYED
SEQUENTIAL
OUTPUT1

RECORD Relative,
stream

WRITE statements insert records into the file at positions
specified by keys. Each statement inserts a single record. This
mode is identical to DIRECT OUTPUT.

KEYED
SEQUENTIAL
INPUT

RECORD Relative,
indexed,
stream

READ statements access records in the file randomly by key or
sequentially.

KEYED
SEQUENTIAL
UPDATE

RECORD Relative,
indexed,
stream

Any record I/O operation is allowed except a WRITE statement
that does not specify a key or a DELETE statement for a
sequential disk file with fixed-length records.

1You cannot create indexed sequential files directly from a PL/I OPEN statement.

9.3.1 READ Statement
The READ statement reads a record from a file, either the next record or a
record specified by the KEY option. The file must have either the INPUT
or the UPDATE attribute.

9–57

Input and Output

The format of the READ statement is:

READ FILE (file-reference)

�
INTO (variable-reference)
SET (pointer-variable)

�
�

KEY (expression)
KEYTO (variable-reference)

�

[OPTIONS (option, . . .)];

FILE(file-reference)
The file from which the record is to be read. If the file is not currently
open, PL/I opens the file with the implied attributes RECORD and INPUT.
The implied attributes are merged with the attributes specified in the file’s
declaration.

INTO (variable-reference)
An option that specifies that the contents of the record are to be assigned
to the specified variable. The variable must be an addressable variable.
The INTO and SET options are mutually exclusive.

• If the variable has the VARYING attribute and the file does not have
the attribute ENVIRONMENT(SCALARVARYING), the entire record
is treated as a string value and assigned to the variable. If the record
is larger than the variable, it is truncated and the ERROR condition is
signaled.

• If the variable has the AREA attribute and the file does not have the
attribute ENVIRONMENT(SCALARVARYING), the entire record is
treated as an area value and assigned to the variable. If the extent of
the area in the record is larger than the variable, the AREA condition
is signaled and the target area is unmodified.

• For any other type of variable, the record is copied into the variable’s
storage. If the record is not exactly the same size as the target
variable, as much of the record as will fit is copied into the variable
and the ERROR condition is signaled.

SET (pointer-variable)
An option that specifies that the record should be read into a buffer
allocated by PL/I and that the specified pointer variable should be assigned
the value of the location of the buffer in storage. The SET and INTO
options are mutually exclusive.

This buffer remains allocated until the next operation on the file but no
longer. Therefore, do not use either the pointer value or the buffer after
the next operation on the file. The only valid use of the buffer during a
subsequent I/O operation is in a REWRITE statement. In this case, you
can rewrite the record from the buffer before the buffer is deallocated.

9–58

Input and Output

KEY (expression)
An option that specifies that the record to be read is to be located using
the key specified by the expression. The file must have the KEYED
attribute. The key value must have a computational data type. The KEY
and KEYTO options are mutually exclusive.

The nature of the key depends on the file’s organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be read.

• If the file is an indexed sequential file, the key specifies a key value
that is contained within a record. The data type of the key and its
location within the record are as specified when the file was created.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists in the file, or if the
value specified is not valid for conversion to the data type of the key,
the KEY condition is signaled.

KEYTO (variable-reference)
An option that specifies that the key of the record being read is to be
assigned to the designated variable. The value of the key is converted
from the data type implied by the file’s organization to the data type of the
variable. The variable must have a computational data type but cannot be
an unaligned bit string or an aggregate consisting entirely of unaligned bit
strings. The KEYTO and KEY options are mutually exclusive.

KEYTO is specified only for a file that has both the KEYED and
SEQUENTIAL attributes.

OPTIONS (option, . . .)
An option that specifies one or more of the following READ statement
options, separated by commas:

FIXED_CONTROL_TO (variable-reference)

INDEX_NUMBER (expression)

LOCK_ON_READ

LOCK_ON_WRITE

MANUAL_UNLOCKING

MATCH_GREATER

MATCH_GREATER_EQUAL

MATCH_NEXT

MATCH_NEXT_EQUAL

NOLOCK

NONEXISTENT_RECORD

READ_REGARDLESS

9–59

Input and Output

RECORD_ID (variable-reference)

RECORD_ID_TO (variable-reference)

TIMEOUT_PERIOD (variable-reference)

WAIT_FOR_RECORD

All these options except INDEX_NUMBER remain in effect for the current
statement only.

These options are described fully in the Kednos PL/I for OpenVMS
Systems User Manual.

9.3.1.1 File Positioning Following a READ Statement
If the file is accessed sequentially, the READ statement reads the file’s
next record. If the next-record position is at the end-of-file, the ENDFILE
condition is signaled.

After a successful read operation, the file’s current record position denotes
the record that was just read. The next-record position denotes the
following record or, if there is no following record, the end-of-file.

If any error other than an incorrect record size occurs, the current record
becomes undefined and the next record is the same as it was before the
read operation was attempted.

Examples

COPY: PROCEDURE;
DECLARE INREC CHARACTER(80) VARYING,

ENDED BIT(1) STATIC INIT(’0’B),
(INFILE,OUTFILE) FILE;

OPEN FILE (INFILE) RECORD INPUT
TITLE(’RECFILE.DAT’);

OPEN FILE (OUTFILE) RECORD OUTPUT
TITLE(’COPYFILE.DAT’);

ON ENDFILE(INFILE) ENDED = ’1’B;

READ FILE(INFILE) INTO (INREC);
DO WHILE (^ENDED);

WRITE FILE (OUTFILE) FROM (INREC);
READ FILE (INFILE) INTO (INREC);
END;

CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
RETURN;
END;

The program COPY reads a file with variable-length records into a
character string with the VARYING attribute and writes the records to
a new output file.

It uses a DO-group to read the records in the file sequentially until the
end-of-file is reached. It uses the ON statement to establish the action
to be taken when the end-of-file occurs: it sets the bit ENDED to <BIT_
STRING>(1)B so that the DO-group will not be executed again.

9–60

Input and Output

The VARYING character-string variable INREC has a maximum length
of 80 characters. If any record in the file is more than 80 characters, the
ERROR condition is signaled. If no ERROR ON-unit exists, the program
exits.

DECLARE 1 STATE,
2 NAME CHARACTER(30),
2 CAPITAL,

3 NAME CHARACTER(20),
.
.
.

2 SYMBOLS,
3 FLOWER CHARACTER(30),
3 BIRD CHARACTER(30),

STATE_FILE FILE,

INPUT_NAME CHARACTER(30) VARYING;
.
.
.

OPEN FILE(STATE_FILE) KEYED ENVIRONMENT(INDEXED);
PUT SKIP LIST(’State?’);
GET LIST(INPUT_NAME);
READ FILE(STATE_FILE) INTO(STATE) KEY(INPUT_NAME);
PUT SKIP LIST(’The flower of’,STATE.NAME,’is the’,

STATE.SYMBOLS,STATE.SYMBOLS.FLOWER);

This example shows the use of a keyed READ statement to access a record
in an indexed sequential file. The file STATE_FILE is opened for keyed
access, and the READ statement specifies the key of interest in the KEY
option. The value for this option is determined at run time by a GET
statement. In the READ statement, the contents of a record from the file
STATE_FILE are read into the structure STATE.

PRINT_DATA: PROCEDURE OPTIONS(MAIN);

DECLARE 1 EMPLOYEE BASED (EP),
2 NAME,

3 LAST CHAR(30),
3 FIRST CHAR(20),
3 MIDDLE_INIT CHAR(1),

2 DEPARTMENT CHAR(4),
2 SALARY FIXED DECIMAL (6,2),

EP POINTER,
EMP_FILE FILE;

DECLARE EOF BIT(1) STATIC INIT(’0’B),
NUMBER FIXED BIN(31);

ON ENDFILE(EMP_FILE) EOF = ’1’B;
OPEN FILE(EMP_FILE) INPUT SEQUENTIAL KEYED;

READ FILE(EMP_FILE) SET(EP) KEYTO(NUMBER);
DO WHILE (^EOF);

PUT SKIP LIST(’EMPLOYEE’,NUMBER,
EMPLOYEE.NAME.FIRST,EMPLOYEE.NAME.LAST,
EMPLOYEE.NAME.MIDDLE_INIT);

READ FILE(EMP_FILE) SET(EP) KEYTO(NUMBER);
END;

CLOSE FILE(EMP_FILE);

END;

9–61

Input and Output

This program accesses a relative file sequentially with READ statements
and obtains the key value of each record, that is, the relative record
number. The records in the file EMP_FILE are arranged according to
employee numbers. Each employee number corresponds to a relative
record number in the file. The READ statements read records into the
based structure EMPLOYEE and set the pointer EP to the location of
the allocated buffer. The READ statements specify the KEYTO option
to obtain the record number of each record. The procedure prints the
employee numbers and names. When the last record has been read, the
program closes the input file and exits.

9.3.2 WRITE Statement
The WRITE statement adds a record to a file, either at the end of a file
that has the SEQUENTIAL and OUTPUT attributes, or in a specified
key position in a file that has the KEYED and OUTPUT attributes or the
KEYED and UPDATE attributes. The format of the WRITE statement is:

WRITE FILE(file-reference) FROM (variable-reference)
[KEYFROM (expression)]
[OPTIONS (option, . . .)];

FILE (file-reference)
A reference to the file to which the record is to be written. If the file is
not currently open, the WRITE statement opens the file with the implied
attributes RECORD, OUTPUT, and SEQUENTIAL; these attributes are
merged with the attributes specified in the file’s declaration.

FROM (variable-reference)
A reference to the variable containing data for the output record. The
variable must be addressable.

If the variable has the VARYING or the AREA attribute and the file does
not have the attribute ENVIRONMENT(SCALARVARYING), the WRITE
statement writes only the current value of the varying string or the area
into the specified record. In all other cases, the WRITE statement writes
the entire storage of the variable. If the contents of the variable do not
fit the specified record size, the WRITE statement outputs as much of the
variable as will fit, and the ERROR condition is signaled.

KEYFROM (expression)
An option specifying that the record to be written is to be positioned in the
file according to the key specified by the expression. The file must have
the KEYED attribute.

The nature of the key depends on the file’s organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key value is a fixed binary value indicating the relative
record number of the record to be written.

9–62

Input and Output

• If the file is an indexed sequential file, the key specifies the record’s
primary key. PL/I copies the key value specified into the correct key
field position (or positions, if segmented keys are used). PL/I also sets
the key number to the primary index.

The value of the specified expression is converted to the data type of
the key. If the specified key value cannot be converted to the data type
of the key, the KEY condition is signaled.

OPTIONS (option, . . .)
An option specifying one or more of the following WRITE statement
options, separated by commas:

FIXED_CONTROL_FROM (variable-reference)

RECORD_ID_TO (variable-reference)

These options are described fully in the Kednos PL/I for OpenVMS
Systems User Manual.

9.3.2.1 File Positioning Following a WRITE Statement
If the file has the UPDATE attribute, the current record is set to designate
the record just written, and the next record is set to designate the record
following the record just written. If there is no such record following the
record just written, the next record is set to the end-of-file.

Examples

TRUNC: PROCEDURE;
DECLARE INREC CHARACTER(80) VARYING,

OUTREC CHARACTER(80),
ENDED BIT(1) STATIC INIT(’0’B),
(INFILE,OUTFILE) FILE;

OPEN FILE (INFILE) RECORD INPUT
TITLE(’RECFILE.DAT’);

OPEN FILE (OUTFILE) RECORD OUTPUT
TITLE(’TRUNCFILE.DAT’)
ENVIRONMENT(FIXED_LENGTH_RECORDS,

MAXIMUM_RECORD_SIZE(80));

ON ENDFILE(INFILE) ENDED = ’1’B;

READ FILE(INFILE) INTO (INREC);
DO WHILE (^ENDED);

OUTREC = INREC;
WRITE FILE (OUTFILE) FROM (OUTREC);
READ FILE (INFILE) INTO (INREC);
END;

CLOSE FILE(INFILE);
CLOSE FILE(OUTFILE);
RETURN;
END;

This program reads a file with variable-length records into a character
string with the VARYING attribute and creates a sequential output file in
which each record has a fixed length of 80 characters.

The ENVIRONMENT attribute for the file OUTFILE specifies the record
format and length of each fixed-length record.

9–63

Input and Output

When records are written to a file with fixed-length records, the variable
specified in the FROM option must have the same length as the records
in the target output file. Otherwise, the ERROR condition is signaled.
Thus, in this example, each record read from the input file is copied into a
fixed-length character-string variable for output.

Each time this program is executed, it creates a new version of the file
TRUNCFILE.DAT.

ADD_EMPLOYEE: PROCEDURE;

DECLARE 1 EMPLOYEE,
2 NAME,

3 LAST CHAR(30),
3 FIRST CHAR(20),
3 MIDDLE_INIT CHAR(1),

2 DEPARTMENT CHAR(4),
2 SALARY FIXED DECIMAL (6,2),

EMP_FILE FILE;

DECLARE MORE_INPUT BIT(1) STATIC INIT(’1’B),
NUMBER FIXED DECIMAL (5,0);

OPEN FILE(EMP_FILE) DIRECT UPDATE;

DO WHILE (MORE_INPUT);
PUT SKIP LIST(’Employee Number’);
GET LIST (NUMBER);

PUT SKIP LIST
(’Name (Last, First, Middle Initial)’);

GET LIST
(EMPLOYEE.NAME.LAST,EMPLOYEE.NAME.FIRST,

EMPLOYEE.NAME.MIDDLE_INIT);

PUT SKIP LIST(’Department’);
GET LIST (EMPLOYEE.DEPARTMENT);

PUT SKIP LIST(’Starting salary’);
GET LIST(EMPLOYEE.SALARY);

WRITE FILE (EMP_FILE)
FROM (EMPLOYEE) KEYFROM(NUMBER);

PUT SKIP LIST(’More?’);
GET LIST(MORE_INPUT);
END;

CLOSE FILE(EMP_FILE);
RETURN;
END;

This procedure adds records to the existing relative file EMP_FILE.
The file is organized by employee numbers, and each record occupies
the relative record number in the file that corresponds to the employee
number.

The file is opened with the DIRECT and UPDATE attributes, because
records to be written will be chosen by key number. Within the DO-group,
the program prompts for data for each new record that will be written
to the file. After the data is input, the WRITE statement specifies the
KEYFROM option to designate the relative record number. The number
itself is not a part of the record but will be used to retrieve the record
when the file is accessed for keyed input.

9–64

Input and Output

9.3.3 DELETE Statement
The DELETE statement deletes a record from a file. This record can be
the current record, the record specified by the KEY option, or the record
specified by the RECORD_ID option. The file must have the UPDATE
attribute.

The format of the DELETE statement is:

DELETE FILE(file-reference) [KEY (expression)] [OPTIONS(option, . . .)];

FILE(file-reference)
A reference to the file from which the specified record is to be deleted.
If the file is not currently opened, PL/I opens the file with the implied
attributes RECORD and UPDATE; these attributes are merged with the
attributes specified in the file’s declaration.

KEY (expression)
An option specifying that the record to be deleted will be located by the
key specified in the expression. The file must have the KEYED attribute.

The nature of the key depends on the file’s organization, as follows:

• If it is a relative file, the key is a fixed binary value indicating the
relative record number of the record to be deleted.

• If it is an indexed sequential file, the key specifies a value contained
in the record; its position in the record and its data type are as
determined when the file was created.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists in the file, or if the
value specified is not valid for conversion to the data type of the key,
the KEY condition is signaled.

OPTIONS(option, . . .)
An option giving one or more of the following DELETE statement options:

FAST_DELETE

INDEX_NUMBER (expression)

MATCH_GREATER

MATCH_GREATER_EQUAL

MATCH_NEXT

MATCH_NEXT_EQUAL

RECORD_ID (expression)

Multiple options must be separated by commas.

All these options except INDEX_NUMBER remain in effect for the current
statement only.

These options are described fully in the Kednos PL/I for OpenVMS
Systems User Manual.

9–65

Input and Output

9.3.3.1 File Positioning Following a DELETE Statement
The next record is set to denote the record following the deleted record.
The current record is undefined.

Examples

The program BAD_RECORD, below, deletes an erroneous record in an
indexed sequential file containing data about states. The primary key in
the file is the name of a state.

BAD_RECORD: PROCEDURE OPTIONS(MAIN);

DECLARE STATE_FILE FILE KEYED UPDATE;
OPEN FILE(STATE_FILE) TITLE(’STATEDATA.DAT’) ENVIRONMENT(INDEXED);
DELETE FILE(STATE_FILE) KEY(’Arklansas’);
CLOSE FILE(STATE_FILE);

RETURN;
END;

The file is opened with the UPDATE attribute, and the OPEN statement
gives the file specification of the file from which the record is to be
deleted.

9.3.4 REWRITE Statement
The REWRITE statement replaces a record in a file. The record is either
the current record or the record specified by the KEY option. The file must
have the UPDATE attribute. The format of the REWRITE statement is:

REWRITE FILE (file-reference)
[FROM (variable-reference) [KEY (expression)]]
[OPTIONS (option, . . .)];

FILE(file-reference)
The file that contains the record to be replaced. If the file is not open,
it is opened with the implied attributes RECORD and UPDATE; these
attributes are merged with the attributes specified in the file’s declaration.

FROM (variable-reference)
An option giving the variable that contains the data needed to rewrite the
record. The variable must be an addressable variable.

If the FROM option is not specified, there must be a currently allocated
buffer from an immediately preceding READ statement that specifies the
SET option, and this file must have the SEQUENTIAL attribute. In this
case, the record is rewritten from the buffer containing the record that
was read. Note that if the file organization is sequential, the record being
rewritten must be the same length as the one read.

If the variable has the VARYING or the AREA attribute and the file
does not have the attribute ENVIRONMENT(SCALARVARYING), the
REWRITE statement writes only the current value of the varying string or
area into the specified record. In all other cases, the REWRITE statement
writes the variable’s entire storage.

9–66

Input and Output

KEY (expression)
An option specifying that the record to be rewritten is to be located using
the key specified by expression. The file must have the KEYED attribute.
The expression must have a computational data type. The FROM option
must be specified.

The nature of the key depends on the file’s organization, as follows:

• If the file is a relative file or a sequential disk file with fixed-length
records, the key is a fixed binary value indicating the relative record
number of the record to be rewritten.

• If the file is an indexed sequential file, the key specifies a value that
is contained within a record. The data type of the key and its location
within the record are as specified when the file was created. The
primary key field in the record cannot be modified.

The value of the specified expression is converted to the data type of
the key. If no record with the specified key exists, if the value specified
is not valid for conversion to the data type of the key, or if the primary
key in a record in an indexed sequential file has been modified, the
KEY condition is signaled.

OPTIONS (option, . . .)
An option giving one or more of the following REWRITE statement options.
Multiple options must be separated by commas.

FIXED_CONTROL_FROM (variable-reference)

INDEX_NUMBER (expression)

MATCH_GREATER

MATCH_GREATER_EQUAL

MATCH_NEXT

MATCH_NEXT_EQUAL

RECORD_ID (expression)

RECORD_ID_TO (variable-reference)

All these options except INDEX_NUMBER remain in effect for the current
statement only.

These options are described fully in the Kednos PL/I for OpenVMS
Systems User Manual.

9.3.4.1 File Positioning Following a REWRITE Statement
The next record position is set to denote the record immediately following
the record that was rewritten or, if there is no following record, the
end-of-file.

The current record is set to designate the record just rewritten.

Examples

The procedure NEW_SALARY, below, updates the salary field in a relative
file containing employee records. The procedure receives two input
parameters: the employee number and the new salary. The employee
number is the key value for the records in the relative file.

9–67

Input and Output

NEW_SALARY: PROCEDURE (EMPLOYEE_NUMBER,PAY);

DECLARE EMPLOYEE_NUMBER FIXED DECIMAL(5,0),
PAY FIXED DECIMAL (6,2);

DECLARE 1 EMPLOYEE,
2 NAME,

3 LAST CHAR(30),
3 FIRST CHAR(20),
3 MIDDLE_INIT CHAR(1),

2 DEPARTMENT CHAR(4),
2 SALARY FIXED DECIMAL (6,2),

EMP_FILE FILE;

OPEN FILE(EMP_FILE) DIRECT UPDATE;
READ FILE(EMP_FILE) INTO(EMPLOYEE)

KEY (EMPLOYEE_NUMBER);
EMPLOYEE.SALARY = PAY;
REWRITE FILE(EMP_FILE) FROM(EMPLOYEE)

KEY(EMPLOYEE_NUMBER);
CLOSE FILE(EMP_FILE);
RETURN;
END;

In this example, the KEY option is specified in the READ statement
that obtains the record of interest and in the REWRITE statement that
replaces the record, with its new information, in the file. The FROM and
KEY options must both be specified on the REWRITE statement.

The sample program CHANGE_HEADER, below, changes the contents of
the first record in the sequentially organized file TITLE_PAGE. The file
consists of 80-byte, fixed-length records.

CHANGE_HEADER: PROCEDURE OPTIONS(MAIN);

DECLARE TITLE_PAGE FILE SEQUENTIAL UPDATE,
INREC CHARACTER(80) BASED(P),
P POINTER;

OPEN FILE(TITLE_PAGE);
READ FILE(TITLE_PAGE) SET(P);

INREC = ’Summary of Courses for Fall 1980’;
REWRITE FILE(TITLE_PAGE);
CLOSE FILE(TITLE_PAGE);
RETURN;

END;

In this example, the READ statement specifies the SET option. The
input record is read into a buffer, INREC, that is a based character-
string variable. The assignment statement modifies the buffer, and
the REWRITE statement rewrites the record. Because the REWRITE
statement does not specify a FROM option, PL/I uses the contents of the
buffer to rewrite the current record in the file (that is, the record that was
just read).

9–68

Input and Output

9.3.5 Position Information for a Record File
When a record file is open, PL/I maintains the following position
information:

• The next record, for files with the SEQUENTIAL INPUT or
SEQUENTIAL UPDATE attributes. The next record designates the
record that will be accessed by a READ statement that does not specify
the KEY option. The next record may contain the end-of-file.

• The current record, for a file with the UPDATE attribute. The current
record designates either of the following:

— The record that will be modified by a REWRITE statement that
does not specify the KEY option

— The record that will be deleted by a DELETE statement that does
not specify the KEY option

The value of the current record may be undefined.

When a file is opened the current record is undefined and the next record
designates the first record in the file or, if the file is empty, the end-of-file.

After a sequential read operation, the current record designates the record
just read. The next record indicates the following record or, if there are no
more records, the end-of-file.

After a keyed I/O statement, that is, an I/O statement that specifies the
KEY or KEYFROM option, the current record and next record are set as
described in the following chart. (X is the record specified by key and X+1
is the next record or, if there are no more records, the end-of-file.)

Statement
Current
Record Next Record

READ X X+1

WRITE X X+1

REWRITE X X+1

DELETE undefined X+1

9–69

10 Preprocessor

The PL/I preprocessor permits you to alter a source program at compile
time. Preprocessor statements can be mixed with nonpreprocessor
statements in the source program, but preprocessor statements are
executed only at compile time. Any resulting source program changes
are then used for further compilation.

The preprocessor is embedded in the compiler, and so is also called the
embedded preprocessor.

During compilation, the preprocessor performs two types of preprocessing:

• It interprets preprocessor statements, including preprocessor
expression evaluation.

• It replaces the value of preprocessor variables and procedures.

Preprocessor statements allow you to include text from alternative
sources (INCLUDE libraries, directories, and the VAX Common Data
Dictionary), control the course of compilation (%DO, %GOTO, %IF,
and %PROCEDURE), issue user-generated diagnostic messages, and
selectively control listings and formats. The preprocessor statements are
summarized in Table 10–1.

This chapter describes the preprocessor statements and functions.

10.1 Preprocessor Compilation Control
At compile time, preprocessor variables, procedures, and variable
expressions are evaluated in the order that they appear in the source
text, and the new values are substituted in the source program in the
same order. Thus, the course of compilation becomes conditional, and the
resulting executable program can have a variety of features. Note that
preprocessor variables must be declared and activated before replacement
occurs.

For example:

EXAMPLE: PROCEDURE OPTIONS(MAIN);

%DECLARE HOUR FIXED;
%HOUR = SUBSTR(TIME(),1,2);

%IF HOUR > 7 &HOUR < 18
%THEN
%FATAL ’Please compile this outside of prime time’;

%DECLARE T CHARACTER;
%ACTIVATE T NORESCAN;

%T=’’’Compiled on ’||DATE()||’’’’;

DECLARE INIT_MESSAGE CHARACTER(60) VARYING INITIAL(T);

10–1

Preprocessor

%IF VARIANT() = ’’ | VARIANT() = ’NORMAL’
%THEN

%INFORM ’NORMAL’;
%ELSE %DO;

%IF VARIANT() = ’SPECIAL’
%THEN

%INFORM ’SPECIAL’;
%ELSE

%IF VARIANT() = ’NONE’
%THEN %;
%ELSE

%DO;
%T=’’’unknown variant ’||variant()||’’’’;
%WARN t;
INIT_MESSAGE=INIT_MESSAGE||’ with ’||T;
%END;

%END;

PUT SKIP LIST (INIT_MESSAGE);

END EXAMPLE;

This example illustrates several aspects of the preprocessor. First, the
programmer specified that this program must be compiled outside of
prime time. Second, the VARIANT preprocessor built-in function is used
to determine which variant was specified on the command line using the
/VARIANT switch. Third, user-generated preprocessor messages remind
the programmer which value was given to VARIANT.

Notice the number of apostrophes around the string constant assigned to
T. Apostrophes are sufficient if the value of T is used only in a preprocessor
user-generated diagnostic message; the value of T is concatenated
with nonpreprocessor text and assigned to INIT_MESSAGE. During
preprocessing, apostrophes are stripped off string constants. In order to
ensure that the run-time program also has apostrophes around the string,
additional apostrophes are needed.

10.2 Preprocessor Statements
All preprocessor statements are preceded by a percent sign (%) and
terminated by a semicolon (;). All text that appears within these
delimiters is considered part of the preprocessor statement and is executed
at compile time. For example:

%DECLARE HOUR FIXED; /* declaration of a preprocessor
single variable */

%DECLARE (A,B) CHARACTER; /* a factored preprocessor
declaration */

%HOUR = SUBSTR(TIME(),1,2); /* preprocessor assignment
statement using two built-in

functions */

%STATE: PROCEDURE (X) RETURNS (BIT); /* preprocessor
procedure */

Notice that a percent sign is required only at the beginning of the
statement. The percent sign alerts the compiler that until the line is
terminated with a semicolon, all subsequent text is preprocessor text.
Therefore, no other percent signs are required on the line. However, when

10–2

Preprocessor

you include Common Data Dictionary record definitions, you may need to
include the usual PL/I punctuation.

Labels (preceded by a percent sign) are permitted on preprocessor
statements and required on preprocessor procedures. As with other labels,
preprocessor labels are used as the target of program control statements.

A preprocessor label must be an unsubscripted label constant. The format
for a preprocessor label is:

%label: preprocessor-statement;

Table 10–1 summarizes the preprocessor statements. Each statement is
then described in detail in an individual subsection.

Table 10–1 Summary of PL/I Preprocessor Statements

Statement Use

%Assignment Evaluates a preprocessor expression and gives its
value to a preprocessor identifier

%; Null statement, specifies no preprocessor operation

%ACTIVATE Makes the value of declared preprocessor variables
eligible for replacement

%DEACTIVATE Makes the value of declared preprocessor variables
ineligible for replacement

%DECLARE Defines the preprocessor variable names and
identifiers to be used in a PL/I program and specifies
the data attributes associated with them

%DICTIONARY Specifies data definitions to be included from the VAX
Common Data Dictionary (CDD)

%DO Denotes the beginning of a group of preprocessor
statements to be executed as a unit

%END Denotes the end of a block or group of statements
that started with a %PROCEDURE or a %DO
statement

%ERROR Generates a user-defined error diagnostic message

%FATAL Generates a user-defined fatal diagnostic message

%GOTO Transfers control to a labeled preprocessor statement

%IF Tests a preprocessor expression and establishes
action to be performed based on the results

%INCLUDE Copies the text of an external file into the source file
at compile time

%INFORM Generates a user-defined informational diagnostic
message

%[NO]LIST Same as %[NO]LIST_ALL

%[NO]LIST_ALL Does or does not include CDD records, INCLUDE
files, machine code, and source statements in the
listing from that point on

%[NO]LIST_DICTIONARY Does or does not include CDD records in the listing
from that point on

10–3

Preprocessor

Table 10–1 (Cont.) Summary of PL/I Preprocessor Statements

Statement Use

%[NO]LIST_INCLUDE Does or does not include INCLUDE files in the listing
from that point on

%[NO]LIST_MACHINE Does or does not include machine code in the listing
from that point on

%[NO]LIST_SOURCE Does or does not include source code in the listing
from that point on

%PAGE Provides listing pagination without form feeds in the
source text

%PROCEDURE Begins a preprocessor procedure

%REPLACE Assigns a constant value to an identifier at compile
time

%RETURN Returns a value from execution of a preprocessor
procedure to the point of invocation

%SBTTL Allows specification of a listing subtitle line

%TITLE Allows specification of a listing title line

%WARN Generates a user-defined warning diagnostic
message

10.2.1 %Assignment Statement
The preprocessor assignment statement gives a value to a specified
preprocessor variable.

The format of the assignment statement is:

%target = expression;

target
The name of the preprocessor variable to be assigned a value. It must be
an unsubscripted reference to a preprocessor variable.

expression
Any valid preprocessor expression.

For arithmetic operations, only decimal integer arithmetic of precision
(10,0) is performed. Each operand and all results are converted, if
necessary, to a fixed decimal value of precision (10,0). Fractional digits
are truncated.

10.2.2 %Null
The %Null statement performs no action.

The format of the %Null statement is:

%;

10–4

Preprocessor

The most common use for the %Null statement is as the target statement
of a %THEN or %ELSE clause in an %IF statement. For example:

%IF
ERROR() > 0;

%THEN
%GOTO FIXIT;

%ELSE
%;

10.2.3 %ACTIVATE
The %ACTIVATE statement makes preprocessor variable and procedure
identifiers eligible for replacement. If the compiler encounters the named
identifier after executing a %ACTIVATE statement, it initiates variable
replacement.

The format of the %ACTIVATE statement is:

%
n

ACTIVATE
ACT

o
element

h
RESCAN
NORESCAN

i
, . . . ;

element
The name of a previously declared preprocessor identifier and/or a list of
identifiers, where the identifiers are separated by commas and the list is
enclosed in parentheses.

RESCAN or NORESCAN
Specifies that the preprocessor is to continue or discontinue checking the
text for secondary value replacement.

The RESCAN option specifies that preprocessor scanning continue until
all possible identifier replacements are completed. RESCAN is the default
option.

The NORESCAN option specifies that replacement be done only once; the
resulting text is not rescanned for possible further replacement.

An identifier is activated by either a %ACTIVATE statement or a
%DECLARE statement. When an activated identifier is encountered by
the compiler, in unquoted nonpreprocessor statements, the variable name
or procedure reference is replaced by its value. Replacement continues
throughout the rest of the source program unless replacement is stopped
with the %DEACTIVATE statement.

You can activate several variables with a single statement. For example:

%DECLARE (A,B,C) FIXED;
%ACTIVATE (A,B), C NORESCAN;

Because RESCAN is the default action, this statement activates A and B
with the RESCAN option. C is activated, but is not rescanned.

If an identifier that is not a preprocessor variable or procedure is the
target of a %ACTIVATE statement, a warning message is issued and the
identifier is implicitly declared as a preprocessor variable with the FIXED
attribute. Thereafter, the identifier variable is eligible for replacement
when activated.

10–5

Preprocessor

For example:

DECLARE (A,B,C) FIXED;
%DECLARE (A,B) FIXED;
%ACTIVATE (A,B);

%A = 1;
%B = (A + A);

C = A + B;
PUT SKIP LIST (C); / * C = 3 */

In this example, the activated preprocessor variables A and B are assigned
values by the preprocessor. Notice that variables A and B are also declared
as nonpreprocessor variables; this establishes them as variables within the
nonpreprocessor program.

In the following example, the variable B is deactivated by the
%DEACTIVATE statement.

.

.

.
%DEACTIVATE B;
B = 900;
C = A + B;
PUT SKIP LIST (C); / * C = 901 */
END;

Because the preprocessor variable B is deactivated, the preprocessor
assignment statement %B = (A + A) is not in effect and the value of B is
taken from the run-time assignment of B = 900. However, the value of A
remains 1.

10.2.4 %DEACTIVATE
The %DEACTIVATE statement makes preprocessor variable and procedure
identifiers ineligible for replacement. After a variable or procedure
has been deactivated, it will not be replaced during preprocessing.
Replacement of a deactivated variable or procedure occurs again only
after it is reactivated with the %ACTIVATE statement.

The format of the %DEACTIVATE statement is:

%
n

DEACTIVATE
DEACT

o
element, . . . ;

element
The name of a preprocessor identifier, or a list of identifiers that is
enclosed in parentheses. Deactivated elements must have been previously
declared preprocessor variables.

For example:

10–6

Preprocessor

TESTF:PROCEDURE OPTIONS (MAIN);
DECLARE Y FIXED DECIMAL;
Y = 10; /* initial value : Y = 10 */
%DECLARE Y FIXED;
%Y = 3; /* replacement value : Y = 3 */
PUT SKIP LIST(Y); /* output : Y = 3 */
%DEACTIVATE Y;
PUT SKIP LIST(Y); /* output : Y = 10 */
END;

In this example, %Y, when activated, replaces all the occurrences of the
variable Y by the value assigned to %Y, until %Y is deactivated by the
%DEACTIVATE statement. The identifier %Y is implicitly activated when
it is declared as a preprocessor identifier.

It is possible to deactivate several variables with a single statement. For
example:

%DEACTIVATE (A,B,C,D,E,F);

10.2.5 %DECLARE
The %DECLARE statement establishes an identifier as a preprocessor
variable, specifies the data type of the variable, and activates the identifier
for replacement. %DECLARE can occur anywhere in a PL/I source
program.

The format of the %DECLARE statement is:

%
n

DECLARE
DCL

o
element

"
FIXED
CHARACTER
BIT

#
, . . . ;

element
The name of a preprocessor identifier or a list of identifiers, which are
separated by commas and enclosed in parentheses. You can give elements
the attribute BIT, FIXED, or CHARACTER, but you cannot specify
precision or length. The compiler supplies the variables with the following
implied attributes:

Specified Attribute Implied Attributes

BIT (31) INITIAL ((31)’ 0’ B)

FIXED DECIMAL (10,0) INITIAL (0)

CHARACTER VARYING (32500) INITIAL (’ ’)

If no data type is specified, FIXED is assumed.

When a variable is declared in a preprocessor statement, it is activated for
replacement and rescanning. The scope of a preprocessor variable is all
of the text following the declaration of the variable, unless the variable is
declared inside a preprocessor procedure. Using %DECLARE inside of a
preprocessor procedure has the effect of declaring a local variable.

For example:

%DECLARE HOUR FIXED;

10–7

Preprocessor

In this example, HOUR is declared as a preprocessor variable identifier
with the FIXED attribute. The compiler supplies the default values that
make this declaration the equivalent of the following:

DECLARE HOUR FIXED DECIMAL (10,0) INITIAL (0);

Note: In preprocessor declarations, the attribute FIXED implies FIXED
DECIMAL. In nonpreprocessor declarations, FIXED implies FIXED
BINARY.

Factored declarations are permitted and follow the same usage rules as
nonpreprocessor declarations. For example:

%DECLARE (A,B) CHARACTER, C BIT;

Both A and B are declared with the CHARACTER attribute. The compiler
supplies default values that make this declaration the equivalent of the
following:

%DECLARE (A,B) CHARACTER VARYING(32500) INITIAL(’’),
C BIT(31)INITIAL((31)’0’B);

10.2.6 %DICTIONARY
The %DICTIONARY statement causes VAX Common Data Dictionary
(CDD) data definitions to be incorporated into the current PL/I source file
during compilation. The statement can occur anywhere in a PL/I source
file. For information on using PL/I with CDD, see Appendix E in the
Kednos PL/I for OpenVMS Systems User Manual.

The format of the %DICTIONARY statement is:

%DICTIONARY cdd-path;

cdd-path
Any preprocessor expression. It is evaluated and converted to a
CHARACTER string if necessary. The resulting character string is
interpreted as the full or relative path name of a CDD object. The
resultant path name must conform to all rules for forming VAX CDD path
names. See the Common Data Dictionary Utilities Manual for details.

For example, assume that you have a record with the following path name:

CDD$TOP.SALES.JONES.SALARY

You can then specify a relative path name as follows:

%DICTIONARY ’SALARY’;

Or you can specify an absolute path name as follows:

%DICTIONARY ’_CDD$TOP.SALES.JONES.SALARY’;

The compiler extracts the record definition from the CDD and inserts the
PL/I structure declaration corresponding to the record description in the
PL/I program.

10–8

Preprocessor

If the %DICTIONARY statement is not embedded in a PL/I language
statement, then the resulting structure is declared with the logical level 1
and the BASED storage attribute is furnished. The logical member levels
are incremented from 2. For example:

DECLARE PRICE FIXED BINARY(31);
%DICTIONARY ’ACCOUNTS’;

This would result in a declaration of the following form:

DECLARE PRICE FIXED BINARY(31);
DECLARE 1 ACCOUNTS BASED,

2 NUMBER,
3 LEDGER CHARACTER(3),
3 SUBACCOUNT CHARACTER(5),

2 DATE CHARACTER(12),
.
.
.

Notice that in the above example, ACCOUNTS is a relative dictionary
path name.

If the %DICTIONARY statement is embedded in a PL/I language
statement, as in a structure declaration, then the resulting structure
is declared with no logical level and no storage attribute. Logical member
numbers are supplied and incremented from 100. For example:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
%DICTIONARY ’ACCOUNTS’; ,
%DICTIONARY ’ADDRESSES’; ;

Notice the syntax in the above %DICTIONARY example. The
%DICTIONARY statement is terminated with the preprocessor terminator
semicolon before the normal PL/I line punctuation. The normal PL/I
punctuation must also be included so that the final structure declaration
will contain proper PL/I punctuation. The previous declaration would
result in a declaration of the following form:

DECLARE 1 COMMON_INTERFACES STATIC EXTERNAL,
100 ACCOUNTS,

101 NUMBER,
102 LEDGER CHARACTER(3),
102 SUBACCOUNT CHARACTER (5),

101 DATE CHARACTER(12),
.
.
.

100 ADDRESSES,
.
.
.

The CDD supports data types that are not native to PL/I. If a data
definition contains an unsupported data type, PL/I makes the unsupported
data type accessible by declaring it as data type BIT_FIELD or data type
BYTE_FIELD. PL/I does not attempt to approximate a data type that is
not supported by PL/I. For example, an F_FLOATING_COMPLEX number
is declared BYTE_FIELD(8), not (2)FLOAT(24).

10–9

Preprocessor

Note, however, that use of these two data types is limited. Data declared
with the BIT_FIELD or BYTE_FIELD data type can be manipulated only
with the PL/I built-in functions ADDR, INT, POSINT, SIZE, and UNSPEC.
A variable declared with either of these data types can be passed as a
parameter provided the parameter is declared as ANY. Thus, references to
data declared as BIT_FIELD or BYTE_FIELD are limited to contexts in
which the interpretation of a data type is not applied to the reference.

PL/I ignores CDD features that are not supported by PL/I, but issues error
messages when the features conflict with PL/I.

When you extract a record definition from the CDD, you can choose
to include this translated record in the program listing by using the
/LIST/SHOW=DICTIONARY qualifiers in the PLI command line. Even
if you choose not to list the extracted record, the names, data types, and
offsets of the CDD record definition are displayed in the program listing
allocation map.

CDD data definitions can contain explanatory text in the CDDL
DESCRIPTION IS clause. This text is included in the PL/I listing
comments, if /LIST/SHOW=DICTIONARY is specified. For example,
you could use CDDL comments to indicate the data type of each structure
and member. The punctuation for CDDL comments is the same as for
other PL/I programs: the slash-asterisk (/*) and the asterisk-slash (*/).

10.2.7 %DO
The %DO statement begins a preprocessor DO-group, a sequence of
statements terminating with the %END statement. The preprocessor
DO-group must be a simple DO-group and is noniterative, but it can be
usefully combined with an %IF statement.

The format of the %DO statement is:

%DO;
.
.
.

%END;

You can include both preprocessor and nonpreprocessor text in a
preprocessor DO-group. For example:

10–10

Preprocessor

%DECLARE T CHARACTER; /* declare T */
%ACTIVATE T NORESCAN; /* activate T for replacement */

.

.

.
%IF VARIANT() = ’NONE’;

%THEN
%DO;
%T = ’’’unknown variant’’’; /* assign string to T */
%WARN T; /* output unknown variant

warning at compile time */
INIT_MESSAGE = INIT_MESSAGE||’ with ’||T; /* assign

value of T to nonpreprocessor
variable */

%END;

This preprocessor DO-group performs several steps. First, a string
constant is assigned to T. Then the value of T is used in a preprocessor
user-generated diagnostic message. This message is issued at compile time
to warn the programmer that the program is compiled with an unknown
variant. Finally, the value of T is concatenated with a nonpreprocessor
string constant. INIT_MESSAGE, including the value of T, is part of the
run-time image.

10.2.8 %END
The %END statement terminates a preprocessor procedure or DO-group.

The format of the %END statement is:

%END;

Preprocessing then continues with the next executable preprocessor
statement.

10.2.9 %ERROR
The %ERROR statement provides a diagnostic error message during
program compilation.

The format of the %ERROR statement is:

%ERROR preprocessor-expression;

preprocessor-expression
A maximum of 64 characters giving the text of the error message to be
displayed. Messages of more than 64 characters are truncated.

Returned Message

The message displayed by %ERROR is:

%PLIG-E-USERDIAG, preprocessor-expression

Compilation errors that result in the display of the %ERROR statement
increment the informational diagnostic count displayed in the compilation
summary, and inhibit production of an object file.

10–11

Preprocessor

10.2.10 %FATAL
The %FATAL statement provides a diagnostic fatal message during
program compilation.

The format of the %FATAL statement is:

%FATAL preprocessor-expression;

preprocessor-expression
The text of the fatal message you want displayed. The text is a character
string with a maximum length of 64 characters. It is truncated if
necessary.

Returned Message

The message displayed by %FATAL is:

%PLIG-F-USERDIAG, preprocessor-expression

Compilation errors that result in a fatal error terminate compilation after
the message is displayed.

10.2.11 %GOTO
The %GOTO statement causes the preprocessor to interrupt its sequential
processing of source text and continue processing at the point specified in
the %GOTO statement. A %GOTO is useful for avoiding large segments of
text in the source program.

The format of the %GOTO statement is:

%GOTO label-reference;

label-reference
A label of a preprocessor statement. The label reference determines the
point to which the compiler processing will be transferred.

Nonlocal %GOTOs are not permitted. In other words, if a %GOTO is used
within a preprocessor procedure, control must not be passed out of the
containing procedure. Also, a %GOTO must not transfer control into a
preprocessor procedure.

The following example illustrates transfers (forward and backward) and
the use of %GOTO:

%TEXT:PROCEDURE RETURNS(CHARACTER);
.
.
.

%CHANG_TEXT: DO;
.
.
.

%IF WARN() = 5
%THEN

%GOTO CHANG_TEXT;

10–12

Preprocessor

%ELSE
%GOTO INSERT_TEXT;

.

.

.

%INSERT_TEXT: DO;
.
.
.

%END;

Depending on the status of the %IF statement in this example, program
compilation takes one of two courses. Control is transferred either forward
to the statement labeled INSERT_TEXT or backward to the statement
labeled CHANG_TEXT. The compiled program will then include one of the
two blocks, but not both. Notice also in this example that the preprocessor
built-in function WARN is used to determine preprocessor action, which
makes the program self-diagnostic.

If program text is not compiled because the %GOTO statement transferred
control over it, the compiler still checks the basic syntax of all statements.
Therefore, comment delimiters and parentheses must balance, apostrophes
must be paired correctly, and all statements must end with a semicolon.

10.2.12 %IF
The %IF statement controls the flow of program compilation according to
the scalar bit value of a preprocessor expression. The %IF statement tests
the preprocessor expression and performs the specified action if the result
of the test is true.

The format of the %IF statement is:

%IF test-expression %THEN action [%ELSE action];

test-expression
Any valid preprocessor expression that yields a scalar bit value. If any bit
of the value is 1, then the expression is true; otherwise, the expression is
false.

action
A single, unlabeled preprocessor statement, %DO-group, %GOTO
statement, or a preprocessor null statement. The specified action must
not be an %END statement.

The %IF statement evaluates the preprocessor test expression. If the
expression is true, the action specified following the keyword %THEN is
compiled. Otherwise, the action, if any, following the %ELSE keyword
is compiled. In either case, compilation resumes at the first executable
statement following the termination of the %IF statement, unless a
%GOTO in one of the action clauses causes compilation to resume
elsewhere.

If an action is not compiled because the alternative action was compiled
instead, the compiler still checks the basic syntax of all statements.
Therefore, comment delimiters and parentheses must balance, apostrophes
must be paired correctly, and all statements must end with a semicolon.

10–13

Preprocessor

10.2.13 %INCLUDE
The %INCLUDE statement incorporates text from other files into the
current source file during compilation. It can occur anywhere in a PL/I
source file; it need not be part of a procedure.

The format of the %INCLUDE statement is:

%INCLUDE

8<
:

’ file-spec’
module-name
’ library-name(module-name)’

9=
;;

file-spec
A file specification enclosed in apostrophes interpreted as the complete file
specification or path, including the device, directory, and file name. For
the specification is subject to logical name translation and the application
of default values by the OpenVMS operating system.

module-name
The 1- to 31-character name of a text module in a library of included files
and/or other text modules.

library-name
The library containing the specified text module. Enclose the library and
module in apostrophes. If you do not specify the library in the %INCLUDE
statement, and if the text module is not in PLI$STARLET or in the text
library pointed to by PLI$LIBRARY, you must specify the name of the
library containing the module in the PLI compilation command.

Examples

%INCLUDE ’SUM.PLI’;

This statement copies the contents of the file SUM.PLI into the current
file during compilation.

%INCLUDE SYSTEM_PROCEDURES;

This statement includes a module from a text module library. The library
containing the module SYSTEM_PROCEDURES must be present in the
command that compiles this program, or the logical name PLI$LIBRARY
can point to the library that contains it.

%INCLUDE ’PROJECT_LIBRARY(MY_MODULE)’;

This statement includes module MY_MODULE from the text library
PROJECT_LIBRARY.TLB in the default directory.

Restrictions

%INCLUDE statements can be nested up to a maximum of four levels.

10–14

Preprocessor

10.2.14 %INFORM
The %INFORM statement specifies a user-written diagnostic informational
message to be displayed during program compilation.

The format of the %INFORM statement is:

%INFORM preprocessor-expression;

preprocessor-expression
The text of the informational message displayed. The text is a character
string of up to 64 characters. The string is truncated if necessary.

Returned Message

The format of the message to be displayed by %INFORM is:

%PLIG-I-USERDIAG, preprocessor-expression

The %INFORM statement increments the informational diagnostic count
displayed in the compilation summary.

10.2.15 %LIST_xxx
The %LIST_xxx statement (where xxx is either ALL, DICTIONARY,
INCLUDE, MACHINE, or SOURCE) enables the selective listing display
of INCLUDE file contents, extracted Common Data Dictionary (CDD)
record descriptions, machine code, and source code. The %LIST_xxx
statement has a number of forms, each of which enables listing control for
specific portions of the source text.

The format of the %LIST_xxx statements are:8>>><
>>>:

%LIST_ALL;
%LIST_DICTIONARY;
%LIST_INCLUDE;
%LIST_MACHINE;
%LIST_SOURCE;

9>>>=
>>>;

You must compile the program with the appropriate value specified for the
/SHOW qualifier before the above statements can be effective.

The %LIST_xxx form of each statement enables the appearance of the
specified information starting with the listing line following the %LIST_
xxx statement. If you previously specified %NOLIST_xxx, the %LIST_xxx
statement has the effect of reenabling the display.

The text displayed with each form of the %LIST_xxx statement is
summarized as follows:

• %LIST_ALL displays all of the following information. You can shorten
this statement to %LIST.

• %LIST_DICTIONARY displays the PL/I translation of an included
Common Data Dictionary record.

10–15

Preprocessor

• %LIST_INCLUDE displays the contents of INCLUDE files and
modules in the program listing.

• %LIST_MACHINE displays the machine code generated during
compilation. For PL/I for RISC ULTRIX, see the -S option in the
pli(1) manual page.

• %LIST_SOURCE displays source program statements in the program
listing.

To disable a %LIST_xxx statement, specify %NOLIST_xxx at the
appropriate line in the source text.

%LIST_xxx statements cannot be nested.

10.2.16 %NOLIST_xxx
The %NOLIST_xxx statement (where xxx is either ALL, DICTIONARY,
INCLUDE, MACHINE, or SOURCE) disables the selective listing display
of INCLUDE file contents, extracted Common Data Dictionary (CDD)
record descriptions, machine code, and source code. The %NOLIST_xxx
statement has a number of forms; each disables listing control for specific
portions of the source text.

The format of the %NOLIST_xxx statements are:8>>><
>>>:

%NOLIST_ALL;
%NOLIST_DICTIONARY;
%NOLIST_INCLUDE;
%NOLIST_MACHINE;
%NOLIST_SOURCE;

9>>>=
>>>;

You must compile the program with the /SHOW qualifier before any of
these statements can be effective.

The %NOLIST_xxx form of each statement disables the appearance
of the specified information starting with the listing line following the
%NOLIST_xxx statement. If you previously specified %LIST_xxx, the
%NOLIST_xxx statement has the effect of disabling the display.

The following summarizes the text suppressed with each form of the
%NOLIST_xxx statement:

• %NOLIST_ALL does not display any of the following information. You
can shorten this statement to %NOLIST.

• %NOLIST_DICTIONARY does not display the PL/I translation of an
included Common Data Dictionary record.

• %NOLIST_INCLUDE does not display the contents of INCLUDE files
and modules in the program listing.

• %NOLIST_MACHINE does not display the machine code generated
during compilation.

• %NOLIST_SOURCE does not display source program statements in
the program listing.

10–16

Preprocessor

To cancel the effect of any of the %NOLIST_xxx statements, specify
%LIST_xxx (see Section 10.2.15) at the appropriate line in the source
text.

10.2.17 %PAGE
The %PAGE statement provides listing pagination without inserting
form-feed characters into the source text.

The format of the %PAGE statement is:

%PAGE;

The first source record following the record that contains the %PAGE
statement is printed on the first line of the next page of the source listing.

10.2.18 %PROCEDURE
A preprocessor procedure is a sequence of preprocessor statements headed
by a %PROCEDURE statement and terminated by a %END statement.
A preprocessor procedure executes only at compile time. Invocation is
similar to a function reference and occurs in two ways:

• Preprocessor statements can invoke preprocessor procedures. In
addition, preprocessor statements from within preprocessor procedures
can invoke other preprocessor procedures.

• Statements from the source program can invoke preprocessor
procedures.

The format of the %PROCEDURE statement is:

%label:PROCEDURE [(parameter-identifier, . . .)]
[STATEMENT]

RETURNS (

(
CHARACTER
FIXED
BIT

)
);

.

.

.

[%]RETURN (preprocessor-expression);
.
.
.

[%]END;

10–17

Preprocessor

label
An unsubscripted label constant. A preprocessor procedure is invoked by
the appearance of the label name on the %PROCEDURE statement and
terminated by the corresponding %END statement. The label name must
be active if invoked from a nonpreprocessor statement.

Preprocessor label names can be activated and deactivated, but cannot be
specified in a %DECLARE statement.

parameter-identifier
The name of a preprocessor identifier. Each identifier is a parameter of
the procedure.

STATEMENT
A preprocessor procedure option. The STATEMENT option permits the use
of a keyword argument list followed by an optional positional argument
list in the preprocessor procedure invocation. The STATEMENT option
returns strings that can be used as PL/I statements at run time.

RETURNS
A preprocessor procedure attribute. The RETURNS attribute defines the
data type to be returned to the point of invocation in the source code. If
you specify a data type that is inconsistent with the returned value, a
conversion error may result.

preprocessor-expression
Value to be returned to the invoking source code. The preprocessor
expression must be specified. The preprocessor expression is converted
to the data type specified in the RETURNS option and is returned to the
point of invocation. Therefore, the expression must be capable of being
converted to CHARACTER(32500), FIXED(10), or BIT(31).

The %PROCEDURE statement defines the beginning of a preprocessor
procedure block and specifies the parameters, if any, of the procedure.
Because the preprocessor procedure is always invoked as a function, the
%PROCEDURE statement must also specify (via the RETURNS option)
the data type attributes of the value that is returned to the point of
invocation.

For example:

%A_VAR = A_PROC();

In this statement, the preprocessor procedure A_PROC is invoked and
evaluated, and the result is returned and assigned to the preprocessor
variable A_VAR.

As with other PL/I procedures, a parenthesized parameter list specifies the
parameters that the preprocessor procedure expects when it is invoked.
Each preprocessor parameter specifies the name of a variable declared in
the preprocessor procedure. The preprocessor parameters must correspond
one-to-one with arguments specified for the preprocessor procedure when
it is invoked, except when the STATEMENT option is used.

10–18

Preprocessor

The value to be returned to the invoking source code is converted to the
data type specified in the RETURNS option. The return value replaces the
preprocessor procedure reference in the invoking source code. Preprocessor
procedures cannot return values through their parameter list. The
return value must be capable of being converted to one of the data types
CHARACTER, FIXED, or BIT. The maximum precision of the value
returned by the %RETURNS statement is BIT(31), CHARACTER(32500),
or FIXED(10).

Preprocessor procedures cannot be nested. The scope of a preprocessor
procedure is the procedure itself; that is, variables, labels, and any
%GOTO statements used inside of the procedure must be local.

A preprocessor procedure is invoked by the appearance of its entry-
name and list of arguments. If the reference occurs in a nonpreprocessor
statement, the entry name must be active before the preprocessor
procedure is invoked. If the entry name is activated with the RESCAN
option, the value of the preprocessor procedure is rescanned for further
possible preprocessor variable replacement and procedure invocation. You
can invoke preprocessor procedures recursively.

When a preprocessor procedure (with or without the STATEMENT option)
is invoked from a preprocessor statement, each argument is treated as
an expression and the result of executing the preprocessor procedure is
returned to the statement containing the invocation.

When a preprocessor procedure is invoked from nonpreprocessor source
text, the arguments are interpreted as character strings and are delimited
by the appearance of a comma or a right parenthesis occuring outside of
balanced parentheses. For example, the positional argument list (Q(E,D),
XYZ) has two arguments; the strings ’ Q(E,D)’ and ’ XYZ’ .

Examples

%A1: PROCEDURE RETURNS(FIXED);
DECLARE (A,B,C) FIXED;

A = 2;
B = 10;
C = A + B;
RETURN(C);

END;

This example declares the preprocessor procedure A1 and specifies that the
procedure return a fixed decimal result after the preprocessor statements
within the procedure have been executed.

The procedure returns the value 12 to the point of invocation. Note
that the leading percent signs, normally associated with preprocessor
statements, are not required within a preprocessor procedure.

10–19

Preprocessor

PPFIB: PROCEDURE OPTIONS (MAIN);
DECLARE Y CHAR(14) INITIAL(’Fibonacci Test’); !
%DECLARE Y FIXED;"
%F: PROCEDURE(X) RETURNS (FIXED); #

DECLARE X FIXED;
IF (X <= 1)

THEN RETURN(1);
ELSE RETURN(F(X-1)+F(X-2));

END; /* End preprocessor procedure */
%Y = F(10); $
PUT SKIP LIST(Y);
%Y = F(11); %
PUT SKIP LIST(Y);
%Y = F(12); &
PUT SKIP LIST(Y);
%DEACTIVATE Y;'
PUT SKIP LIST(Y); (
END; /* End run-time procedure */

This example uses a preprocessor procedure to return a Fibonacci number.
The recursive preprocessor procedure labeled %F is invoked to return a
single value, a Fibonacci number, to the point of invocation. The following
notes correspond to the example:

! The run-time variable Y is declared with the CHARACTER attribute
and initialized to Fibonacci Test.

" The preprocessor variable Y is declared with the FIXED attribute,
which implies FIXED DECIMAL (10,0). This declaration automatically
activates the preprocessor variable Y.

The preprocessor procedure F is defined. The percent sign for the END
statement is optional in a preprocessor procedure.

Note that this procedure is recursive.

$ The preprocessor procedure is called, passed the value 10, and the
10th number in the Fibonacci series is calculated. The resulting value
is assigned to the preprocessor variable Y.

Because the preprocessor variable Y is active by default, the compiler
replaces the occurrence of Y in the PUT statement with the new
preprocessor Y value.

% Step 4 is repeated for the value 11.

& Step 4 is repeated for the value 12.

' The preprocessor variable Y is deactivated. No more scanning or
replacement occurs. The preprocessor variable Y retains its final
replacement value, 233.

(The run-time value of Y (Fibonacci Test) is output.

The output from this program is:

89
144
233
Fibonacci Test

10–20

Preprocessor

Using the STATEMENT Option

All preprocessor procedures (with or without the STATEMENT option)
return a value to the invoking source code; that is, they are function
procedures. Through the use of the STATEMENT option, the argument
list to a preprocessor procedure can be a keyword argument list. Keyword
argument lists are unique to preprocessor procedures and provide a
powerful tool for manipulating PL/I.

A keyword argument list ends with a semicolon rather than the right
parenthesis. In this way, the STATEMENT option permits you to use
a preprocessor procedure as if it were a statement. Consequently,
preprocessor procedures using the STATEMENT option permit you to
extend the PL/I language by simulating features that may not otherwise
be available.

Preprocessor procedures can have one of two distinctly different types
of argument lists: positional or keyword. Positional argument lists
(ending with a right parenthesis) use parameters sequentially, as in
a parenthesized list. You can use positional argument lists in any
preprocessor procedure. Keyword argument lists (ending with a semicolon)
use parameters in any order, as long as each keyword matches the name
of a parameter. This permits the option of specifying the order in which
parameters are passed. You can use keyword argument lists only when the
preprocessor procedure contains the STATEMENT option and is invoked
from a nonpreprocessor statement.

When a preprocessor procedure is invoked from a nonpreprocessor
statement, the STATEMENT option permits the use of a keyword
argument list that follows the optional positional argument list in a
preprocessor procedure invocation.

When you use keyword arguments in nonpreprocessor statements, the
keywords can be used in any order. The following reference examples
would produce a variety of results with positional arguments, because
values would be used sequentially. Keyword arguments produce
consistent results because keyword parameters are matched with keyword
arguments.

%B: PROCEDURE (ALPHA, BETA, GAMMA) STATEMENT . . . ;
DECLARE (ALPHA, BETA, GAMMA) FIXED;

.

.

.
END;

B(1,2,3);
B ALPHA(1) GAMMA(3) BETA(2);
B(1) GAMMA(3) BETA(2);
B (,2,3) ALPHA(1);

The next example shows a more common use of the STATEMENT
option; to generate PL/I source statements that define a unique run time
feature. The preprocessor procedure APPEND returns a string, which is
incorporated into the source program at compile time. At run time, the
returned string is used as a PL/I function.

10–21

Preprocessor

This preprocessor procedure permits a varying string to accumulate
text up to its maximum size without danger of undetected truncation.
Normally, strings that exceed their maximum size are truncated. The text
returned by the preprocessor procedure provides the run-time program
with a way to handle truncation. If the string would be truncated, a
message is printed and the FINISH condition is signaled.

%APPEND: PROCEDURE (string,to) STATEMENT RETURNS(CHARACTER);!

%DECLARE (string,to) CHARACTER; "
%RETURN (

’DO;’|| #
’IF LENGTH(’||string||’)+LENGTH(’||to||’) > SIZE(’||to||’)-2’||
’ THEN DO;’||

’PUT SKIP LIST (’’Buffer overflowed appending to ’||to||’’’);’||
’SIGNAL FINISH;’|| $
’END;’||

’ELSE ’||to||’ = ’||to||’||’||string||’;’||
’END;’

);
%END;

The following notes are keyed to this example:

! The preprocessor procedure APPEND is defined with the parameters
’ string’ and ’ to’ and the STATEMENT option.

" ’ String’ and ’ to’ are declared as parameters within the preprocessor
procedure.

The %RETURN statement returns the value contained by the
parentheses. This text then becomes part of the PL/I nonpreprocessor
source program.

Notice the punctuation within the character string returned by
%RETURN. At compile time, single quotes are stripped when the
text is incorporated into the run-time PL/I program. In addition,
the semicolon that delimits the invocation is not retained when the
replacement takes place. All customary PL/I punctuation must be
included in the character string.

$ If the current varying string and the additional string together
are greater than the maximum length of the varying string, an
informational message is printed and the FINISH condition is
signaled.

The following invocations of the preprocessor procedure APPEND are
all equivalent:

APPEND STRING(’New String’) TO (My_string);
APPEND TO(My_string) STRING(’New String’);
APPEND(’New String’) TO(My_string);

Notice that if you have a preprocessor procedure (A) with a label that
is the same as the name of a keyword argument in another preprocessor
procedure (B) with the STATEMENT option, then when B is invoked
the keyword argument is treated as a call to procedure A, and not as a
keyword parameter in B.

10–22

Preprocessor

10.2.19 %REPLACE Statement
The preprocessor %REPLACE statement specifies that an identifier is a
constant of a given value. It can be used anywhere within a procedure or
anywhere in a PL/I source file.

Beginning at the point at which a %REPLACE statement is encountered,
PL/I replaces all occurrences of the specified identifier with the specified
constant value, until the end of compilation.

The format of the %REPLACE statement is:

%REPLACE identifier BY constant-value;

identifier
Any valid PL/I identifier. PL/I keywords are not valid identifiers in a
%REPLACE statement. The identifier must not be the name of a declared
preprocessor or program variable. PL/I permits multiple %REPLACE
statements and %REPLACE statements that redefine the %REPLACE
identifier.

constant-value
Any valid character-string, bit-string, or arithmetic constant.

Integer constants that are given values by %REPLACE statements are
valid in constant expressions. For example:

%REPLACE PREFIX BY 8;

DECLARE BUFFER CHARACTER(80 + PREFIX);

When the program containing these lines is compiled, the variable
BUFFER is declared with a length of 88 characters.

10.2.20 %RETURN Statement
The %RETURN statement terminates execution of the current
preprocessor procedure.

The format of the %RETURN statement is:

[%]RETURN (preprocessor-expression);

preprocessor-expression
Value to be returned to the invoking procedure. The preprocessor
expression must be specified. The preprocessor expression is converted
to the data type specified in the RETURNS option, and the value of the
expression is returned to the point of invocation. Therefore, the expression
must be capable of being converted to CHARACTER (32500) VARYING,
FIXED (10), or BIT (31).

The value returned by a preprocessor procedure cannot contain
preprocessor statements.

When the value of the evaluated preprocessor expression is passed back to
the point of invocation, control returns to the evaluation of the statement
that contained the reference to the preprocessor procedure.

Within a preprocessor procedure, the leading percent sign (%) is optional.

10–23

Preprocessor

Multiple %RETURN statements are permitted in preprocessor procedures.
See Section 10.2.18 for examples of %RETURN.

10.2.21 %SBTTL
The %SBTTL statement allows specification of an arbitrary compile-time
string for the listing subtitle line. PL/I uses the procedure IDENT, or 01 if
no IDENT was specified. If %SBTTL is used, the specified subtitle appears
to the right of IDENT or 01. Subtitles do not appear on the first page of
the listing file.

The format of the %SBTTL statement is:

%SBTTL preprocessor-expression

preprocessor-expression
A character string with a maximum length of 30 characters. It is
truncated if necessary.

10.2.22 %TITLE
The %TITLE statement allows specification of an arbitrary compile-
time string for the listing title line. If %TITLE is used, the specified
title appears to the right of the customary title. (If no TITLE option is
specified, PL/I uses the name of the first level-1 procedure in the source
program as the title.)

The format of the %TITLE statement is:

%TITLE preprocessor-expression

preprocessor-expression
A character string with a maximum length of 30 characters. It will be
truncated if necessary.

10.2.23 %WARN
The %WARN statement provides a diagnostic warning message during
program compilation.

The format of the %WARN statement is:

%WARN preprocessor-expression;

preprocessor-expression
The text of the warning message to be displayed. The text is a character
string with a maximum length of 60 characters. It is truncated if
necessary.

Returned Message

The message displayed by %WARN is:

%PLIG-W-USERDIAG, preprocessor-expression

10–24

Preprocessor

The %WARN statement increments the warning diagnostic count displayed
in the compilation summary.

10.3 User-Generated Diagnostic Messages
The PL/I embedded preprocessor provides four statements that permit
user-generated diagnostic capability: %INFORM, %WARN, %ERROR, and
%FATAL. Preprocessor diagnostic messages are compile-time messages,
but you define the circumstances that invoke the message and the text
displayed.

The action of each statement is to generate a diagnostic message of the
appropriate severity level, with the preprocessor expression as the text of
the message.

Examples

The first example shows how %INFORM can be used to return the value
of VARIANT.

%IF VARIANT() = ’’ | VARIANT() = ’NORMAL’
%THEN

%INFORM ’NORMAL’;

In this example, the %INFORM diagnostic message is used to let the
programmer know that compilation is continuing according to a normal
plan.

If the value of VARIANT is not specified at compile time or if the value is
’ NORMAL’ , then the following informational message is issued:

%PLIG-I-USERDIAG, NORMAL

In the following example, an unknown variant is included at compile time.
The %WARN statement issues a compile-time warning diagnostic message
and saves the message so that when the program is run, the appropriate
text is output by the program.

DECLARE INIT_MESSAGE CHAR(40) VARYING INITIAL (T);
.
.
.

%IF VARIANT() = ’NONE’;
%THEN %;
%ELSE

%DO;
%T = ’’’unknown variant’’’;
%WARN T;
INIT_MESSAGE = ’Compiled with ’||T;
%END;

PUT SKIP LIST (INIT_MESSAGE);

The preprocessor built-in functions INFORM, WARN, and ERROR return
the number of user-generated diagnostics issued at any specified point
during compilation. Therefore, you can use user-generated diagnostics to
control the course of compilation. For example:

10–25

Preprocessor

%IF WARN() > 5
%THEN

%GOTO change_text;
%ELSE;

This example specifies that compilation take a different course if there are
more than five warning messages at that point in program compilation. If
there are fewer than five warnings, then compilation proceeds along the
current path.

%IF ERROR() >= 1
%THEN

%FATAL ’Ending Compilation’;

This example stops compilation if there is an error that would inhibit the
production of an object file.

User-generated diagnostic messages increment the count displayed in the
diagnostic summary.

10.4 Preprocessor Built-In Functions
A number of PL/I built-in functions are available for use at compile time.
Since preprocessor built-in functions work the same way as run-time
PL/I built-in functions, refer to Chapter 11 for detailed descriptions of the
functions.

The built-in functions are summarized in Table 10–2 according to the
following functional categories:

• Arithmetic built-in functions provide information about the properties
of arithmetic values, or perform common arithmetic calculations.

• String-handling built-in functions process character-string and bit-
string values.

• Conversion built-in functions convert data from one data type to
another.

• Timekeeping built-in functions return the system date and time of day.

• Miscellaneous built-in functions are specifically preprocessor built-in
functions.

Table 10–2 Summary of PL/I Preprocessor Built-In Functions

Category Function Reference Value Returned

Arithmetic ABS(x) Absolute value of x

MAX(x1,x2) Larger of the values x1 and x2

MIN(x1,x2) Smaller of the values x1 and x2

MOD(x,y) Value of x modulo y

SIGN(x) -1, 0, or 1 to indicate the sign of x

String-Handling COPY(s,c) c copies of specified string s

INDEX(s,c[,p]) Position of the character string c within the string s, starting at
position p

10–26

Preprocessor

Table 10–2 (Cont.) Summary of PL/I Preprocessor Built-In Functions

Category Function Reference Value Returned

LENGTH(s) Number of characters or bits in the string s

LTRIM(s,[b]) Removes blanks from left of string s; or if b is supplied, removes
string b from left of string s

REVERSE(s) Reverse of the source character string or bit string

RTRIM(s,[e]) Removes blanks from right of string s; or if e is supplied, removes
string e from right of string s

SEARCH(s,c[,p]) Position of the first character in s, starting at position p, that is
found in c

SUBSTR(s,i[,j]) Part of string s beginning at i for j characters

TRANSLATE(s,c[,d]) String s with substitutions defined in c and d

TRIM(s[,e,f]) String s with all characters in e removed from the left and all
characters in f removed from the right

VERIFY(s,c[,p]) Position of the first character in s, starting at position p, which is
not found in c

Conversion BYTE(x) ASCII character represented by the integer x

DECODE(c,r) Fixed binary value of the character string c converted to a base r
number

ENCODE(i,r) Character string representing the base r number that is equivalent
to the fixed binary expression i

RANK(c) Integer representation of the ASCII character c

Timekeeping DATE() System date of compilation in the form YYMMDD

DATETIME() System date and time of compilation in the form
CCYYMMDDHHMMSSXX

TIME() System time of day of compilation in the form HHMMSSXX

Miscellaneous ERROR() Count of user-generated diagnostic error message

INFORM() Count of user-generated diagnostic informational message

LINE() Line number in source program that contains the end of a specified
preprocessor statement

VARIANT() String result representing the value of the /VARIANT command
qualifier

WARN() Count of user-generated diagnostic warning message

10–27

11 Built-In Functions, Subroutines, and Pseudovariables

PL/I provides a set of predefined functions, subroutines, and variables
called built-in functions, built-in subroutines, and pseudovariables
respectively.

• Built-in functions are procedures to use wherever an expression is
valid.

• Built-in subroutines are routines which offer additional capabilities.

• Pseudovariables can be used in certain assignment statements in place
of ordinary variables.

This chapter describes the built-in functions, subroutines, and
pseudovariables that you can use in your PL/I programs.

11.1 Built-In Function Arguments
Built-in functions are similar to operators, and their arguments are similar
to operands. Built-in function arguments, if arithmetic, are converted
to their derived type before the function reference is evaluated. All
evaluations of built-in functions are performed in the result type. The
arguments are converted again from the derived type to the result type if
necessary. The precision of the result is the greater of the precisions of the
two arguments.

For instance, all the mathematical functions return floating-point values;
their arguments are converted to floating point (binary or decimal,
depending on the base of the argument) before the operation is performed.
For example:

DCL J FIXED BINARY(8); FT = ATAN(J,2);

Here the derived type of J and 2 is fixed-point binary. The converted
precision of 2 is min(ceil(1=3:32) + 1; 31), or 2. The result type is FLOAT
BINARY(8). Both arguments are then converted to FLOAT BINARY(8),
and the ATAN operation is performed.

Note the following restrictions on built-in function arguments:

• All arguments of all built-in functions except the array-handling,
storage, file-control, and STRING functions must be scalars of
arithmetic, string, or pictured data types, as specified for the
individual function.

• A reference to a built-in function that takes no arguments must still
contain the pair of enclosing parentheses, such as NULL(), unless the
function’s name has been declared with the BUILTIN attribute.

11–1

Built-In Functions, Subroutines, and Pseudovariables

11.2 Conditions Signaled
Built-in functions, like other operations, can signal conditions. The
mathematical functions, which are computed in floating point, can
signal OVERFLOW and UNDERFLOW under the appropriate conditions.
Functions that are computed in fixed point can signal FIXEDOVERFLOW.
In general, string and other functions signal ERROR if a result cannot be
computed. Refer to Section 8.10.4 for more information about condition
handling.

11.3 Summary of Built-In Functions
The built-in functions are summarized in PL/I, according to the following
categories:

• Arithmetic built-in functions provide information about the properties
of arithmetic values, or perform common arithmetic calculations.

• Mathematical built-in functions perform standard mathematical
calculations in floating point.

• String-handling built-in functions process character-string and bit-
string values.

• Conversion built-in functions convert data from one data type to
another.

• Condition-handling built-in functions provide information about
interrupts caused by signaled conditions.

• Array-handling built-in functions provide information about arrays.

• Storage control built-in functions return values concerning based
variables.

• Timekeeping built-in functions return the system date and time of day.

• File-control built-in functions return the current line number and page
number of a file.

• Preprocessor built-in functions are used only at compile time by the
embedded preprocessor.

• Argument-passing built-in functions check the validity of data, aid in
argument passing, and perform other convenient operations

Section 11.4 provides detailed descriptions of the functions listed in PL/I.

Table 11–1 Summary of PL/I Built-In Functions

Category Function Reference Value Returned

Arithmetic ABS(x) Absolute value of x

ADD(x,y,p[,q]) Value of x+y, with precision p and scale factor q

CEIL(x) Smallest integer greater than or equal to x

DIVIDE(x,y,p[,q]) Value of x divided by y, with precision p and scale factor q

11–2

Built-In Functions, Subroutines, and Pseudovariables

Table 11–1 (Cont.) Summary of PL/I Built-In Functions

Category Function Reference Value Returned

FLOOR(x) Largest integer that is less than or equal to x

MAX(x,y) Larger of the values x and y

MIN(x,y) Smaller of the values x and y

MOD(x,y) Value of x modulo y

MULTIPLY(x,y,p[,q]) Value of x*y, with precision p and scale factor q

ROUND(x,k) Value of x rounded to k digits

SIGN(x) -1, 0, or 1 to indicate the sign of x

SUBTRACT(x,y,p[,q]) Value of x-y, with precision p and scale factor q

TRUNC(x) Integer portion of x

Mathematical ACOS(x) Arc cosine of x (angle, in radians, whose cosine is x)

ASIN(x) Arc sine of x (angle, in radians, whose sine is x)

ATAN(x) Arc tangent of x (the angle, in radians, whose tangent is x)

ATAN(x,y) Arc tangent of x (the angle, in radians, whose sine is x and
whose cosine is y)

ATAND(x) Arc tangent of x (the angle, in degrees, whose tangent is x)

ATAND(x,y) Arc tangent of x (the angle, in degrees, whose sine is x and
whose cosine is y)

ATANH(x) Hyperbolic arc tangent of x

COS(x) Cosine of radian angle x

COSD(x) Cosine of degree angle x

COSH(x) Hyperbolic cosine of x

EXP(x) Base of the natural logarithm, e, to the power x

LOG(x) Logarithm of x to the base e

LOG10(x) Logarithm of x to the base 10

LOG2(x) Logarithm of x to the base 2

SIN(x) Sine of the radian angle x

SIND(x) Sine of the degree angle x

SINH(x) Hyperbolic sine of x

SQRT(x) Square root of x

TAN(x) Tangent of the radian angle x

TAND(x) Tangent of the degree angle x

TANH(x) Hyperbolic tangent of x

String-Handling BOOL(x,y,z) Result of Boolean operation z performed on x and y

COLLATE() ASCII character set

COPY(s,c) c copies of specified string, s

EVERY(s) Boolean value indicating whether every bit in bit string s is
’ 1’ B

HIGH(c) String of length c of repeated occurrences of the highest
character in the collating sequence

11–3

Built-In Functions, Subroutines, and Pseudovariables

Table 11–1 (Cont.) Summary of PL/I Built-In Functions

Category Function Reference Value Returned

INDEX(s,c[,p]) Position of the character string c within the string s, starting at
position p

LENGTH(s) Number of characters or bits in the string s

LOW(c) String of length c of repeated occurrences of the lowest
character in the collating sequence

LTRIM(s,[b]) Removes white space (form feeds, carriage returns, tabs,
vertical tabs, line feeds, and spaces) from left of string s; or if
b is supplied, removes string b from left of string s

MAXLENGTH(s) Maximum length of varying string s

REVERSE(s) Reverse of the source character string or bit string

RTRIM(s,[e]) Removes white space (form feeds, carriage returns, tabs,
vertical tabs, line feeds, and spaces) from right of string s; or if
e is supplied, removes string e from right of string s

SEARCH(s,c[,p]) Position of the first character in s, starting at position p, that is
found in c

SOME(s) Boolean value indicating whether at least one bit in bit string s
is ’ 1’ B

STRING(s) Concatenation of values in array or structure s

SUBSTR(s,i[,j]) Part of string s beginning at i for j characters

TRANSLATE(s,c[,d]) String s with substitutions defined in c and d

TRIM(s[,e,f]) String s with all characters in e removed from the left, and all
characters in f removed from the right

VERIFY(s,c[,p]) Position of the first character in s, starting at position p, which
is not found in c

Conversion BINARY(x[,p[,q]]) Binary value of x with precision p and scale factor q

BIT(s[,l]) Value of s converted to a bit string of length l

BYTE(x) ASCII character represented by the integer x

CHARACTER(s[,l]) Value of s converted to a character string of length l

DECIMAL(x[,p[,q]]) Decimal value of x

DECODE(c,r) Fixed binary value of the character string c converted to a base
r number

ENCODE(i,r) Character string representing the base r number that is
equivalent to the fixed binary expression i

FIXED(x,p[,q]) Fixed arithmetic value of x

FLOAT(x,p) Floating arithmetic value of x

INT(x[,p[,l]]) Signed integer value of variable x, located at position p with
length l

POSINT(x[,p[,l]]) Unsigned integer value of variable x, located at position p with
length l

RANK(c) Integer representation of the ASCII character c

UNSPEC(x[,p[,l]]) Internal coded form of x, located at position p with length l

11–4

Built-In Functions, Subroutines, and Pseudovariables

Table 11–1 (Cont.) Summary of PL/I Built-In Functions

Category Function Reference Value Returned

Condition-Handling ONARGSLIST() Pointer to argument lists of exception condition

ONCHAR() Character that caused the CONVERSION condition to be
raised

ONCODE() Error code of the most recent run-time error

ONFILE() Name of file constant for which the most recent ENDFILE,
ENDPAGE, KEY, or UNDEFINEDFILE condition was signaled

ONKEY() Value of key that caused KEY condition

ONSOURCE() Field containing the ONCHAR character when the
CONVERSION condition was raised

Array-Handling DIMENSION(x[,n]) Extent of the nth dimension of x

HBOUND(x[,n]) Higher bound of the nth dimension of x

LBOUND(x[,n]) Lower bound of the nth dimension of x

PROD(x) Arithmetic product of all the elements in x

SUM(x) Arithmetic sum of all the elements in x

Storage ADDR(x) Pointer identifying the storage referenced by x

ADDREL(p,o) Pointer which is the sum of pointer p and offset o

ALLOCATION(x) Number of existing generations for controlled variable x

BYTESIZE(x) Number of bytes allocated to variable x; same as SIZE function

EMPTY() An empty area value

NULL() A null pointer value

OFFSET(p,a) An offset into the location in area a pointed to by pointer p

POINTER(o,a) A pointer to the location at offset o within area a

SIZE(x) Number of bytes allocated to variable x

Timekeeping DATE() System date in the form YYMMDD

DATETIME() System date and time in the form CCYYMMDDHHMMSSXX

TIME() System time of day in the form HHMMSSXX

File Control LINENO(x) Line number of the print file identified by x

PAGENO(x) Page number of the print file identified by x

Preprocessor ABS(x) Absolute value of x

BYTE(x) ASCII character represented by integer x

COPY(s,c) c copies of specified string s

DATE() Compilation date in the form YYMMDD

DATETIME() System date and time in the form CCYYMMDDHHMMSSXX

DECODE(c,r) Fixed binary value of the character string c converted to a base
r number

ENCODE(i,r) Character string representing the base r number that is
equivalent to the fixed binary expression i

ERROR() Count of user-generated diagnostic error messages

11–5

Built-In Functions, Subroutines, and Pseudovariables

Table 11–1 (Cont.) Summary of PL/I Built-In Functions

Category Function Reference Value Returned

INDEX(s,c[,p]) Position of the character string c within the string s, starting at
position p

INFORM() Count of user-generated diagnostic informational messages

LENGTH(s) Number of characters or bits in the string s

LINE() Line number in source program that contains the end of the
specified preprocessor statement

LTRIM(s,[b]) Removes white space (form feeds, carriage returns, tabs,
vertical tabs, line feeds, and spaces) from left of string s; or if
b is supplied, removes string b from left of string s

MAX(x,y) Larger of the values x and y

MIN(x,y) Smaller of the values x and y

MOD(x,y) Value of x modulo y

RANK(c) Integer representation of the ASCII character c

REVERSE(s) Reverse of the source character string or bit string

RTRIM(s,[e]) Removes white space (form feeds, carriage returns, tabs,
vertical tabs, line feeds, and spaces) from right of string s; or if
e is supplied, removes string e from right of string s

SEARCH(s,c[,p]) Position of the first character in s, starting at position p, that is
found in c

SIGN(x) -1,0, or 1 to indicate the sign of x

SUBSTR(s,i[,j]) Part of string s beginning at i for j characters

TIME() Compilation time of the day in the form HHMMSSXX

TRANSLATE(s,c[,d]) String s with substitutions defined in c and d

TRIM(s[,e,f]) String s with all characters in e removed from the left and all
characters in f removed from the right

VARIANT() String result representing the value of /VARIANT of the PLI
command qualifier (for OpenVMS) or -variant command option
(for RISC ULTRIX)

VERIFY(s,c[,p]) Position of the first character in s, starting at position p, which
is not found in c

WARN() Count of user-generated diagnostic warning messages

Argument-passing ACTUALCOUNT() Number of parameters the current procedure was called with

DESCRIPTOR(x) Forces its argument to be passed by descriptor to a non-PL/I
procedure

PRESENT(p) Boolean value indicating whether parameter p was specified in
a call

REFERENCE(x) Forces its argument to be passed by reference to a non-PL/I
procedure

VALID(p) Boolean value, indicating whether the pictured variable p has a
value consistent with its picture specification

VALUE(x) Forces its argument to be passed by value to a non-PL/I
procedure

11–6

Built-In Functions, Subroutines, and Pseudovariables

11.4 Descriptions of Built-In Functions
This section presents the built-in functions in alphabetical order.

11.4.1 ABS
The ABS built-in function returns the absolute value of an arithmetic
expression x. Its format is:

ABS(x)

Examples

A = 3.567;
Y = ABS(A); /* Y = +3.567 */

A = -3.567;
Y = ABS(A); /* Y = +3.567 */

ROOT = SQRT (ABS(TEMP));

The last example shows a common use for the ABS built-in function: to
ensure that an expression has a positive value before it is used as an
argument to the square root (SQRT) built-in function.

11.4.2 ACOS
The ACOS built-in function returns a floating-point value that is the arc
(inverse) cosine of an arithmetic expression x. The arc cosine is computed
in floating point. The returned value is an angle w such that:

0 <= w <= �

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is:

ACOS(x)

11.4.3 ACTUALCOUNT
The ACTUALCOUNT built-in function allows you to determine how many
parameters the current procedure was called with. The function returns a
FIXED BINARY(31) result.

The format of the function is:

ACTUALCOUNT();

11.4.4 ADD
The ADD built-in function returns the sum of two arithmetic expressions
x and y, with a specified precision p and an optionally specified scale factor
q. The format of the function is:

ADD(x,y,p[,q])

11–7

Built-In Functions, Subroutines, and Pseudovariables

p
An unsigned integer constant greater than zero and less than or equal to
the maximum precision of the result type, which is:

• For OpenVMS Alpha systems: 31 for fixed-point data, 15 for floating-
point decimal data, and 53 for floating-point binary data

• >For OpenVMS VAX systems: 31 for fixed-point data, 34 for floating-
point decimal data, and 113 for floating-point binary data

q
An integer constant less than or equal to the specified precision. The scale
factor can be optionally signed when used in fixed-point binary addition.
The scale factor for fixed-point binary must be in the range -31 to p. The
scale factor for fixed-point decimal data must be in the range 0 to p. If
you omit q, the default value is zero. You should not use a scale factor for
floating-point arithmetic.

Expressions x and y are converted to their derived type before the addition
is performed.

For example:

ADDBIF: PROCEDURE OPTIONS (MAIN);

DECLARE X FIXED DECIMAL (8,3),
Y FIXED DECIMAL (8,3),
Z FIXED DECIMAL (9,3);

X=9500.374;
Y=2278.897;
Z = ADD (X,Y,9,3);

PUT SKIP LIST (’TOTAL =’,Z);

END;

This program prints the following:

TOTAL = 11779.271

11.4.5 ADDR
The ADDR built-in function returns a pointer to storage denoted by a
specified variable. The variable reference must be addressable. The
format of the function is:

ADDR(reference)

If the reference is to a parameter (or any element or member of a
parameter), the pointer value obtained must not be used after return
from the parameter’s procedure invocation. (This could occur, for example,
if the pointer were saved in a static variable or returned as a function
value.)

11–8

Built-In Functions, Subroutines, and Pseudovariables

11.4.6 ADDREL
The ADDREL built-in function adds an offset value to a pointer and
returns a pointer which is the sum of the two arguments. The format of
the function is:

ADDREL(pointer,offset)

pointer
A reference to a pointer variable whose current value represents the
location of a based variable.

offset
Any integer expression.

11.4.7 ALLOCATION
The ALLOCATION built-in function returns a fixed-point binary integer
that is the number of existing generations of a specified controlled
variable. If no generations of the specified variable exist, the function
returns zero. The format of the function:n

ALLOCATION
ALLOCN

o
(reference)

reference
The name of a controlled variable.

Examples

DECLARE INPUT CHARACTER(10) CONTROLLED,
A CHARACTER(3) VARYING;

.

.

.
DO UNTIL (INPUT = ’QUIT’);

ALLOCATE INPUT;
GET LIST(INPUT);

.

.

.
END;

A = ALLOCATION(INPUT);
PUT SKIP LIST(’Generations = ;A);

This example uses the ALLOCATION built-in function to return the
number of generations of the controlled variable INPUT. The example
illustrates how input in an interactive program can be stored on a stack
for future use.

ALLO: PROCEDURE OPTIONS (MAIN);
DECLARE STR CHARACTER (10) CONTROLLED;

ALLOCATE STR;
STR=’FIRST’;
ALLOCATE STR;
STR=’SECOND’;
ALLOCATE STR;
STR=’THIRD’;

11–9

Built-In Functions, Subroutines, and Pseudovariables

DO WHILE (ALLOCATION(STR)^=0);
PUT SKIP LIST (STR);
FREE STR;

END;
END;

This example shows how the ALLOCATION built-in function can be used
to count generations of controlled variables and therefore control the loop.
Strings are freed while generations still exist, but when all generations
have been freed, the value of ALLOCATION is zero and the process ends,
thus avoiding a fatal run-time error.

11.4.8 ASIN
The ASIN built-in function returns a floating-point value that is the arc
(inverse) sine of an arithmetic expression x. The arc sine is computed in
floating point. The returned value is an angle w such that:

��=2 <= w <= �=2

The absolute value of x, after its conversion to floating point, must be less
than or equal to 1. The format of the function is:

ASIN(x)

11.4.9 ATAN
The ATAN built-in function returns a floating-point value that is the arc
tangent of an arithmetic expression y or an arc tangent computed from two
arithmetic expressions y and x. The arc tangent is computed in floating
point. If two arguments are supplied, they must both have nonzero values
after they have been converted to floating point.

The format of the function is:

ATAN(y[,x])

Returned Values

The returned value represents an angle in radians.

If x is omitted, the returned value v equals arc tangent(s), such that:

��=2 < v < �=2

Here, s is the value of expression y after its conversion to floating point.

If x is present, the returned value v equals arc tangent(s/r), such that if
s >= 0, then 0 <= v <= �, and if s < 0, then �� < v < 0, where s and r
are, respectively, the values of expressions y and x after their conversion
to floating point.

11–10

Built-In Functions, Subroutines, and Pseudovariables

11.4.10 ATAND
The ATAND built-in function returns a floating-point value that is the arc
tangent of a single arithmetic expression y or an arc tangent computed
from two arithmetic expressions y and x. The arc tangent is computed
in floating point. If two arguments are supplied, they must both have
nonzero values after their conversion to floating point.

The format of the function is:

ATAND(y[,x])

Returned Value

The floating-point value returned (which represents an angle in degrees)
equals:

ATAN(y; x) � 180=�

11.4.11 ATANH
The ATANH built-in function returns a floating-point value that is
the inverse hyperbolic tangent of an arithmetic expression x. After its
conversion to floating point, the absolute value of the argument x must be
less than 1.

The format of the function is:

ATANH(x)

11.4.12 BINARY
The BINARY built-in function converts an arithmetic or string expression
x to its binary representation, with an optionally specified precision p and
scale factor q. The returned value is either fixed- or floating-point binary,
depending on whether x is a fixed- or floating-point expression.

The format of the function is:n
BINARY
BIN

o
(x[,p[,q]])

p
The precision p, if specified, must be an integer constant greater than zero
and less than or equal to the maximum precision of the result type:

• For OpenVMS Alpha: 63 if fixed-point binary and 53 if floating-point
binary

• For OpenVMS VAX: 31 if fixed-point binary and 113 if floating-point
binary

The precision p must be specified if x is a fixed-point value with fractional
digits.

11–11

Built-In Functions, Subroutines, and Pseudovariables

q
The scale factor q, if specified, must be an integer constant less than or
equal to the specified precision and in the range -31 to 31.

Returned Value

The result type is fixed- or floating-point binary, depending on whether the
argument x is a fixed- or floating-point expression. (If the argument is a
bit- or character-string expression, the result type is fixed-point binary.)

The argument x is converted to the result type, giving a value v, following
the PL/I rules for conversion.

The returned value is the value v, with precision p, and scale factor q. If
p is omitted (integer and floating-point arguments only), the precision of
the returned value is the converted precision of x. FIXEDOVERFLOW,
OVERFLOW, or UNDERFLOW is signaled if appropriate.

11.4.13 BIT
The BIT built-in function converts an arithmetic or string expression x to
a bit string of an optionally specified length. If x is a string expression,
it must consist of 0s and 1s. If the length is specified, it must be a
nonnegative integer. If the length is omitted, the returned value has a
length determined by the PL/I rules for conversion to bit strings.

The format of the function is:

BIT(x[,length])

11.4.14 BOOL
The BOOL built-in function performs a Boolean operation on two bit-string
arguments and returns the result as a bit string with the length of the
longer argument.

The format of the function is:

BOOL(string-1,string-2,operation-string)

string-1
A bit-string expression of any length.

string-2
A bit-string expression of any length.

operation-string
A bit-string expression that is converted to length 4. Each bit in the
operation string specifies the result of comparing two corresponding bits in
string-1 and string-2. Specify bit positions in the operation string from left
to right to define the operation, as in the following truth table:

11–12

Built-In Functions, Subroutines, and Pseudovariables

String-1 Bit String-2 Bit Result of Boolean Operation

0 0 Bit 1 of operation string

0 1 Bit 2 of operation string

1 0 Bit 3 of operation string

1 1 Bit 4 of operation string

Thus, an AND operation, for instance, would be specified by the operation-
string ’ 0001’ B.

If string-1 and string-2 are of different lengths, the shorter is extended on
the right with zeros to the length of the longer.

Examples

X = ’101010’B;
Y = ’110011’B;
CHECK = BOOL (X,Y,’0110’B);

The operation string is ’ 0110’ B, which defines an EXCLUSIVE OR
operation. The operation is performed as follows on the corresponding bits
in the strings X and Y: The leftmost bit in X is 1 and the leftmost bit in Y
is 1. The truth table above specifies that when the two corresponding bits
in the two strings are both 1, then bit 4 of the operation string will be the
result; in this case, bit 4 of the operation string ’ 0110’ B is 0. Thus, 0 is
the first bit of the value to be returned. The second bit of X is 0 and of Y
is 1. The truth table specifies that when the bit in the first string is 0 and
in the second string is 1, the result will be bit 2 of the operation string.
Here, bit 2 of the operation string ’ 0110’ B is 1, and so 1 is the second
bit of the value to be returned. The operation continues in this manner
with each two corresponding bits in the strings. The value returned is
<BIT_STRING>(011001)B.

Figure 11–1 illustrates this example.

Figure 11–1 Example of the BOOL Built-In Function

result defined by bit 2 = 1
result defined by bit 4 = 0
result defined by bit 1 = 0
result defined by bit 3 = 1
result defined by bit 2 = 1
result defined by bit 4 = 0

value returned by the BOOL built−in function = 011001

operation defined: 01101 0 1 0 1 0 (arg x)
1 1 0 0 1 1 (arg y)

NU−2460A−RA

11–13

Built-In Functions, Subroutines, and Pseudovariables

11.4.15 BYTE
The BYTE built-in function returns the ASCII character whose ASCII code
is the integer x; x must not be negative. The returned value is a character
equivalent to BYTE(y), where y equals x modulo 256. The format of the
function is:

BYTE(x)

Examples

DECLARE CHAR CHARACTER(1);
CHAR = BYTE(65); /* CHAR = ’A’ */
CHAR = BYTE(32); /* CHA R = ’ ’ (space) */

11.4.16 BYTESIZE
This function is the same as the SIZE function. See Section 11.4.81.

11.4.17 CEIL
The CEIL function returns the smallest integer that is greater than or
equal to an arithmetic expression x. Its format is:

CEIL(x)

Returned Value

If x is a floating-point expression, a floating-point value is returned with
the same precision as x. If x is a fixed-point expression, the returned value
is a fixed-point value of the same base as x and with:

precision = min(31; p� q + 1)

scalefactor = 0

Here, p and q are the precision and scale factor of x.

Examples

A = 4.3;
Y = CEIL(A); / * Y = 5 */

A = -4.3;
Y = CEIL(A); / * Y = -4 */

11.4.18 CHARACTER
The CHARACTER built-in function converts an arithmetic or string
expression x to a character string of an optionally specified length. If
the length is specified, it must be a nonnegative integer. If the length is
omitted, the length of the returned value is determined by the PL/I rules
for conversion to character strings. The format of the function is:n

CHARACTER
CHAR

o
(x[,length])

11–14

Built-In Functions, Subroutines, and Pseudovariables

Examples

CHAR: PROCEDURE OPTIONS(MAIN);

DECLARE EXPRES FIXED DECIMAL(7,5);
DECLARE OUTPUT PRINT FILE;

EXPRES = 12.34567;

OPEN FILE(OUTPUT) TITLE(’CHAR2.OUT’);

PUT SKIP FILE(OUTPUT)
LIST(’No length argument: ’,CHARACTER(EXPRES));

PUT SKIP FILE(OUTPUT)
LIST(’Length = 4: ’,CHARACTER(EXPRES,4));

END CHAR;

The program CHAR produces the following output:

No length argument: 12.34567
Length = 4: 12

In the first PUT LIST statement, CHARACTER has only one argument,
so the entire string is written out. The string <BIT_STRING>(12.34567) is
actually preceded by two spaces; this is the case with any nonnegative
number converted to a character string. In the second PUT LIST
statement, CHARACTER has a length argument of 4, so the first four
characters of the converted string are written out as ’ 12’ .

11.4.19 COLLATE
The COLLATE built-in function returns a 256-character string consisting
of the ASCII character set in ascending order. Its format is:

COLLATE()

11.4.20 COPY
The COPY built-in function copies a given string a specified number of
times and concatenates the result into a single string. Its format is:

COPY(string,count)

string
Any bit- or character-string expression. If the expression is a bit string,
the result is a bit string. Otherwise, the result is a character string.

count
Any expression that yields a nonnegative integer. The specified count
controls the number of copies of the string that are concatenated, as
follows:

Value of
Count String Returned

0 A null string

11–15

Built-In Functions, Subroutines, and Pseudovariables

Value of
Count String Returned

1 The string argument

n Concatenated copies of the string argument

Examples

COPY(’12’,3)

This function reference returns the character-string value <BIT_
STRING>(121212).

11.4.21 COS
The COS function returns a floating-point value that is the cosine of an
arithmetic expression x, where x represents an angle in radians. The
cosine is computed in floating point. The format of the function is:

COS(x)

11.4.22 COSD
The COSD built-in function returns a floating-point value that is the
cosine of an arithmetic expression x, where x is an angle in degrees. The
cosine is computed in floating point. The format of the function is:

COSD(x)

11.4.23 COSH
The COSH built-in function returns a floating-point value that is the
hyperbolic cosine of an arithmetic expression x. The hyperbolic cosine is
computed in floating point. The format of the function is:

COSH(x)

11.4.24 DATE
The DATE built-in function returns a 6-character string in the form
yymmdd, where:

yy Is the current year (00-99)

mm Is the current month (01-12)

dd Is the current day of the month (01-31)

Its format is:

DATE()

The date returned is the run-time date. However, if DATE is used as a
preprocessor built-in function, the date returned is the compile-time date.

11–16

Built-In Functions, Subroutines, and Pseudovariables

11.4.25 DATETIME
The DATETIME built-in function returns a 16-character string in the form
ccyymmddhhmmssxx, where:

cc Is the current century (00-99)

yy Is the current year (00-99)

mm Is the current month (01-12)

dd Is the current day of the month (01-31)

hh Is the current hour (00-23)

mm Is the minutes (00-59)

ss Is the seconds (00-59)

xx Is the hundredths of seconds (00-99)

The format of the function is:

DATETIME()

The date and time returned is the run-time date and time. However, if
DATETIME is used as a preprocessor built-in function, the date and time
returned is the compile-time date and time.

Note that the DATETIME function is identical to the century concatenated
with DATE() and TIME().

11.4.26 DECIMAL
The DECIMAL built-in function converts an arithmetic or string
expression x to a decimal value of an optionally specified precision p
and scale factor q.

P and q, if specified, must be integer constants. P must be greater than
zero and less than or equal to the maximum precision for the result type
(31 for fixed-point, 34 for floating-point). If q is specified, x must be a
fixed-point expression and p must also be specified; if q is omitted or has a
negative value, the scale factor of the result is zero.

The format of the function is:n
DECIMAL
DEC

o
(x[,p[,q]])

Returned Value

The result type is fixed-point or floating-point decimal, depending on
whether x is a fixed- or floating-point expression. (If x is a bit- or
character-string expression, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
PL/I rules for conversion. The returned value is v with precision p and
scale factor q. If p and q are omitted, they are the converted precision and
scale factor of x. FIXEDOVERFLOW, UNDERFLOW, or OVERFLOW is
signaled if appropriate.

11–17

Built-In Functions, Subroutines, and Pseudovariables

11.4.27 DECODE
The DECODE built-in function converts a character string representing
a number to a fixed binary number. It takes two arguments: a character
string and an integer expression specifying the radix of the string
expression. It converts the string to an unsigned, base r integer, where r is
the specified radix. The function returns a FIXED BINARY(31,0) number
representing the base ten equivalent of the string.

The format of the function is:

DECODE(character-expression,radix-expression)

character-expression
A character-string constant or variable whose component characters can be
any of the digits from ’ 0’ through ’ 9’ , from ’ a’ through ’ f’ , and from
’ A’ through ’ F’ . The digits must be within the range of digits valid for
the base specified in the radix-expression.

radix-expression
An expression evaluating to any integer from 2 through 16.

Examples

DECLARE (X,Y) FIXED BINARY;
X = DECODE(’1010’,2);
Y = DECODE(’f0’,16);

The fixed binary variables X and Y are given the values 10 and 240,
respectively.

11.4.28 DESCRIPTOR
The DESCRIPTOR built-in function forces its argument to be passed by
descriptor to a non-PL/I procedure. A reference to the built-in function
must occur only as an argument in such a context and has no other use.
The format of the function is:n

DESCRIPTOR
DESC

o
(expression)

expression
The argument to be passed by descriptor. Its data type must be
computational but cannot be pictured. It can be an array variable.

11.4.29 DIMENSION
The DIMENSION built-in function returns a fixed-point binary integer
that is the number of elements in an array dimension. Its format is:n

DIMENSION
DIM

o
(reference[,dimension])

11–18

Built-In Functions, Subroutines, and Pseudovariables

reference
A reference to an array variable.

dimension
An integer constant specifying the dimension of the array for which
the extent is to be determined. If the dimension is not specified, the
dimension parameter defaults to 1. Thus, DIMENSION(A) is equivalent to
DIMENSION(A,1).

Examples

INIT: PROCEDURE (ARRAY);
DECLARE ARRAY(*) FIXED,

I FIXED;

DO I = 1 TO DIM(ARRAY);
ARRAY(I) = I;
END;

This procedure is passed a one-dimensional array of an unknown extent.
The DIMENSION built-in function is used as the end value in a controlled
DO statement. This DO-group assigns integral values to each element of
the array ARRAY so that the first element has the value 1, the second
element has the value 2, and so on to the last element of the array.
(Because the array is one-dimensional, the optional second parameter is
omitted and defaults to 1.)

11.4.30 DIVIDE
The DIVIDE built-in function divides an arithmetic expression x by an
arithmetic expression y and returns the quotient with a specified precision
p and an optionally specified scale factor q. The scale factor q must be an
integer following these rules:

• If either x or y is fixed binary, q must be in the range -31 through 31.

• If both x and y are fixed decimal, q must not be negative.

• If either x or y is floating point, q must be zero.

• If q is omitted, it is assumed to be zero.

The expressions x and y are converted to their derived types before the
division is performed. If y is zero after this conversion, the ZERODIVIDE
condition is signaled. The quotient has the derived type of the two
arguments.

The format of the function is:

DIVIDE(x,y,p[,q])

11–19

Built-In Functions, Subroutines, and Pseudovariables

11.4.31 EMPTY
The EMPTY built-in function returns an empty area value for use in
initializing areas. Its format is:

EMPTY()

The EMPTY built-in function is useful in initializing the contents of an
area. It is normally much faster than the FREE statement is in freeing all
the variables in an area (freeing all the area’s storage). Note that an area
value must be assigned to an area before the area is used.

The following is an example of its use in a declaration:

DECLARE A AREA(1024) STATIC INITIAL(EMPTY());

11.4.32 ENCODE
The ENCODE built-in function converts a decimal integer to a character
string. It converts the decimal integer (stored as a FIXED BINARY(31,0)
number) to a base r number, where r is the radix you specify, and returns
the resulting number as a character string. The function takes two
arguments: a decimal integer and a radix; the radix is an integer in the
range 2 through 16.

The format of the function is:

ENCODE(integer-expression,radix-expression)

integer-expression
An expression evaluating to a fixed binary number representing a decimal
integer. Whether signed or not, this integer is treated by the function as
unsigned.

radix-expression
An expression that evaluates to any integer from 2 through 16.

Examples

DECLARE (X,Y) CHARACTER(5) VARYING;
X = ENCODE(53,8);
Y = ENCODE(10,2);

The character-string variable X is assigned the value ’ 65’ , which is the
character equivalent of the octal number 65, which is the equivalent of the
decimal number 53. The character-string variable Y is assigned the value
’ 1010’ , which is the character equivalent of the binary number 1010,
which is the equivalent of the decimal number 10.

11.4.33 ERROR
The ERROR preprocessor built-in function returns the number of
preprocessor diagnostic error messages issued during compilation up
to that particular point in the source program. The format for the ERROR
built-in function is:

ERROR();

11–20

Built-In Functions, Subroutines, and Pseudovariables

The function returns a fixed-point result representing the number of
compile-time warning messages that were issued up until the point at
which the built-in function was encountered.

11.4.34 EVERY
The EVERY built-in function determines whether every bit in a bit string
is ’ 1’ B. In other words, it performs a logical AND operation on the
elements of the bit string. The format of the function is:

EVERY(bit-string)

The function returns the value ’ 1’ B if all bits in the bit-string argument
are ’ 1’ B. It returns ’ 0’ B if one or more bits in the argument are ’ 0’ B or
if the argument is the null bit string.

11.4.35 EXP
The EXP built-in function returns a floating-point value that is the base e
to the power of an arithmetic expression x. The computation is performed
in floating point. The format of the function is:

EXP(x)

11.4.36 FIXED
The FIXED built-in function converts an arithmetic or string expression
x to a fixed-point arithmetic value with a specified precision p and,
optionally, a scale factor q.

The format of the function is:

FIXED(x,p[,q])

p
The number of bits used to represent the arithmetic value. The precision
must be greater than zero and less than or equal to 31.

q
An integer in the range 0 through 31 for decimal data, in the range -31
through 31 for binary data. If q is omitted, it is assumed to be zero. The
scale factor q must be less than or equal to the specified precision.

Returned Value

The result type is fixed-point binary or decimal, depending on whether x is
binary or decimal. (If x is a bit string, the result type is fixed-point binary;
if x is a character string, the result type is fixed-point decimal.)

The expression x is converted to a value v of the result type, following the
PL/I rules. The returned value is v with precision p and scale factor q. If q
is omitted, the returned value has the converted precision of x and a scale
factor of zero. FIXEDOVERFLOW is signaled if appropriate.

11–21

Built-In Functions, Subroutines, and Pseudovariables

11.4.37 FLOAT
The FLOAT built-in function converts a string or arithmetic expression x
to floating point, with a specified precision p. The precision p must be an
integer constant that is greater than zero and less than or equal to the
maximum precision of the result type, which is:

• For OpenVMS VAX systems: 34 for floating-point decimal data and
113 for floating-point binary data

• For OpenVMS Alpha systems: 15 for floating-point decimal data and
53 for floating-point binary data

If x is a character string, it can contain any series of characters that
describes a valid arithmetic constant. That is, the character string can
contain any of the numeric digits 0 through 9, a plus (+) or minus (-)
sign, a decimal point (.), and the letter E. If the character string contains
any invalid characters, the CONVERSION condition is signaled.

The format of the function is:

FLOAT(x,p)

Returned Value

The result type is floating-point binary or decimal, depending on whether
x is a binary or decimal expression. (If x is a bit-string expression, the
result type is floating-point binary; if x is a character-string expression,
the result type is floating-point decimal.)

The expression x is converted to a value of the result type, following the
PL/I conversion rules, and of the specified precision. UNDERFLOW or
OVERFLOW is signaled if appropriate.

11.4.38 FLOOR
The FLOOR built-in function returns the largest integer that is less than
or equal to an arithmetic expression x. The format is:

FLOOR(x)

Returned Value

If x is a floating-point expression, the returned value is a floating-point
value. If x is a fixed-point expression, the returned value is a fixed-point
value with the same base as x and with the following attributes:

precision = min(31; p� q + 1)

scalefactor = 0

Here, p and q are the precision and scale factor of x.

For example:

FLOOR_DEMO: PROC OPTIONS(MAIN);
PUT LIST (FLOOR(3));
PUT LIST (FLOOR(-3.323));
PUT LIST (FLOOR(3.456E9));

END;

11–22

Built-In Functions, Subroutines, and Pseudovariables

This program prints the following values:

3 -4 3.456E+09

11.4.39 HBOUND
The HBOUND built-in function returns a fixed-point binary integer that is
the upper bound of an array dimension. The format is:

HBOUND(reference[,dimension])

reference
A reference to an array variable.

dimension
An integer constant indicating a dimension of the specified array. If the
dimension is not specified, the dimension parameter defaults to 1. Thus,
HBOUND(A) is equivalent to HBOUND(A,1).

11.4.40 HIGH
The HIGH built-in function returns a string of specified length that
consists of repeated appearances of the highest character in the collating
sequence. The format is:

HIGH(length)

length
The specified length of the returned string. The (maximum length of the
returned string is 32767 characters.

Returned Value

The string returned is of the length specified. The rank of the highest
character that can appear in the collating sequence for PL/I is ASCII 255.

11.4.41 INDEX
The INDEX built-in function returns a fixed-point binary integer that
indicates the position of the leftmost occurrence of a specified substring
within a string. If the substring is not found, or if the length of either
argument is zero, the INDEX function returns zero. This function is
case-sensitive.

The format of the function is:

INDEX(string,substring[,starting-position])

string
The string to be searched for the given substring. It can be either a
character-string or a bit-string expression.

substring
The substring to be located. It must have the same string data type as the
string argument.

11–23

Built-In Functions, Subroutines, and Pseudovariables

starting-position
A positive integer in the range 1 to n+1, where n is the length of the
string. It specifies the leftmost position from which the search is to begin.
(By default, the search begins at the left end of the string.)

Examples

1 DECLARE RESULT FIXED BINARY(31);
RESULT = INDEX (’ABCDEF’,’DEF’);

RESULT is given the value 4 because the substring ’ DEF’ begins at the
fourth position in ’ ABCDEF’ .

2

RESULT = INDEX(’SHARP FORTUNE’,’R’);

RESULT is given the value 4 because the leftmost occurrence of ’ R’ is at
the fourth position in ’ SHARP FORTUNE’ .

3

RESULT = INDEX(’SHARP FORTUNE’,’R’,5);

The optional starting-position parameter specifies that the search begins
at the fifth position of ’ SHARP FORTUNE’ . Thus, RESULT is given the
value 9: the first R is ignored, so the first recognized occurrence of ’ R’ is
found in the ninth position.

4 RESULT = INDEX(’0000101100001011’,’1011’);

RESULT is given the value 5 because the leftmost occurrence of ’ 1011’ is
at the fifth position in ’ 0000101100001011’ .

5 NEW_STRING = ’315-54-3159’;
IF INDEX(NEW_STRING,’-’)=4 THEN

PUT LIST(’SOCIAL SECURITY NUMBER’);

The INDEX function is used to determine whether or not a string is a
Social Security number. The function finds the location of the first hyphen
in the string.

11.4.42 INFORM
The INFORM preprocessor built-in function returns the number of
diagnostic informational messages issued during compilation up to that
point in the source program. The format for the INFORM built-in function
is:

INFORM();

The function returns a FIXED result representing the number of compile-
time warning messages that were issued up until the INFORM built-in
function was encountered.

11.4.43 INT
The INT built-in function treats specified storage as a signed integer, and
returns the value of the integer. The format is:

INT(expression[,position[,length]])

11–24

Built-In Functions, Subroutines, and Pseudovariables

expression
A scalar expression or reference to connected storage. This reference
cannot be an array, structure, or named constant. If position and length
are not specified, the length of the referenced storage must not exceed 32
bits. If it exceeds 32 bits, a fatal run-time error results.

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of storage
denoted by the expression. If specified, position must satisfy the following
condition:

1 <= position <= size(expression)

Here, size(expression) is the length in bits of the storage denoted by
expression. A position equal to size(expression) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by expression. If specified,
length must satisfy the following condition:

0 <= length <= size(expression)� position

Here, size(expression) is the length in bits of the storage denoted by
expression.

Returned Value

The value returned by INT is of the type FIXED BINARY (31). If the field
has a length of zero, INT returns zero.

Examples

The following example shows the use of the INT built-in function to
interpret the storage occupied by a bit string as an integer:

B16 = ’0000000000001101’B; /* 16-bit string */

I = BIN(B16); / * I = 13 */
I = INT(B16); / * I = -20480 */

B64 = ’5076ABCD00000000’B4; /* 64-bit string */

I = INT(B64,1,32); /* First 32 bits ; I = -1277858294 */
I = INT(B64,33); /* Second 32 bits ; I = 0 */
I = INT(B64); /* Field too large, run-time error */

Notice that, unlike the BIN built-in function, the INT built-in function
performs no conversion. It simply treats the contents of the designated
storage as a signed integer. Therefore, the value returned by INT depends
on the data type (and therefore the internal representation) of the variable
occupying the storage. For example:

INTEXM: PROCEDURE OPTIONS (MAIN);

DECLARE D FIXED DECIMAL (3,2),
C CHARACTER (4),
F FLOAT;

11–25

Built-In Functions, Subroutines, and Pseudovariables

D = 2.54;
C = ’2.54’;
F = 2.54;

PUT SKIP LIST (INT(D),
INT(C),
INT (F));

END;

The output of this example is:

19493 875900466 -1889779422

11.4.44 LBOUND
The LBOUND built-in function returns a fixed-point binary integer that is
the lower bound of an array dimension. The format is:

LBOUND(reference[,dimension])

reference
A reference to an array variable.

dimension
An integer constant indicating the dimension of the specified array. If the
dimension is not specified, the dimension parameter defaults to 1. Thus,
LBOUND(A) is equivalent to LBOUND(A,1).

11.4.45 LENGTH
The LENGTH built-in function returns a fixed-point binary integer that is
the number of characters or the number of bits in a specified character- or
bit-string expression. If the string is a varying-length character string, the
function returns its current length. (To determine the maximum length of
a varying-length character string, use the MAXLENGTH built-in function.)

The format of the function is:

LENGTH(string)

11.4.46 LINE
The LINE preprocessor built-in function returns the line number of the
source program text containing the end of the preprocessor statement that
calls the LINE built-in function.

The format of the function within a preprocessor expression is:

LINE()

11–26

Built-In Functions, Subroutines, and Pseudovariables

11.4.47 LINENO
The LINENO built-in function returns a FIXED BINARY(15) integer that
is the current line number of the referenced print file. The format is:

LINENO(reference)

If the referenced print file is closed, the returned value is the last value
from the previous opening. If the file was never opened, the returned
value is zero.

11.4.48 LOG
The LOG built-in function returns a floating-point value that is the base
e (natural) logarithm of an arithmetic expression x. The computation is
performed in floating point. The expression x must be greater than zero
after its conversion to floating point.

The format of the function is:

LOG(x)

11.4.49 LOG10
The LOG10 built-in function returns a floating-point value that is the base
10 logarithm of arithmetic expression x. The computation is performed
in floating point. The expression x must be greater than zero after its
conversion to floating point.

The format of the function is:

LOG10(x)

11.4.50 LOG2
The LOG2 built-in function returns a floating-point value that is the base
2 logarithm of an arithmetic expression x. The computation is performed
in floating point. The expression x must be greater than zero after its
conversion to floating point.

The format of the function is:

LOG2(x)

11.4.51 LOW
The LOW built-in function returns a string of specified length that consists
of repeated appearances of the lowest character in the collating sequence.
The format is:

LOW(length)

11–27

Built-In Functions, Subroutines, and Pseudovariables

length
The specified length of the returned string. The maximum length
permitted is 32767 characters.

Returned String

The string returned is of the length specified. The rank of the lowest
character that can appear in the collating sequence for PL/I is ASCII 0.

11.4.52 LTRIM
The LTRIM built-in function accepts a character string as an argument
and returns a character string that consists of the input string with
the specified characters removed from the left. If you supply only one
argument, white spaces (form feeds, carriage returns, tabs, vertical tabs,
line feeds, and spaces) are removed from the left.

The format of the LTRIM built-in function is:

LTRIM (input-string, [beginning-chars])

input-string
A character-string variable or constant. This argument supplies the string
from which the characters or blanks are to be trimmed.

beginning-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the left of the input string. If a character that is in
the first position in the input string is also present anywhere in beginning-
chars, that character is removed from the input string. This process is
repeated until a character is encountered on the left of the input string
that is not present in beginning-chars, or until the characters in the input
string are exhausted. If no argument is supplied, all white spaces (form
feeds, carriage returns, tabs, vertical tabs, line feeds, and spaces) are
removed from the left of the input-string.

11.4.53 MAX
The MAX built-in function returns the larger of two arithmetic expressions
x and y. The format of the function is:

MAX(x,y)

Returned Value

The expressions x and y are converted to their derived type before the
operation is performed (for a discussion of derived types see Section 6.4.2.
If the derived type is floating point, the value returned is also floating
point, with the larger precision of the two converted arguments. If the
derived type is fixed point, the returned value is a fixed-point value with
the base of the derived type. The value has the following attributes:

precision = min(31;max(px� qx; py � qy) +max(qx; qy))

11–28

Built-In Functions, Subroutines, and Pseudovariables

scalefactor = max(qx; qy)

Here, px,qx and py,qy are the converted precisions and scale factors of x
and y, respectively.

The MAX built-in function is also a preprocessor built-in function; however,
the preprocessor does not permit scale factors.

11.4.54 MAXLENGTH
The MAXLENGTH built-in function returns a fixed binary number
representing the maximum possible length of a varying-length character
string. The format is:

MAXLENGTH (string)

string
A reference to a character string or a bit string. If it is anything other
than a varying-length character string, the MAXLENGTH function returns
a result identical to the result that would be returned by the LENGTH
built-in function.

For example:

MAXLENGTH_EXAMPLE: PROCEDURE OPTIONS(MAIN);
DCL CHAR_VAR CHARACTER(10) VARYING;
CHAR_VAR = ’String’;
CALL SAMPLE(CHAR_VAR);

END MAXLENGTH_EXAMPLE;
SAMPLE: PROCEDURE(STRING);

DCL STRING CHAR(*) VARYING;
PUT LIST(LENGTH(STRING),MAXLENGTH(STRING));

END SAMPLE;

The program prints the following:

6 10

11.4.55 MIN
The MIN built-in function returns the smaller of two arithmetic
expressions x and y. The format is:

MIN(x,y)

Returned Value

The expressions x and y are converted to their derived type before the
operation is performed (for a discussion of derived types see Section 6.4.2.
If the derived type is floating point, the value returned is also floating
point, with the larger precision of the two converted arguments. If the
derived type is fixed point, the returned value is a fixed-point value with
the base of derived type. The value has the following attributes:

precision = min(31;max(px� qx; py � qy) +max(qx; qy))

scalefactor = max(qx; qy)

11–29

Built-In Functions, Subroutines, and Pseudovariables

Here, px,qx and py,qy are the converted precisions and scale factors of x
and y.

The MIN built-in function is also a preprocessor built-in function; however,
the preprocessor does not permit scale factors.

11.4.56 MOD
The MOD built-in function returns, for an arithmetic expression x and
nonnegative arithmetic expression y, the value r that equals x modulo y.
That is, r is the smallest positive value that must be subtracted from x to
make the remainder of x divided by y exactly 0.

The format of the function is:

MOD(x,y)

Returned Value

The expressions x and y are converted to their derived type before the
operation is performed.

If the derived type is unscaled fixed point, then the precision of the result
is the precision of the second operand.

If the derived type is floating point, the returned value is an approximation
in floating point, with the larger of the precisions of the two converted
arguments.

The value returned is:

u� w � floor(u=w)

The arguments u and w become the arguments x and y, respectively,
after conversion to their derived type. If w is zero, u is converted to the
precision described below, which can signal FIXEDOVERFLOW.

If x and y are fixed-point expressions, a fixed-point value is returned. The
value has the following attributes:

precision = min(31; pw � qw +max(qu; qw))

scalefactor = max(qu; qw)

Here, qu is the scale factor of u, pw is the precision of w, and qw is the
scale factor of w. The FIXEDOVERFLOW condition is signaled if the
following is true:

pw � qw +max(qu; qw) > 31

The MOD built-in function is also a preprocessor built-in function;
however, the preprocessor does not permit scale factors.

11–30

Built-In Functions, Subroutines, and Pseudovariables

Examples

MODEX: PROCEDURE OPTIONS(MAIN);

DECLARE OUTMOD PRINT FILE;

ON FIXEDOVERFLOW PUT FILE(OUTMOD)
SKIP LIST(’FIXEDOVERFLOW signaled’);

PUT FILE(OUTMOD) SKIP LIST(MOD(28,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(130,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(-28,128));
PUT FILE(OUTMOD) SKIP LIST(MOD(4.5,.758));
PUT FILE(OUTMOD) SKIP LIST(MOD(-4.5,.758));
PUT FILE(OUTMOD) SKIP LIST(MOD(1.5E-3,-1.4E-3));
PUT FILE(OUTMOD) SKIP LIST(MOD(28,0));

END MODEX;

The program MODEX writes the following output to OUTMOD.DAT:

28
2

100
0.710
0.048

-1.3E-03

FIXEDOVERFLOW signaled 8

The last PUT statement attempts to take MOD(28,0). The constants
28 and 0 are both fixed-point decimal expressions, with precisions (2,0)
and (1,0), respectively. Therefore, the attributes of the returned value
are determined to be FIXED DECIMAL. The value has the following
attributes:

precision = min(31; 1� 0 +max(0; 0)) = 1

scalefactor = max(0; 0) = 0

Although 28 modulo 0 is 28, MOD(28,0) signals FIXEDOVERFLOW
because 28 cannot be represented in the result precision. (The value of the
function is therefore undefined.)

11.4.57 MULTIPLY
The MULTIPLY built-in function multiplies two arithmetic expressions x
and y, and returns the product of the two values with a specified precision
p and an optionally specified scale factor q.

The format of the function is:

MULTIPLY(x,y,p[,q])

p
An integer constant greater than zero and less than or equal to the
maximum precision of the result type, which is:

• For OpenVMS Alpha systems: 31for fixed-point data, 15 for floating-
point decimal data, and 53 for floating-point binary data

• For OpenVMS VAX systems: 31 for fixed-point data, 34 for floating-
point decimal data, and 113 for floating-point binary data

11–31

Built-In Functions, Subroutines, and Pseudovariables

q
An integer in the range -31 through p when used with fixed-point binary
multiplication. The scale factor for fixed-point decimal multiplication has
a range 0 through p. A scale factor is not to be used with floating-point
arithmetic. If no scale factor is designated, q defaults to zero.

Expressions x and y are converted to their derived type before the
multiplication is performed.

For example:

MULT: PROCEDURE OPTIONS (MAIN);

DECLARE I_RATE FIXED DECIMAL(31,4),
PRINCIPAL FIXED DECIMAL(31,2),
OWED FIXED DECIMAL(31,6);

I_RATE = .1514;

PRINCIPAL = 27688.25;

OWED = MULTIPLY (I_RATE,PRINCIPAL,31,6);

PUT SKIP LIST (’INTEREST OWED =’,OWED);

END;

Interest rates are calculated to six decimal places and the following string
is printed:

INTEREST OWED = 4192.001050

11.4.58 NULL
The NULL built-in function returns a null pointer value. The format is:

NULL()

Examples

IF NEXT_POINTER = NULL() THEN CALL FINISH;

The IF statement checks whether the pointer variable NEXT_POINTER is
null; if so, the CALL statement is executed.

The NULL built-in function can be used for offset variables as well as
pointer variables, because the compiler automatically performs conversions
between pointer and offset values.

11.4.59 OFFSET
The OFFSET built-in function converts a pointer to an offset relative to a
designated area. If the pointer is null, the result is null. The format of the
function is:

OFFSET(pointer,area)

11–32

Built-In Functions, Subroutines, and Pseudovariables

pointer
A reference to a pointer variable whose current value either represents the
location of a based variable within the specified area or is null.

area
A reference to a variable declared with the AREA attribute. If the specified
pointer is not null, it must designate a storage location within this area.

Examples

DECLARE MAP_SPACE AREA (2048),
START OFFSET (MAP_SPACE),
QUEUE_HEAD POINTER;

.

.

.
START = OFFSET (QUEUE_HEAD,MAP_SPACE);

The offset variable START is associated with the area MAP_SPACE. The
OFFSET built-in function converts the value of the pointer to an offset
value.

11.4.60 ONARGSLIST
The ONARGSLIST built-in function returns a pointer to the location
in memory of the argument list for an exception condition. If the
ONARGSLIST built-in function is referenced in any context outside of
an ON-unit, it returns a null pointer. The format is:

ONARGSLIST()

What the return pointer points to depends on the host system. See the
Kednos PL/I for OpenVMS Systems User Manual.

11.4.61 ONCHAR
The ONCHAR built-in function returns the character that caused a
CONVERSION condition to be raised. If there is no active CONVERSION
condition, the return value is a single space.

The format of the function is:

ONCHAR()

The ONCHAR value is actually a single character substring of
the ONSOURCE built-in function value, unless there is no active
CONVERSION condition.

11.4.62 ONCODE
The ONCODE built-in function returns a fixed-point binary integer that
is the status value of the most recent run-time error that signaled the
current ON condition. You can use the function in any ON-unit to
determine the specific error that caused the condition. If the function
is used within any context outside an ON-unit, it returns a zero. The
format is:

11–33

Built-In Functions, Subroutines, and Pseudovariables

ONCODE()

11.4.63 ONFILE
The ONFILE built-in function returns the name of the file constant for
which the current file-related condition was signaled. The format is:

ONFILE()

This built-in function can be used in an ON-unit established for any of the
following conditions:

• An ON-unit for the KEY, ENDFILE, ENDPAGE, and
UNDEFINEDFILE conditions

• A VAXCONDITION ON-unit established for I/O errors that can occur
during file processing

• An ERROR ON-unit that receives control as a result of the default PL/I
action for file-related errors, which is to signal the ERROR condition

• A CONVERSION ON-unit that was entered because of an error that
occurred during conversion of data in a GET statement

Returned Value

The returned value is a varying-length character string. The ONFILE
function returns a null string if referenced outside an ON-unit, within an
ON-unit that is executed as a result of a SIGNAL statement, or within a
CONVERSION ON-unit that was not entered because of a conversion in a
GET statement.

11.4.64 ONKEY
The ONKEY built-in function returns the key value that caused the KEY
condition to be signaled during an I/O operation to a file that is being
accessed by key. Its format is:

ONKEY()

This built-in function can be used in an ON-unit established for these
conditions:

• KEY, ENDFILE, or UNDEFINEDFILE

• An ERROR ON-unit that receives control as a result of the default
PL/I action for the KEY condition, which is to signal the ERROR
condition

Returned Value

The returned key value is a varying-length character string. The ONKEY
built-in function returns a null string if referenced outside an ON-unit or
within an ON-unit executed as a result of the SIGNAL statement.

11–34

Built-In Functions, Subroutines, and Pseudovariables

11.4.65 ONSOURCE
The ONSOURCE built-in function returns the source string that was
being converted when the CONVERSION condition was raised. If no
CONVERSION condition is active, the return value is a null string.

The format of the function is:

ONSOURCE()

11.4.66 PAGENO
The PAGENO built-in function returns a FIXED BINARY(15) integer that
is the current page number in the referenced print file. The print file must
be open. The format of the function is:

PAGENO(reference)

11.4.67 POINTER
The POINTER built-in function returns a pointer to the location identified
by the referenced offset and area. The format is:n

POINTER
PTR

o
(offset,area)

offset
A reference to an offset variable whose current value either represents the
offset of a based variable within the specified area or is null.

area
A reference to a variable that is declared with the AREA attribute and
with which the specified offset value is associated.

Returned Value

The returned value is of type POINTER. If the offset value is null, the
result is null.

Examples

DECLARE MAP_SPACE AREA (2048),
START OFFSET (MAP_SPACE),
P POINTER;

.

.

.
P = POINTER (START,MAP_SPACE);

The POINTER built-in function converts the value of the offset variable
START (in the area MAP_SPACE) to a pointer value.

11–35

Built-In Functions, Subroutines, and Pseudovariables

11.4.68 POSINT
The POSINT built-in function treats specified storage as an unsigned
integer, and returns the value of the integer. The format is:

POSINT(expression[,position[,length]])

expression
A scalar expression or reference to connected storage. This reference must
not be an array, structure, or named constant. If position and length are
not specified, the length of the referenced storage must not exceed 32 bits.
(If it exceeds 32 bits, a FATAL run-time error results.)

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by the expression. If specified, position must satisfy the
following condition:

1 <= position <= size(expression)

Size(expression) is the length in bits of the storage denoted by expression.
A position equal to size(expression) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by expression. If specified,
length must satisfy the following condition:

0 <= length <= size(expression)� position

Size(expression) is the length in bits of the storage denoted by expression.

Returned Value

The value returned by POSINT is of the type FIXED BINARY (31) for
OpenVMS VAX and RISC ULTRIX, or FIXED BINARY (63) for OpenVMS
Alpha. If the field has a length of zero, POSINT returns zero.

Because the POSINT built-in function treats storage as if it contained an
unsigned integer, the value returned can be larger than the maximum
positive value that can be contained in the signed integer that is stored in
the same number of bits. For example, if the argument to POSINT is 32
bits long and has the high-order (sign) bit set, then the resulting value is
too large for assignment to a FIXED BIN (31) variable. The result of such
an operation is undefined.

Examples

The use of the POSINT built-in function is identical to the use of the INT
built-in function, except that POSINT treats its argument as an unsigned
integer. The following example illustrates this difference:

11–36

Built-In Functions, Subroutines, and Pseudovariables

DECLARE (X15,Y15,I15,P15) FIXED BIN (15),
P31 FIXED BIN (31);

X15 = 585;
Y15 = -585;
I15 = INT(X15); /* I15 = 585 */
I15 = INT(Y15); /* I15 = -585 */
P15 = POSINT(X15); /* P15 = 585 */
P31 = POSINT(Y15); /* P31 = 64951 */
P15 = POSINT(Y15); /* ERROR signaled */

In this example, POSINT first assigns the storage referenced by X15 to
P15. Because this storage is occupied by a positive integer and therefore
has the sign bit clear, POSINT behaves exactly like INT. However, when
POSINT is applied to storage occupied by a negative integer, it interprets
the set sign bit as representing part of the integer. When the resulting
value is assigned to a FIXED BIN (31) variable, it is seen to be larger than
the largest possible FIXED BIN (15) value, 32767. An attempt to assign
the same value to a FIXED BIN (15) variable results in PL/I signaling an
ERROR condition.

11.4.69 PRESENT
The PRESENT built-in function allows you to determine whether a given
parameter was specified in a call. It can simplify the task of writing
procedures with optional parameters.

The PRESENT built-in function takes one argument, the parameter name.
It returns the bit value ’ 1’ B if the parameter was specified and ’ 0’ B if it
was not.

The format of this function is:

PRESENT(parameter-name)

Note that the result returned by the PRESENT built-in function for an
optional parameter passed by value is unpredictable (if a zero is passed,
’ 0’ B is returned). A warning is generated for this use.

11.4.70 PROD
The PROD built-in function takes an array as an argument and returns
the arithmetic product of all the elements in the array. The array must
have the FIXED or the FLOAT attribute. The format of the PROD built-in
function is:

PROD(array-variable);

If the array has the attributes FIXED(p,0), the result will have the
attributes FIXED(p,0). If the array has the attributes FLOAT(p), the
result will also have the attributes FLOAT(p). If the array has the
attributes FIXED(p,q) with q not equal to 0, the result will have the
attributes FLOAT(p).

The result will have the same base attribute as the array, either
DECIMAL or BINARY.

11–37

Built-In Functions, Subroutines, and Pseudovariables

Note that the PROD built-in function does not perform matrix
multiplication of two arrays.

11.4.71 RANK
The RANK built-in function returns a fixed-point binary integer that is
the ASCII code for the designated character. The precision of the returned
value is 15. The format of the function is:

RANK(character)

character
Any expression yielding a 1-character value.

Examples

CODE = RANK(’A’); /* CODE = 65 */
CODE = RANK(’a’); /* CODE = 97 */
CODE = RANK(’$’); /* CODE = 36 */

The ASCII characters are the first 128 characters of the DEC
Multinational Character Set. See Appendix B for a table of these
characters and their corresponding numeric codes.

11.4.72 REFERENCE
The REFERENCE built-in function is used to force a parameter to be
passed by reference, rather than by whatever mechanism is specified by
the declaration of the formal parameter.

The type of the argument specified with the REFERENCE built-in function
is used for the parameter; thus, the type of the parameter declaration is
ignored when the REFERENCE built-in function is used.

The format of the REFERENCE built-in function is:n
REFERENCE
REF

o
(variable-reference)

variable-reference
The name of a scalar or aggregate variable.

11.4.73 REVERSE
The REVERSE built-in function reverses the characters or bits in a
string. It takes one argument, which is either a character string (fixed or
varying) or a bit string. It returns a string of the same type and size as its
argument, with all the characters (bytes) or bits reversed.

The format of the function is:

REVERSE(string-expression);

11–38

Built-In Functions, Subroutines, and Pseudovariables

string-expression
An expression that evaluates to a character string or a bit string.

Examples

DECLARE X CHARACTER(4) VARYING,
Y BIT(8);

X = REVERSE(’abc’)
Y = REVERSE(’00010101’B)

The character-string variable X is assigned the value ’ cba’ . The bit-string
variable Y is assigned the value ’ 10101000’ B.

11.4.74 ROUND
The ROUND built-in function rounds a fixed-point binary expression,
fixed-point decimal expression, or pictured value to a specified number of
binary or decimal places respectively. The format is:

ROUND(expression,position)

expression
An arithmetic expression that yields a fixed-point binary or decimal value;
or a pictured value with fractional digits. A binary value can have a
positive or negative non-zero scale factor, but a decimal value must have a
positive non-zero scale factor.

position
A nonnegative integer constant specifying the number of binary or decimal
places in the rounded result.

Returned Value

Where the arguments are an expression of type FIXED BINARY(p,q)
or type FIXED DECIMAL(p,q) and position k, the returned value is the
rounded value with the following attributes:

precision = max(1;min(p� q + k + 1; 31))

scalefactor = k

For a fixed binary number, the rounded value is:

ROUND(x; k) = sign(x) � (2�k+1) � floor(abs(x) � (2k) + 1)

For a fixed decimal number, the rounded value is:

ROUND(x; k) = sign(x) � (10�k) � floor(abs(x) � (10k) + 0:5)

Example 1

The following sample program shows rounding of scaled fixed binary
numbers:

11–39

Built-In Functions, Subroutines, and Pseudovariables

r: procedure options(main);

declare
fb1 fixed binary(31, 8),
fb2 fixed binary(31, 4),
fb3 fixed binary(31, 2),
fb4 fixed binary(31, 2),
fb5 fixed binary(31, 2);

fb1 = 16.8750; /* 7/8 */
fb2 = 15.4375; /* 7/16 */
fb3 = 128.25; /* 128 1/4 */
fb4 = 128.75; /* 128 3/4 */
fb5 = -128.75; /* -128 3/4 */

put skip edit (’round(16.8750, 2)=’,round(fb1,2)) (a,col(20),f(15,5));
put skip edit (’round(16.8750, 3)=’,round(fb1,3)) (a,col(20),f(15,5));
put skip edit (’round(15.4375, 1)=’,round(fb2,1)) (a,col(20),f(15,5));
put skip edit (’round(128.25,0)=’,round(fb3,0)) (a,col(20),f(15,5));
put skip edit (’round(128.75,0)=’,round(fb4,0)) (a,col(20),f(15,5));
put skip edit (’round(-128.75,0)=’,round(fb5,0)) (a,col(20),f(15,5));

end r;

This program produces the following output. Note that 16.87500 equals
16 7/8 in fractional notation and that 15.50000 equals 15 1/2 in fractional
notation.

round(16.8750, 2)= 17.00000
round(16.8750, 3)= 16.87500
round(15.4375, 1)= 15.50000
round(128.25,0)= 128.00000
round(128.75,0)= 129.00000
round(-128.75,0)= -129.00000

Example 2

The following example shows rounding of scaled fixed decimal numbers:

A = 1234.567;
Y = ROUND(A,1); /* Y = 1234.6 */

Y = ROUND(A,0); /* Y = 1235 */

A = -1234.567;
Y = ROUND(A,2); /* Y = -1234.57 */

11.4.75 RTRIM
The RTRIM built-in function accepts a character string as an argument
and returns a character string that consists of the input string with
the specified characters removed from the right. If you supply only one
argument, white spaces (form feeds, carriage returns, tabs, vertical tabs,
line feeds, and spaces) are removed from the end.

The format of the RTRIM built-in function is:

RTRIM (input-string, [end-chars])

11–40

Built-In Functions, Subroutines, and Pseudovariables

input-string
A character-string variable or constant. This argument supplies the string
from which blanks are to be trimmed.

end-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the right of the input string. If a character that is in
the last position in the input string is also present anywhere in end-chars,
that character is removed from the input string. This process is repeated
until a character is encountered on the right of the input string that
is not present in end-chars, or until the characters in the input string
are exhausted. If no argument is supplied, all white spaces (form feeds,
carriage returns, tabs, vertical tabs, line feeds, and spaces) are removed
from the right of the input-string.

11.4.76 SEARCH
The SEARCH built-in function takes two character-string arguments and
attempts to locate the first character in the first string that is also present
in the second string. The search for a match is carried out from left to
right. If one character is matched, the function returns the position of that
character in the first string. This function is case sensitive.

The format is:

SEARCH(string-1,string-2[,starting-position])

string-1
A character-string expression. One character in the string is to be
matched, if possible, in the second string.

string-2
A character-string expression to be compared, character by character, with
each character in the first string, in order, until one matching character is
found.

starting-position
A positive integer in the range 1 to n+1, where n is the length of the first
string. It specifies the leftmost character in the first string from which the
search is to begin. If starting-position is specified, any characters to the
left of that position in the first string are ignored. (By default, the search
begins with the leftmost character in the first string.)

Returned Value

The returned value is a positive integer representing the position in string-
1 of the first character that is also found in string-2. If no match is found,
the returned value is zero.

Examples

DECLARE STR1 CHARACTER(20) VARYING,
STR2 CHARACTER(10) INITIAL (’ABCDEFGHIJ’),
X FIXED DECIMAL(2);

STR1 = ’BARBARA’;
X = SEARCH (STR1,STR2);

11–41

Built-In Functions, Subroutines, and Pseudovariables

In this example, X is given the value 1 because the first character (’ B’) in
STR1 (’ BARBARA’) is found in STR2 (’ ABCDEFGHIJ’).

STR1 = ’12-GEORGE’;
X = SEARCH (STR1,STR2);

Here, X is given the value 4. ’ G’ is in the fourth position in ’ 12-
GEORGE’ and is the first character in STR1 that is also present in
STR2 (’ ABCDEFGHIJ’).

X = SEARCH (STR1,STR2,6);

X is given the value 8. The starting-position parameter, 6, causes the
search to begin with the sixth character in ’ 12-GEORGE’ , and thus the
first matching character is the second ’ G’ , which is in the eighth position.

PUT LIST (SEARCH(’ZZZBAD’,’ABCD’));

The function returns the value 4 because the position of ’ B’ in ’ ZZZBAD’
is 4, and ’ B’ is the leftmost matching character. Here, constants are used
instead of variables.

PUT LIST (SEARCH(’ABCD’,’ZZZBAD’));

This statement is the same as the preceding one except that the
parameters are reversed. Now the value returned is 1 instead of 4 because
’ A’ , the first character in ’ ABCD’ , is matched. Note that the order
in which the parameters are given is crucial. Note also that duplicate
characters in the second string never change the result.

PUT LIST (SEARCH (’ TEST 123’,’0123456789’));

The function returns the value 9 because ’ 1’ , which is in the ninth
position, is the first character matched in the second string.

11.4.77 SIGN
The SIGN built-in function returns 1, -1, or 0, indicating whether an
arithmetic expression is positive, negative, or zero, respectively. The
returned value is a fixed-point binary integer. The format of the function
is:

SIGN(expression)

11.4.78 SIN
The SIN built-in function returns a floating-point value that is the sine
of an arithmetic expression x, where x is an angle in radians. The sine is
computed in floating point. The format of the function is:

SIN(x)

11–42

Built-In Functions, Subroutines, and Pseudovariables

11.4.79 SIND
The SIND built-in function returns a floating-point value that is the sine
of an arithmetic expression x, where x represents an angle in degrees. The
sine is computed in floating point. The format of the function is:

SIND(x)

11.4.80 SINH
The SINH built-in function returns a floating-point value that is the
hyperbolic sine of an arithmetic expression x. The hyperbolic sine is
computed in floating point. The format of the function is:

SINH(x)

11.4.81 SIZE
The SIZE built-in function returns a fixed-point binary integer that is the
number of bytes allocated to a referenced variable. The format is:

SIZE (reference)

reference
The name of a variable known to this block. The reference can be to
a scalar variable, an array or structure, or a structure member. The
reference cannot be to a constant or expression. Although references to
individual array elements are allowed, the returned value in this instance
is the size of the entire array, not the element.

Returned Value

The returned value is the variable’s allocated size in bytes. For bit strings
that do not exactly fill an integral number of bytes, the value is rounded
up to the next byte.

For varying character-string variables, note that the returned value is two
bytes greater than the declared length of the string. These extra two bytes
are allocated by PL/I to contain the current length of the string. (If you
want the value of the maximum length of a varying character string, use
the MAXLENGTH built-in function. If you want the value of the current
length of a varying character string, use the LENGTH built-in function.)

Examples

The following example illustrates the use of the SIZE built-in function on
some scalar variables.

DECLARE S FIXED BINARY(31),
INT FIXED BINARY(15),
CHAR1 CHARACTER(5),
CHAR2 CHARACTER(5) VARYING,
BITSTRING BIT(10),
P POINTER;

11–43

Built-In Functions, Subroutines, and Pseudovariables

S = SIZE(INT); / * S = 2 */
S = SIZE(CHAR1); / * S = 5 */
S = SIZE(CHAR2); / * S = 7 */
S = SIZE(BITSTRING); / * S = 2 */
S = SIZE(P); / * S = 4 */

Note the difference between the allocated size for the fixed-length and
varying character strings. Note also that the returned value for the bit
string is rounded up to 2 bytes, the integral number of bytes required to
contain 10 bits.

DECLARE 1 STRUC,
2 CHARSTR CHARACTER(5),
2 BITSTR BIT(10),

ARRAY(5) FIXED BINARY(31),
S FIXED BINARY(31);

S = SIZE(STRUC); / * S = 7 */
S = SIZE(CHRSTR); / * S = 5 */
S = SIZE(ARRAY); / * S = 20 */
S = SIZE(ARRAY(2)); / * S = 20 */

In this example, the SIZE built-in function is applied to a structure, to one
of its members, to an array, and to an element of the array. Note that a
reference to an array element returns the same value as a reference to the
entire array.

DECLARE 1 TARGET,
2 A BIT(9),
2 B BIT(10),
2 C BIT(1),

1 ALIGNED_TARGET,
2 A BIT(9) ALIGNED,
2 B BIT(10) ALIGNED,
2 C BIT(1) ALIGNED,

S FIXED BINARY(31);

S = SIZE(TARGET); / * S = 3 */
S = SIZE(ALIGNED_TARGET); / * S = 5 */

This example illustrates the difference in PL/I’s storage of unaligned and
aligned bit strings. The structure TARGET consists of three bit strings
that are unaligned (the default storage mechanism). The three bit strings
occupy 20 consecutive bits in memory. Therefore, only three bytes are
required to hold the structure. The structure ALIGNED_TARGET consists
of the same three strings, except each is declared with the ALIGNED
attribute, forcing the structure to start on a byte boundary. In this
structure, A and B each require two bytes while C requires one byte, for a
total of five bytes. A similar situation exists with arrays of bit strings.

T: PROC OPTIONS(MAIN);

DCL P PTR;
DCL 1 S BASED(P),

2 I FIXED,
2 A(10 REFER(I)) FIXED;

ALLOCATE S;
PUT SKIP LIST(SIZE(S)); /* Returns 44 */
I = 5;
PUT SKIP LIST(SIZE(S)); /* Returns 24 */
END;

11–44

Built-In Functions, Subroutines, and Pseudovariables

This example shows how the SIZE built-in function works on a structure
containing the REFER option. SIZE returns the current size.

DECLARE STR CHARACTER(10) VARYING;
.
.
.

CALL SUB(STR);
.
.
.

SUB: PROCEDURE(X);
DECLARE X CHARACTER(*) VARYING;

PUT SKIP LIST (SIZE(X));

Here, the SIZE built-in function is used to determine the size of a
parameter that is passed to a procedure. This PUT statement prints
the value 12.

CALL MACRO_ROUTINE(
ADDR(OUTSTRING),SIZE(OUTSTRING));

Here, the SIZE built-in function is used to supply an argument to a
procedure (possibly one written in another language) that requires the size
in bytes of a data structure.

11.4.82 SOME
The SOME built-in function allows you to determine whether at least
one bit in a bit string is ’ 1’ B. In other words, it performs a logical OR
operation on the elements of the bit string. The format of the SOME
built-in function is:

SOME(bit-string)

The function returns the value ’ 1’ B if one or more bits in the bit-string
argument are ’ 1’ B. It returns ’ 0’ B if every bit in the argument is ’ 0’ B
or if the argument is the null bit string.

11.4.83 SQRT
The SQRT built-in function returns a floating-point value that is the
square root of an arithmetic expression x. The square root is computed
in floating point. After its conversion to floating point, x must be greater
than or equal to zero.

The format of the function is:

SQRT(x)

11–45

Built-In Functions, Subroutines, and Pseudovariables

11.4.84 STRING
The STRING built-in function concatenates the elements of an array
or structure and returns the result. Elements of a string array are
concatenated in row-major order. Members of a structure are concatenated
in the order in which they were declared.

The format of the STRING built-in function is:

STRING(reference)

reference
A reference to a variable that is suitable for bit-string or character-string
overlay defining. Briefly, a variable is suitable if it consists entirely of
characters or bits, and these characters or bits are packed into adjacent
storage locations, without gaps.

Returned Value

The string returned is of type CHARACTER or BIT, depending on whether
the reference is suitable for character- or bit-string overlay defining. The
length of the string is the total number of characters or bits in the base
reference.

Examples

STRING_BIF_EXAMPLE: PROCEDURE;
DECLARE NEW_NAME CHARACTER(40);
DECLARE 1 FULL_NAME,

2 FIRST_NAME CHARACTER(10),
2 MIDDLE_INITIAL CHARACTER(3),
2 LAST_NAME CHARACTER(27);

FIRST_NAME = ’MABEL’;
MIDDLE_INITIAL = ’S.’;
LAST_NAME = ’MERCER’;
NEW_NAME = STRING(FULL_NAME);

/* NEW_NAME =
’MABEL S. MERCER ’

where is a space */
END STRING_BIF_EXAMPLE;

11.4.85 SUBSTR
The SUBSTR built-in function returns a specified substring from a string.
The format is:

SUBSTR(string,position[,length])

string
A bit- or character-string expression.

position
An integer expression that indicates the position of the first bit or
character in the substring. The position must be greater than or equal
to 1 and less than or equal to LENGTH(string) + 1.

length
An integer expression that indicates the length of the substring to be
extracted. If not specified, length is:

11–46

Built-In Functions, Subroutines, and Pseudovariables

LENGTH(string)� position+ 1

In other words, if length is not specified, the substring is extracted
beginning at the indicated position and ending at the end of the string.

The length must satisfy the following condition:

0 <= length <= LENGTH(string)� position+ 1

If it does not, and the module was compiled with /CHECK=BOUNDS, the
STRINGRANGE condition is raised.

Returned Value

The returned substring is of type BIT(length) or CHARACTER(length),
depending on the type of the string argument. If the length argument is
zero, the result is a null string.

Examples

DECLARE (NAME,LAST_NAME) CHARACTER(20),
START FIXED BINARY(31);

NAME = ’ISAK DINESEN’;
/* NAME = ’ISAK DINESEN ’ */

START = INDEX(NAME,’ ’)+1;
/* STAR T = 6 */

LAST_NAME = SUBSTR(NAME,START);
/* default length = LENGTH(NAME)-START+1 =15 */
/* LAST_NAME = ’DINESEN ’ */

11.4.86 SUBTRACT
The SUBTRACT built-in function returns the difference of two arithmetic
expressions x and y, with a specified precision p and an optionally specified
scale factor q. The format of the function is:

SUBTRACT(x,y,p[,q])

p
An unsigned integer constant greater than zero and less than or equal to
the maximum precision of the result type, which is:

• For OpenVMS Alpha systems: 31for fixed-point data, 15 for floating-
point decimal data, and 53 for floating-point binary data

• For OpenVMS VAX systems: 31 for fixed-point data, 34 for floating-
point decimal data, and 113 for floating-point binary data

q
An integer constant less than or equal to the specified precision. The
scale factor can be optionally signed when used in fixed-point binary
subtraction. The scale factor for fixed-point binary must be in the range
-31 through p. The scale factor for fixed-point decimal data must be in the
range 0 through p. If you omit q, the default value is zero. Do not use a
scale factor for floating-point arithmetic.

Expressions x and y are converted to their derived type before the
subtraction is performed.

11–47

Built-In Functions, Subroutines, and Pseudovariables

For example:

SUBTRACTBIF: PROCEDURE OPTIONS (MAIN);

DECLARE X FIXED DECIMAL (8,3),
Y FIXED DECIMAL (8,3),
Z FIXED DECIMAL (9,3);

X=9500.374;
Y=2278.897;
Z = SUBTRACT (X,Y,9,3);

PUT SKIP LIST (’DIFFERENCE =’,Z);

END;

This program prints:

DIFFERENCE = 7221.477

11.4.87 SUM
The SUM built-in function takes an array as an argument and returns the
arithmetic sum of all the elements in the array. The array must have the
FIXED or the FLOAT attribute. The format of the SUM built-in function
is:

SUM(array-variable)

If the array has the attributes FIXED(p,q), the result will have the
attributes FIXED(p,q). If the array has the attributes FLOAT(p), the
result will also have the attributes FLOAT(p).

The result will have the same base attribute as the array, either
DECIMAL or BINARY.

11.4.88 TAN
The TAN built-in function returns a floating-point value that is the
tangent of an arithmetic expression x, where x represents an angle in
radians. The tangent is computed in floating point. After its conversion to
floating point, x must not be an odd multiple of �=2.

The format of the function is:

TAN(x)

11.4.89 TAND
The TAND built-in function returns a floating-point value that is the
tangent of an arithmetic expression x, where x represents an angle in
degrees. The tangent is computed in floating point. After its conversion to
floating point, x must not be an odd multiple of 90.

The format of the function is:

TAND(x)

11–48

Built-In Functions, Subroutines, and Pseudovariables

11.4.90 TANH
The TANH built-in function returns a floating-point value that is the
hyperbolic tangent of an arithmetic expression x. The hyperbolic tangent
is computed in floating point. The format of the function is:

TANH(x)

11.4.91 TIME
The TIME built-in function returns an 8-character string representing the
current time of day in the following form:

hhmmssxx

hh
The current hour (00-23)

mm
The minutes (00-59)

ss
The seconds (00-59)

xx
Hundredths of seconds (00-99)

The format of the TIME built-in function is:

TIME()

Returned Value

If TIME is used as a preprocessor built-in function, the time returned is
the time when the program was compiled; otherwise the function returns
the time at run time.

11.4.92 TRANSLATE
Given a character-string argument, the TRANSLATE built-in function
replaces occurrences of an old character with a corresponding translation
character and returns the resulting string. The format is:

TRANSLATE(original,translation[,old-chars])

original
A character-string expression in which specific characters are to be
translated.

translation
A character-string expression giving replacement characters for
corresponding characters in old-chars.

old-chars
A character-string expression indicating which characters in the original
are to be replaced. If old-chars is not specified, the default is COLLATE().

11–49

Built-In Functions, Subroutines, and Pseudovariables

If the translation is shorter than old-chars, the translation is padded on
the right with spaces to the length of old-chars before any translation
occurs. If the translation is longer than old-chars, its excess characters (on
the right) are ignored.

The following steps are performed for each character (beginning at the
left) in the original:

1 Let original(i) be the current character in the original string, and let
result(i) be the corresponding character in the resulting string.

2 Search old-chars for the leftmost occurrence of original(i).

3 If old-chars does not contain original(i), then let result(i) equal
original(i). Otherwise, let j equal the position of the leftmost
occurrence of original(i) in old-chars, and let result(i) equal
translation(j).

4 Return to step 1.

Returned Value

The string returned is of type CHARACTER(length), where length is the
length of the original string. If the original string is a null string, the
returned value is a null string.

Examples

TRANSLATE_XM: PROCEDURE OPTIONS(MAIN);

DECLARE NEWSTRING CHARACTER(80) VARYING;
DECLARE TRANSLATION CHARACTER(128);
DECLARE I FIXED;
DECLARE COLLATE BUILTIN;

/* translate space to ’0’: */
NEWSTRING = TRANSLATE(’1 2’,’0’,’ ’);
PUT SKIP LIST(NEWSTRING);

/* translate letter ’F’ to ’E’: */
NEWSTRING = TRANSLATE(’BFFLZFBUB’,’E’,’F’);
PUT SKIP LIST(NEWSTRING);

/* change case of letters in sentence */
TRANSLATION = COLLATE;

DO I=66 TO 91; /* replace upper with lower */
SUBSTR(TRANSLATION,I,1) = SUBSTR(COLLATE,I+32,1);
END;
DO I=98 TO 123; /* replace lower with upper */
SUBSTR(TRANSLATION,I,1) = SUBSTR(COLLATE,I-32,1);
END;
NEWSTRING =
TRANSLATE(’THE QUICK BROWN fox JUMPS OVER THE LAZY dog’,TRANSLATION);
PUT SKIP LIST(NEWSTRING);

END TRANSLATE_XM;

The first reference translates the string <BIT_STRING>(1 2) to <BIT_
STRING>(102). The second reference translates <BIT_STRING>(BFFLZFBUB)
to <BIT_STRING>(BEELZEBUB). The third reference produces the following
new sentence:

’the quick brown FOX jumps over the lazy DOG’

11–50

Built-In Functions, Subroutines, and Pseudovariables

11.4.93 TRIM
The TRIM built-in function accepts a character string as an argument
and returns a character string that consists of the input string with
specified characters removed from the left and right. If you supply
only one argument, TRIM removes blanks from the left and right of
the argument. If you supply second and third arguments, TRIM removes
characters specified by those arguments from the left and right of the
string, respectively.

The format of the TRIM built-in function is:

TRIM (input-string,[beginning-chars,end-chars])

input-string
A character-string variable or constant. This argument supplies the string
from which characters are to be trimmed.

beginning-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the left of the input string. If a character that is in
the first position in the input string is also present anywhere in beginning-
chars, that character is removed from the input string. This process is
repeated until a character is encountered on the left of the input string
that is not present in beginning-chars, or until the characters in the input
string are exhausted.

end-chars
A character-string variable or constant. This argument specifies characters
to be trimmed from the right of the input string. The process of removing
characters from the right is identical to that of removing characters from
the left, except that the character in the last position is examined.

The TRIM built-in function accepts either one or three arguments. Any of
the arguments can consist of a null string; specifically, if beginning-chars
or end-chars is null, no characters are removed from the corresponding
end of the input string.

When only one argument is supplied, TRIM removes blanks from both
ends of that argument. In other words, the following two expressions are
equivalent:

TRIM(S)

TRIM(S,’ ’,’ ’)

Returned Value

The returned value is a character string with characters removed from the
ends.

11–51

Built-In Functions, Subroutines, and Pseudovariables

Examples

The following examples illustrate the use of the TRIM built-in function.

Text Returned String

TRIM (’ABC’) ’ABC’
TRIM(’ ABC’) ’ABC’
TRIM(’ ABC ’) ’ABC’
TRIM(’ABC ’) ’ABC’
TRIM(’ ABCDEF’,’’,’E’) ’ ABCDEF’
TRIM(’ ABCDEF’,’’,’FE’) ’ ABCD’
TRIM(’ ABCDEF ’,’ABC’,’EDF’) ’ ABCDEF ’
TRIM(’ABCDEF’,’CADB’,’FE’) ’’
TRIM(’ ABCDEF ’,’ABC ’,’ EDF’) ’’
TRIM(’AAAABCCXCCDDDDEFFFF’,’AC’,’DF’)’BCCXCCDDDDE’

11.4.94 TRUNC
The TRUNC built-in function changes all fractional digits in an arithmetic
expression x to zeros and returns the resulting integer value. Its format
is:

TRUNC(x)

Returned Value

If x is a floating-point expression, the returned value is a floating-point
value. If x is a fixed-point expression, the returned value is a fixed-point
value with the same base as x. The value has the following attributes:

precision = min(31; p� q + 1)

scalefactor = 0

scalefactor = 0

Here, p and q are the precision and scale factor of x.

11.4.95 UNSPEC
The UNSPEC built-in function returns a bit string representing the
internal coded value of the referenced variable, or a specified part of that
variable. The variable can be an aggregate or a scalar variable of any
type. The format of the function is:

UNSPEC(reference[,position[,length]])

11–52

Built-In Functions, Subroutines, and Pseudovariables

Returned Value

The returned value is a bit string whose length is the number of bits
occupied by the referenced variable or by that part of the variable specified
by the optional parameters, position and length. The length of the bit
string must be less than or equal to the maximum length for bit-string
data. The returned bit string contains the contents of the storage of the
referenced variable (or the specified part of the variable), the first bit
in storage being the first bit in the returned value. The actual value
is specific to VAX hardware systems and Alpha hardware systems, and
may differ from other PL/I implementations. Note that if the referenced
variable is a binary integer (FIXED BINARY), the first bit in the returned
value is the lowest binary digit.

Examples

DECLARE X CHARACTER(2), Y BIT(16);

X = ’AB’;
Y = UNSPEC(X);

.

.

.
DECLARE I FIXED BINARY(15);
I = 2;
PUT LIST(UNSPEC(I));

As a result of the first UNSPEC reference, Y contains the ASCII codes of
<BIT_STRING>(A) and <BIT_STRING>(B). The PUT LIST statement containing
UNSPEC(I) prints the following string:

’0100000000000000’B

11.4.96 VALID
The VALID built-in function determines whether the argument x, a
pictured variable, has a value that is valid with respect to its picture
specification. A value is valid if it is any of the character strings that
can be created by the picture specification. The function returns <BIT_
STRING>(0)B if x has an invalid value and <BIT_STRING>(1)B if it has a valid
value. The function can be used whenever a data item is read in with a
record input (READ) statement, to ensure that the input data is valid.
The format of the function is:

VALID(x)

x
A reference to a variable declared with the PICTURE attribute.

Note that pictured data is always validated (and thus, the VALID function
is unnecessary) when it is read in with the GET EDIT statement and the
P format item; the CONVERSION condition is signaled if the data does
not conform to the picture given in the P format item. If GET LIST is
used (or GET EDIT with a format item other than P), the input value is
converted to conform to the pictured input target.

11–53

Built-In Functions, Subroutines, and Pseudovariables

Examples

VALP: PROCEDURE OPTIONS(MAIN);

DECLARE INCOME PICTURE ’$$$$$$V.$$’;
DECLARE MASTER RECORD FILE;
DECLARE I FIXED;

DO I = 1 TO 2;
READ FILE(MASTER) INTO(INCOME);
IF VALID(INCOME) THEN;

ELSE PUT SKIP LIST(’Invalid input:’,INCOME);
END;

END VALP;

Asume that the file MASTER.DAT contains the following data:

$15000.50
50000.50

The program VALP will write out the following:

Invalid input: 50000.50

The picture <BIT_STRING>($$$$$$V.$$) specifies a fixed-point decimal
number of up to seven digits, two of which are fractional. To be valid,
a pictured value must consist of nine characters: the first digit must be
immediately preceded by a dollar sign, the number must contain a period
before the fractional digits, and each position specified by a dollar sign
must contain either that sign, a digit, or a space. The second record in
MASTER.DAT can be assigned by the READ statement because it has
the correct size; however, the pictured value is invalid because it does not
contain a dollar sign.

11.4.97 VALUE
The VALUE built-in function is used to force a parameter to be passed by
immediate value, rather than by whatever mechanism is specified by the
declaration of the formal parameter.

The syntax of the function is:n
VALUE
VAL

o
(expression)

expression
An expression or scalar variable that is valid to be passed by value. It
must fit into a longword (32 bits). The valid data types are:

FIXED BINARY (m) where m is less than or equal to 31
FLOAT BINARY (n) where n is less than or equal to 24
BIT (o) ALIGNED where o is less than or equal to 32
ENTRY
OFFSET
POINTER

11–54

Built-In Functions, Subroutines, and Pseudovariables

Examples

DECLARE FOO ENTRY (ANY) EXTERNAL;
DECLARE X FIXED BINARY (31);
X = 15;

.

.

.
CALL FOO(VALUE(X));

As with the REFERENCE and DESCRIPTOR built-in functions, VALUE is
not designed for use with other PL/I procedures; it is intended for use only
with routines written in languages other than PL/I.

11.4.98 VARIANT
The VARIANT preprocessor built-in function returns a string representing
the value of the variant qualifier in the command that invoked the
compilation.

The format in a preprocessor expression is:

VARIANT()

The /VARIANT qualifier permits specification of compilation variants. The
value specified is available to the VARIANT preprocessor built-in function
at compile time. The format of compilation variants is:

/VARIANT
�

[=alphanumeric-string]
[="alphanumeric-string"]

�

For example, if a program is to be compiled with one of three different
INCLUDE files, you can use the /VARIANT command qualifier to
specify which file is to be included. In the following example, the file
SPECIAL.SRC is included in the program only if /VARIANT=SPECIAL
appears in the pli command line.

For example:

%IF VARIANT() = ’SPECIAL’
%THEN

%INCLUDE ’SPECIAL.SRC’;
%IF VARIANT() = ’NONE’
%THEN;

No action is taken if /VARIANT=NONE appears on the pli command line.

If /VARIANT is not specified, or if it is specified without a value, the
default value is /VARIANT ="" .

11–55

Built-In Functions, Subroutines, and Pseudovariables

11.4.99 VERIFY
The VERIFY built-in function compares a string with a character-set
string and verifies that all characters appearing in the string also appear
in the character-set string. The function returns the value zero if they
all appear. If not, the function returns a fixed-point binary integer that
indicates the position of the first character in the string that is not present
in the character-set string. The comparison is done character by character
and left to right, and as soon as one nonmatching character is found in
the first string, no more characters are compared. The function is case
sensitive.

The format of the function is:

VERIFY(string,character-set-string[,starting-position])

string
A character-string expression representing the string to be checked.

character-set-string
A character-string expression containing the set of characters with which
the characters in the first string are to be compared.

starting-position
A positive integer in the range 1 to n+1, where n is the length of the first
string. It specifies the leftmost position in the first string to be compared
with the character-set-string. (By default, the comparison starts at the left
end of the first string.)

Examples

1 STRING = ’HOW MUCH IS 1 PLUS 2’;
ALPHABET = ’abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ ’;
A = VERIFY(STRING,ALPHABET);

The value of the variable ALPHABET is a string containing the 26
lowercase letters, the 26 uppercase letters, and the space character. The
function returns a value of 13, indicating the position of the character ’ 1’ ,
which is the first nonalphabetic and nonspace character in STRING.

2

A = VERIFY(STRING,’ ’);

This example finds the first nonspace character in a string by using the
space character as a test string. Note that constants can be used as the
string parameters.

3

NEWSTRING = ’ALL LETTERS’;
A = VERIFY(NEWSTRING,ALPHABET);

VERIFY returns a value of zero because all characters in the string
NEWSTRING are present in the string ALPHABET.

11–56

Built-In Functions, Subroutines, and Pseudovariables

4 NEWSTRING = ’9 LETTERS’;
A = VERIFY (NEWSTRING,ALPHABET,2);

The optional starting-position parameter specifies that the comparison
begins at position 2 in NEWSTRING. VERIFY returns a value of zero
because all characters beginning with the second character in the string
NEWSTRING are present in the string ALPHABET. If the starting-
position parameter had not been specified, VERIFY would have returned a
value of 1, because the first character (’ 9’) in NEWSTRING is not present
in ALPHABET.

11.4.100WARN
The WARN preprocessor built-in function returns the number of diagnostic
warning messages issued during compilation up to that particular point in
the source program. The format for the WARN built-in function is:

WARN();

The function returns a fixed result representing the number of compile-
time warning messages that were issued up to the point at which the
WARN built-in function was encountered.

11.5 Built-In Subroutines
Built-in subroutines are specific routines for the platform that provide
various added capabilities. These routines can be used in a CALL
statement. All arguments are evaluated as for normal subroutines.

The built-in subroutines are summarized in Table 11–2, according to the
following functional categories:

• Condition-handling built-in subroutines assist in performing condition-
related operations.

• File-control built-in subroutines perform file operations not supported
by the standard PL/I language.

• Record-locking built-in subroutines allow extended record-locking
control in conjunction with the OPTIONS clause of the READ
statement.

For more information on the PL/I subroutines in Table 11–2, see the
Kednos PL/I for OpenVMS Systems User Manual.

Table 11–2 Summary of PL/I Built-In Subroutines

Category
Routine
Reference Action

Condition-handling RESIGNAL() Allows more processing of a signal.

File-control DISPLAY(f,i) Returns information on file f into i

EXTEND(f,b) Extends file f by b blocks

FLUSH(f) Forces all buffers for file f to be flushed

11–57

Built-In Functions, Subroutines, and Pseudovariables

Table 11–2 (Cont.) Summary of PL/I Built-In Subroutines

Category
Routine
Reference Action

NEXT_
VOLUME(f)

Performs magnetic tape volume
processing on file f

REWIND(f) Resets file f to the beginning

SPACE_
BLOCK(f,b)

Positions file f forward or backward b
blocks

Record-locking FREE(f) Frees all locks for file f

RELEASE(f,r) Releases locked record r in file f

11.6 Pseudovariables
A pseudovariable can be used, in certain assignment contexts, in place of
an ordinary variable reference. For example:

SUBSTR(S,2,1) = ’A’;

assigns the character <BIT_STRING>(A) to a 1-character substring of S,
beginning at the second character of S.

A pseudovariable can be used wherever the following three conditions are
true:

• The syntax specifies a variable reference.

• The context is one that explicitly assigns a value to the variable.

• The context does not require the variable to be addressable.

The principal contexts in which pseudovariables are used are:

• The left side of an assignment statement

• The input target of a GET statement

Note that a pseudovariable cannot be used in preprocessor statements or
in an argument list. In the following example, SUBSTR is not interpreted
as a pseudovariable:

CALL P(SUBSTR(S,2,1));

Here, SUBSTR is interpreted as a built-in function reference, rather than
as a pseudovariable. The actual argument passed to procedure P is a
dummy argument containing the second character of string S.

The following are pseudovariables:

INT
ONSOURCE
ONCHAR
PAGENO
POSINT
STRING
SUBSTR

11–58

Built-In Functions, Subroutines, and Pseudovariables

UNSPEC

The next sections describe these pseudovariables in alphabetic order.

11.6.1 INT Pseudovariable
The INT pseudovariable assigns a signed integer value to specified storage.
The format is:

INT(reference[,position[,length]]) = expression;

reference
A reference to connected storage. This reference must not be an array,
structure, or named constant. If position and length are not specified, the
length of the referenced storage must not exceed 32 bits. If it exceeds 32
bits, a fatal run-time error results.

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by reference. If specified, position must satisfy the
following condition:

1 <= position <= size(reference)

where size(reference) is the length in bits of the storage denoted by
reference. A position equal to size(reference) implies a zero-length field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted by
position through the end of the storage denoted by reference. If specified,
length must satisfy the following condition:

0 <= length <= size(reference)� position

where size(reference) is the length in bits of the storage denoted by
reference.

The INT pseudovariable is valid only in an assignment statement. You
cannot use it as the target of an input statement or in other instances
where pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted to
the data type FIXED BINARY (31). Then, the internal representation
of the resulting integer value is assigned to the storage specified by the
arguments to INT. If the representation of the value is too large for
assignment to the storage, the most significant bits of the integer are
removed and no error is signaled.

Examples

DECLARE F FLOAT INITIAL (123.45);

INT(F,8,8) = 25; /* Alter the exponent */
PUT SKIP LIST (F); /* New value */

11–59

Built-In Functions, Subroutines, and Pseudovariables

In this example, the INT pseudovariable is used to modify the exponent
field of a floating-point variable. This example prints the following value:

9.5102418E-32

Proper interpretation of this result requires understanding of the internal
representation of floating-point numbers. As such, this example is only
valid on the VAX hardware.

The next example demonstrates how the INT pseudovariable treats cases
in which the value is too large for the specified storage:

INTOVER: PROCEDURE OPTIONS (MAIN);

DECLARE I15 FIXED BINARY (15),
I31 FIXED BINARY (31);

ON FIXEDOVERFLOW PUT SKIP LIST (’FIXEDOVERFLOW signaled’);

I31 = -876543; /* Too big for I15 */

I15 = I31; /* Arithmetic assignment */
INT(I15) = I31; /* No error signaled */
PUT SKIP LIST (I15);

END;

This example produces the following output:

FIXEDOVERFLOW signaled
-24575

The arithmetic assignment to I15 signals FIXEDOVERFLOW because
the value of I31 is outside the range of a FIXED BINARY (15) variable.
However, the assignment using the INT pseudovariable does not signal
an error; it just copies the low-order 16 bits of the value of I31 into the
storage for I15.

11.6.2 ONCHAR Pseudovariable
The ONCHAR pseudovariable can be used to replace the single character
in the ONSOURCE value that caused a CONVERSION condition to be
raised. An attempt to assign a value to the ONCHAR pseudovariable
when there is no active CONVERSION condition causes the ERROR
condition to be raised.

The format of the pseudovariable is:

ONCHAR()

See Section 8.10.4.4 for more information about CONVERSION condition
name.

11.6.3 ONSOURCE Pseudovariable
The ONSOURCE pseudovariable can be used to replace the entire
ONSOURCE value that caused a CONVERSION condition to be raised.
An attempt to assign a value to the ONSOURCE pseudovariable when
there is no active CONVERSION condition causes the ERROR condition to
be raised.

11–60

Built-In Functions, Subroutines, and Pseudovariables

The format of the pseudovariable is:

ONSOURCE()

The ONSOURCE value is a fixed-length string value. An assignment of a
longer string is truncated, and an assignment of a shorter string is padded
with blanks on the right to the necessary length.

See Section 8.10.4.4 for more information about CONVERSION condition
name.

11.6.4 PAGENO Pseudovariable
The PAGENO pseudovariable refers to the page number of the referenced
print file. Assignment to the pseudovariable modifies the current page
number. The format of the PAGENO pseudovariable in an assignment
statement is:

PAGENO(reference) = expression;

reference
A reference to a file for which the page number is to be set. The file must
be open and must be a print file.

PAGENO(reference) is a FIXED BINARY(15) variable; however, values
assigned to it must not be negative.

11.6.5 POSINT Pseudovariable
The POSINT pseudovariable assigns an integer value to specified storage.
The format is:

POSINT(expression1[,position[,length]]) = expression2;

expression1
A reference to connected storage. This reference must not be an array,
structure, or named constant. If position and length are not specified, the
length of the referenced storage must not exceed 32 bits. (If it exceeds 32
bits, a fatal run-time error results.)

position
A positive integer value that denotes the position of the first bit in the
field. If omitted, position defaults to 1, signifying the first bit of the
storage denoted by expression1. If specified, position must satisfy the
following condition:

1 <= position <= size(expression1)

Size(expression1) is the length in bits of the storage denoted by
expression1. A position equal to size(expression1) implies a zero-length
field.

length
An integer value in the range 0 through 32 that specifies the length of
the field. If omitted, length is the number of bits from the bit denoted
by position through the end of the storage denoted by expression1. If
specified, length must satisfy the following condition:

11–61

Built-In Functions, Subroutines, and Pseudovariables

0 <= length <= size(expression1)� position

Size(expression1) is the length in bits of the storage denoted by
expression1.

expression2
Any expression that evaluates to an integer.

The POSINT pseudovariable is valid only in an assignment statement. It
cannot be used as the target of an input statement or in other instances
where pseudovariables are normally acceptable.

The expression to be assigned to the pseudovariable is first converted to
the data type FIXED BINARY (31). Then, the internal representation
of the resulting integer value is assigned to the storage specified by the
arguments to POSINT. If the representation of the value is too large for
assignment to the storage, the most significant bits of the integer are
removed and no error is signaled.

The POSINT pseudovariable is identical in operation and use to the INT
pseudovariable. For examples, see INT pseudovariable.

11.6.6 STRING Pseudovariable
The STRING pseudovariable interprets a suitable reference as a reference
to a fixed-length string. By using it, you can modify an entire aggregate
with a single string assignment or assign the aggregate to a pictured
variable as if it were a character-string variable. The format of the
pseudovariable (in an assignment statement) is:

STRING(reference) = expression;

reference
A reference to a variable that is suitable for character-string (or bit-string)
overlay defining (see Section 5.5.6.1 and Section 5.8.2). The length of the
pseudovariable is equal to the total number of characters (or bits) in the
scalar or aggregate denoted by the reference. This length must be less
than or equal to the maximum length for character-string (or bit-string)
data.

Assignment to the STRING pseudovariable modifies the entire storage
denoted by the reference.

Examples

STRING_PSD_EXAMPLE: PROCEDURE;
DECLARE 1 NAME,

2 FIRST CHARACTER(10),
2 MIDDLE_INITIAL CHARACTER(3)
2 LAST CHARACTER(10);

STRING(NAME)=’FRANKLIN D. ROOSEVELT’;
/* NAME.FIRST - ’FRANKLIN D’;

NAME.MIDDLE_INITIAL = ’. R’;
NAME.LAST = ’OOSEVELT ’; */

11–62

Built-In Functions, Subroutines, and Pseudovariables

END STRING_PSD_EXAMPLE;
.
.
.

DECLARE 1 FLAGS,
2 (A,B,C) BIT(1);

STRING(FLAGS) = ’0’B; /* sets all three flags false */
.
.
.

DECLARE P PICTURE /Z.ZZZV,ZZDB’;
GET EDIT (STRING(P)) (A(10));

/* assigns 10 characters from SYSIN to P,
without conversion */

11.6.7 SUBSTR Pseudovariable
The SUBSTR pseudovariable refers to a substring of a specified string
variable reference. Assignment to the pseudovariable modifies only the
substring. The format of the pseudovariable (in an assignment statement)
is:

SUBSTR(reference,position[,length]) = expression;

reference
A reference to a bit- or character-string variable. If the reference is to
a varying-length character string, the substring defined by the position
and length arguments must be within the current value of the string.
Assignment to the SUBSTR pseudovariable does not change the length of
a varying string.

position
An integer expression indicating the position of the first bit or character in
the substring. The length must satisfy the following condition:

1 <= position <= LENGTH(reference) + 1

length
An integer expression that indicates the length of the substring. If not
specified, length is:

length = LENGTH(reference)� position+ 1

In other words, if length is not specified, the substring begins at the
indicated position and ends at the end of the string. The length must
satisfy the following condition:

0 <= length <= LENGTH(reference)� position+ 1

Note that the following two lines are equivalent:

SUBSTR(r,p,l) = v;

r = SUBSTR(r,1,p-1)||SUBSTR(v||SUBSTR(r,p+length(v)),1,l)||SUBSTR(r,p+l);

Assignment to the SUBSTR pseudovariable does not change the length of
reference.

11–63

Built-In Functions, Subroutines, and Pseudovariables

Examples

DECLARE (NAME,NEW_NAME) CHARACTER(20) VARYING;

NAME = ’ISAK DINESEN’;
NEW_NAME = NAME;
SUBSTR(NEW_NAME,4) = ’AC NEWTON’;
/* NEW_NAME = ’ISAAC NEWTON’ */

11.6.8 UNSPEC Pseudovariable
The UNSPEC pseudovariable interprets a reference to a scalar or
aggregate element variable as a reference to a bit string. The format
of the pseudovariable (in an assignment statement) is:

UNSPEC(reference[,position[,length]]) = expression;

reference
A reference to a scalar or aggregate variable. The length of its storage in
bits must be less than or equal to the maximum length for bit-string data.

In an assignment of the form

UNSPEC(reference) = expression;

the value of the expression is converted to a bit string if necessary and
copied into the storage of the reference. The value is truncated or zero-
extended as necessary to match the length of the storage.

To prevent zero-extending a value that is shorter than the variable, you
can use the position parameter or both the position parameter and the
length parameter. Then only the specified bits in the variable will be
assigned a new value, and the other bits will remain as they were. Note
that a position parameter of 1 refers to the low-order bit of the variable’s
storage, not the high-order bit.

Examples

DECLARE X FIXED BINARY (15);
UNSPEC(X) = ’110’B;

The use of the constant <BIT_STRING>(110)b, which appears to be 6 in
binary, actually assigns 3 to X. The two low-order bits of X (that is, X’s
first two bits of storage) are set; all other bits of X are cleared.

UNSPEC(X,1,3) = ’101’B;

The optional parameters position and length are specified, causing the first
three, low-order bits of the variable X to be assigned the value ’ 101’ B;
the other bits are unaffected.

11–64

A Alphabetic Summary of Keywords

Table A–1 summarizes all of the keywords. This alphabetic summary
includes both the options for the ENVIRONMENT attribute and the
options for I/O statements.

Table A–1 PL/I Keywords

Keyword Abbreviation Use

A Format item

ABS Preprocessor built-in function, Built-in
function

ACOS Built-in function

%ACTIVATE Preprocessor statement

ACTUALCOUNT Built-in function

ADD Built-in function

ADDR Built-in function

ADDREL Built-in function

ALIGNED Attribute

ALLOCATE ALLOC Statement

ALLOCATION ALLOCN Built-in function

ANY Attribute

ANYCONDITION Condition name

APPEND Environment option

AREA Data attribute, Condition name

ASIN Built-in function

ATAN Built-in function

ATAND Built-in function

ATANH Built-in function

AUTOMATIC AUTO Attribute

B Format item

B1 Format item

B2 Format item

B3 Format item

B4 Format item

BACKUP_DATE Environment option

BASED Attribute

BATCH Environment option

BEGIN Statement

A–1

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

BINARY BIN Data attribute, Built-in function

BIT Data attribute, Built-in function

BLOCK_BOUNDARY_
FORMAT

Environment option

BLOCK_IO Environment option

BLOCK_SIZE Environment option

BOOL Built-in function

BUCKET_SIZE Environment option

BUILTIN Attribute

BY DO option

BYTE Preprocessor built-in function, Built-in
function

BYTESIZE Built-in function

CALL Statement

CANCEL_CONTROL_O PUT OPTIONS option

CARRIAGE_RETURN_
FORMAT

Environment option

CEIL Built-in function

CHARACTER CHAR Data attribute, Built-in function

CLOSE Statement

COLLATE Built-in function

COLUMN COL Format item

CONDITION COND Attribute, Condition name

CONTIGUOUS Environment option

CONTIGUOUS_BEST_TRY Environment option

CONTROLLED CTL Attribute

CONVERSION CONV Condition name

COPY Preprocessor built-in function, Built-in
function

COS Built-in function

COSD Built-in function

COSH Built-in function

CREATION_DATE Environment option

CURRENT_POSITION Environment option

DATE Preprocessor built-in function, Built-in
function

DATETIME Preprocessor built-in function, Built-in
function

%DEACTIVATE Preprocessor statement

A–2

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

DECIMAL DEC Data attribute, Built-in function

%DECLARE %DCL Preprocessor statement

DECLARE DCL Statement

DECODE Preprocessor built-in function, Built-in
function

DEFAULT_FILE_NAME Environment option

DEFERRED_WRITE Environment option

DEFINED DEF Attribute

DELETE Statement, Environment option

DESCRIPTOR DESC Attribute, Built-in function

%DICTIONARY Preprocessor statement

DIMENSION DIM Attribute, Built-in function

DIRECT File attribute, OPEN option

DISPLAY Built-in subroutine

DIVIDE Built-in function

%DO Preprocessor statement

DO Statement, GET and PUT I/O specifier

E Format item

EDIT GET option, PUT option

%ELSE Keyword of the %IF statement

ELSE Keyword of the IF statement

EMPTY Built-in function

ENCODE Preprocessor built-in function, Built-in
function

%END Preprocessor statement

END Statement

ENDFILE Condition name

ENDPAGE Condition name

ENTRY Statement, Attribute

ENVIRONMENT ENV File attribute, OPEN option, CLOSE
option

%ERROR Preprocessor statement

ERROR Condition name, Preprocessor built-in
function

EVERY Built-in function

EXP Built-in function

EXPIRATION_DATE Environment option

EXTEND Built-in subroutine

EXTENSION_SIZE Environment option

A–3

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

EXTERNAL EXT Attribute

F Format item

FAST_DELETE DELETE OPTIONS option

%FATAL Preprocessor statement

FILE Attribute, Option of the GET, PUT,
READ, WRITE, DELETE, REWRITE,
OPEN, and CLOSE statements

FILE_ID Environment option

FILE_ID_TO Environment option

FILE_SIZE Environment option

FINISH Condition name

FIXED Data attribute, Built-in function

FIXEDOVERFLOW FOFL Condition name

FIXED_CONTROL_FROM REWRITE OPTIONS option, WRITE
OPTIONS option

FIXED_CONTROL_SIZE Environment option

FIXED_CONTROL_SIZE_TO Environment option

FIXED_CONTROL_TO READ OPTIONS option

FIXED_LENGTH_RECORDS Environment option

FLOAT Data attribute, Built-in function

FLOOR Built-in function

FLUSH Built-in subroutine

FORMAT Statement

FREE Statement, Built-in subroutine

FROM WRITE option, REWRITE option

GET Statement

GLOBALDEF Attribute

GLOBALREF Attribute

%GOTO Preprocessor statement

GOTO GO TO Statement

GROUP_PROTECTION Environment option

HBOUND Built-in function

HIGH Built-in function

IDENT PROCEDURE OPTIONS option

%IF Preprocessor statement

IF Statement

IGNORE_LINE_MARKS Environment option

IN ALLOCATE option, FREE option

%INCLUDE Preprocessor statement

A–4

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

INDEX Preprocessor built-in function, Built-in
function

INDEXED Environment option

INDEX_NUMBER DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option, Environment option

%INFORM Preprocessor statement

INFORM Preprocessor built-in function

INITIAL INIT Attribute

INITIAL_FILL Environment option

INPUT File attribute, OPEN option

INT Built-in function, Pseudovariable

INTERNAL INT Attribute

INTO READ option

KEY Condition name, READ option,
DELETE option, REWRITE option

KEYED File attribute, OPEN option

KEYFROM WRITE option

KEYTO READ option

LABEL Attribute

LBOUND Built-in function

LEAVE Statement

LENGTH Preprocessor built-in function, Built-in
function

LIKE Attribute

LINE PUT option, Preprocessor built-in
function, Format item

LINENO Built-in function

LINESIZE OPEN option

%LIST Preprocessor statement

LIST Attribute, GET option, PUT option

LOCK_ON_READ READ OPTIONS option

LOCK_ON_WRITE READ OPTIONS option

LOG Built-in function

LOG10 Built-in function

LOG2 Built-in function

LOW Built-in function

LTRIM Preprocessor built-in function, Built-in
function

MAIN PROCEDURE OPTIONS option

A–5

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

MANUAL_UNLOCKING READ OPTIONS option

MATCH_GREATER DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option

MATCH_GREATER_EQUAL DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option

MATCH_NEXT DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option

MATCH_NEXT_EQUAL DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option

MAX Preprocessor built-in function, Built-in
function

MAXIMUM_RECORD_
NUMBER

Environment option

MAXIMUM_RECORD_SIZE Environment option

MAXLENGTH Built-in function

MEMBER Attribute

MIN Preprocessor built-in function, Built-in
function

MOD Preprocessor built-in function, Built-in
function

MULTIBLOCK_COUNT Environment option

MULTIBUFFER_COUNT Environment option

MULTIPLY Built-in function

NEXT_VOLUME Built-in subroutine

%NOLIST Preprocessor statement

NOLOCK READ OPTIONS option

NONEXISTENT_RECORD READ OPTIONS option

NONRECURSIVE PROCEDURE option, ENTRY option

NONVARYING NONVAR Attribute

NORESCAN Option of the %ACTIVATE statement

NO_ECHO GET OPTIONS option

NO_FILTER GET OPTIONS option

NO_SHARE Environment option

NULL Built-in function

OFFSET Data attribute, Built-in function

ON Statement

ONARGSLIST Built-in function

A–6

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

ONCHAR Built-in function, Pseudovariable

ONCODE Built-in function

ONFILE Built-in function

ONKEY Built-in function

ONSOURCE Built-in function, Pseudovariable

OPEN Statement

OPTIONAL Attribute

OPTIONS File attribute, Option of the GET, PUT,
READ, WRITE, DELETE, REWRITE,
and PROCEDURE statements

OTHERWISE OTHER Keyword of the SELECT statement

OUTPUT File attribute, OPEN option

OVERFLOW OFL Condition name

OWNER_GROUP Environment option

OWNER_ID Environment option

OWNER_MEMBER Environment option

OWNER_PROTECTION Environment option

P Format item

%PAGE Preprocessor statement

PAGE PUT option, Format item

PAGENO Built-in function, Pseudovariable

PAGESIZE OPEN option

PARAMETER PARM Attribute

PICTURE PIC Data attribute

POINTER PTR Data attribute, Built-in function

POSINT Built-in function, Pseudovariable

POSITION POS Attribute

PRECISION PREC Attribute

PRESENT Built-in function

PRINT File attribute, OPEN option

PRINTER_FORMAT Environment option

%PROCEDURE %PROC Preprocessor statement

PROCEDURE PROC Statement

PROD Built-in function

PROMPT GET OPTIONS option

PURGE_TYPE_AHEAD GET OPTIONS option

PUT Statement

R Format item

A–7

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

RANK Preprocessor built-in function, Built-in
function

READ Statement

READONLY Attribute

READ_AHEAD Environment option

READ_CHECK Environment option

READ_REGARDLESS READ OPTIONS option

RECORD File attribute, OPEN option

RECORD_ID DELETE OPTIONS option, READ
OPTIONS option, REWRITE OPTIONS
option

RECORD_ID_ACCESS Environment option

RECORD_ID_TO READ OPTIONS option, REWRITE
OPTIONS option, WRITE OPTIONS
option

RECURSIVE PROCEDURE option, ENTRY option

REFER Attribute

REFERENCE Attribute, Built-in function

RELEASE Built-in subroutine

REPEAT DO option

%REPLACE Preprocessor statement

RESCAN Option of the %ACTIVATE statement

RESIGNAL Built-in subroutine

RETRIEVAL_POINTERS Environment option

%RETURN Preprocessor statement

RETURN Statement

RETURNS Entry attribute, PROCEDURE option,
ENTRY option

REVERSE Preprocessor built-in function, Built-in
function

REVERT Statement

REVISION_DATE Environment option

REWIND Built-in subroutine

REWIND_ON_CLOSE Environment option

REWIND_ON_OPEN Environment option

REWRITE Statement

ROUND Built-in function

RTRIM Preprocessor built-in function, Built-in
function

%SBTTL Preprocessor statement

A–8

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

SCALARVARYING Environment option

SEARCH Preprocessor built-in function, Built-in
function

SELECT Statement

SEQUENTIAL SEQL File attribute, OPEN option

SET READ option, ALLOCATE option

SHARED_READ Environment option

SHARED_WRITE Environment option

SIGN Preprocessor built-in function, Built-in
function

SIGNAL Statement

SIN Built-in function

SIND Built-in function

SINH Built-in function

SIZE Built-in function

SKIP GET option, PUT option, Format item

SNAP ON statement option

SOME Built-in function

SPACEBLOCK Built-in subroutine

SPOOL Environment option

SQRT Built-in function

STATEMENT Option of the %PROCEDURE
statement

STATIC Attribute

STOP Statement

STORAGE Condition name

STREAM File attribute, OPEN option

STRING GET option, PUT option, Built-in
function, Pseudovariable

STRINGRANGE STRG Condition name

STRUCTURE Attribute

SUBSCRIPTRANGE SUBRG Condition name

SUBSTR Preprocessor built-in function, Built-in
function, Pseudovariable

SUBTRACT Built-in function

SUM Built-in function

SUPERSEDE Environment option

SYSIN Default input file

SYSPRINT Default output file

A–9

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

SYSTEM ON statement option

SYSTEM_PROTECTION Environment option

TAB Format item

TAN Built-in function

TAND Built-in function

TANH Built-in function

TEMPORARY Environment option

%THEN Keyword of the %IF statement

THEN Keyword of the IF statement

TIME Built-in function

TIMEOUT_PERIOD READ OPTIONS option

%TITLE Preprocessor statement

TITLE OPEN option

TO DO option

TRANSLATE Preprocessor built-in function, Built-in
function

TRIM Preprocessor built-in function, Built-in
function

TRUNC Built-in function

TRUNCATE Attribute, Environment option

UNALIGNED UNAL Attribute

UNDEFINEDFILE UNDF Condition name

UNDERFLOW UFL Condition name, PROCEDURE
OPTIONS option

UNION Attribute

UNSPEC Built-in function, Pseudovariable

UNTIL DO option

UPDATE File attribute, OPEN option

USER_OPEN Environment option

VALID Built-in function

VALUE VAL Attribute, Built-in function

VARIABLE Attribute, OPTIONS option

VARIANT Preprocessor built-in function

VARYING VAR Attribute

VAXCONDITION Condition name

VERIFY Preprocessor built-in function, Built-in
function

WAIT_FOR_RECORD READ OPTIONS option

%WARN Preprocessor statement

A–10

Alphabetic Summary of Keywords

Table A–1 (Cont.) PL/I Keywords

Keyword Abbreviation Use

WARN Preprocessor built-in function

WHEN Keyword of the SELECT statement

WHILE DO option

WORLD_PROTECTION Environment option

WRITE Statement

WRITE_BEHIND Environment option

WRITE_CHECK Environment option

X Format item

ZERODIVIDE ZDIV Condition name

A–11

B Digital Multinational Character Set

The Digital Multinational Character Set is a set of 8-bit numeric values
representing the alphabet, numerals, punctuation, and other symbols. The
first 128 characters of the set (with decimal values from 0 through 127)
are the American Standard Code for Information Interchange (ASCII)
characters. The remaining characters (with values from 128 through 255)
are non-ASCII characters and can be used only in string constants and
data with I/O statements.

The following table shows the first half of the Digital Multinational
Character Set, which is the ASCII character set. The first half of each
of the numbered columns identifies the character as you would enter it
on a VT200 or VT100 series terminal or as you would see it on a printer
(except for the nonprintable characters). The remaining half of each
column identifies the character by the binary value of the byte; the value
is stated in three radixes—octal, decimal, and hexadecimal. For example,
the uppercase letter A has, under ASCII conventions, a storage value of
hexadecimal 41 (a bit configuration of 01000001), equivalent to 101 in
octal notation and 65 in decimal notation.

B–1

Digital Multinational Character Set

Row
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2 3 4 5 6 7

20
32
40

21
33
41

22
34
42

23
35
43

24
36
44

25
37
45

26
38
46

27
39
47

28
40
50

29
41
51

2A
42
52

2B
43
53

2C
44
54

2D
45
55

2E
46
56

2F
47
57

3F
63
77
3E
62
76
3D
61
75
3C
60
74
3B
59
73
3A
58
72
39
57
71
38
56
70
37
55
67
36
54
66
35
53
65
34
52
64
33
51
63
32
50
62
31
49
61
30
48
60

40
64

100

41
65

101

42
66

102

43
67

103

44
68

104

45
69

105

46
70

106

47
71

107

48
72

110

49
73

111

4A
74

112

4B
75

113

4C
76

114

4D
77

115

4E
78

116

4F
79

117

5F
95

137
5E
94

136
5D
93

135
5C
92

134
5B
91

133
5A
90

132
59
89

131
58
88

130
57
87

127
56
86

126
55
85

125
54
84

124
53
83

123
52
82

122
51
81

121
50
80

120

60
96

140

61
97

141

62
98

142

63
99

143

64
100
144

65
101
145

66
102
146

67
103
147

68
104
150

69
105
151

6A
106
152

6B
107
153

6C
108
154

6D
109
155

6E
110
156

6F
111
157

7F
127
177

7E
126
176
7D

125
175
7C

124
174
7B

123
173
7A

122
172

79
121
171
78

120
170

77
119
167

76
118
166

75
117
165

74
116
164

73
115
163

72
114
162

71
113
161
70

112
160SP

!

"

$

%

&

(

)

*

+

,

.

?

>

=

<

;

:

9

8

7

6

5

4

3

2

1

0 @

A

B

C

D

E

F

G

H

J

K

L

M

N

O

^

]

[

Z

Y

X

W

V

U

T

S

R

Q

P

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o
DEL

~

}

{

z

y

x

w

v

u

t

s

r

q

p

 MLO-003973

Standard Left

10
16
20

11
17
21

12
18
22

13
19
23

14
20
24

15
21
25

16
22
26

17
23
27

18
24
30

19
25
31

1A
26
32

1B
27
33

1C
28
34

1D
29
35

1E
30
36

1F
31
37

0
0

 0

 1
1

 1

2
2

 2

 3
3

 3

4
4
4

 5
5

 5

 6
6

 6

 7
7

 7

 8
8

10

 9
9

11

 A
10
12

 B
11
13

 C
12
14

 D
13
15

 E
14
16

 F
15
17

US

RS

GS

FS

ESC

SUB

EM

CAN

ETB

SYN

NAK

DC4

DC3

DC2

DC1

DLE

SI

SO

CR

FF

VT

LF

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

NUL

(XON)

(XOFF)

Column 0 1

ASCII Graphic Character Set

Graphics Left (GL)C0 Control Set

#

I

LEGEND

A

4/1

41
65

101

Hex
Decimal
Octal
Column/Row

GL

The following table shows the second half of the Digital Multinational
Character Set (the non-ASCII characters, with decimal values 128 through
255). The first half of each of the numbered columns identifies the
character as you would see it on a VT200 series terminal or printer;
these characters cannot be output on a VT100 series terminal.

B–2

Digital Multinational Character Set

Row
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

10 11 12 13 14 15

A0
160
240

FF
255
377

 MLO-003974

Standard Right

90
144
220

91
145
221

92
146
222

93
147
223

94
148
224

95
149
225

96
150
226

97
151
227

98
152
230

99
153
231

9A
154
232

9B
155
233

9C
156
234

9D
157
235

9E
158
236

9F
159
237

80
128

 200

 81
129

 201

82
130

 202

 83
131

 203

84
132
204

 85
133

 205

 86
134

 206

 87
135

 207

 88
136
210

 89
137
211

 8A
138
212

 8B
139
213

 8C
140
214

 8D
141
215

 8E
142
216

 8F
143
217

APC

PM

OSC

ST

CSI

EPA

SPA

CCH

STS

PU2

PU1

DCS

SS3

SS2

RI

PLU

PLD

VTS

HTJ

HTS

ESA

SSA

NEL

IND

Column 8 9

DEC Supplemental Graphic Character Set

Graphics Right (GR)C1 Control Set

?

o

1

µ

3

2

A

A

A

A

A

E

I

E

E

Y

U

U

U

O

O

O

O

O

O

N a

a

a

a

a

e

e

e

e

i

i

i

i

y

u

u

o

o

o

o

o

o

n
A1

161
241

A2
162
242

A3
163
243

A4
164
244

A5
165
245

A6
166
246

A7
167
247

A8
168
250

A9
169
251

AA
170
252

AB
171
253

AC
172
254

AD
173
255

AE
174
256

AF
175
257

BF
191
277
BE

190
276
BD

189
275
BC

188
274
BB

187
273
BA

186
272
B9

185
271
B8

184
270
B7

183
267
B6

182
266
B5

181
265
B4

180
264
B3

179
263
B2

178
262

B1
177
261
B0

176
260

C0
192
300

C1
193
301

C2
194
302

C3
195
303

C4
196
304

C5
197
305

C6
198
306

C7
199
307

C8
200
310

C9
201
311

CA
202
312

CB
203
313

CC
204
314

CD
205
315

CE
206
316

CF
207
317

DF
223
337
DE

222
336
DD
221
335
DC
220
334
DB

219
333
DA
218
332
D9

217
331
D8

216
330
D7

215
327
D6

214
326
D5

213
325
D4

212
324
D3
211
323
D2

210
322

D1
209
321
D0

208
320

E0
224
340

E1
225
341

E2
226
342

E3
227
343

E4
228
344

E5
229
345

E6
230
346

E7
231
347

E8
232
350

E9
233
351

EA
234
352

EB
235
353

EC
236
354

ED
237
355

EE
238
356

EF
239
357

FE
254
376
FD

253
375
FC

252
374
FB
251
373
FA

250
372
F9

249
371
F8

248
370
F7

247
367
F6

246
366
F5

245
365
F4

244
364
F3

243
363
F2

242
362

F1
241
361
F0

240
360

I

I

I

E

U

A a

u

u

c e

e

EC O

a

o

.. ..

.. ..

....

..

..

..

..

.. ..

~ ~

~ ~

~ ~!

a

NBH

BPH

SOS

SCI

4
1

2
1

B

MW

LEGEND

A

12/1

C1
193
301

Hex
Decimal
Octal
Column/Row

GR

B–3

C Compatibility with PL/I Standards

This appendix describes the relationship between Kednos PL/I for
OpenVMS VAX and and Kednos PL/I for OpenVMS Alpha to each other
and to the various PL/I language standards that are currently in force.

Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS Alpha
are strict supersets of the ANSI X3.74-1981 PL/I General Purpose Subset.
Both contain many features from larger or more recent PL/I standards and
implementations. Most of the features implemented in Kednos PL/I for
OpenVMS VAX and Kednos PL/I for OpenVMS Alpha that go beyond the
language defined by ANSI X3.74-1981 are contained in either the ANSI
X3.53-1976 (full) PL/I language standard or the new ANSI X3.74-198x
PL/I General Purpose Subset.

C.1 Differences and Similarities Between Kednos PL/I for OpenVMS VAX
and Kednos PL/I for OpenVMS Alpha

• Kednos PL/I for OpenVMS VAX and Alpha both support floating-
point variables and constants up to 53 bits of precision. Attempts to
declare variables with greater precision result in a compilation error
on VAX. On Alpha, such attempts result in a warning that a value
of 53 has been used. On both OpenVMS VAX and OpenVMS Alpha,
using a constant with more than 15 decimal digits results in a warning
indicating possible loss of precision.

• In both Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS
Alpha, the default condition-handling capabilities of a module without
OPTIONS(MAIN) are not correct.

• Neither the VAX nor the Alpha Run-Time Library (RTL) signals
ENDPAGE for SYSPRINT.

• Kednos PL/I for OpenVMS VAX supports the
OPTIONS(UNDERFLOW) option and checks for UNDERFLOW.
Kednos PL/I for OpenVMS Alpha ignores OPTIONS(UNDERFLOW).

C.2 Relation to the 1981 PL/I General-Purpose Subset
The 1981 PL/I General-Purpose Subset (ANSI X3.74-1981) was designed to
be useful in scientific, commercial, and systems programming, especially
on small and medium-size computer systems. Among the primary goals of
the design of the subset were the following:

• To include features that were easy to learn and to use and to exclude
features that were difficult to learn or prone to error

• To provide a subset that would be easily portable from one computer
system to another

C–1

Compatibility with PL/I Standards

• To exclude features that were not often used and whose
implementation greatly increased the complexity of the run-time
support required by the compiler

The essential elements of the subset are described below. These
descriptions are extracted from the ANSI X3.74-1981 standard.

C.2.1 Program Structure
The General-Purpose Subset includes a complete character set, with
comments, identifiers, decimal arithmetic constants, and simple string
constants.

Begin blocks and DO-groups are included in the subset. Each block or
group in the program must be terminated with an END statement.

C.2.2 Program Control
The following program control statements are included in the subset:
CALL, RETURN, IF, DO, GOTO, null, STOP, ON, REVERT, and SIGNAL.

The DO statement options supported are TO, BY, WHILE, and REPEAT.

An IF statement can contain unlabeled THEN and ELSE clauses.

An ON statement can specify a single condition. The condition names
supported are ERROR, ENDFILE, ENDPAGE, FIXEDOVERFLOW, KEY,
OVERFLOW, UNDEFINEDFILE, UNDERFLOW, and ZERODIVIDE.

C.2.3 Storage Control
The subset includes the assignment statement and the assignment of
array and structure variables whose dimensions and data types match.
The subset also permits aggregate promotion, that is, the assignment of a
scalar expression to every element or member of an aggregate variable.

In the subset, only static variables can be initialized.

The ALLOCATE statement with the SET option and the FREE statement
are included in the subset.

C.2.4 Input/Output
The I/O statements are:

• OPEN and CLOSE

• READ, WRITE, DELETE, and REWRITE for record I/O

• GET and PUT, with FILE, STRING, EDIT, LIST, PAGE, SKIP, and
LINE options for stream I/O

The file attributes, specified in DECLARE or OPEN, are DIRECT,
ENVIRONMENT, INPUT, KEYED, OUTPUT, PRINT, RECORD,
SEQUENTIAL, STREAM, and UPDATE.

C–2

Compatibility with PL/I Standards

The FORMAT statement is included. The format items are E, F, P, A, B,
X, R, PAGE, SKIP, COLUMN, TAB, and LINE.

C.2.5 Attributes and Pictures
The DECLARE statement is included in the subset. All names must be
declared, either by means of a DECLARE statement or by means of a label
prefix.

The attributes supported are as follows: ALIGNED, AUTOMATIC,
BASED, BINARY, BIT, BUILTIN, CHARACTER, DECIMAL, DEFINED,
DIRECT, ENTRY, ENVIRONMENT, EXTERNAL, FILE, FIXED, FLOAT,
INITIAL, INPUT, INTERNAL, KEYED, LABEL, OPTIONS, OUTPUT,
PICTURE, POINTER, PRINT, RECORD, RETURNS, SEQUENTIAL,
STATIC, STREAM, UPDATE, VARIABLE, and VARYING.

The picture characters included are CR, DB, S, V, Z, 9, -, +, $, and *. The
picture insertion characters (. , / B) are also included.

C.2.6 Built-In Functions and Pseudovariables
The built-in functions in the subset are as follows: ABS, ACOS,
ADDR, ASIN, ATAN, ATAND, ATANH, BINARY, BIT, BOOL, CEIL,
CHARACTER, COLLATE, COPY, COS, COSD, COSH, DATE, DECIMAL,
DIMENSION, DIVIDE, EXP, FIXED, FLOAT, FLOOR, HBOUND, INDEX,
LBOUND, LENGTH, LINENO, LOG, LOG2, LOG10, MAX, MIN, MOD,
NULL, ONCODE, ONFILE, ONKEY, PAGENO, ROUND, SIGN, SIN,
SIND, SINH, SQRT, STRING, SUBSTR, TAN, TAND, TANH, TIME,
TRANSLATE, TRUNC, UNSPEC, VALID, and VERIFY.

The pseudovariables are PAGENO, STRING, SUBSTR, and UNSPEC.

C.2.7 Expressions
The subset supports all infix and prefix operators, the locator qualifier,
parenthesized expressions, subscripts, and function references. Implicit
conversion from one data type to another is restricted to those contexts in
which the conversion is likely to produce the desired results.

C.3 198x PL/I General-Purpose Subset Features Supported
The 198x PL/I General-Purpose Subset (ANSI X3.74-198x) was designed to
extend the previous subset standard on the basis of experience with subset
implementations and the desire for more capabilities in subset-conforming
implementations.

The following sections describe features in this standard that have been
implemented to date in Kednos PL/I for OpenVMS VAX and Kednos PL/I
for OpenVMS Alpha.

C–3

Compatibility with PL/I Standards

C.3.1 Lexical Constructs
The character pair /* is permitted within comments.

Both uppercase and lowercase characters are permitted in source
programs.

No space is required after the P for picture constants.

C.3.2 Program Control
RETURNS(CHAR(*)) is supported.

The statements following THEN and ELSE can be labeled.

The NONRECURSIVE procedure option is supported.

The SELECT statement is supported.

The LEAVE statement is supported.

The UNTIL clause for DO groups and clauses is supported.

C.3.3 Storage Control
The IN option can be used for the ALLOCATE and FREE statements, and
language controlled allocation in areas is supported.

The SET option is optional for ALLOCATE if the based variable being
allocated was declared with a base pointer.

The ALLOCATE and FREE statements can specify a comma list of items.

String assignment can have the source and target overlapped.

C.3.4 Input/Output
Expressions can be used in GET and PUT FORMAT lists.

You can use, as the source or target of a file I/O statement, a function
reference that performs I/O on the same file and then returns to the
original statement.

The OPEN and CLOSE statements can contain a list of file specifications.

The FROM option of the REWRITE statement can be omitted.

C.3.5 Attributes and Pictures
The INITIAL attribute is allowed with AUTOMATIC storage. The initial
items can contain asterisks to denote uninitialized values. The initial
values can be expressions. The NULL built-in function can be used in both
STATIC and AUTOMATIC INITIAL attributes. The initial iteration factor
can be an asterisk.

Restricted expressions can be used for static extents, parameter extents,
and returns descriptor extents.

C–4

Compatibility with PL/I Standards

The AREA and OFFSET data types are supported.

The REFER attribute can be used at the end of a structure.

The DIMENSION, PARAMETER, and NONVARYING keywords can be
specified.

The UNALIGNED attribute can be specified, but only for BIT and
CHARACTER variables.

SYSIN and SYSPRINT can be contextually declared as files.

The CONDITION attribute is supported.

The UNION attribute is supported.

C.3.6 Program Control
The AREA, CONDITION, CONVERSION, FINISH, and STORAGE
conditions are supported.

Multiple conditions can be specified for ON and REVERT.

The SNAP and SYSTEM options of the ON statement are supported.

C.3.7 Built-In Functions and Pseudovariables
The following built-in functions are supported: ADD, EMPTY, EVERY,
HIGH, LOW, MULTIPLY, OFFSET, ONSOURCE, POINTER, PROD,
REVERSE, SOME, SUBTRACT, and SUM.

The ONSOURCE pseudovariable is supported.

The DIMENSION, HBOUND, and LBOUND built-in functions have a
default of one for the second parameter if it is not specified.

The INDEX and VERIFY built-in functions have an optional starting
position parameter.

The UNSPEC built-in function and pseudovariable can be used on
aggregates.

C.3.8 Expressions
The operators AND THEN (short-circuiting AND, specified as &:) and OR
ELSE (short-circuiting OR, specified as | :) are supported.

EXCLUSIVE OR (infix or dyadic ^) is supported.

C.4 Full PL/I Features Supported
The items discussed in this section are features that are explicitly excluded
from both the old subset standard (ANSI X3.74-1981) and the new subset
standard (ANSI X3.74-198x) but that have been implemented in Kednos
PL/I. These features all exist in full PL/I.

C–5

Compatibility with PL/I Standards

C.4.1 Program Structure
The STRINGRANGE and SUBSCRIPTRANGE conditions are supported.

Replication factors for string constants are supported.

A comma list can be specified on the left-hand side of an assignment
statement.

C.4.2 Program Control
The ENTRY statement is supported.

C.4.3 Storage Control
CONTROLLED storage is supported.

C.4.4 Attributes and Pictures
The CONTROLLED, LIKE, MEMBER, POSITION, PRECISION, REFER,
and STRUCTURE attributes are supported. (The REFER attribute is
restricted to BASED and CONTROLLED variables.)

The picture characters Y, T, I, and R are supported, and pictures can
include iteration factors.

Scaled fixed binary numbers are supported. They can have a scale factor
within the range -31 through 31 on OpenVMS VAX systems or the range
-63 through 63 on OpenVMS Alpha systems.

C.4.5 Built-In Functions and Pseudovariables
The OFFSET and POINTER built-in functions are not restricted to ADDR.

The ALLOCATION and ONCHAR built-in functions are supported.

The ONCHAR pseudovariable is supported.

C.4.6 Expressions
The expression in a WHILE or UNTIL clause or in an IF statement can
be a bit string of any length. When evaluated, the expression results in a
true value if any bit of the string expression is a 1 and in a false value if
all bits in the string expression are 0s.

The control variable and the expressions in the TO, BY, and REPEAT
options of the DO statement are not restricted to integers and pointers.

C–6

Compatibility with PL/I Standards

C.5 Nonstandard Features from Other Implementations
The features discussed in this section are not described in any ANSI PL/I
standard. They are, however, provided by some other implementations.

C.5.1 Preprocessor
Both Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS
Alpha support an embedded lexical preprocessor for compilation control.
The following preprocessor statements are included: %ACTIVATE,
%DEACTIVATE, %DECLARE, %DICTIONARY %DO, %END, %ERROR,
%FATAL, %GOTO, %INFORM, %IF, %LIST, %NOLIST, %PAGE,
%PROCEDURE, %REPLACE, %RETURN, %SBTTL, %TITLE, and
%WARN.

An %IF statement can contain unlabeled %THEN and %ELSE clauses.

The following preprocessor built-in functions are included: ABS, BYTE,
COPY, DATE, DATETIME, DECODE, ENCODE, ERROR, INDEX,
INFORM, LENGTH, LINE, LTRIM, MAX, MIN, MOD, RANK, REVERSE,
RTRIM (Kednos PL/I for OpenVMS VAX only), SEARCH, SIGN, SUBSTR,
TIME, TRANSLATE, TRIM, VARIANT, VERIFY, and WARN.

C.5.2 Built-In Functions
The following nonstandard built-in functions are included:
ACTUALCOUNT, ADDREL, BYTE, BYTESIZE, DATETIME, DECODE,
DESCRIPTOR, ENCODE, INT, LTRIM, MAXLENGTH, ONARGLIST,
POSINT, PRESENT, RANK, REFERENCE, RTRIM, SEARCH, SIZE,
TRIM, and VALUE.

C.5.3 LIKE Extension
Both Kednos PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS Alpha
allow you to use the LIKE attribute on a structure already containing
LIKE.

C.5.4 Declarations
Variables can be declared outside procedures.

C.6 PL/I-Specific Extensions for OpenVMS VAX and OpenVMS Alpha
Platforms

The extensions in the following sections are enhancements for PL/I
programs executing on the OpenVMS VAX and OpenVMS Alpha platforms.
These extensions are provided for procedure calling, condition handling,
support of OpenVMS Record Management Services (RMS), compilation
control, and miscellaneous purposes.

C–7

Compatibility with PL/I Standards

C.6.1 Procedure-Calling and Condition-Handling Extensions
The following extensions to PL/I were made to allow procedures to call
procedures written in any other programming language that also supports
the OpenVMS calling standard.

• The ANY, VALUE, REFERENCE, and DESCRIPTOR attributes
describe how data is to be passed to a called procedure.

• The OPTIONAL attribute indicates that a parameter need not be
specified in a call; and the TRUNCATE attribute indicates the point at
which an actual parameter list can be truncated.

• The LIST attribute can be used for the parameter descriptor in an
external entry declaration to denote that a list of parameters may be
specified.

• The ACTUALCOUNT built-in function returns the number of
parameters the current procedure was called with. The PRESENT
built-in function determines whether a parameter was specified in a
call.

• The VARIABLE option for the ENTRY attribute permits a PL/I
procedure to call a non-PL/I procedure with an argument list of
variable length. It also permits a procedure to omit arguments in
an argument list.

• The VALUE, REFERENCE, and DESCRIPTOR built-in functions can
be used to pass an argument by the specified mechanism to a non-PL/I
procedure.

The following attributes provide storage classes for PL/I variables. These
attributes permit PL/I programs to take advantage of features of the
OpenVMS Linker and to combine PL/I procedures with other procedures
that use these storage classes.

• The GLOBALDEF and GLOBALREF attributes let you define and
access external global variables and optionally place all external global
definitions in the same program section.

• The READONLY attribute can be applied to a static computational
variable whose value does not change.

• The VALUE attribute defines a variable that is, in effect, a constant
whose value is supplied by the linker. The value attribute can also be
used to allow a procedure to receive constants passed by immediate
value.

The following extensions to condition handling provide support for
condition handling in the OpenVMS environment:

• The ANYCONDITION condition name can be used in an ON-unit to
handle any condition that is signaled that does not explicitly have an
ON-unit of its own.

• The VAXCONDITION condition name can be used in ON, SIGNAL,
and REVERT statements to process conditions specific to OpenVMS
systems.

C–8

Compatibility with PL/I Standards

• The RESIGNAL built-in subroutine permits an ON-unit to keep a
signal active.

• The ONARGSLIST built-in function provides an ON-unit with access
to the mechanism and signal arguments of a system-specific exception
condition.

C.6.2 Support of OpenVMS Record Management Services
The options of the ENVIRONMENT attribute provide support for many of
the features and control values of the OpenVMS Record Management
Services (RMS). Additional extensions have been made to the PL/I
language to augment this support, as follows:

• The USER_OPEN ENVIRONMENT option allows access to the RMS
FAB and RAB control structures during a PL/I file OPEN operation.

• The OPTIONS option is supported on the GET, PUT, READ, WRITE,
REWRITE, and DELETE statements.

• The FLUSH, FREE, RELEASE, and REWIND built-in subroutines
provide file handling and control functions. PL/I provides these
additional built-in subroutines: DISPLAY, EXTEND, NEXT_VOLUME,
and SPACEBLOCK.

C.6.3 Miscellaneous Extensions
PL/I supports the OpenVMS Common Data Dictionary (CDD). Data
definitions are included in source programs with the %DICTIONARY
statement.

The following built-in functions are supported for BYTE, DECODE,
ENCODE, INT, POSINT, RANK, and SIZE.

C.7 Implementation-Defined Values and Features
The following values and features are implementation-defined:

• PL/I supports the full 256-character DEC Multinational Character
Set (a superset of ASCII) for CHARACTER data (including character
string constants in PL/I source programs). All identifiers in a source
program are restricted to the ASCII character set.

• The default precisions for arithmetic data are as follows:

FIXED BINARY (31)
FIXED DECIMAL (10)
FLOAT BINARY (24)
FLOAT DECIMAL (7)

• The maximum record size for SEQUENTIAL files is 32767 bytes minus
the length of any fixed-length control area.

• The maximum key size is 255 bytes for character keys.

C–9

Compatibility with PL/I Standards

• The default value for the LINESIZE option is as follows:

If the output is to a physical record-oriented device, such as a line
printer or terminal, the default line size is the width of the device.
If the output is to a print file, the default line size is 132.
If the output is to a nonrecord device (magnetic tape), the default
line size is 510.

• The default value for the PAGESIZE option is as follows:

• If the logical name SYS$LP_LINES is defined, the default page
size is 6, the numeric value of SYS$LP_LINES.

• If SYS$LP_LINES is not defined, or if its value is less than 30 or
greater than 90, or if its value is not numeric, the default page size
is 60.

• The values for TAB positions are columns beginning with column 1
and every eight columns thereafter.

• The maximum length allowed for a file title is 128 characters.

• The maximum number of digits in editing fixed-point data is 34.

• The maximum numbers of digits for each combination of base and
scale are as follows:

FIXED BINARY - 31
FIXED DECIMAL - 31
FLOAT BINARY - 113 for OpenVMS VAX and 53 for OpenVMS
Alpha
FLOAT DECIMAL - 34 for OpenVMS VAX and 15 for OpenVMS
Alpha

• The maximum length of CHARACTER, CHARACTER VARYING, and
BIT strings is 32767.

• The default precision for integer values is 31.

• The maximum number of arguments that can be passed to an entry
point is 253.

• The second parameter of the F format item (the optional parameter
specifying the number of fractional digits in the stream representation)
must have a value less than or equal to 31.

C–10

D Migration Notes

This appendix contains notes and comments about migration issues. It
lists and describes keywords and functions of the PL/I language that are
available in other implementations of PL/I but are not included in Kednos
PL/I. It also outlines the differences between Kednos PL/I for OpenVMS
VAX and Kednos PL/I for OpenVMS Alpha.

The information in this appendix is not intended to represent either a
complete or a formal description of migration issues. The information is
presented informally and has not been subjected to extensive testing and
verification.

D.1 Keywords Not Supported
Table D–1 lists keywords used in other implementations of PL/I but not
in Kednos PL/I. The table does not include ENVIRONMENT keywords or
implementation-specific language extensions.

Table D–1 PL/I Keywords Not Supported

Keyword Abbreviation Use

AFTER Built-in function

ALL Built-in function

ANY Built-in function

ATTENTION ATTN Condition

BACKWARDS Attribute, Option of OPEN statement

BEFORE Built-in function

BUFFERED BUF Attribute, Option of OPEN statement

BY NAME Option of assignment statement

C Format item

CALL Option of INITIAL attribute

CASE Option of DO statement

CHECK Statement, Condition, Condition prefix

COMPLETION CPLN Built-in function, Pseudovariable

COMPLEX CPLX Attribute, Built-in function, Pseudovariable

CONJG Built-in function

CONNECTED CONN Attribute

CONSTANT Attribute

CONVERSION CONV Condition prefix

COPY Option of GET statement

COUNT Built-in function

D–1

Migration Notes

Table D–1 (Cont.) PL/I Keywords Not Supported

Keyword Abbreviation Use

CURRENTSTORAGE CSTG Built-in function

DATA Stream I/O transmission mode

DATAFIELD Built-in function

DECAT Built-in function

DEFAULT DFT Statement

DELAY Statement

DESCRIPTORS Option of DEFAULT statement

DISPLAY Statement

DOT Built-in function

ERF Built-in function

ERFC Built-in function

EVENT Attribute, Option of several statements

EXCLUSIVE EXCL Attribute

EXIT Statement

FETCH Statement

FORMAT Attribute

GENERIC Attribute

HALT Statement

IGNORE Option of READ statement

IMAG Built-in function, pseudovariable

IRREDUCIBLE IRRED Attribute

LIST Option of OPEN statement

LOCAL Attribute

LOCATE Statement

NAME Condition

NOCHECK Statement, Condition prefix

NOCONVERSION NOCONV Condition prefix

NOFIXEDOVERFLOW NOFOFL Condition prefix

NOLOCK Option of READ statement

NONE Option of DEFAULT statement

NOOVERFLOW Condition prefix

NOSIZE Condition prefix

NOSTRINGRANGE NOSTRG Condition prefix

NOSTRINGSIZE NOSTRZ Condition prefix

NOSUBSCRIPTRANGE NOSUBRG Condition prefix

NOZERODIVIDE NOZDIV Condition prefix

ONCOUNT Built-in function

ONFIELD Built-in function

D–2

Migration Notes

Table D–1 (Cont.) PL/I Keywords Not Supported

Keyword Abbreviation Use

ONLOC Built-in function

ORDER Option of BEGIN and PROCEDURE
statements

OVERFLOW OFL Condition prefix

PENDING Condition

POLY Built-in function

PRIORITY Option of CALL statement, Built-in function,
Pseudovariable

RANGE Option of DEFAULT statement

REAL Attribute, Built-in function, Pseudovariable

RECORD Condition

REDUCIBLE RED Attribute

REENTRANT Option of OPTIONS option

RELEASE Statement

REORDER Option of BEGIN and PROCEDURE
statements

REPEAT Built-in function

REPLY Option of DISPLAY statement

SAMEKEY Built-in function

SIZE Condition, Condition prefix

SNAP Option of PUT statement

STATUS Built-in function, Pseudovariable

STORAGE STG Built-in function

STRINGRANGE STRG Condition prefix

STRINGSIZE STRZ Condition, Condition prefix

SUB Dummy variable of DEFINED attribute

SUBSCRIPTRANGE SUBRG Condition prefix

SYSTEM Option of DECLARE statement

TAB Option of OPEN statement

TASK Attribute, Option of OPTIONS option, Option
of CALL statement

TRANSIENT Attribute, option of OPEN statement

TRANSMIT Condition

UNBUFFERED UNBUF Attribute, Option of OPEN statement

UNLOCK Statement

WAIT Statement

D–3

Migration Notes

D.2 Differences Between Kednos PL/I for OpenVMS VAX and Kednos PL/I
for OpenVMS Alpha

This section lists the differences between Kednos PL/I for OpenVMS VAX,
Kednos PL/I for OpenVMS Alpha, and other PL/I compilers that require
you to modify your source files to avoid compilation errors. In some cases,
differences require reprogramming.

• The at sign (@) and number sign (#) characters are not allowed in
identifiers; thus, you must change all identifiers that contain either of
these characters.

• You must explicitly declare all names (except internal procedure and
label constants) There is no I through N rule that provides an implicit
declaration of FIXED BINARY to undeclared names. In fact, the
compiler defaults all undeclared names to FIXED BINARY and issues
a warning message to that effect.

• If the attribute FLOAT is specified and neither of the attributes
BINARY or DECIMAL is specified with it, the compiler provides a
default of BINARY. This should not present a problem; however, if a
precision was specified under the assumption that the default floating-
point base was DECIMAL, overflow conditions can result if you do not
correct the declaration.

• You cannot explicitly declare internal entry constants and subscripted
label constants; these names are implicitly declared by their
appearance. You must remove the declarations from the source file.

• You must reprogram ON-units for unsupported conditions. For
example, ON-units for SIZE, RECORD, and TRANSMIT should be
modified so that they are invoked for the ERROR condition, which is
the condition that is signaled for any of these errors.

• You cannot specify the ALIGNED and UNALIGNED attributes for a
structure in which string variables are to be aligned or unaligned. The
attribute must be specified in the declaration of each variable that is
to be aligned.

• You cannot pass parameters directly to main procedures from the
command stream. For examples of techniques for passing values or
data to a main procedure, see the Kednos PL/I for OpenVMS Systems
User Manual.

• Changes in virtual memory requirements

The virtual memory requirements for Kednos PL/I may be extensive
according to the types of PL/I language constructs that you use.
Processing the PUT and GET statements, BEGIN blocks and
PROCEDURE blocks with the Kednos PL/I for OpenVMS Alpha
compiler tends to require more virtual memory than the same
operation would if you were using the Kednos PL/I for OpenVMS
VAX compiler.

D–4

Migration Notes

Heavy usage of these constructs in your programs may exhaust your
user limits for virtual memory. The typical compiler errors that you
receive are:

%PLIG-F-TEXT, Compiler abort - virtual memory limits exceeded.

%SYSTEM-F-ABORT, abort

%LIB-F-INSVIRMEM, insufficient virtual memory

You can recover by increasing your user page-file quota
(PGFLQUOTA). See the Kednos PL/I for OpenVMS Alpha Installation
Guide or the appropriate OpenVMS Alpha system manual for more
information on increasing your user page-file quota.

• Changes in behavior for calls to bound procedures

With Kednos PL/I, nested procedures can be called by other routines
using the PL/I language’s entry variable. However, in order to
successfully reach these bound-procedure routines and ensure proper
execution of uplevel referenced variables within the bound procedures,
the user must keep the parent invocation of the bound procedure
active.

This ensures that the stack references to uplevel variables are still
valid.

The same situation exists with Kednos PL/I for OpenVMS Alpha.
However, you may experience differences in behavior between Kednos
PL/I for OpenVMS VAX and Kednos PL/I for OpenVMS Alpha if
you do not keep the parent invocation active. This is because bound
procedures are not created in the same way on the two compilers.

Kednos PL/I for OpenVMS Alpha creates the bound procedure values
on the stack of the parent of the bound procedure. The compiler sends
an access violation message or may exhibit other undefined behavior
when the parent invocation of the bound procedure is not kept active.
Because the parent’s stack has been destroyed, the bound procedure
code found on the parent’s stack may also have been destroyed or
corrupted, and the user may not be able to reach the bound procedure.

With Kednos PL/I for OpenVMS VAX you may receive the same
undefined behavior. Cases may exist in which you are able to reach
the bound procedure; however, you may still receive errors in results
from the uplevel referenced variables within the bound procedure.
This is because the bound procedure code on the parents stack may
have been corrupted.

The following example shows behavior where the bound procedure
entry6a cannot be reached by Kednos PL/I for OpenVMS Alpha,
because the parent procedure, entry6, has exited and its stack is free
to be recovered and used by other procedures. Therefore, the bound
procedure code has been destroyed.

D–5

Migration Notes

program: proc options(main);

program: proc options(main);
dcl (ent2) entry variable;
dcl fnc entry returns(entry) variable;
dcl evar char (25) var init(’ ’);

fnc=entry6;
ent2=fnc();
call destroy_stack();
call ent2;

put skip list(’Evar is =>’,evar);

entry6: proc returns (entry);
return(entry6a);

entry6a: proc;
evar=evar||’entry6a*’;
return;

end entry6a;
end entry6;

destroy_stack: proc;

/* Declare enough space to destroy previous
* stack values before this call.
*/

dcl temp_space char(1000);

temp_space = ’hello’;
end;

end program;

Note that this program also fails with Kednos PL/I for OpenVMS VAX.
However, it fails after having reached the bound procedure entry6a
and while trying to access the uplevel referenced variables from the
parent, entry6.

• Changes in behavior for overlapping static storage initialization

In both Kednos PL/I for OpenVMS VAX and Kednos PL/I for
OpenVMS Alpha, overlapping initialization of static storage is not
supported. When Kednos PL/I for OpenVMS VAX finds an overlapping
static initialization, the compiler uses the value of the last found
initialization as the value for the static variable.

In Kednos PL/I for OpenVMS Alpha, however, you cannot depend on
the value of the last found initialization being assigned to the static
variable. This behavior may affect the following user constructs:

— Changes in behavior for PL/I external variable initialization

If a PL/I external variable is declared with the attributes
EXTERNAL STATIC INITIAL, all blocks that declare the variable
MUST be initialized with the same value.

Because Kednos PL/I for OpenVMS VAX allowed overlapping static
storage initialization, you could specify different initial values for
the SAME external variable within containing blocks. The last
initial value encountered by the Kednos PL/I for OpenVMS VAX
compiler was the value of the external variable.

D–6

Migration Notes

In Kednos PL/I for OpenVMS Alpha this rule is more strictly
enforced: if the user specifies an initial value in the declaration of
a PL/I external variable, the same initial value declaration must
be specified at each occurrence of the declaration of the external
variable in all blocks that declare the external variable. Failure
to do so can cause unpredictable results. The following examples
show correct and incorrect declarations:

Correct Declaration of an External Variable Initialization

/* A CORRECT declaration of an external
* variable initialization.
*/

program: proc options(main);

dcl test fixed external initial(5);

p:proc;

dcl test external initial(5);

/* The value of this variable should be 5. */

put skip list (’The value of test is =>’,test);

end;
end;

Incorrect Declaration of an External Variable Initialization

/* INCORRECT declarations of external
* variable initialization.
*/

program: proc options(main);

/* The initialization MUST be the same
* for all declarations of the external
* variable.
*/

dcl test fixed external initial(5);
dcl test1 fixed external initial(5);
dcl test2 fixed external;

p:proc;

/* The initialization MUST be the same
* for all declarations of the external
* variable.
*/

dcl test external initial(6);
dcl test1 external;
dcl test2 external initial(6);

/* The value of these variables is unpredictable. */
put skip list (’The value of test is =>’,test);
put skip list (’The value of test1 is =>’,test1);
put skip list (’The value of test2 is =>’,test2);

end;
end;

Note: As no guarantee exists as to which occurrence of the
external variable the Kednos PL/I for OpenVMS Alpha
compiler processes first, each occurrence of the variable
must contain the same initial value.

D–7

Migration Notes

• Changes in behavior for the SUBSTR built-in function

In Kednos PL/I for OpenVMS VAX, the SUBSTR function is defined
only when the position attribute (the integer expression that indicates
the position of the first bit or character in the substring) is greater
than or equal to 1.

Similarly, in Kednos PL/I for OpenVMS Alpha, the SUBSTR function
is defined only when the position of the first bit or character is greater
than or equal to 1. Therefore, if the position of the first bit or character
to the SUBSTR built-in function is less than 1 (that is, the SUBSTR
BIF is undefined), you may observe different results with Kednos PL/I
for OpenVMS Alpha than with Kednos PL/I for OpenVMS VAX.

• Changes in underflow detection behavior for Kednos PL/I for OpenVMS
Alpha

The Kednos PL/I for OpenVMS VAX compiler outputs underflow
detection code, the Kednos PL/I for OpenVMS Alpha compiler does not.

• Changes for null statements and label behavior in Kednos PL/I for
OpenVMS Alpha

Kednos PL/I for OpenVMS VAX does not compare the multiple labels
of many succeeding combinations of labels and null statements so that
they will have the same address. However, Kednos PL/I for OpenVMS
Alpha optimizes these label-null statement sequences and compares
the multiple labels so that they result in the same address. The
following example shows this difference:

X67: PROC options(main);

A:
; /* Null statement. */
B:
; /* Null statement. */
C:
; /* Null statement. */

IF A=C THEN
PUT LIST(’NULL STATEMENT LABELS COMPARE EQUAL FOR Kednos PL/I for OpenVMS Al
ELSE
PUT LIST(’NULL STATEMENT LABELS COMPARE NOT EQUAL FOR Kednos PL/I for OpenVM

D: IF C=D THEN
PUT LIST(’ERROR THESE LABELS SHOULD NEVER COMPARE EQUAL’);

END;

• In Kednos PL/I for OpenVMS Alpha you can continue when a GOTO
statement with the OTHERWISE option is used to go to an undefined
label array element within a BEGIN-END block. Kednos PL/I for
OpenVMS VAX does not support this function. The following example
works with Kednos PL/I for OpenVMS Alpha but not Kednos PL/I for
OpenVMS VAX:

program: procedure options(main);

dcl i fixed binary(31,0);

begin;

D–8

Migration Notes

i = 2;
goto part(i) otherwise;
put skip list(’At continue !!’);

end;

part(1):

end program;

• Run-time exception handling is more consistent when processing
formats of GET EDITs and PUT EDITs in Kednos PL/I for OpenVMS
Alpha than it is in Kednos PL/I for OpenVMS VAX. If Kednos PL/I for
OpenVMS Alpha encounters an exception when processing a format
such as PLI$_INVFMTPARM, a signal is raised. If the exception
is handled, then processing continues with the next format item
regardless of the nature of the signal and the format item that was
being processed when the exception was detected. This is not always
the case with Kednos PL/I for OpenVMS VAX.

• Nonlocal returns work properly under Kednos PL/I for OpenVMS
Alpha. A nonlocal return is a RETURN statement that is lexically
nested between any number of BEGIN/END pairs; for example:

nested_proc : proc returns (fixed);
begin;

begin;
begin;

begin;
begin;

return (5);
end;
put skip list (’shouldnt be here 1’);

end;
put skip list (’shouldnt be here 2’);

end;
put skip list (’shouldnt be here 3’);

end;
put skip list (’shouldnt be here 4’);

end;
put skip list (’shouldnt be here 5’);

end;

nested_proc2 : proc returns (float);
begin;

begin;
begin;

begin;
begin;

return (5.1);
end;
put skip list (’shouldnt be here 1’);

end;
put skip list (’shouldnt be here 2’);

end;
put skip list (’shouldnt be here 3’);

end;
put skip list (’shouldnt be here 4’);

end;
put skip list (’shouldnt be here 5’);

end;

D–9

Migration Notes

program: proc options(main);
dcl result1 fixed;
dcl result2 float;

result1 = nested_proc();
result2 = nested_proc2();

put skip list (result1);
put skip list (result2);

end;

Two special considerations should be observed for nonlocal returns
from OPTIONS(MAIN) procedures. First, an ON unit declared in
the scope of one of the BEGIN/END pairs for FINISH will be given a
chance to execute. Second, an ON unit declared in the scope of one of
the BEGIN/END pairs for VAXCONDITION(ss$_unwind) will NOT be
given a chance to execute with the previous construct.

• When a program terminates abnormally due to an unhandled
exception, Kednos PL/I for OpenVMS Alpha closes all open files before
turning control over to the OpenVMS last-chance condition handler
(the utility that prints the error and traceback).

This means that I/O that was being held in a buffer is allowed to reach
its destination before the error dump appears on the screen. This is
not the case with Kednos PL/I for OpenVMS VAX, in which I/O held in
a buffer is not allowed to reach its destination before the error dump
appears on the screen.

• Differences in exception handling between OpenVMS Alpha and
OpenVMS VAX

Because machine instructions on OpenVMS Alpha systems differ
from those on OpenVMS VAX systems, any exception handler written
to handle VAX hardware exceptions should be examined to ensure
that it handles Alpha hardware exceptions similarly. For example,
consider a case in which an exception handler has been written to
handle an access violation. You may expect different behavior upon
normal completion of the handler. In this case the handler should
always perform a nonlocal GOTO to exit the handler so that program
execution continues in a predictable way.

D–10

Migration Notes

• Fixed-decimal precision differences between Kednos PL/I for OpenVMS
Alpha and Kednos PL/I for OpenVMS VAX

The precision specified for a PL/I fixed-decimal data type must be in
the range of 1 to 31 for Kednos PL/I for OpenVMS Alpha. Kednos PL/I
for OpenVMS VAX allows a fixed-point decimal variable to be declared
with a precision of zero and also allows built-in functions to specify
a fixed-decimal precision of zero. Kednos PL/I for OpenVMS Alpha
does not allow zero to be used in either of these situations and issues
an error "FIXDPRECZERO" when the precision specified for a fixed
decimal is zero.

• Differences in behavior between OpenVMS VAX and OpenVMS Alpha
architectures regarding PL/I error conditions

In general, any PL/I operation that overflows on OpenVMS VAX
systems will also overflow with Kednos PL/I for OpenVMS Alpha on
OpenVMS Alpha systems. However, the Alpha hardware does not
include support for packed decimal instructions that correspond to
the PL/I fixed decimal data type; data items of this type are handled
on OpenVMS Alpha systems through run-time calls, either to Kednos
PL/I for OpenVMS Alpha run-time library routines or to system
OTS routines. These emulation routines perform many operations to
compute the result of a fixed decimal operation, which in most cases
can be done with a single VAX instruction. Any one of these many
emulation operations can and will generate an overflow.

Therefore, Kednos PL/I for OpenVMS Alpha can guarantee at least
one overflow only on OpenVMS Alpha systems for every overflow
on OpenVMS VAX systems per PL/I statement. Kednos PL/I for
OpenVMS Alpha cannot guarantee that the resulting behavior or value
produced by a PL/I statement that produces an overflow condition will
be the same value or behavior as it was on Kednos PL/I for OpenVMS
VAX.

The following PL/I example shows the difference in overflow detection
between Kednos PL/I for OpenVMS VAX and Kednos PL/I for
OpenVMS Alpha. This difference occurs when a PL/I fixed-decimal
item with precision of 31 and scale factor of 21 [fixed decimal(31,21)]
is converted to a PL/I fixed binary item with precision 31 and scale
of 30 [fixed binary(31,30)]. On OpenVMS VAX systems this overflow
situation results in two overflow conditions being raised. On OpenVMS
Alpha systems this situation results in one overflow condition being
raised.

Note that all Kednos PL/I for OpenVMS VAX cases of overflow are
detected on OpenVMS Alpha systems here. However, in this case
Kednos PL/I for OpenVMS Alpha detects one overflow for the two
overflows reported by Kednos PL/I for OpenVMS VAX. This difference
is due to a difference in the instruction set between OpenVMS VAX
and OpenVMS Alpha systems and a further explanation is detailed
below.

D–11

Migration Notes

The selected program fragment contained here shows two examples of
this situation. In each case the fixed-decimal item is converted to a
fixed-binary item by a series of three steps.

1 Multiplies the fixed decimal(31,21) item by the decimal
representation of 2**30.

2 Shifts the fixed decimal (31,51) created by step 1 right by 21.

3 Converts the fixed decimal (31,30) created by step 2 to a fixed
binary (31,30).

The VAX macro instructions output by Kednos PL/I for OpenVMS VAX
to perform this conversion are:

23 1 fixb30 = fixd21;
A0 AD 1F C4 AD 1F 00000000* EF 0A 25 0125 mulp #10,PLI$B_PAC_2_POWER_30,#31,-60(fp),#31,-96(fp)

90 AD 1F 00 A0 AD 1F EB 8F F8 0132 ashp #-21,#31,-96(fp),#0,#31,-112(fp)
54 90 AD 1F 36 013C cvtpl #31,-112(fp),r4

B0 AD 54 D0 0141 movl r4,-80(fp)

In this example fragment, overflows are detected during the VAX mulp
instruction which causes an overflow to occur and during the VAX cvtpl
instruction. The OpenVMS Alpha instruction set does not contain
decimal instructions, so the OpenVMS VAX decimal instructions are
emulated by a series of OpenVMS Alpha instructions and OTS calls.
During the instructions generated on by OpenVMS Alpha systems by
Kednos PL/I for OpenVMS Alpha to emulate the OpenVMS VAX mulp
instruction, an overflow is correctly detected. During the instructions
to convert packed decimal to integer, an overflow is not detected,
however.

Note that after a fixed-overflow condition has been raised, the value
resulting from an operation that causes this condition is undefined.
In this case, the value from the result of the multiply that caused an
overflow is undefined. Therefore, when it is used in the expression
no guarantee exists that an overflow will be raised again. This is
what is happening when the result of the overflow is shifted right and
then converted from decimal to integer. Therefore, in this case it is
reasonable to expect a difference in the number of overflows detected
from one PL/I statement.

Due to the difference in OpenVMS VAX and OpenVMS Alpha systems
instructions, we can not prevent this situation from occurring. If
you notice a situation during a conversion in which you receive one
overflow on OpenVMS Alpha systems but two on OpenVMS VAX
systems this is likely to be the reason.

In general, on a per-statement basis Kednos PL/I for OpenVMS Alpha
can be expected to detect overflow, but the number of overflows
detected per statement cannot be guaranteed to be the same on
OpenVMS VAX and OpenVMS Alpha systems. The following complete
example shows the difference:

D–12

Migration Notes

program: procedure options(main);

dcl fixb30 fixed bin(31,30);
dcl fixd18 fixed decimal(31,18);
dcl fixd21 fixed decimal(31,21);
dcl fixd22 fixed decimal(31,22);
dcl fixd24 fixed decimal(31,24);

on fixedoverflow begin;
put skip list(’fixed overflow occurred’);

end;

fixd18 = 18.36;
fixd22 = 22.40;

fixd21 = fixd18+fixd22;
fixb30 = fixd21;

fixd18 = 18.42;
fixd24 = 24.58;

fixd21 = fixd24+fixd18;
fixb30 = fixd21;

end;

D.3 Implicit Conversions
The Kednos PL/I compilers issue warning-level messages when they
perform implicit conversions between arithmetic and string data types
and between bit-string and character-string data types. They issue these
messages for all such conversions, not just those excluded by the PL/I
General-Purpose Subset.

You can avoid the messages by compiling your programs with the
/NOWARNINGS qualifier. Otherwise, you can edit your program, locate
the occurrences of implied conversions, and change them to explicit
conversions, as follows:

• Arithmetic to character-string-use the CHARACTER built-in function.

• Arithmetic to bit-string-use the BIT built-in function.1

• Bit-string to arithmetic-use the BINARY built-in function.

• Bit-string to character string-use the CHARACTER built-in function.

• Character-string to arithmetic-use the BINARY, DECIMAL, FIXED, or
FLOAT built-in function, according to the target data type.

• Character-string to bit string-use the BIT built-in function.

1 This conversion is based on the way bit strings are printed by PUT LIST (the first bit of the string is the high-order bit if
the printed string is viewed as a binary integer) rather than being based on the internal representation (the first bit of
the string is then in the low-order digit position in memory).

D–13

Migration Notes

D.4 Printing a Hexadecimal Memory Dump
Dump printing routines written for other hardware architectures are not
transportable to OpenVMS VAX and OpenVMS Alpha systems. Because
the order in which bits are stored on OpenVMS machines is reversed
on some other machines, these routines must be entirely rewritten. The
program HEXDUMP that follows shows one technique for outputting the
contents of memory in hexadecimal:

/*
This procedure illustrates the dumping of memory in
hexadecimal. The output format is consistent with other
OpenVMS VAX or OpenVMS Alpha memory dump utilities.

*/

HEXDUMP: PROCEDURE OPTIONS(MAIN);
DECLARE DUMP_LOCATION POINTER;
DECLARE (I,J) FIXED BINARY(31);

/* declare and initialize fake memory to dump */
DECLARE MEMORY(0:255) FIXED BINARY(7);
DO I = 0 TO 127;

MEMORY(I) = I;
MEMORY(I + 128) = I - 128;
END;

/* dump the pseudomemory on the user’s terminal */
DO I = 0 TO 255 BY 16;

PUT SKIP;
DO J = 12 TO 0 BY -4;
DUMP_LOCATION = ADDR(MEMORY(I+J));
CALL OUTPUT_HEX(DUMP_LOCATION);
END;

PUT EDIT(’ ’)(A(1));
CALL OUTPUT_HEX(ADDR(I));
END;

STOP;
/* subroutine to output a hexadecimal longword */
OUTPUT_HEX: PROCEDURE(ADDRESS);

DECLARE ADDRESS POINTER;
DECLARE F FIXED BIN(31) BASED(ADDRESS);

PUT EDIT(REVERSE(UNSPEC(F))) (B4(8));

END OUTPUT_HEX;

END HEXDUMP;

D–14

E Language Summary

This appendix briefly describes PL/I statements, attributes, expressions,
data conversions, built-in functions, pseudovariables, and built-in
subroutines.

E.1 Statements
%activate-statement

%
n

ACTIVATE
ACT

o
element

h
RESCAN
NORESCAN

i
, . . . ;

allocate-statementn
ALLOCATE
ALLOC

o
allocate-item, . . . ;

allocate-item:

variable-reference [SET(locator-reference)][IN(area-reference)]

%assignment-statement

%target = expression;

assignment-statement

target, . . . = expression;

begin-statement

BEGIN;

call-statement

CALL entry-name [(argument, . . .)];

close-statement

CLOSE FILE(file-reference) [ENVIRONMENT(option, . . .)]
[,FILE(file-reference) [ENVIRONMENT(option, . . .)]] . . .

%deactivate-statement

%
n

DEACTIVATE
DEACT

o
element, . . . ;

element:

E–1

Language Summary

�
identifier
(identifier, . . .)

�

%declare-statement

%
n

DECLARE
DCL

o
element

"
FIXED
CHARACTER
BIT

#
, . . . ;

element:�
identifier
(identifier, . . .)

�

declare-statementn
DECLARE
DCL

o
[level] declaration [,[level] declaration, . . .];

declaration:

[level] declaration-item

declaration-item:�
identifier
(declaration-item, . . .)

�
[(bound-pair, . . .)] [attribute . . .]

delete-statement

DELETE FILE(file-reference) [KEY (expression)][OPTIONS(option, . . .)]

%dictionary-statement

%DICTIONARY cdd-path;

%do-statement

%DO;
.
.
.
%END;

do-statement

DO

[reference=expression]
[TO expression [BY expression]]
[REPEAT expression]
[WHILE(expression)]
[UNTIL(expression)];

E–2

Language Summary

%end-statement

%END;

end-statement

END [label-reference];

entry-statement

entry-name: ENTRY [(parameter, . . .)]h
RECURSIVE
NONRECURSIVE

i
[RETURNS (returns-descriptor)];

%error-statement

%ERROR preprocessor-expression;

%fatal-statement

%FATAL preprocessor-expression;

format-statement

label:

FORMAT (format-specification, . . .);

free-statement

FREE variable-reference [IN area-reference], . . . ;

get-statement

GET EDIT (input-target, . . .)(format-specification, . . .)2
64

FILE(file-reference)
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

STRING(expression)

3
75

;

GET LIST (input-target, . . .)2
64

FILE(file-reference)
[SKIP[(expression)]]
[OPTIONS(option, . . .)]

STRING(expression)

3
75

;

GET [FILE(file-reference)] SKIP [(expression)];

%goto-statement

%GOTO label-reference;

E–3

Language Summary

goto-statementn
GOTO
GO TO

o
label-reference ;

%if-statement

%IF test-expression %THEN action [%ELSE action];

if-statement

IF test-expression THEN action [ELSE action];

%include-statement

%INCLUDE

8<
:

’ file-spec’
module-name
’ library-name(module-name)’

9=
;;

%inform-statement

%INFORM preprocessor-expression;

leave-statement

LEAVE [label-reference];

%[no]list-statement

%[NO]LIST;
%[NO]LIST_ALL;
%[NO]LIST_DICTIONARY;
%[NO]LIST_INCLUDE;
%[NO]LIST_MACHINE;
%[NO]LIST_SOURCE;

%null-statement

%;

null-statement

;

on-statement

ON condition-name, . . . [SNAP]
�

on-unit
SYSTEM;

�

E–4

Language Summary

open-statement

OPEN FILE(file-reference) [file-description-attribute . . .]
[,FILE(file-reference) [file-description-attribute . . .]] . . .

%page-statement

%PAGE;

%procedure-statement

%label:
n

PROCEDURE
PROC

o
[(parameter-identifier, . . .

)][STATEMENT]

RETURNS (

(
CHARACTER
FIXED
BIT

)
);

.

.

.

[%]RETURN (preprocessor-expression);.
.
.

[%]END.

procedure-statement

entry-name:
n

PROCEDURE
PROC

o
[(parameter, . . .)]

[OPTIONS (option, . . .)]h
RECURSIVE
NONRECURSIVE

i
[RETURNS (value-descriptor)];

put-statement

PUT EDIT (output-source, . . .) (format-specification, . . .)2
666664

FILE(file-reference)
[PAGE]
[LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option)]

STRING(reference)

3
777775

;

PUT [FILE(file-reference)] LINE(expression);

PUT LIST (output-source, . . .)

E–5

Language Summary

2
666664

FILE(file-reference)
[PAGE]
[LINE(expression)]
[SKIP[(expression)]]
[OPTIONS(option)]

STRING(reference)

3
777775

;

PUT [FILE(file-reference)] PAGE;

PUT [FILE(file-reference)] SKIP [(expression)];

read-statement

READ FILE (file-reference)

�
INTO (variable-reference)
SET (pointer-variable)

�
�

KEY (expression)
KEYTO (variable-reference)

�

[OPTIONS (option, . . .)];

%replace-statement

%REPLACE identifier BY constant-value;

%return-statement

[%]RETURN (preprocessor-expression);

return-statement

RETURN [(return-value)];

revert-statement

REVERT condition-name, . . . ;

rewrite-statement

REWRITE FILE (file-reference)
[FROM (variable-reference) [KEY (expression)]]
[OPTIONS (option, . . .)];

%sbttl-statement

%SBTTL preprocessor-expression

E–6

Language Summary

select-statement

SELECT [(select-expression)];
[WHEN [ANY | ALL] (expression, . . .) [action];] . . .
[{OTHERWISE | OTHER} [action];]
END;

signal-statement

SIGNAL condition-name;

stop-statement

STOP;

%title-statement

%TITLE preprocessor-expression

%warn-statement

%WARN preprocessor-expression;

write-statement

WRITE FILE(file-reference) FROM (variable-reference)
[KEYFROM (expression)]
[OPTIONS (option, . . .)];

E.2 Attributes
Computational Data Type Attributes

The following attributes define arithmetic and string data:

CHARACTER [(length)]
h

VARYING
NONVARYING

i
BIT [(length)]

h
ALIGNED
UNALIGNED

i
n

FLOAT
FIXED

o n
BINARY
DECIMAL

o [[PRECISION] (precision
[,scale-factor])]

PICTURE ’ picture’

These attributes can be specified for all elements of an array and for
individual members of a structure.

E–7

Language Summary

Noncomputational Data Type Attributes

The following attributes apply to program data that is not used for
computation:

AREA
CONDITION
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL [VARIABLE]
OFFSET
POINTER

Storage Class and Scope Attributes

The following attributes control the allocation and use of storage for a data
variable and define the scope of the variable:

AUTOMATIC [INITIAL(initial-element, . . .)]
BASED [(pointer-reference)][INITIAL(initial-element, . . .)]
CONTROLLED [INITIAL(initial-element, . . .)]
DEFINED(variable-reference) [POSITION(expression)]
STATIC [READONLY] [INITIAL(initial-element, . . .)]
PARAMETER
INTERNAL

EXTERNAL

"
GLOBALDEF [(psect-name)]

h
VALUE
READONLY

i
GLOBALREF

#

Member Attributes

The following attributes can be applied to the major or minor members of
a structure:

LIKE
MEMBER
REFER
STRUCTURE
TYPE
UNION

E–8

Language Summary

File Description Attributes

The following attributes can be applied to file constants and used in OPEN
statements:

ENVIRONMENT(option, . . .)
n

RECORD [KEYED]
STREAM

o (INPUT
OUTPUT [PRINT]
UPDATE

)
�

DIRECT
SEQUENTIAL

�

Entry Name Attributes

The following attributes can be applied to identifiers of entry points:

ENTRY [VARIABLE] [OPTIONS (VARIABLE)]
[RETURNS (returns-descriptor)]

BUILTIN

Non-Data Type Attributes

The following attributes can be applied to data declarations:

ALIGNED
DIMENSION
UNALIGNED

E–9

Language Summary

E.3 Expressions and Data Conversions
The following table lists the categories of operators, their symbols, and
their meanings.

Operators

Category Symbol Operation

Arithmetic
operators

+
�

/
*
**

Addition or prefix plus
Subtraction or prefix minus
Division
Multiplication
Exponentiation

Relational
(or comparison)
operators

>
<
=
^>
^<
^=
>=
<=

Greater than
Less than
Equal to
Not greater than
Not less than
Not equal to
Greater than or equal to
Less than or equal to

Bit-string
(or logical)
operators

^ (prefix)
&
|
&:
| :
^ (infix)

Logical NOT
Logical AND
Logical OR
Logical AND THEN
Logical OR ELSE
Logical EXCLUSIVE OR

Concatenation
operator

| | String concatenation

Note: For any of the operators, the tilde character (~) can be used
instead of a circumflex (^), and an exclamation point (!) can be
used instead of a vertical bar (|).

The following table gives the priority of PL/I operators. Low numbers
indicate high priority. For example, the exponentiation operator (**) has
the highest priority (1), so it is performed first, and the OR ELSE operator
(| :) has the lowest priority (9), so it is performed last.

Precedence of Operators

Operator Priority
Left/Right
Associative Order of Evaluation

() 0 N/A deepest first

** 1 right left to right

+ (prefix) 1 N/A N/A

- (prefix) 1 N/A N/A

^ (prefix) 1 N/A N/A

* 2 left left to right

/ 2 left left to right

E–10

Language Summary

Operator Priority
Left/Right
Associative Order of Evaluation

+ (infix) 3 left left to right

- (infix) 3 left left to right

| | 4 left left to right

> 5 left left to right

< 5 left left to right

^> 5 left left to right

^< 5 left left to right

= 5 left left to right

^= 5 left left to right

<= 5 left left to right

>= 5 left left to right

& 6 left left to right

| 7 left left to right

^ (infix) 7 left left to right

&: 8 left left to right across entire
expression

| : 9 left left to right across entire
expression

The following table discusses the contexts in which PL/I performs data
conversion.

Contexts in Which PL/I Converts Data

Context Conversion Performed

target = expression; In an assignment statement, the given expression
is converted to the data type of the target.

entry-name
RETURNS (attribute . . .);

.

.

.

In a RETURN statement, the specified value
is converted to the data type specified by the
RETURNS option on the PROCEDURE or
ENTRY statement.

RETURN (value);

E–11

Language Summary

Context Conversion Performed

x + y
x - y
x * y
x / y
x**y
x | | y
x & y
x | y
x&:y
x | :y
x ^ y
x > y
x < y
x = y
x^=y

In any expression, if operands do not have
the required data type, they are converted to
a common data type before the operation. For
most operators, the data types of all operands
must be identical. A warning message is issued
in the case of a concatenation conversion.

BINARY (expression)
BIT (expression)
CHARACTER (expression)
DECIMAL (expression)
FIXED (expression)
FLOAT (expression)
OFFSET (variable)
POINTER (variable)

PL/I provides built-in functions that perform
specific conversions.

PUT LIST (item, . . .); Items in a PUT LIST statement are converted to
character-string data.

GET LIST (item, . . .); Character-string input data is converted to the
data type of the target item.

PAGESIZE (expression)
LINESIZE (expression)
SKIP (expression)
LINE (expression)
COLUMN (expression)
format items A, B, E, F, and X
TAB (expression)

Values specified for various options to PL/I
statements must be converted to integer values.

DO control-variable . . . Values are converted to the attributes of the
control variable.

parameter Actual parameters are converted to the type of
the formal parameter if necessary.

INITIAL attribute Initial values are converted to the type of the
variable being initialized.

E.4 Pseudovariables
PL/I has the following pseudovariables:

INT
ONSOURCE
ONCHAR
PAGENO
POSINT

E–12

Language Summary

STRING
SUBSTR
UNSPEC

A pseudovariable can be used, in certain assignment contexts, in place of
an ordinary variable reference. For example:

SUBSTR(S,2,1) = ’A’;

This assigns the character <BIT_STRING>(A) to a 1-character substring of S,
beginning at the second character of S.

A pseudovariable can be used wherever the following three conditions are
true:

• The syntax specifies a variable reference.

• A value is explicitly assigned to the variable.

• The context does not require the variable to be addressable.

Pseudovariables are used most often in the following locations:

• The left side of an assignment statement

• The input target of a GET statement

Note that a pseudovariable cannot be used in preprocessor statements or
in an argument list. For example:

CALL P(SUBSTR(S,2,1));

Here, SUBSTR is interpreted as a built-in function reference, not as a
pseudovariable. The actual argument passed to procedure P is a dummy
argument containing the second character of string S.

E.5 Built-In Subroutines
The following table summarizes the file-handling built-in subroutines.

Summary of File-Handling Built-In Subroutines

Subroutine Function

DISPLAY Returns information about a file.

EXTEND Allocates additional disk blocks for a file.

FLUSH Requests the file system to write all buffers onto disk to preserve
the current status of a file.

FREE Unlocks all the locked records in a file.

NEXT_VOLUME Begins processing the next volume in a multivolume tape set.

RELEASE Unlocks a specified record in a file.

REWIND Positions a file at its beginning or at a specific record.

SPACEBLOCK Positions a file forward or backward a specified number of blocks.

PL/I also has the condition-handling subroutine RESIGNAL. This
subroutine allows an ON-unit to pass on a condition signal and causes
the condition to be resignaled for handling by a different ON-unit.

E–13

Index

A
ABS built-in function • 11–7
Absolute values

computing • 11–7
ABS preprocessor built-in function • 11–7
ACOS built-in function • 11–7
%ACTIVATE statement • 10–5, E–1

NORESCAN option • 10–5
RESCAN option • 10–5

Activation
block • 1–13

ACTUALCOUNT built-in function • 11–7
ADD built-in function • 11–7
Addition • 3–5
ADDR built-in function • 11–8

passing pointer value • 7–18
using • 5–12, 5–18

ADDREL built-in function • 11–9
A format item • 9–27

definition • 9–27
Aggregates • 4–1

arrays • 4–1
internal representation • 4–26
structures • 4–11

ALIGNED attribute • 2–10
Alignment

bit-string • 2–10
character-string • 2–10, 3–32
of bit strings • 3–36

ALLOCATE statement • 5–17, 5–18, E–1
using • 5–8

ALLOCATION built-in function • 11–9
using • 5–17

AND operator • 6–7
AND THEN operator • 6–8
ANY attribute • 2–11, 7–17, 7–18
ANYCONDITION condition • 8–27
Apostrophes

in character strings • 3–30
APPEND

ENVIRONMENT option • 2–22
AREA attribute • 2–11, 3–49
AREA condition • 8–27

Area data • 3–49
Areas

data
internal representation • 3–50

reading and writing • 3–50
Area variables • 3–50
Argument

list
null • 7–3

Arguments
aggregate • 7–12
arrays • 7–10
character strings • 7–11
conversion • 7–13
dummy • 7–12
list

for exception condition • 11–33
null • 2–15
relationship to parameter list • 7–8

matching with parameter • 7–12
of built-in functions • 11–1
passing • 7–11

arrays • 4–10
by descriptor • 2–19, 7–18, 11–18
by immediate value • 7–17
by reference • 2–38, 7–17
by value • 2–44
forcing passing by descriptor • 7–19
structure • 4–15
to PL/I procedure • 7–12
to subroutines or functions • 7–11

relationship to parameter • 7–8
specifying pointer values • 7–18
structures • 7–10

Arithmetic
built-in functions

ABS • 11–7
ADD • 11–7
CEIL • 11–14
DIVIDE • 11–19
FLOOR • 11–22
MAX • 11–28
MIN • 11–29
MOD • 11–30
MULTIPLY • 11–31
ROUND • 11–39
SIGN • 11–42

Index–1

Index

Arithmetic
built-in functions (cont’d)

SUBTRACT • 11–47
TRUNC • 11–52

data
converting to bit-string • 6–24
converting to character-string • 6–27
relational expression • 6–10
specifying precision • 2–36

operations
determining sign of a number • 11–42
division • 11–19
rounding to nearest digit • 11–39
ZERODIVIDE signaled • 8–39

operator • E–10
Arithmetic data • 3–5

specifying precision • 3–6
Arithmetic operators • 6–4
Array-handling

built-in functions
DIMENSION • 4–11, 11–18
HBOUND • 4–11, 11–23
LBOUND • 4–11, 11–26
PROD • 11–37
SUM • 11–48

Arrays • 4–1
assigning values with GET statement • 4–10
assigning values with PUT statement • 4–10
assignment statement • 4–9
bound pair • 4–4
concatenating with STRING • 11–46
connected • 4–25
declaration • 2–4
declaring • 4–1

as parameters • 7–10
dimensions

determining extent • 11–18
determining lower bound • 11–26
determining upper bound • 11–23
rules for specifying • 2–19, 4–2

elements
referring to • 4–5

extent of • 4–4
initializing • 4–6
of structures • 4–24

referring to elements • 4–24
unconnected arrays • 4–25

order of assignment and output • 4–9
passing

to non-PL/I procedures • 7–19
passing as arguments • 4–10, 7–10, 7–17

asterisk-extent • 2–38

Arrays
passing as arguments (cont’d)

by descriptor • 7–18
subscripts • 4–5
unconnected • 4–25

ASCII character set • B–1
obtaining integer value • 11–38
obtaining string of • 11–15

ASIN built-in function • 11–10
Assignment • 6–20

conversion during • 6–20
Assignment statement • 1–6, 6–1, E–1

and unconnected arrays • 4–25
conversion during

arithmetic data • 6–18
specifing structure • 4–15
specifying array variables • 4–9
structure • 4–23

%Assignment statement • 10–4
Asterisk (*)

in array declaration • 4–4
Asterisk (*)

as picture character • 3–20
ATAN built-in function • 11–10
ATAND built-in function • 11–11
ATANH built-in function • 11–11
Attributes • 2–5, E–7

array variables • 4–2
computational data type • 2–6, E–7
default arithmetic • 3–2
factors in declaration • 2–3
file description • 2–7, 9–3, 9–8, E–9

specifying on OPEN • 9–2
for entry points • 2–8, E–9
matching parameter and argument • 7–13
member • 2–7, 4–15, E–8
noncomputational data type • 2–6, E–8
non-data-type • E–9
nondata-type • 2–8
scope • 2–7, E–8
specifying in DECLARE statement • 2–1
storage • 2–7, E–8
structure variables • 4–12

AUTOMATIC attribute • 2–12
Automatic storage class • 5–1

B

Index–2

Index

BACKUP_DATE
ENVIRONMENT option • 2–22

BASED attribute • 2–13, 5–4
Based variables • 2–13, 5–4

associating with storage • 5–4
data type matching

left-to-right equivalence • 5–13
data-type matching • 5–13

overlay defining • 5–13
declaring • 5–4
example • 5–15
freeing storage • 5–20
nonmatching reference • 5–14
obtaining storage • 5–18
offset within area • 3–41
REFER option • 4–19
referring to • 5–7
using READ statement • 5–11

BATCH
ENVIRONMENT option • 2–22, 9–9

Begin blocks • 1–10, 1–11, 8–10
effect of RETURN statement • 7–16
in ON-unit • 8–42
terminating • 8–10, 8–12

BEGIN statement • 8–10, E–1
B format item

definition • 9–29
Binary

fixed-point data • 3–8
floating-point data • 3–11

BINARY attribute • 2–13, 3–8
in floating-point declarations • 3–12

BINARY built-in function • 11–11
BIT attribute • 2–14, 3–35
BIT built-in function • 11–12
Bit strings • 3–33

alignment • 3–36
as integers • 3–36
concatenation • 6–11
constants • 3–33

hexadecimal • 3–34
maximum length • 3–33
octal • 3–34
specifying base • 3–34

converting • 3–39
from other types to • 6–24
to arithmetic • 6–19, 6–22
to character • 6–19
to character-string • 6–29

declaring variables • 3–35
derived type and precision of • 6–19

Bit strings (cont’d)

in relational expressions • 6–10
internal representation • 3–36
length

maximum • 3–33
specifying • 3–35

locating substrings • 11–23
operator • 6–5
overlay defining • 5–23
passing as arguments

by reference • 7–18
by value • 7–17

storage in memory • 3–37
unaligned • 4–26

passing as arguments • 7–18
restrictions on use • 3–36

variables • 3–35
Block • 1–9

activation • 1–13
parent • 1–14
procedure invocation • 7–5
relationships among • 1–13

begin block • 1–10, 1–11, 8–10
containment • 1–12
dynamic descendants • 1–14
nesting • 1–12
procedure • 1–9
procedure block • 1–12
procedure invocation • 1–12
terminating • 1–15, 8–11

BLOCK_BOUNDARY_FORMAT
ENVIRONMENT option • 2–22

BLOCK_IO
ENVIRONMENT option • 2–22

BLOCK_SIZE
ENVIRONMENT option • 2–22

Boolean
operation

defining with BOOL • 11–12
test • 8–12
value • 3–33

Bound pair
array • 4–4

Bounds
of array dimensions

determining lower • 11–26
determining upper • 11–23
rules • 4–2
specifying • 4–1

Index–3

Index

B picture character • 3–23
BUCKET_SIZE

ENVIRONMENT option • 2–22
BUILTIN attribute • 2–15, 7–4
Built-in function

arguments • 11–1
condition in • 11–2
conversion • 6–19
defining with BUILTIN attribute • 2–15
preprocessor • 10–26
result type • 11–1
summary • 11–2

Built-in subroutines • 11–57
DISPLAY • 11–57
EXTEND • 11–57
FLUSH • 11–57
FREE • 11–58
NEXT_VOLUME • 11–58
RELEASE • 11–58
RESIGNAL • 8–42, 11–57

BY option of DO statement • 8–5
BYTE built-in function • 11–14
BYTE preprocessor built-in function • 11–14
BYTESIZE built-in function • 11–14

C
Calling a procedure

non-PL/I • 2–11, 2–44, 7–17, 7–19, C–8
CALL statement • 7–7, E–1

calling non-PL/I procedures • 7–17
passing character strings • 7–19

to invoke a procedure • 1–12
CARRIAGE_RETURN_FORMAT

ENVIRONMENT option • 2–22
CDD (OpenVMS Common Data Dictionary) • C–9
CDD (VAX Common Data Dictionary)

data types • 10–9
CDD VAX Common Data Dictionary • 10–8
CEIL built-in function • 11–14
CHARACTER attribute • 2–16, 3–31
CHARACTER built-in function • 11–14
Characters

picture • 3–18
substituting with TRANSLATE • 11–49
used for punctuation in PL/I • 1–1

Character set
ASCII • B–1

obtaining strings • 11–15

Character set (cont’d)

Digital Multinational Character Set • B–1
Character strings • 3–29

alignment • 3–32
comparing with VERIFY • 11–56
concatenation • 6–11
constants • 3–30

continuing on more than one line • 1–3
converting

from other types to • 6–26
to arithmetic • 6–19, 6–23
to bit • 6–19
to bit-string • 6–26

data • 3–29
declaring • 2–16

as parameters • 7–11
derived type and precision of • 6–19
determining length • 11–26
fixed-length • 3–31

internal representation • 3–32
in relational expression • 6–10
length

specifying • 3–31
locating substrings • 11–23
overlay defining • 5–23
passing as arguments • 7–11

by descriptor • 7–19
variables • 3–31
varying-length • 2–45, 3–32

internal representation • 3–32
Circumflex (^)

prefix operator • 6–3
CLOSE statement • 9–8, E–1

ENVIRONMENT attribute • 9–9
COLLATE

built-in function • 11–15
COLUMN format item

definition • 9–32
Comma (,) picture character • 3–23
Comments • 1–4

rules for entering • 1–4

Common Data Dictionary

See CDD
Comparison operator • 1–2
Compatibility with PL/I standards • C–1
Compatible data types • 3–4
Compiler

differences between Kednos Corporation
implementations and standard PL/I • D–4

Index–4

Index

Compiler (cont’d)

differences between Kednos PL/I for OpenVMS
VAX and Kednos PL/I for OpenVMS Alpha •
D–4

Compiler messages
%ERROR • 10–11
%FATAL • 10–12
%INFORM • 10–15
%WARN • 10–24

Completion
ON-unit • 8–42

Compound statement • 1–6
Computational data

summary of attributes • 2–6, E–7
Computational data type attributes • E–7
Concatenation

COPY built-in function • 11–15
operator • 1–3, 6–11
required operands • 6–4

Condition
data

in relational expressions • 6–11
internal representation • 3–51

CONDITION attribute • 2–16
CONDITION condition • 8–28
Condition data • 3–51
Condition handling • 8–22

built-in functions
ONARGSLIST • 11–33
ONCHAR • 11–33
ONCODE • 11–33
ONFILE • 11–34
ONKEY • 11–34
ONSOURCE • 11–35

ON statement • 8–22
Conditions

ANYCONDITION • 8–27
AREA • 8–27
CONDITION • 8–28
CONVERSION • 8–28
decimal overflow • 8–33
ENDFILE • 8–30
ENDPAGE • 8–31
ERROR • 8–32
FINISH • 8–33
FIXEDOVERFLOW • 8–33
handling • 8–22
in built-in functions • 11–2
integer overflow • 8–33
KEY • 8–34
OVERFLOW • 8–36
signal • 8–23

Conditions (cont’d)

STORAGE • 8–36
STRINGRANGE • 8–36
UNDEFINEDFILE • 8–37
UNDERFLOW • 8–39
VAXCONDITION • 8–39
ZERODIVIDE • 8–39

Connected array • 4–25
Constants

bit-string • 3–33
character-string • 3–30
entry • 3–45
file • 3–48, 9–2
fixed-point decimal • 3–10
floating-point • 3–12
in argument list • 7–12
integer • 3–8
label • 3–42
label array • 3–42

Containment • 1–10, 1–12
CONTIGUOUS

ENVIRONMENT option • 2–22
CONTIGUOUS_BEST_TRY

ENVIRONMENT option • 2–22
CONTROLLED attribute • 2–17
Controlled DO statement • 8–4
Controlled variables • 2–17, 5–16

obtaining storage • 5–18
Conversion

ASCII to integer • 11–38
CONVERSION condition • 8–28
Conversions • 6–20, 8–28

arithmetic to arithmetic • 6–20
arithmetic to bit-string • 6–24
arithmetic to character-string • 6–27
bit-string to arithmetic • 6–22
bit-string to character-string • 6–29
built-in functions

BINARY • 11–11
BIT • 11–12
BYTE • 11–14
CHARACTER • 11–14
DECIMAL • 11–17
DECODE • 11–18
ENCODE • 11–20
FIXED • 11–21
FLOAT • 11–22
INT • 11–24
POSINT • 11–36
RANK • 11–38
UNSPEC • 11–52

Index–5

Index

Conversions (cont’d)

character-string to arithmetic • 6–23
character-string to bit-string • 6–26
integer to ASCII • 11–14
of argument • 7–13
offset to pointer • 6–30
of operands • 6–17
performed by Kednos PL/I for OpenVMS Alpha •

D–13
performed by Kednos PL/I for OpenVMS VAX •

D–13
pictured to arithmetic • 6–22
pictured to bit-string • 6–26
pictured to character-string • 6–26, 6–29
pointer to offset • 6–30
to bit-string • 6–24, 11–12
to character-string • 6–26, 11–14
to decimal • 11–17
to fixed point • 11–21
to floating point • 11–22
to picture • 6–30

Conversions to Kednos PL/I for OpenVMS Alpha •
D–1

Conversions to Kednos PL/I for OpenVMS VAX • D–1
COPY built-in function • 11–15
COPY preprocessor built-in function • 11–15
COS built-in function • 11–16
COSD built-in function • 11–16
COSH built-in function • 11–16
CREATION_DATE

ENVIRONMENT option • 2–22
Credit (CR) picture character • 3–24
Current record • 9–69
CURRENT_POSITION

ENVIRONMENT option • 2–22

D
Data • 1–15

conversion • 6–20, 8–28
Data attributes

default • 3–2
Data conversions • E–10

contexts • 6–15
Data types • 3–1

area • 3–49
arguments

passed by descriptor • 7–18
passed by immediate value • 7–17
passed by reference • 7–18

Data types (cont’d)

arithmetic • 3–5
converting to nonarithmetic • 6–19
default attributes • 3–2
default precision • 3–6
fixed-point binary • 3–8
precision of • 3–6

bit-string • 3–33
character-string • 3–29
compatible • 3–4
computational • 3–1
condition • 3–51
conversion between • 6–14
declaring • 3–2
default attributes • 3–2

for arithmetic operands • 3–4
of constants • 3–3

derived • 6–17
entry • 3–45
file • 3–47, 9–1
fixed-point binary • 3–8
fixed-point decimal • 3–10
floating-point • 3–11
for CDD declarations • 10–9
label • 3–41
nonarithmetic

converting to arithmetic • 6–19
noncomputational • 3–1

in relational expression • 6–11
pictured • 3–18
pointer • 3–40
summary • 3–1

DATE built-in function • 11–16
DATE preprocessor built-in function • 11–16
DATETIME built-in function • 11–17
DATETIME preprocessor built-in function • 11–17
Day of month

obtaining current • 11–16, 11–17
%DEACTIVATE statement • 10–6, E–1
Debit (DB) picture character • 3–24
DECIMAL attribute • 2–17

in floating-point declarations • 3–12
DECIMAL built-in function • 11–17
Decimal data

declaring • 2–17
FIXEDOVERFLOW • 8–33
fixed-point data • 3–10
floating overflow • 8–36
floating-point data • 3–11
floating underflow • 8–39

Index–6

Index

Decimal place
in picture • 3–19

Declaration • 2–1, 3–2
array • 2–4, 4–1
file • 9–1
location of • 2–11
more than one name in a DECLARE • 2–3
of variables with same attributes • 2–3
simple • 2–2
structure • 2–5, 4–12

DECLARE statement • 2–1, E–2
array declarations • 4–1

%DECLARE statement • 10–7, E–2
DECODE built-in function • 11–18
DECODE preprocessor built-in function • 11–18
DEFAULT_FILE_NAME

ENVIRONMENT option • 2–22
DEFERRED_WRITE

ENVIRONMENT option • 2–22
DEFINED attribute • 2–18, 5–21
Defined variables

specifying position in base • 2–36
Delete

records • 9–65
DELETE

ENVIRONMENT option • 2–22, 9–9
DELETE statement • 9–1, 9–65, E–2
Derived type • 6–17

of bit and character strings • 6–19
Descendants

dynamic
of blocks • 1–14, 8–41

Descriptor
argument passing • 7–18
data types created for • 7–18

DESCRIPTOR attribute • 2–19
DESCRIPTOR built-in function • 11–18

specifying in argument • 7–19
using • 7–19

D-floating format
range of precision • 3–13

Diagnostic messages
%ERROR • 10–11
%FATAL • 10–12
%INFORM • 10–15
user-generated • 10–25
%WARN • 10–24

%DICTIONARY statement • 10–8, E–2
Differences

Kednos PL/I for OpenVMS VAX and Kednos PL/I
for OpenVMS Alpha • D–4

Digital Multinational Character Set • B–1
DIMENSION attribute • 2–19
DIMENSION built-in function • 11–18
Dimensions

array of structures
rules • 4–25

rules for specifying • 4–2
DIRECT attribute • 2–20, 9–8
DISPLAY built-in subroutine • 11–57
DIVIDE built-in function • 11–19
Division

controlling precision • 11–19
ZERODIVIDE condition • 8–39

Documentation
program • 1–4

DO-group • 8–1
nesting • 8–1
termination • 8–12

Dollar ($) picture character • 3–22
DO statement • 8–1, E–2

controlled DO • 8–4
logic • 8–6

DO REPEAT
logic • 8–9

DO UNTIL • 8–3
DO WHILE • 8–2
format • 8–2
REPEAT option • 8–8
simple • 8–2

%DO statement • 10–10, E–2
Double-precision floating point

range of precision • 3–13
Drifting picture character • 3–22
Dummy argument • 7–12

example • 7–9
forcing creation of • 7–13

Dynamic descendants
of blocks • 1–14, 8–41

E
EDIT option

GET statement • 9–15
PUT statement • 9–23

E format item
definition • 9–33

Elements
array • 2–4, 4–4

referring to • 4–5

Index–7

Index

Embedded preprocessor
See Preprocessor • 10–1

Empty argument list • 7–3
EMPTY built-in function • 5–5, 5–7, 11–20
ENCODE built-in function • 11–20
Encoded-sign picture characters • 3–21
ENCODE preprocessor built-in function • 11–20
ENDFILE condition • 8–30

signaled • 9–60
ENDPAGE condition • 8–31

signaled • 9–5
END statement • 7–15, 8–11, E–3
%END statement • 10–11, E–3
Entry

constants • 3–45
data • 3–45

attributes • 2–8, E–9
in relational expressions • 6–11
internal representation • 3–47
VARIABLE attribute • 2–45

points
alternate • 7–4
ENTRY attribute • 2–20
invoking • 7–5
multiple • 7–6
procedure • 7–5
specifying attributes of return value • 2–38

values • 3–46
variables • 3–46

ENTRY attribute • 2–20
declaring non-PL/I procedures • 7–17

ENTRY statement • 7–4, E–3
ENVIRONMENT attribute • 2–22

CLOSE options • 9–9
ERROR condition • 8–32

determining error status value • 11–33
signaled • 9–58, 9–62

by default ON-unit • 8–40
in assignment to pictured variable • 3–27

Error handling
of file-related error • 11–34
ONCHAR built-in function • 11–33
ONCODE built-in function • 11–33
ON condition • 8–22

Error messages • 10–11
ERROR preprocessor built-in function • 11–20
Errors

arithmetic operations
dividing by zero • 8–39

at run-time
conversion • 6–20

Errors (cont’d)

compiler
implicit conversion • 6–20

files
handling opening error • 8–37

handling VAX-specific conditions • 8–39
%ERROR statement • 10–11, 10–25, E–3
Evaluation

of built-in functions • 11–1
of expression • 6–13

EVERY built-in function • 11–21
Exclusive OR • 11–13
EXCLUSIVE OR operator • 6–8
EXP built-in function • 11–21
EXPIRATION_DATE

ENVIRONMENT option • 2–22
Exponent

floating-point data • 3–12
Expressions • E–10

area variable in • 3–50
bit-string data • 6–10
character-string data • 6–10
condition data • 6–11
conversion

of operands • 6–17, 6–18
converted precision • 6–17
derived type • 6–17
entry data • 6–11
evaluation • 6–13
file data • 6–11
in argument list • 7–12
label data • 6–11
logical • 6–5
noncomputational data • 6–11
offset variable in • 6–11
offset variables in • 3–41
pointer variable in • 3–40, 6–11
precedence of operations • 6–12, E–10
relational • 6–9
restricted integer • 4–2
using as subscripts • 4–5

EXTEND built-in subroutine • 11–57
Extensions to standard PL/I • C–7
EXTENSION_SIZE

ENVIRONMENT option • 2–22
Extents

array • 2–4, 4–4
determining • 11–18
static variables • 5–2
structure members • 4–13

Index–8

Index

External
procedures • 2–24

EXTERNAL attribute • 2–24, 5–3
External procedures • 1–12, 7–13
External storage class • 5–3

F
Fatal messages • 10–12
%FATAL statement • 10–12, 10–25, E–3
F-floating format

range of precision • 3–13
F format item

definition • 9–36
Fields • 9–1
File • 9–1

accessing existing file • 9–7
attributes • 9–3, 9–8

DIRECT • 2–20
INPUT • 2–30
KEYED • 2–31
merged at open • 9–6
OUTPUT • 2–34
PRINT • 2–37
RECORD • 2–37
SEQUENTIAL • 2–40
STREAM • 2–40
UPDATE • 2–44

CLOSE statement • 9–8
closing • 9–8
constant • 9–2
constants • 3–48
creating • 9–7
data

in relational expression • 6–11
VARIABLE attribute • 2–45

declaration • 9–1
delete record • 9–65
determining current page number • 11–35
key error • 8–34
opening • 9–2

error condition • 8–37
OPEN statement • 9–2
options • 9–4
printing file • 9–54
read • 9–57
record • 9–57
sequential • 2–40
source

File
source (cont’d)

%INCLUDE text • 10–14
specifying line size • 9–4
specifying page size • 9–4
stream • 9–53

See Stream file • 2–40
updating • 2–44, 9–66
values • 3–48
variable • 9–2
variables • 3–48
writing • 9–62

FILE attribute • 2–24
File control

built-in functions
LINENO • 11–27
PAGENO • 11–35

Files
description attributes • 2–7, E–9

File specifications
determining • 9–7
for error • 11–34
specifying in OPEN • 9–5

FILE_ID
ENVIRONMENT option • 2–22

FILE_ID_TO
ENVIRONMENT option • 2–22

FILE_SIZE
ENVIRONMENT option • 2–22

FINISH condition • 8–33
signaled

STOP statement • 8–21
FIXED attribute • 2–25, 3–8
FIXED built-in function • 11–21
Fixed-length

character-strings • 3–31
FIXEDOVERFLOW condition • 8–33

signaled
assignment to pictured variable • 3–20, 3–27
exceeding maximum integer value • 3–9

Fixed-point data
binary • 3–8

conversion • 6–21
internal representation • 3–9

decimal • 3–10
constant • 3–10
internal representation • 3–11
precision • 3–10
scale factor • 3–10
use in expressions • 3–11
variables • 3–10

Index–9

Index

Fixed-point data (cont’d)

declaring • 2–25
overflow condition • 8–33

FIXED_CONTROL option
READ statement • 9–59

FIXED_CONTROL_FROM option
WRITE statement • 9–63

FIXED_CONTROL_SIZE
ENVIRONMENT option • 2–22

FIXED_CONTROL_SIZE_TO
ENVIRONMENT option • 2–22

FIXED_LENGTH_RECORDS
ENVIRONMENT option • 2–22

FLOAT attribute • 2–26
FLOAT built-in function • 11–22
Floating-point data • 3–11

constant • 3–12
declare • 2–26
default precision • 3–14
OpenVMS Alpha internal representation • 3–16
OVERFLOW condition • 8–36
range of formats • 3–13
range of precision • 3–13
supported formats • 3–13
UNDERFLOW condition • 8–39
using in expressions • 3–13
VAX internal representation • 3–14

FLOOR built-in function • 11–22
FLUSH built-in subroutine • 11–57
Format

of source program • 1–8
Format items • 9–26

A • 9–27
B • 9–29
COLUMN • 9–32
E • 9–33
F • 9–36
iteration factor • 9–47
LINE • 9–39
list • 9–42, 9–48
P • 9–40
PAGE • 9–42
R • 9–42
repetition of • 9–47
SKIP • 9–43
TAB • 9–44
X • 9–45

Format specification • 9–47
list • 9–48

FORMAT statement • 9–42, E–3
label restriction • 3–42

FREE built-in subroutine • 11–58
FREE statement • 5–17, 5–20, E–3
FROM option

REWRITE statement • 9–66
WRITE statement • 9–62

Functions • 7–3
built-in • 11–1
external • 7–13
invoking procedure with • 1–12
invoking with no arguments • 7–3
references to • 7–3
RETURN statement • 7–16
specifying attributes of return value • 2–38
terminating • 7–15
user-written

requirements • 7–3

G
GET statement • 9–1, 9–13, E–3

assigning values to array elements • 4–10
conversion of values • 6–15
execution of • 9–18
forms • 9–13
GET EDIT • 9–15
GET LIST • 9–16
GET SKIP • 9–18
options • 9–14

G-floating format
range of precision • 3–13

GLOBALDEF attribute • 2–27, 5–3
GLOBALREF attribute • 2–27, 5–3
GOTO statement • 8–17, E–4

nonlocal GOTO • 8–18
terminating subroutines or function • 7–15

%GOTO statement • 10–12, E–3
Groups

terminating • 8–11
GROUP_PROTECTION

ENVIRONMENT option • 2–22

H
HBOUND built-in function • 11–23

Index–10

Index

H-floating format
range of precision • 3–13

HIGH built-in function • 11–23

I
Identifiers • 1–3

associating with variables • 1–15
rules for forming • 1–3

IDENT option
PROCEDURE statement • 7–2

IF statement • 8–12, E–4
nesting • 8–13

%IF statement • 10–13, E–4
IGNORE_LINE_MARKS

ENVIRONMENT option • 2–22
Immediate containment • 1–12
Implementation-defined values • C–9
%INCLUDE statement • 10–14, E–4

rules for file specifications • 10–14
INDEX built-in function • 11–23
INDEXED

ENVIRONMENT option • 2–22
Indexed sequential files

key
error handling • 8–34

KEYED attribute • 2–31
ONKEY built-in function • 11–34

INDEX preprocessor built-in function • 11–23
INDEX_NUMBER

ENVIRONMENT option • 2–22
INDEX_NUMBER option

READ statement • 9–59
Infix operator • 6–4
Informational messages • 10–15
INFORM built-in function • 11–24
INFORM preprocessor built-in function • 11–24
%INFORM statement • 10–15, 10–25, E–4
INITIAL attribute • 2–28

with arrays • 4–6
with structures • 4–15

Initialize
structures • 4–15

INITIAL_FILL
ENVIRONMENT option • 2–22

IN option
ALLOCATE statement • 5–6

Input
records • 9–57

READ statement • 9–57
stream • 9–18

GET statement • 9–13
rules for specifing • 9–16

Input/Output
area • 3–50
format list • 9–42
record files • 9–57
statements

DELETE • 9–65
GET • 9–13
PUT • 9–20
READ • 9–57
REWRITE • 9–66
WRITE • 9–62

stream files • 9–10
terminal • 9–53

INPUT attribute • 2–30, 9–8
Insertion of picture character • 3–23
INT built-in function • 11–24
Integer constants

representation • 3–8
Integer data

overflow condition • 8–33
Integer expression

restricted • 2–12, 2–14
Integers

fixed-point binary • 3–8
fixed-point decimal • 3–10
maximum values • 3–9

Internal
representation

with UNSPEC • 11–52, 11–64
INTERNAL attribute • 2–31
Internal procedures • 1–12
Internal variables • 5–2
Interrupts

handling with ON statement • 8–22
INT pseudovariable • 11–59
I picture character • 3–21
Iteration factor

INITIAL attribute • 2–28, 4–7
initializing array • 4–7
picture • 3–21
with format item • 9–47

Index–11

Index

K
Kednos Corporation implementations of PL/I

differences from standard PL/I • D–4
KEY condition • 8–34

determining key that caused • 11–34
signaled • 9–59, 9–63, 9–65, 9–67

KEYED attribute • 2–31, 9–8
KEYFROM option

WRITE statement • 9–62
KEY option

DELETE statement • 9–65
READ statement • 9–59
REWRITE statement • 9–67

KEYTO option
READ statement • 9–59

Keywords • 1–1, A–1
not supported • D–1
recognition from context • 1–1

Keyword statement • 1–6

L
LABEL attribute • 2–31
Labels • 3–41

array constant • 3–42
constant • 3–42
data

in relational expression • 6–11
VARIABLE attribute • 2–45

restrictions • 3–44
subscripted • 3–42
transferring control to • 8–17
value • 3–43

operations • 3–44
variable • 3–44

declaring • 2–31
internal representation • 3–45

LBOUND built-in function • 11–26
LEAVE statement • 8–19, E–4
Left-to-right equivalence

matching based variables by • 5–13
LENGTH built-in function • 11–26

using • 3–32
Length of strings

determining • 11–26

LENGTH preprocessor built-in function • 11–26
Level numbers

rules for specifying • 4–12
Lexical elements

comments • 1–4
identifiers • 1–3
keywords • 1–1, 1–3
punctuation • 1–1

LIKE attribute • 2–31, 4–15
using • 4–18

Line end character • 1–3
LINE format item

definition • 9–39
LINENO built-in function • 11–27
Line numbers

of files
determining • 11–27

LINE option
PUT statement • 9–23

LINE preprocessor built-in function • 11–26
Line size

default • 9–4
specifying • 9–4

LINESIZE option • 9–4
%lIST • 10–15
LIST Attribute • 2–32
Listing control

statements • 10–15, 10–16
LIST option

GET statement • 9–16
PUT statement • 9–24

Lists
of declarations • 2–3

%LIST_xxx
%LIST_ALL • 10–15
%LIST_DICTIONARY • 10–15
%LIST_INCLUDE • 10–16
%LIST_MACHINE • 10–16
%LIST_SOURCE • 10–16

%LIST_xxx statement • 10–15
Locator qualifier • 5–7
Locator qualifiers • 5–9
LOG10 built-in function • 11–27
LOG2 built-in function • 11–27
Logarithm

computing base 10 • 11–27
computing base 2 • 11–27
computing natural • 11–27

LOG built-in function • 11–27

Index–12

Index

Logical expressions • 6–5
evaluation • 6–6

Logical operations
NOT • 6–3

Logical operator • 1–3, 6–5
Logical operators

AND • 6–7
AND THEN • 6–8
EXCLUSIVE OR • 6–8
NOT • 6–6
OR • 6–7
OR ELSE • 6–9

LOW built-in function • 11–27
Lowercase and uppercase letters

in identifier • 1–4
LTRIM built-in function • 11–28

M
MAIN option

PROCEDURE statement • 7–2
Main procedure • 1–12
Major structures

restriction on INITIAL • 4–15
Mantissa • 3–12
Matching

based variable references • 5–13
parameter and argument • 7–12

MATCH_NEXT option
READ statement • 9–59, 9–60

MATCH_NEXT_EQUAL option
READ statement • 9–59, 9–60

Mathematical
built-in functions

ACOS • 11–7
ASIN • 11–10
ATAN • 11–10
ATAND • 11–11
ATANH • 11–11
COS • 11–16
COSD • 11–16
COSH • 11–16
EXP • 11–21
LOG • 11–27
LOG10 • 11–27
LOG2 • 11–27
SIN • 11–42
SIND • 11–43
SINH • 11–43

Mathematical
built-in functions (cont’d)

SQRT • 11–45
TAN • 11–48
TAND • 11–48
TANH • 11–49

Mathematical functions
evaluation of • 11–1

MAX built-in function • 11–28
MAXIMUM_RECORD_NUMBER

ENVIRONMENT option • 2–22
MAXIMUM_RECORD_SIZE

ENVIRONMENT option • 2–22
MAXLENGTH built-in function • 11–29

using • 3–32
MAX preprocessor built-in function • 11–28
MEMBER attribute • 2–33
Member attributes • 2–7, E–8

LIKE • 4–18
REFER • 4–19
TYPE • 4–16
UNION • 4–13

Memory
locating

variables in • 11–8
Messages

compiler
implicit conversion • 6–20
suppressing warning • 6–20

diagnostic • 10–11, 10–12, 10–15, 10–24
Migration notes • D–1
MIN built-in function • 11–29
Minor structure

restriction on INITIAL • 4–15
MIN preprocessor built-in function • 11–29
Minus sign (-)

picture character • 3–22
Minus sign (-)

prefix operator • 6–3
MOD built-in function • 11–30
MOD preprocessor built-in function • 11–30
Month

obtaining current • 11–16, 11–17
MULTIBLOCK_COUNT

ENVIRONMENT option • 2–22
MULTIBUFFER_COUNT

ENVIRONMENT option • 2–22
Multinational character set • B–1
Multiple entry points • 7–6
MULTIPLY built-in function • 11–31

Index–13

Index

N
Names

declaration • 2–1
rules for identifiers • 1–3
scope • 1–10

Nesting
DO-group • 8–1
IF statement • 8–13
%INCLUDE statement • 10–14
of blocks • 1–12
SELECT statements • 8–16

Next record • 9–69
NEXT_VOLUME built-in subroutine • 11–58
Nine (9) picture character • 3–20
%NOLIST • 10–16
NOLIST_xxx

%NOLIST_ALL • 10–16
%NOLIST_DICTIONARY • 10–16
NOLIST_INCLUDE • 10–16
NOLIST_MACHINE • 10–16
%NOLIST_SOURCE • 10–16

%NOLIST_xxx statement • 10–16
Noncomputational data type attributes • E–8
Nonlocal GOTO • 7–15, 8–18
Nonmatching based variable reference • 5–14
NONRECURSIVE option

ENTRY statement • 7–4
PROCEDURE statement • 7–2

NONVARYING attribute • 2–33
NOT operator • 6–3, 6–6
/NOWARNINGS qualifier • 6–20
%[NO]LIST statement • E–4
NO_SHARE

ENVIRONMENT option • 2–22
Null argument list • 7–3
NULL built-in function • 11–32

using • 5–8
Null statement • 1–6, 8–21, E–4

in ON-unit • 8–42
multiple labeled • 8–18

%Null statement • 10–4, E–4

O
Offset

data type • 3–41

OFFSET
attribute • 2–33, 3–41

OFFSET built-in function • 11–32
Offsets

converting to pointer • 6–30, 11–35
data

in relational expressions • 6–11
ONARGSLIST built-in function • 11–33
ONCHAR built-in function • 11–33
ONCHAR pseudovariable • 11–60
ONCODE built-in function • 8–35, 8–38, 11–33
ON conditions • 8–22

ANYCONDITION • 8–27
ENDFILE • 8–30
FIXEDOVERFLOW • 8–33
UNDEFINEDFILE • 8–37
UNDERFLOW • 8–39
VAXCONDITION • 8–39
ZERODIVIDE • 8–39

ONFILE built-in function • 8–31, 8–32, 8–35, 8–38,
11–34

ONKEY built-in function • 8–35, 11–34
ONSOURCE built-in function • 11–35
ONSOURCE pseudovariable • 11–60
ON statement • 8–22, E–4
ON-units

argument list for exception • 11–33
completion • 8–42
default PL/I • 8–40
invalid statements in • 8–41
multiple statements in • 8–11
restoring default handling • 8–24
scope • 8–41
to handle any condition • 8–27

Opening a file • 9–2
accessing existing file • 9–7
creating • 9–7
effects • 9–5
file positioning • 9–8
implied attributes • 9–6

OPEN statement • 9–2, E–5
LINESIZE option • 9–4
PAGESIZE option • 9–4
TITLE option • 9–5

Operands • 6–4
conversion of • 6–14

Operations
arithmetic • 3–5

data type of result • 6–18
required operands • 6–4

bit-string • 6–5

Index–14

Index

Operations (cont’d)

Boolean
defining • 11–12

comparison
required operands • 6–4

concatenation
required operands • 6–4

logical
AND • 6–7
AND THEN • 6–8
EXCLUSIVE OR operator • 6–8
NOT • 6–6
OR • 6–7
OR ELSE • 6–9
required operands • 6–4

nonarithmetic • 6–18
relational

required operands • 6–4
Operators • 6–3

arithmetic • 6–4
comparison

See relational
concatenation • 6–11
infix • 6–4
logical • 6–5
precedence • 6–12, E–10
prefix • 6–3
relational • 6–9

OPTIONAL attribute • 2–34
OPTIONS option

DELETE statement • 9–65
GET statement • 9–14
PROCEDURE statement • 7–2
PUT statement • 9–22
READ statement • 9–59
REWRITE statement • 9–67
WRITE statement • 9–63

OR
exclusive • 11–13
operator • 6–7

OR ELSE operator • 6–9
OTHERWISE clause • 8–13
Output

PUT statement • 9–20
records • 9–57
REWRITE statement • 9–66
stream • 9–25
to line printer • 9–54
to terminal • 9–54
WRITE statement • 9–62

OUTPUT attribute • 2–34, 9–8
Overflow

fixed-point data • 8–33
floating-point data • 8–36

OVERFLOW condition • 8–36
Overlay defining • 5–22

matching based variables by • 5–13
POSITION attribute • 2–36
rules for • 5–23

OWNER_GROUP
ENVIRONMENT option • 2–22

OWNER_ID
ENVIRONMENT option • 2–22

OWNER_MEMBER
ENVIRONMENT option • 2–22

OWNER_PROTECTION
ENVIRONMENT option • 2–22

P
Padding

bit-string • 6–24
character-string • 6–26

PAGE format item
definition • 9–42

PAGENO built-in function • 11–35
PAGENO pseudovariable • 11–61
Page numbers

current • 11–35
PAGE option

PUT statement • 9–25
Pages

handling end-of-page condition • 8–31
Page size

default • 9–4
specifying • 9–4

PAGESIZE option • 9–4
%PAGE statement • 10–17, E–5
PARAMETER attribute • 2–34
Parameter descriptors • 7–9

VALUE attribute in • 7–17
Parameters • 7–8

arrays • 7–10
character strings • 7–11
declaring • 7–9
list

relationship to argument list • 7–8
specifying in PROCEDURE statement • 7–2

matching with argument • 7–12

Index–15

Index

Parameters (cont’d)

maximum number allowed • 7–10
relationship to argument • 7–8
rules for specifying • 7–9
structures • 4–15, 7–10

Parent activation • 1–14
Parentheses

enclosing procedure argument • 7–13
Period (.) picture character • 3–23
P format item

definition • 9–40
example • 9–23

PICTURE attribute • 2–35
Picture characters • 3–18

asterisk (*) • 3–20
B • 3–23
comma (,) • 3–23
credit (CR) • 3–24
debit (DB) • 3–24
dollar ($) • 3–22
encoded-sign • 3–21
I • 3–21
minus (-) • 3–22
nine (9) • 3–20
period (.) • 3–23
plus (+) • 3–22
R • 3–21
S • 3–22
slash (/) • 3–23
T • 3–21
V • 3–19
Y • 3–20
Z • 3–20

Pictured
converting

to character-string • 6–29
Pictured variables • 3–28
Pictures

character • 3–18
converting from other types • 6–30
converting to arithmetic • 6–22
converting to bit-string • 6–26
data • 3–18
drifting characters • 3–22
editing by • 3–28
example • 9–23
extracting value from • 3–27
format item • 9–40
input with READ • 11–53
insertion characters • 3–23
iteration factor in • 3–21

Pictures (cont’d)

specification
summary of characters • 3–18

validating • 11–53
Picture specification • 3–18
PL/I

differences between Kednos Corporation
implementations and standard PL/I • D–4

PL/I keywords not supported
summary • D–1

PL/I standard
compatibility with • C–1

Plus sign (+)
picture character • 3–22
prefix operator • 6–3

POINTER attribute • 2–35
POINTER built-in function • 11–35
Pointer data • 3–40
Pointers

adding offset • 11–9
converting to offset • 6–30, 11–32
data

in relational expression • 6–11
internal representation • 3–41

obtaining values • 5–8
passing as actual arguments • 7–18
setting values

ADDR built-in function • 11–8
ALLOCATE statement • 5–18
SET option of READ • 9–58

valid value • 5–8
variable • 2–35

setting to null value • 11–32
POSINT built-In function • 11–36
POSINT pseudovariable • 11–61
Position (file)

following DELETE • 9–66
following READ • 9–60
following REWRITE • 9–67
following WRITE • 9–63
record files • 9–69
stream I/O • 9–11

Position (string)
stream I/O • 9–52

POSITION attribute • 2–36, 5–21
Precedence of operations • 6–12, E–10
Precision

arithmetic data types • 3–6
default • 3–6
fixed-point decimal • 3–10
for floating-point data • 3–13

Index–16

Index

Precision (cont’d)

pictured variables
defined by drifting characters • 3–22

PRECISION attribute • 2–36, 3–6
Prefix operator • 6–3
Preprocessor • 1–16, 10–1

built-in functions • 10–26
statements • 1–16, 10–3

Preprocessor statements
%ACTIVATE • 10–5
assignment • 10–4
%DEACTIVATE • 10–6
%DECLARE • 10–7
%DICTIONARY • 10–8
%DO • 10–10
%END • 10–11
%ERROR • 10–11
%FATAL • 10–12
%GOTO • 10–12
%IF • 10–13
%INCLUDE • 10–14
%INFORM • 10–15
%LIST_xxx • 10–15
%NOLIST_xxx • 10–16
%Null • 10–4
%PAGE • 10–17
%PROCEDURE • 10–17
%REPLACE • 10–23
%RETURN • 10–17, 10–23
%SBTTL • 10–24
%TITLE • 10–24
%WARN • 10–24

Preprocessor variables • 10–1
PRESENT built-in function • 11–37
PRINT attribute • 2–37, 9–8
Printers

files
handling end-of-page condition • 8–31

output • 9–54
PRINTER_FORMAT

ENVIRONMENT option • 2–22
Print file • 9–54

declaring • 2–37
Priority of operations • 6–12, E–10
Procedures • 1–12, 7–1

blocks • 1–9
declarations • 7–1

outside procedures • 2–2
entry points • 3–46, 7–5
external • 1–12, 7–13

declaring • 2–24

Procedures (cont’d)

IDENT option • 7–2
internal • 1–12
invoking • 1–12

with CALL statement • 7–7
with function reference • 7–3

main procedure • 1–12
parameters of • 7–8
returning from • 7–16
terminating • 7–15

END statement • 8–12
STOP statement • 8–21

PROCEDURE statement • 7–1, E–5
label restriction • 3–42
to define a procedure • 1–12

%PROCEDURE statement • 10–17, E–5
STATEMENT option • 10–21

PROD built-in function • 11–37
Programs

controlling execution • 8–1
documenting • 1–4
elements of • 1–1
format of • 1–8
structure of • 1–8
terminating

with END statement • 8–12
with STOP statement • 8–21

Pseudovariables • 11–58, E–12
INT • 11–59
ONCHAR • 11–60
ONSOURCE • 11–60
PAGENO • 11–61
SUBSTR • 11–63
UNSPEC • 11–64

Punctuation marks
meaning to PL/I • 1–1

PUT statement • 9–1, 9–20, E–5
conversion of values • 6–15
execution of • 9–25
forms • 9–20
options • 9–22
PUT EDIT • 9–23
PUT LINE • 9–23
PUT LIST • 9–24
PUT PAGE • 9–25
PUT SKIP • 9–25
PUT STRING

example • 9–46

Index–17

Index

Q
Qualifying reference

for based variable • 5–7

R
RANK built-in function • 11–38
RANK preprocessor built-in function • 11–38
READONLY attribute • 2–37
READ statement • 9–1, 9–57, E–6

SET option
using • 5–11

with pictured data • 11–53
READ_AHEAD

ENVIRONMENT option • 2–22
READ_CHECK

ENVIRONMENT option • 2–22
RECORD attribute • 2–37, 9–8
Record files

access modes • 9–57
attributes • 9–57

Record I/O and unconnected arrays • 4–25
Record management services (RMS)

extensions to standard • C–9
Records

delete • 9–65
files • 9–57

delete record • 9–65
read • 9–57
READ with SET option • 5–11
updating • 9–66
writing records to • 9–62

I/O • 9–57
reading • 9–57
rewriting • 9–66
writing • 9–62

RECORD_ID_ACCESS
ENVIRONMENT option • 2–22

RECORD_ID_FROM option
READ statement • 9–59

RECORD_ID_TO option
READ statement • 9–59
WRITE statement • 9–63

RECURSIVE option
ENTRY statement • 7–4
PROCEDURE statement • 7–2

REFER attribute • 2–38
REFERENCE attribute • 2–38
REFERENCE built-in function • 11–38
References

structure-qualified • 4–22
to based variable • 5–7

REFER option • 4–15, 4–19
Relational operator • 1–2, 6–9
Relative files

ONKEY built-in function • 11–34
RELEASE built-in subroutine • 11–58
REPEAT option

DO statement • 8–8
Repetition of format item • 9–47
%REPLACE statement • 10–23, E–6
Replication factor • 3–30, 3–34
RESIGNAL built-in subroutine • 8–42, 11–57
Restricted integer expression • 2–12, 2–14, 4–2
RETRIEVAL_POINTERS

ENVIRONMENT option • 2–23
Returns

value • 7–16
RETURNS attribute • 2–38

with ENTRY attribute • 2–21
Returns descriptor • 2–39
RETURNS option • 2–38

ENTRY statement • 7–4
PROCEDURE statement • 7–3

RETURN statement • 7–16, E–6
conversion of values • 6–15
terminating procedures • 7–15

%RETURN statement • 10–17, 10–23, E–6
REVERSE built-in function • 11–38
REVERSE preprocessor built-in function • 11–38
REVERT statement • 8–24, E–6
REVISION_DATE

ENVIRONMENT option • 2–23, 9–9
REWIND_ON_CLOSE

ENVIRONMENT option • 2–23, 9–9
REWIND_ON_OPEN

ENVIRONMENT option • 2–23
REWRITE statement • 9–1, 9–66, E–6

using • 5–11
R format item

definition • 9–42
RISC calling standard

extensions to PL/I • C–8
RMS

extensions to the standard • C–9

Index–18

Index

ROUND built-in function • 11–39
Row-major order • 4–9
R picture character • 3–21
RTRIM built-in function • 11–40

S
%SBTTL statement • 10–24, E–6
Scalar, Array, and Member attributes • 4–15
SCALARVARYING

ENVIRONMENT option • 2–23, 9–58, 9–62, 9–66
Scale factor • 3–8, 3–10

binary • 3–6
decimal • 3–6
default • 3–6
of pictured variable • 3–19

Scope
attributes • 2–7, E–8
INTERNAL attribute • 2–31
of internal variables • 5–2
of names • 1–10
of ON-unit • 8–42
of static variables • 5–2

SEARCH built-in function • 11–41
SEARCH preprocessor built-in function • 11–41
Select-expression • 8–13
SELECT statement • 8–13, E–7
Semicolon (;)

using as null statement • 8–21
SEQUENTIAL attribute • 2–40, 9–8
Sequential files • 2–40
SET option

ALLOCATE statement • 5–6, 5–18
example • 5–8

READ statement • 9–58
example • 5–11

S-floating format
range of precision • 3–13

SHARED_READ
ENVIRONMENT option • 2–23

SHARED_WRITE
ENVIRONMENT option • 2–23

Sharing
storage • 5–24

SIGNAL statement • 8–23, E–7
SIGN built-in function • 11–42
SIGN preprocessor built-in function • 11–42

Simple statement • 1–5
SIN built-in function • 11–42
SIND built-in function • 11–43
Single-precision floating point

range of precision • 3–13
SINH built-in function • 11–43
SIZE built-in function • 11–43
SKIP format item

definition • 9–43
SKIP option • 9–22

GET statement • 9–18
PUT statement • 9–25

Slash (/) picture character • 3–23
SOME built-in function • 11–45
Source program format • 1–8
Spaces • 1–3
S picture character • 3–22
SPOOL

ENVIRONMENT option • 2–23, 9–9
SQRT built-in function • 11–45
Square root

obtaining • 11–45
STATEMENT option

of %PROCEDURE statement • 10–21
Statements • 1–5

alphabetic summary • 1–7
preprocessor • 10–3

compound • 1–6
format • 1–5
functional summary • 1–6
label • 3–41
labels • 1–5
simple • 1–5

assignment • 1–6
keyword • 1–6
null • 1–6

syntax of • E–1 to E–7
Static

storage class • 5–2
STATIC attribute • 2–40, 5–2

implied • 2–24
implied by INTERNAL • 5–3

Static variables
entry value • 3–47

STOP statement • 8–21, E–7
terminating subroutines or functions • 7–15

Storage
allocating

for a based variable • 5–18
for a controlled variable • 5–18
for an automatic variable • 2–12

Index–19

Index

Storage
allocating (cont’d)

for a static variable • 2–40
within areas • 3–49

attributes • 2–7, E–8
automatic • 5–1
based • 5–4
based variables • 2–13
bit string • 3–37
built-in functions

ADDR • 11–8
ADDREL • 11–9
ALLOCATION • 11–9
BYTESIZE • 11–14
EMPTY • 11–20
NULL • 11–32
OFFSET • 11–32
POINTER • 11–35
SIZE • 11–43

class • 5–1
extensions to the standard • C–8

default class • 5–1
defined • 2–18, 5–21
example of allocation • 5–8
freeing • 5–20
internal variables • 2–31
locating with ADDR • 5–12
maximum size of data object • 5–1
setting null pointer • 11–32
sharing • 5–24
specifying READONLY variable • 2–37
static • 5–2

STORAGE condition • 8–36
Storage sharing

with based variables • 5–24
with defined variables • 5–24
with parameters • 5–24
with unions • 5–24

Stream
I/O processing • 9–10

STREAM attribute • 2–40, 9–8
Stream file • 2–40

associating with terminal • 9–53
GET statement • 9–13
PUT statement • 9–20

Stream files
access modes • 9–10
attributes • 9–10

Stream input • 9–18

Stream output • 9–25
STRING built-in function • 11–46
String constants

replication • 3–30
String handling

built-in functions
BOOL • 11–12
COLLATE • 11–15
COPY • 11–15
EVERY • 11–21
HIGH • 11–23
INDEX • 11–23
LENGTH • 11–26
LOW • 11–27
LTRIM • 11–28

concatenation operator • 6–11
locating substrings • 11–23
replication factor • 3–34
SUBSTR pseudovariable • 11–63

String Handling
built-in functions

MAXLENGTH • 11–29
REVERSE • 11–38
RTRIM • 11–40
SEARCH • 11–41
SOME • 11–45
STRING • 11–46
SUBSTR • 11–46
TRANSLATE • 11–49
TRIM • 11–51
VERIFY • 11–56

String overlay defining
rules for • 5–23

STRING pseudovariable • 11–62
STRINGRANGE condition • 8–36
Strings

in conversion functions • 6–19
STRUCTURE attribute • 2–41
Structures • 4–11

concatenating with STRING • 11–46
declaration • 2–5
declaring • 4–12

as parameters • 7–10
dimensioned

unconnected arrays • 4–25
in an array • 4–24
in assignment statements • 4–23
initializing • 4–15
level numbers • 4–12
major • 4–12, 4–15, 4–23
minor • 4–12, 4–15, 4–23

Index–20

Index

Structures (cont’d)

naturally aligned • 4–26
passing as arguments • 4–15, 7–10

by descriptor • 7–18
referring to members • 4–22
structure-qualified reference • 4–22
unaligned • 4–26
union • 4–13

Subroutines
CALL statement • 7–7
external • 7–13
file-handling

summary • E–13
summary • 11–57
terminating • 7–15

Subscripts • 4–5
label • 3–42
refering to array of structures • 4–25
variable • 4–5

SUBSTR built-in function • 11–46
Substrings

locating in string • 11–23
obtaining • 11–46
overlay • 11–63

SUBSTR preprocessor built-in function • 11–46
SUBSTR pseudovariable • 11–63
SUBTRACT built-in function • 11–47
SUM built-in function • 11–48
Summary

PL/I language features • E–1 to E–13
SUPERSEDE

ENVIRONMENT option • 2–23
Symbols

global • 2–27
SYSIN default file • 9–53
SYSPRINT default file • 9–53
SYSTEM_PROTECTION

ENVIRONMENT option • 2–23

T
TAB format item

definition • 9–44
Tabs • 1–3
TAN built-in function • 11–48
TAND built-in function • 11–48
TANH built-in function • 11–49
TEMPORARY

ENVIRONMENT option • 2–23

Terminal
I/O • 9–53, 9–54

Termination
END statement • 8–11
of procedures • 7–15
of program execution

STOP statement • 8–21
Text

including from other files • 10–14
T-floating format

range of precision • 3–13
TIME built-in function • 11–49
Timekeeping

built-in functions
DATE • 11–16
DATETIME • 11–17
TIME • 11–49

Time of day
obtaining • 11–17, 11–49

TIME preprocessor built-in function • 11–49
TITLE option • 9–5, 9–7
%TITLE statement • 10–24, E–7
T picture character • 3–21
Transfer control

GOTO statement • 8–17
LEAVE statement • 8–19

TRANSLATE built-in function • 11–49
TRANSLATE preprocessor built-in function • 11–49
TRIM built-in function • 11–51
TRIM preprocessor built-in function • 11–51
TRUNCATE

ENVIRONMENT option • 2–23, 9–9
TRUNCATE attribute • 2–42
Truncation

of bit-string • 6–24
of character-string • 6–26
of decimal value • 11–52

TRUNC built-in function • 11–52
TYPE attribute • 2–41, 4–15

using • 4–16

U
UNALIGNED attribute • 2–43
Unconnected array • 4–25
UNDEFINEDFILE condition • 8–37

signaled • 9–7

Index–21

Index

UNDERFLOW condition • 8–39
UNDERFLOW option

PROCEDURE statement • 7–2
UNION attribute • 2–43, 4–13
UNSPEC built-in function • 11–52
UNSPEC pseudovariable • 11–64
UNTIL option • 8–3
UPDATE attribute • 2–44, 9–8
Update file

rewriting record • 9–66
Update files

delete record • 9–65
Uppercase and lowercase letters

in identifier • 1–4
User-generated diagnostic messages • 10–25

%ERROR • 10–11
%FATAL • 10–12
%INFORM • 10–15
%WARN • 10–24

USER_OPEN
ENVIRONMENT option • 2–23

V
VALID built-in function • 11–53

using • 3–27
VALUE attribute • 2–44, 5–3

parameter descriptor • 7–17
VALUE built-in function • 11–54
Values

implementation-defined standard • C–9
passing by argument • 2–44

VARIABLE attribute • 2–45
VARIABLE option

ENTRY attribute • 2–21
Variables • 1–15

area
declaring • 3–49

assigning value to • 6–1
automatic • 2–12, 5–1
based • 2–13, 5–4

associating with storage • 5–4
declaring • 5–4
example • 5–15
referring to • 5–7

bit-string • 3–35
character-string • 3–31
declaration • 2–1
declaring • 1–15

Variables (cont’d)

defined • 5–21
criteria for declaring • 5–22

entry • 3–46
external • 5–3
file • 3–48, 9–2
in begin blocks • 8–11
initializing • 2–28
internal • 5–2
label • 3–44

internal representation • 3–45
localizing • 1–11, 8–10
offset

assigning values to • 3–41
declaring • 3–41

pictured • 3–28
assigning values to • 3–27
extracting values from • 3–27

preprocessor • 10–1
static • 5–2
using as subscripts • 4–5

Variabless
fixed-point decimal • 3–10

VARIANT preprocessor built-in function • 11–55
/VARIANT qualifier • 11–55
VARYING attribute • 2–45
VAX calling standard

extensions to PL/I • C–8
VAXCONDITION condition • 8–39
VERIFY built-in function • 11–56
VERIFY preprocessor built-in function • 11–56
V picture character • 3–19

W
Warning (severity)

data conversion • 6–20
Warning messages • 10–24
WARN preprocessor built-in function • 11–57
%WARN statement • 10–24, 10–25, E–7
WHEN clause • 8–13
WHILE option

DO statement • 8–2
WORLD_PROTECTION

ENVIRONMENT option • 2–23
WRITE statement • 9–1, 9–62, E–7
WRITE_BEHIND

ENVIRONMENT option • 2–23

Index–22

Index

WRITE_CHECK
ENVIRONMENT option • 2–23

X
X format item

definition • 9–45
XOR operation

defining with BOOL • 11–13

Y
Year

obtaining current • 11–16, 11–17
Y picture character • 3–20

Z
ZERODIVIDE condition • 8–39
Z picture character • 3–20

Index–23

